
July 20–23,

Virtually held at
Kalamata, Greece

General Chairs

Ioannis Z. Emiris
Lihong Zhi
Program Chair

Anton Leykin
Proceedings Editor

Angelos Mantzaflaris

ISSAC’20
Proceedings of the 45th

International Symposium on Symbolic
and Algebraic Computation

In-Cooperation with:

Sponsored by:

In-Cooperation

The Association for Computing Machinery

1601 Broadway, 10th Floor

New York, NY 10019-7434

Copyright ©2020 by the Association for Computing Machinery, Inc. (ACM). Permission to make
digital or hard copies of portions of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyright for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permission to republish from: permissions@acm.org or Fax +1 (212) 869-0481.

For other copying of articles that carry a code at the bottom of the first or last page, copying is
permitted provided that the per-copy fee indicated in the code is paid through www.copyright.com.

ISBN: 978-1-4503-7100-1

Additional copies may be ordered prepaid from:

ACM Order Department

PO Box 30777
New York, NY 10087-0777, USA

Phone: 1-800-342-6626 (USA and Canada)
+1-212-626-0500 (Global)

Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

Hours of Operation: 8:30 am - 4:30 pm ET

ii

www.copyright.com

Foreword

The International Symposium on Symbolic and Algebraic Computation (ISSAC) is the premier conference for
research in symbolic computation and computer algebra. ISSAC 2020, originally planned to be held at Kalamata,
Greece, is the 45th meeting in this series, which took place for the first time in 1966, and annually since 1981.
ISSAC 2020 was held in cooperation with the Association for Computing Machinery (ACM) and its Special
Interest Group on Symbolic and Algebraic Manipulation (SIGSAM), and was generously supported by few other
institutions and organizations, as listed on the following pages.
The conference typically presents a range of invited talks, tutorials, poster sessions, software demonstrations,
and vendor exhibits, with its center-piece being peer-reviewed contributed research papers. This year’s meeting
was scheduled from the 20th to the 23rd of July 2020 so as to include a day of tutorials, and three days of regular
papers, invited talks, software demonstrations, and a poster session. However, the Covid-19 pandemic forced us
to hold the meeting remotely over the Internet. In order to maximize attendance from all over the world, and
taking into consideration the limited interaction possible during an online event, we decided to hold three hours
of live talks and discussions daily, from July 20th to July 22nd. All parts of the symposium had to be reduced
whereas a few events had to be canceled.
More specifically, regular papers, the cornerstone of the conference, were all discussed online; no talks were
broadcast during the live sessions, with the exception of the distinguished paper talk. Presentation files and,
optionally, video presentations were posted online before the conference for all regular papers. Software
demonstrations and poster sessions were reduced in length, with the latter being somewhat transformed into a
session of short communications, given the lack of live interaction. Tutorials were canceled, but we are grateful
that two tutorial speakers agreed to include their abstracts in the proceedings; we believe this shows important
aspects of current activity in our field, and also gives a better picture of how the live conference would have been.
Lastly, we held the three invited talks as well as the Jenks Prize talk during the live sessions, and we are grateful
to our speakers for their willingness to adapt to this new, remote format.
As always, the ISSAC meeting is a showcase for original research contributions on all aspects of computer algebra
and symbolic mathematical computation, including:
Algorithmic aspects:

• Exact and symbolic linear, polynomial and differential algebra

• Symbolic-numeric, homotopy, perturbation and series methods

• Computational algebraic geometry, group theory and number theory, quantifier elimination and logic

• Computer arithmetic

• Summation, recurrence equations, integration, solution of ODEs & PDEs

• Symbolic methods in other areas of pure and applied mathematics

• Complexity of algebraic algorithms and algebraic complexity

Software aspects:

• Design of symbolic computation packages and systems

• Language design and type systems for symbolic computation

iii

https://www.sigsam.org/
https://www.sigsam.org/

• Data representation

• Considerations for modern hardware

• Algorithm implementation and performance tuning

• Mathematical user interfaces

• Use with systems for, e.g., digital libraries, course-ware, simulation and optimization, automated theorem-
proving, computer-aided design, and automatic differentiation

Application aspects:

• Applications that stretch the current limits of computer algebra algorithms or systems, use computer
algebra in new areas or new ways, or apply it in situations with broad impact.

The ISSAC Program Committee has adhered to the highest standards and practices in the evaluation of submitted
papers, producing an average of more than three referee reports per submission. The review process included a
round of rebuttal responses for a large number of submissions. All papers submitted to ISSAC were refereed,
and accepted or rejected, solely according to their scientific novelty, importance, non-triviality, and rigor. The
Program Committee selected 58 papers for publication in these proceedings out of 102 submissions. We gratefully
acknowledge the hard work of the Program Committee members. This work would have been impossible without
the help of external reviewers. We thank all of them — we received 325 reviews in total1 — with special thanks
going to those who submitted thorough reviews and those who reviewed multiple submissions. We thank all the
authors of all the submitted papers, extended abstracts for posters and software presentations, as well as tutorial
and invited speakers for their contributions.
In addition to the dedicated effort of all organizers, running a large conference such as ISSAC requires the work
of many volunteers and hopefully all of them are credited on the following pages. Without their contributions,
the conference would not have been possible.

Ioannis Z. Emiris and Lihong Zhi (General Chairs)
Anton Leykin (Program Committee Chair)
Angelos Mantzaflaris (Proceedings Editor)

1This year we break with the tradition of publishing the names of external reviewers in the ISSAC proceedings in order to respect all
communities where anonymity of referees is strictly guarded.

iv

http://cgi.di.uoa.gr/~emiris
http://www.mmrc.iss.ac.cn/~lzhi
https://people.math.gatech.edu/~aleykin3
https://www-sop.inria.fr/members/Angelos.Mantzaflaris

Table of Contents

ISSAC 2020 Conference Organization . xi

ISSAC 2020 Sponsors and Supporters . xiii

Invited talks

• Reflections on Elimination Theory . 1

David A. Cox (Amherst College, Amherst MA, USA)

• Positive Solutions of Sparse Polynomial Systems . 5

Alicia Dickenstein (Universidad de Buenos Aires, Buenos Aires, Argentina)

• Ubiquity of the Exponent of Matrix Multiplication . 8

Lek-Heng Lim (The University of Chicago, Chicago IL, USA), Ke Ye (Chinese Academy of Sciences, Beijing,
China)

Tutorials

• What do Sparse Interpolation, Padé Approximation, Gaussian Quadrature and Tensor De-

composition Have in Common? . 12

Annie Cuyt (University of Antwerp, Belgium, and Shenzhen University, China)

• Real Quantifier Elimination by Cylindrical Algebraic Decomposition, and Improvements by

Machine Learning . 13

Matthew England (Coventry University, UK)

Contributed Papers

• Sub-quadratic Time for Riemann-Roch Spaces . 14

Simon Abelard (Institut Polytechnique de Paris, France), Alain Couvreur (Inria Saclay, France), Grégoire
Lecerf (CNRS, France)

v

• On the Parallelization of Triangular Decompositions . 22

Mohammadali Asadi (University of Western Ontario, Canada), Alexander Brandt (University of Western
Ontario, Canada), Robert H. C. Moir (University of Western Ontario, Canada), Marc Moreno Maza
(University of Western Ontario, Canada), Yuzhen Xie (University of Western Ontario, Canada)

• The Orbiter Ecosystem for Combinatorial Data . 30

Anton Betten (Colorado State University, USA)

• A Las Vegas Algorithm for Computing the Smith Form of a Nonsingular Integer Matrix . . . 38

Distinguished Student Author Award

Stavros Birmpilis (University of Waterloo, Canada), George Labahn (University of Waterloo, Canada),
Arne Storjohann (University of Waterloo, Canada)

• Computing the # -th Term of a @-Holonomic Sequence . 46

Alin Bostan (Inria, France)

• Separating Variables in Bivariate Polynomial Ideals . 54

Manfred Buchacher (Johannes Kepler University, Austria), Manuel Kauers (Johannes Kepler University,
Austria), Gleb Pogudin (École Polytechnique, France and Higher School of Economics, Moscow, Russia)

• Robots, Computer Algebra and Eight Connected Components 62

Jose Capco (Innsbruck University, Austria), Mohab Safey El Din (Sorbonne University, France), Josef
Schicho (Johannes Kepler University, Austria)

• Signature-based Algorithms for Gröbner Bases over Tate Algebras 70

Xavier Caruso (University of Bordeaux, France), Tristan Vaccon (University of Limoges, France), Thibaut
Verron (Johannes Kepler University, Austria)

• Syzygies of Ideals of Polynomial Rings over Principal Ideal Domains 78

Hara Charalambous (Aristotle University of Thessaloniki, Greece), Kostas Karagiannis (Aristotle University
of Thessaloniki, Greece), Sotiris Karanikolopoulos (National and Kapodistrian University of Athens,
Greece), Aristides Kontogeorgis (National and Kapodistrian University of Athens, Greece)

• Compatible Rewriting of Noncommutative Polynomials for Proving Operator Identities . . 83

Cyrille Chenavier (Johannes Kepler University, Austria), Clemens Hofstadler (Johannes Kepler University,
Austria), Clemens G. Raab (Johannes Kepler University, Austria), Georg Regensburger (Johannes Kepler
University, Austria)

• Integral Bases for P-Recursive Sequences . 91

Shaoshi Chen (Chinese Academy of Sciences, China), Lixin Du (Johannes Kepler University, Austria),
Manuel Kauers (Johannes Kepler University, Austria), Thibaut Verron (Johannes Kepler University, Austria)

• A Gröbner-Basis Theory for Divide-and-Conquer Recurrences 99

Frédéric Chyzak (Inria Saclay, France), Philippe Dumas (Inria Saclay, France)

vi

• Bounds for Degrees of Minimal `−bases of Parametric Surfaces 107

Teresa Cortadellas Benitez (Universitat de Barcelona, Spain), Carlos D’Andrea (Universitat de Barcelona,
Spain), M. Eulàlia Montoro (Universitat de Barcelona, Spain)

• On A Non-Archimedean Broyden Method . 114

Xavier Dahan (Tohoku University, Japan), Tristan Vaccon (University of Limoges, France)

• Decidability of Membership Problems for Flat Rational Subsets of GL(2, Q) and Singular

Matrices . 122

Volker Diekert (University of Stuttgart, Germany), Igor Potapov (University of Liverpool, UK), Pavel
Semukhin (University of Oxford, UK)

• On the Apolar Algebra of a Product of Linear Forms . 130

Michael DiPasquale (Colorado State University, USA), Zachary Flores (Colorado State University, USA),
Chris Peterson (Colorado State University, USA)

• Global Optimization via the Dual SONC Cone and Linear Programming 138

Mareike Dressler (University of California San Diego, USA), Janin Heuer (Technische Universitat Braun-
schweig, Germany), Helen Naumann (Goethe Universität Frankfurt am Main, Germany), Timo de Wolff
(Technische Universitat Braunschweig, Germany)

• An Additive Decomposition in Logarithmic Towers and Beyond 146

Hao Du (Austrian Academy of Sciences, Austria), Jing Guo (Chinese Academy of Sciences, China), Ziming
Li (Chinese Academy of Sciences, China), Elaine Wong (Austrian Academy of Sciences, Austria)

• Numerical Equality Tests for Rational Maps and Signatures of Curves 154

Timothy Duff (Georgia Institute of Technology, USA), Michael Ruddy (Max Planck Institute for Mathe-
matics in the Sciences, Germany)

• On Fast Multiplication of a Matrix by its Transpose . 162

Jean-Guillaume Dumas (Université Grenoble Alpes, France), Clément Pernet (Université Grenoble Alpes,
France), Alexandre Sedoglavic (Université de Lille, France)

• On the Bit Complexity of Finding Points in Connected Components of a Smooth Real Hy-

persurface . 170

Jesse Elliott (University of Waterloo, Canada), Mark Giesbrecht (University of Waterloo, Canada), Éric
Schost (University of Waterloo, Canada)

• The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry 178

Distinguished Paper Award

Sebastian Falkensteiner (Johannes Kepler University, Austria), Cristhian Garay-Lopez (Center for Research
in Mathematics, Mexico), Mercedes Haiech (University of Rennes 1, France), Marc Paul Noordman
(University of Groningen, The Netherlands), Zeinab Toghani (Queen Mary University of London, UK),
Francois Boulier (University Lille, France)

vii

• Special-case Algorithms for Blackbox Radical Membership, Nullstellensatz and Transcen-

dence Degree . 186

Abhibhav Garg (Indian Institute of Technology Kanpur, India), Nitin Saxena (Indian Institute of Technology
Kanpur, India)

• Sparse Multiplication for Skew Polynomials . 194

Mark Giesbrecht (University of Waterloo, Canada), Qiao-Long Huang (Shandong University, China), Éric
Schost (University of Waterloo, Canada)

• Essentially Optimal Sparse Polynomial Multiplication . 202

Pascal Giorgi (University of Montpellier, France), Bruno Grenet (University of Montpellier, France), Armelle
Perret du Cray (University of Montpellier, France)

• Fast In-place Algorithms for Polynomial Operations: Division, Evaluation, Interpolation . . 210

Pascal Giorgi (Université de Montpellier, France), Bruno Grenet (Université de Montpellier, France), Daniel
S. Roche (United States Naval Academy, USA)

• Subdivisions for Macaulay Formulas of Sparse Systems . 218

Friedemann Groh (Industrielle Steuerungstechnik GmbH, Germany)

• On the Uniqueness of Simultaneous Rational Function Reconstruction 226

Eleonora Guerrini (Université de Montpellier, France), Romain Lebreton (Université de Montpellier, France),
Ilaria Zappatore (Université de Montpellier, France)

• Efficient ECM Factorization in Parallel with the Lyness Map . 234

Andrew Hone (University of Kent, UK)

• Algorithmic Averaging for Studying Periodic Orbits of Planar Differential Systems 241

Bo Huang (Beihang University, China)

• New Progress in Univariate Polynomial Root Finding . 249

Rémi Imbach (New York University, USA), Victor Y. Pan (City University of New York, USA)

• On FGLM Algorithms with Tropical Gröbner Bases . 257

Yuki Ishihara (Rikkyo University, Japan), Tristan Vaccon (University of Limoges, France), Kazuhiro
Yokoyama (Rikkyo University, Japan)

• Modular Techniques for Effective Localization and Double Ideal Quotient 265

Yuki Ishihara (Rikkyo University, Japan)

• How Many Zeros of Random Sparse Polynomials Are Real? . 273

Gorav Jindal (Aalto University, Finland), Anurag Pandey (Max Planck Institut für Informatik, Germany),
Himanshu Shukla (Max Planck Institut für Informatik, Germany), Charilaos Zisopoulos (Saarland
University, Germany)

viii

• On the Geometry and the Topology of Parametric Curves . 281

Christina Katsamaki (Inria Paris, Sorbonne Université, Paris Université), Fabrice Rouillier (Inria Paris,
Sorbonne Université, Paris Université), Elias Tsigaridas (Inria Paris, Sorbonne Université, Paris Université),
Zafeirakis Zafeirakopoulos (Gebze Technical University, Turkey)

• On the Skolem Problem and Prime Powers . 289

George Kenison (University of Oxford, UK), Richard Lipton (Georgia Institute of Technology, USA), Joël
Ouaknine (Max Planck Institute for Software Systems, Germany), James Worrell (University of Oxford, UK)

• Computing the Real Isolated Points of an Algebraic Hypersurface 297

Huu Phuoc Le (Sorbonne Université, France), Mohab Safey El Din (Sorbonne Université, France), Timo de
Wolff (Technische Universitat Braunschweig, Germany)

• Letterplace— a Subsystem of Singular for Computations with Free Algebras via Letterplace

Embedding . 305

Viktor Levandovskyy (RWTH Aachen University, Germany), Hans Schoenemann (Technical University
of Kaiserslautern, Germany), Karim Abou Zeid (RWTH Aachen University, Germany)

• Computation of Free Non-commutative Gröbner Bases over Z with Singular:Letterplace . . 312

Viktor Levandovskyy (RWTH Aachen University, Germany), Tobias Metzlaff (Inria Sophia Antipolis,
France), Karim Abou Zeid (RWTH Aachen University, France)

• Some Properties of Multivariate Differential Dimension Polynomials and their Invariants . 320

Alexander Levin (The Catholic University of America, USA)

• Further Results on the Factorization and Equivalence for Multivariate Polynomial Matrices 328

Dong Lu (Beihang University, China), Dingkang Wang (Chinese Academy of Sciences, China), Fanghui
Xiao (Chinese Academy of Sciences, China)

• Punctual Hilbert Scheme and Certified Approximate Singularities 336

Angelos Mantzaflaris (Inria Sophia Antipolis, France), Bernard Mourrain (Inria Sophia Antipolis, France),
Agnes Szanto (North Carolina State University, USA)

• Fast Multipoint Evaluation and Interpolation of Polynomials in the LCH-basis over F?A . . . 344

Axel Mathieu-Mahias (Université de Versailles Saint-Quentin-en-Yvelines, France), Michaël Quisquater
(Université de Versailles Saint-Quentin-en-Yvelines, France)

• WhyMP, a Formally Verified Arbitrary-Precision Integer Library 352

Distinguished Student Author Award

Guillaume Melquiond (Inria, France), Raphaël Rieu-Helft (TrustInSoft/Inria, France)

• On Parameterized Complexity of the Word Search Problem in the Baumslag–Gersten Group 360

Alexei Miasnikov (Stevens Institute of Technology, USA), Andrey Nikolaev (Stevens Institute of Technology,
USA)

• On the Chordality of Ordinary Differential Triangular Decomposition in Top-down Style . . 364

Chenqi Mou (Beihang University, China)

ix

• Approximate GCD by Bernstein Basis, and its Applications . 372

Kosaku Nagasaka (Kobe University, Japan)

• A Divide-and-conquer Algorithm for Computing Gröbner Bases of Syzygies in Finite Dimen-

sion . 380

Simone Naldi (University of Limoges, France), Vincent Neiger (University of Limoges, France)

• Generic BivariateMulti-point Evaluation, Interpolation andModular Compositionwith Pre-

computation . 388

Vincent Neiger (University of Limoges, France), Johan Rosenkilde (Technical University of Denmark,
Denmark), Grigory Solomatov (Technical University of Denmark, Denmark)

• Conditional Lower Bounds on the Spectrahedral Representation of Explicit Hyperbolicity

Cones . 396

Rafael Oliveira (University of Waterloo, Canada)

• Ideal Interpolation, H-Bases and Symmetry . 402

Erick David Rodriguez Bazan (Inria Sophia Antipolis, France), Evelyne Hubert (Inria Sophia Antipolis,
France)

• Generalizing The Davenport-Mahler-Mignotte Bound – The Weighted Case 410

Vikram Sharma (The Institute of Mathematical Sciences, Chennai, India)

• General Witness Sets for Numerical Algebraic Geometry . 418

Frank Sottile (Texas A&M University, USA)

• Parametric Standard System for Mixed Module and its Application to Singularity Theory . . 426

Hiroshi Teramoto (Hokkaido University, Japan), Katsusuke Nabeshima (Tokushima University, Japan)

• Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces 434

Josué Tonelli-Cueto (Inria Paris, France), Elias Tsigaridas (Inria Paris, Sorbonne Université, Paris Université)

• An Extended GCD Algorithm for Parametric Univariate Polynomials and Application to

Parametric Smith Normal Form . 442

Dingkang Wang (Chinese Academy of Sciences, China), Hesong Wang (Chinese Academy of Sciences,
China), Fanghui Xiao (Chinese Academy of Sciences, China)

• A Second Order Cone Characterization for Sums of Nonnegative Circuits 450

Jie Wang (Laboratoire d’Analyse et d’Architecture des Systèmes, France), Victor Magron (Laboratoire
d’Analyse et d’Architecture des Systèmes, France)

• Geometric Modeling and Regularization of Algebraic Problems 458

Zhonggang Zeng (Northeastern Illinois University, USA)

Author Index . 466

x

ISSAC 2020 Conference Organization

General Chairs: Ioannis Z. Emiris National and Kapodistrian University of Athens,
ATHENA Research and Innovation Center, Greece

Lihong Zhi Academia Sinica, China
Program Committee Chair: Anton Leykin Georgia Tech, USA
Local Arrangements Chair: Ilias S. Kotsireas Wilfrid Laurier University, Waterloo, Canada

Treasurer: Christos Konaxis National and Kapodistrian University of Athens,
ATHENA Research and Innovation Center, Greece

Proceedings Editor: Angelos Mantzaflaris Inria Méditerranée, Université Côte d’Azur, France
Publicity Chair: François Lemaire Université de Lille, France
Tutorial Chair: Wen-Shin Lee University of Stirling, UK

Software PresentationsChair: Jonathan Hauenstein University of Notre Dame, USA
Poster Chair: J. Maurice Rojas Texas A&M University, USA

Program Committee: Peter Bürgisser Berlin Technische Universität, Germany
Anne Frühbis-Krüger Leibniz Universität, Germany
Vladimir Gerdt Joint Institute for Nuclear Research, Russia
Évelyne Hubert Inria Méditerranée, France
Xiaohong Jia Chinese Academy of Sciences, China
Gregor Kemper München Technische Universität, Germany
Christoph Koutschan RICAM, Austria
Pierre Lairez Inria Saclay Île-de-France, France
Grégoire Lecerf CNRS, École polytechnique, France
Anton Leykin (Chair) Georgia Tech, USA
Diane Maclagan University of Warwick, United Kingdom
Michael Monagan Simon Fraser University, Canada
Gabriele Nebe RWTH Aachen University, Germany
Peter Olver University of Minnesota, USA
Mohab Safey El Din Sorbonne University, France
Allan Steel University of Sydney, Australia
Michael Stillman Cornell University, USA
Arne Storjohann University of Waterloo, Canada
Nobuki Takayama Kobe University, Japan
Maria-Laura Torrente University of Genoa, Italy
Chee Yap New York University, USA

Poster Committee: Qi Cheng University of Oklahoma, USA
Kathlén Kohn Kungliga Tekniska Högskolan, Stockholm, Sweden
J. Maurice Rojas (Chair) Texas A&M University, USA
Nitin Saxena Indian Institute of Technology, Kanpur, India
Timo De Wolff Technische Universität Braunschweig, Germany

xi

Software Presentations Danielle Brake University of Wisconsin Eau Claire, USA
Committee: Wolfram Decker TU Kaiserslautern, Germany

Jonathan Hauenstein (Chair) University of Notre Dame, USA
Alexander Hulpke Colorado State University, USA

Last but not least, the refereeing work of numerous anonymous external reviewers is gratefully ac-

knowledged.

xii

ISSAC 2020 Sponsors and Supporters

ISSAC acknowledges the generous support of the following institutions:

ATHENA Research and Innovation Center, Greece

Computer Algebra Research Group, Wilfrid Laurier University,
Canada

Fachgruppe Computer Algebra, Germany

National Institute for Research in Digital Science and
Technology, France

MapleSoft, Waterloo, Ontario, Canada

National and Kapodistrian University of Athens, Greece

xiii

http://www.issac-conference.org/2020

xiv

http://www.issac-conference.org/2020/

Invited Talk

Reflections on Elimination Theory

David A. Cox
Department of Mathematics & Statistics

Amherst College
Amherst, MA

dacox@amherst.edu

ABSTRACT

My lecture will survey developments in elimination theory from

Newton and Bézout up to modern times. I will discuss the domi-

nance of elimination theory in the 19th century and the challenges

it faced in the 20th century with the rise of abstract algebraic ge-

ometry. I will also mention the role of the ISSAC community and

some personal history.

CCS CONCEPTS

· Mathematics of Computing → Roots of Nonlinear Equa-

tions.

KEYWORDS

elimination theory, resultant

ACM Reference Format:

David A. Cox. 2020. Reflections on Elimination Theory. In International
Symposium on Symbolic and Algebraic Computation (ISSAC ’20), July 20ś
23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 4 pages. https://doi.

org/10.1145/3373207.3403977

1 EVOLUTION OF ELIMINATION THEORY

I will treat a small number of topics to trace the development of

elimination theory. See [30] for a more complete account.

1.1 The 17th Century: Newton

Elimination theory was well-established by the 17th century. New-

ton [28] knew Bézout’s Theorem 100 years before Bézout:

Datis duabus curvis invenire puncta intersectionis
this is rather a principle then a probleme. But rather

propounded of ye Algebraicall then geometricall so-

lutions & yt is done by eliminating one of the two un-

known quantitys out of ye equations. From whence

it will appeare yt there are soe many cut points as the

rectangle of the curves dimensions.

He applies this to count the number of tangent lines to a curve

through a given point:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3403977

a line drawn from a given point may touch a curve

of 2 dimensions in 1 × 2 points, of 3 in 2 × 3 points,

of 4 in 3 × 4 points,

To see where this comes from, consider a curve 𝐹 = 0 in P2 and a

point 𝑃 = (𝛼, 𝛽,𝛾). The tangent lines through 𝑃 are defined by

𝐹 = 𝛼
𝜕𝐹

𝜕𝑥
+ 𝛽

𝜕𝐹

𝜕𝑦
+ 𝛾

𝜕𝐹

𝜕𝑧
= 0.

If deg(𝐹) = 𝑛, this gives 𝑛(𝑛 − 1) = (𝑛 − 1) × 𝑛 tangent lines.

1.2 The 18th Century: Cramer and Bézout

The strategy used by Newton is also present in Cramer’s 1750 [11]

version of Bézout’s Theorem:

If one has two variables and two indeterminate equa-

tions . . . of which one is of order𝑚 and the other of

order 𝑛, when, by means of these equations, one of

these variables is chased out, the one that remains

has a final equation of at most𝑚𝑛 dimensions.

Bézout’s first paper [2] on elimination appeared in 1764, where

he includes some sparse versions of Bézout’s theorem. For exam-

ple, let 𝑓 (𝑥,𝑦) and 𝑔(𝑥,𝑦) have Newton polytopes:

s

s

s

s0

𝑚+𝑝

𝑚

❅
❅
𝑓

s

s

s

s0

𝑚′+𝑝′

𝑚′

❅
❅❅
𝑔

Bézout shows that when 𝑥 is eliminated, the łéquation résultantž
in 𝑦 has degree 𝑚𝑚′ +𝑚𝑝 ′ +𝑚′𝑝 . This is the origin of the term

łresultantž.

In 1779, Bézout published the 500 page book Théorie Générale
des Équations Algébriques [3]. Here is his approach to elimination:

We conceive of each given equation as being mul-

tiplied by a special polynomial. Adding up all those

products together, the result is what we call the sum-

equation. This sum-equation will become the final

equation through the vanishing of all terms affected

by the unknowns to eliminate.

Notice how the concept of elimination ideal is implicit in Bézout

Here is one of many versions of Bézout’s Theorem in his book.

Example 1.1. A polynomial in 𝑥,𝑦, 𝑧 is of the third species if its
monomials 𝑥𝑘1𝑦𝑘2𝑧𝑘3 satisfy

𝑘1 + 𝑘2 + 𝑘3 ≤ 𝑡

0 ≤ 𝑘1 ≤ 𝑎1, 0 ≤ 𝑘2 ≤ 𝑎2, 0 ≤ 𝑘3 ≤ 𝑎3

𝑘1 + 𝑘2 ≤ 𝑏3, 𝑘1 + 𝑘3 ≤ 𝑏2, 𝑘2 + 𝑘3 ≤ 𝑏1,

1

https://doi.org/10.1145/3373207.3403977
https://doi.org/10.1145/3373207.3403977
https://doi.org/10.1145/3373207.3403977

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cox

for constants 𝑡, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3. The third species has eight forms
according to the signs of

𝑡 − 𝑏1 − 𝑏2 + 𝑎3, 𝑡 − 𝑏1 − 𝑏2 + 𝑎3, 𝑡 − 𝑏1 − 𝑏2 + 𝑎3 .

Here is a modern picture of four forms due to Penchevre [29]:

Third species; first form Third species; third form

Third species; fifth form
Third species; sixth form

For readers versed in toric geometry, these forms correspond to

chambers of the secondary fan, with flips that give wall crossings.

For the first form of the third species, Bézout calculates the de-

gree of the resultant equation to be

𝑡3 − 3(𝑡 − 𝑎1) (𝑡 − 𝑎2) (𝑡 − 𝑎3) + 3(𝑡 − 𝑏1) (𝑡 − 𝑏2) (𝑡 − 𝑏3)

− 3(𝑎2 + 𝑎3 − 𝑏1) (𝑡 − 𝑏2) (𝑡 − 𝑏3) − 3(𝑎1 + 𝑎3 − 𝑏2) (𝑡 − 𝑏1) (𝑡 − 𝑏3)

− 3(𝑎1 + 𝑎2 − 𝑏3) (𝑡 − 𝑏1) (𝑡 − 𝑏2),

which is the normalized volume of the corresponding polytope.

This is the Bernstein-Kushnirenko-Khovanskii Theorem.

Not bad for 1779!

1.3 The 19th Century: Resultants

In 1840, Sylvester [31] described the resultant of two univariate

polynomials using a łsolid square (𝑚 + 𝑛) terms deep and (𝑚 + 𝑛)

terms broadž, now called the Sylvester matrix:

Res(𝑓 , 𝑔) = det

©«

𝑐0

𝑐1
. . .

. . . 𝑐0
.
.
. 𝑐1

𝑐𝑛
.
.
.

. . .

𝑐𝑛︸ ︷︷ ︸
𝑚 columns

𝑑0

𝑑1
. . .

. . . 𝑑0
.
.
. 𝑑1

𝑑𝑚
.
.
.

. . .

𝑑𝑚

ª®®®®®®®®®®®®®®®®®¬︸ ︷︷ ︸
𝑛 columns

.

Resultants were studied by Cayley [7], Brill [4], Kronecker [21],

Mertens [24], and many others in the 19th century.

Recall the basic idea of the classical resultant: Given 𝐹0 = · · · =

𝐹𝑛 = 0 homogeneous in 𝑥0, . . . , 𝑥𝑛 , the resultant Res(𝐹0, . . . , 𝐹𝑛) is

a polynomial in the coefficients of the 𝐹𝑖 such that

Res(𝐹0, . . . , 𝐹𝑛) = 0 ⇐⇒
𝐹0 = · · · = 𝐹𝑛 = 0

has a solution in P𝑛 .

Resultants were a key tool in elimination theory, which was

central to 19th century algebraic geometry. In his 1864 paper Nou-
velles recherches sur l’élimination et la théorie des courbes [7], Cay-
ley writes

In the problem of elimination, one seeks the rela-

tionship that must exist between the coefficients of

a function or system of functions in order that some

particular circumstance (or singularity) can occur.

In 1907, Netto and Le Vavasseur wrote a 97 page survey article [27]

on elimination theory in l’Encyclopédie des sciences mathématiques
pures et appliquées. They begin:

Le grand nombre et la variété des mémoires relatifs

à l’élimination rendent difficile une classification ra-

tionnelle de ces mémoires.

2 THE FUNDAMENTAL THEOREM OF

ELIMINATION THEORY

The 20th century beganwith amature theory of resultants through

thework of Netto [26] in1900 andMacaulay [22] in 1903 and [23] in

1916. This proved to be a high point for elimination theory; subse-

quent developments in algebraic geometry moved resultants and

elimination theory to the sidelines for quite a while. To set the

stage for this story, we will explore the Fundamental Theorem of
Elimination Theory. Here is a classical version:

Theorem 2.1. Let 𝐹1, . . . , 𝐹𝑟 be homogeneous in 𝑥0, . . . , 𝑥𝑛 with
undetermined coefficients 𝜆. Then there is a resultant system of
polynomials𝐷1 (𝜆), . . . , 𝐷ℎ (𝜆) such that for any choice of coefficients
𝜆′ in C, the corresponding polynomials 𝐹 ′1, . . . , 𝐹

′
𝑟 satisfy

𝐹 ′1 = · · · = 𝐹 ′𝑟 = 0 has a nontrivial solution over C

⇐⇒ 𝐷1 (𝜆
′) = · · · = 𝐷ℎ (𝜆

′) = 0.

Here is the same result in more modern language:

Theorem 2.2. Let 𝐹1 (𝜆, 𝑥), . . . , 𝐹𝑟 (𝜆, 𝑥) be homogeneous in 𝑥 =

(𝑥0, . . . , 𝑥𝑛) with parameters 𝜆 = (𝜆1, . . . , 𝜆𝑚). Then the image of
the map

V(𝐹1, . . . , 𝐹𝑟) ⊆ C
𝑚 × P𝑛 −→ C𝑚

is a closed subvariety of C𝑚 (defined by the resultant system).

We will discuss three proofs of this result, due to Mertens in

1899, van der Waerden in 1926, and Grothendieck in the 1960s.

2.1 1899: Mertens

For 𝐹1, . . . , 𝐹𝑟 , fix 𝑠 ≫ 0 and consider products 𝑥𝛼𝐹𝑖 of degree 𝑠 .

In [25], Mertens follows ideas of Kronecker and uses the resultant

Res(𝐺1, . . . ,𝐺𝑛) with

𝐺 𝑗 =

∑
(𝛼,𝑖)

𝑢 (𝛼,𝑖), 𝑗 𝑥
𝛼𝐹𝑖

2

Reflections on Elimination Theory ISSAC ’20, July 20–23, 2020, Kalamata, Greece

for new variables 𝑢 (𝛼,𝑖), 𝑗 . Expanding this as a polynomial in the

𝑢 (𝛼,𝑖), 𝑗 , the coefficients are polynomials in 𝜆 that give a first ap-

proximation of the resultant system.

His proof hasmanymore steps and is not easy to follow. The end

result is a constructive process for creating the desired resultant

system.

2.2 1926: van der Waerden

For 𝐹1, . . . , 𝐹𝑟 , consider products 𝑥
𝛼𝐹𝑖 of degree 𝑠 , where 𝑠 is now

allowed to be arbitrary. In [34], van der Waerden expresses each

𝑥𝛼𝐹𝑖 as a linear combination of monomials 𝑥𝛽 of degree 𝑠 . This

gives a matrix equation

𝑀𝑠 (𝜆)

[...
𝑥𝛽...

]
=

[...
𝑥𝛼𝐹𝑖...

]
,

where the entries of the Macaulay matrix 𝑀𝑠 (𝜆) are polynomials

in 𝜆. Then the maximal minors 𝐷
(ℓ)
𝑠 (𝜆) of𝑀𝑠 (𝜆) satisfy

solution in P𝑛 exists for 𝜆′ ⇐⇒ 𝑀𝑠 (𝜆
′) drops rank for 𝑠 ≫ 0

⇐⇒ 𝐷
(ℓ)
𝑠 (𝜆′) = 0 for all ℓ,

where the first equivalence uses the Hilbert Nullstellensatz. To

complete the proof, van der Waerden uses the Hilbert Basis Theo-

rem to reduce to finitely many 𝐷
(ℓ)
𝑠 (𝜆).

This proof is nonconstructive and uses powerful tools intro-

duced by Hilbert.

2.3 1960s: Grothendieck

Grothendieck created the language of schemes. A good reference

is the book [15] by Hartshorne. Amorphism of schemes 𝑓 : 𝑋 → 𝑌

is closed if it maps closed subsets to closed subsets in the Zariski

topology and universally closed if𝑋 ×𝑌 𝑌
′ → 𝑌 ′ is closed for every

morphism 𝑌 ′ → 𝑌 . Then 𝑓 : 𝑋 → 𝑌 is proper if it is separated, of
finite type, and universally closed.

Here is a basic theorem proved by Grothendieck. Let P𝑛
Z
denote

projective space over the integers.

Theorem 2.3. P𝑛
Z
→ Spec(Z) is proper.

His proof uses the valuative criterion, to be discussed in the next
section. An immediate corollary is the Fundamental Theorem of

Elimination Theory:

Corollary 2.4. Let 𝐹1 (𝜆, 𝑥), . . . , 𝐹𝑟 (𝜆, 𝑥) be as in Theorem 2.2
and let𝑊 = V(𝐹1, . . . , 𝐹𝑟) ⊆ C

𝑚 × P𝑛 . Then the image of𝑊 under
the projection C𝑚 × P𝑛 → C𝑚 is closed.

Proof. This follows from the diagram

𝑊
�

�

closed
//

closed
image

##

C
𝑚 × P𝑛

closed

��

//

□

P
𝑛
Z

proper

��

C
𝑚 // Spec(Z)

□

This is Grothendieck’s approach to algebraic geometry: once

things have been set up properly, basic results become easy.

3 ELIMINATE ELIMINATION THEORY

The proofs of the Fundamental Theorem of Elimination Theory

given above illustrate the dramatic changes to algebraic geometry

that began with the work of Hilbert in the 1890s. We now say a few

words about how we got from resultants to proper morphisms.

3.1 1926: van der Waerden

In his first paper on algebraic geometry [33], van der Waerden

writes:

The rigorous foundation of the theory of algebraic

varieties . . . can be formulated more simply than it

has been done so far, without the help of elimination

theory, on the sole basis of field theory and of the

general theory of ideals in ring domains.

The desire for a łrigorous foundationž came from Hilbert’s 15th

problem, which concerns the powerful but vague principle of con-
servation of number. A careful treatment required precise defini-

tions of generic point, specialization, and multiplicity.

In a series of papers, van der Waerden addressed these issues.

For the most part, he was able to avoid elimination theory. One

exceptionwas the extension of specializations, where he still needed
elimination theory (via his paper [34]).

3.2 1946: Weil

Weil’s 1946 book [35] on algebraic geometry uses a łdevicež of

Chevalley to prove the extension of specializations without using

elimination theory. In a footnote, Weil says that Chevalley’s device

it may be hoped, finally eliminates from algebraic ge-

ometry the last traces of elimination-theory.

Lurking behind the extension of specializations is the valuative cri-

terion for properness used in the proof of Theorem 2.3.

3.3 1970: Abhyankar

By the time of the 1970 International Congress of Mathematics, the

Grothendieck revolution in algebraic geometry was in full swing.

Van der Waerden’s lecture on algebraic geometry in the 20th cen-

tury mentioned Weil’s opinion of elimination theory. In the audi-

ence was Ahbyankar, a great fan of 19th century algebraic geom-

etry. This inspired him to write a poem [1] containing the lines

Eliminate, eliminate, eliminate

Eliminate the eliminators of elimination theory.

As you must resist the superbourbaki coup

So must you fight the little bourbakis too.

4 THE REVIVAL OF ELIMINATION THEORY

In turns out that the łresistancež imagined in Abhyankar’s poem

was already underway.

4.1 The Introduction of Gröbner Bases

Buchberger defined Gröbner bases in his 1965 PhD thesis [5] and

gave algorithms in 1970 [6]. Their use in elimination was estab-

lished by Trinks in 1978 [32]. When combined with computer im-

plementations, the result was a robust elimination theory.

3

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cox

4.2 The Influence of ISSAC

In 1966, the precursor to ISSAC met in Washington DC under the

name SYMSAM (Symposium on Symbolic and Algebraic Manip-

ulation) [13]. Speakers included George Collins, Tony Hearn, and

Joel Moses, who were key players in cylindrical algebraic decom-

positions, REDUCE, and MACSYMA respectively.

After a variety of names (SYMSAM, EUROSAM, SYMSAC, EU-

ROCAM, . . .), the name ISSAC was adopted in 1988 to reflect the

international scope of the enterprise. The ISSAC community has

been a key player in Abhyankar’s resistance.

4.3 The Modern Theory of Resultants

After years of obscurity, resultants came back in two phases:

• In 1980, Jouanolou began a series of papers [16ś20] that

studied the classical resultant from a modern point of view.

• In the late 1980s, sparse resultantswere introduced and stud-

ied. See [14] for a powerful presentation.

As an example of recent work, we mention D’Andrea, Jeromino

and Sombra, who in April 2020 posted the preprint [12] proving a

conjecture of Canny and Emiris about a quotient formula for the

sparse resultant. This generalizes a formula due to Macaulay [22]

from 1903 for the classical resultant.

5 PERSONAL REFLECTIONS

I entered graduate school in 1970, a year mentioned in Section 3,

and learned algebraic geometry in full Grothendieck mode. My

thesis was Tubular neighborhoods in the étale topology, and my first

published paper was Homotopy limits and the homotopy type of
functor categories. This is not computational algebraic geometry!

In the 1980s, my research shifted to elliptic surfaces. I remem-

ber using the originalMacaulay in 1985 to study an example. Being

clueless about complexity issues, each coefficient was a new vari-

able. Needless to say, my computation was not a success.

In 1988, Don O’Shea visited Kaiserslautern and learned about

Gröbner bases. He suggested that we write an undergraduate text

on this subject. After teaming up with John Little (see [9] for the

full story), our book Ideals, Varieties and Algorithms [8] was pub-
lished in 1992. The book has been successful, in part because we

wrote it for American undergraduates. This forced us to take a

down-to-earth approach with few pre-requisites, which made the

book accessible to people in many fields outside of mathematics.

Not surprisingly, my favorite chapter of the book is Chapter 3,

titled Elimination Theory.

ACKNOWLEDGMENTS

This lecture is based on my CBMS lecture series Applications of
Polynomial Systems, given at Texas Christian University in Fort

Worth, Texas in Summer 2018. An expanded version appears in

the book [10] of the same title.

The account of elimination theory given in the lectures and the

book failed to acknowledge the role of the ISSAC community in the

revival of elimination theory. I am pleased to have the opportunity

to correct this omission.

REFERENCES
[1] S. Abhyankar, 1972. Polynomials and power series, Math. Intelligencer 3, Springer.

Reprinted in Algebra, Arithmetic and Geometry with Applications (C. Chris-
tensen, G. Sundaram, A. Sathaye and C. Bajaj, eds.), Springer, New York, 2004,
783ś784.

[2] E. Bézout, 1764. Sur le degré des équations résultantes de l’évanouissement des
inconnues, Histoire de l’Académie Royale des Sciences, 288ś338.

[3] E. Bézout, 1779. Théorie générale des équations algebriques, Ph.-D. Pierres, Paris.
English translation General Theory of Algebraic Equations by Eric Feron, Prince-
ton Univ. Press, Princeton, NJ, 2006.

[4] A. Brill, 1880. Ueber eine Eigenschaft der Resultante, Math. Annalen 16, 345ś347.
[5] B. Buchberger, 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restk-

lassenringes nach einem nulldimensionalen Polynomideal, Ph.D. Thesis, Univer-
sity of Innsbruck.

[6] B. Buchberger, 1970. Ein algorithmisches Kriterium für die Lösbarkeit eines alge-
braischen Gleichungssystems, Aequationes mathematicae 4, 374ś383.

[7] A. Cayley, 1864. Nouvelles recherches sur l’élimination et la théorie des courbes, J.
Reine Angew. Math. 63, 34ś39.

[8] D. Cox, J. Little and D. O’Shea, 2015. Ideals, Varieties and Algorithms, Fourth
Edition, Springer, New York.

[9] D. Cox, J. Little and D. O’Shea, 2016. The story of Ideals, Varieties and Algorithms,
Notices of the AMS 63, 6, 626ś628.

[10] D. Cox, with contributions by C. D’Andrea, A. Dickenstein, J. Hauenstein, H.
Schenck and J. Sidman, 2020. Applications of Polynomial Systems, AMS, Provi-
dence, RI.

[11] G. Cramer, 1750. Introduction à l’analyse des lignes courbes algébriques, Frères
Cramer et Cl. Philibert, Genêve.

[12] C. D’Andrea, G. Jeronimo and M. Sombra, 2020. The Canny-Emiris conjecture for
the sparse resultant, arXiv:2004.14622[math.AC].

[13] R. W. Floyd (Ed.), 1966. Proc. of ACM Symposium on Symbolic and Algebraic Ma-
nipulation (SYMSAM ’66), Washington D.C. Comm. ACM 9, 547ś643.

[14] I. Gel’fand, M. Kapranov and A. Zelevinsky, 1994. Discriminants, Resultants, and
Multidimensional Determinants, Birkhäuser, Boston.

[15] R. Hartshorne, 1977. Algebraic Geometry, Springer, New York.
[16] J.-P. Jouanolou, 1980. Idéaux résultants, Adv. Math. 37, 212ś238.
[17] J.-P. Jouanolou, 1991. Le formalisme du résultant, Adv. Math. 90, 117ś263.
[18] J.-P. Jouanolou, 1995. Aspects invariants de l’élimination, Adv. Math. 114, 1ś174.
[19] J.-P. Jouanolou, 1996. Résultant anisotrope, compléments et applications, Electron.

J. Combin. 3, no. 2, Research Paper 2.
[20] J.-P. Jouanolou, 1997, Formes d’inertie et résultant: un formulaire, Adv. Math. 126,

119ś250.
[21] L. Kronecker, 1882. Grundzüge einer arithmetischen Theorie der algebraischen

Grössen, J. Reine Angew. Math. 92, 1ś122.
[22] F. Macaulay, 1903. On some Formulñ in Elimination, Proc. London Math. Soc. 35,

3ś27,
[23] F. Macaulay, 1916. The Algebraic Theory of Modular Systems, Cambridge Univ.

Press, Cambridge.
[24] F. Mertens, 1886. Über die bestimmenden Eigenschaften der Resultante

von 𝑛 Formen mit 𝑛 Veränderlichen, Sitzungsberichte der Mathematisch-
Naturwissenschaftlichen Classe der Kaiserlichen Akademie derWissenschaften,
II. Abtheilung 93, 527ś566.

[25] F. Mertens, 1899. Zur Theorie der Elimination, Teil II, Sitzungsber. Akad. Wien
108, 1344ś1386.

[26] E. Netto, 1900. Vorlesungen über Algebra, Volume II, Teubner, Leipzig.
[27] E. Netto and R. Le Vavasseur, 1907. Fonctions rationnelles, in Encyclopédie des

sciences mathématiques pures et appliquées Tome I, Volume 2 (J. Molk, ed.),
Gauthiers-Villars, Paris and B. G. Teubner, Leipzig, 1ś232.

[28] I. Newton, 1972. The Mathematical Papers of Isaac Newton, Volume II, (D. T.
Whiteside, ed.) Cambridge Univ. Press, Cambridge, p. 177.

[29] E. Penchèvre, 2016. Etienne Bezout on elimination theory, arXiv:
1606.03711[math.HO].

[30] E. Penchèvre, 2006, Histoire de la théorie de l’élimination, Ph.D. Thesis,
l’Université Paris VII.

[31] J. Sylvester, 1840.AMethod of determining bymere inspection the derivatives from
two equations of any degree, Philos. Mag. XVI, 132ś135.

[32] W. Trinks, 1978. Über B. Buchbergers Verfahren, Systeme algebraischer Gleichun-
gen zu lösen, J. Number Theory 10, 475ś488.

[33] B. van der Waerden, 1926. Zur Nullstellentheorie der Polynomideale, Math. An-
nalen 96, 183ś208.

[34] B. van der Waerden, 1926. Ein algebraisches Kriterium für die Lösbarkeit von ho-
mogenen Gleichungen, Nederl. Akad. Wetensch. Proc. 29, 142ś149.

[35] A. Weil, 1946. Foundations of Algebraic Geometry, AMS, Providence, RI.

4

Invited Talk

Positive Solutions of Sparse Polynomial Systems

Alicia Dickenstein
Universidad de Buenos Aires and IMAS (UBA-CONICET)

Buenos Aires, Argentina
alidick@dm.uba.ar

ABSTRACT

My lecture will survey some classical and recent lower and upper

bounds for the number of positive solutions of systems of 𝑛 sparse

polynomial systems in 𝑛 variables, including basic questions that

are open. This is only a short summary of the talk.

CCS CONCEPTS

· Mathematics of Computing → Roots of Nonlinear Equa-

tions.

KEYWORDS

sparse polynomial systems, positive roots

ACM Reference Format:

Alicia Dickenstein. 2020. Positive Solutions of Sparse Polynomial Systems.

In International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20–23, 2020, Kalamata, Greece.ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3373207.3403978

1 CLASSICAL UNIVARIATE BOUNDS

The beautiful classical Descartes’ rule of signs to bound the num-

ber of positive roots of univariate polynomials (counted with mul-

tiplicity) was proposed by René Descartes in 1637 in La Géometrie,

an appendix to hisDiscours de la Méthode [26]. There are other sev-

eral classical results in the univariate case, as the Budan-Fourier

Theorem to bound the number of roots in an interval (𝑎, 𝑏] or

Sturm’s theorem, which gives an exact count in this interval of the

number of distinct real roots. We refer the reader to the łBiblež [1]

for further theoretical as well as algorithmic details.

Given a univariate real polynomial

𝑓 (𝑥) = 𝑓0 +

𝑟∑

𝑗=1

𝑓𝑗𝑥
𝑗 ,

Descartes’rule of signs says that the number of positive real roots

𝑛+ (𝑓) of 𝑓 is bounded by the number of sign variations 𝑣 (𝑓) in the

ordered sequence 𝜎 (𝑓0), . . . , 𝜎 (𝑓𝑟) of the signs of the coefficients

(where we discard the 0’s in this sequence andwe add a 1 each time

two consecutive signs are different). In fact, Descartes’ rule of signs

holds for generalized polynomials in which the exponents are real.

For instance, if 𝑓 = 𝑓0+3𝑥−90𝑥
6+2𝑥8+𝑥111, the sequence of signs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20–23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3403978

(discarding 0’s) is: 𝜎 (𝑓0), +,−, +, +. So, 𝑣 (𝑓) equals 2 if 𝑓0 ≥ 0 and 3

if 𝑓0 < 0. Then, 𝑓 has at most 2 or 3 positive real roots. Moreover,

𝑛+ (𝑓) has the same parity as 𝑣 (𝑓), so in the second case we can

assert that 𝑛+ (𝑓) > 0.

It is interesting to remark the following facts for a real polyno-

mial 𝑓 (𝑥) as before:

(i) This rule is extremely simple and it is sharp in the sense that

for any sign variation there are polynomials 𝑓 for which

𝜈 (𝑓) = 𝑛+ (𝑓). This happens in case all roots are real, for

instance when 𝑓 is the characteristic polynomial of a sym-

metric matrix.

(ii) Considering 𝜈 (𝑓 (−𝑥)) we can likewise bound the number

of negative roots of 𝑓 . It follows that the number of real

roots of 𝑓 can be bounded in terms of the number of nonzero

coefficients and not by the degree.

(iii) Indeed, Descartes’ rule is not a result about our particular

polynomial 𝑓 but rather about the family of all polynomi-

als with the same monomials and coefficients of the same

sign as those of 𝑓 . Moreover, it is even independent of the

ordered sequence of exponents with nonzero coefficients, in

the following sense: if we replace the exponents of 𝑓 by an-

other increasing sequence of the same length, the bound is

the same.

Sturm’s theorem translates into an algorithm that has many

branchings when one tries to use it for parametric polynomials.

The reader can just experiment with the family of degree 3 uni-

variate polynomials 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3, where 𝑐0, . . . , 𝑐3 do not

take fixed a priori values.

2 SOME BY NOW CLASSICAL

MULTIVARIATE RESULTS

Deciding the number of positive real roots is indeed a question

of quantifier elimination and thus, it can in theory be effectively

computed. Besides the algorithms implementing quantifier elimi-

nation, there are other general algorithmic tools. For a given choice

of coefficients, a particular system can be solved using different

methods of numerical algebraic geometry. The properties of Her-

mite’s quadratic form give rise to algorithms to symbolically com-

pute the number of positive real roots (that is, roots with positive

coordinates) for systems of multivariate polynomials with a finite

number of complex roots [1]. This is implemented for example in

Singular [12], where there is a command called firstoct. This

beautiful result is not practical to decide on the number of positive

roots of parametric systems.

If we have a sparse system of 𝑛 Laurent polynomials in 𝑛 vari-

ables of the form

𝑓𝑖 =
∑

𝑎∈𝐴

𝑐𝑖𝑎 𝑥
𝑎, 𝑐𝑖𝑎 ∈ R, 𝑖 = 1 . . . 𝑛, (1)

5

https://doi.org/10.1145/3373207.3403978
https://doi.org/10.1145/3373207.3403978

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Dickenstein

where 𝐴 ⊂ Z𝑛 is a finite set, the number of isolated common

roots in the complex torus (C∗)𝑛 is bounded by the normalized

volume volZ (𝐴) of the convex hull of𝐴, and this bound is sharp for

generic coefficients, generalizing and improving the Bézout bound

in terms of the degrees. As conjectured from fact (ii) above, Kho-

vanskii [20] proved the important result that the maximal number

of non-degenerate positive solutions (that is, with non-vanishing

Jacobian determinant) of 𝑓1, . . . , 𝑓𝑛 is bounded above in terms of

the cardinality |𝐴| of𝐴, namely by 2(
|𝐴|−1
2) (𝑛+1) |𝐴 |−1, which is in-

dependent of the degrees and of volZ (𝐴). This bound, which was a

breakthrough, is far from sharp. It was significantly reduced in [7].

This bound is still not sharp, but for |𝐴| − 𝑛 fixed it is asymptot-

ically of the right order as 𝑛 goes to infinity. There are very few

particular sharp bounds. Moreover, these bounds take into account

the monomials, but not the particular coefficients as in the case of

Descartes’ rule of signs.

3 RECENT UPPER BOUNDS IN THE

MULTIVARIATE CASE

There is not a single generic answer to the number of common

real roots of polynomials 𝑓1, . . . , 𝑓𝑛 as in (1). Indeed, if one follows

a curve of coefficients (with fixed supports) the only way in which

the number of real roots with nonzero coordinates can change is

when the curve crosses the discriminant hypersurface in coefficient

space. For general configurations 𝐴, the closure of the locus of co-

efficients (𝑐𝑖𝑎) for which the system 𝑓1 = . . . = 𝑓𝑛 = 0 has a

degenerate root, is a hypersurface defined by the vanishing of the

associated discriminant. In the complex case, it has real codimen-

sion two and so it does not disconnect the space of coefficients.

When we restrict to real coefficients, its complement consists of

disconnected chambers and in each of these the number of real

roots is constant. If we moreover intersect the discriminant com-

plement with the complement of the resultant varieties defined for

𝑖 = 1, . . . , 𝑛 as the closure of the coefficients for which 𝑓1, . . . , 𝑓𝑛
have a common root in the 𝑖-th coordinate hyperplane, then in

each chamber the signs of the coordinates of the common roots

do not change. So, one could in principle find one choice of coef-

ficients in each of the finitely many chambers and then compute

the number of real roots for all the associated systems. This com-

putation is in theory effective but in practice unfeasible for most

systems of interest.

Ideally, wewould be interested in a simpleDecartes’ rule of signs

in the multivariate sparse case that gives a sharp upper bound tak-

ing into account both the exponents 𝐴 and the coefficients (𝑐𝑖𝑎),

as well as their interactions, and that moreover satisfies properties

similar to the facts (i), (ii), (iii) we detailed in the univariate case.

Interestingly, the first partial multivariate generalization was de-

vised in the paper [21], that arose from the study of the problem of

determining multistationarity in chemical reaction networks, that

is, the occurrence of parameters for which a polynomial system

associated to the kinetics has at least two positive roots. Part of

this result was hidden in the article [11] in the area of geometric

modeling. In the paper [9], a variety of symbolic approaches with

multiple algorithms and computer algebra systems is used to iden-

tify multistationarity parameters in models of biological networks.

We used in [15] the existence of triangular forms for this problem.

We refer to Chapter 5 in [10] and [13, 14] for general notions and

algebro-geometric questions in the study of biochemical reaction

networks under mass-action kinetics.

We found in [21] reasonably simple conditions on the signs of

the minors of a matrix containing the exponents as columns and

a matrix formed by the coefficients of the polynomials in the sys-

tem (that is, on their associated oriented matroids), to ensure that

the number of positive real roots cannot be bigger than one, that

is, the absence of multistationarity. This is an important question

in many applied domains and translates the injectivity of a family

of polynomial maps to sign conditions of vectors in a linear sub-

space. This question of signs was already studied in [23]. A more

detailed study of sign conditions for the injectivity of a family of

generalized polynomial map over the positive orthant is presented

in [22]. We considered in [2] the circuit case in which |𝐴| = 𝑛 + 2,

and already in this instance one can see that the multivariate ques-

tion is far more involved and that an ordering of the minors and

linear combinations of them are needed. We were able to bound

the number of positive solutions of the system by the sign varia-

tion of an associated sequence, which is sharp in the sense that it

is possible to find supports𝐴 for which it is attained. Moreover, we

gave conditions under which this sign variation has the same par-

ity of the number of positive solutions. We then refined this bound

in [3] to get a sharp estimate for any possible 𝐴 which is a circuit.

These results hold for families polynomials with fixed support and

parametric coefficients and satisfy conditions similar to the facts

(i), (ii) and (iii) above.

It is a wide open question to devise a general multivariate ver-

sion of Descartes’ rule of signs (even a conjectural one).

4 RECENT LOWER BOUNDS IN THE

MULTIVARIATE CASE

Most lower bounds for the number of positive solutions of a sys-

tem of 𝑛 sparse polynomials in 𝑛 variables are not about a particu-

lar system but concern a parametric family of sparse polynomials.

In the paper [19] there is a lower bound for the maximal number

of positive solutions for multivariate sparse systems with possi-

bly different fixed supports. In [24], it is shown how to construct

sparse polynomial systems with non-trivial lower bounds on their

numbers of real solutions, using combinatorial tools. We also refer

to [25]. Tools from tropical geometry are used in [16] to construct

real bivariate polynomial systems with five monomials that have

more than the previously known lower bound of six positive so-

lutions. In [6], a version of Viro’s method based on regular trian-

gulations of the support of the given polynomials is used to get

new lower bounds for the maximal number of positive solutions

to polynomial systems with prescribed numbers of monomials and

variables, as well as the asymptotics of these bounds. We extended

in [4, 17] their ideas and applied them to finding open regions in

parameters space where the number of positive solutions is at least

two in some networks of interest in systems biology, as enzymatic

cascades inwhich the number of variables and parameters increase

linearly with 𝑛. We were also able to find open regions of param-

eters with a number of positive roots growing with the number of

variables for multisite phosphorylation networks in [18], together

6

Positive Solutions of Sparse Polynomial Systems ISSAC ’20, July 20–23, 2020, Kalamata, Greece

with a computer algebra implementation that works for low di-

mensions.

These previous results concern the existence of parameters for

which the number of positive solutions can be bounded below, but

they don’t give in general answers for particular sparse polyno-

mial systems. Using Brouwer degree theory and Gale duality we

found in [5] sufficient sign conditions on a given sparse system

𝑓1 = · · · = 𝑓𝑛 = 0 as above, that ensure the existence of at least one

solution (see also [27]). These sufficient conditions are for sure not

necessary. In the case of integer exponents, they are related to alge-

braic properties studied in the context of lattice ideals associated

with the configuration 𝐴. In a different direction, there is a nice

result about the existence of positive solutions of the steady state

equations for weakly reversible networks in [8].

It would be interesting to have other general results based on

the structure and signs of the system that ensure the existence of

positive roots.

ACKNOWLEDGMENTS

I am very grateful to the Program Committee of ISSAC 2020 for the

invitation to speak. Alas, this ISAAC edition will not take place in

Greece as planned, but we will all do our best to have a successful

online conference.

REFERENCES
[1] S. Basu, R. Pollack and M.-F. Roy, 2016. Algorithms in Real Algebraic Geome-

try, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag
Berlin Heidelberg, 2nd. ed.

[2] F. Bihan and A. Dickenstein, 2017.Descartes’ Rule of Signs for Polynomial Systems
supported on Circuits, Int. Math. Res. Notices Vol. 2017 (22), 6867ś6893.

[3] F. Bihan, A. Dickenstein and J. Forsgård, 2020. Optimal Descartes’ Rule for Sys-
tems supported on Circuits, to be posted soon.

[4] F. Bihan, A. Dickenstein and M. Giaroli, 2020. Lower bounds for positive roots and
regions of multistationarity in chemical reaction networks, J. Algebra 542, 367ś
411.

[5] F. Bihan, A. Dickenstein and M. Giaroli, 2019. Sign conditions for the existence of
at least one positive solution of a sparse polynomial system, arXiv:1908.05503.

[6] F. Bihan, F. Santos and P.-J. Spaenlehauer, 2018. A polyhedral method for sparse
systems with many positive solutions, SIAM J. Appl. Algebra Geometry 2 (4), 620ś
645.

[7] F. Bihan and F. Sottile, 2007. New fewnomial upper bounds from Gale dual poly-
nomial systems. Mosc. Math. J. 7 (3).

[8] B. Boros, 2019. Existence of positive steady states for weakly reversible mass-action
systems, SIAM J. Math. Anal. 51 (1), 435ś449.

[9] R. Bradford, J. H. Davenport, M. England, H. Errami, V. Gerdt, D. Grigoriev, C.
Hoyt, M. Kosta, O. Radulescu, T. Sturm, A. Weber, 2020. Identifying the para-
metric occurrence of multiple steady states for some biological networks, J. Symb.
Comput. 98, 84ś119.

[10] D. Cox, with contributions by C. D’Andrea, A. Dickenstein, J. Hauenstein, H.
Schenck and J. Sidman, 2020. Applications of Polynomial Systems, AMS, Provi-
dence, RI.

[11] G. Craciun, L. García Puente and F. Sottile, 2010. Some geometrical aspects of
control points for toric patches, in Mathematical methods for curves and surfaces,
M. Dñhlen, M. Floater, T. Lyche, J.-L. Merrien, K. Mùrken and L. Schumaker,
eds., Lecture Notes in Comput. Sci. 5862, Springer, Berlin, 111ś135.

[12] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, 2018. Singu-

lar 4-1-1 Ð A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de.

[13] A. Dickenstein, 2016. Biochemical reaction networks: an invitation for algebraic
geometers, MCA 2013, Contemporary Mathematics 656, 65ś83.

[14] A. Dickenstein, 2019. Algebra and Geometry in the Study of Enzymatic Cascades,
in: World Women in Mathematics 2018, Proceedings of the First World Meeting

forWomen inMathematics (𝑊𝑀)2 , Araujo, C., Benkart, G., Praeger, C., Tanbay,
B. (Eds.), 57ś81.

[15] A. Dickenstein, M. Pérez Millán, A. Shiu and X. Tang, 2019. Multistationarity in
Structured Reaction Networks, Bull. Math. Biol. 81, 1527ś1581.

[16] B. El Hilany, 2020. Constructing polynomial systems with many positive so-
lutions using tropical geometry, To appear: Revista Matematica Complutense,

arXiv:1703.02272.
[17] M. Giaroli, A. Dickenstein and F. Bihan, 2019. Regions of multistationarity in

cascades of Goldbeter-Koshland loop, J. Math. Biol. 78(4), 1115ś1145.
[18] M. Giaroli, R. Rischter, M. Pérez Millán and A. Dickenstein, 2019. Parameter re-

gions that give rise to 2[n/2]+1 positive steady states in the n-site phosphorylation
system Math. Biosci. Eng. 16 (6), 7589ś7615.

[19] I. Itenberg and M. F. Roy, 1996.Multivariate Descartes’ rule, Beitr. Algebra Geom.
37 (2), 337ś346.

[20] A. G. Khovanskiı̆, 1991. Fewnomials, Translations of Mathematical Monographs
88, American Mathematical Society, Providence, RI.

[21] S. Müller, E. Feliu, G. Regensburger, C. Conradi, A. Shiu and A. Dickenstein,
2016. Sign conditions for injectivity of generalized polynomial maps with appl. to
chemical reaction networks and real algebraic geometry, Found. Comput. Math.
16 (1), 69–97..

[22] S. Müller, J. Hofbauer, and G. Regensburger, 2019. On the bijectivity of families
of exponential/generalized polynomial maps, SIAM Journal on Appl. Algebra Ge-
ometry 3, 412–438.

[23] R.T. Rockafellar, 1969. The elementary vectors of a subspace of R𝑛 . Combinatorial
Mathematics and Its Applications. In Proc. of the Chapel Hill Conf., University
of North Carolina Press, 104–127.

[24] E. Soprunova and F. Sottile, 2006. Lower bounds for real solutions to sparse poly-
nomial systems. Adv. Math. 204 (1), 116–151.

[25] F. Sottile, 2011. Real solutions to equations from geometry, University Lecture
Series 57, American Mathematical Society, Providence, RI.

[26] D. J. Struik (ed.), 1969. A source book in mathematics, 1200-1800, Source Books in
the History of the Sciences. Cambridge, Mass., Harvard University Press XIV.

[27] J.Wang, 2019. Systems of polynomials with at least one positive real zero, J. Algebra
Appl., 2050183.

7

Invited Talk

Ubiquity of the Exponent of Matrix Multiplication

Lek-Heng Lim∗

lekheng@galton.uchicago.edu

University of Chicago

Chicago, IL, USA

Ke Ye∗

keyk@amss.ac.cn

Chinese Academy of Sciences

Beijing, China

ABSTRACT

The asymptotic exponent of matrix multiplication is the smallest 𝜔

such that one may multiply two 𝑛 × 𝑛 matrices or invert an 𝑛 × 𝑛

matrix in𝑂 (𝑛𝜔+𝜀)-complexity for 𝜀 > 0 arbitrarily small. One of the

biggest open problem in complexity theory and numerical linear

algebra is its conjectured value 𝜔 = 2. This article is about the

universality of 𝜔 . We will show that 𝜔 is not only the asymptotic

exponent for the product operation in matrix algebras but also that

for various infinite families of Lie algebras, Jordan algebras, and

Clifford algebras. In addition, we will show that 𝜔 is not just the

asymptotic exponent for matrix product and inversion but also that

for the evaluation of any matrix-valued polynomial and rational

functions of matrix variables.

CCS CONCEPTS

· Theory of computation→ Algebraic complexity theory.

KEYWORDS

Matrix multiplication, bilinear complexity, Lie algebras, Jordan

algebras, Clifford algebras, matrix polynomials

ACM Reference Format:

Lek-Heng Lim and Ke Ye. 2020. Ubiquity of the Exponent of Matrix Multipli-

cation. In International Symposium on Symbolic and Algebraic Computation

(ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3373207.3403979

1 INTRODUCTION

Fifty years ago, Strassen announced a surprising algorithm that

gives the product of two 𝑛×𝑛 matrices in𝑂 (𝑛log2 7) multiplications

[17]. He also showed that the number of additions may be bounded

by a constant factor of the number of multiplications and that an

𝑛 × 𝑛 linear system can be solved in the same time complexity it

takes to multiply twomatrices. The best possible exponent𝜔 so that

one may multiply two 𝑛×𝑛 matrices in𝑂 (𝑛𝜔+𝜀)-time for any 𝜀 > 0

is now known as the asymptotic exponent of matrix multiplication

(the extra 𝜀 term is so that one may account for algorithms running

in, say, 𝑂 (𝑛𝜔 log𝑛)-time).

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3403979

Strassen’s upper bound for 𝜔 , i.e., log2 7 ≈ 2.8074, has been im-

proved over the years. Roughly speaking, there are three methods

to sharpen the upper bound. The first is the line of argument in-

troduced by Strassen in his laser method and generalized in [4, 16].

Coppersmith and Winograd employed it to improve the upper

bound to 2.3755 [10], a record that held for twenty five years un-

til it was improved by Vassilevska Williams [19] and Le Gall [14]

to 2.373. Nevertheless, it is now known [1] that the laser method

has its limitations and cannot yield an upper bound for 𝜔 that is

better than 2.3. The second approach, based on algebraic geometry

and pioneered by Landsberg about fifteen years ago [11] provides

powerful techniques for obtaining lower bounds for the complexity

of matrix multiplication [3, 6, 7, 11ś13]. The third approach is the

representation theoretic framework pioneered by Cohn and Umans

[8, 9, 18] by embedding matrices into a group algebra of a suitably

chosen group and using group representation theory to study the

complexity of matrix multiplication.

The results in this article may be viewed as a fourth approach.

We show that 𝜔 is the asymptotic exponent for the product oper-

ations in many different types of algebras including Lie, Jordan,

and Clifford algebras. Consequently, the complexity of the product

operation in any of these algebras provides an alternative route

towards determining or bounding the value of 𝜔 . Furthermore, we

show that the asymptotic complexity of evaluating univariate or

multivariate matrix-valued functions of matrices is also given by

𝜔 , providing yet another route towards obtaining its value.

This article is an extended abstract of [15], intended only to

highlight a few key results therein. The reader will find the proofs

of these results as well as a far more extensive discussion in [15].

2 BILINEAR AND MULTIPLICATIVE

COMPLEXITY

Let𝑈 ,𝑉 ,𝑊 be vector spaces over a field F and let 𝛽 : 𝑈 ×𝑉 →𝑊

be a bilinear map. The bilinear complexity of 𝛽 is defined to be the

minimum number of multiplications over F required to evaluate 𝛽 .

Equivalently, the bilinear complexity of 𝛽 is the rank of its structure

tensor 𝑇𝛽 ∈ 𝑈 ∗ ⊗ 𝑉 ∗ ⊗𝑊 , which is denoted by rank(𝑇𝛽) and is

defined to be the minimal 𝑟 such that

𝑇𝛽 =

𝑟∑

𝑗=1

𝑢∗𝑗 ⊗ 𝑣∗𝑗 ⊗𝑤 𝑗 , 𝑢∗𝑗 ∈ 𝑈 ∗, 𝑣∗𝑗 ∈ 𝑉 ∗,𝑤 𝑗 ∈𝑊, 𝑗 = 1, . . . , 𝑟 .

We refer readers to [5, 20] for more information. Let

𝑆 ≔ {(𝑈𝑛,𝑉𝑛,𝑊𝑛, 𝛽𝑛) : 𝑛 ∈ N} (1)

be a sequence of bilinear maps 𝛽𝑛 : 𝑈𝑛 ×𝑉𝑛 →𝑊𝑛 . We define the

asymptotic exponent of 𝑆 to be

𝜔 (𝑆) ≔ lim inf
𝑛→∞

log𝑛 (rank(𝑇𝛽𝑛)). (2)

8

https://doi.org/10.1145/3373207.3403979
https://doi.org/10.1145/3373207.3403979

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Lek-Heng Lim and Ke Ye

For the special case when 𝑈𝑛 = 𝑉𝑛 =𝑊𝑛 for all 𝑛 ∈ N, we will just

write

𝑆 = {(𝑉𝑛, 𝛽𝑛) : 𝑛 ∈ N}

instead of the more cumbersome 𝑆 = {(𝑉𝑛,𝑉𝑛,𝑉𝑛, 𝛽𝑛) : 𝑛 ∈ N} as

in (1). This will be case when𝑉𝑛 is an algebra and 𝛽𝑛 : 𝑉𝑛×𝑉𝑛 → 𝑉𝑛
the product operation of the algebra.

Before going further we shall look at two examples. Let

M(F) ≔ {(F𝑛×𝑛, 𝜇𝑛) : 𝑛 ∈ N}, (3)

where F𝑛×𝑛 is the vector space of 𝑛 × 𝑛 matrices over F and 𝜇𝑛 is

the matrix multiplication map sending a pair of matrices (𝑋,𝑌) to

their product 𝑋𝑌 . Then 𝜔 (M(F)) is exactly the exponent of matrix

multiplication 𝜔 described in Section 1.

Take another example where the matrix product in (3) is replaced

by commutator product [𝑋,𝑌] = 𝑋𝑌 − 𝑌𝑋 ,

𝔤𝔩(F) ≔ {(F𝑛×𝑛, [·, ·]) : 𝑛 ∈ N}.

Note that previously we have M𝑛 (F), the usual matrix algebra, i.e.,

the set F𝑛×𝑛 equipped with standard matrix multiplication, but

here we have 𝔤𝔩𝑛 (F), i.e., the set F
𝑛×𝑛 equipped with commutator

product. In this case 𝔤𝔩𝑛 (F) is the Lie algebra of the general linear

group GL𝑛 (F). These two products are of a very different nature

Ð for example, the commutator product is not associative but it

satisfies the Jacobi identity.

It is easy to see that 𝜔 (𝔤𝔩(F)) ≤ 𝜔 (M(F)) = 𝜔 and, with a bit

more work, that equality holds.

Proposition 2.1. 𝜔 (𝔤𝔩(F)) = 𝜔 (M(F)) = 𝜔 .

Wewill see in Section 4 that Proposition 2.1 extends to all infinite

families of semisimple Lie algebras 𝔰𝔩𝑛+1 (F), 𝔰𝔬2𝑛+1 (F), 𝔰𝔭2𝑛 (F),

𝔰𝔬2𝑛 (F) equipped with the commutator product.

In order to discuss operations that are not bilinear, for example,

evaluations of functions like F𝑛×𝑛 → F𝑛×𝑛 , 𝑋 ↦→ 𝑋 2, we require

a notion similar to bilinear complexity. Let 𝑈 ,𝑉 be vector spaces

over F and let 𝜑 : 𝑈 → 𝑉 be a map. The multiplicative complexity

[5] of 𝜑 is defined to be the minimal number of multiplications and

divisions over F required to evaluate 𝜑 and is denoted by 𝐿(𝜑). We

set 𝐿(𝜑) = ∞ if 𝜑 cannot be evaluated with just field arithmetic, i.e.,

additions, subtractions, multiplications, divisions. As in the case of

bilinear maps, let

𝑇 ≔ {(𝑈𝑛,𝑉𝑛, 𝜑𝑛) : 𝑛 ∈ N}

be a sequence of maps 𝜑𝑛 : 𝑈𝑛 → 𝑉𝑛 , we define its asymptotic

exponent to be

𝐿(𝑇) ≔ lim inf
𝑛→∞

log𝑛 (𝐿(𝜑𝑛)) . (4)

While in general the multiplicative complexity of a bilinear map

will not be the same as its bilinear complexity, we will see next

that, in an appropriate sense, they are equivalent asymptotically.

So there is no ambiguity in giving the same name to (2) and (4).

3 ASYMPTOTIC EXPONENTS

A blinear map 𝛽 : 𝑈 × 𝑉 → 𝑊 may also be regarded as a map

𝛽 : 𝑈 ⊕ 𝑉 →𝑊 . In general, 𝜔 (𝛽) ≠ 𝐿(𝛽). Nevertheless, given any

sequence 𝑆 = {(𝑈𝑛,𝑉𝑛,𝑊𝑛, 𝛽𝑛) : 𝑛 ∈ N} of bilinear maps and its

corresponding sequence 𝑆 = {(𝑈𝑛 ⊕ 𝑉𝑛,𝑊𝑛, 𝛽𝑛) : 𝑛 ∈ N} of maps,

the following always holds [15].

Proposition 3.1. Let 𝑆, 𝑆 be as above. Then 𝜔 (𝑆) = 𝐿(𝑆).

Let L be a finite extension of the field F. If 𝑆 is a sequence of

bilinear maps over L, then both 𝜔F (𝑆) and 𝜔L (𝑆) are well-defined.

Fortunately, they are also unambiguous.

Proposition 3.2. If dimF L < ∞, then 𝜔F (𝑆) = 𝜔L (𝑆).

For a sequence 𝑆 = {(𝑈𝑛,𝑉𝑛,𝑊𝑛, 𝛽𝑛) : 𝑛 ∈ N} of bilinear maps

over F, we define its L-extension by

𝑆L ≔ {(𝑈𝑛 ⊗F L,𝑉𝑛 ⊗F L,𝑊𝑛 ⊗F L, 𝛽
L
𝑛) : 𝑛 ∈ N},

where the L-bilinear map 𝛽L𝑛 : (𝑈𝑛 ⊗F L) × (𝑉𝑛 ⊗F L) → (𝑊𝑛 ⊗F L)

is the natural extension of the F-bilinear map 𝛽𝑛 : 𝑈𝑛 ×𝑉𝑛 →𝑊𝑛 .

Proposition 3.3. If dimF L < ∞, then 𝜔L (𝑆L) = 𝜔F (𝑆).

As a consequence, we obtain the following:

Corollary 3.4. (i) For any sequence of bilinear maps 𝑆 over C,

𝜔C (𝑆) = 𝜔R (𝑆) .

(ii) For any sequence of bilinear maps 𝑆 over R,

𝜔C (𝑆 ⊗R C) = 𝜔R (𝑆) .

By Corollary 3.4, the exponent of matrix multiplication over R

and over C are the same, i.e., 𝜔 (M(R)) = 𝜔 (M(C)) and we may

write 𝜔 without ambiguity.

4 ASYMPTOTIC EXPONENTS OF ALGEBRAS

We will now look into the asymptotic exponents of the products in

various infinite families of algebras. The bottom line is that under

some very mild conditions, they are all equal to 𝜔 . In this and the

next section, the field F will either be R or C.

4.1 Lie algebras

A Lie algebra is a vector space 𝔤 over a field F equipped with a skew

symmetric bilinear map called the Lie bracket,

[·, ·] : 𝔤 × 𝔤 → 𝔤,

that satisfies the Jacobi identity:

[𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥,𝑦]] = 0, 𝑥,𝑦, 𝑧 ∈ 𝔤.

We say a Lie algebra is simple if it does not contain any nontriv-

ial ideal and semisimple if it is a direct sum of simple Lie alge-

bras. For example, the vector space 𝔰𝔬𝑛 (R) consisting of 𝑛 × 𝑛

skew-symmetric matrices, equipped with the commutator product

[𝐴, 𝐵] = 𝐴𝐵−𝐵𝐴 is a simple Lie algebra; on the other hand, 𝔤𝔩𝑛 (R),

as described in Section 2, is a semisimple Lie algebra.

Theorem 4.1 (Lie algebras). For each 𝑛 ∈ N, let 𝔤𝑛 be a semisim-

ple Lie algebra over F with dim𝔤𝑛 ≤ 𝑐𝑛2 for some constant 𝑐 > 0.

Then for the sequence of Lie brackets

𝔤(F) = {(𝔤𝑛, [·, ·]) : 𝑛 ∈ N},

we have

𝜔 (𝔤(F)) ≤ 𝜔,

with equality as long as 𝔤𝑛 is not a direct sum of exceptional Lie

algebras for sufficiently large 𝑛.

9

Ubiquity of the Exponent of Matrix Multiplication ISSAC ’20, July 20–23, 2020, Kalamata, Greece

It follows that the Lie brackets given by the commutator product

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 on the Lie algebras 𝔤𝔩𝑛 (R), 𝔰𝔩𝑛+1 (F), 𝔰𝔬2𝑛+1 (F),

𝔰𝔭2𝑛 (F), 𝔰𝔬2𝑛 (F) all have the same asymptotic complexity as matrix

multiplication.

4.2 Jordan algebras

A Jordan algebra is a symmetric analogue of a Lie algebra, and is

defined to be a nonassociative algebra J satisfying

𝑥𝑦 = 𝑦𝑥, (𝑥𝑦)𝑥2 = 𝑥 (𝑦𝑥2), 𝑥,𝑦 ∈ J .

Similar to Lie algebras, a Jordan algebra is called simple if it does not

have a nontrivial ideal and semisimple if it can be decomposed as a

direct sum of simple Jordan algebras. Moreover, a Jordan algebra

J is said to be formally real if

𝑥21 + · · · + 𝑥2𝑛 = 0 =⇒ 𝑥1 = · · · = 𝑥𝑛 = 0

for any positive integer 𝑛 and 𝑥1, . . . , 𝑥𝑛 ∈ J . For example, the

vector space Sym𝑛 (R) (resp. Herm𝑛 (C)) of 𝑛 × 𝑛 symmetric (resp.

Hermitian) matrices equipped with the Jordan product 𝐴 ◦ 𝐵 ≔

(𝐴𝐵 + 𝐵𝐴)/2 is a formally real simple Jordan algebra.

Theorem 4.2 (Jordan algebras). For each 𝑛 ∈ N, let J𝑛 be a

Jordan algebra that is either semisimple over C or formally real over

R with the following properties:

(i) there exists constant 𝑐1 > 0 such that for sufficiently large 𝑛,

dimR (J𝑛) ≤ 𝑐1𝑛
2;

(ii) there exist constants 0 < 𝑐2 < 𝑐3 such that for sufficiently

large 𝑛, J𝑛 contains at least one simple ideal I𝑛 where 𝑐2𝑛
2 ≤

dimR (I𝑛) ≤ 𝑐3𝑛
2.

Then for the sequence of Jordan products

J (F) = {(J𝑛, ◦) : 𝑛 ∈ N},

we have

𝜔 (J (F)) = 𝜔.

It follows that the Jordan product 𝐴 ◦ 𝐵 = (𝐴𝐵 + 𝐵𝐴)/2 on

Sym𝑛 (R) or Herm𝑛 (C) has the same asymptotic complexity as

matrix multiplication.

4.3 Clifford algebras

A Clifford algebra Cl(𝑉 ,𝑞) is an algebra associated with a vector

space 𝑉 and a quadratic form 𝑞 on 𝑉 , defined by

Cl(𝑉 ,𝑞) ≔ T (𝑉)/I𝑞,

where T (𝑉) =
⊕∞

𝑛=0𝑉
⊗𝑛 is the tensor algebra of 𝑉 and I𝑞 is the

ideal generated by elements of the form 𝑣⊗𝑣−𝑞(𝑣), 𝑣 ∈ 𝑉 . The most

common example of Clifford algebras [2] is Cliff (𝑛) ≔ Cl(R𝑛, 𝑞)

where

𝑞(𝑥) ≔ 𝑥21 + · · · + 𝑥2𝑛

for any 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R
𝑛 . Then Cliff (𝑛) is a real vector space

of dimension 2𝑛 , equipped with a noncommutative product 𝑥 · 𝑦

for any 𝑥,𝑦 ∈ R𝑛 that satisfies

𝑥 · 𝑥 =

𝑛∑

𝑗=1

𝑥2𝑗 .

In this case, we have

Cliff (0) = R, Cliff (1) = C, Cliff (2) = H,

Cliff (3) = H2, Cliff (4) = H2×2, Cliff (5) = C4×4,

Cliff (6) = R8×8, Cliff (7) = R8×8 ⊕ R8×8,

and the recursion Cliff (𝑛 + 8) = Cliff (𝑛) ⊗ R16×16 determines all

subsequent Cliff (𝑛), 𝑛 ≥ 8.

Theorem 4.3 (Clifford algebras). For each 𝑛 ∈ N, let Cl2𝑛 ≔

Cl(𝑉𝑛, 𝑞𝑛) be a Clifford algebra with the following properties:

(i) there exist constants 0 < 𝑐1 < 𝑐2 such that for sufficiently large

𝑛, 𝑉𝑛 is a vector space over R or C with 𝑐1𝑛 ≤ dim𝑉𝑛 ≤ 𝑐2𝑛;

(ii) 𝑞𝑛 is a non-degenerate quadratic form on 𝑉𝑛 .

Then for the sequence of Clifford products

Cl(F) = {(Cl2𝑛 , ·) : 𝑛 ∈ N},

we have

𝜔 (Cl(F)) = 𝜔.

5 ASYMPTOTIC EXPONENT OF MATRIX

FUNCTIONS

We may view the matrix product 𝐴𝐵, Lie bracket [𝐴, 𝐵] = 𝐴𝐵 −

𝐵𝐴, Jordan product 𝐴 ◦ 𝐵 = (𝐴𝐵 + 𝐵𝐴)/2 as bivariate polynomial

functions of the matrix variables (𝐴, 𝐵). From the previous sections,

we know that they all share the same asymptotic exponent. It is

natural to ask if this extends to other polynomial functions of

matrices. We remind the reader that F = R or C in this section.

F⟨𝑋1, . . . , 𝑋𝑘 ⟩ will denote the free algebra in the noncommuting

variables 𝑋1, . . . , 𝑋𝑘 with coefficients in F.

Let 𝑓 ∈ F⟨𝑋1, . . . , 𝑋𝑘 ⟩ be a polynomial in the noncommuting

variables 𝑋1, . . . , 𝑋𝑘 . For any matrices 𝐴1, . . . , 𝐴𝑘 ∈ F𝑛×𝑛 , one may

evaluate 𝑓 to obtain a matrix 𝑓 (𝐴1, . . . , 𝐴𝑘) ∈ F
𝑛×𝑛 . We denote the

evaluation map by

ev𝑛 : F⟨𝑋1, . . . , 𝑋𝑘 ⟩ × F
𝑛×𝑛 × · · · × F𝑛×𝑛︸ ︷︷ ︸

𝑘 copies

→ F𝑛×𝑛 .

In other words,

ev𝑛 (𝑓 , 𝐴1, . . . , 𝐴𝑘) = 𝑓 (𝐴1, . . . , 𝐴𝑘).

Theorem 5.1. Let 𝑓 ∈ F⟨𝑋1, . . . , 𝑋𝑘 ⟩ be fixed. If

ev𝑓 ≔
{(
F
𝑛×𝑛 × · · · × F𝑛×𝑛, F𝑛×𝑛, ev𝑛 (𝑓 , ·, . . . , ·)

)
: 𝑛 ∈ N

}
,

then

𝐿(ev𝑓) = 𝜔.

A noteworthy point is that Theorem 5.1 holds regardless of

the degree of 𝑓 and the number of variables 𝑘 involved. However

complicated 𝑓 is, the asymptotic exponent of evaluating 𝑓 on 𝑘

matrices is the same regardless, namely, equal to that of multiplying

two matrices.

To extend Theorem 5.1 to matrix rational functions, we first

observe that for 𝑓 , 𝑔 ∈ F⟨𝑋1, . . . , 𝑋𝑘 ⟩ and 𝐴1, . . . , 𝐴𝑘 ∈ F𝑛×𝑛 , in-

verting the matrix 𝑔(𝐴1, . . . , 𝐴𝑛) also has asymptotic exponent 𝜔 ,

and thus

𝐿(ev𝑓 /𝑔) ≤ 𝜔, (5)

where

ev𝑛 (𝑓 /𝑔,𝐴1, . . . , 𝐴𝑘) ≔ 𝑓 (𝐴1, . . . , 𝐴𝑘)𝑔(𝐴1, . . . , 𝐴𝑘)
−1 .

10

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Lek-Heng Lim and Ke Ye

The reverse inequality and thus equality also holds in (5) but the

argument is more intricate and is deferred to [15].

ACKNOWLEDGMENTS

We thank Dario Bini and Mateusz Michałek for very useful discus-

sions. LHL is partially supported byNational Science Foundation IIS-

1546413 and DMS-1854831. KY is partially supported by National

Science Foundation of China (Grant nos. 11801548 and 11688101),

National Key R & D Program of China (Grant no. 2018YFA0306702),

and the Recruitment Program of Global Experts of China.

REFERENCES
[1] Andris Ambainis, Yuval Filmus, and François Le Gall. 2014. Fast Matrix Multipli-

cation: Limitations of the Laser Method. arXiv e-prints, Article arXiv:1411.5414
(2014).

[2] John C. Baez. 2002. The octonions. Bulletin of the American Mathematical Society
(N.S.) 39, 2 (2002), 145ś205.

[3] Grey Ballard, Christian Ikenmeyer, Joseph M. Landsberg, and Nick Ryder. 2019.
The geometry of rank decompositions of matrix multiplication II: 3×3 matrices.
Journal of Pure and Applied Algebra 223, 8 (2019), 3205ś3224.

[4] Dario Bini. 1980. Relations between exact and approximate bilinear algorithms.
Applications. Calcolo 17, 1 (1980), 87ś97.

[5] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. 1997. Algebraic
complexity theory. Grundlehren der Mathematischen Wissenschaften, Vol. 315.
Springer-Verlag, Berlin.

[6] Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Lands-
berg, and Giorgio Ottaviani. 2018. Polynomials and the exponent of matrix
multiplication. Bulletin of the London Mathematical Society 50, 3 (2018), 369ś389.

[7] Luca Chiantini, Christian Ikenmeyer, JosephM. Landsberg, and Giorgio Ottaviani.
2019. The Geometry of Rank Decompositions of Matrix Multiplication I: 2 × 2
Matrices. Experimental Mathematics 28, 3 (2019), 322ś327.

[8] Henry Cohn and Christopher Umans. 2003. A group-theoretic approach to fast
matrix multiplication. 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings. (2003), 438ś449.

[9] Henry Cohn and Christopher Umans. 2013. Fast matrix multiplication using
coherent configurations. Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (2013), 1074ś1087.

[10] Don Coppersmith and Shmuel Winograd. 1987. Matrix Multiplication via Arith-
metic Progressions. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, 1987, New York, New York, USA.

[11] JosephM. Landsberg. 2006. The border rank of the multiplication of 2×2matrices
is seven. Journal of the American Mathematical Society 19, 8 (2006), 447ś459.

[12] Joseph M. Landsberg. 2014. New Lower Bounds for the Rank of Matrix Multipli-
cation. SIAM J. Comput. 43, 1 (2014), 144ś149.

[13] Joseph M. Landsberg and Giorgio Ottaviani. 2015. New Lower Bounds for the
Border Rank of Matrix Multiplication. Theory of Computing 11, 11 (2015), 285ś
298.

[14] François Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In
Proceedings of the 39th International Symposium on Symbolic and Algebraic Com-
putation (Kobe, Japan) (ISSAC ’14). Association for Computing Machinery, New
York, NY, USA, 296Ð-303.

[15] Lek-Heng Lim and Ke Ye. 2020. Ubiquity of the Exponent of Matrix Multiplication.
preprint (2020).

[16] Arnold Schönhage. 1981. Partial and Total Matrix Multiplication. SIAM J. Comput.
10, 3 (1981), 434ś455.

[17] Volker Strassen. 1969. Gaussian elimination is not optimal. Numerische mathe-
matik 13, 4 (1969), 354ś356.

[18] Christopher Umans. 2006. Group-Theoretic Algorithms for Matrix Multiplication.
In Proceedings of the 2006 International Symposium on Symbolic and Algebraic
Computation (Genoa, Italy) (ISSAC ’06). Association for Computing Machinery,
New York, NY, USA, 5.

[19] Virginia Vassilevska Williams. 2012. Multiplying Matrices Faster than
Coppersmith-Winograd. In Proceedings of the Forty-Fourth Annual ACM Sympo-
sium on Theory of Computing (New York, New York, USA) (STOC ’12). Association
for Computing Machinery, New York, NY, USA, 887Ð-898.

[20] Ke Ye and Lek-Heng Lim. 2018. Fast Structured Matrix Computations: Tensor
Rank and CohnśUmans Method. Foundations of Computational Mathematics 18,
1 (2018), 45ś95.

11

Tutorial

What do Sparse Interpolation, Padé Approximation, Gaussian
Quadrature and Tensor Decomposition Have in Common?

Annie Cuyt
annie.cuyt@uantwerpen.be

Department of Computer Science, University of Antwerp, Campus CMI, Middelheimlaan 1, B-2020 Antwerpen, Belgium

College of Mathematics and Statistics, Shenzhen University, Shenzhen, Guangdong 518060, China

KEYWORDS

exponential analysis, Prony’smethod, generalized eigenvalue, Han-

kel matrix

ACM Reference Format:

Annie Cuyt. 2020.What do Sparse Interpolation, PadéApproximation, Gauss-

ian Quadrature and Tensor Decomposition Have in Common?. In Interna-

tional Symposium on Symbolic and Algebraic Computation (ISSAC ’20), July

20–23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 1 page. https:

//doi.org/10.1145/3373207.3403983

We present the problem statement of sparse interpolation of data 𝑓𝑖
collected uniformly at points 𝑥𝑖 = 𝑖Δ, as

𝑛∑
𝑗=1

𝛼 𝑗 exp(𝜙 𝑗𝑥𝑖) = 𝑓𝑖 , 𝛼 𝑗 , 𝜙 𝑗 ∈ C, |ℑ(𝜙 𝑗)Δ| < 𝜋, (1)

and its basic mathematical and computational methods to solve it.

The original solution is presented already in 1795 by de Prony

[6]. Much later it is expressed in terms of the generalized eigenvalue

problem [8]

𝐻
(1)
𝑛,𝑛 𝑣 𝑗 = exp(𝜙 𝑗Δ)𝐻

(0)
𝑛,𝑛 𝑣 𝑗 , 𝑗 = 1, . . . , 𝑛,

𝐻
(𝑟)
𝑛1,𝑛2

=

©«
𝑓𝑟 · · · 𝑓𝑟+𝑛2−1
... . .

. ...

𝑓𝑟+𝑛1−1 · · · 𝑓𝑟+𝑛1+𝑛2−2

ª®®¬
for the 𝜙 𝑗 and the subsequent solution of the structured linear sys-

tem (1) for the 𝛼 𝑗 .

When considering the limited number of regularly collected sam-

ples 𝑓𝑖 as Taylor series coefficients,

∞∑
𝑖=0

𝑓𝑖𝑧
𝑖
=

𝑛∑
𝑗=1

𝛼 𝑗

1 − exp(𝜙 𝑗Δ)𝑧
,

the problem statement easily connects to Padé approximation [4, 9].

The Padé approximant denominators are in turn closely related

to the formally orthogonal Hadamard polynomials and Gaussian

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

ISSAC ’20, July 20–23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7100-1/20/07.
https://doi.org/10.1145/3373207.3403983

quadrature [1, 7] by

𝑛∏
𝑗=1

(𝑧 − exp(𝜙 𝑗Δ)) =

���������

𝑓0 · · · 𝑓𝑛
...

...

𝑓𝑛−1 · · · 𝑓2𝑛−1
1 · · · 𝑧𝑛

���������
/|𝐻

(0)
𝑛,𝑛 |.

Results on their zeroes and certain convergence properties shed

new light [2] on some computational problems in sparse interpola-

tion.

The problem statement can also be viewed as an𝑚-order tensor

decomposition problem where 3 ≤ 𝑚 ≤ 2𝑛 − 1 [3, 5], namely

𝑛∑
𝑗=1

𝛼 𝑗

©«

1

exp(𝜙 𝑗Δ)
...

exp(𝜙 𝑗Δ)
𝑛1−1

ª®®®®¬
◦ · · · ◦

©«

1

exp(𝜙 𝑗Δ)
...

exp(𝜙 𝑗Δ)
𝑛𝑚−1

ª®®®®¬
= (𝑓𝑘1+...+𝑘𝑚−𝑚)1≤𝑘ℓ ≤𝑛ℓ

, 1 ≤ ℓ ≤ 𝑚, 2 ≤ 𝑛ℓ ≤ 𝑛,

with the connection

𝐻
(𝑘3+...+𝑘𝑚−𝑚+2)
𝑛1,𝑛2

= (𝑓𝑖+𝑗+𝑘3+...+𝑘𝑚−𝑚)1≤𝑖≤𝑛1,1≤ 𝑗≤𝑛2 .

Here ◦ denotes the outer product and the decomposition problem is

solved using techniques from multilinear algebra. Through the lat-

ter reformulation the toolkit of algorithms for sparse interpolation

is further enlarged.

REFERENCES

[1] C. Brezinski. 1980. Padé type approximation and general orthogonal polynomials.
ISNM 50, Birkhäuser Verlag, Basel.

[2] M. Briani, A. Cuyt, and W.-s. Lee. 2017. VEXPA: Validated EXPonential Analysis
through regular subsampling. ArXiv e-print 1709.04281 [math.NA]. Universiteit
Antwerpen.

[3] A. Cuyt, F. Knaepkens, and W.-s. Lee. 2018. From exponential analysis to
Padé approximation and Tensor decomposition, in one and more dimensions. In
LNCS11077, V.P. Gerdt et al. (Eds.). 116ś130. Proceedings CASC 2018, Lille (France).

[4] A. Cuyt and W.-s. Lee. 2016. Sparse interpolation and Rational approxima-
tion (Contemporary Mathematics), D. Hardin, D. Lubinsky, and B. Simanek (Eds.),
Vol. 661. American Mathematical Society, Providence, RI, 229ś242. https://doi.
org/10.1090/conm/661/13284

[5] A. Cuyt, W.-s. Lee, and X. Yang. 2016. On tensor decomposition, sparse interpola-
tion and Padé approximation. Jaén J. Approx. 8, 1 (2016), 33ś58.

[6] R. de Prony. 1795. Essai expérimental et analytique sur les lois de la dilatabilité
des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de
la vapeur de l’alkool, à différentes températures. J. Ec. Poly. 1 (1795), 24ś76.

[7] P. Henrici. 1974. Applied and computational complex analysis I. JohnWiley & Sons,
New York.

[8] Y. Hua and T. K. Sarkar. 1990. Matrix pencil method for estimating parameters of
exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust., Speech,
Signal Process. 38 (1990), 814ś824. https://doi.org/10.1109/29.56027

[9] L. Weiss and R. N. McDonough. 1963. Prony’s method, 𝑍 -transforms, and Padé
approximation. SIAM Rev. 5 (1963), 145ś149.

12

https://doi.org/10.1145/3373207.3403983
https://doi.org/10.1145/3373207.3403983
https://doi.org/10.1145/3373207.3403983
https://doi.org/10.1090/conm/661/13284
https://doi.org/10.1090/conm/661/13284
https://doi.org/10.1109/29.56027

Tutorial

Real Quantifier Elimination by Cylindrical Algebraic
Decomposition, and Improvements by Machine Learning

Matthew England
Matthew.England@coventry.ac.uk

Coventry University

Coventry, UK

CCS CONCEPTS

·Computingmethodologies→Equation and inequality solv-

ing algorithms;Machine learning.

KEYWORDS

quantifier elimination, cylindrical algebraic decomposition, software

optimisation by machine learning

ACM Reference Format:

Matthew England. 2020. Real Quantifier Elimination by Cylindrical Alge-

braic Decomposition, and Improvements by Machine Learning. In Interna-

tional Symposium on Symbolic and Algebraic Computation (ISSAC ’20), July

20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 1 page. https:

//doi.org/10.1145/3373207.3403981

Real QE by CAD

Given a quantified logical formula whose atoms are polynomial

constraints with real valued variables, Real Quantifier Elimination

(QE) means to derive a logically equivalent formula which does

not involve quantifiers or the quantified variables from the original

statement. For example, Real QE would reduce the statement that

there exists a real solution x to the quadratic equation 𝑥2+𝑏𝑥+𝑐 = 0

to the equivalent condition on the discriminant: 𝑏2 − 4𝑐 ≥ 0. Tarski

proved Real QE is always possible (with sufficient resources) [7].

A Cylindrical Algebraic Decomposition (CAD) decomposes n-

dimension real space into a finite number of semi-algebraic cells,

relative to a set of polynomials (or formulae) so that each has con-

stant sign (truth value) on each cell. A CAD for the polynomials in

a formula may be used to perform Real QE, by querying a single

sample point from each cell and combining cell descriptions into

the quantifier free formula [1]. CAD is the backbone of Real QE

systems, used in the cases where more efficient algorithms are not

applicable. CAD is implemented in a variety of computer algebra

systems, as well as dedicated standalone implementations and sat-

isfiability modulo theory solvers. Real QE has been applied to nu-

merous problems throughout engineering, the sciences and even

economics.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7100-1/20/07.
https://doi.org/10.1145/3373207.3403981

Improvements by Machine Learning

Real QE has doubly exponential complexity which limits the scope

of its use in practice. It is thus particularly important that imple-

mentations are optimised to ensure the best possible performance.

In particular, there are a variety of choices which may need to

be made that can dramatically affect the runtime of such algorithms

without changing the mathematical correctness of the result pro-

duced. These include the variable ordering, the order we process

constraints in, and the order we process sub-formulae in.

Rather than having such choices made by the user, or a human-

constructed heuristic, we suggest to useMachine Learning (ML), i.e.

tools that allow computers to make decisions that are not explicitly

programmed, via the analysis of large quantities of data. This is not

a simple application of ML since there are few a-priori bounds on

the input size, and the only way to know if a choice is good is to

evaluate all possibilities and compare. Nevertheless, we have exper-

imented with different classifiers, training methodologies, and fea-

ture extract methods to produce classifiers whichmakemuch better

choices for the variable ordering in our CAD implementation.

In this tutorial we first introduce Real QE via CAD, before re-

viewing recent work using machine learning to improve the per-

formance of a CAD implementation [2ś6]. We hope that the former

will be an informative primer, and that the latter has useful lessons

for those looking to apply ML to other areas of symbolic computa-

tion.

REFERENCES
[1] G.E. Collins. 1975. Quantifier elimination for real closed fields by cylindrical alge-

braic decomposition. In Proc. 2nd GI Conference on Automata Theory and Formal
Languages. Springer-Verlag, 134ś183. https://doi.org/10.1007/3-540-07407-4_17

[2] M. England andD. Florescu. 2019. ComparingMachine LearningModels to Choose
the Variable Ordering for Cylindrical Algebraic Decomposition. In Intelligent Com-
puter Mathematics (LNCS 11617), C. Kaliszyk, E. Brady, A. Kohlhase, and C.C. Sac-
erdoti (Eds.). Springer, 93ś108. https://doi.org/10.1007/978-3-030-23250-4_7

[3] D. Florescu and M. England. 2019. Algorithmically generating new algebraic fea-
tures of polynomial systems for machine learning. In Proc. 4th Workshop on Satis-

fiability Checking and Symbolic Computation (SC2 2019) (CEUR Workshop Proceed-
ings), J. Abbott and A. Griggio (Eds.). 12. http://ceur-ws.org/Vol-2460/

[4] D. Florescu and M. England. 2020. Improved Cross-Validation for Classifiers that
Make Algorithmic Choices to Minimise Runtime Without Compromising Output
Correctness. In Mathematical Aspects of Computer and Information Sciences (Proc.
MACIS ’19) (LNCS 11989), D. Slamanig, E. Tsigaridas, and Z. Zafeirakopoulos (Eds.).
Springer, 341ś356. https://doi.org/10.1007/978-3-030-43120-4_27

[5] D. Florescu and M. England. 2020. A machine learning based software pipeline to
pick the variable ordering for algorithms with polynomial inputs. InMathematical
Software (Proc. ICMS ’20). In Press: Springer LNCS.

[6] Z. Huang, M. England, D. Wilson, J. Bridge, J.H. Davenport, and L. Paulson. 2019.
Using Machine Learning to Improve Cylindrical Algebraic Decomposition. Math-
ematics in Computer Science 13, 4 (2019), 461ś488. https://doi.org/10.1007/s11786-
019-00394-8

[7] A. Tarski. 1948. A Decision Method For Elementary Algebra And Geometry. RAND
Corporation, Santa Monica, CA (reprinted in: https://doi.org/10.1007/978-3-7091-
9459-1).

13

https://doi.org/10.1145/3373207.3403981
https://doi.org/10.1145/3373207.3403981
https://doi.org/10.1145/3373207.3403981
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-030-23250-4_7
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1007/978-3-030-43120-4_27
https://doi.org/10.1007/s11786-019-00394-8
https://doi.org/10.1007/s11786-019-00394-8
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-7091-9459-1

Sub-quadratic Time for Riemann–Roch Spaces
Case of smooth divisors over nodal plane projective curves

Simon Abelard
Laboratoire d’informatique de l’École

polytechnique (LIX, UMR 7161),
CNRS, École polytechnique, Institut

Polytechnique de Paris
Palaiseau, France

simon.abelard@lix.polytechnique.fr

Alain Couvreur
Inria

Laboratoire d’informatique de l’École
polytechnique (LIX, UMR 7161),

CNRS, École polytechnique, Institut
Polytechnique de Paris

Palaiseau, France
alain.couvreur@inria.fr

Grégoire Lecerf
Laboratoire d’informatique de l’École

polytechnique (LIX, UMR 7161),
CNRS, École polytechnique, Institut

Polytechnique de Paris
Palaiseau, France

gregoire.lecerf@lix.polytechnique.fr

ABSTRACT

We revisit the seminal BrillśNoether algorithm in the rather generic
situation of smooth divisors over a nodal plane projective curve. Our
approach takes advantage of fast algorithms for polynomials and
structured matrices. We reach sub-quadratic time for computing
a basis of a RiemannśRoch space. This improves upon previously
known complexity bounds.

CCS CONCEPTS

· Computing methodologies→ Symbolic and algebraic algo-

rithms.

KEYWORDS

algebraic curves, RiemannśRoch spaces, complexity

ACM Reference Format:

Simon Abelard, Alain Couvreur, and Grégoire Lecerf. 2020. Sub-quadratic
Time for RiemannśRoch Spaces: Case of smooth divisors over nodal plane
projective curves. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404053

1 INTRODUCTION

LetK be an effective field and let K̄ denote an algebraic closure ofK.
Here łeffectivež means that we can perform arithmetic operations
and zero tests in K. The projective space of dimension 2 over K̄
is written P2. The input projective curve C in P2 is given by its
defining equation Q(X ,Y ,Z) = 0, where Q ∈ K[X ,Y ,Z] is homo-
geneous of total degree δ ⩾ 1. This paper modifies the variant of
the BrillśNoether algorithm proposed in [19] so as to reach sharper
complexity bounds.

1.1 Hypotheses

Until the end of the paper, K is a sufficiently large field with the
following restriction:
K-H K is either finite or has characteristic zero, and is therefore a
perfect field.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404053

We will assume that the following hypotheses hold for C:
C-H1 Q is absolutely irreducible, that is irreducible over K̄;
C-H2 C is nodal: each germ of curve at a singular point splits into
two smooth germs with distinct tangent spaces. The number of
singular points is written r , and the nodal divisor , written E is the
symbolic sum of the singular points.

Let us recall that absolute irreducibility can be tested efficiently
by means of the algorithms designed in [1]. For the second hypoth-
esis it suffices to check that the Hessian of Q is non-degenerate
at each singular point. The restriction on the type of singularities
involves simplifications in the BrillśNoether algorithm [7, 17]: ba-
sically the desingularization of C is immediate, and the adjoint
divisor simply writes from the singular locus. The last hypothesis
necessary to our algorithm concerns the input divisor D, for which
we want a basis of the RiemannśRoch space, written L(D):
D-H The input divisor D is smooth and defined over K, which
means that its support is made of regular points of C.

We will decompose a divisor D into D = D+ − D−, where D+
and D− are positive (also called effective) divisors. When degD+ <
degD−, L(D) is (0) so we can freely assume that degD+ ⩾ degD−.
The above hypotheses are essentially present in [19]:K-H is slightly
more restrictive in order to simplify complexity analyses.

1.2 Notation

For complexity analyses we focus on an algebraic model over K
(typically computation trees), so we count the number of arithmetic
operations and zero tests performed by the algorithms. Over finite
fields, we use Turing machines with sufficiently many but finite
number of tapes. In order to simplify the presentation of complexity
bounds, we use the soft-Oh notation: f (n) ∈ Õ(д(n)) means that

f (n) = д(n) logO (1)2 (д(n)+ 3); see [5, chapter 25, section 7]. The vec-
tor space of polynomials of degree < n in K[X] is written K[X]<n .
For integer and polynomial arithmetic we content ourselves with
softly linear cost bounds [5].

The constant ω denotes a real value between 2 and 3 such that
two n × n matrices over a commutative ring can be multiplied with
O(nω) operations; ω < 2.3728639 [18]. The constant ϖ is an other
real value between 1.5 and (ω+1)/2 such that the product of an×

√
n

matrix by a
√
n ×
√
n matrix takesO(nϖ) operations; ϖ < 1.667 [15,

Theorem 10.1].
Given M ∈ GL3(K) and P ∈ K[X ,Y ,Z] we denote by (P ◦

M)(X ,Y ,Z) the polynomial P(M · (X ,Y ,Z)⊤).

14

https://doi.org/10.1145/3373207.3404053
https://doi.org/10.1145/3373207.3404053

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Simon Abelard, Alain Couvreur, and Grégoire Lecerf

1.3 Our contributions

The present paper is essentially based on the variant of the Brillś
Noether algorithm designed in [19]. Our first result is the improve-
ment of complexity bounds for the arithmetic of smooth divisors. A
second contribution concerns the opportune use of structured lin-
ear algebra algorithms: we reformulate the RiemannśRoch problem
in terms of modules of relations of rank ⩽ δ , and compute bases
thanks to the recent fast algorithm due to Neiger [23].

We represent the RiemannśRoch space
L(D) := {h ∈ K(C) : (h) ≥ −D} ∪ {0}

by a basis generator , that is made ofM ∈ GL3(K), an integer l ⩽ δ ,
non-zero homogeneous polynomials H ,G1, . . . ,Gl in K[X ,Y ,Z] of
respective total degrees d and di ⩽ d , such that:
• degY (Q◦M) = δ , degY H ⩽ δ−1, degY Gi ⩽ δ−1 for i = 1, . . . , l .
• The supports ofM−1(D+),M−1(D−),M−1(E), and the solutions
of Q ◦M = H = 0 are in the affine chart Z = 1.

•
(
X jZd−di−jGi

H

)
◦M−1 with 0 ⩽ j ⩽ d − di and 1 ⩽ i ⩽ l form

a basis of L(D).
The actual vector-space basis of L(D) can be recovered in softly lin-
ear time from the basis generators, the latter being a more compact
representation.

Theorem 1.1. Under hypotheses K-H, C-H1, C-H2, with d defined

below in (8), given a primitive element representation (see section 3.1)

of D satisfying D-H, and assuming |K| ⩾ max(δ4, 6(δd)2), a basis

generator of L(D) can be computed by a probabilistic algorithm of

type Las Vegas with an expected number of Õ
(
(δ2 + degD+)

ω+1
2

)
field operations in characteristic zero or > max(δ (δ − 1), δd), or
Õ

(
(δ2 + degD+)

ω+1
2 logq + (δ2 + degD+) log2 q

)
bit operations if

K = Fq .

Our third contribution, central to this theorem, is a sharp degree
bound d for H and theGi ; namely (8). Such a bound is not supplied
in [19] when r > 0, so when C is not smooth additional assumptions
are required in [19, section 2].

1.4 Related work

RiemannśRoch spaces have various applications in applied algebra,
number theory and cryptography (e.g. arithmetic in Jacobians of
curves). Computing bases for these spaces is also pivotal to de-
sign geometric codes, where the encoding algorithm consists in
evaluating a basis of a certain RiemannśRoch space at points of
an algebraic curve. Currently in practice, algebraic curves used in
coding theory are mostly limited to cases for which such bases are
already known, so for the sake of diversity we aim to handle more
general curves and divisors.

Algorithms and implementations for RiemannśRoch spaces have
been thoroughly investigated over the past decades. To focus on
the most recent contributions, we mention: Hess’ algorithm [9]
that is implemented within the computer algebra software Magma,
and KhuriśMakdisi’s approach [16] that is dedicated to group op-
erations in Jacobians of genus-д curves in time O(дω+ϵ), where ϵ
can be any positive number. More recently, Le Gluher and Spaen-
lehauer [19] revisited the BrillśNoether approach for smooth di-
visors D on a nodal curve, and obtained the complexity bound
O(max(δ2, degD+)ω), yet under the aforementioned restriction
on D. For conciseness we refer to [19] for further references.

2 PRELIMINARIES

In order to obtain the aforementioned complexity bound for Riem-
annśRoch spaces, we rely on structured linear algebra algorithms
that will be presented in section 4.1, and on modular composition
and elimination, that are the purposes of this section.

2.1 Bivariate modular composition

At present time no algorithm with softly linear time is known for
bivariate modular compositions over a general field K. For practi-
cal purposes we appeal to a variant of the PatersonśStockmeyer
evaluation scheme designed by Nüsken and Ziegler [25]. We need
a slight extension to express the complexity bound in terms of the
degree of the modulus.

Algorithm 1

Input: P ∈ K[X ,Y] of total degree n, χ ∈ K[Y], u ∈ K[Y]<deg χ .
Output: P(u(Y),Y) rem χ (Y).
(1) Let p := ⌊

√
n⌋ and q := ⌈n/p⌉.

(2) For i = 0, . . . ,p − 1 do:
(a) Computeui rem χ and segment it intoM0,i (Y)+M1,i (Y)Yn+
· · · + Ml−1,i (Y)Y (l−1)n , with degMj ,i (Y) < n and l :=

⌈deg χ/n⌉. This yields an l × p matrixM ∈ K[Y]l×p .
(b) For j = 0, . . . ,q − 1, let Ni , j (Y) := PXi+pj (Y), where P

X
i+pj

represents the coefficient of degree i + pj of P regarded
in K[Y][X]. This yields a p × q matrix N ∈ K[Y]p×q of
degree ⩽ n.

(3) Compute the matrix product R := MN .
(4) For j = 0, . . . ,q − 1, let vj (Y) := R0, j (Y) + R1, j (Y)Yn + · · · +

Rl−1, j (Y)Y (l−1)n rem χ (Y).
(5) Return

∑q−1
j=0 vju

pj rem χ .

Lemma 2.1. Algorithm 1 is correct and takes Õ
(
n
ω−1
2

(
deg χ + n

3
2

))
operations in K.

Proof. By construction, we have vj = PXpj + PX1+pju + · · · +
PXp−1+pju

p−1 for j = 0, . . . ,q − 1, whence

P(u(Y),Y) =
q−1∑
j=0

vju
pj mod χ (Y).

This proves the correctness of the algorithm. Step 2a requiresO(p) =
O(
√
n) multiplications modulo χ . Step 3 costs

Õ

(
n
ω
2 +1

⌈
l

p

⌉)
= Õ

(
n
ω
2 +1

(deg χ
n + 1

n
1
2

+ 1

))
= Õ

(
n
ω−1
2

(
deg χ + n

3
2

))
.

Step 5 involvesO(q) = O(
√
n)multiplications and additions modulo

χ , using Horner’s method. □

2.2 Primitive element representation

A primitive element representation of a set E of points in the affine
plane A2 is the data of:
• (λ, µ) in K̄2 such that the linear form λX +µY separates the points
in E. This means that the form takes different values at different
points of E.
• A polynomial θ in K̄[S] whose roots are the values of λX + µY

at the points of E, that is θ (S) :=∏
(x ,y)∈E (S − (λx + µy)). So θ

is monic and separable of degree |E |.

15

Sub-quadratic Time for Riemann–Roch Spaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

• Polynomials u and v in K̄[S] of degrees < |E | such that

E = {(u(ζ),v(ζ)) : θ (ζ) = 0} .
Notice that such a representation is uniquely determined by (λ, µ).
If (λ, µ) ∈ K2 and if θ,u,v ∈ K[S], then the primitive element
representation is said to be defined over K.

If the annihilator ideal of E is generated by polynomials with
coefficients in K, then a primitive element representation does not
necessarily exist over K. However any value of λ/µ outside{

y1 − y2
x1 − x2

: (x1,y1) ∈ E, (x2,y2) ∈ E, (x1,y1) , (x2,y2), x1 , x2

}
,

(1)
yields a primitive element. Therefore, a sufficient condition to en-

sure that such a primitive element exists is |K| >
(|E |
2

)
. Otherwise,

λ/µ needs to be taken in an algebraic extension of K. We will not
discuss these usual technical details but will make precise the con-
ditions on the cardinality of K within each sub-algorithm. For the
sake of complexity it will be convenient to change the variables X
and Y linearly, so we recall the following lemma.

Lemma 2.2. (For instance [12, Proposition 9]) If F ∈ K[X ,Y ,Z]
is homogeneous of degree n, if |K| ⩾ n + 1, and ifM ∈ GL3(K), then
we can compute F ◦M with Õ(n2) operations in K.
2.3 Change of primitive element

Changing primitive elements mostly reduces to computing char-
acteristic polynomials in K[S]/(θ (S)). This task has received a lot
of attention in computer algebra, but so far no general algorithm
is known with nearly linear time; for instance see [6] about the
existing literature. For our present purposes it seems reasonable to
appeal to the known complexity exponent ϖ : recall that univariate
modular composition in degree n takes O(nϖ) field operations.

Lemma 2.3. Given a primitive element representation of E over K

by λX + µY , and given (λ̃, µ̃) ∈ K2, we can test if λ̃X + µ̃Y is primitive

for E, and, if so, compute the corresponding representation of E, along
withw(S) ∈ K[S]< |E | such that

K[S]/(θ (S)) � K[S]/(θ̃ (S))
S 7→ w(S)

λ̃u(S) + µ̃v(S) ← � S,

is an isomorphism, withO(|E |ϖ) field operations in characteristic zero
or > |E |, or |E |ϖÕ(logq) + Õ(|E | log2 q) bit operations if K = Fq .

Proof. Let Tr denote the trace map of K[S]/(θ (S)) and let θ̃ be
the characteristic polynomial of the multiplication endomorphism
by λ̃u(S) + µ̃v(S) in this algebra. Le Verrier’s method consists in
computing Tr((λ̃u + µ̃v)i) for i = 1, . . . , |E | − 1. This task being
dual to modular composition, it takes O(|E |ϖ) operations in K.
Then the generating series τ (z) := ∑

i⩾0 Tr((λ̃u + µ̃v)i) satisfies the
NewtonśGirard formula

− ν ′(z)
ν (z) = τ (z) +O(z

|E |), (2)

where ν (z) := z |E |θ̃ (1/z) is the reciprocal of θ̃ . Therefore ν is recov-
ered with Õ(|E |) operations in characteristic zero or > |E |. Testing
if λ̃X + µ̃Y is primitive is equivalent to testing if θ̃ is squarefree,
that takes Õ(|E |) field operations in characteristic zero or > |E |, or

Õ(|E | log2 q) bit operations if K = Fq ; for instance see [20]. By a
deformation argument we further recoverw up to a constant cost
factor; see [6, section 2.6].

In positive characteristic, the integration of (2) is more tedious
in general, but in the special case K = Fq , it is possible with

Õ(|E | logq) bit operations; see [6, Proposition 3]. □

2.4 Curve intersection

For computing principal divisors on curves we will appeal to the
following lemma, based on polynomial resultants. The technique
is known so the proof is voluntarily concise. Details can be found
in [3, section 4] or [12, section 5].

Lemma 2.4. Given F of total degreem and G of total degree ⩽ n

in K[X ,Y] such that m ⩽ n, F has degree m in Y , and the solu-

tions of F = G = 0 is a finite set E. We can check if X is primitive

for E, and compute a partition of E =: E1 ∪ · · · ∪ Es , where Ei con-
tains points with the same known intersection multiplicitymi , with

Õ(nm2
+n degY G) field operations in characteristic zero or > mn, or

Õ(((mn)ϖ + n degY G) logq +mn log2 q) bit operations if K = Fq .

Proof. The remainder H of G by F regarded in K[X][Y] can be
computed with Õ(n degY G) operations in K, so we obtain χ (X) :=
ResY (F (X ,Y),H (X ,Y))with cost Õ(nm2) by [21, Corollary 31]. Since
χ has degree⩽mn, the squarefree decomposition χ =: θm1

1 · · · θ
ms
s

contributes to Õ(mn) field operations in characteristic zero or > mn,
or to Õ(mn log2 q) bit operations over Fq .

After fast multi-remaindering of F and H by θ1, . . . , θs [5, chap-
ter 10], the directed evaluation paradigm [2, 11] yields a decompo-
sition θi =: θi ,1 · · · θi ,si , and bivariate polynomials Qi , j (X ,Y) such
that

Qi , j (ζ ,Y) = gcd(F (ζ ,Y),H (ζ ,Y)) (3)

with degX Qi , j < degθi , j , for all θi , j (ζ) = 0, j = 1, . . . , si , i =
1, . . . , s . It turns out that X is a primitive element of E if, and only
if, each Qi , j (ζ ,Y) is a power of a degree 1 polynomial Y −vi , j (ζ)
with degvi , j < degθi , j . In this case, the representation θi (X) =
Y −vj (X) = 0 of Ei is deduced in softly linear time by Chinese re-
maindering; details will be given in Lemma 3.5 below for a slightly
more general situation. This takes Õ(nm2) operations inKwhen the
characteristicp is zero or > mn. Otherwise whenp > 0, the gcd (3) is

required to be a power (coprime top) ofYp
ti , j −wi , j (ζ). We compute

A := Xpti , j modθi , j (X) with bit cost Õ(degθi , j logm logq) since
pti , j = O(logm). Computing the characteristic polynomial θ̃i , j ofA
and the expression X = B(A) as in the proof of Lemma 2.3 involves
bit cost Õ((degθi , j)ϖ logq + degθi , j log

2 q). By modular composi-

tion, we deduce Yp
ti , j −(wi , j ◦B)

(
ζ p

ti , j
)
with Õ((degθi , j)ϖ logq)

bit cost. After the extraction of p-th roots, the latter expression

finally becomes (Y −vi , j (ζ))p
ti , j

, with further Õ(degθi , j log2 q) bit
operations.

By [3, Proposition 2.7], χ (X) is the characteristic polynomial ofX
in K[X ,Y]/(F (X ,Y),G(X ,Y)), somi is the intersection multiplicity
of the points represented by θi (X) = Y −vi (X) = 0. □

3 DIVISOR

This section gathers complexity results for basic operations on
smooth divisors of C.

16

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Simon Abelard, Alain Couvreur, and Grégoire Lecerf

3.1 Primitive element representation

A smooth positive divisor D of C is a multi-set of smooth points
of C. The underlying set of points E = {P1, . . . , Ps } is called the
support of the divisor, and it is customary to write D as the formal
sum D =m1P1 + · · · +msPs , wheremi > 0 is the multiplicity of Pi
in D. Up to a linear change of variables we may assume that the
support of D is in the affine chart Z = 1. In this case, a primitive

element of D is a linear form λX + µY that separates its support and
satisfies the additional conditions:�����

∂Q
∂X
(Pi) ∂Q

∂Y
(Pi)

λ µ

����� , 0 for i = 1, . . . , s . (4)

Since the Pi are smooth on C, if µ , 0, the latter condition is
equivalent to requiring that λ/µ is outside the set{

∂Q
∂X
(u(ζ),v(ζ),1)

∂Q
∂Y
(u(ζ),v(ζ),1)

: χ (ζ) = 0,
∂Q

∂Y
(u(ζ),v(ζ), 1) , 0

}
. (5)

Geometrically speaking, this means that the line λX + µY = 0 is
neither vertical nor tangent to the curve C at any point of D. If
λ/µ is outside the sets (1) and (5) then it is primitive for D. The

sum of the cardinalities of these two sets is ⩽
(degD+1

2

)
, where

degD :=m1 + · · · +ms . Consequently, as soon as |K| >
(degD+1

2

)
,

primitive elements can be found in K.

Proposition 3.1. Given a smooth positive divisor D = m1P1 +

· · · +msPs whose support is in the affine chart Z = 1, and given a

primitive element λX + µY for D, there exist unique polynomials χ ,

u, and v in K̄[S] with the following properties:

Div-H0 χ is monic of degree degD, and u, v have degrees < degD,
Div-H1 Q(u(S),v(S), 1) = 0mod χ (S),
Div-H2 λu(S) + µv(S) = S ,

Div-H3 µ
∂Q
∂X
(u(S),v(S), 1) − λ ∂Q

∂Y
(u(S),v(S), 1) is coprime to χ (S).

Proof. We write χ0, u0, and v0 for the primitive element repre-
sentation of the support E, sowe haveQ(u0(S),v0(S), 1) = 0mod χ0(S)
and λu0(S)+µv0(S) = S . The hypothesis (4)means that (u0(S),v0(S))
is a regular root modulo χ0(S) of the map Ξ : K[S]2 → K[S]2 de-
fined by

Ξ :

(
X

Y

)
7→

(
Q(X ,Y , 1)

λX + µY − S

)
.

For n ⩾ 0 we appeal to the following Newton iteration based on Ξ:(
un+1
vn+1

)
:=

(
un
vn

)
− DΞ(un,vn)−1Ξ(un,vn)mod χ2

n+1

0 .

It follows that (un,vn) is the unique root of Ξ modulo χ2
n

0 that
coincides to (u0,v0) modulo χ0. When 2n is strictly larger than the
largest multiplicity in D, we set

χ (S) := (S − λx1 − µy1)m1 · · · (S − λxr − µyr)mr ,

where (xi ,yi) denotes the coordinates of Pi , and thenu := un mod χ
and v := vn mod χ . Since χ divides χ2

n

0 the required properties are
satisfied.

The uniqueness follows from the one of the lifted roots of Ξ,
since conditions Div-H0 to Div-H3 imply that χ0, u rem χ0 and
v rem χ0 constitute the primitive element representation of E; that
means u0 = u rem χ0 and v0 = v rem χ0. □

A smooth positive divisor D as above will be represented by
λ, µ, χ,u,v alongwith∇Q(u,v, 1)modθ , whereθ denotes the square-
free part of χ , and ∇Q represents the gradient of Q in the variables
X and Y .

3.2 Lifting a divisor

We analyze the complexity of the Newton iteration seen in the
proof of Proposition 3.1.

Lemma 3.2. Let D be a smooth positive divisor parametrized by

λX + µY . The representation of 2D by λX + µY can be obtained with

Õ
(
δ
ω
2 +1 + (degD)ω+23

)
operations in K.

Proof. Let χ,u,v represent D, so Ξ(u(S),v(S)) = 0mod χ (S).
We can use the Newton iteration to obtain(

ũ(S)
ṽ(S)

)
:=

(
u(S)
v(S)

)
−DΞ(u(S),v(S))−1 ·Ξ(u(S),v(S))mod χ (S)2,

that yields Ξ(ũ(S), ṽ(S)) = 0mod χ (S)2. The evaluations of Q and
of its partial derivatives at (u(S),v(S), 1) modulo χ (S)2 take

Õ
(
δ
ω
2 +1 + (deg χ)

ω+2
3

)
operations in K by Lemma 2.1. The inverse of the determinant of
DΞ(u(S),v(S)) contributes to Õ(deg χ). □

3.3 Nodal divisor

The nodal divisor of C, written E, will be given by a primitive ele-
ment representation λE , µE , χE ,uE ,vE of the set of singular points
of C. In the terminology of the BrillśNoether algorithm, E plays
the role of the adjoint divisor of C. Since E only depends on C, it
might be regarded as a precomputation. Yet for the computation of
a single RiemannśRoch space it is fair to take its cost into account.
A probabilistic method is summarized in the next proposition. The
hypothesis on |K| is flexible: in fact throughout the paper we have
given priority to simple bounds that ensure (conditional) probabili-
ties of success roughly about 1/2 in the randomized sub-algorithms.

Proposition 3.3. Assume |K| ⩾ δ4. GivenQ satisfying C-H1, we

can check if C-H2 holds, computeM ∈ GL3(K) such that Q ◦M has

degree δ in Y and its singular locus lies in the chart Z = 1, and get
a primitive element representation of M−1(E), with a probabilistic

algorithm of type Las Vegas that takes an expected number of Õ(δ3)
field operations in characteristic zero or > δ (δ − 1), or Õ(δ2ϖ logq +
δ2 log2 q) bit operations if K = Fq .

Proof. By taking α, β at random we easily find values in K
such that Q(X + αY ,Y ,Z + βY)/Q(α, 1, β) is monic in Y . The run-
ning time is Õ(δ2) when using Lemma 2.2, since it suffices to en-
sure Q(α, 1, β) , 0, and thanks to the SchwartzśZippel lemma [5,
Lemma 6.44] the expected number of trials is O(1). From now we
assume that Q is monic in Y .

The resultant R(X ,Z) := ResY
(
Q,

∂Q
∂Y

)
is homogeneous of de-

gree δ (δ − 1). So up to replacing Z by Z + γX in Q , we can further
assume that R has degree δ (δ − 1) in X with high probability. In

particular the solution set E of Q = ∂Q
∂Y
= 0 lies in the chart Z = 1.

Let X + µY be a candidate primitive element for it. Then, we re-
place X by X − µY in Q , so X is finally expected to be primitive.

Lemma 2.4 applies to ∂Q
∂Y

and Q : γ and µ are suitable if, and only

17

Sub-quadratic Time for Riemann–Roch Spaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

if, R(X , 1) has degree δ (δ − 1), that equals the number of solutions
counted with multiplicities. Then we recover a parametrization
θ (X) = Y − v(X) = 0 of E via usual Chinese remaindering. The
parametrization of E is deduced from

θE (X) := θ (X)/gcd
(
∂Q

∂X
(X ,v(X), 1), θ (X)

)
vE (E) := θ (X) remθE (X).

C-H2 holds if and only if the Hessian of Q has full rank at the sin-

gular points, that can be checked with further Õ
(
δ
ω+3
2

)
operations

in K thanks to Lemma 2.1. □

3.4 Decomposition of a divisor

For performing arithmetic operations on divisors efficiently we
decompose them, operate on components, and recompose them. For
a divisor D defined over K there exists a unique equal multiplicity

decomposition written
∑s
i=1miDi , where:

• the Di are positive, defined over K, and made of simple points,
• and themi are pairwise distinct.
Decompositions and recompositions can be computed fast, as sum-
marized in the following lemmas.

Lemma 3.4. The equal multiplicity decomposition of a smooth posi-

tive divisorD overK takes Õ(degD) fields operations in characteristic
zero or > degD, or Õ(degD log2 q) bit operations if K = Fq .

Proof. Let λX+µY , χ ,u,v representD as above.We compute the
squarefree factorization of χ into θm1

1 · · · θ
ms
s , with Õ(degD) field

operations in characteristic zero or> degD, andwith Õ(degD log2 q)
bit operations if K = Fq . So D writes asm1D1 + · · · +msDs , where
Di is parametrized by λX + µY , χi := θ

mi

i , ui := u rem χi , and
vi := v rem χi and ∇Q(ui ,vi , 1)modθi := ∇Q(u,v, 1)modθi . Us-
ing fast multi-remaindering, this takes Õ(degD) operations in K;
see [5, chapter 10]. □

Lemma 3.5. Let D1, . . . ,Ds be smooth positive divisors over K,

with disjoint supports, and parametrized by the same primitive ele-

ment λX + µY . If λX + µY is primitive for the sum D := D1+ · · ·+Ds ,

then its representation can be obtained with Õ(degD) operations inK.

Proof. Let χi ,ui ,vi represent Di , and let θi denote the square-
free part of χi . By assumption, the χi are pairwise coprime. Then
χ := χ1 · · · χs can be computed with Õ(degD) operations in K;
see [5, chapter 10]. Since u, v and ∇Q(u,v, 1)modθ satisfy ui =

u rem χi , vi = v rem χi , ∇Q(ui ,vi , 1) = ∇Q(u,v, 1) remθi for i =
1, . . . , s , they can be obtained via Chinese remainderingwith Õ(degD)
operations in K. □

3.5 Change of primitive element

Assume that D :=m(P1 + · · · + Ps), so χ = θm with θ separable of
degree s . Consider

Γ : K[S]/(χ (S)) � (K[Z]/(θ (Z)))[[T − Z]]/(T − Z)m (6)

S 7→ T .

Both directions of this isomorphism can be computed in softly linear
time, namely Õ(degD); see [10, section 4.2]. In fact, (Γ(u), Γ(v)) can
be regarded as the simultaneous power series expansions of Q

at P1, . . . , Ps with precision m. In order to change the primitive
element for D, we first examine what happens to the underlying
support, and then change the representations in the power series
expansions.

Lemma 3.6. Given D =m(P1 + · · · + Ps) over K parametrized by

λX + µY , and given (λ̃, µ̃) ∈ K2, we can test if λ̃X + µ̃Y is primitive

for D, and, if so, compute the corresponding representation, with

O((degD)ϖ) field operations in characteristic zero or > degD, or
(degD)ϖÕ(logq) + Õ(degD log2 q) bit operations if K = Fq .

Proof. First it is checked that

�����
∂Q
∂X
(u,v, 1) ∂Q

∂X
(u,v, 1)

λ̃ µ̃

����� is
invertible modulo θ . If so, we change the primitive element for the
support of D by means of Lemma 2.3:

Φ : K[S]/(θ (S)) � K[S]/(θ̃ (S))
S 7→ w(S).

That takes O((degθ)ϖ) operations in K in characteristic zero or
> degθ , or (degθ)ϖÕ(logq)+ Õ(degθ log2 q) bit operations if K =
Fq . We convert D to local representation and get the following
diagram:

Γ : K[S]/(χ (S)) → (K[Z]/(θ (Z)))[[T − Z]]/(T − Z)m

↓ coefficient-wise extension of Φ

Γ̃ : K[S]/(χ̃ (S)) → (K[Z]/(θ̃ (Z)))[[T − Z]]/(T − Z)m,

where χ̃ (S) := θ̃ (S)m . The parametrization ofD in terms of λ̃X + µ̃Y
is ũ(S) := Γ̃

−1(Φ(Γ(u(S)))) and ṽ(S) := Γ̃
−1(Φ(Γ(v(S)))). That incurs

O(m) compositions modulo θ̃ , that isO(m(deg θ̃)ϖ) = O((degD)ϖ).
Finally ∇Q(ũ, ṽ, 1)mod θ̃ involves two compositions modulo θ̃ . □

Proposition 3.7. Given a smooth positive divisor D parametrized

by λX + µY , and given (λ̃, µ̃) ∈ K2, we can test if λ̃X + µ̃Y is primi-

tive for D, and, if so, compute the corresponding representation with

O((degD)ϖ) field operations in characteristic zero or > degD, or
(degD)ϖÕ(logq) + Õ(degD log2 q) bit operations if K = Fq .

Proof. We compute the equal multiplicity decomposition of
D =m1D1 + · · · +msDs as in Lemma 3.4. For each separable factor
Di of multiplicitymi , we try to compute the primitive element rep-
resentation χ̃i , ũi , ṽi of the support ofDi for λ̃X+ µ̃Y , by Lemma 3.6.
If it fails then λ̃X + µ̃Y cannot be primitive for D. In order to check
that λ̃X + µ̃Y is finally primitive for D it remains to verify that
the squarefree parts of the χ̃i are coprime. Then we may glue the
representations of themiDi via Lemma 3.5. □

3.6 Sum of divisors

Gathering tools presented above we obtain efficient sums and sub-
tractions for divisors.

Proposition 3.8. Given two smooth positive divisors D1 and D2
such that |K| ⩾ (degD1 + degD2)2, the sum D := D1 + D2 can be

computed with a probabilistic algorithm of type Las Vegas that takes

an expected Õ
(
δ
ω
2 +1 + (degD)ω+12

)
field operations in characteristic

zero or > degD, and Õ
((
δ
ω
2 +1 + (degD)ω+12

)
logq + degD log2 q

)
bit operations if K = Fq .

18

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Simon Abelard, Alain Couvreur, and Grégoire Lecerf

Proof. First, a common primitive element λX + µY is found
at random for D1 and D2 with an expected O(degDϖ) field op-
erations in characteristic zero or > degD, or (degD)ϖÕ(logq) +
Õ(degD log2 q) bit operations if K = Fq , by Proposition 3.7. The
number of trials is O(1) thanks to the assumption on |K|.

We split Di into Ďi + D̂i for i = 1, 2 such that D̂1 and D̂2 have
the same support E, itself disjoint from Ď1 and Ď2. Let χ̂i , ûi , v̂i
denote the parametrization of D̂i for i = 1, 2. Letw1 andw2 be the
cofactors in the Bézout relation gcd(χ̂1, χ̂2) = w1 χ̂1 +w2 χ̂2, then

χ̃3 := lcm(χ̂1, χ̂2),
ũ3 := û1w2(χ̂2/gcd(χ̂1, χ̂2)) + û2w1(χ̂1/gcd(χ̂1, χ̂2)) rem χ̃3,

ṽ3 := v̂1w2(χ̂2/gcd(χ̂1, χ̂2)) + v̂2w1(χ̂1/gcd(χ̂1, χ̂2)) rem χ̃3,

is the parametrization of the divisor of support E where the multi-
plicity of a point P in it is the maximum of the multiplicities of P
in D̂1 and D̂2. Therefore the parametrization of D3 := D̂1 + D̂2 is
deduced by means of a single lifting step, that costs

Õ
(
δ
ω
2 +1 + (degD3)

ω+2
3

)
by Lemma 3.2.

Glueing Ď1 + Ď2 + D3 takes softly linear time by Lemma 3.5. □

Proposition 3.9. Given two smooth positive divisors D1 and D2
by their primitive element representations, and such that |K| ⩾
(degD1 + degD2)2, a representation of [D1 −D2]+ can be computed

with a probabilistic algorithm of type Las Vegas that takes an expected

number of Õ((degD1)ϖ+(degD2)ϖ) field operations in characteristic
zero or > degD1 + degD2, or

Õ(((degD1)ϖ + (degD2)ϖ) logq + (degD1 + degD2) log2 q)

bit operations if K = Fq .

Proof. First, a common primitive element λX + µY is found for
D1 and D2 as is the proof of the latter proposition, and let χi ,ui ,vi
denote the parametrization ofDi for i = 1, 2. The parametrization of
[D1−D2]+ is χ := χ1/gcd(χ1, χ2),u = u1 rem χ ,v := v1 rem χ . □

4 RIEMANN–ROCH SPACE

We are now ready to revisit the BrillśNoether strategy. For the
mathematical aspects of the proofs below, we refer the reader to [19].
The main improvements upon [19] concern fast structured linear
algebra, and the extension to any smooth input divisor D.

4.1 Shifted Popov form

LetM denote am×nmatrix with entries inK[X], and let us consider
a vector s := (s1, . . . , sn) ∈ Zn called a shift for the degrees. The
s-degree of a row vector a = (a1, . . . ,an) in K[X]n is defined as
degs a := max(a1 + s1, . . . ,an + sn). If a is non-zero then the pivot
index ofa is the largest index i where the latter maximum is attained.
The entry ai is called the pivot, and its degree is the pivot degree.
If a is zero then its pivot index is set to zero. The matrix M is in
Popov form if the following properties are satisfied:
• The positive pivot indices of the rows of M are in increasing
order;
• The pivots of the rows ofM are monic;
• The pivots of M have a degree strictly larger than the other
elements in their column.

Whenm = n andM is nonsingular then its pivots are the diagonal
elements. In this case,M satisfies the łpredictable degreež property:

Lemma 4.1. If b = (b1, . . . ,bn) := aM , then degbi + si = di +

degai for i = 1, . . . ,n, where di denotes the s-degree of the i-th row

ofM .

The łnaive algorithmž for Popov forms takes Õ(mnr (degM)2)
operations in K, where r is the rank of M and when s is zero [22,
Theorem 7.1]. The current best bounds are Õ(mω−1nd) for am × n
matrix withm ⩽ n [23, 24].

Proposition 4.2. Assume thatM is square, nonsingular, and in

Popov form as above. Then, the elements of s-degree⩽ d in the K[X]-
module generated by the rows M1, . . . ,Mn of M form a K-vector

space of basis X jMi , j = 0, . . . ,d − di , i = 1, . . . ,n.

Proof. AK-relation between the elements of the candidate basis
leads to a K[X]-relation between the rows ofM . According to the
assumptions, such a proper relation cannot exist so the candidate
basis is free over K. An element X jMi with j = 0, . . . ,d − di and
i = 1, . . . ,n satisfies s- deg(X jMi) ⩽ j + di ⩽ d . Conversely let
b be a K[X]-combination aM of the rows of M of s-degree ⩽ d .
Lemma 4.1 implies that degai = degbi + si − di ⩽ d − di . □

4.2 Bivariate interpolation

Considering Y as the łmain variablež, the subset of polynomials in
K[X][Y] that vanish at a given set of points is a free K[X]-module.
This motivates the definition of basis generator of a vector subspace
of polynomials of degree ⩽ d in K[X ,Y]: this is a set F1, . . . , Fn of
polynomials such that X jFi , j = 0, . . . ,d − deg Fi , i = 1, . . . ,n form
a vector basis; n is called the rank.

Proposition 4.3. Let D be a smooth positive divisor and let d ⩾ 1.
Assume that D and E are parametrized by X and write χ (X) =
Y −v(X) = 0 for the corresponding parametrization of D. Then, there

exists a basis generator of rank ⩽ δ of polynomials F ∈ K[X ,Y]
of degree ⩽ d such that F (X ,v(X)) = 0mod χ (X), F (X ,vE (X)) =
0mod χE (X), and degY F < δ . It takes Õ(min(d, δ)ω−1(r + degD))
operations in K; recall that r = degE.

Proof. Let n := min(d, δ − 1). The parametrization of E in this
context is χE (X) = Y − vE (X) = 0. In softly linear time we com-
pute ai = vi rem χ and bi = vi

E
rem χE , for i = 0, . . . ,n and then

consider the K[X]-module

M :=
{
(f0, . . . , fn) ∈ K[X]n+1 : f0a0 + · · · + fnan = 0mod χ

and f0b0 + · · · + fnbn = 0mod χE
}
. (7)

Since K[X] is principal,M is a free module of rank n + 1, because
it contains (0, . . . , 0, χ , 0, . . . , 0) with χ at position i , for all i =
0, . . . ,n.

Using [23, Theorem 1.4] with s := (d,d − 1, . . . ,d − n), the
nonsingular matrix in s-Popov form whose rows are a basis ofM
can be computedwith Õ(nω−1(deg χ+deg χE)) operations inK. □

4.3 Denominator

Let Q1, . . . ,Qr denote the singular points of C, let C′ → C be the
desingularization map for C, and for any i ∈ {1, . . . , r } letQi ,1 and
Qi ,2 represent the points of C′ above Qi . In the sequel we set

d :=

⌈
(δ − 1)(δ − 2) + degD+

δ

⌉
. (8)

19

Sub-quadratic Time for Riemann–Roch Spaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 4.4. There exists a non-zero homogeneous polynomialH in

K̄[X ,Y ,Z] of degree ⩽ d such that Q does not divide H , (H)0 ⩾ D+,

(H)0 ⩾ E, and the intersection multiplicities of H at the singular

points of C are 2 (recall that (H)0 ⩾ E means łH is adjoint to Cž).

Proof. Let us fix a homogeneous polynomial L ∈ K[X ,Y ,Z] of
degree 1, and set D̄ := D++

∑r
j=1(Qi ,1+Qi ,2). Since C has degree δ

with only ordinary singularities, its genus is д = (δ−1)(δ−2)2 −r , and
we have deg(L)0 = δ , so the hypothesis ond means deg(d(L)0−D̄) ⩾
2д. The RiemannśRoch theorem [4, Corollary 3] thus implies that

dim(L(d(L)0 − D̄ −Qi , j)) = dim(L(d(L)0 − D̄)) − 1
holds for all (i, j) ∈ {1, . . . , r } × {1, 2}.

So far we have proved that for any (i, j) ∈ {1, . . . , r } × {1, 2}
there exists a function hi , j ∈ L(d(L)0 − D̄) that is not contained in
L(d(L)0 − D̄ −Qi , j). By [7, Théorème 2.7.1] (or [8, Théorème 2.5]),

hi , j has a rational function representation of the form
Hi , j

Ld
, where

Hi , j ∈ K̄[X ,Y ,Z] is homogeneous of degreed and is not divisible by
Q . In other words (Hi , j)0 ⩾ D+, (Hi , j)0 ⩾ E, and the intersection
multiplicity of Hi , j at Qi , j is 2.

Let αi , j for i = 1, . . . , r and j = 1, 2 be parameters in K̄, and
consider H :=

∑r
i=1

∑2
j=1 αi , jHi , j . By construction (H)0 ⩾ D+

and (H)0 ⩾ E hold, and the resultant ResY (Q,H) is a non-zero
polynomial in all the αi , j when regarded in K[α1,1, . . . ,αr ,2][X].
Let Ti , j denote a tangent vector at the image in C of the germ of
curve of C′ at Qi , j . Regarded in K̄[α1,1, . . . ,αr ,2] the polynomial∏r

i=1
∏2

j=1(Ti , j · ∇H (Qi)) is non-zero. Consequently almost all
choices of the αi , j yield H with the required properties. □

Algorithm 2

Input: Q ∈ K[X ,Y ,Z], E, a smooth divisor D on C.
Output: M ∈ GL3(K), H ∈ K[X ,Y] of degree ⩽ d such that
degY H < δ , (H)0 ⩾ M−1(D+), (H)0 ⩾ M−1(E), and with inter-
section multiplicities exactly 2 at the singular points of M−1(C);
and (H)0 − 2M−1(E) for which X is primitive.
Assumptions: C-H1, C-H2, degY Q = δ ; the supports of E and D are
in the chart Z = 1.
(1) Take α, β at random in K and set

M :=
©«

1 0 0
0 1 0
β 0 1

ª®¬
−1 ©«

1 α 0
0 1 0
0 0 1

ª®¬
−1

.

(2) If degY (Q ◦M) , δ then go to step 1.
(3) If the supports ofM−1(E) andM−1(D) are not in the chartZ = 1

then go to step 1.
(4) If X is primitive forM−1(E) andM−1(D+ + D−), then compute

its primitive element representation as in section 2.2. Otherwise
go to step 1.

(5) Let d be as in (8). Compute a basis generator H1, . . . ,Hl of the
polynomials H satisfying degH ⩽ d , degY H < δ , (H)0 ⩾

M−1(D+), (H)0 ⩾ M−1(E).
(6) SetH (X ,Y) := ∑l

i=1 αi (X)Hi (X ,Y)withαi (X) ∈ K[X]⩽d−degHi

taken at random.
(7) Compute the intersection ofH (X ,Y) = 0 and (Q ◦M)(X ,Y , 1) =

0. If the cardinality of the solution set is not δd counting multi-
plicities, or does not admit X as a primitive element then go to
step 1.

(8) If the multiplicities of H at the singular points of Q ◦M are not
2, then go to step 6.

(9) ReturnM , H and (H)0 − 2M−1(E).

Proposition 4.5. Assume |K| > 6(δd)2. Algorithm 2 is correct

and takes an expected Õ
(
(δ2 + degD+)

ω+1
2

)
operations in character-

istic 0 or> δd , or Õ
(
(δ2 + degD+)

ω+1
2 logq + (δ2 + degD+) log2 q

)
bit operations when K = Fq .

Proof. By Lemma 4.4 there exists H̄ ∈ K̄[X ,Y ,Z] of degree d
not divisible by Q , such that (H̄)0 ⩾ D+, (H̄)0 ⩾ E, and with
intersection multiplicities exactly 2 at the singular points of C. Let
E denote the set of the zeros of H̄ on C. Since Q is monic in Y ,
(0 : 0 : 1) < E. Consequently for all but finite number of values of β
the setM(E) is in the chart Z = 1. On the other hand for almost all
values ofα , the formX is primitive forM−1(E) and degY (Q◦M) = δ

holds. Then, (H̄ ◦M) remY (Q ◦M) belongs to the K̄ extension of the
polynomial space computed in step 5. Consequently the algorithm
finisheswith a correct output for almost all values ofα, β,α1, . . . ,αn
over K̄.

Let us now estimate the probabilities involved by random choices
over K. The coefficient of Y δ in Q ◦M is a non-zero polynomial
of degree ⩽ 2δ in α, β . By the Schwartz-Zippel lemma, degY (Q ◦
M) = δ fails with probability ⩽

2δ
6(dδ)2 <

1
2 . Assuming that step 2

succeeds, then the probability of step 3 failing is

⩽
r + degD+ + degD−

6(dδ)2
⩽
(δ − 1)(δ − 2) + 4 degD+

6(dδ)2
⩽

2δd

6(dδ)2
⩽

1

2
.

Once step 3 has succeeded then β is properly fixed, step 4 requires
that X be primitive. Using (1), this fails with probability

⩽

(r+degD++degD−+1
2

)
6(dδ)2

⩽
2(δd)2 + δd

6(dδ)2
⩽

1

2
.

The coefficient of Xδd in R(X ,Z) := ResY (Q ◦M,ZdH (X/Z ,Y/Z))
is a non-zero homogeneous polynomial of degree ⩽ δ in the coeffi-
cients of α1, . . . ,αn . In addition the discriminant of the separable
part of R(X , 1) is non-zero of degree ⩽ 2δ2d in the coefficients of

α1, . . . ,αn . Thus, the probability that step 7 fails is ⩽ 2δ 2d+δ
6(dδ)2 ⩽

1
2 .

Let Ti , j denote a tangent vector at the image in C of the germ
of curve of C′ atQi , j . The polynomial

∏r
i=1

∏2
j=1(Ti , j · ∇H (Qi)) is

non-zero of total degree 2r in the coefficients of α1, . . . ,αn . By the
SchwartzśZippel lemma, the probability that step 8 fails given that
all the previous steps succeeded is ⩽ 2r

6(dδ)2 ⩽
1
2 . Consequently,

the expected number of times the algorithm returns to step 1 or
step 6 is O(1).

Assume that K has characteristic 0 or > dδ . Step 2 takes softly
linear time by Lemma 2.2. Step 4 contributes to Õ(rϖ + (degD+)ϖ)
by Proposition 3.7. Step 5 takes Õ(min(d, δ)ω−1(r + degD+)) =
Õ(δω−1(r +degD+)) by Proposition 4.3. Step 6 contributes to Õ(δd).
Step 7 is done via Lemma 2.4 with Õ(dδ2) operations in K.

In step 8 since X is primitive for (H)0 and E and since the inter-
section multiplicities in (H)0 are known, we can conveniently check
whether the points in E have intersection multiplicity 2. And if so
we deduce a primitive element representation of (H)0 − 2M−1(E)
in softly linear time. The total complexity bound is obtained by
summing the cost of each step, thanks to r = O(δ2) and δω−1(δ2 +

20

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Simon Abelard, Alain Couvreur, and Grégoire Lecerf

degD+) = O
(
(δ2 + degD+)

ω+1
2

)
. The same kind of analysis ap-

plies over Fq , and is left to the reader. □

The value of d defined in (8) guarantees that a denominator H
can be found in degree ⩽ d . In favorable cases, smaller values for
d are possible: in fact, when degD+ = O(δ2) and r = 0 the degree
bound d used in [19] is sharper.

4.4 Riemann–Roch space

Once we have obtained a common denominator H as above for
L(D), we focus on the numerators, as follows.

Algorithm 3

Input:Q ∈ K[X ,Y ,Z] of degree δ , E, and a smooth divisor D on C.
Output: a basis generator of rank ⩽ δ of L(D).
Assumptions: C-H1, C-H2, degY Q = δ ; the supports of E and D are
in the chart Z = 1.
(1) ComputeM , H and Dres := (H)0 − 2M−1(E) by means of Algo-

rithm 2.
(2) Compute Dnum = M−1(D−) + (Dres −M−1(D+)).
(3) Compute a basis generator G1, . . . ,Gl of the vector space of

polynomials in K[X ,Y] of degree ⩽ d such that (G)0 ⩾ Dnum
and (G)0 ⩾ M−1(E).

(4) ReturnM and G1, . . . ,Gl .

Proposition 4.6. Assume that |K | ⩾ 6(δd)2. Then, Algorithm 3 is

correct and takes an expected Õ
(
(δ2 + degD+)

ω+1
2

)
field operations

in characteristic 0 or > δd , or

Õ
(
(δ2 + degD+)

ω+1
2 logq + (δ2 + degD+) log2 q

)
bit operations when K = Fq .

Proof. Combination of Propositions 3.8, 3.9, 4.3 and 4.5. The
correctness comes from the more general BrillśNoether framework,
we refer to [7, 17, 19] for detailed proofs. The only significant
difference is our choice of H . Since H ≥ E by definition, H is a
suitable denominator by [7, Théorème 2.7.1]. □

Proof. (Proof of Theorem 1.1) First we use Proposition 3.3. Once
the resulting change of variables is applied to Q and E, Proposi-
tion 4.6 yields the claimed complexity bounds. □

In the case K = Fq , most of the auxiliary routines get closer
to optimality in theory: for bivariate composition, bounds à la

KedlayaśUmans are quasi-linear. Unfortunately they have not led
to efficient practical implementations so far; see [14, section 8].
For curve intersections, better complexity bounds also exist, but
under genericity assumptions; see [13, 26]. If assumptions could
be dropped then the complexity bound of Theorem 1.1 would be-
come Õ(δω−1(r + degD+) logq + (δ2 + degD+)1+ϵ logq + (δ2 +
degD+) log2 q) bit operations, for any fixed ϵ > 0. The bottleneck
would be structured linear algebra underlying Proposition 4.3. If
ω were further proved to be close to 2, then our algorithm would
be close to optimal in terms of the size of the output whenever
r = O(degD+).

ACKNOWLEDGMENTS

This paper is part of a project that has received funding from the
French łAgence de l’Innovation de Défensež. We are grateful to
Vincent Neiger for helpful discussions.

REFERENCES
[1] G. Chèze and G. Lecerf. Lifting and recombination techniques for absolute

factorization. J. Complexity, 23(3):380ś420, 2007.
[2] X. Dahan, M. Moreno Maza, É. Schost, and Yuzhen Xie. On the complexity of the

D5 principle. In J.-G. Dumas, editor, Proceedings of Transgressive Computing 2006:
a conference in honor of Jean Della Dora, pages 149ś168. U. J. Fourier, Grenoble,
France, 2006.

[3] C. Durvye and G. Lecerf. A concise proof of the Kronecker polynomial system
solver from scratch. Expo. Math., 26(2), 2007.

[4] W. Fulton. Algebraic Curves ś An Introduction to Algebraic Geometry. Addison-
Wesley, 1989.

[5] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, New York, 3rd edition, 2013.

[6] B. Grenet, J. van der Hoeven, and G. Lecerf. Deterministic root finding over
finite fields using Graeffe transforms. Appl. Algebra Engrg. Comm. Comput.,
27(3):237ś257, 2016.

[7] G. Haché. Construction Effective des Codes Géométriques. PhD thesis, Université
Paris 6, 1996.

[8] G. Haché. L’algorithme de Brill-Noether appliqué aux courbes réduites. Rap-
port de recherche n◦ 1998-01, Laboratoire d’Arithmétique, de Calcul formel
et d’Optimisation ESA - CNRS 6090, Université de Limoges, France, 1998.
https://www.unilim.fr/laco/rapports/1998/R1998_01.pdf.

[9] F. Hess. Computing RiemannśRoch spaces in algebraic function fields and related
topics. J. Symbolic Comput., 33(4):425ś445, 2002.

[10] J. van der Hoeven and G. Lecerf. Composition modulo powers of polynomials.
In Proceedings of the 2017 ACM on International Symposium on Symbolic and
Algebraic Computation, ISSAC ’17, pages 445ś452. New York, NY, USA, 2017.
ACM.

[11] J. van der Hoeven and G. Lecerf. Directed evaluation. Technical Report, HAL,
2018. https://hal.archives-ouvertes.fr/hal-01966428.

[12] J. van der Hoeven and G. Lecerf. On the complexity exponent of polynomial
system solving. Found. Comput. Math., 2020. https://doi.org/10.1007/s10208-020-
09453-0.

[13] J. van der Hoeven and G. Lecerf. Fast computation of generic bivariate resultants.
Technical Report, HAL, 2019. https://hal.archives-ouvertes.fr/hal-02080426.

[14] J. van der Hoeven and G. Lecerf. Fast multivariate multi-point evaluation revisited.
J. Complexity, 56:101405, 2020.

[15] Xiaohan Huang and V. Y. Pan. Fast rectangular matrix multiplication and appli-
cations. J. Complexity, 14(2):257ś299, 1998.

[16] K. Khuri-Makdisi. Asymptotically fast group operations on Jacobians of general
curves. Math. Comp., 76(260):2213ś2239, 2007.

[17] D. Le Brigand and J.-J. Risler. Algorithme de BrillśNoether et codes de Goppa.
Bulletin de la société mathématique de France, 116(2):231ś253, 1988.

[18] F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima,
editor, ISSAC’14: International Symposium on Symbolic and Algebraic Computation,
pages 296ś303. New York, NY, USA, 2014. ACM.

[19] A. Le Gluher and P.-J. Spaenlehauer. A fast randomized geometric algorithm for
computing RiemannśRoch spaces. Math. Comp., 2019. https://doi.org/10.1090/
mcom/3517.

[20] G. Lecerf. Fast separable factorization and applications. Appl. Algebra Engrg.
Comm. Comput., 19(2):135ś160, 2008.

[21] G. Lecerf. On the complexity of the LickteigśRoy subresultant algorithm. J. Sym-
bolic Comput., 92:243ś268, 2019.

[22] T. Mulders and A. Storjohann. On lattice reduction for polynomial matrices.
J. Symbolic Comput., 35(4):377ś401, 2003.

[23] V. Neiger. Fast computation of shifted Popov forms of polynomial matrices
via systems of modular polynomial equations. In Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC ’16,
pages 365ś372. New York, NY, USA, 2016. ACM.

[24] V. Neiger, J. Rosenkilde, and G. Solomatov. Computing Popov and Hermite forms
of rectangular polynomial matrices. In Proceedings of the 2018 ACM International
Symposium on Symbolic and Algebraic Computation, ISSAC ’18, pages 295ś302.
New York, NY, USA, 2018. ACM.

[25] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials.
In S. Albers and T. Radzik, editors, Algorithms ś ESA 2004. 12th Annual European
Symposium, Bergen, Norway, September 14-17, 2004, volume 3221 of Lect. Notes
Comput. Sci., pages 544ś555. Springer Berlin Heidelberg, 2004.

[26] G. Villard. On computing the resultant of generic bivariate polynomials. In
Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic
Computation, ISSAC ’18, pages 391ś398. New York, NY, USA, 2018. ACM.

21

https://www.unilim.fr/laco/rapports/1998/R1998_01.pdf
https://hal.archives-ouvertes.fr/hal-01966428
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://hal.archives-ouvertes.fr/hal-02080426
https://doi.org/10.1090/mcom/3517
https://doi.org/10.1090/mcom/3517

On the Parallelization of Triangular Decompositions

Mohammadali Asadi
University of Western Ontario

London, Canada
masadi4@uwo.ca

Alexander Brandt
University of Western Ontario

London, Canada
abrandt5@uwo.ca

Robert H. C. Moir
University of Western Ontario

London, Canada
rmoir3@uwo.ca

Marc Moreno Maza
University of Western Ontario

London, Canada
moreno@csd.uwo.ca

Yuzhen Xie
University of Western Ontario

London, Canada
yuzhenxie@yahoo.ca

ABSTRACT

We discuss the parallelization of algorithms for solving polynomial
systems by way of triangular decomposition. The Triangularize

algorithm proceeds through incremental intersections of polyno-
mials to produce different components (points, curves, surfaces,
etc.) of the solution set. Independent components imply the oppor-
tunity for concurrency. This łcomponent-levelž parallelization of
triangular decompositions, our focus here, belongs to the class of
dynamic irregular parallelism. Potential parallel speed-up depends
only on geometrical properties of the solution set (number of com-
ponents, their dimensions and degrees); these algorithms do not
scale with the number of processors. To manage the irregularities of
component-level parallelization we combine different concurrency
patterns, namely, workpile, producer-consumer, and fork/join. We
report on our implementation in the freely available BPAS library.
Experimentation with thousands of polynomial systems yield ex-
amples with up to 9.5× speed-up on a 12-core machine.

CCS CONCEPTS

· Computing methodologies → Symbolic and algebraic ma-

nipulation;Parallel algorithms; ·Mathematics of computing

→ Solvers;Mathematical software performance.

KEYWORDS

polynomial system solving, parallel processing, triangular decompo-
sition, fork-join model, producer-consumer problem, regular chains,
dynamic irregular parallel applications

ACM Reference Format:

Mohammadali Asadi, Alexander Brandt, Robert H. C.Moir,MarcMorenoMaza,
and Yuzhen Xie. 2020. On the Parallelization of Triangular Decompositions.
In International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3373207.3404065

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404065

1 INTRODUCTION

Solving a polynomial system by means of triangular decomposition
entails computing a collection of regular chains which together
encode the zero set of the input system. Where triangular decompo-
sition proceeds incrementally, that is, by solving one equation after
the other, a splitting of the quasi-component of a regular chain may
be discovered when intersecting the next polynomial of the input
system and the current partial solution. Concurrency is possible as
the decomposition proceeds independently on each branch.

Parallelization of high-level procedures for algebraic and geo-
metric computation is not new, receiving much attention in the
’80s and ’90s, for example see [2, 8, 9, 12, 22]. In recent years paral-
lelization has again seen attention but in low-level operations like
polynomial arithmetic [5, 13, 19], GCDs [14], and Factorization [20].
Parallelization in these low-level routines is more natural, being
known as regular parallelism [18], since the task decomposes in a
static way into consistently sized units of work. Taking advantage
of the irregular parallelism in high-level geometric computations is
more challenging, where splitting, and thus parallelism, is depen-
dent only on the geometry of the input system, and must be found
dynamically. For example, in the normalization algorithm of [6],
components are first found serially and then processed by a parallel
map over the components. In our proposed technique, we both
discover components and process them in parallel. Indeed, finding
splittings in the geometry is as difficult as solving the system itself.

Parallel triangular decomposition was first addressed in [21].
There, parallelism was facilitated by multi-processor shared mem-
ory and inter-process communication. The overhead associated
with this parallel implementation is drastic and only suited for ex-
tremely large problems. It also relied on solving systems modulo a
prime in order to generate extra splittings and provide opportuni-
ties for parallelism. Solving instead over the rationals provides less
opportunity for parallelism but is of more practical importance.

Despite these challenges, we investigate opportunities for thread-
level parallelism in triangular decomposition algorithms over the
rational numbers. In particular, we discuss three different categories
of concurrency to be exploited: (1) high-level parallelism via inde-
pendent intersection tasks, (2) finer-grained parallelism by means
of asynchronous generators between subroutines, and (3) a divide-
and-conquer scheme for the removal of redundant components.
The parallel schemes are independent but their implementations
are designed to work cooperatively if needed. This is particularly

22

https://doi.org/10.1145/3373207.3404065
https://doi.org/10.1145/3373207.3404065

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Asadi, Brandt, Moir, Moreno Maza, Xie

important to combat the work imbalance and inherent irregular par-
allelism of triangular decomposition algorithms. As we will discuss,
we find that the use of generators in addition to a top-level paral-
lelization scheme is an effective sort of dynamic load-balancing.

Our implementation is extensive, leading to 12 possible configu-
rations of the Triangularize algorithm. This includes solving in the
sense of Kalkbrener or Lazard and Wu, two organizations of the
top-level Triangularize algorithm, and three different levels of par-
allelization. Our algorithms have been implemented in the C/C++
language and extensively evaluated using a collection of over 3000
polynomial systems. The results are encouraging, yielding up to
9.5× parallel speed-up on a 12-core machine.

We begin in Section 2 with a brief review of regular chain theory,
the Triangularize algorithm, and parallel patterns. Section 3 exam-
ines opportunities for parallelism in Triangularize via those parallel
patterns. We report on our implementation in Section 4. Finally, we
conclude in Section 5 with discussion on experimental results, the
effectiveness of our techniques, and areas for future work.

2 PRELIMINARIES

This section is a short review of concepts and algorithms for tri-
angular decomposition and parallel programming. The first two
sections deal with the former, for which details can be found in [10].
Throughout this paper, let k be a perfect field, K be its algebraic
closure, and k[X] be the polynomial ring with X = X1 < · · · < Xn .

2.1 Regular chain theory

Let p ∈ k[X]. Assume that p < k holds. Denote by mvar(p), init(p),
mdeg(p), and tail(p), respectively, the greatest variable appearing
in p (called the main variable of p), the leading coefficient of p w.r.t.
mvar(p) (called the initial of p), the degree of p w.r.t. mvar(p) (called
the main degree of p) and the reductum of p w.r.t. mvar(p) (called
the tail of p). For F ⊆ k[X], we denote by ⟨F ⟩ and V (F) the ideal
generated by F in k[X] and the algebraic set of Kn consisting of
the common roots of the polynomials of F , respectively.

Triangular set. Let T ⊆ k[X] be a triangular set, that is, a set of
non-constant polynomials with pairwise distinct main variables.
Denote by mvar(T) the set of main variables of the polynomials
in T . A variable v ∈ X is called algebraic w.r.t. T if v ∈ mvar(T),
otherwise it is said free w.r.t. T . For v ∈ mvar(T), we denote by Tv
and T−

v (resp. T+v) the polynomial f ∈ T with mvar(f) = v and the
polynomials f ∈ T with mvar(f) < v (resp. mvar(f) > v). Let hT
be the product of the initials of the polynomials ofT . We denote by
sat(T) the saturated ideal ofT : ifT = ∅ holds, then sat(T) is defined
as the trivial ideal ⟨0⟩, otherwise it is the ideal ⟨T ⟩ : h∞

T
. The quasi-

componentW (T) of T is defined as V (T) \V (hT). For f ∈ k[X], we
define Z (f ,T) := V (f) ∩W (T). The Zariski closure ofW (T) in K

n ,

denoted byW (T), is the intersection of all algebraic sets V ⊆ K
n

such thatW (T) ⊆ V holds; moreover we haveW (T) = V (sat(T)).

Regular chain. A triangular set T ⊆ k[X] is a regular chain if
eitherT is empty, or letting v be the largest variable occurring inT ,
the set T−

v is a regular chain, and the initial of Tv is regular (that is,
neither zero nor zero divisor) modulo sat(T−

v). The dimension of T ,
denoted by dim(T), is by definition the dimension of its saturated
ideal and, as a property, equals n − |T |, where |T | is the number of

elements of T . The saturated ideal sat(T) of the regular chain T en-
joys important properties, in particular the following, proved in [7].
Let u1, . . . ,ud be all the free variables ofT . Then sat(T) is unmixed
of dimension d . Moreover, we have sat(T) ∩ k[u1, . . . ,ud] = ⟨0⟩.
Another property is the fact that a polynomial p belongs to sat(T)
if and only if p reduces to 0 by pseudo-division w.r.t T , see [3].

Regular GCD. Let i be an integer with 1 ≤ i ≤ n, T ⊆ k[X] be a
regular chain, p, t ∈ k[X] \ k be polynomials with the same main
variable Xi , and д ∈ k or д ∈ k[X] with mvar(д) ≤ Xi . Assume that

(1) Xi > X j holds for all X j ∈ mvar(T), and
(2) both init(p) and init(t) are regular w.r.t. sat(T).

Denote by A the total ring of fractions of the residue class ring

k[X1, . . . ,Xi−1]/
√

sat(T). Note thatA is isomorphic to a direct prod-
uct of fields. We say that д is a regular GCD of p, t w.r.t.T whenever:
(G1) the leading coefficient of д in Xi is a regular element of A;
(G2) д belongs to the ideal generated by p and t in A[Xi]; and
(G3) if deg(д,Xi) > 0, thenд pseudo-divides bothp and t inA[Xi],

that is, both prem(p,д) and prem(t ,д) belong to
√

sat(T).
When Conditions (G1), (G2), (G3) and deg(д,Xi) > 0 hold, we have:

(G4) if mdeg(д) = mdeg(t), then
√

sat(T ∪ t) =
√

sat(T ∪ д) and

W (T ∪ t) ⊆ Z (hд ,T ∪ t) ∪W (T ∪д) ⊆W (T ∪ t) both hold,
(G5) if mdeg(д) < mdeg(t), let q = pquo(t ,д), then T ∪ q is a

regular chain and the following two relations hold:

(a)
√

sat(T ∪ t) =
√

sat(T ∪ д) ∩
√

sat(T ∪ q),

(b) W (T∪t) ⊆ Z (hд ,T∪t) ∪W (T∪д)∪W (T∪q) ⊆W (T ∪ t),

(G6) W (T ∪ д) ⊆ V (p),
(G7) V (p) ∩W (T ∪ t) ⊆ W (T ∪ д) ∪ V (p,hд) ∩W (T ∪ t) ⊆

V (p) ∩W (T ∪ t).

Triangular decomposition. Let F ⊆ k[X]. Regular chainsT1, . . . ,Te
of k[X] form a triangular decomposition ofV (F) in the sense of Kalk-

brener (resp. Wu and Lazard) whenever we haveV (F) = ∪ei=1W (Ti)

(resp. V (F) = ∪ei=1W (Ti)). Hence, a triangular decomposition of
V (F) in the sense of Wu and Lazard is necessarily a triangular de-
composition of V (F) in the sense of Kalkbrener, while the converse
is not true. One important issue in the implementation of algorithms
decomposing polynomial ideals and algebraic sets is the removal of
redundant components. In the context of triangular decompositions,
this issue implies being able to decidewhetherW (Ti) ⊆W (Tj) holds
or not, for any two regular chains Ti ,Tj ⊆ k[X].

2.2 Specification of the main algorithms

Triangularize. Let F ⊆ k[X]. The function call Triangularize(F)

computes regular chains T1, . . . ,Te ⊆ k[X] forming a triangular
decomposition ofV (F) in the sense of either Kalkbrener, or Wu and
Lazard. An algorithm for Triangularize(F) is presented in [10].
Regularize. Forp ∈ k[X] andT ⊆ k[X] a regular chain,Regularize(p,T)

computes regular chains T1, . . . ,Te ⊆ k[X] such that:
(R1) for i = 1, . . . , e , either p ∈ sat(Ti) or p is regular w.r.t. sat(Ti),

(R2) we haveW (T) ⊆W (T1) ∪ · · · ∪W (Te) ⊆W (T).
RegularGcd. Let i,T ,p, t ,д be as above in the definition of a regular

GCD. The function call RegularGcd(p, t ,Xi ,T) computes a set of
pairs {(д1,T1), . . . , (дe ,Te)} such that:

(1) for i = 1, . . . , e , if dim(Ti) = dim(T) holds, thenдi is a regular
GCD of p, t w.r.t. Ti ,

(2) we haveW (T) ⊆W (T1) ∪ · · · ∪W (Te) ⊆W (T).

23

On the Parallelization of Triangular Decompositions ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Intersect. Let p ∈ k[X] and let T ⊆ k[X] be a regular chain. The
function call Intersect(p,T) computes regular chains T1, . . . ,Te ⊆

k[X] such that:V (p)∩W (T) ⊆W (T1)∪ · · ·∪W (Te) ⊆ V (p)∩W (T).

2.3 Parallel Programming Patterns

The algorithms shown in the previous subsection already hint at
their parallel opportunities where each either take a list as an argu-
ment or return a list. These opportunities are explained in detail
in Section 3, while here we review some parallel programming
patterns which will be employed by those opportunities.

The first key observation is that the Triangularize algorithm itself
only presents parallelism when the solution set can be separated
into multiple components. The existence of such components is
not an algorithmic property but rather one subject to the system
being solved. Even if computations do split, the work is likely to be
unbalanced. This describes irregular parallelism. In contrast, regu-
lar parallelism exists where problems algorithmically decompose
into sub-problems of roughly equal size. Despite these challenges,
parallel patterns can be employed for irregular parallelism [18].

We are concernedwith thread parallelism, and thus withminimiz-
ing parallel overheads, as well as effectively managing inter-thread
dependencies and communication. The former deals with the cost
of spawning threads, and over-subscriptionÐwhere software threads
outnumber hardware resources to drastically reduce performance.
The latter can be addressed through parallel design patterns [18].

Parallel Map and Workpile. The map pattern maps a function
to each item in a collection, simultaneously executing the function
on each independent data, scaling well with increasing data and
threads. But, threads must operate in lockstep, and are thus limited
by the slowest in the group, working best with regular parallelism.

The workpile pattern generalizes map to handle both irregu-
lar amounts of work and an unknown number of tasks for load-
balancing. Tasks are collected into a pile (or queue) and one thread
executes one task from the pile in parallel, repeating until the pile is
empty. This pattern allows in-flight tasks to add additional tasks to
the pile, allowing new tasks to be launched immediately by an idle
thread. Threads are thus uncoupled, making load balancing possible.
Tasks in the pile may also be ordered so that tasks can create new
tasks earlier in the computation to exploit further parallelism.

AsynchronousGenerators, Producer-Consumer, andPipeline.
A generator function is one yielding data items one a time rather
thanmany as a collection. Concurrency arises if items are generated
asynchronously while the caller processes a generated item; hence
an asynchronous generator. This yields the classic producer-consumer

problem (see [4, Ch. 6]). Using a collection of producer-consumer
pairs in a sequence (or directed acyclic graph), where interior nodes
are both producers and consumers, is one way of describing the
pipeline pattern. Pipeline’s greatest asset is its ability to begin pro-
cessing before all input data items are ready (cf. the map pattern).
If the producer-consumer pairs are implemented using generators,
one can construct a treeÐrather than a strict pipelineÐ which dy-
namically grows and shrinks as functions are called and return. A
tree arises where a producer consumes multiple generators.

Divide-and-Conquer and Fork-Join. Divide-and-Conquer (DnC)
is a ubiquitous algorithmic technique based on recursion. A problem
is divided into sub-problems, each solved (conquered) recursively,

and then sub-solutions are combined to provide a solution to the
original problem. Where there are multiple recursive calls per level,
the fork-join pattern can be employed where each recursive branch
is executed in parallel (forked) and then joined together before re-
turning. In a parallel DnC it is important to avoid too many parallel
recursive calls to reduce parallel overheads and over-subscription.

3 CONCURRENCY OPPORTUNITIES

In this section, we highlight the opportunities for concurrent execu-
tion offered by the algorithms for computing triangular decomposi-
tions presented in [10]. To do so, we review the key ideas underlying
those algorithms and show how concurrency can be exposed.

3.1 Parallel Map and the Triangularize procedure

Algorithm 1 states a simple procedure implementing the Triangu-
larize procedure. Lines 1 to 5 in Algorithm 1 compute a triangular
decomposition of V (F) in the sense of Wu and Lazard; this follows
easily from the specification of the Intersect algorithm given in
Section 2. Line 5 ensures the decomposition is free of redundant
components; we shall discuss this step in detail in Section 3.3.

One can organize the regular chains computed in the loop of
Algorithm 1 as a tree with an edge going from nodeT to nodeT ′ if
T ′ is returned by Intersect(p,T) for some p ∈ F , (e.g., see Figure 2
in Section 5). Let (T ,T ′) be such an edge: observe that we have
|T | ≤ |T ′ |. Algorithm 1 traverses this tree in a breadth-first search
manner. Using this algorithm, a Kalkbrener decomposition can be
computed by simply pruning branches of the tree, for which the
height of a regular chain, i.e., the number of polynomials in the
chain, exceeds the number of input polynomials in F . This is a
consequence of Krull’s height theorem, see [10], for details.

Algorithm 1 Triangularize(F)

Input: a finite set F ⊆ k[X]

Output: regular chains T1, . . . , Te ⊆ k[X] such that V (F) = W (T1) ∪

· · · ∪W (Te)

1: T := {∅}

2: for p ∈ F do

3: T′ :=
⋃

T ∈T Intersect(p, T)

4: T := T′

5: Remove from T any T1 where there exists T2 ∈ T such thatW (T1) ⊆

W (T2) and T1 , T2 both hold.
6: return T

It follows fromAlgorithm 1 that whenever Intersect(p,T) returns
more than one regular chain, there is an opportunity for concur-
rent execution. Indeed, the branches of the breadth-first search
are independent and can be continued concurrently. Referring to
the celebrated parallel map pattern [18, Ch. 4], one can see Line
3 as a map-step where Intersect maps each current regular chain.
Moreover, this can be seen as coarse-grained parallelism as each In-

tersect call represents substantial work. We now turn our attention
to parallel opportunities in the core subroutines of Triangularize.

3.2 Asynchronous generators with Intersect,
RegularGcd and Regularize

Let p ∈ k[X] and T ⊆ k[X] be a regular chain. The operation
Intersect(p,T) is quite complicated in general. Yet, for the purpose

24

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Asadi, Brandt, Moir, Moreno Maza, Xie

of discussing opportunities concurrency, it is sufficient to consider
the most common scenario. Let us assume p < k, v = mvar(p),
init(p) is regular w.r.t sat(T) (calling Regularize can assure this),
and that T+v is empty (by proceeding by induction on the number
of variables). Algorithm 2 implements Intersect(p,T) under these
conditions. It follows from the applications of Formulas (G6) and
(G7) from Section 2 together with induction on dim(T−

v).

Algorithm 2 Intersect(p,T)

Input: p ∈ k[X], p < k, v := mvar(p), a regular chain T ⊆ k[X] such that
init(p) regular w.r.t. sat(T) and T +v = ∅.

Output: regular chains T1, . . . , Te ⊆ k[X] such that V (p) ∩W (T) ⊆

W (T1) ∪ · · · ∪W (Te) ⊆ V (p) ∩W (T).
1: if v < mvar(T) then
2: yield T ∪ {p }

3: for S in Intersect(init(p), T) do
4: for U in Intersect(tail(p), S) do
5: yield U

6: else

7: for (дi , Ti) ∈ RegularGcd(p, Tv , v, T
−
v) do

8: if dim(Ti) , dim(T −
v) then

9: for Ti, j ∈ Intersect(p, Ti) do

10: yield Ti, j

11: else

12: if дi < k and mvar(дi) = v then

13: yield Ti ∪ {дi }

14: for Ti, j ∈ Intersect(lc(дi , v), Ti) do
15: for Ti, j,k ∈ Intersect(p, Ti, j) do

16: yield Ti, j,k

Note that Algorithm 2 is a generator function, also called an
iterator, a special type of co-routine, see Chapter 8 in [23]. In our
pseudo-code, the keyword yield outputs a value to the generator’s
caller and then resumes execution. In contrast, return is used to
return a value and terminate the function. Each yield in Intersect

is an opportunity for concurrency where the caller may execute in
parallel with the one yielded regular chain, meanwhile Intersect
continues. Hence, Intersect may be implemented as a so-called
asynchronous generator, a concept described in Section 2.3.

Observe now that the function call RegularGcd(p,Tv ,v,T−
v),

when it returns more than one pair, provides additional opportuni-
ties for concurrency. Let us actually see how this latter function call
is performed in [10]. The subresultant chain S of p andTv , regarded
as univariate in v , is computed. Let λ = min(mdeg(p),mdeg(Tv))
and let i be in the range 0, . . . , λ + 1. Denote by Si the subresultant
(from S) of index i and by si the principal subresultant coefficient of
Si . Recall that we have Sλ+1 = p, Sλ = Tv , and that S0 is simply the
resultant of p and Tv in v; moreover, we have S0 = s0. Let j be an
integer, with 1 ≤ j ≤ λ + 1, such that sj is a regular modulo sat(T−

v)

and such that for any 0 ≤ i < j, we have si ∈ sat(T−
v). Then Sj is

a regular GCD of p and Tv w.r.t. T−
v . By calling Regularize on sk ,

k = 0, . . . , j it is always possible to find such an Sj , up to splittings
of the regular chain. This again suggests that RegularGCD could
be implemented as an asynchronous generator for Intersect.

We now consider Regularize, focusing on the most common
scenario aswith Intersect. Algorithm 3 presents this case, stating the
assumptions which follow from Formulas (G4) and (G5) in Section 2,
together with a reasoning by induction on dim(T−

v). Just as in the

Algorithm 3 Regularize(p,T)

Input: p ∈ k[X], p < k, v := mvar(p), a regular chain T ⊆ k[X] such that
init(p) regular w.r.t. sat(T −

v) and T
+

v = ∅.
Output: regular chains T1, . . . , Te ⊆ k[X] such that (R1), (R2) hold.
1: if v < mvar(T) then return T

2: for (дi , Ti) ∈ RegularGcd(p, Tv , v, T
−
v) do

3: if dim(Ti) < dim(T −
v) then

4: for Ti, j ∈ Regularize(p, Ti) do

5: yield Ti, j

6: else

7: if дi ∈ k or mvar(дi) < v or mdeg(дi) = mdeg(Tv) then
8: yield Ti
9: else

10: yield Ti ∪ {дi }

11: qi := pquo(Tv , дi , v)
12: yield Ti ∪ {qi }

13: for Ti, j ∈ Intersect(lc(дi , v), Ti) do
14: for Ti, j,k ∈ Regularize(p, Ti, j) do

15: yield Ti, j,k

previous two algorithms, Regularize may both be implemented as
an asynchronous generator and use generators as it calls Intersect.

The above discussion of Intersect, RegularGcd and Regularize

shows that each of those routines can be implemented as a gen-
erator function. Each top-level call to Intersect thus creates a tree
of generator function calls, most of which being both producers
and consumers of values. This hints towards using the producer-
consumer and pipeline patterns, as discussed in Section 2.3.

These concurrency opportunities represent more fine-grained
parallelism as the amount of work diminishes with each recursive
call. Further, it is worth noting that the work between splittings is
likely unbalanced. For instance, the polynomials дi and qi , returned
with the regular chain Ti at Lines 10 and 12 of Algorithm 3, may
have very different degrees. These irregular parallelism challenges
are addressed through cooperation between the generators and the
coarse-grained parallelism in Triangularize (see Section 4.3).

3.3 Fork-join approach for removing
redundant components

To remove redundant components efficiently we must address two
issues: how to efficiently test single inclusions, e.g.W (Ti) ⊆W (Tj)

and how to efficiently remove redundant components from a large
set. The first issue is addressed by taking advantage of the heuristic
algorithm IsNotIncluded (see [24, pp. 166ś169]) which is very ef-
fective in practice. Handling large sets of regular chains is possible
by structuring the computation as a divide-and-conquer algorithm.

Given a set T = {T1, . . . ,Te } of regular chains, Algorithm 4,
RemoveRedundantComponents(T), removes redundant chains by
dividing T into two subsets, producing two irredundant sets by
means of recursion. Then, the two sets are merged by checking for
pair-wise inclusions between the two sets. The divide-and-conquer
nature of RemoveRedundantComponents is undoubtedly admissi-
ble to ubiquitous fork-join parallelism, Particularly, one forks the
computation to compute one of the recursive calls in parallel, and
then joins upon return. These are indicated by the keywords spawn

and sync, respectively. The merge-step is also embarrassingly par-
allel and can use the map pattern for each of the inner loops.

25

On the Parallelization of Triangular Decompositions ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Algorithm 4 RemoveRedundantComponents(T)

Input: a finite set T = {T1, . . . , Te } of regular chains
Output: a set of regular chains forming an irredudant decomposition of

the same algebraic set as T
if e = 1 then return {T1 }

ℓ := ⌈e/2⌉; T≤ℓ := {T1, . . . , Tℓ }; T>ℓ := {Tℓ+1, . . . , Te }

T1 := spawn RemoveRedundantComponents(T≤ℓ)
T2 := RemoveRedundantComponents(T>ℓ)
sync

for T1 in T1 do

if ∀T2 in T2 IsNotIncluded (T1, T2) then

T′
1 := T′

1 ∪ {T1 }

for T2 in T2 do

if ∀T1 in T′
1 IsNotIncluded (T2, T1) then

T′
2 := T′

2 ∪ {T2 }

return T′
1 ∪ T′

2

4 IMPLEMENTATION

Our implementation of regular chains and the Triangularize algo-
rithm follows that of [10], hence, here we look only at the imple-
mentation of parallel aspects. Our implementation is written in
the C and C++ languages. For the simple fork-join parallelism in
the removal of redundant components, we simply use Cilk [15],
built-in to the GCC compiler, mirroring Algorithm 4 and requires
no additional explanation. In all other cases we implement our own
parallel constructs using the Thread Support Library of C++11. Our
implementation is freely available in source as part of the Basic Poly-
nomial Algebra Subprograms (BPAS) library [1] at www.bpaslib.org.
We begin by describing two reorganizations of the Triangularize
algorithm and then describe the underlying parallelization.

The first reorganization of Triangularize is łby levelž. It is simple
restructuring of Algorithm 1 to move the removal of redundant
components inside the loop, thus removing redundancies after each
incremental step (łlevelž). We apply the map pattern to the inner
for loop, thus spawning |T | − 1 additional threads to execute the
|T | independent calls to Intersect. As previously described for the
map pattern, if the intersections at a particular level are unbalanced
then the program must wait for the slowest, reducing parallelism.

The second reorganization of Triangularize is łby tasksž (Al-
gorithm 5), and makes use of the workpile pattern to combat the
issues incurred by applying the map pattern to irregular parallelism.
Here, we essentially invert the loops of Triangularize to first iterate
over the current collection of regular chains and then iterate over
polynomials in the input system. Since the former is actually of a
variable and unknown size, this is achieved by creating tasks, one
per regular chain, with a list of polynomials associated to each task.
Splittings create new tasks to be added to the work pile. Once a task
has finished intersecting its list of polynomials, it is complete and
added to a list of results. In this scheme, the potential parallelism
is greater than TriangularizeByLevel but the potential amount of
work is also greater since redundancies are no longer removed at
each step. We discuss these differences later in Section 5.

4.1 Executor Thread Pool

A fundamental structure of most parallel systems is a thread pool.
Thread pools maintain a collection of long-running threads which
wait to be given a task, execute that task, and then return to the

Algorithm 5 TriangularizeByTasks(F)

Input: a finite set F ⊆ k[X]

Output: regular chains T1, . . . , Te ⊆ k[X] such that V (F) = W (T1) ∪

· · · ∪W (Te)

1: Tasks := { (F , ∅) }; T := {}

2: while |Tasks | > 0 do
3: (P, T) := pop a task from Tasks

4: Choose a polynomial p ∈ P ; P ′ := P \ {p }

5: for T ′ in Intersect(p, T) do

6: if |P ′ | = 0 then T := T ∪ {T ′ }

7: else Tasks := Tasks ∪ {(P ′, T ′)}

8: return RemoveRedundantComponents(T)

pool. This avoids the overhead of repeatedly spawning threads and
limits the number of threads to avoid over-subscription.When tasks
outnumber threads the pool also maintains a queue of tasks.

Often threads in a pool execute a predetermined task. However,
the many different subroutines in the Triangularize algorithm all
need attention. We thus make use of functors (e.g. std::function),
objects which encapsulate a function as a first-class object, to model
generic tasks. Our ExecutorThreadPool then maintains a queue of
functor tasks and a pool of ExecutorThreads, threads capable of
executing any functor. For genericity, our implementation requires
void functors, hence returning values by reference. Moreover, val-
ues can be returned one at a time if the functor is a generator.

4.2 Asynchronous Generators & Object Streams

Following the object-oriented nature of C++, and much like functor
objects, we look to encapsulate generators as objects, providing a
generic interface for generators producing many different kinds of
objects. We have created a generic AsyncGenerator class, where
objects are created very simply by passing it a functor whose un-
derlying function creates a collection of objects. The caller then
requests data from the generator object itself instead of the functor.

Serially, a generator object could be implemented by collecting
the objects returned by the functor in a queue and yielding them one
at a time to the caller. To achieve parallelism the AsyncGenerator
facilitates the producer-consumer pattern; the caller is the con-
sumer, the functor is the producer, and the AsyncGenerator itself
works as the intermediary and common interface between the two.
The interface of AsyncGenerator can be seen in Listing 1.

In practice, the subroutines like Intersect, RegularGCD and Reg-

ularize, are mutually recursive and simultaneously act as both pro-
ducers and consumers, using multiple AsyncGenerator objects.

The AsyncGenerator fulfills producer-consumer by first insert-
ing itself as a parameter to the functor, so that the producer has
a handle on the generator object, and then invokes the functor as fol-
lows. The generator requests a thread from the ExecutorThreadPool
and, where one is available, asynchronously executes the functor on
that thread. Otherwise, the generator acts serially, as just explained,
maintaining a queue of objects returned by the functor.

The final detail to the AsyncGenerator is a mechanism to sleep
the consumer when no object is available to consume. The solution
is provided generically as the AsyncObjectStream class which
provides a thread-safe queue interface and an internal mechanism
to sleep the consumer until an object is ready to be consumed (i.e.
a condition variable or semaphore, see [4, Ch. 6]). Ultimately, the

26

www.bpaslib.org

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Asadi, Brandt, Moir, Moreno Maza, Xie

1 template <class Object >

2 class AsyncGenerator {

3

4 /* CONSUMER: create generator to encapsulate a function call. */

5 template <class Function , class... Args>

6 AsyncGenerator(Function&& f, Args&&... args);

7

8 /* PRODUCER: Add a new Object to be retrieved later. */

9 virtual void generateObject(Object& obj) = 0;

10

11 /* PRODUCER: Finalize the AsyncGenerator by declaring it has

12 finished generating all possible objects. */

13 virtual void setComplete () = 0;

14

15 /* CONSUMER: Obtain the next generated Object by reference.

16 returns false iff no more objects available and setComplete () */

17 virtual bool getNextObject(Object& obj) = 0;

18 };

Listing 1: The AsyncGenerator interface which implements

an asynchronous producer-consumer pattern.

object stream is completely encapsulated by the AsyncGenerator
and may or may not be used depending on if the generator is truly
executing asynchronously.

4.3 A łCooperativež Task Scheduler

A task scheduler is one possible implementation of the workpile
pattern. We look to facilitate the scheduling of an unknown number
tasks where the tasks themselves can produce more tasks. This is
exactly the case as in TriangularizeByTasks. Our TaskScheduler,
much like the ExecutorThreadPool, encapsulates tasks as a queue
of functors, where each functor has a reference to the scheduler in
order to schedule more tasks.

The scheduler internally makes use of an ExecutorThreadPool

to launch new tasks immediately (if the pool is not empty) and
otherwise add it to the queue of tasks. To reap the most benefits of
workpile, active threads should add tasks to the scheduler as early
as possible to expose more parallelism. For tasks which produce
exactly one task, instead of adding the new task to the scheduler,
the producing task should execute the new task directly in order to
avoid synchronization overhead.

Consider also that we want to simultaneously use generators and
a task scheduler. However, they both use an ExecutorThreadPool,
which may lead to too many active threads and thus resource con-
tention. One solution would be to limit the sum of the number of
threads in both pools to be the number of hardware threads. How-
ever, this static solution is not receptive to dynamic load-balancing.
In particular, if the number of scheduler tasks is low then more
threads should be made available to generators, or vice-versa. This
leads to a łcooperativež task scheduler and generators.

The cooperation begins by sharing a single thread pool between
the TaskScheduler and all AsyncGenerators. However, this alone
is not enough. The tasks to be scheduled (i.e. the calls to Intersect

from Triangularize) represent a larger amount of work than any
subroutine generator. Hence, to support more coarse-grained paral-
lelism and less parallel overhead, the scheduler should dynamically
be given more resources, as needed. Simply stated, the thread pool
creates a new łhigh priorityž thread if the thread pool is empty
when a new task becomes available. Although the number of active
threads may now exceed hardware resources, this is only temporary
until a generator finishes. As threads are returned to the thread
pool, they may be terminated to account for new high priority

threads, keeping the total number of threads within hardware lim-
its. To avoid a runaway task scheduler, the pool limits the number
of priority threads that can be created. Naturally, this pattern also
works in reverse, when there are few tasks, as more threads will be
available in the pool to support more asynchronous generators.

5 EXPERIMENTATION AND DISCUSSION

The preceding two sections have explored various opportunities
for parallelism within triangular decomposition algorithms and
their implementations. In particular, we have described coarse-
grained parallelism where Triangularize calls Intersect in parallel,
and the more fine-grained parallelism brought by generators. We
now look to evaluate the effectiveness of the different configurations
of Triangularize. A configuration is parameterized by (1) the type of
decomposition being computed (Lazard-Wu or Kalkbrener), (2) the
organization of the top-level algorithm (TriangularizeByLevel or
TriangularizeByTasks), and (3) the level of parallelization employed
(serial, coarse-grained, or coarse- and fine-grained together).

We test the 12 possible configurations of our implementation
by considering a suite of over 3000 real-world polynomial systems
coming from the scientific literature as well as user-data and bug
reports provided by MapleSoft and the RegularChains [16] library.
In particular, we look at non-trivial systems taking at least 100ms
to solve, in order to warrant the overhead of parallelism. This
yields 828 systems. Our results herein are a median of 3 trials
and were collected on a node running Ubuntu 14.04.5 with two
Intel Xeon X5650 processors each with 6 cores (12 physical threads
with hyperthreading) at 2.67 GHz, and a 12x4GB DDR3 memory
configuration at 1.33 GHz.

On our test suite, speed-ups of up to 9.5× were found. Further,
824 of the 828 systems saw at least some parallel gains from at
least one of the parallel configurations, with 133 having at least
2.0× speed-up. Considering that 203 of those systems contain only
a single component, and thus have no potential for parallelism,
implies that our implementation limits parallel overheads well.
Table 1 presents some examples from the literature with timings
and speed-up factors for all 12 configurations. We also compare
timings there against the RegularChains package of Maple 2019.

Figure 1 summarizes the data collected for Kalkbrener decompo-
sition as a two-dimensional histogram (the trends are the same for
Lazard-Wu decomposition). For each subplot, the x-axis is serial
execution time while the y-axis is parallel speed-up factor. It may
appear that the task-based method incurs some slow-downs, but,
this is mainly for cases running in less than 1s. There, some parallel
overhead is expected, particularly as 203 systems have no potential
parallelism. Nonetheless, if we considermore substantial examplesÐ
those requiring at least 1s to solveÐthen only 9 examples in the
Kalkbrener-Tasks-Fine configuration have a speed-up less than 0.9,
with the minimum being 0.84. From the trends in the data, we make
two observations: (i) TriangularizeByTasks has the potential for
higher parallelism than TriangularizeByLevel, and (ii) Triangularize-
ByLevel is, in general, slowed down by the use of generators while
the performance TriangularizeByTasks has improved performance.

From our discussions in the preceding sections, (i) should be
very apparent. Our task scheduler, built using the workpile parallel
pattern is more receptive to the irregular parallelism present in

27

On the Parallelization of Triangular Decompositions ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Figure 1: Histograms illustrating the distribution of serial runtime against speed-up factor for Kalkbrener decompositions.

triangular decomposition. Specifically, it allows new tasks to be
taken up immediately by the scheduler’s threads. This contrasts
with the level-wise scheme where threads must operate in lockstep
for each map step. Note (ii) also follows from our discussion of
over-subscription and resource contention. The task scheduler was
implemented to specifically cooperate with the generators, their
interplay acting as a sort of dynamic load balancing depending on
the number of components discovered during the decomposition.
On the other hand, the rather naïve implementation of the map
pattern used by TriangularizeByLevel created resource contention
with the generator threads and worsened parallel performance
compared to using map alone. While TriangularizeByLevel was the
weaker performer in terms of parallel speed-up, there still exists
examples where intermediate removal of redundant components is
an important optimization step (e.g. W41 in Table 1, where Triangu-
larizeByLevel is twice as fast). One should not forgo intermediately
removing redundant components just for the parallel benefits of
workpile. Indeed, combining redundant component removal along-
side the task scheduler is an important area for future work.

Lastly, we consider two specific examples, Systems 2691 and 3295,
illustrated as trees in Figure 2. These plots show the evolution of
the decomposition as Intersect is called in parallel on independent
components in theKalkbrener-Tasks-Fine configuration. Two typical
patterns are shown. For 2691, each call to Intersect creates two
components. The dynamic and irregular nature of the parallelism
is highlighted where each branch is discovered at different times,
with each having different workloads. For 3295, the first component
splits into several relatively equal branches, except for one branch

Figure 2: The component tree of two systems, showing that

components and independent branches of computation are

found dynamically during the decomposition. Each node de-

picts a component, and the node’s label is the component’s

dimension (-1 being the empty set). Edges are drawnwhere a

call to Intersect on the parent component returned the child.

with considerably more work. Despite the overall high number
of components, computations in all branches overlap only briefly
since the split in the bottom branch is not found until later, further
highlighting the irregularity in parallelism.

28

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Asadi, Brandt, Moir, Moreno Maza, Xie

Kalkbrener Decomposition Lazard-Wu Decomposition
System Name Level Tasks

Maple 19
Level Tasks

Maple 19
S. Time C C+F S. Time C C+F S. Time C C+F S. Time C C+F

8-3-config-Li 8.188 3.81 3.14 8.275 2.80 2.84 5.836 36.299 2.93 2.89 38.825 3.07 3.06 26.660
dessin-2 46.974 1.12 1.08 37.090 1.11 1.11 126.008 50.185 1.19 1.14 36.557 1.11 1.07 125.276
dgp6 80.134 5.66 5.47 69.147 6.31 6.06 54.368 78.067 4.02 3.98 67.460 6.12 5.72 49.496

Ducos-7-5 49.001 1.04 1.02 49.542 0.99 1.00 1520.692 48.136 1.00 0.97 50.151 1.03 1.01 1537.293
Gerdt 3.939 3.01 2.88 3.259 3.91 4.57 0.932 3.755 2.65 2.62 3.172 4.03 4.28 0.952
Gonnet 1.406 2.42 2.43 1.683 2.57 2.46 1.924 1.399 2.26 2.09 1.680 2.25 2.77 1.984

Hereman-2 1.178 2.56 2.24 1.117 2.24 2.43 0.472 1.248 2.52 2.30 1.145 2.57 2.32 0.592
Issac97 3502.410 1.40 1.40 311.231 1.34 1.32 445.312 3571.450 1.40 1.42 318.640 1.37 1.34 450.880
Leykin-1 7.194 2.48 2.20 6.376 1.77 2.13 3.316 10.043 2.29 2.10 9.053 1.96 1.85 5.424
lhlp3 0.254 1.39 1.24 0.247 1.09 1.21 0.016 0.193 0.98 0.94 0.192 0.95 0.92 0.016

MacLane 1.137 2.04 1.74 1.170 1.92 1.71 1.748 3.816 1.50 1.42 4.042 1.49 1.41 4.828
MontesS16 2.233 2.33 2.11 2.650 2.30 2.32 2.400 2.177 2.11 2.09 2.592 2.40 2.30 2.488
Pappus 1.839 2.13 1.59 1.940 2.34 1.77 2.704 6.255 2.95 2.30 10.671 3.53 2.87 16.312
Pavelle 1.178 1.62 1.44 1.165 1.28 1.43 0.259 33.179 1.02 1.21 39.707 1.15 1.39 5.352
Reif 20.547 4.33 3.91 20.382 5.34 4.58 10.899 18.465 3.77 3.60 18.703 5.00 4.23 10.691
SEIT 0.593 1.89 1.49 0.635 1.69 1.54 0.448 4.275 3.14 2.48 4.606 3.07 2.64 4.368
W1 10.137 3.08 2.93 10.525 2.79 3.26 2.304 9.806 2.81 2.73 10.160 2.88 3.08 2.500
W41 12.960 3.94 3.80 25.266 4.82 5.16 18.644 12.645 3.65 3.57 24.757 4.86 4.72 15.892
W44 5.294 3.44 3.23 4.251 4.92 5.64 1.132 5.226 3.10 3.01 4.175 4.92 5.11 1.184
W5 20.247 5.98 6.20 22.435 6.38 6.15 14.260 20.248 5.90 6.16 21.951 6.19 6.07 13.180

YangBaxterRosso 0.675 2.42 2.17 0.674 4.03 4.18 0.348 0.638 2.18 1.98 0.663 4.32 4.13 0.371

Table 1: A comparison of timings for the 12 configurations of Triangularize. Here, serial timings are given along with speed-up

factors for coarse (C) and coarse and fine (C+F). Timings for solving using RegularChains in Maple 2019 are also included.

Using these trees and the terminology of fork-join parallelism,
we may consider a crude upper-limit on potential speed-up as the
ratio of work (i.e. sum of edges) to span (i.e. the overall decompo-
sition time). This gives 2.13 and 4.97 for Systems 2691 and 3295,
respectively, and an łefficiencyž (the ratio of actual to potential
speed-up) as 87.8% and 74.4%, respectively. This suggests that our
implementation indeed exploits the irregular parallelism available,
and is able to exploit more parallelism when more is available.

Despite the inherent challenges of irregular parallelism in trian-
gular decomposition, our implementation effectively utilizes that
which is available through task parallelism and asynchronous gen-
erators. The use of generators in computer algebra is something
which we hope to see applied elsewhere to improve upon irregu-
lar parallelism. For example, generators could also be applied to
polynomial factorization, where factors could be produced and
consumed along a pipeline consisting of square free factorization,
distinct degree factorization, and equal degree factorization.

For the future of triangular decompositions, we hope to include
methods which support more regular parallelism, for example, eval-
uation/interpolation schemes for the computation of subresultant
chains [17] needed by RegularGCD. We also look to perform some
of the solving over a prime field, where computations are more
likely to split, and then lift the solutions [11].

Acknowledgments

The authors would like to extend thanks to IBM Canada Ltd (CAS
project 880), NSERC of Canada (CRD grant CRDPJ500717-16, award
PGSD3-535362-2019), and John P. May (Maplesoft).

REFERENCES
[1] M. Asadi, A. Brandt, C. Chen, S. Covanov, F. Mansouri, D. Mohajerani, R. H. C.

Moir, M. Moreno Maza, Lin-Xiao Wang, Ning Xie, and Yuzhen Xie. 2018. Basic
Polynomial Algebra Subprograms (BPAS). http://www.bpaslib.org.

[2] G. Attardi and C. Traverso. 1996. Strategy-Accurate Parallel Buchberger Algo-
rithms. J. Symbolic Computation 22 (1996), 1ś15.

[3] Philippe Aubry, Daniel Lazard, and Marc Moreno Maza. 1999. On the Theories
of Triangular Sets. J. Symb. Comput. 28, 1-2 (1999), 105ś124.

[4] Mordechai Ben-Ari. 1990. Principles of concurrent and distributed programming.
Prentice Hall.

[5] Francesco Biscani. 2012. Parallel sparse polynomial multiplication on modern
hardware architectures. In ISSAC 2012, Grenoble, France, 2012. 83ś90.

[6] Janko Böhm,Wolfram Decker, Santiago Laplagne, Gerhard Pfister, Andreas Steen-
paß, and Stefan Steidel. 2013. Parallel algorithms for normalization. J. Symb.
Comput. 51 (2013), 99ś114.

[7] F. Boulier, F. Lemaire, and M. Moreno Maza. 2006. Well known theorems on
triangular systems and the D5 principle. In Proc. of Transgressive Computing
2006. Granada, Spain.

[8] B. Buchberger. 1987. The parallelization of critical-pair/completion procedures
on the L-Machine. In Proc. of the Jap. Symp. on functional programming. 54ś61.

[9] Reinhard Bündgen, Manfred Göbel, and Wolfgang Küchlin. 1994. A fine-grained
parallel completion procedure. In Proceedings of ISSAC. ACM, 269ś277.

[10] C. Chen and M. Moreno Maza. 2012. Algorithms for computing triangular
decomposition of polynomial systems. J. Symb. Comput. 47, 6 (2012), 610ś642.

[11] Xavier Dahan, Marc Moreno Maza, Éric Schost, Wenyuan Wu, and Yuzhen Xie.
2005. Lifting techniques for triangular decompositions. In ISSAC 2005, Beijing,
China, 2005, Proceedings. 108ś115.

[12] J. C. Faugere. 1994. Parallelization of Gröbner Basis. In Parallel Symbolic Compu-
tation PASCO 1994 Proceedings, Vol. 5. World Scientific, 124.

[13] M. Gastineau and J. Laskar. 2015. Parallel sparse multivariate polynomial division.
In Proceedings of PASCO 2015. 25ś33.

[14] Jiaxiong Hu and Michael B. Monagan. 2016. A Fast Parallel Sparse Polynomial
GCD Algorithm. In ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016. 271ś278.

[15] C. E. Leiserson. 2011. Cilk. In Encyclopedia of Parallel Computing. 273ś288.
[16] F. Lemaire, M. Moreno Maza, and Y. Xie. 2005. The RegularChains library in

MAPLE. ACM SIGSAM Bulletin 39, 3 (2005), 96ś97.
[17] Xin Li, Marc Moreno Maza, and Wei Pan. 2009. Computations modulo regular

chains. In ISSAC 2009, Seoul, Republic of Korea, Proceedings. 239ś246.
[18] M. McCool, J. Reinders, and A. Robison. 2012. Structured parallel programming:

patterns for efficient computation. Elsevier.
[19] M. Monagan and R. Pearce. 2010. Parallel sparse polynomial division using heaps.

In Proceedings of PASCO 2010. ACM, 105ś111.
[20] Michael B. Monagan and Baris Tuncer. 2018. Sparse Multivariate Hensel Lifting:

A High-Performance Design and Implementation. In ICMS 2018 - 6th International
Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings. 359ś368.

[21] Marc Moreno Maza and Yuzhen Xie. 2007. Component-level parallelization of
triangular decompositions. In PASCO 2007 Proceedings. ACM, 69ś77.

[22] B. D. Saunders, H. R. Lee, and S. K. Abdali. 1989. A parallel implementation of
the cylindrical algebraic decomposition algorithm. In ISSAC, Vol. 89. 298ś307.

[23] Michael L. Scott. 2009. Programming Language Pragmatics (3. ed.). Academic
Press.

[24] Y. Xie. 2007. Fast Algorithms, Modular Methods, Parallel Approaches, and Software
Engineering for Solving Polynomial Systems Symbolically. Ph.D. Dissertation.

29

http://www.bpaslib.org

The Orbiter Ecosystem for Combinatorial Data

Anton Betten
betten@math.colostate.edu
Department of Mathematics
Colorado State University

Fort Collins, CO

ABSTRACT

We describe a very versatile, fast and useful open source software
package to compute combinatorial objects up to isomorphism called
Orbiter. We provide an overview of some of the design decisions
made during development, and we point out similar software pack-
ages. We discuss ways in which combinatorial data can be com-
puted, analyzed and permanently stored for later use. This paper
expands on earlier work published in [8].

CCS CONCEPTS

· Mathematics of computing→ Combinatorial algorithms.

KEYWORDS

combinatorics, classification, combinatorial objects, codes, finite ge-
ometry

ACM Reference Format:

Anton Betten. 2020. The Orbiter Ecosystem for Combinatorial Data. In In-

ternational Symposium on Symbolic and Algebraic Computation (ISSAC ’20),

July 20ś23, 2020, Kalamata, Greece.ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3373207.3403984

1 INTRODUCTION

For the purposes of this paper, combinatorial objects are elements
of a finite set 𝑆 on which a group𝐺 acts. We say that the set 𝑆 is the
permutation domain for the group 𝐺 . We write the action on the
right, so for 𝑥 ∈ 𝑆 and 𝑔 ∈ 𝐺 we let 𝑥𝑔 be the image of 𝑥 under 𝑔.
The orbit of 𝑥 is the set of all images of 𝑥 under𝐺 . It is denoted 𝑥𝐺.
We say that two objects 𝑥,𝑦 ∈ 𝑆 are isomorphic if they belong to the
same orbit of 𝐺 , and we write 𝑥 ∼ 𝑦 (or 𝑥 ∼𝐺 𝑦 if need be). The set
of orbits partition the set 𝑆 . Examples of combinatorial objects that
are of interest are combinatorial designs (which are set systemswith
special properties), linear codes (which are vector spaces over finite
fields), graphs (also studied in Computer Science, Chemistry [45],
Bioinformatics and Molecular Biology [31, 37] etc.), Hadamard ma-
trices, Paley matrices, orthogonal arrays, and many other objects
covered in basic combinatorics textbooks such as [35, 69]. A rel-
atively recent addition to the field of combinatorics is the area of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3403984

finite geometry. Here, geometric concepts are considered in geome-
tries over finite fields. The existence theory of some of the objects is
much more complicated over finite fields than for instance over the
real numbers. The desire to learn more about these objects gives a
strong motivation for using the computer to produce classifications
for small instances of the problem.

Our interst in this paper is in the whole ecosystem of discov-
ery based on experimental data. We describe our software Orbiter
which can classify combinatorial objects of various kinds. The Or-
biter ecosystem contributes towards the collection of mathematical
data and the dissemination of it. For instance, tables of BLT-sets,
optimal linear codes and tables of cubic surfaces with 27 lines over
finite fields have been compiled with Orbiter. The data is computed
using an algorithm called poset classification. Refinements of the
algorithm for faster deep search techniques are possible. The lists
of classified objects are written out in C++ source code, which is
shared with users through GitHub. The next time Orbiter is com-
piled, the data becomes available for use. The cycle of discovery can
be repeated. The process stops when the time or space complexity
gets out of hand. As part of the process of working with mathemati-
cal data, new families of objects can be observed, and mathematical
discovery can thus be promoted.

This paper is trying to pull together many ideas which serve
the goal of classification and discovery. At times, these ideas may
seem rather disconnected. However, given the constraints in time
and space complexity, each idea contributes a little bit towards the
greater goal. There is no silver bullet in the field of classification.
Progress is inherently incremental. Every new classification result
is a small victory. It does mean that we need to consider efficiency
of algorithms carefully. For a problem with exponential complexity,
constants in the complexity matter. For this reason, we will often
discuss ways to improve algorithms slightly.

2 THE CLASSIFICATION PROBLEM

The classification problem for a class of combinatorial objects is the
problem of producing a transversal (implicit or explicit) of the or-
bits of the group𝐺 on the set 𝑆 [45]. As the classification depends on
the group, we need to make clear which group and which action we
consider. In many cases, we also care about the stabilizer subgroup
of objects: For 𝑥 ∈ 𝑆, we define Stab𝐺 (𝑥) the set of elements 𝑔 ∈ 𝐺

for which 𝑥𝑔 = 𝑥 . This group is also called the automorphism group
of 𝑥 . The recognition problem for combinatorial objects is this: Sup-
pose that a class of objects 𝑆 with action by the group 𝐺 has been
classified, and that T is a transversal of the𝐺-orbits on 𝑆. Given an
arbitrary element 𝑥 ∈ 𝑆, determine the unique element 𝑡 ∈ T such
that 𝑥 ∼ 𝑡 . The constructive version of the recognition problem asks

30

https://doi.org/10.1145/3373207.3403984
https://doi.org/10.1145/3373207.3403984
https://doi.org/10.1145/3373207.3403984

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Betten

for a group element 𝑔 ∈ 𝐺 with 𝑥𝑔 = 𝑡 . All these problems are part
of the field of computational group theory, which is a rather young
field of study that uses computational methods to explore (among
others) apects of problems related to groups and group actions. For
background reading, we refer the reader to [28, 36, 62]. For back-
ground on group actions, see [38, Section 1.12]. The orbit-stabilizer
theorem is of great importance. We do not have space to recall it
here.

Enumerative combinatorics [44, 65] is concerned with finding
formulae to count classes of combinatorial objects (up to isomor-
phism or not). Enumerative results and constructive results suple-
ment each other. An enumerative result may be used to confirm
the validity of a computer classification. The problem of classifying
combinatorial objects is difficult. The time and space complexity of
an algorithm is often very hard to estimate. Problems arise from the
fact that the sets may be large, or the orbits are too big to be gener-
ated fully. The question of whether two elements belong to the same
orbit is known as the isomorphism problem. It is the subject of one
of the Millenium Problems (łP vs NP”) identified by the Clay insti-
tute. The problem is whether there is a polynomial time algorithm
to solve the problem. For many interesting combinatorial objects,
enumerative results are not known, so construction and classifica-
tion is the only way to count these structures. For some combina-
torial objects, we can count their total number, but not the number
of isomorphism classes. Of course, the famous lemma of Burnside
in group theory makes it clear that counting objects up to isomor-
phism is related to getting hold of explicit information about the
stabilizer of objects. Combinatorial objects mostly come in families,
parametrized by integers such as the order of a field or the size of a
set.

Several algorithms have been proposed for classifying combina-
torial objects. Many use the lexicographic order to produce a total
order on the objects and sift through the set systematically. Farad-
hzev [32] and Read [58] are considered pioneers of this technique.
The bottleneck is the need to test for isomorphisms which seems
to have exponential complexity (but note the comment on Babai’s
work below). Modern algorithms often use canonical forms to de-
cide the isomorphism problem, though canonical forms are simi-
larly difficult to compute. The advantage of using canonical forms
is that the number of canonical form computations is much less
than the number of isomorphism test in a classification process.
Many researchers have produced efficient algorithms for isomor-
phism testing of combinatorial objects. These algorithms often rely
on a technique known as partition backtrack. The purpose of parti-
tion backtrack is to examine all different forms in which the object
can appear, and to either decide isomorphims between two objects
or compute automorphisms of an object (see [49, 50]). Nauty [52] is
a software package for graph canonization developed originally by
McKay, and later by McKay and Piperno (see also [53, 54]). Babai [4]
claims that graph isomorphism is quasipolynomial. Though there
had been some concerns about this claim, these concerns seem to
have been resolved. However, so far this theoretical advance has
not led to faster software.

Figure 1: The poset of subsets of a 4-element set

One deficit with partition backtrack is that it needs to be tailored
to the particular structure at hand. A good part of this is finding
the right kind of isomorphism invariants which are able to distin-
guish well. An isomorph invariant is a function defined on the set of
objects such that isomorphic objects have the same function value.
If the invariants differ, the objects cannot be isomorphic. Comput-
ing invariants is often cheaper than doing an isomorphism test or
runnning a canonical form algorithm. Often, the invariants are eval-
uated for smaller (related) objects. In the partition backtrack jargon,
these invariants are the refiners (of the partition). Whenever two
points have different invariants, they must lie in different classes
of the partition. The hope is that the refiners help to discretize the
partition quickly. A partition with many parts is good because then
there are only few ways in which the object can be mapped, con-
sidering that classes must be preserved. There is ś however ś no
guarantee that these invariants separate all the time. For instance,
in the mentioned work of Babai, an old invariant of graphs due to
Weisfeiler and Lehman [71] is utilized. It can be expressed in terms
of counting colors between neighbors of vertices.

Some of the most powerful algorithms for classifying combina-
torial objects make use of a poset structure. The poset of subsets
of a four-element set is shown in Figure 1. Often, the combinato-
rial objects of interest are related to smaller objects, and the rela-
tion is invariant under the group. Smaller is not a very precise term,
but practically it means that the objects are easier to classify. The
smaller objects are classified first, and the larger objects are clas-
sified using the transversal of the smaller objects and the relation
between small and large objects. This reduction process can be re-
peated, resulting in a poset structure of combinatorial objects and
subobjects. For instance, if a combinatorial structure is made up of
𝑘 points chosen from a set 𝑆 of size 𝑛, we might consider the set of
subsets of 𝑆 of size at most 𝑘 . It is often the case that the condition
that makes the objects at level 𝑘 induces a condition on the objects
of size 𝑖 for all 𝑖 ≤ 𝑘. For instance, if we are classifying graphs on 𝑛
vertices which are regular of degree 𝑑, then we need to consider the
poset of graphs on 𝑛 vertices in which every vertex has degree at

most 𝑑. In this poset, we try to find the objects at level 𝑘 =
𝑛𝑑
2 and

list their orbits under the group Sym(𝑛) . For many types of combi-
natorial objects, it is possible to create posets of partial objects, so
poset techniques can be applied.

31

The Orbiter Ecosystem for Combinatorial Data ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

McKay [53] uses the approach of posets and combines it with
canonical forms. The result is an algorithm called canonical aug-
mentation. It proceeds through the poset of combinatorial objects
and subobjects in a depth first manner. Schmalz [61] has developed
a technique of trading time versus memory and traverses the poset
breadth first. We will refer to this technique as poset classification.
The algorithm produces a data structure which describes a chosen
transversal of the combinatorial object (and all subobjects), and al-
lows for efficient constructive recognition.

Many authors have developed tools to classify combinatorial ob-
jects. Often, these tools are tailored to specific classes of objects.
For instance, the book [43] is devoted exclusively to the classifica-
tion problem of codes and designs. Some other software packages
are GAP [33], Magma [26], and McKay’s łGeng” (generate graphs)
which comes with Nauty. The Orb [55] package in GAP has algo-
rithms to compute long orbits. Theissen [68] used partition back-
track for computing normalizers of groups. In unpublished work,
Steve Linton designed a least-image algorithm in GAP. The least im-
age within an orbit is of course a canonical form. Using Leon’s parti-
tion refinement technique, Jefferson et.al. [40, 41] recently improved
on this. The original implementation of Leon’s partition backtrack
algorithm is available through Magma. Leon’s program is called
łPART”. It was available on Leon’s website at the University of Illi-
nois Chicago. Unfortunately, Leon passed away and the website is
no longer available. A reimplementation in C++ is available as GAP
package ferret [39].

Orbiter [10] is a software package for the classification and recog-
nition of general combinatorial objects, based on poset classifica-
tion. It is a library of C++ classes and a command line applica-
tion. Orbiter does not have a user interface. It can be controlled us-
ing Unix makefiles or shell scripts. Orbiter is open source software
which is distributed on GitHub. A user’s guide is available [11]. This
paper expands on earlier work published in [8]. A software presen-
tation of Orbiter will be held at ICMS2020 [22].

Orbiter was developed by the author at Colorado State Univer-
sity. It grew out of earlier work with DISCRETA [19], a system for
computing combinatorial designswith assumed automorphism group.
DISCRETA in turn was influenced by SYMMETRICA [46], a system
developed by Axel Kohnert and devoted to the representation the-
ory of symmetric groups. Another influence was a program called
Double Coset Generator (DCC) by Bernd Schmalz. Most of this work
was done in the 1990s at the Lehrstuhl of Professor Kerber and Pro-
fessor Laue in Bayreuth, Germany. Sadly, Axel Kohnert passed away
untimely in 2013.

3 WHY ORBITER?

As we have seen, there is now a great variety of different software
packages for orbit computations. So, why do we need Orbiter? Per-
haps it is helpful to look at some comparisons between Orbiter and
GAP. Let us pick a small problem for which we know the answer.
Suppose we want to compute the orbits of the collineation stabi-
lizer PΓO+ (6, 𝑞) of the𝑄 (5, 𝑞) quadric on planes (three dimensional
vector subspaces) in PG(5, 𝑞) . We know that there are 5 orbits. In

Poset Classification Basic Schreier
Problem GAP Orbiter Orbiter

𝑄 (5, 2) 2.4 sec 0 sec 0 sec
𝑄 (5, 3) 2.76 sec 0 sec 0 sec
𝑄 (5, 4) 34 sec 0 sec 8 sec
𝑄 (5, 5) 13.5 sec 0 sec 1 min 12 sec
𝑄 (5, 7) 1 min 51 sec 1 sec 17 min 42 sec
𝑄 (5, 9) > 3 hrs 8 sec
𝑄 (5, 11) 19 sec
𝑄 (5, 13) 42 sec
𝑄 (5, 17) 3 min 17 sec

Table 1: GAP vs Orbiter and Poset Classification vs Basic

Schreier

Table 1, some computing times are collected. We use our own im-
plementation of poset classification in GAP (witten with the help of
Michel Lavrauw), which in turn relies on the GAP packages Fining,
Forms, Cvec, Orb, Genss and Grape.

For 𝑞 prime, the collineation group equals the projectivity group.
For instance, for 𝑞 = 7, the specific Orbiter command that we ran
for the poset classification approach was

orbiter.out -v 5 -linear_group -PGL 6 7 \

-orthogonal 1 -end \

-group_theoretic_activities \

-orbits_on_subspaces 3

This command creates the orthogonal group of plus type (notice the
ł-orthogonal 1”) as a subgroup of PGL(6, 7) and then computes the
orbits on subspaces of vector space dimension 3. In this example, the
7 can be replaced by any other value of 𝑞. For 𝑞 not prime, we used
the collineation group, so the command was slightly different. Here
is the example for 𝑞 = 9:

orbiter.out -v 5 -linear_group -PGGL 6 9 \

-orthogonal 1 -end \

-group_theoretic_activities \

-orbits_on_subspaces 3

Notice the double G in the group label ł-PGGL”. InOrbiter, the double
letter represents the semilinear matrix group. More about Orbiter
groupwill be said in Section 7. For the basic Schreier orbit algorithm,
the Orbiter command was

orbiter.out -v 5 -linear_group -PGL 6 3 \

-orthogonal 1 -on_k_subspaces 3 -end \

-group_theoretic_activities -orbits_on_points

There are several points to be made. The first is efficiency. The
C++ language allows more efficient data structures and algorithms
than interpreted code written in a high level computer algebra sys-
tem. In the literature on classification of combinatorial objects, bench-
mark problems are not always considered. In fact, many mathemat-
ical papers do not mention issues about implementation and com-
puting time at all. It is therefore difficult to compare different algo-
rithms and different systems on meaningful problems. Also, bench-
marking natually measures the implementation and the speed of the
machine as well. Nevertheless, Table 1 shows great speedup of poset

32

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Betten

classification over the basic Schreier orbit algorithm. For 𝑞 = 7, a
speedup by a factor of 1000 can be measured! Despite using the best
orbit packages that GAP has to offer, the timings for GAP are dis-
appointing. The computation for𝑄 (5, 9) ran out of memory and did
not finish (GAP seems to set itself a memory limit and does not seem
to be able to automatically get more memory; it is not clear why a
computer algebra system would not take advantage of the full sys-
temmemory). The fact that𝑄 (5, 4) took longer than𝑄 (5, 5) seems to
indicated an inefficiency in the collineation functions (which would
point to a problem of Fining). As the collineation group is larger
than the projectivity group, one would expect that 𝑄 (5, 4) is faster
than 𝑄 (5, 5) .

The second point is versatility. Orbiter is designed to solve the
classification problem based on an arbitrary combination of a group,
an action, and a partially ordered set. This cannot be said for many
other software packages.

Other types of combinatorial objects for which Orbiter’s poset
classification has been used are cubic surfaces [20, 23], BLT-sets [2,
13], optimal linear codes [16], dual hyperovals [18], arcs [3, 17], uni-
tals [1, 7], packings [14, 24], and spreads [25]. The work in [15]
shows that Orbiter is fast in many but not all cases of combinatorial
objects that were considered.

4 POSET CLASSIFICATION VERSUS

PARTITION BACKTRACK

Computing canonical forms and automorphism groups of combi-
natorial objects of geometric nature is a lot slower than expected.
For instance, computing the stabilizer of a (meaning one) [18, 9, 8]
code over F4 (a twisted tensor product code, see [12]) takes about 25
minutes using Magma (which uses Leon’s partition backtrack soft-
ware). However, in Orbiter, the classification of all [18, 9, 6] codes
over F4 is done in a matter of one or two minutes, and this includes
computing the stabilizer of the code and the related smaller codes.

We also found that computing the canonical form of cubic sur-
faces using Nauty is slow (using an associated representation as a
graph). For instance, surfaces in PG(3, 16) take quite some time in
Nauty. On the other hand, the classification of all cubic surfaces in
Orbiter is done in nomore than 30 seconds. This includes computing
the stabilizers of all surfaces (see [23]). What these examples show
is that partition backtrack does not scale well. Also, the reduction
of the isomorphism problem from projective space to a problem in
graph theorymay not be efficient. It seems that wore work is needed
to say somethingmeaningful about partition backtrack versus poset
classification.

5 UNDER THE HOOD

The connection between combinatorial objects and double cosets in
groups has been observed many times. For instance [59], describes
an application in Chemisty. Following Kerber and Laue [45], we can
say this: If the group 𝐺 is transitive on the set 𝑆 , and if 𝐻 is a sub-
group of𝐺 , then the𝐻 -orbits on 𝑆 are in one-to-one correspondence

to the double cosets
Stab𝐺 (𝑥)\𝐺/𝐻. (1)

This point of view allows to reduce poset classification purely as
a problem of determining double cosets in groups. This was the
path taken by Schmalz [61] (see also [60]), who created an algorithm
to classify double cosets in groups. Schmalz implemented his algo-
rithm in a software package called DCC (łdouble coset generator”).
One important aspect of the work by Schmalz was the use of sub-
group ladders. Subgroup ladders are sequences of subgroups, each
either contained in or containing the next group in the sequence,
such that the subgroup index between consecutive terms is small.
Good ladders starting with𝐺 and ending in 𝐻 lead to efficient clas-
sification algorithms. The author used this algorithm as a basis for
the system DISCRETA to classify designs with assumed automor-
phism groups (see [19]). The extension from orbits on sets to or-
bits on subspaces was done by Braun [27] based on earlier work by
Weinrich [70].

The difference between poset classification for subsets and poset
classification for subspaces lies in the ladder of subgroups that is
used. For orbits on subsets of size 𝑡, with |𝑆 | = 𝑛, the subgroups are
𝐻 (2𝑖+𝑗) where

𝐻 (2𝑖+𝑗)
=

{

Sym𝑖 × Sym𝑛−𝑖 if 𝑖 ≤ 𝑡, 𝑗 = 0,
Sym𝑖 × Sym1 × Sym𝑛−𝑖−1 if 𝑖 < 𝑡, 𝑗 = 1,

For orbits on subspaces of dimension 𝑡 , with 𝑆 = F𝑛𝑞 , the subgroups

are 𝐻 (2𝑖+𝑗) where

𝐻 (2𝑖+𝑗)
=

{

(GL(𝑖, 𝑞) × GL(𝑛 − 𝑖, 𝑞))/𝑍 if 𝑖 ≤ 𝑡, 𝑗 = 0,
(GL(𝑖, 𝑞) × GL(1, 𝑞) × GL(𝑛 − 𝑖 − 1, 𝑞))/𝑍 if 𝑖 < 𝑡, 𝑗 = 1,

Here, 𝑍 is the center, i.e. the group of invertible diagonal matrices.
The subgroup indices are bounded from above by 𝑛 = |𝑆 | for subset

lattices and by
𝑞𝑛−1
𝑞−1 for subspace lattices. For many applications,

this is sufficiently small and hence the algorithm is efficient in these
cases. Orbiter implements both cases. A brief description of poset
classification can be found in [15]. This paper is just a rephrasing of
the original Schmalz algorithm into the language of group invariant
relations and posets with group actions. Further comments will be
made in Section 9 below.

The use of homomorphisms of group action is an idea that was
considered bymany authors, among them Kerber and Laue [45, Sec-
tion 4]. Parker, in unpublished work from 1994, pioneered the use
of helper groups for enumerating large orbits. This was picked up
by Lübeck and Neunhöffer [51] and generalized to several helper
groups in [56]. In recent applications of poset classification to fi-
nite geometry, action homomorphisms played an important role.
For instance, in [23], the fact that PGL(4, 𝑞) is transitive on lines
of PG(3, 𝑞) was important. In [21], the action of PGL(4, 𝑞) on arcs
contained in hyperplanes of PG(3, 𝑞) is considered. In these two ap-
plications, the lowest level helper groups are the stabilizer of a line
and the stabilizer of a plane, respectively.

One important contribution of Schmalz was the idea of trading
time complexity versus space complexity. Instead of using a back-
track canonical form algorithm, the data structure built up during

33

The Orbiter Ecosystem for Combinatorial Data ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

the algorithm is used to compute canonical forms by means of con-
structive recognition. This is an important aspect of poset classifi-
cation, and this is where Schmalz differs from McKay’s canonical
augmentation. We speculate that this is a major contributor to the
success of Orbiter on problems in geometry. On the one hand, Or-
biter makes use of the previously computed isomorphisms of sub-
objects. On the other hand, the known group is utilized right away.
If reduction to graphs is used, the graph canonization algorithm has
to rediscover the group each time, leading to inefficiencies.

6 MODELING COMBINATORIAL OBJECTS

To model combinatorial structures, we aim at representing the ob-
ject as integers or sets of integers. This way, the permutation action
can be set up. It also makes it easier to store objects. Lastly, it allows
a uniform treatment of the combinatorial objects in the C++ style
of object oriented programming.

We distinguish between basic objects (łatoms”) and compound
objects. Compound objects are made up of sets of basic objects.
Since integers are the basic units for data structures on comput-
ers, it is natural to map basic objects to integers. These mappings
are bijections from the set of combinatorial objects 𝑆 to the integer
interval [0, . . . , |𝑆 | − 1] . In GAP, these bijections are called enumer-
ators. In Magma, they are called indexing functions. In orbiter, the
terminology rank and unrank function is used. The rank function
assigns to each element 𝑠 ∈ 𝑆 an integer 𝑖 ∈ [0, . . . , |𝑆 | − 1] . The
unrank function computes the element 𝑠 associated with an integer
𝑖 ∈ [0, . . . , |𝑆 | − 1] . The two functions are inverses of each other.

Once these basic objects can be enumerated, compound objects
become subsets of the set of atoms. Vector spaces over finite fields
can be represented by the set of ranks of a basis. This process of
mapping combinatorial objects to sets of integers enables a uniform
treatment of various different kinds of combinatorial objects. The
group action can be represented as permutation groups acting on
subsets. The combinatorial objects can be identified with maximal
elements in certain subposets of the subset lattice on the atomic set.

7 THE GROUPS

As already noted, a classification problem consists of a triple of
things: There is a set of objects, a group acting on them, and a par-
tially ordered set. In order to get started, Orbiter needs to learn what
the group is and how the group acts on the set. In the interest of
versatility, these ingredients need to be pulled together with little
or no extra programming. This leads us to look at a mechanism that
allows to create (almost) arbitrary groups through command line
arguments. Moreover, parts of the poset classification algorithm in-
volve group theoretic tasks, for instance when computing the sta-
bilizer of orbit representatives. This is yet another reason to look at
groups and group theoretic algorithms.

There is a well-developed theory of algorithms for permutation
groups. A central element of this theory is that of a stabilizer chain
(Sims chain). Using these techniques, very large groups can be rep-
resented efficiently on a computer. Randomized algorithms to build

Command Arguments Group

-GL 𝑛 𝑞 GL(𝑛, 𝑞)
-GGL 𝑛 𝑞 ΓL(𝑛, 𝑞)
-SL 𝑛 𝑞 SL(𝑛, 𝑞)
-SSL 𝑛 𝑞 ΣL(𝑛, 𝑞)
-PGL 𝑛 𝑞 PGL(𝑛, 𝑞)
-PGGL 𝑛 𝑞 PΓL(𝑛, 𝑞)
-PSL 𝑛 𝑞 PSL(𝑛, 𝑞)
-PSSL 𝑛 𝑞 PΣL(𝑛, 𝑞)
-AGL 𝑛 𝑞 AGL(𝑛, 𝑞)
-AGGL 𝑛 𝑞 AΓL(𝑛, 𝑞)
-ASL 𝑛 𝑞 ASL(𝑛, 𝑞)
-ASSL 𝑛 𝑞 AΣL(𝑛, 𝑞)

-GL_d_q_wr_Sym_n 𝑑 𝑞 𝑛 GL(𝑑, 𝑞) ≀ Sym(𝑛)

Table 2: Basic Matrix Groups in Orbiter

up a stabilizer chain are utilized. Such algorithms have a small prob-
ability that the output is incorrect. However, if the group order is
known in advance (which it often is), it can be used as a check to
see whether the output is correct.

A group in Orbiter can be created using command line argu-
ments. Orbiter groups fall into two main categories, depending on
what data structure is employed to store group elements. Elements
of permutation groups are represented as functions using a table of
values. Semilinear matrix group elements are stored using matrices,
possibly extended by a field automorphism, and possibly extended
by a translation vector. Every group comes with a default permuta-
tion domain. For some matrix groups, permutation domains made
up of known short orbits are used (singular vectors for orthogo-
nal group, the Hermitian variety for unitary groups). Table 2 shows
the basic matrix groups available in Orbiter. Many other groups can
be created as subgroups of these groups. For instance, the classical
groups [66] arise as the stabilizer of a sesquilinear or quadratic form.
For the orthogonal groups, the permutation representation on the
points and/or lines of the underlying quadric can be considered us-
ing suitable enumerators. The symplectic group acts on the projec-
tive space. The unitary group comes with a permutation representa-
tion on the hermitian surface, using yet another enumerator. Many
subgroups are available (for instance parabolics, Borel-subgroup,
Singer cycle, Frobenius automorphism, etc.). Groups can also be cre-
ated directly from a set of generators, for instance through com-
mand line arguments.

Orbiter distinguishes between the group and the action. The same
group can appear in many different actions. One way to create new
actions is by inducing the action. A base is an ordered sequence of
points in the permutation domain which defines a chain of point
stabilizer subgroups. The 𝑖th basic orbit is the orbit of the 𝑖th base
point under the pointwise stabilizer of the first 𝑖−1 base points. This
way, the group is decomposed into cosets of subgroups which are
manageable. Many of these algorithms become inefficient for large
basic orbits. For this reason, it is important to look for short orbits.

34

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Betten

Not every action has short orbits. Regular actions (where the stabi-
lizer of a point is trivial) are particularly difficult to handle. Some
actions are imprimitive. These actions preserve a non-trivial parti-
tion of the permutation domain (cf. [30]). In this case, the induced
action on the blocks of the partition gives rise to shorter orbits. Or-
biter uses this technique for groups of wreath product or product
action type. For those kinds of actions, the permutation domain is
extended. The additional set is a permutation domain for the action
on the blocks of the partition (in the case of product actions) or for
the action of the factors as well as the action on the set of factors in
the case of the wreath product action. These extended permutation
domains make sure that short basic orbits can be found easily. On
the other hand, the extended permutation action can be restricted
to the natural action so that the process is transparent for the user
of these groups.

8 BASIC ORBIT ALGORITHMS

One fundamental problem in computational group theory is that
of computing orbits of finite groups acting on finite sets. The most
basic orbit algorithm utilizes the technique of Schreier trees and
Schreier vectors (see [28, 36, 62]) The idea is this: Fix a generat-
ing set 𝑠1, . . . , 𝑠𝑘 for the group𝐺. Fix an element 𝑎 ∈ 𝑋 , whose orbit
under 𝐺 we wish to compute. The Schreier graph has as vertices
the elements of the orbit. A directed edge labeled 𝑠𝑖 goes from 𝑥 to
𝑦 whenever 𝑥𝑠𝑖 = 𝑦. The Schreier tree for the orbit of 𝑎 ∈ 𝑋 is a
spanning tree of the connected component containing 𝑎 in the di-
rected Schreier graph. The time and space complexity of a Schreier
tree is linear in the size of the tree. This makes Schreier trees pro-
hibitive for very large orbit problems. However, we need to know
about basic orbit algorithms because poset classification reduces to
them.

The Schreier vector allows constructive recognition: Given any
element in the orbit, the Schreier vector allows us to find a group
element which maps the orbit representative to the given element
of the orbit. The group element is found by tracing the unique path
in the tree that starts at the root node and ends at the given node.
Notice that the set of elements created by tracing each vertex in-
dividually forms a system of coset representatives for the stabilizer.
This follows from the well-known orbit-stabilizer theorem. Schreier
vectors were introduced by Schreier in connection with the Nielsen-
Schreier problem of finding generators of subgroups of free groups
(cf. [42]). For a description, see [28]. The Nielsen-Schreier result is
often used to find generators for the stabilizer of a point in a finite
group action.

One of the main applications of Schreier trees and Schreier vec-
tors is that they allow a technique to represent a permutation group
(in a fixed action) on the computer, using a data structure called a
Sims chain. Such a chain defined by a sequence of subgroups, each
of which is the stabilizer of a point in the previous. The conditions
are that the chain of subgroups starts with the group 𝐺 and ends
in the trivial group. The 𝑖th group in the chain 𝐺 (𝑖) has the form
Stab𝐺 (𝑖−1) (𝑎𝑖) for some point 𝑎𝑖 in the permutation domain (with

the exception that 𝐺 (0) = 𝐺). We assume that 𝐺 (𝑘) is trivial for
some 𝑘. The points 𝑏1, . . . , 𝑏𝑘 that are stabilized in the chain are

Bad Tree

Good Tree

Figure 2: Two Schreier trees

called the base points. A generating set 𝑋 for 𝐺 is called a strong
generating set if

𝐺 (𝑖)
= ⟨𝑋 ∩𝐺 (𝑖) ⟩

for 𝑖 = 0, . . . , 𝑘 . The construction of a base and a strong gener-
ating set is an important algorithm in the field of computational
group theory. Many implementations use a randomized version of
the Schreier-Sims algorithm (see [48, 63, 64]).

Good Schreier trees are shallow, as this reduces the average time
complexity to compute the group element needed for the construc-
tive recognition problem of orbit elements. The shape of the tree
depends on the choice of the generating set for the group. Tech-
niques to choose generators so that the Schreier trees are shallow
are described by Seress [62], based on earlier work of Babai [5]. In
Figure 2, two Schreier trees for the action of PGL(5, 2) on PG(4, 2)
are shown. The trees are computed using different generating sets.
The expectedword length is a term from information theory. It mea-
sures the average depth of the vertices in a tree (often using a proba-
bililty distribution on the labels). A low expectedword lengthmeans
that the coset representatives are easier to compute, thusmaking the
data structure more efficient. In this regard, the second tree is better
because branching happens early which reduces the expected word
length. In the example, the second tree has been created using the
randomized version of the algorithm of Babai and Seress. GAP and
Magma use schallow Schreier trees to make Sims chains for permu-
tation groups more efficent.

35

The Orbiter Ecosystem for Combinatorial Data ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

9 POSET CLASSIFICATION

The use of poset orbits for studying combinatorial objects has a
long history. In most applications, knowing the orbits helps to learn
about relations between them, such as intersection numbers, cover-
ing numbers, decomposition matrices etc.

In design theory, structure constants from the subset lattice un-
der the action of a group are used to construct designs with as-
sumed symmetries [47]. Conway uses the orbits of 𝑀24 (the Math-
ieu group) in the action on subsets to study the Witt design in [29].
A theoretical framework for groups acting on posets was given by
Plesken [57]. Intersection numbers of designs have been computed
in [9]. Applications of structure constants play a role in representa-
tion theory as well. In his MathSciNet report of [51], J. Dixon writes:

In the present paper the authors consider the compu-
tational problem of dealing with orbits of a group 𝐺
(a finite permutation group or linear group) where the
orbits are very large. They develop a technique where,
by partitioning a𝐺-orbit𝑊 into 𝐾-orbits𝑊1, . . . , 𝑊𝑚

for a suitable subgroup𝐾 of𝐺, only a small part of each
𝐺-orbit needs to be stored. At the same time they can
compute the entries 𝑎𝑖 𝑗 (𝑔) := |𝑊𝑖𝑔∩𝑊𝑗 | (𝑔 ∈ 𝐺) of the
łintersectionmatrix” efficiently. The latter turns out to
be useful in applications of the condensation method.

In his last sentence, Dixon refers to the thesis of Thackray [67].
Roughly speaking, the structure constants tell us how different or-
bits relate to each other. From an algorithmic point of view, poset
classification is often faster than the naive orbit algorithms. This is
because unless the group is trivial, poset classification does not have
to touch every element in the orbit. This makes it possible to con-
struct orbits sub-linear in the size of the orbit, which is impossible
with Schreier trees. In order to achieve this, the poset structure of
the underlying set is exploited.

The orbits of a group 𝐺 acting on a poset P allow us to define a
new poset, called the poset of orbits. The goal of poset classification
is to compute this poset. If 𝔏 is the lattice, and𝐺 is the group acting
on 𝔏, we can define a poset as

P = {𝑥 ∈ 𝔏 | 𝑃 (𝑥) = true},

for some test-function 𝑃 : 𝔏 → {true, false}.We require the follow-
ing two conditions on 𝑃 :

(1) 𝑃 is invariant under the action of the group. That is, 𝑃 (𝑥𝑔) =
𝑃 (𝑥) for all 𝑥 ∈ 𝔏 and all 𝑔 ∈ 𝐺.

(2) If 𝑥,𝑦 ∈ 𝔏 with 𝑥 ≤ 𝑦 then 𝑃 (𝑦) = true ⇒ 𝑃 (𝑥) = true.

The first property ensures that 𝐺 acts on P . The second property
implies that the property is hereditary. The two lattices currently
implemented in Orbiter are the subset lattice of a finite set and the
subspace lattice of a finite dimensional vector space over a finite
field. In both cases, Orbiter will compute the poset of orbits with
respect to the given group.

Following [15], poset classification computes the orbits of the
group𝐺 on the posetP one layer at a time, in a breadth first manner.
The next level is classified using the information already computed
at all lower levels. In order to ascend from one level to another, cer-
tain orbits called flag orbits are considered. A flag is a geometric

Type Range

Primitive polynomials over fi-
nite fields

varies

BLT-sets 𝑞 ≤ 73, see [2, 13]
Cubic surfaces 𝑞 ≤ 101, 𝑞 = 128, see [23]
Spreads varies
Dual hyperovals as in [18]

Table 3: Combinatorial Data in Orbiter

term for an incident pair in a relation. A flag orbit is an orbit of the
group on flags.

10 TABLES OF COMBINATORIAL DATA

Catalogues of combinatorial data are maintained by many authors,
and for many different structures. Some tables record the optimal
structures of a given kind, other tables are devoted to complete clas-
sifcations. There is a table for curves over finite fields with many
points (cf. [34]). Ball maintains a table of optimal arcs (cf. [6]). The
combinatorial data that is currently available in Orbiter is listed in
Table 3. New results can be incorporated in the open source system
much faster. In some cases, the data in Orbiter is more up-to-date
than what is published in the literature.

ACKNOWLEDGMENTS

The author thanks the referees of this paper for valuable comments
and many new leads, which found their way into the final version of
the paper. He also thanks the following people who contributed di-
rectly or indirectly to the development of Orbiter: AbdullahAlAzemi
for help with interfacing Nauty from Orbiter; Stefaan De Winter
for discussions on the orthogonal geometries; Robert Lazar for very
helpful comments on an earlier version of the manuscript; Sajeeb
Roy Chowdhury for help with Schreier trees and clique finding al-
gorithms; Michel Lavrauw for help with writing the GAP code for
the poset classification algorithm.

REFERENCES
[1] Abdullah Al-Azemi, Anton Betten, and Dieter Betten. Unital designs with block-

ing sets. Discrete Appl. Math., 163(part 2):102ś112, 2014.
[2] Abdullah Al-Azemi, Anton Betten, and Sajeeb Roy Chowdhury. A rainbow-clique

search algorithm for BLT-sets. In ICMS 2018ÐProceedings of the International
Congress on Mathematical Software; James H. Davenport, Manuel Kauers, George
Labahn, Josef Urban (ed.), pages 71ś79. Springer, 2018.

[3] Awss Al-ogaidi and Anton Betten. Large Arcs in Small Planes, to appear in Con-
gressus Numerantium.

[4] László Babai. Group, graphs, algorithms: the graph isomorphism problem. Pro-
ceedings of the International Congress of Mathematicians-Rio de Janeiro 2018.
Vol. IV. Invited lectures, 3319-3336, World Sci. Publ., Hackensack, NJ, 2018. 68R05.

[5] László Babai, Gene Cooperman, Larry Finkelstein, and Ákos Seress. Nearly linear
time algorithms for permutation groups with small base. In Proc. of International
Symposium on Symbolic and Algebraic Computation ISSAC ’91, pages 200ś2009.
ACM Press, New York, 1991.

[6] Simeon Ball. Table of bounds on three dimensional linear codes or (n,r)
arcs in PG(2,q), Available at https://mat-web.upc.edu/people/simeon.michael.ball/
codebounds.html, accessed 11/16/2019.

[7] John Bamberg, Anton Betten, Cheryl E. Praeger, and Alfred Wassermann. Uni-
tals in the Desarguesian projective plane of order 16. J. Statist. Plann. Inference,
144:110ś122, 2014.

[8] A. Betten. Classifying discrete objects with Orbiter. ACM Communications in
Computer Algebra 01/2014; 47(3/4):183-186.

36

https://mat-web.upc.edu/people/simeon.michael.ball/codebounds.html
https://mat-web.upc.edu/people/simeon.michael.ball/codebounds.html

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Betten

[9] A. Betten. Intersection Numbers of Designs, Ph.D. thesis, Bayreuth University,
2001.

[10] Anton Betten. Orbiter ś A program to classify discrete objects, 2019, https://
github.com/abetten/orbiter.

[11] Anton Betten. Orbiter User’s Guide. 2020. Distributed with Orbiter.
[12] Anton Betten. Twisted tensor product codes. Des. Codes Cryptogr., 47(1-3):191ś

219, 2008.
[13] Anton Betten. Rainbow cliques and the classification of small BLT-sets. In ISSAC

2013ÐProceedings of the 38th International Symposium on Symbolic and Algebraic
Computation, pages 53ś60. ACM, New York, 2013.

[14] Anton Betten. The packings of PG(3, 3) . Des. Codes Cryptogr., 79(3):583ś595,
2016.

[15] Anton Betten. How fast can we compute orbits of groups? In ICMS 2018Ð
Proceedings of the International Congress on Mathematical Software; James H. Dav-
enport, Manuel Kauers, George Labahn, Josef Urban (ed.), pages 62ś70. Springer,
2018.

[16] Anton Betten, Michael Braun, Harald Fripertinger, Adalbert Kerber, Axel Kohnert,
and Alfred Wassermann. Error-correcting linear codes, volume 18 of Algorithms
and Computation in Mathematics. Springer-Verlag, Berlin, 2006. Classification by
isometry and applications, With 1 CD-ROM (Windows and Linux).

[17] Anton Betten, Eun Ju Cheon, Seon Jeong Kim, and Tatsuya Maruta. The classifi-
cation of (42, 6)8 arcs. Adv. Math. Commun., 5(2):209ś223, 2011.

[18] Anton Betten, Ulrich Dempwolff, and Alfred Wassermann. On dual hyperovals of
rank 4 over F2 . J. Geom., 108(1):75ś98, 2017.

[19] Anton Betten, Evi Haberberger, Reinhard Laue, and Alfred Wassermann. DISC-
RETA ś A program system for the construction 𝑡 -designs. Lehrstuhl II für Mathe-
matik, Universität Bayreuth, 1999. http://www.mathe2.uni-bayreuth.de/~discreta.

[20] Anton Betten, JamesW. P. Hirschfeld, and Fatma Karaoğlu. Classification of cubic
surfaces with twenty-seven lines over the finite field of order thirteen. Eur. J.
Math., 4(1):37ś50, 2018.

[21] Anton Betten and Fatma Karaoglu. The Number of Cubic Surfaces with 27 Lines
Over a Finite Field. Accepted for publication in Journal of Algebraic Combina-
torics.

[22] Anton Betten and Fatma Karaoğlu. Classifying Cubic Surfaces over Finite Fields
with Orbiter. Software Demonstration at the International Congress on Mathe-
matical Software ś ICMS2020.

[23] Anton Betten and Fatma Karaoğlu. Cubic surfaces over small finite fields. Des.
Codes Cryptogr., 87(4):931ś953, 2019.

[24] Anton Betten, Svetlana Topalova, and Stela Zhelezova. Parallelisms of PG(3, 4)
invariant under a Baer involution. Sixteenth InternationalWorkshop onAlgebraic
and Combinatorial Coding Theory ACCT XVI. September 2-8, 2018. Svertlogorsk
near Kaliningrad. acct2018.skoltech.ru.

[25] Anton Betten and AlfredWassermann. Spreads of PG(3, 8) and PG(3, 9) contain-
ing a regulus. Congr. Numer., 226:289ś299, 2016.

[26] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235ś265, 1997. Computational
algebra and number theory (London, 1993).

[27] M. Braun. Konstruktion diskreter Strukturen unter Verwendung vonOperationen
linearer Gruppen auf dem linearen Verband. Bayreuth. Math. Schr., (69):viii+153,
2004. Dissertation, Universität Bayreuth, Bayreuth, 2003.

[28] G. Butler. Fundamental algorithms for permutation groups, volume 559 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1991.

[29] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume
290 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, New York, third edition, 1999. With
additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A.
M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov.

[30] John D. Dixon and Brian Mortimer. Permutation groups, volume 163 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1996.

[31] Mourad Elloumi and Albert Y. Zomaya. Algorithms in Computational Molecular
Biology, Techniques, Approaches and Applications. Wiley, 2011.

[32] I. A. Faradžev. Constructive enumeration of combinatorial objects. In Problèmes
combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay,
1976), volume 260 of Colloq. Internat. CNRS, pages 131ś135. CNRS, Paris, 1978.

[33] The GAP Group. GAP ś Groups, Algorithms, and Programming, Version 4.8.7, 2017.
[34] Gerard van der Geer, Everett W. Howe, Kristin E. Lauter, and Christophe Ritzen-

thaler. Tables of curves with many points, 2009. Retrieved 11/14/2019.
[35] Marshall Hall, Jr. Combinatorial theory. Wiley Classics Library. John Wiley &

Sons, Inc., New York, second edition, 1998. A Wiley-Interscience Publication.
[36] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational

group theory. Discrete Mathematics and its Applications (Boca Raton). Chapman
& Hall/CRC, Boca Raton, FL, 2005.

[37] Wolfgang Huber, Vincent J. Carey, Li Long, Seth Falcon, and Robert Gentleman.
Graphs in molecular biology. BMC Bioinformatics 8, S8 (2007). https://doi.org/10.
1186/1471-2105-8-S6-S8.

[38] Nathan Jacobson. Basic algebra. I. W. H. Freeman and Company, New York, second
edition, 1985.

[39] Christopher Jefferson. ferret ś A gap package, 2019.

[40] Christopher Jefferson, Eliza Jonauskyte, Markus Pfeiffer, and Rebecca Waldecker.
Minimal and canonical images. J. Algebra, 521:481ś506, 2019.

[41] Christopher Jefferson, Markus Pfeiffer, and Rebecca Waldecker. New refiners for
permutation group search. J. Symbolic Comput., 92:70ś92, 2019.

[42] D. L. Johnson. Topics in the theory of group presentations, volume 42 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge-
New York, 1980.

[43] P. Kaski and P. Östergård. Classification algorithms for codes and designs, volume 15
of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2006.

[44] Adalbert Kerber. Applied finite group actions, volume 19 of Algorithms and Com-
binatorics. Springer-Verlag, Berlin, second edition, 1999.

[45] Adalbert Kerber and Reinhard Laue. Group actions, double cosets, and homo-
morphisms: unifying concepts for the constructive theory of discrete structures.
volume 52, pages 63ś90. 1998. Algebra and combinatorics: interactions and appli-
cations (Königstein, 1994).

[46] Axel Kohnert. Symmetrica ś representations of the symmetric group. http://
www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/, circa 1990-2013.

[47] Earl S. Kramer and Dale M. Mesner. 𝑡 -designs on hypergraphs. Discrete Math.,
15(3):263ś296, 1976.

[48] Jeffrey S. Leon. On an algorithm for finding a base and a strong generating set for
a group given by generating permutations. Math. Comp., 35(151):941ś974, 1980.

[49] Jeffrey S. Leon. Permutation group algorithms based on partitions. I. Theory and
algorithms. J. Symbolic Comput., 12(4-5):533ś583, 1991. Computational group
theory, Part 2.

[50] Jeffrey S. Leon. Partitions, refinements, and permutation group computation. In
Groups and computation, II (New Brunswick, NJ, 1995), volume 28 of DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., pages 123ś158. Amer. Math. Soc., Providence,
RI, 1997.

[51] Frank Lübeck and Max Neunhöffer. Enumerating large orbits and direct conden-
sation. Experiment. Math., 10(2):197ś205, 2001.

[52] BrendanMcKay. Nauty and Traces (Version 2.7r1), Australian National University,
2020.

[53] Brendan D. McKay. Isomorph-free exhaustive generation. J. Algorithms,
26(2):306ś324, 1998.

[54] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Sym-
bolic Comput., 60:94ś112, 2014.

[55] J. Müller, M. Neunhöffer, and F. Noeske. Orb ś A gap package, 2006.
[56] Jürgen Müller, Max Neunhöffer, and Robert A. Wilson. Enumerating big orbits

and an application: 𝐵 acting on the cosets of Fi23 . J. Algebra, 314(1):75ś96, 2007.
[57] Wilhelm Plesken. Counting with groups and rings. J. Reine Angew. Math., 334:40ś

68, 1982.
[58] Ronald C. Read. Every one a winner or how to avoid isomorphism search when

cataloguing combinatorial configurations. Ann. Discrete Math., 2:107ś120, 1978.
Algorithmic aspects of combinatorics (Conf., Vancouver Island, B.C., 1976).

[59] E. Ruch, W. Hässelbarth, and B. Richter. Doppelnebenklassen als Klassenbe-
griff und Nomenklaturprinzip für Isomere und ihre Abzählung, Theor. Chim.
Acta(Berlin) 19(1970), 288-300.

[60] B. Schmalz. 𝑡 -Designs zu vorgegebener Automorphismengruppe. Bayreuth. Math.
Schr., 41:1ś164, 1992. Dissertation, Universität Bayreuth, Bayreuth, 1992.

[61] Bernd Schmalz. Verwendung von Untergruppenleitern zur Bestimmung von Dop-
pelnebenklassen. Bayreuth. Math. Schr., (31):109ś143, 1990.

[62] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2003.

[63] C. Sims. Computation with permutation groups, in Proc. Second Sympos. Symbolic
and Algebraic Manipulation, Assoc. Comput. Mach., New York, 1971.

[64] Charles C. Sims. Group-theoretic algorithms, a survey. In Proceedings of the In-
ternational Congress of Mathematicians (Helsinki, 1978), pages 979ś985. Acad. Sci.
Fennica, Helsinki, 1980.

[65] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge
Studies in AdvancedMathematics. Cambridge University Press, Cambridge, second
edition, 2012.

[66] D.E. Taylor. The geometry of the classical groups, volume 9 of Sigma Series in Pure
Mathematics. Heldermann Verlag, Berlin, 1992.

[67] J. G. Thackray. Modular representations of finite groups, Ph.D. thesis, Cambridge
University, 1981.

[68] H. Theißen. Eine Methode zur Normalisatorberechnung in Permutationsgruppen
mit Anwendungen in der Konstruktion primitiver Gruppen. Ph.D. thesis. 1995.
Lehrstuhl D für Mathematik, RWTH Aachen.

[69] J. H. van Lint and R. M. Wilson. A course in combinatorics. Cambridge University
Press, Cambridge, second edition, 2001.

[70] S. Weinrich. Konstruktionsalgorithmen für diskrete Strukturen und ihre Imple-
mentierung, Diploma thesis, University of Bayreuth, 1993.

[71] B. Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, Ser.
2, 9, 1968.

37

https://github.com/abetten/orbiter
https://github.com/abetten/orbiter
http://www.mathe2.uni-bayreuth.de/~discreta
acct2018.skoltech.ru
https://doi.org/10.1186/1471-2105-8-S6-S8
https://doi.org/10.1186/1471-2105-8-S6-S8
http://www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/
http://www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/

A Las Vegas Algorithm for Computing the Smith Form of a
Nonsingular Integer Matrix

Stavros Birmpilis
Cheriton School of Computer Science

University of Waterloo
sbirmpil@uwaterloo.ca

George Labahn
Cheriton School of Computer Science

University of Waterloo
glabahn@uwaterloo.ca

Arne Storjohann
Cheriton School of Computer Science

University of Waterloo
astorjoh@uwaterloo.ca

ABSTRACT

We present a Las Vegas randomized algorithm to compute the

Smith normal form of a nonsingular integer matrix. For an 𝐴 ∈

Z
𝑛×𝑛 , the algorithm requires 𝑂 (𝑛3 (log𝑛 + log | |𝐴| |)2 (log𝑛)2) bit

operations using standard integer and matrix arithmetic, where

| |𝐴| | = max𝑖 𝑗 |𝐴𝑖 𝑗 | denotes the largest entry in absolute value. Fast

integer and matrix multiplication can also be used, establishing

that the Smith form can be computed in about the same number

of bit operations as required to multiply two matrices of the same

dimension and size of entries as the input matrix.

CCS CONCEPTS

· Computing methodologies → Linear algebra algorithms;

Exact arithmetic algorithms; · Mathematics of computing →

Probabilistic algorithms.

ACM Reference Format:

Stavros Birmpilis, George Labahn, and Arne Storjohann. 2020. A Las Vegas

Algorithm for Computing the Smith Form of a Nonsingular Integer Matrix.

In International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3373207.3404022

1 INTRODUCTION

Any nonsingular matrix 𝐴 ∈ Z𝑛×𝑛 is unimodularly equivalent to a

unique diagonal matrix 𝑆 = diag(𝑠1, 𝑠2, . . . , 𝑠𝑛) in Smith form. Here

the diagonal entries, the invariant factors of 𝐴, are positive with

𝑠1 | 𝑠2 | · · · | 𝑠𝑛 , and unimodularly equivalent means there exist

unimodular (with determinant ±1) matrices𝑈 ,𝑉 ∈ Z𝑛×𝑛 such that

𝑈𝐴𝑉 = 𝑆 .

A natural goal for many computations on integer matrices is to

design algorithms that have about the same cost as multiplying to-

gether two matrices of the same dimension and size of entries as the

inputmatrix. If𝜔 is a valid exponent formatrixmultiplicationÐ two

𝑛 × 𝑛 matrices can be multiplied in 𝑂 (𝑛𝜔) operations from the do-

main of entries Ð then the target complexity is (𝑛𝜔 log | |𝐴| |)1+𝑜 (1)

bit operations, where | |𝐴| | = max𝑖 𝑗 |𝐴𝑖 𝑗 | denotes the largest entry

in absolute value, and the exponent 1 + 𝑜 (1) indicates some miss-

ing log𝑛 and loglog | |𝐴| | factors. For randomized algorithms, in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404022

addition to stating the running time, we will indicate the type. A

Monte Carlo type algorithm is allowed to return an incorrect result

with probability at most 1/2. A Las Vegas type algorithm is allowed

to report failure with probability at most 1/2, and if failure is not

reported the output is certified to be correct.

The previously fastest algorithm for Smith form is due to Kaltofen

and Villard [10]. They give a Las Vegas algorithm for computing

the characteristic polynomial in time (𝑛3.2 log | |𝐴| |)1+𝑜 (1) assuming

𝜔 = 3, and in time (𝑛2.695594 log | |𝐴| |)1+𝑜 (1) assuming the currently

best known upper bound 𝜔 ≤ 2.3728639 for 𝜔 [5] and the best

known bound for rectangular matrix multiplication [6]. Using their

characteristic polynomial algorithm together with ideas of Gies-

brecht [8], they obtain a Monte Carlo algorithm for Smith formwith

the same running time. In this paper we give a Las Vegas algorithm

for Smith form in time (𝑛𝜔 log | |𝐴| |)1+𝑜 (1) .

A Las Vegas algorithmwith the target complexity was previously

known for the determinant [13]. Like that algorithm, we utilize a

łdimension × precision ≤ invariantž compromise. By Hadamard’s

bound, | det𝐴| = 𝑠1𝑠2 · · · 𝑠𝑛 ≤ Δ
𝑛 where Δ = 𝑛1/2 | |𝐴| |. Thus, the

number of invariant factors with bitlength between (1/2𝑖) ×𝑛 logΔ

and (1/2𝑖−1) × 𝑛 logΔ is bounded by 2𝑖 . The determinant algo-

rithm [13] embeds 𝐴 into a matrix

𝐶 :=

𝐴
𝐵𝑡 𝐼
...

. . .
𝐵0 𝐼

∈ Z𝑂 (𝑛)×𝑂 (𝑛) ,

where 𝑡 = 𝑂 (log𝑛) and the blocks 𝐵𝑖 ∈ Z
𝑂 (2𝑖)×𝑛 are chosen ran-

domly, and then returns | det𝐴| = (det𝐻0) (det𝐻1) · · · (det𝐻𝑡+1),

where

𝐻 =

𝐻𝑡+1 ∗ · · · ∗
𝐻𝑡 · · · ∗

. . .
...
𝐻0

.

is the (row) Hermite form of 𝐴. With high probability, the part

of the determinant captured by 𝐻𝑖+1, which has about twice the

dimension as 𝐻𝑖 , can be computed at a precision about half that

required to compute det𝐻𝑖 . We remark that the diagonal blocks 𝐻∗
are not computed explicitly, and the offdiagonal blocks ∗ of 𝐻 are

avoided entirely.

To obtain the Smith form and not just the determinant, and to

facilitate certification of the output, we take here a more structured

approach and compute a Smith massager for 𝐴. This is a tuple of

𝑛 × 𝑛 integer matrices (𝑈 ,𝑀,𝑇 , 𝑆) such that

𝐵 :=

[
𝐴

𝐼𝑛

] [
𝐼𝑛
𝑈 𝐼𝑛

] [
𝐼𝑛 𝑀

𝑇

] [
𝐼𝑛

𝑆−1

]
∈ Z2𝑛×2𝑛 (1)

38

https://doi.org/10.1145/3373207.3404022
https://doi.org/10.1145/3373207.3404022

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Stavros Birmpilis, George Labahn, and Arne Storjohann

is integral, with 𝑇 unit upper triangular and 𝑆 nonsingular and in

Smith form. The algorithm succeeds if we compute amaximal Smith

massager, meaning that 𝑆 is the Smith form of 𝐴. Since (1) implies

(det𝐵) (det 𝑆) = det𝐴, we can conclude from the uniqueness of

the Smith form that the massager is maximal if and only if 𝐵 is

unimodular.

Our algorithm for computing the Smith form has three phases.

Phase 1 uses a Monte Carlo approach [4, Theorem 2.1] to compute

the largest invariant factor 𝑠𝑛 of 𝐴. Phase 2 iteratively computes a

Smith massager of 𝐴, together with the massaged matrix 𝐵 in (1),

which will be maximal with probability at least 1/2. Phase 3 uses a

known algorithm [11] to assay if 𝐵 is unimodular.

Phase 2 is the main part of our algorithm. It uses 𝑂 (log𝑛) itera-

tions to build a Smith massager that extracts more and more invari-

ant factors from𝐴. The algorithm begins by initializing (𝑈 ,𝑀,𝑇 , 𝑆)

to be the trivial Smith massager, with𝑈 ,𝑀 ∈ 0𝑛×𝑛 and 𝑇 = 𝑆 = 𝐼𝑛 .

At the start of iteration 𝑖 = 0, 1, 2, . . . we assume that the current

Smith massager is such that 𝐵 in (1) has the same Smith form as

𝐴 but with the largest 2𝑖 − 1 = 20 + 21 + · · · + 2𝑖−1 invariant fac-

tors replaced by 1. The goal at iteration 𝑖 is then to compute and

extract the next largest 2𝑖 invariant factors. For example, at itera-

tions 𝑖 = 0, 1 and 2, the largest 1, 2 and 4 invariant factors of the

current 𝐵 are equal to (𝑠𝑛), (𝑠𝑛−1, 𝑠𝑛−2) and (𝑠𝑛−3, 𝑠𝑛−4, 𝑠𝑛−5, 𝑠𝑛−6),

respectively. Section 3 shows how to recover the largest 2𝑖 invariant

factors of 𝐵 with high probability by computing a projection 𝐵−1 𝐽

for a randomly chosen 𝐽 with column dimension 𝑂 (2𝑖). We exploit

the fact that if 𝑠 is a multiple of the largest invariant factor of 𝐵,

then the smallest 2𝑖 invariant factors of 𝑠𝐵−1 correspond to the

largest 2𝑖 invariant factors of 𝐵. In Sections 4 and 5 we show how to

compute a Smith massager that will extract the largest 2𝑖 invariant

factors from 𝐵, while in Section 6 we show how to combine the

partial Smith massagers obtained at each iteration.

Cost model

Following [7, Section 8.3], cost estimates are given using a function

M(𝑑) that bounds the number of bit operations required to multiply

two integers bounded in magnitude by 2𝑑 . We use B(𝑑) to bound

the cost of integer gcd-related computations such as the extended

euclidean algorithm. We can always take B(𝑑) = 𝑂 (M(𝑑) log𝑑). If

M(𝑑) ∈ Ω(𝑑1+𝜖) for some 𝜖 > 0 then B(𝑑) ∈ 𝑂 (M(𝑑)).

As usual, we assume thatM is superlinear and subquadratic. We

also assume thatM(𝑎𝑏) ∈ 𝑂 (M(𝑎)M(𝑏)) for 𝑎, 𝑏 ≥ 1. We assume

that 𝜔 > 2, and to simplify cost estimates we make the assumption

that M(𝑑) ∈ 𝑂 (𝑑𝜔−1). This assumption simply stipulates that if

fast matrix multiplication techniques are used, then fast integer

multiplication techniques should also be used. The assumptions

stated in this paragraph apply also to B.

2 COMPUTATIONAL TOOLS

A key step during the iterations of phase 2 of our Smith form

algorithm is to compute a projection 𝐵−1 𝐽 for a partially mas-

saged matrix 𝐵 and a randomly chosen 𝐽 . More specifically, we

will have an 𝑠 ∈ Z>0 such that 𝑠𝐵−1 is integral, and what we need

is Rem(𝑠𝐵−1 𝐽 , 𝑠), that is, the matrix 𝑠𝐵−1 𝐽 with entries reduced

modulo 𝑠 . In this section we show how to compute Rem(𝑠𝐵−1 𝐽 , 𝑠)

within the target complexity by reducing to a deterministic variant

of high-order lifting [11, Section 3] for linear system solving.

There are two issues that arise that prevent a direct application

of fast linear system solving. First, the massaged matrix 𝐵 may have

some entries with large bitlength, adversely affecting the cost. In

Section 2.1 we recall a partial linearization technique that can be

used to obtain a matrix with smoothed entries that can be used in

lieu of 𝐵. Second, entries in 𝑠𝐵−1 𝐽 may have bitlength much larger

than the bitlength of 𝑠 . In Section 2.2 we develop a deterministic

variant of integrality certification that allows Rem(𝑠𝐵−1 𝐽 , 𝑠) to be

computed more directly, without computing 𝑠𝐵−1 𝐽 first.

2.1 Partial linearization

The number of bits in the binary representation of a positive integer

𝑎 is ⌊log2 𝑎⌋ + 1. Any integer 𝑎 thus satisfies |𝑎 | ≤ 2length(𝑎) − 1

where

length(𝑎) :=

{
1 if 𝑎 = 0

⌊log2 |𝑎 |⌋ + 1 otherwise
.

For 𝑣 an integer vector or matrix, define length(𝑣) := length(| |𝑣 | |).

The cost of high-order lifting [11, Section 3] is sensitive to

length(𝐴). This is an issue because some of the intermediate ma-

trices that we will need to give as input to the high-order lifting

algorithm will likely have some rows of large length, even though

the average row length is well bounded. In some cases, for an 𝑛 ×𝑛

input matrix 𝐴, length(𝐴) could be about 𝑛 times as large as the

average row length. For the purposes of giving a concrete example,

and not considering such an extreme case, consider the input matrix

𝐴 =

7 4 9 10
1 1 3 7

58538 43609 77404 7995
72526300 20544909 66620465 80378234

.

The lengths of the rows of 𝐴 are [4, 3, 17, 27]. Thus length(𝐴) = 27.

But the average length is bounded by 𝑑 := ⌈(4 + 3 + 17 + 27)/4⌉ =

13. With some adjustment, the partial linearization technique [9,

Section 6] developed for polynomial matrices can be applied in the

integer setting. Assuming integers are represented in binary, the

technique allows to produce from 𝐴 without computation a new

matrix

𝐴 =

7 4 9 10 0 0 0
1 1 3 7 0 0 0

1194 2649 3676 7995 −8192 0 0
2524 7565 3121 6522 0 −8192 0
7 5 9 0 1 0 0
661 2507 8132 1619 0 1 −8192
1 0 0 1 0 0 1

that satisfies | |𝐴| | ≤ 2𝑑 and can be used in lieu of 𝐴. The next

theorem summarizes the special case of partial linearization that

we require.

Theorem 1. Let 𝐴 ∈ Z𝑛×𝑛 have average row length bounded by

𝑑 ∈ Z≥0. If the (2
𝑑)-adic expansions of entries of 𝐴 are available, we

can construct without computation from 𝐴 a new matrix 𝐴 ∈ Z�̄�×�̄�

such that 𝑛 < 2𝑛, | |𝐴| | ≤ 2𝑑 , det𝐴 = det𝐴, and, if 𝐴 is nonsingular,

with the principal 𝑛 × 𝑛 submatrix of 𝐴−1 equal to 𝐴−1.

39

A Las Vegas Algorithm for Computing the Smith Form of a Nonsingular Integer Matrix ISSAC ’20, July 20–23, 2020, Kalamata, Greece

2.2 Integrality certification

Any rational number can be written as an integer and a proper

fraction. For example,

9622976468279041913

21341
= 450914974381661 +

14512

21341
,

where 450914974381661 is the quotient and 14512 is the remainder

of the numerator with respect to the denominator. A similar con-

struction replaces the quotient with a truncated 𝑝-adic expansion of

the fraction, where 𝑝 should be relatively prime to the denominator.

For example,

9622976468279041913

21341
= 9035820194880943821−

10453

21341
×264 . (2)

In our case, we only require the remainder and not the quotient.

Multiplying (2) by 21341 shows that

14512 = −10453 × 264 mod 21341.

The same idea works for integer matrices. Suppose we are given

a nonsingular integer matrix𝐴 ∈ Z𝑛×𝑛 , a 𝐵 ∈ Z𝑛×𝑚 and an 𝑠 ∈ Z>0.

Then integrality certification [13, Section 11] can test if 𝑠𝐴−1𝐵 is

integral, and, if so, return the matrix Rem(𝑠𝐴−1𝐵, 𝑠). High-order lift-

ing is used to achieve a cost that is sensitive to length(𝑠)+length(𝐵),

rather than length(𝑠𝐴−1𝐵). The algorithm in [13] is randomized.

Here we show how to solve the integrality certification problem de-

terministically using some recently developed techniques, provided

that det𝐴 ⊥ 2.

Our approach is to first use double-plus-one lifting [11, Section 3]

to compute a high-order residue 𝑅 ∈ Z𝑛×𝑛 such

𝐴−1 = 𝐷 +𝐴−1𝑅 × 2ℎ (3)

for some ℎ such that

2ℎ > 2𝑠𝑛𝑛/2 | |𝐴| |𝑛−1 | |𝐵 | |. (4)

The matrix 𝐷 , which will satisfy | |𝐷 | | ≤ (0.6)2ℎ [11, Theorem 5],

is not needed and not computed explicitly. If the dimension ×

precision compromise

𝑚 × (log 𝑠 + log | |𝐵 | |) ∈ 𝑂 (𝑛(log𝑛 + log | |𝐴| |)) (5)

holds, then by [11, Theorem 8] such an 𝑅 can be computed in time

𝑂 (𝑛𝜔 M(log𝑛 + log | |𝐴| |) log𝑛) . (6)

Now multiply equation (3) on the right by 𝑠𝐵 to see that

𝑠𝐴−1𝐵 = 𝑠𝐷𝐵 +𝐴−1 (𝑠𝑅𝐵) × 2ℎ . (7)

The next step is to use deterministic linear solving [1, Section 3] to

compute Rem(𝐴−1 (𝑠𝑅𝐵), 2ℓ) for some ℓ such that

2ℓ > 2𝑛 | |𝐴| | (0.6𝑠𝑛 | |𝐵 | |). (8)

Assuming (5), this can also be done in time (6) [1, Corollary 7].

Adjusting slightly the argument of the proof of [13, Theorem 46]

to account for the fact that 𝐷 in (3) satisfies | |𝐷 | | ≤ (0.6)2ℎ in-

stead of | |𝐷 | | ≤ 2ℎ , it can be shown, for the choices of ℎ and ℓ

in (4) and (8), respectively, that if 𝐶 is set to be the matrix equal

to Rem(𝐴−1 (𝑠𝑅𝐵), 2ℓ) but with entries reduced in the symmetric

range modulo 2ℓ , then 𝐶 = 𝑠𝐴−1𝑅𝐵 (and hence 𝑠𝐴−1𝑅𝐵 is integral)

if and only if | |𝐶 | | < 0.6𝑠𝑛 | |𝐵 | |. Considering (7), it then follows that

Rem(𝐶 × 2ℎ, 𝑠) is equal to Rem(𝑠𝐴−1𝐵, 𝑠).

We will need to apply integrality certification with an input

matrix 𝐴 that has skewed row lengths. To maintain a good com-

plexity, we can work with the partial linearization 𝐴 ∈ Z�̄�×�̄� of

Theorem 1. Compute a high-order residue 𝑅 for 𝐴. Let 𝐵 ∈ Z�̄�×𝑚

be equal to 𝐵 but augmented with 𝑛 − 𝑛 zero rows. Then the first 𝑛

rows of Rem(𝐴−1 (𝑠𝑅𝐵), 2ℓ) comprise an integrality certificate for

𝑠𝐴−1𝐵. The running time is as in (6) but with log | |𝐴| | replaced by

the average of the lengths of the rows. This gives the following.

Theorem 2. Let 𝐴 ∈ Z𝑛×𝑛 satisfying det𝐴 ⊥ 2, 𝑠 ∈ Z>0, and

𝐵 ∈ Z/(𝑠)𝑛×𝑚 be given. There exists an algorithm that will test if

𝑠𝐴−1𝐵 is integral, and, if so, return the matrix Rem(𝑠𝐴−1𝐵, 𝑠). If

𝑚 × log 𝑠 ∈ 𝑂 (𝑛(𝑑 + log𝑛)), where 𝑑 is the average of the lengths of

the rows of 𝐴, then the cost is 𝑂 (𝑛𝜔 M(𝑑 + log𝑛) log𝑛).

3 LARGEST INVARIANT FACTORS

In this section we show how the largest 𝑟 invariant factors of a non-

singular matrix 𝐴 ∈ Z𝑛×𝑛 can be recovered with high probability

by randomly sampling 𝑟 +𝑂 (log 𝑟) vectors from the columns space

of𝐴−1. The method assumes we know an 𝑠 ∈ Z>0 that is a multiple

of the largest invariant factor 𝑠𝑛 of 𝐴.

Let𝑈 ,𝑉 ∈ Z𝑛×𝑛 be unimodular with 𝑆 = 𝑈𝐴𝑉 = diag(𝑠1, . . . , 𝑠𝑛)

the Smith form of 𝐴. Then the reverse Smith form of 𝑠𝐴−1 ∈ Z𝑛×𝑛

is equal to 𝑠𝑆−1 = diag(𝑠/𝑠1, . . . , 𝑠/𝑠𝑛). By reverse Smith form we

simply mean that the order of both the rows and the columns is

reversed. The smallest invariant factor is thus located in the last row

and column. Since the largest invariant factor 𝑠/𝑠1 of the Smith form

of 𝑠𝐴−1 is a divisor of 𝑠 , the Smith form of 𝑠𝐴−1 can be computed

modulo 𝑠 over Z/(𝑠). For convenience, should a diagonal entry in

the Smith form over Z/(𝑠) vanish modulo 𝑠 , we replace it with 𝑠 . For

example, the reverse Smith form of diag(1, 2, 8, 16, 16) over Z/(16)

is equal to diag(16, 16, 8, 2, 1).

To recover only the largest 𝑟 invariant factors of 𝐴, the idea is

to choose 𝐽 ∈ Z/(𝑠)𝑛×𝑟 uniformly at random and hope that the

submatrix comprised of the last 𝑟 rows of the reverse Smith form

of 𝑠𝐴−1 𝐽 ∈ Z/(𝑠)𝑛×𝑟 is equal to 𝑆1 = diag(𝑠/𝑠𝑛−𝑟+1, . . . , 𝑠/𝑠𝑛). To

ensure a high probability of success, we adjust the recipe slightly

by augmenting 𝐽 with a small number of additional columns 𝑘 . The

main result of this section is:

Theorem 3. Let 𝐴 ∈ Z𝑛×𝑛 be nonsingular with Smith form 𝑆 =

diag(𝑠1, . . . , 𝑠𝑛). Let 𝑠 ∈ Z>0 be a multiple of 𝑠𝑛 . If 𝐽 ∈ Z/(𝑠)
𝑛×(𝑟+𝑘)

is chosen uniformly at random for 𝑟 ≥ 1 and 𝑘 ≥ 2, then, with proba-

bility at least 1− 1
2𝑘−1

, the trailing 𝑟 ×𝑟 submatrix of the reverse Smith

form of 𝑠𝐴−1 𝐽 over Z/(𝑠) is equal to 𝑆1 = diag(𝑠/𝑠𝑛−𝑟+1, . . . , 𝑠/𝑠𝑛).

Before we prove Theorem 3, we establish a property of 𝐽 ∈

Z/(𝑠)𝑛×(𝑟+𝑘) that is sufficient to ensure success. In the following

lemma, recall that𝑈 ,𝑉 ∈ Z𝑛×𝑛 are unimodular matrices such that

𝑆 = 𝑈𝐴𝑉 , and thus 𝑠𝐴−1 = 𝑉𝑠𝑆−1𝑈 .

Lemma 4. If the 𝑟 × (𝑟 +𝑘) submatrix comprised of the last 𝑟 rows

of 𝑈 𝐽 ∈ Z𝑛×(𝑟+𝑘) is right equivalent to
[
0𝑟×𝑘 𝐼𝑟

]
over Z/(𝑠),

then the trailing 𝑟 × 𝑟 submatrix of the reverse Smith form of 𝑠𝐴−1 𝐽

over Z/(𝑠) is equal to 𝑆1 = diag(𝑠/𝑠𝑛−𝑟+1, . . . , 𝑠/𝑠𝑛).

Proof. Decompose 𝑠𝑆−1 = diag(𝑆2, 𝑆1) where 𝑆1 is as in the

statement of the theorem, and 𝑆2 = diag(𝑠/𝑠1, . . . , 𝑠/𝑠𝑛−𝑟).

40

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Stavros Birmpilis, George Labahn, and Arne Storjohann

We work entirely over Z/(𝑠). By assumption, we have that

𝑈 𝐽 ≡𝑅

[
𝑈1 𝑈2

𝐼𝑟

]
(9)

for 𝑈1 ∈ Z/(𝑠)
(𝑛−𝑟)×𝑘 and 𝑈2 ∈ Z/(𝑠)

(𝑛−𝑟)×𝑟 . Since all entries in

𝑆2 are divisible by the largest invariant factor 𝑠/𝑠𝑛−𝑟+1 of 𝑆1, it will

be sufficient to show that

𝑠𝐴−1 𝐽 ≡

[
𝑆2𝑈1

𝑆1

]
.

We have

𝑠𝐴−1 𝐽 = 𝑉 (𝑠𝑆−1)𝑈 𝐽 (10)

≡𝐿 (𝑠𝑆−1)𝑈 𝐽 (11)

≡𝑅 (𝑠𝑆−1)

[
𝑈1 𝑈2

𝐼𝑟

]
(12)

=

[
𝑆2𝑈1 𝑆2𝑈2

𝑆1

]
≡𝐿

[
𝑆2𝑈1

𝑆1

]
(13)

Here, (10) follows from 𝑆 = 𝑈𝐴𝑉 , (11) because 𝑉 is unimodular,

and (12) from (9). To obtain (13), we can use a unimodular left

transformation to zero out the block 𝑆2𝑈2 since its entries are all

multiples of the diagonal entries in 𝑆1. □

We need two additional technical lemmas before proving the

main theorem.

Lemma 5. If 𝑘 ≥ 1, 𝑡 ≥ 0 and 0 < 𝑥 ≤ 1/2, then
∏𝑘+𝑡

𝑖=𝑘

(
1 − 𝑥𝑖

)
≥

1 − 2𝑥𝑘 + 𝑥𝑘+𝑡 .

Proof. We will use induction on 𝑡 . For 𝑡 = 0 the inequality is

trivially true. We assume that
∏𝑘+𝑡

𝑖=𝑘

(
1 − 𝑥𝑖

)
≥ 1 − 2𝑥𝑘 + 𝑥𝑘+𝑡 for

fixed 𝑡 , and we need to show the same for 𝑡 ← 𝑡 + 1.

𝑘+𝑡+1∏

𝑖=𝑘

(
1 − 𝑥𝑖

)
= (1 − 𝑥𝑘+𝑡+1)

𝑘+𝑡∏

𝑖=𝑘

(
1 − 𝑥𝑖

)

≥ (1 − 𝑥𝑘+𝑡+1) (1 − 2𝑥𝑘 + 𝑥𝑘+𝑡)

= 1 − 2𝑥𝑘 + 𝑥𝑘+𝑡 − 𝑥𝑘+𝑡+1 + 2𝑥2𝑘+𝑡+1 − 𝑥2(𝑘+𝑡)+1

= 1 − 2𝑥𝑘 + 𝑥𝑘+𝑡+1
(
1 +

1

𝑥
− 2 + 2𝑥𝑘 − 𝑥𝑘+𝑡

)

≥ 1 − 2𝑥𝑘 + 𝑥𝑘+𝑡+1

In the last step we used that 𝑥 ≤ 1/2. □

Lemma 6. If 𝑘 ≥ 2, then 𝜁 (𝑘 + 1) − 1 < 2−𝑘 , where 𝜁 denotes the

Riemann zeta function.

Proof. The lemma inequality is equivalent to:

𝜁 (𝑘 + 1) − 1 < 2−𝑘 ⇔

∞∑

𝑛=2

1

𝑛𝑘+1
< 2−𝑘 ⇔

∞∑

𝑛=2

(
2

𝑛

)𝑘+1
< 2.

Since the left-hand side of the last inequality is a decreasing function

on 𝑘 , it suffices to show the claim for 𝑘 = 2, i.e., 𝜁 (3) − 1 <
1
4 . □

Proof (of Theorem 3). We start by defining the following event.

𝐹𝑅𝑝 : For a prime 𝑝 that divides 𝑠 , the last 𝑟 rows of the random

matrix 𝐽 ∈ (Z/(𝑠))𝑛×(𝑟+𝑘) have full row rank over Z/(𝑝).

If the last 𝑖 rows of 𝐽 over Z/(𝑝) are linearly independent, then

they span a vector space containing 𝑝𝑖 rows. The probability that

an additional row avoids that space is (1 − 𝑝𝑖/𝑝𝑟+𝑘), and thus

Pr[𝐹𝑅𝑝] =

𝑟+𝑘∏

𝑗=𝑘+1

(
1 −

1

𝑝 𝑗

)
.

The above result has already been shown and extensively used in

the literature [2, 3]. Furthermore, by applying Lemma 5, we obtain

Pr[¬𝐹𝑅𝑝] ≤ 2
1

𝑝𝑘+1
. (14)

Next, we define the event described by Lemma 4.

𝐹𝑅𝑈 : For a matrix𝑈 ∈ Z𝑛×𝑛 , the last 𝑟 rows of the random matrix

𝑈 𝐽 ∈ (Z/(𝑠))𝑛×(𝑟+𝑘) are right equivalent to
[
0𝑟×𝑘 𝐼𝑟

]

over Z/(𝑠).

A matrix 𝐽 is right equivalent to
[
0𝑟×𝑘 𝐼𝑟

]
over Z/(𝑠) if and

only if it has full row rank over Z/(𝑝) for all primes 𝑝 that divide 𝑠 .

Therefore,

Pr[¬𝐹𝑅𝐼𝑛] ≤
∑

𝑝 |𝑠
𝑝 prime

Pr[¬𝐹𝑅𝑝] (15)

≤ 2

∞∑

𝑝=2

1

𝑝𝑘+1
(16)

= 2(𝜁 (𝑘 + 1) − 1) < 21−𝑘 . (17)

We applied the union bound in (15), equation (14) in (16), and

Lemma 6 in (17).

Finally, multiplying matrices from Z/(𝑠)𝑛×(𝑟+𝑘) with a unimod-

ular matrix 𝑈 ∈ Z𝑛×𝑛 is an isomorphism back to (Z/(𝑠))𝑛×(𝑟+𝑘) ,

which implies that Pr[𝐹𝑅𝐼𝑛] = Pr[𝐹𝑅𝑈]. So, according to Lemma 4,

the probability described in Theorem 3 must be at least Pr[𝐹𝑅𝑈] =

Pr[𝐹𝑅𝐼𝑛] > 1 − 1
2𝑘−1

. □

4 PROJECTION BASIS

Throughout this section let 𝐴 ∈ Z𝑛×𝑛 be nonsingular. In Section 3

we showed that the projection 𝐴−1 𝐽 , for a well chosen integer

matrix 𝐽 , can reveal the 𝑟 largest invariant factors of 𝐴. In this

section we show how these invariant factors can be extracted from

𝐴 to produce a matrix 𝐵 that has the same Smith form as𝐴 but with

the 𝑟 largest invariant factors replaced by trivial ones.

For any 𝐽 ∈ Z𝑛×∗, the set

Proj(𝐴, 𝐽) := {𝑣 ∈ Z1×𝑛 | 𝑣𝐴−1 𝐽 ∈ Z1×𝑟 }

forms an integer lattice. A basis of Proj(𝐴, 𝐽) is a matrix 𝐻 ∈ Z𝑛×𝑛

such that the set of all integer linear combinations of rows of 𝐻

is equal to Proj(𝐴, 𝐽). Bases of Proj(𝐴, 𝐽) are always nonsingu-

lar and are unique up to left equivalence. For example, a basis of

Proj(𝐴, 0𝑛×∗) is 𝐼𝑛 , while a basis of Proj(𝐴, 𝐼𝑛) is given by 𝐴 itself.

Lemma 7. If 𝐻 is a basis of Proj(𝐴, 𝐽), then 𝐴𝐻−1 is integral.

Proof. Since the rows of 𝐴 belong to Proj(𝐴, 𝐽), there exists a

𝐵 ∈ Z𝑛×𝑛 such that 𝐴 = 𝐵𝐻 , hence 𝐴𝐻−1 = 𝐵 is integral. □

The next two lemmas follow directly from the definition of

Proj(𝐴, 𝐽).

41

A Las Vegas Algorithm for Computing the Smith Form of a Nonsingular Integer Matrix ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 8. If 𝑠 ∈ Z>0 is such that 𝑠𝐴−1 𝐽 is integral, and 𝑃 =

Rem(𝑠𝐴−1 𝐽 , 𝑠), then

Proj(𝐴, 𝐽) = Proj(𝑠𝐼, 𝑃) = {𝑣 ∈ Z1×𝑛 | Rem(𝑣𝑃, 𝑠) = 0}.

Lemma 9. Let 𝑈 ∈ Z𝑛×𝑛 be unimodular. Then 𝐻 is a basis of

Proj(𝐴𝑈 −1, 𝐽) if and only if 𝐻𝑈 is a basis of Proj(𝐴, 𝐽).

Our final lemma will be used in the following sections to design

an algorithm for computing a Smith massager.

Lemma 10. Suppose the Smith form of𝐴 is 𝑆 = diag(𝑆2, 𝑆1), where

𝑆1 ∈ Z
𝑟×𝑟 and 𝑆2 ∈ Z

(𝑛−𝑟)×(𝑛−𝑟) . If 𝑈 ∈ Z𝑛×𝑛 is unimodular such

that 𝐻 = diag(𝐼𝑛−𝑟 , 𝑆1) is a basis of Proj(𝐴𝑈
−1, 𝐽), then the Smith

form of 𝐴𝑈 −1𝐻−1 is diag(𝐼𝑟 , 𝑆2).

5 MAXIMAL INDEX SMITH MASSAGER

In this section we combine all the results from the previous sections

to present a randomized algorithm for the Problem IndexMassager

shown in Figure 1. We begin with the following definition.

Definition 11 (Index-(𝑚, 𝑟) Smith massager). Let 𝐵 ∈ Z2𝑛×2𝑛

be nonsingular with the shape

𝐵 =

𝐴 ∗

𝐼𝑛−𝑚
∗ ∗

.

For𝑚, 𝑟 ∈ Z≥0 such that𝑚 + 𝑟 ≤ 𝑛, an index-(𝑚, 𝑟) Smith massager

for 𝐵 is a tuple (𝑈 ,𝑀,𝑇 , 𝑆) ∈ (Z𝑟×𝑛,Z𝑛×𝑟 ,Z𝑟×𝑟 ,Z𝑟×𝑟) such that the

matrix

𝐶 := 𝐵

𝐼𝑛
𝐼

𝑈 𝐼𝑟
𝐼𝑚

𝐼𝑛 𝑀
𝐼

𝑇
𝐼𝑚

𝐼𝑛
𝐼

𝑆−1

𝐼𝑚

(18)

is integral, with 𝑆 nonsingular and in Smith form, and 𝑇 unit upper

triangular. We say that (𝑈 ,𝑀,𝑇 , 𝑆) is maximal for 𝐵 if 𝑆 is comprised

of the 𝑟 largest invariant factors of the Smith form of 𝐵.

Notice that when𝑚 = 0 the matrix 𝐵 is equal to diag(𝐴, 𝐼𝑛). When,

in addition, 𝑟 = 𝑛, an index-(𝑚, 𝑟) Smith massager for diag(𝐴, 𝐼𝑛)

corresponds to a Smith massager for 𝐴 as defined in the introduc-

tion.

IndexMassager(𝐵, 𝑛,𝑚, 𝑟, 𝑠, 𝜖)

Input: 𝐵, 𝑛,𝑚 and 𝑟 are as in Definition 11. In addition, 𝑠 ∈ Z>0
and 𝜖 is such that 0 < 𝜖 < 1.

Output: An index-(𝑚, 𝑟) Smith massager (𝑈 ,𝑀,𝑇 , 𝑆) for 𝐵

with 𝑇 = 𝐼𝑟 , entries in 𝑈 and 𝑀 reduced modulo 𝑠 , and

𝑆𝑟𝑟 a divisor of 𝑠 .

Note: If 𝑠 is a positive integer multiple of the largest invariant

factor of 𝐵, and the last 𝑛 rows and columns of 𝐵−1 are

integral, then a maximal index-(𝑚, 𝑟) Smith massager for

𝐵 is returned with probability at least 1 − 𝜖 .

Figure 1: Problem IndexMassager

In the design of the algorithm we are assuming that 𝑠 is a multi-

ple of the largest invariant factor of 𝐵 and that the last 𝑛 rows and

columns of 𝐵−1 are integral. If, during the course of the algorithm,

we detect that either of these conditions is not satisfied then we sim-

ply return the trivial index-(𝑚, 𝑟) Smithmassager (0𝑟×𝑛, 0𝑛×𝑟 , 𝐼𝑟 , 𝐼𝑟)

in order to satisfy the output requirements of the problem.

As shown in Section 4, we can łmassagež away a block of the

largest invariant factors of 𝐵 by computing a basis of Proj(𝐵, 𝐽) for

a well chosen

𝐽 :=

[
𝐽1
𝐽2

]
∈ Z(𝑛+𝑛)×𝑟 .

Note that under the assumption that the last 𝑛 columns of 𝐵−1 are

integral, the basis Proj(𝐵, 𝐽) will remain invariant of the choice of

entries in the block 𝐽2 ∈ Z
𝑛×𝑟 . For this reason, we set 𝐽2 to be the

zero matrix. Entries in 𝐽1 are chosen independently and uniformly

at random from Z/(𝑠).

Next, we use the algorithm supporting Theorem 2 to check if

𝑠𝐵−1 𝐽 is integral, and, if so, compute the projection

𝑃 := Rem(𝑠𝐵−1 𝐽 , 𝑠) =

[
𝑃1
𝑃2

]
∈ Z/(𝑠) (𝑛+𝑛)×𝑟 .

Under the assumption that the last 𝑛 rows of 𝐵−1 are integral, we

expect 𝑃2 to be the 𝑛 × 𝑟 zero matrix. If 𝑠𝐵−1 𝐽 is determined not to

be integral, or 𝑃2 is not the zero matrix, then we abort and return

the trivial index-(𝑚, 𝑟) massager for 𝐵.

At this point, by Lemma 8, we have reduced the problem of com-

puting a basis of Proj(𝐵, 𝐽) to that of computing a basis of Proj(𝑠𝐼, 𝑃).

A basis of Proj(𝑠𝐼, 𝑃) can be computed as follows. First, using the

Smith form algorithm from [12, Section 7], compute matrices 𝑈 ∈

Z
𝑟×𝑛 and 𝑉 ∈ Z𝑟×𝑟 , such that det𝑉 ⊥ 𝑠 and 𝐷 := Rem(−𝑈𝑃1𝑉 , 𝑠)

is congruent to the reverse Smith form of 𝑃1 ∈ Z
𝑛×𝑟 over Z/(𝑠).

Then, we have the relations

−𝑈𝑃1𝑉 = 𝐷 mod 𝑠 and 𝑃1𝑉 = 𝑀𝐷 mod 𝑠,

for some integer matrix𝑀 ∈ Z𝑛×𝑟 . We can put those two together

and obtain

𝐼𝑛
𝐼

−𝑈 𝐼𝑟
𝐼𝑚

𝑃1
𝐼
𝐼
𝐼

𝑉 =

𝑀𝐷
𝐼
𝐷
𝐼

mod 𝑠 .

Next, we apply a unimodular left transformation to zero out the

block𝑀𝐷 , and we take right equivalence to omit 𝑉 .

𝐼𝑛 −𝑀
𝐼

𝐼𝑟
𝐼𝑚

𝐼𝑛
𝐼

−𝑈 𝐼𝑟
𝐼𝑚

𝑃1
𝐼
𝐼
𝐼

≡𝑅

𝐼
𝐼
𝐷
𝐼

mod 𝑠 (19)

Finally, define 𝑆 := 𝑠𝐷−1, which will be in regular Smith form, and

notice that 𝑆 is a basis of Proj(𝑆, 𝐼𝑟) = Proj(𝑠𝐼, 𝐷), which corre-

sponds to the non-zero part of the matrix in the right-hand side

of (19). Therefore,

𝐼𝑛
𝐼

𝑆
𝐼𝑚

𝐼𝑛 −𝑀
𝐼

𝐼𝑟
𝐼𝑚

𝐼𝑛
𝐼

−𝑈 𝐼𝑟
𝐼𝑚

(20)

must be a basis of Proj(𝑠𝐼, 𝑃) according to Lemma 9, since the two

matrices containing 𝑀 and 𝑈 are unimodular. Postmultiplying 𝐵

by the inverse of this basis results in an integer matrix according

42

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Stavros Birmpilis, George Labahn, and Arne Storjohann

to Lemma 7. That is,

𝐶 := 𝐵

𝐼𝑛
𝐼

𝑈 𝐼𝑟
𝐼𝑚

𝐼𝑛 𝑀
𝐼

𝐼𝑟
𝐼𝑚

𝐼𝑛
𝐼

𝑆−1

𝐼𝑚

.

Therefore, matrices (𝑈 ,𝑀, 𝐼𝑟 , 𝑆) form an index-(𝑚, 𝑟) Smith mas-

sager in accordance with Definition 11.

Theorem 12. If 𝑟 × log 𝑠 ∈ 𝑂 (𝑛(𝑑 + log𝑛)), where 𝑑 is the av-

erage of the lengths of the rows of 𝐵, and 𝜖 =
1
8𝑟 , then Problem

IndexMassager can be solved in time 𝑂 (𝑛𝜔 B(𝑑 + log𝑛) log𝑛).

Proof. The correctness of the algorithm follows directly from

the preceding discussion. The proposed massager fits the descrip-

tion of Definition 11. We achieve the probabilistic result, for 𝜖 =
1
8𝑟 ,

by exploiting Theorem 3. Instead of working with the projection

𝑠𝐵−1 𝐽 ∈ Z2𝑛×𝑟 , we augment 𝐽 with 𝑘 := log2 𝑟 + 4 columns. After

the Smith form computation, we keep only the last 𝑟 rows of𝑈 , the

last 𝑟 columns of 𝑀 , and the 𝑟 largest invariant factors of 𝑆 . This

massager will be maximal with probability at least 1− 1
2𝑘−1

= 1− 1
8𝑟 .

Finally, regarding the running time, the algorithm consists of

only two computational parts. The first is to test if 𝑠𝐵−1 𝐽 is integral,

and, if so, compute 𝑃 . By Theorem 2 this can be done in time

𝑂 (𝑛𝜔 M(𝑑 + log𝑛) log𝑛). The second is the reverse Smith form

computation: by [12, Corollary 7.17] which can be done in time

𝑂 (𝑛𝜔 B(𝑑 + log𝑛) log𝑛), after simplifying the cost estimate using

our assumptions on B. □

5.1 Reduced index Smith massager

In this subsection, we introduce the notion of the reduced Smith

massager, which keeps the overall size of the matrices well bounded.

Denote by 𝑈 rmod 𝑆 the matrix obtained from 𝑈 by reducing

entries in row 𝑖 modulo 𝑆𝑖𝑖 , 1 ≤ 𝑖 ≤ 𝑟 . Similarly, we denote by

𝑀 cmod 𝑆 the matrix obtained from𝑀 by reducing entries in col-

umn 𝑗 modulo 𝑆 𝑗 𝑗 , 1 ≤ 𝑗 ≤ 𝑟 .

Definition 13 (Reduced index-(𝑚, 𝑟) Smith massager). Let

(𝑈 ,𝑀,𝑇 , 𝑆) be an index-(𝑚, 𝑟) Smith massager for 𝐵 ∈ Z2𝑛×2𝑛 as in

Definition 11. We say that (𝑈 ,𝑀,𝑇 , 𝑆) is reduced if 𝑈 = 𝑈 rmod 𝑆 ,

𝑀 = 𝑀 cmod 𝑆 and 𝑇 = ((𝑇 − 𝐼𝑟) cmod 𝑆) + 𝐼𝑟

Lemma 14. Suppose (𝑈 ,𝑀,𝑇 , 𝑆) is an index-(𝑚, 𝑟) Smithmassager

for 𝐵 ∈ Z2𝑛×2𝑛 as in Definition 11. Let 𝑈 ′ = 𝑈 rmod 𝑆 and 𝑀 ′ =

𝑀 cmod 𝑆 . Let𝑇 ′ be the matrix obtained from −𝑈 ′𝑀 ′ cmod 𝑆 except

with diagonal entry 𝑇 ′𝑖𝑖 reset to 1 when 𝑆𝑖𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑟 . Then

(𝑈 ,𝑀 ′,𝑇 , 𝑆) and (𝑈 ,𝑀,𝑇 ′, 𝑆) are index-(𝑚, 𝑟) massagers for 𝐵, and

(𝑈 ′, 𝑀 ′,𝑇 ′, 𝑆) is a reduced index-(𝑚, 𝑟) Smith massager for 𝐵.

Proof. Without loss of generality, in order to simplify the pre-

sentation, we consider the case of an index-(0,𝑚) Smith massager.

By multiplying together the first three matrices in (21) we obtain

𝐵 =

𝐴 𝐴𝑀

𝐼

𝐼𝑟
𝑈 (𝑇 +𝑈𝑀)

𝐼𝑛
𝐼

𝐼𝑟
𝑆−1

.

Note that the property that 𝐴𝑀𝑆−1 is integral is equivalent to

𝐴𝑀 cmod 𝑆 being the zero matrix. But then 𝐴(𝑀 cmod 𝑆) cmod 𝑆

is also the zero matrix. This shows that (𝑈 ,𝑀 ′,𝑇 , 𝑆) is an index

massager. A similar argument shows that (𝑈 ,𝑀,𝑇 ′, 𝑆) is an index

massager. By the definition of 𝑇 ′,

(𝑇 ′ + (𝑈 rmod 𝑆) (𝑀 cmod 𝑆)) cmod 𝑆

is also the zero matrix. Since 𝑇 is unit upper triangular and also

(𝑇 +𝑈𝑀) cmod 𝑆 is the zero matrix, we have that −𝑈𝑀 cmod 𝑆 is

unit upper triangular, except that the 𝑖’th diagonal entry will be

zero for 𝑆𝑖𝑖 = 1. Using the property that 𝑆11 | 𝑆22 | · · · | 𝑆𝑚𝑚 it

follows that 𝑇 ′ is also unit upper triangular. □

6 MAXIMAL SMITH MASSAGER

In this section we develop a randomized algorithm for computing

a Smith massager for a nonsingular 𝐴 ∈ Z𝑛×𝑛 . Section 6.1 gives a

subroutine for combining an index-(0,𝑚) and index-(𝑚, 𝑟) Smith

massager to obtain an index-(0,𝑚 + 𝑟) Smith massager. The algo-

rithm is given in Section 6.2 with a proof of correctness and running

time given in Sections 6.3 and 6.4, respectively.

6.1 Combining index massagers

We show how an index-(0, 𝑛) Smith massager for diag(𝐴, 𝐼𝑛) can be

computed in a block iterative fashion. Suppose we have an index-

(0,𝑚) Smith massager (𝑈 ,𝑀,𝑇 , 𝑆) for diag(𝐴, 𝐼𝑛). Then

𝐵 :=

𝐴
𝐼
𝐼𝑟

𝐼𝑚

𝐼𝑛
𝐼
𝐼𝑟

𝑈 𝐼𝑚

𝐼𝑛 𝑀
𝐼
𝐼𝑟

𝑇

𝐼𝑛
𝐼
𝐼𝑟

𝑆−1

(21)

is integral. Let (𝑈 ′, 𝑀 ′,𝑇 ′, 𝑆 ′) be an index-(𝑚, 𝑟) Smith massager

for 𝐵. Then

𝐶 := 𝐵

𝐼𝑛
𝐼

𝑈 ′ 𝐼𝑟
𝐼𝑚

𝐼𝑛 𝑀 ′

𝐼
𝑇 ′

𝐼𝑚

𝐼𝑛
𝐼
𝑆 ′−1

𝐼𝑚

(22)

is integral. A direct computation shows that the product of the first

trio of matrices post-multiplying diag(𝐴, 𝐼𝑛) in (21) with the second

trio of matrices post-multiplying 𝐵 in (22) is equal to

𝐼𝑛
𝐼

𝑈 ′ 𝐼𝑟
𝑈 𝐼𝑚

𝐼𝑛 𝑀 ′ 𝑀
𝐼

𝑇 ′ −𝑈 ′𝑀
𝑇

𝐼𝑛
𝐼
𝑆 ′−1

𝑆−1

. (23)

Thus, the result of post-multiplying diag(𝐴, 𝐼𝑛) by the combined

trio in (23) is integral. The next result follows as a result of the

above discussion and as a corollary of Lemma 14.

Theorem 15. Let (𝑈 ,𝑀,𝑇 , 𝑆) be a reduced index-(0,𝑚) Smith

massager for diag(𝐴, 𝐼𝑛), and let (𝑈
′, 𝑀 ′,𝑇 ′, 𝑆 ′) be a reduced index-

(𝑚, 𝑟) Smith massager for the matrix 𝐵 in (21). If 𝑆 ′𝑟𝑟 is a divisor of

𝑆11, then a reduced index-(0,𝑚 + 𝑟) Smith massager for diag(𝐴, 𝐼𝑛)

is given by (𝑈 ′′, 𝑀 ′′,𝑇 ′′, 𝑆 ′′) where

𝑈 ′′ =

[
𝑈 ′

𝑈

]
, 𝑀 ′′ =

[
𝑀 ′ 𝑀

]
, 𝑆 ′′ =

[
𝑆 ′

𝑆

]
,

and

𝑇 ′′ =

[
𝑇 ′ −𝑈 ′𝑀 cmod 𝑆

𝑇

]
.

43

A Las Vegas Algorithm for Computing the Smith Form of a Nonsingular Integer Matrix ISSAC ’20, July 20–23, 2020, Kalamata, Greece

6.2 Maximal Smith massager algorithm

Algorithm SmithMassager(𝐴) is shown in Figure 2. For conve-

nience, assume for the moment that 𝑛 is equal to one less than a

power of two. Phase 2 of the algorithm initializes 𝐵 := diag(𝐴, 𝐼𝑛)

and (𝑈 ,𝑀,𝑇 , 𝑆) ∈ (Z0×𝑛,Z𝑛×0,Z0×0,Z0×0) to be the trivial index-

(0, 0) Smith massager, and then uses log2 (𝑛 + 1) applications of

Theorem 15 to update (𝑈 ,𝑀,𝑇 , 𝑆) to be an index-(0, 𝑛) Smith mas-

sager for diag(𝐴, 𝐼𝑛). The technique of Lemma 14 is used to keep

the intermediate index massagers reduced. At the beginning of iter-

ation 𝑖 of the for-loop, (𝑈 ,𝑀,𝑇 , 𝑆) is a reduced index-(0,𝑚) Smith

massager where𝑚 = 2𝑖−1 − 1. Iteration 𝑖 then updates (𝑈 ,𝑀,𝑇 , 𝑆)

to be a reduced index-(0,𝑚 + 𝑟) Smith massager where 𝑟 = 2𝑖−1.

At the end of phase 2, the algorithm has computed a Smith

massager (𝑈 ,𝑀,𝑇 , 𝑆) for 𝐴. It remains only to assay if (𝑈 ,𝑀,𝑇 , 𝑆)

is maximal. This is done by checking that the massaged matrix 𝐵 is

unimodular.

SmithMassager(𝐴)

Input: Nonsingular 𝐴 ∈ Z𝑛×𝑛 with det𝐴 ⊥ 2.

Output: A reduced maximal Smith massager for 𝐴 or FAIL.

Note: FAIL will be returned with probability less than 1/2.

(1) [Compute the largest invariant factor of 𝐴]

𝑠 := the largest invariant factor 𝑠𝑛 of 𝐴

𝑠 may be a proper divisor of 𝑠𝑛 with probability ≤ 1/4.

(2) [Compute an index-(0, 𝑛) Smith massager for diag(𝐴, 𝐼𝑛)]

(𝑈 ,𝑀,𝑇 , 𝑆) ∈ (Z0×𝑛,Z𝑛×0,Z0×0,Z0×0)

𝐵 := diag(𝐴, 𝐼𝑛)

for 𝑖 = 1 to ⌈log2 (𝑛 + 1)⌉ do

𝑚 := 2𝑖−1 − 1

𝑟 := min(2𝑖−1, 𝑛 −𝑚)

if 𝑖 > 1 then 𝑠 := 𝑆11
(a) [Compute an index-(𝑚, 𝑟) massager of 𝐵 and reduce]

(𝑈 ′, 𝑀 ′, 𝐼 , 𝑆 ′) := IndexMassager(𝐵,𝑚, 𝑟, 𝑠, 2−(𝑖+2))

𝑈 ′, 𝑀 ′ := 𝑈 ′ rmod 𝑆 ′, 𝑀 ′ cmod 𝑆 ′

𝑇 ′ := −𝑈 ′𝑀 ′ cmod 𝑆 ′, 0 diagonal entries replaced by 1

(b) [Augment massager and reduce]

𝑈 ,𝑀, 𝑆 :=

[
𝑈 ′

𝑈

]
,
[
𝑀 ′ 𝑀

]
,

[
𝑆 ′

𝑆

]

𝑇 :=

[
𝑇 ′ −𝑈 ′𝑀 cmod 𝑆

𝑇

]

(c) [Apply massager]

𝐵 :=

𝐴 𝐴𝑀𝑆−1

𝐼

𝑈 (𝑇 +𝑈𝑀)𝑆−1

(3) [Certify that (𝑈 ,𝑀,𝑇 , 𝑆) is maximal]

if | det𝐵 | = 1 then return (𝑈 ,𝑀,𝑇 , 𝑆)

else return FAIL

Figure 2: Algorithm SmithMassager

6.3 Correctness

We begin with two lemmas regarding properties of the massaged

matrix 𝐵 in phase 2(c) of the algorithm. Lemma 16 is a corollary of

Lemma 10.

Lemma 16. If (𝑈 ,𝑀,𝑇 , 𝑆) is a maximal index-(0,𝑚) Smith mas-

sager for diag(𝐴, 𝐼𝑛) with Smith form diag(𝐼𝑛, 𝑆
′, 𝑆), then the Smith

form of the massaged matrix 𝐵 ∈ Z2𝑛×2𝑛 as in (21) is diag(𝐼𝑛, 𝐼𝑚, 𝑆 ′).

Lemma 17. If (𝑈 ,𝑀,𝑇 , 𝑆) is a maximal index-(0,𝑚) Smith mas-

sager for diag(𝐴, 𝐼𝑛) and 𝐵 ∈ Z
2𝑛×2𝑛 the massaged matrix as in (21),

then the last 𝑛 rows and columns of 𝐵−1 are integral.

Proof. Notice that the augmenting operation of Theorem 15 can

also be reversed to separate a Smith massager. Wewill use induction

on𝑚. The base case, for𝑚 = 0, holds vacuously. Next, assume that

the statement of the lemma holds for a maximal index-(0,𝑚) Smith

massager (𝑈 ,𝑀,𝑇 , 𝑆). This means that: (1) the largest invariant

factor of the massaged matrix 𝐵 is 𝑠𝑛−𝑚 according to Lemma 16,

and: (2) the last 𝑛 rows of 𝐵−1 are integral according to the induc-

tion hypothesis. Now, let (𝑈 ′, 𝑀 ′,𝑇 ′, 𝑆 ′) be a maximal index-(𝑚, 1)

Smith massager for 𝐵. The product of the trio of matrices defined by

(𝑈 ,𝑀,𝑇 , 𝑆) and the product defined by (𝑈 ′, 𝑀 ′,𝑇 ′, 𝑆 ′) correspond

to a trio of matrices defined by a maximal index-(0,𝑚 + 1) Smith

massager. The inverse of the massaged matrix 𝐶 will be

𝐼𝑛
𝐼
𝑠𝑛−𝑚

𝐼𝑚

𝐼𝑛 −𝑀 ′

𝐼
1

𝐼𝑚

𝐼𝑛
𝐼

−𝑈 ′ 1
𝐼𝑚

𝐵−1 .

We see that the largest invariant factor of the product of the last

three matrices is still 𝑠𝑛−𝑚 . In addition, the row of the product that

is multiplied with 𝑠𝑛−𝑚 , is the only one from the last 𝑛 rows of

𝐵−1 to which elements from the non-integral part of 𝐵−1 are added.

Of course, multiplying with the matrix’s largest invariant factor

ensures that the last 𝑛 rows of 𝐶−1 remain integral.

Finally, the last 𝑛 columns are necessarily integral since they are

the product of integral parts. □

Theorem 18. Algorithm SmithMassager shown in Figure 2 is

correct. The algorithm returns FAIL with probability less than 1/2.

Proof. The correctness of the algorithm is certified by the uni-

modularity check in phase 3. Regarding the probability of success,

we define the following events.

• 𝐸0: In phase 1, 𝑠 is not the largest invariant factor 𝑠𝑛 of 𝐴.

• 𝐸𝑖 : At iteration 𝑖 = 1, . . . , ⌈log2 (𝑛 + 1)⌉ of phase 2, massager

(𝑈 ,𝑀,𝑇 , 𝑆) is not maximal.

In other words, in order to prove the theorem, it is enough to show

that Pr[𝐸 ⌈log2 (𝑛+1) ⌉] < 1/2. From the specification of phase 1, the

routine IndexMassager, and Lemma 17, we obtain that

Pr[𝐸0] ≤
1

4
and Pr[𝐸𝑖 |¬𝐸𝑖−1] ≤ 2−(𝑖+2) .

Furthermore,

Pr[𝐸𝑖] = Pr[𝐸𝑖 |¬𝐸𝑖−1] Pr[¬𝐸𝑖−1] + Pr[𝐸𝑖 |𝐸𝑖−1] Pr[𝐸𝑖−1]

≤ Pr[𝐸𝑖 |¬𝐸𝑖−1] · 1 + 1 · Pr[𝐸𝑖−1]

≤ 2−(𝑖+2) + Pr[𝐸𝑖−1] .

So, Algorithm SmithMassager returns FAIL with probability less

than

Pr[𝐸 ⌈log2 (𝑛+1) ⌉] ≤

⌈log2 (𝑛+1) ⌉∑

𝑖=1

2−(𝑖+2) +Pr[𝐸0] <

∞∑

𝑖=1

1

2𝑖+2
+
1

4
=

1

2
.

□

44

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Stavros Birmpilis, George Labahn, and Arne Storjohann

6.4 Complexity

We begin by bounding the cost of phases 2(b) and 2(c). Lemma 19

presents a subroutine that computes matrix 𝐵 in phase 2(c), and

Lemma 20 a subroutine that realizes the construction of Theorem 15

in phase 2(b).

Lemma 19. There exists a procedure that takes a reduced index-

(0,𝑚) Smith massager (𝑈 ,𝑀,𝑇 , 𝑆) for diag(𝐴, 𝐼𝑛), and returns a ma-

trix 𝐵 as in (21). The running time of the procedure is𝑂 (𝑛𝜔 M(log𝑛+

log | |𝐴| |).

Proof. It is enough to prove the claim for𝑚 = 𝑛. We have that

𝐵 =

[
𝐴 𝐴𝑀𝑆−1

𝑈 (𝑇 +𝑈𝑀)𝑆−1

]
.

The cost-dominating operation is the product𝑈𝑀 ∈ Z𝑛×𝑛 .

Recall that (det 𝑆) | (det𝐴), and that the entries in row 𝑖 of matrix

𝑈 and in column 𝑖 of matrix𝑀 are reduced modulo 𝑆𝑖𝑖 . Thus, for

an 𝑋 := 2ℎ ≥ ⌈𝑛1/2 | |𝐴| |⌉, the matrices 𝑈 and𝑀 can be written as

their 𝑋 -adic expansions (of length 𝑛),

𝑈 = 𝑈0 + · · · +𝑈𝑛−1𝑋
𝑛−1 and 𝑀 = 𝑀0 + · · · +𝑀𝑛−1𝑋

𝑛−1,

with 𝑈𝑖 and 𝑀𝑖 reduced modulo 𝑋 . This gives the following ex-

pression for their product:𝑈𝑀 =

∑𝑛−1
𝑖, 𝑗=0𝑈𝑖𝑀𝑗𝑋

𝑖+𝑗 . Of course, it is

impossible to perform 𝑛2 matrix multiplications within our target

complexity. Instead, we observe that since the rows or columns of

both matrices are reduced modulo the invariant factors of 𝐴, then

the higher-order coefficients of the expansion must be sparser.

According to [1, Lemma 17], if we remove the top zero rows of

each𝑈𝑖 ∈ Z/(𝑋)
𝑛×𝑛 to obtain a𝑈𝑖 ∈ Z/(𝑋)

∗×𝑛 , then the matrix

𝑈 :=

𝑈0

...

𝑈𝑛−1

has at most 2𝑛 rows. The same holds for the number of columns of

the matrix

�̄� :=
[
�̄�0 · · · �̄�𝑛−1

]
,

where each �̄�𝑖 ∈ Z/(𝑋)
𝑛×∗ is produced by removing the leading

zero columns from each component of the 𝑋 -adic expansion of𝑀 .

We can multiply𝑈 and �̄� in 𝑂 (𝑛𝜔 M(log𝑛 + log | |𝐴| |) and obtain

the (at most) 2𝑛 × 2𝑛 matrix

𝑈0�̄�0 · · · 𝑈0�̄�𝑛−1

...
. . .

...

𝑈𝑛−1�̄�0 · · · 𝑈𝑛−1�̄�𝑛−1

. (24)

The above matrix contains the result of all the 𝑈𝑖𝑀𝑗 products,

as they are equal to 𝑈𝑖�̄�𝑗 along with some additional zero rows

and columns. Finally, after multiplying each 𝑈𝑖�̄�𝑗 with 𝑋 𝑖+𝑗 , we

compute𝑈𝑀 by adding all the products together, while taking into

account their additional zero rows and columns. □

Lemma 20. The reduced index-(0,𝑚 + 𝑟) massager of Theorem 15

can be computed in time 𝑂 (𝑛𝜔 M(log𝑛 + log | |𝐴| |)).

Proof. The only nontrivial computation of Theorem 15 is the

product𝑈 ′𝑀 ∈ Z𝑟×𝑚 , and the required complexity can be achieved

by following the same technique as in Lemma 19. □

Theorem 21. The running time of the Algorithm SmithMassager

shown in Figure 2 is 𝑂 (𝑛𝜔 B(log𝑛 + log | |𝐴| |) (log𝑛)2).

Proof. Phase 1 is done in time 𝑂 (𝑛𝜔 B(log𝑛 + log | |𝐴| |) log𝑛)

using the Monte Carlo approach of [4, Theorem 2.1] combined

with fast linear system solving [1, Corollary 7] and rational num-

ber reconstruction. Phase 2 consists of 𝑂 (log𝑛) iterations of the

IndexMassager algorithm. Since matrix𝑈 is always reduced row

modulo 𝑆 , the average of the lengths of the rows of𝑈 , and conse-

quently of 𝐵, is 𝑂 (log𝑛 + log | |𝐴| |). Hence, phase 2 requires time

𝑂 (𝑛𝜔 B(log𝑛 + log | |𝐴| |) (log𝑛)2). Finally, according to [11, Sec-

tion 4], the unimodularity check in phase 3 can be performed in

time 𝑂 (𝑛𝜔 M(log𝑛 + log | |𝐴| |) log𝑛) . □

7 AN ALGORITHM FOR SMITH FORM

Given a nonsingular input matrix 𝐴 ∈ Z𝑛×𝑛 , we first compute [1]

the 2-Smith form 𝑆even = diag(2𝑒1 , . . . , 2𝑒𝑛) of 𝐴, where 2𝑒𝑖 is the

largest power of 2 that divides the 𝑖-th invariant factor of 𝐴, to-

gether with 𝐴odd such that det𝐴odd ⊥ 2, | |𝐴odd | | ≤ 𝑛 | |𝐴| |, and

𝐴odd𝑆even ≡𝑅 𝐴. Then, we compute the Smith form 𝑆odd of 𝐴odd

with Algorithm SmithMassager and return 𝑆odd𝑆even.

We remark that the algorithms in [1] were analysed under a more

restrictive cost model than the one used in this paper. Replacing

the subroutine in [1, Section 6] with the integer analogue of the

algorithm supporting [9, Theorem 7] allows 𝐴odd and 𝑆even to be

computed in 𝑂 (𝑛𝜔 M(log𝑛 + log | |𝐴| |) (log𝑛)2) bit operations.

Theorem 22. There exists a Las Vegas probabilistic algorithm

that computes the Smith form of a nonsingular 𝐴 ∈ Z𝑛×𝑛 using

𝑂 (𝑛𝜔 B(log𝑛 + log | |𝐴| |) (log𝑛)2) bit operations.

REFERENCES
[1] S. Birmpilis, G. Labahn, and A. Storjohann. Deterministic reduction of integer

nonsingular linear system solving to matrix multiplication. In Proc. Int’l. Symp.
on Symbolic and Algebraic Computation: ISSAC’19. ACM Press, New York, 2019.

[2] J. Blömer, R. Karp, and E. Welzl. The rank of sparse random matrices over finite
fields. Random Structures and Algorithms, 10(4):407ś419, July 1997.

[3] C. Cooper. On the distribution of rank of a random matrix over a finite field.
Random Structures and Algorithms, 17(3-4):197ś212, oct 2000.

[4] W. Eberly, M. Giesbrecht, and G. Villard. Computing the determinant and Smith
form of an integer matrix. In Proc. 31st Ann. IEEE Symp. Foundations of Computer
Science, pages 675ś685, 2000.

[5] F. L. Gall. Powers of tensors and fast matrix multiplication. In Proc. Int’l. Symp.
on Symbolic and Algebraic Computation: ISSAC’14. ACM Press, New York, 2014.

[6] F. L. Gall and F. Urrutia. Improved rectangular matrix multiplication using powers
of the Coppersmith-Winograd tensor. In A. Czumaj, editor, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 1029ś1046. SIAM, 2018.

[7] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, 3rd edition, 2013.

[8] M. Giesbrecht. Fast computation of the Smith form of a sparse integer matrix.
Computational Complexity, 10(1):41ś69, 11 2001.

[9] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular 𝑥-basis decompo-
sitions and derandomization of linear algebra algorithms over K[𝑥]. Journal of
Symbolic Computation, 47(4), 2012. Festschrift for the 60th Birthday of Joachim
von zur Gathen.

[10] E. Kaltofen and G. Villard. On the complexity of computing determinants. Com-
putational Complexity, 13(3ś4):91ś130, 2004.

[11] C. Pauderis and A. Storjohann. Deterministic unimodularity certification. In
Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’12, page 281ś288.
ACM Press, New York, 2012.

[12] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal
Institute of Technology, ETHśZurich, 2000.

[13] A. Storjohann. The shifted number system for fast linear algebra on integer
matrices. Journal of Complexity, 21(4):609ś650, 2005. Festschrift for the 70th
Birthday of Arnold Schönhage.

45

Computing the N -th Term of a q-Holonomic Sequence

Alin Bostan
Inria, France

ABSTRACT

In 1977, Strassen invented a famous baby-step / giant-step algorithm
that computes the factorial N ! in arithmetic complexity quasi-linear
in
√
N . In 1988, the Chudnovsky brothers generalized Strassen’s

algorithm to the computation of the N -th term of any holonomic se-
quence in the same arithmetic complexity. We design q-analogues
of these algorithms. We first extend Strassen’s algorithm to the
computation of the q-factorial of N , then Chudnovskys’ algorithm
to the computation of the N -th term of any q-holonomic sequence.
Both algorithms work in arithmetic complexity quasi-linear in

√
N .

We describe various algorithmic consequences, including the accel-
eration of polynomial and rational solving of linear q-differential
equations, and the fast evaluation of large classes of polynomials,
including a family recently considered by Nogneng and Schost.

CCS CONCEPTS

· Computing methodologies→ Algebraic algorithms.

KEYWORDS

Algorithms, complexity, q-factorial, q-holonomic sequences.

ACM Reference Format:

Alin Bostan. 2020. Computing theN -th Term of aq-Holonomic Sequence. In
International Symposium on Symbolic and Algebraic Computation (ISSAC ’20),

July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3373207.3404060

1 INTRODUCTION

A classical question in algebraic complexity theory is: how fast can
one evaluate a univariate polynomial at one point? The precise
formulation of this question depends on the model of computation.
We will mainly focus on the arithmetic complexity model, in which
one counts base field operations at unit cost.

Horner’s rule evaluates a polynomial P inO (deg(P)) operations.
Ostrowski [55] conjectured in 1954 that this is optimal for generic

polynomials (i.e., whose coefficients are algebraically independent).
This optimality result was proved a few years later by Pan [57].

However, most polynomials that one might wish to evaluate
have coefficients which are not algebraically independent. Paterson
and Stockmeyer [58] showed that for any field K, an arbitrary
polynomial P ∈ K[x] of degree n can be evaluated using O (

√
n)

nonscalar multiplications; however, their algorithm uses a linear
amount of scalar multiplications, so it is not well adapted to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404060

evaluation at points from the base field K, since in this case the
total arithmetic complexity remains linear in n.

On the other hand, for some families of polynomials, one can do
much better. Typical examples are xn and Pn (x) := xn−1+· · ·+x+1,
which can be evaluated by repeated squaring inO (logn) operations.
(Note that for Pn (x) such a fast algorithmneeds to perform division.)
By contrast, a family Fn (x) of univariate polynomials is called hard
to compute if the complexity of the evaluation of Fn grows at least
like a power in deg(Fn), whatever the algorithm used.

Paterson and Stockmeyer [58] proved the existence of polyno-
mials in K[x] which are hard to compute. Specific families of hard-
to-compute polynomials were first exhibited by Strassen [70]. The
techniques were refined and improved by Borodin and Cook [13],
Lipton [52] and Schnorr [66], who produced explicit examples of
degree-n polynomials whose evaluation requires a number of op-
erations linear in

√
n. Subsequently, various methods have been

developed to produce similar results on lower bounds, e.g., by Heintz
and Sieveking [42] using algebraic geometry, and by Aldaz et al. [4]
using a combinatorial approach. The topic is vast and very well
summarized in the book by Bürgisser, Clausen and Shokrollahi [23].

In this article, we focus on upper bounds, that is on the design of
fast algorithms for special families of polynomials, which are hard
to compute, but easier to evaluate than generic polynomials. For

instance, for the degree-
(

n
2

)

polynomial Qn (x) := P1 (x) · · · Pn (x),
a complexity in O (n) is clearly achievable. We will see in ğ2.1 that
one can do better, and attain a cost which is almost linear in

√
n (up

to logarithmic factors in n). Another example is Rn (x) :=
∑n
k=0

xk
2
,

of degree n2, and whose evaluation can also be performed in com-
plexity quasi-linear in

√
n, as shown recently by Nogneng and

Schost [54] (see ğ2.2). In both cases, these complexities are obtained
by clever although somehow ad-hoc algorithms. The starting point
of our work was the question whether these algorithms for Qn (x)

and Rn (x) could be treated in a unified way, which would allow to
evaluate other families of polynomials in a similar complexity.

The answer to this question turns out to be positive. The key idea,
very simple and natural, is to view both examples as particular cases
of the following general question: given a q-holonomic sequence,
that is, a sequence satisfying a linear recurrence with polynomial
coefficients in q and qn , how fast can one compute its N -th term?

In the more classical case of holonomic sequences (satisfying
linear recurrences with polynomial coefficients in the index n), fast
algorithms exist for the computation of the N -th term. They rely
on a basic block, which is the computation of the factorial term N !
in arithmetic complexity quasi-linear in

√
N , using an algorithm

due to Strassen [71]. The Chudnovsky brothers extended in [26]
Strassen’s algorithm to the computation of the N -th term of any
holonomic sequence in arithmetic complexity quasi-linear in

√
N .

Ourmain contribution consists in transferring these results to the
q-holonomic framework. It turns out that the resulting algorithms
are actually simpler in the q-holonomic case than in the usual
holonomic setting, essentially because multipoint evaluation on

46

https://doi.org/10.1145/3373207.3404060
https://doi.org/10.1145/3373207.3404060

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Alin Bostan

arithmetic progressions used as a subroutine in Strassen’s and
Chudnovskys’ algorithms is replaced by multipoint evaluation on
geometric progressions, which is considerably simpler [21].

A consequence of our results is that the following apparently
unrelated polynomials / rational functions can be evaluated fast
(note the change in notation, with the variable x denoted now by q):

• An (q), the generating function of the number of partitions
into n positive integers each occurring at most twice [75], i.e.,
the coefficient of tn in the product

∏

k≥1 (1 + qk t + q2k t2).
• Bn (q) :=

∏∞
i=1 (1 − qi) mod qn ; by Euler’s pentagonal theo-

rem [56, ğ5], Bn (q) = 1 +
∑

i (3i+1)<2n

(−1)i
(

q
i (3 i−1)

2 + q
i (3 i+1)

2

)

.

• The number Cn (q) of 2n × 2n upper-triangular matrices
over Fq (the finite field with q elements), whose square is
the zero matrix; by [47], Cn (q) is equal to

Cn (q) =
∑

j

[(
2n

n − 3j

)

−
(

2n

n − 3j − 1

)]
· qn2−3j2−j .

The common feature, exploited by the new algorithm, is that the
sequences (An (q))n≥0, (Bn (q))n≥0, (Cn (q))n≥0 are allq-holonomic.
Actually, q-holonomic sequences are ubiquitous, so the range of
application of our results is quite broad. This stems from the fact
that they are coefficient sequences of power series satisfying q-
differential equations, or equivalently,q-shift (or,q-difference) equa-
tions. From that perspective, our topic becomes intimately con-
nected with q-calculus. The roots of q-calculus are in works of
famous mathematicians such as Rothe, Gauss and Heine. The topic
gained renewed interest in the first half of the 20th century, with
the work, both on the formal and analytic aspects, of Tanner, Jack-
son, Carmichael, Mason, Adams, Trjitzinsky, Le Caine and Hahn,
to name just a few. Modern accounts of the various aspects of the
theory (including historical ones) can be found in [30, 32, 48].

One of the reasons for interest in q-difference equations is that,

formally, as q tends to 1, the q-derivative
f (qx)−f (x)

(q−1)x tends to f ′(x),
thus to every differential equation corresponds a q-differential equa-
tion which goes formally to the differential equation as q → 1. In
nice cases, (some of) the solutions of the q-differential equation go
to solutions of the associated differential equation as q → 1. An
early example of such a good deformation behavior is given by the
basic hypergeometric equation of Heine [48, ğ1.10].

In computer algebra, q-holonomic sequences were considered
starting from the early nineties, in the context of computer-generated
proofs of identities in the seminal paper byWilf and Zeilberger [74],
notably in Section 5 (łGeneralization to q-sums and q-multisumsž)
and in Section 6.4 (łq-sums and integralsž). Creative telescoping
algorithms for (proper) q-hypergeometric sequences are discussed
in various references [12, 25, 61]; several implementations of those
algorithms are described for instance in [45, 60, 64, 69]. Algorithms
for computing polynomial, rational and q-hypergeometric solu-
tions of q-differential equations were designed by Abramov and
collaborators [1ś3, 46]. These algorithms are important for several
reasons. One is that they lie at the heart of the vast generalization by
Chyzak [27, 28] of the Wilf and Zeilberger algorithmic theory, for
the treatment of general q-holonomic (not only q-hypergeometric)
symbolic summation and integration via creative telescoping. In
that context, a multivariate notion of q-holonomy is needed; the

foundations of the theory were laid by Zeilberger [77] and Sab-
bah [65] (in the language of D-modules), see also [25, ğ 2.5] and [37].

The simplest non-trivial holonomic sequence is n!, which combi-
natorially counts the number of permutations ofn objects. If instead
of direct counting, one assigns to every permutation π its number
of inversions inv(π), i.e., the number of pairs 1 ≤ i < j ≤ n with
π (i) > π (j), the refined count (by size and number of inversions)
is [n]q ! := (1 + q) (1 + q + q2) · · · (1 + q + · · · + qn−1). This is the
q-analogue of n!, the simplest non-trivial q-holonomic sequence.

There is also a natural q-analog of the binomial coefficients,

called the Gaussian coefficients, defined by
(

n
k

)

q
:=

[n]q !
[k]q ![n−k]q ! .

They have many counting interpretations, e.g., they count the k-
dimensional subspaces of Fnq (points on Grassmannians over Fq).
There are q-analogs to (almost) everything. To select just two basic
examples, the q-analog [5, Thm. 3.3] of the binomial theorem is

n
∏

k=1

(1 + qk−1x) =
n

∑

k=0

(

n

k

)

q

q(
k
2)xk (1)

and the q-version [5, Thm. 3.4] of the Chu-Vandermonde identity is

n
∑

k=0

qk
2
(

m

k

)

q

(

n

k

)

q

=

(

m + n

n

)

q

. (2)

The ubiquity of q-holonomic sequences is manifest in plenty
of fields: partition theory [5, 56] and other subfields of combina-
torics [33, 47]; theta functions and modular forms [51, 59, 76]; spe-
cial functions [48] and in particular orthogonal polynomials [49]; al-
gebraic geometry [31], representation theory [44]; knot theory [35ś
37]; Galois theory [43]; number theory [29].

The main message of this article is that for any example of
q-holonomic sequence occurring in those various fields, one can
compute selected coefficients faster than by a direct algorithm.

Complexity basics. We estimate the complexities of algorithms
by counting arithmetic operations (+,−,×,÷) in the base field K
at unit cost. We use standard complexity notation, such as M(d)

for the cost of degree-d multiplication in K[x] and θ for feasi-
ble exponents of matrix multiplication. The best known upper
bound is θ < 2.3729 [34]. Most arithmetic operations on univari-
ate polynomials of degree d in K[x] can be performed in quasi-
linear complexity Õ (d): multiplication, shift, interpolation, gcd,
resultant, etc∗. A key feature of these results is the reduction to
fast polynomial multiplication, which can be performed in time
M(d) = O (d logd log logd) [24, 68]. An excellent general reference
for these questions is the book by von zur Gathen and Gerhard [38].

2 TWO MOTIVATING EXAMPLES

Before presenting our main results in Section 3, we describe in
this section the approach and main ideas on two basic examples.
Both examples concern the fast evaluation of special families of
univariate polynomials. In ğ2.1, we consider polynomials of the
form

∏

ℓ (x − qℓ), and in ğ2.2 sparse polynomials of the form
∑

ℓ p
ℓxaℓ

2
+bℓ . In both cases, we first present fast ad-hoc algorithms,

then introduce equally fast alternative algorithms, which have the
nice feature that they will be generalizable to a broader setting.

∗As usual, the notation Õ (·) is used to hide polylogarithmic factors in the argument.

47

Computing the N -th Term of a q-Holonomic Sequence ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

2.1 De Feo’s question

Here is our first example, emerging from a question asked to the
author by Luca De Feo∗; this was the starting point of the article.

Let q be an element of the field K, and consider the polynomial

F (x) :=
N−1
∏

i=0

(x − qi) ∈ K[x]. (3)

Given another element α ∈ K, how fast can one evaluate F (α)?
If q = 0, then F (α) = αN can be computed in O (logN) opera-

tions in K, by binary powering. We assume in what follows that q
is nonzero. Obviously, a direct algorithm consists in computing
the successive powers q,q2, . . . ,qN−1 using O (N) operations in K,
then computing the elements α − q,α − q2, . . . ,α − qN−1 in O (N)

more operations in K, and finally returning their product. The total
arithmetic cost of this algorithm is O (N), linear in the degree of F .

Is it possible to do better? The answer is positive, as one can use
the following baby-step / giant-step strategy, in which, in order to
simplify things, we assume that N is a perfect square∗∗, N = s2:

Algorithm 1

(1) (Baby-step) Compute the values of q,q2, . . . ,qs−1, and de-
duce the coefficients of the polynomialG (x) :=

∏s−1
j=0 (x−qj).

(2) (Giant-step) ComputeQ := qs ,Q2, . . . ,Qs−1, and deduce the
coefficients of the polynomial H (x) :=

∏s−1
k=0

(α −Qk · x).
(3) Return the resultant Res(G,H).

By the basic property of resultants, the output of this algorithm is

Res(G,H)=

s−1
∏

j=0

H (qj) =

s−1
∏

j=0

s−1
∏

k=0

(

α − qsk+j
)

=

N−1
∏

i=0

(α−qi) = F (α).

Using the fast subproduct tree algorithm [38, Algorithm 10.3],
one can perform the baby-step (1) as well as the giant-step (2)
in O (M(

√
N) logN) operations in K, and by [38, Corollary 11.19]

the same cost can be achieved for the resultant computation in
step (3). Using fast polynomial multiplication, we conclude that
F (α) can be computed in arithmetic complexity quasi-linear in

√
N .

It is possible to speed up the previous algorithm by a logarithmic
factor in N using a slightly different scheme, still based on a baby-
step / giant-step strategy, but exploiting the fact that the roots of F
are in geometric progression. Again, we assume that N = s2 is a
perfect square. This alternative algorithm goes as follows. Note that
it is very close in spirit to Pollard’s algorithm [62, p. 523].

Algorithm 2

(1) (Baby-step) Compute q,q2, . . . ,qs−1, and deduce the coeffi-
cients of the polynomial P (x) :=

∏s−1
j=0 (α − qj · x).

(2) (Giant-step) ComputeQ := qs ,Q2, . . . ,Qs−1, and evaluate P
simultaneously at 1,Q, . . . ,Qs−1.

(3) Return the product P (1)P (Q) · · · P (Qs−1).
Obviously, the output of this algorithm is

s−1
∏

k=0

P (Qk) =

s−1
∏

k=0

s−1
∏

j=0

(α − qj · qsk) =
N−1
∏

i=0

(α − qi) = F (α).

∗Private (email) communication, 10 January, 2020.
∗∗If N is not a perfect square, then one can compute F (α) as F (α) = F1 (α)F2 (α),

where F1 (α) :=
∏⌊
√
N ⌋2−1

i=0 (α − qi) is computed as in Algorithm 1, while F2 (α) :=
∏N−1
i=⌊
√
N ⌋2

(α − qi) can be computed naively, since N − ⌊
√
N ⌋2 = O (

√
N).

As pointed out in the remarks after the proof of [21, Lemma 1], one
can compute P (x) = Ps (x) =

∏s−1
j=0 (α − qj · x) in step (1) without

computing the subproduct tree, by using a divide-and-conquer
scheme which exploits the fact that P2t (x) = Pt (x) · Pt (qtx) and
P2t+1 (x) = Pt (x) · Pt (qtx) · (α − q2tx). The cost of this algorithm
is O (M(

√
N)) operations in K. As for step (2), one can use the fast

chirp transform algorithms of Rabiner, Schafer and Rader [63] and of
Bluestein [11]. These algorithms rely on the following observation:

writing Qi j
= Q (i+j2) ·Q−(

i
2) ·Q−(

j
2) and P (x) =

∑s
j=0 c jx

j implies

that the needed values P (Qi) =
∑s
j=0 c jQ

i j , 0 ≤ i < s , are

P (Qi) = Q−(
i
2) ·

s
∑

j=0

c jQ
−(j2) ·Q (i+j2) , 0 ≤ i < s,

in which the sum is simply the coefficient of xs+i in the product

*.,
s

∑

j=0

c jQ
−(j2)xs−j+/-

*.,
2s
∑

ℓ=0

Q (ℓ2)xℓ
+/-.

This polynomial product can be computed in 2M(s) operations (and
even inM(s) +O (s) using the transposition principle [20, 40], since
only the median coefficients xs , . . . ,x2s−1 are actually needed). In
conclusion, step (2) can also be performed inO (M(

√
N)) operations

in K, and thusO (M(
√
N)) is the total cost of this second algorithm.

We have chosen to detail this second algorithm for several rea-
sons: not only because it is faster by a factor log(N) compared to the
first one, but more importantly because it has a simpler structure,
which will be generalizable to the general q-holonomic setting.

2.2 Evaluation of some sparse polynomials

Let us now consider the sequence of sparse polynomial sums

v
(p,a,b)
N

(q) =

N−1
∑

n=0

pnqan
2
+bn ,

where p ∈ K and a,b ∈ Q such that 2a,a +b are both integers. Typ-
ical examples are (truncated) modular forms [59], which are ubiqui-
tous in number theory [76] and combinatorics [5]. For instance, the
Jacobi theta function ϑ3 depends on two complex variables z ∈ C,
and τ ∈ C with ℑ(τ) > 0, and it is defined by

ϑ3 (z;τ) =
∞
∑

n=−∞
eπi (n

2τ+2nz)
= 1 + 2

∞
∑

n=1

ηnqn
2
,

where q = eπiτ is the nome (|q | < 1) and η = e2πiz . Here, K = C.
Another example is the Dedekind eta function, appearing in Euler’s
famous pentagonal theorem [56, ğ5], which has a similar form

q
1
24 · *,1 +

∞
∑

n=1

(−1)n
(

q
n (3n−1)

2 + q
n (3n+1)

2

)+- , with q = e2πiτ .

Moreover, sums of the form v
(1,a,b)
N

(q) =
∑N−1
n=0 qan

2
+bn , over

K = Q or K = F2, crucially occur in a recent algorithm by Tao,
Crott and Helfgott [72] for the efficient construction of prime num-
bers in given intervals, e.g., in the context of effective versions of
Bertrand’s postulate. Actually, (the proof of) Lemma 3.1 in [72] con-
tains the first sublinear complexity result for the evaluation of the

sumv
(p,a,b)
N

(q) at an arbitrary point q; namely, the cost isO (N θ /3),
where θ ∈ [2, 3] is any feasible exponent for matrix multiplication.

48

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Alin Bostan

Subsequently, Nogneng and Schost [54] designed a faster algorithm,
and lowered the cost down to Õ (

√
N). Our algorithm is similar in

spirit to theirs, as it also relies on a baby-step / giant-step strategy.
Let us first recall the principle of the Nogneng-Schost algo-

rithm [54]. Assume as before that N is a perfect square, N = s2.
The starting point is the remark that

v
(p,a,b)
N

(q) =

N−1
∑

n=0

pnqan
2
+bn
=

s−1
∑

k=0

s−1
∑

j=0

p j+skqa (j+sk)
2
+b (j+sk)

can be written
s−1
∑

k=0

pskqas
2k2
+bsk · P (q2ask), where P (y) :=

s−1
∑

j=0

p jqaj
2
+bjy j .

Therefore, the computation ofv
(p,a,b)
N

(q) can be reduced essentially
to the simultaneous evaluation of the polynomial P at s = 1+deg(P)
points (in geometric progression), with arithmetic cost O (M(

√
N)).

We now describe an alternative algorithm, of similar complexity
O (M(

√
N)), with a slightly larger constant in the big-Oh estimate,

but whose advantage is its potential of generality.

Let us denote by un (q) the summand pnqan
2
+bn . Clearly, the

sequence (un (q))n≥0 satisfies the recurrence relation

un+1 (q) = A(q,qn) · un (q), where A(x ,y) := pxa+by2a .

As an immediate consequence, the sequence with general term
vn (q) :=

∑n−1
k=0

uk (q) satisfies a similar recurrence relation

vn+2 (q) −vn+1 (q) = A(q,qn) · (vn+1 (q) −vn (q)),
with initial conditions v0 (q) = 0 and v1 (q) = 1. This scalar recur-
rence of order two is equivalent to the first-order matrix recurrence[

vn+2
vn+1

]
=

[
A(q,qn) + 1 −A(q,qn)

1 0

]
×
[
vn+1
vn

]
.

By unrolling this matrix recurrence, we deduce that[
vn+1
vn

]
= M (qn−1)

[
vn
vn−1

]
= M (qn−1) · · ·M (q)M (1)

[
1
0

]
,

where

M (x) :=

[
pqa+bx2a + 1 −pqa+bx2a

1 0

]
,

hence vN =
[
0 1

]
× M (qN−1) · · ·M (q)M (1) ×

[
1
0

]
. Therefore,

the computation of vN reduces to the computation of the łmatrix
q-factorialž M (qN−1) · · ·M (q)M (1), which can be performed fast
by using a baby-step / giant-step strategy similar to the one of the
second algorithm in ğ2.1. Again, we assume for simplicity that
N = s2 is a perfect square. The algorithm goes as follows.

Algorithm 3 (matrix q-factorial)

(1) (Baby-step) Compute q,q2, . . . ,qs−1; deduce the coefficients
of the polynomial matrix P (x) := M (qs−1x) · · ·M (qx)M (x).

(2) (Giant-step) Compute Q := qs ,Q2, . . . ,Qs−1, and evaluate
(the entries of) P (x) simultaneously at 1,Q, . . . ,Qs−1.

(3) Return the product P (Qs−1) · · · P (Q)P (1).

By proceeding as in Algorithm 2 in ğ2.1, the complexity of Al-
gorithm 3 already is quasi-linear in

√
N . However, its dependence

in a,b is quite high (quasi-linear in a and b). If a and b are fixed and
considered as O (1) this dependence is invisible, but otherwise the

following variant has the same complexity with respect to N , and
a much better cost with respect to a and b. It is based on the simple
observation that, if M̃ (x) denotes the polynomial matrix

M̃ (x) :=

[
prx + 1 −prx

1 0

]
, with r := qa+b , (4)

and if q̃ := q2a , then the following matrix q-factorials coincide:

M (qN−1) · · ·M (q)M (1) = M̃ (q̃N−1) · · · M̃ (q̃)M̃ (1).

Algorithm 4 (matrix q-factorial, variant)

(0) (Precomputation) Compute r := qa+b , q̃ := q2a , and M̃ in (4).
(1) (Baby-step) Compute q̃, q̃2, . . . , q̃s−1; deduce the coefficients

of the polynomial matrix P̃ (x) := M̃ (q̃s−1x) · · · M̃ (q̃x)M̃ (x).
(2) (Giant-step) Compute Q̃ := q̃s , Q̃2, . . . , Q̃s−1, and evaluate

(the entries of) P̃ (x) simultaneously at 1, Q̃, . . . , Q̃s−1.
(3) Return the product P̃ (Q̃s−1) · · · P̃ (Q̃)P̃ (1).

Using binary powering, the cost of the additional precomputation
in step (0) is only logarithmic in a and b. In exchange, the new
steps (2) and (3) are performed on matrices whose degrees do not
depend on a and b anymore (in the previous, unoptimized, version
the degrees of the polynomial matrices were linear in a and b). The
total arithmetic cost with respect to N is still quasi-linear in

√
N .

3 MAIN RESULTS

In this section, we generalize the algorithms from ğ2, and show
that they apply to the general setting of q-holonomic sequences.

3.1 Preliminaries

A sequence is q-holonomic if it satisfies a nontrivial q-recurrence,
that is, a linear recurrence with coefficients polynomials in q and qn .

Definition 3.1 (q-holonomic sequence). LetK be a field, and q ∈ K.
A sequence (un (q))n≥0 in KN is called q-holonomic if there exist
r ∈ N and polynomials c0, . . . , cr in K[x ,y], with cr , 0, such that

cr (q,q
n)un+r (q) + · · · + c0 (q,qn)un (q) = 0, for all n ≥ 0. (5)

The integer r is called the order of the q-recurrence (5). When r = 1,
we say that (un (q))n≥0 is q-hypergeometric.

The most basic examples are the q-bracket and the q-factorial,

[n]q := 1 + q + · · · + qn−1 and [n]q ! :=
n

∏

k=1

[k]q . (6)

They are clearly q-holonomic, and even q-hypergeometric.

The sequences (un) = (qn), (vn) = (qn
2
) and (wn) = (q(

n
2)) are

also q-hypergeometric, since they satisfy the recurrence relations

un+1 − qun = 0, vn+1 − q2n+1vn = 0, wn+1 − qnwn = 0.

However, the sequence (qn
3
) is not q-holonomic [37, Ex. 2.2(b)].

Another basic example is the q-Pochhammer symbol

(x ;q)n :=
n−1
∏

k=0

(1 − xqk) (7)

which is also q-hypergeometric, since (x ;q)n+1− (1−xqn) (x ;q)n =
0. In particular, the sequence (q;q)n :=

∏n
k=1

(1−qk), also denoted
(q)n , is q-hypergeometric and satisfies (q)n+1 − (1−qn+1) (q)n = 0.

49

Computing the N -th Term of a q-Holonomic Sequence ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

As mentioned in the introduction, q-holonomic sequences show
up in various contexts. As an example, in (quantum) knot theory, the
(łcoloredž) Jones function of a (framed oriented) knot (in 3-space) is
a powerful knot invariant, related to the Alexander polynomial [6];
it is a q-holonomic sequence of Laurent polynomials [36]. Its re-
currence equations are themselves of interest, as they are closely
related to the A-polynomial of a knot, via the AJ conjecture, verified
in some cases using massive computer algebra calculations [35].

It is well known that the class of q-holonomic sequences is
closed under several operations, such as addition, multiplication,
Hadamard product and monomial substitution [37, 45]. All these
closure properties are effective, i.e., they can be executed algorithmi-
cally on the level of q-recurrences. Several computer algebra pack-
ages are available for the manipulation of q-holonomic sequences,
e.g., the Mathematica packages qGeneratingFunctions [45] and
HolonomicFunctions [50], and the Maple packages qsum [12],
qFPS [69], qseries and QDifferenceEquations.

A simple but useful fact is that the order-r scalar q-recurrence (5)
can be translated into a first-order recurrence on r × 1 vectors:

un+r
.
.
.

un+1

=

− cr−1cr
· · · − c1cr − c0cr

1 · · · 0 0
.
.
.

. . .
.
.
.

.

.

.

0 · · · 1 0

×

un+r−1
.
.
.

un

. (8)

In particular, the N -th term of the q-holonomic sequence (un) is
simply expressible in terms of the matrix q-factorial

M (qN−1) · · ·M (q)M (1), (9)

whereM (qn) denotes the companion matrix from equation (8).

3.2 Computation of the q-factorial

We now give the promised q-analogue of Strassen’s result on the
computation of N ! inO (M(

√
N) logN) arithmetic operations. Note

that Strassen’s case q = 1 is also covered by [19, ğ6], where the cost
O (M(

√
N)) is reached under some invertibility assumptions.

Theorem 3.2. Let K be a field, let q ∈ K \ {1} and N ∈ N. The
q-factorial [N]q ! can be computed usingO (M(

√
N)) operations in K.

The same is true for the q-Pochhammer symbol (α ;q)N for any α ∈ K.

Proof. If α = 0, then (α ;q)N = 1. If q = 0, then [N]q ! = 1 and
(α ;q)N = 1 − α . We can assume that q ∈ K \ {0, 1} and α ∈ K \ {0}.
We have [N]q ! = rN · F (q−1) and (α ;q)N = αN · F (α−1), where
r := q/(1−q) and F (x) :=∏N−1

i=0 (x−qi). Algorithm 2 can be used to

compute F (q−1) and F (α−1) inO (M(
√
N)) operations inK. The cost

of computing rN and αN is O (logN), and thus it is negligible. □

Corollary 3.3. Under the assumptions of Theorem 3.2 and for

any n ∈ N, one can compute in O (M(
√
N)) operations in K:

• the q-binomial coefficient
(

N
n

)

q
;

• the coefficient of xn in the polynomial
∏N

k=1
(1 + qk−1x);

• the sum
(

N−n
0

)

q

(

n
0

)

q
+q

(

N−n
1

)

q

(

n
1

)

q
+ · · ·+qn2 (N−n

n

)

q

(

n
n

)

q
.

Proof. The first assertion is a direct consequence of Theorem 3.2.
The second assertion is a consequence of the first one, and of (1).
The third assertion is a consequence of the first one, and of (2). □

3.3 N -th term of a q-holonomic sequence

We give the promised q-analogue of Chudnovskys’ result on the
computation of the N -th term of an arbitrary holonomic sequence
inO (M(

√
N) logN) arithmetic operations. Note that Chudnovskys’

case q = 1 is also covered by [19, ğ6], where the improved cost
O (M(

√
N)) is reached under additional invertibility assumptions.

Theorem 3.4. Let K be a field, q ∈ K \ {1} and N ∈ N. Let
(un (q))n≥0 be a q-holonomic sequence satisfying recurrence (5), and
assume that cr (q,q

k) is nonzero for k = 0, . . . ,N − 1. Then, uN (q)

can be computed in O (M(
√
N)) operations in K.

Proof. Using equation (8), it is enough to show that the matrix
q-factorialM (qN−1) · · ·M (q)M (1) can be computed in O (M(

√
N)),

where M (qn) denotes the companion matrix from equation (8).
Algorithms 3 and 4 adapt mutatis mutandis to this effect. □

Corollary 3.5. Let K be a field, q ∈ K not a root of unity, and

N ∈ N. Let eq (x) be the q-exponential series

eq (x) :=
∑

n≥0

xn

[n]q !

and let E
(N)
q (x) := eq (x) mod xN be its truncation of degree N − 1.

If α ∈ K, one can compute E
(N)
q (α) in O (M(

√
N)) operations in K.

Proof. Denote the summand αn

[n]q !
by un (q). Then (un (q))n is

q-hypergeometric, and satisfies the recurrence [n + 1]qun+1 (q) −
αun = 0, therefore vN (q) :=

∑N−1
i=0 ui (q) satisfies the second-order

recurrence [n + 1]q (vn+2 (q) −vn+1 (q)) − α (vn+1 (q) −vn (q)) = 0.
Applying Theorem 3.4 to vN (q) concludes the proof. □

Remark that the same result holds if eq (x) is replaced by any
power series satisfying a q-differential equation. For instance, one
can evaluate fast all truncations of Heine’s q-hypergeometric series

2ϕ1 ([a,b], [c];q;x) :=
∑

n≥0

(a;q)n (b;q)n
(c;q)n

· xn

(q)n
.

Remark that Theorem 3.4 can be adapted to the computation of
several coefficients of a q-holonomic sequence. We omit the proof,
which is similar to that of Theorem 15 in [19].

Theorem 3.6. Under the assumptions of Theorem 3.4, let N1 <

N2 < · · · < Ns = N be positive integers, where s < N
1
2−ε for some

0 < ε < 1
2 . Then, the terms uN1 (q), . . . ,uNs

(q) can be computed

altogether in O (M(
√
N)) operations in K.

3.4 The case q is an integer: bit complexity

Until now, we only considered the arithmetic complexity model.
We briefly discuss here the case where q is an integer (or rational)
number. The arithmetic complexity model needs to be replaced by
the bit-complexity model, and the matrix q-factorials from ğ3.1 are
computed by binary splitting rather than by baby-steps / giant-steps.

As an illustrative example, consider the computation of the term

uN (q) =
∑N−1
n=0 qn

2
, where q is assumed to be an integer of B bits.

The integer uN (q) is bounded in absolute value by NqN
2
, so its

bitsize is of magnitude N 2B. The łnaivež algorithm consisting of

computing the summands qn
2
one after the other, before summing

50

https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/qGeneratingFunctions.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
http://www.hypergeometric-summation.org
http://www.hypergeometric-summation.org
http://www.hypergeometric-summation.org
https://qseries.org/fgarvan/qmaple/qseries/index.html
https://fr.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Alin Bostan

them, has bit complexity Õ (N 3B). This is not (quasi-)optimal with
respect to the output size. Can one do better? The answer is łyesž.
It is sufficient to use the q-holonomic character of uN (q), and to
reduce its computation to that of a q-factorial matrix (9) as in ğ2.2.
Now the point is that, instead of using baby-steps / giant-steps, it is
a better idea to use binary splitting. The complexity of this approach
becomes then quasi-optimal, that is Õ (N 2B), which is quasi-linear
in the bitsize of the output. The following general result can be
proved along the same lines.

Theorem 3.7. Under the assumptions of Theorem 3.4, with K = Q,

the term uN (q) can be computed in Õ (N 2B) bit operations, where B

is the bitsize of q.

As a corollary, (truncated) solutions of q-differential equations
can be evaluated using the same (quasi-linear) bit complexity. This
result should be viewed as the q-analogue of the classical fact that
holonomic functions can be evaluated fast using binary splitting,
a 1988 result by the Chudnovsky brothers [26, ğ6], anticipated
a decade earlier (without proof) by Schroeppel and Salamin in
Item 178 of [7]; see [8, ğ12] for a good survey on binary splitting.

4 APPLICATIONS

4.1 Combinatorial q-holonomic sequences

As already mentioned, many q-holonomic sequences arise in combi-
natorics, for example in connection with the enumeration of lattice

polygons, where q-analogues of the Catalan numbers 1

n+1

(

2n
n

)

oc-
cur naturally [33, 39], or in the enumeration of special families
of matrices with coefficients in the finite field Fq [47], where se-

quences related to the Gaussian coefficients
(

n
k

)

q
also show up.

A huge subfield of combinatorics is the theory of partitions [5],
whereq-holonomic sequences occur as early as in the famous Roger-
Ramanujan identities [5, Ch. 7], e.g.,

1 +

∑

n≥1

qn
2

(1 − q) · · · (1 − qn) =
∏

n≥0

1

(1 − q5n+1) (1 − q5n+4)

which translates the fact that the number of partitions of n into
parts that differ by at least 2 is equal to the number of partitions
of n into parts congruent to 1 or 4modulo 5. Andrews [5, Chapter 8]
laid the foundations of a theory able to capture the q-holonomy of
any generating function of a so-called linked partition ideal.

As a consequence, a virtually infinite number of special families
of polynomials coming from partitions can be evaluated fast. For
instance, the family of truncated polynomials

Fn (x) :=

∞
∏

k=1

(1 − xk)3 mod xn ,

can be evaluated fast due to our results and to the identity [56, ğ6]

FN (q) =
∑

(n+12)<N

(−1)n (2n + 1)q(
n+1
2) .

4.2 Evaluation of q-orthogonal polynomials

In the theory of special functions, orthogonal polynomials play a
fundamental role. There exists an extension to the q-framework of
the theory, see e.g., Chapter 9 in Ernst’s book [32]. Amongst the

most basic examples, the discrete q-Hermite polynomials are defined
by their q-exponential generating function

∑

n≥0
Fn,q (x)

tn

[n]q !
=

eq (xt)

eq (t)eq (−t)
,

and therefore they satisfy the second-order linear q-recurrence

Fn+1,q (x) = xFn,q (x) − (1 − qn)qn−1Fn−1,q (x), n ≥ 1,

with initial conditions F0,q (x) = 1, F1,q (x) = x . From there, it fol-
lows that for any α ∈ K, the sequence (Fn,q (α))n≥0 is q-holonomic,
thus the evaluation of then-th polynomial at x = α can be computed
fast. The same is true for the continuous q-Hermite polynomials, for
which 2αHn,q (α) = Hn+1,q (α) + (1 − qn)Hn−1,q (α) for n ≥ 1, and
H0,q (α) = 1,H1,q (α) = 2α . More generally, our results in ğ3 imply
that any family of q-orthogonal polynomials can be evaluated fast.

4.3 Polynomial and rational solutions of

q-differential equations

The computation of polynomial and rational solutions of linear dif-
ferential equations lies at the heart of several important algorithms,
for computing hypergeometric and Liouvillian solutions, for fac-
toring and for computing differential Galois groups [73]. Creative
telescoping algorithms (of second generation) for multiple integra-
tion with parameters [28, 50] also rely on computing rational solu-
tions, or deciding their existence. The situation is completely similar
for q-differential equations: improving algorithms for polynomial
and rational solutions of such equations is important in finding
q-hypergeometric solutions [3], in computing q-differential Galois
groups [43], and in performing q-creative telescoping [28, 49, 50].

In both differential and q-differential cases, algorithms for com-
puting polynomial solutions proceed in two distinct phases: (i) com-
pute a degree bound N , potentially exponentially large in the equa-
tion size; (ii) reduce the problem of computing polynomial solu-
tions of degree at most N to linear algebra. Abramov, Bronstein and
Petkovšek showed in [1] that, in step (ii), linear algebra in sizeN can
be replaced by solving a much smaller system, of polynomial size.
However, setting up this smaller system still requires linear time
in N , essentially by unrolling a (q-)linear recurrence up to terms of
indices close to N . For differential (and difference) equations, this
step has been improved in [17, 18], by using Chudnovskys’ algo-
rithms for computing fast the N -th term of a holonomic sequence.
This allows for instance to decide (non-)existence of polynomial
solutions in sublinear time Õ (

√
N). Moreover, when polynomial so-

lutions exist, one can represent / manipulate them in compact form

using the recurrence and initial terms as a compact data structure.
The same improvements can be transferred toq-differential equa-

tions, in order to improve the existing algorithms [1, 2, 46]. In this
case, setting up the smaller system in phase (ii) amounts to com-
puting the N -th term of a q-holonomic sequence, and this can be
done fast using our results in ğ3∗.

∗A technical subtlety is that, as pointed out in [1, ğ4.3], it is not obvious in the q-
differential case how to guarantee the non-singularity of the q-recurrence on the
coefficients of the solution. This induces potential technical complications similar
to the ones for polynomial solutions of differential equations in small characteristic,
which can nevertheless be overcome by adapting the approach described in [22, ğ3.2].

51

Computing the N -th Term of a q-Holonomic Sequence ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

4.4 q-hypergeometric creative telescoping

In the case of differential and difference hypergeometric creative
telescoping, it was demonstrated in [17] that the compact repre-
sentation for polynomial solutions can be used as an efficient data
structure, and can be applied to speed up the computation of Gosper
forms and Zeilberger’s classical summation algorithm [61, ğ6]. The
key to these improvements lies in the fast computation of the N -th
term of a holonomic sequence, together with the close relation be-
tween Gosper’s algorithm and the algorithms for rational solutions.

Similarly, in the q-differential case, Koornwinder’s q-Gosper
algorithm [49, ğ5] is closely connected to Abramov’s algorithm for
computing rational solutions [2, ğ2], and this makes it possible to
transfer the improvements for rational solutions to the q-Gosper
algorithm. This leads in turn to improvements upon Koornwinder’s
algorithm for q-hypergeometric summation [49], along the same
lines as in the differential and difference cases [17].

5 EXPERIMENTS

A preliminary implementation in Magma of Algorithms 1 and 2

in ğ2.1 delivers some encouraging timings. Of course, since these
algorithms are designed to be fast in the arithmetic model, it is natu-
ral to make experiments over a finite field K, or over truncations of
real/complex numbers, as was done in [54] for the problem in ğ2.2.
Recall that both Algorithms 1 and 2 compute

∏N−1
i=0 (α − qi) ∈ K,

given α ,q in a fieldK, and N ∈ N. In our experiments,K is the finite
field Fp with p = 2

30
+3 elements. Timings are given in Table 1. We

compare the straightforward iterative algorithm (column Naive), to
the fast baby-step / giant-step algorithms, one based on subproduct
trees and resultants (column Algorithm 1), the other based on mul-
tipoint evaluation on geometric sequences (column Algorithm 2).

Some conclusions can be drawn by analyzing these timings:

• The theoretical complexities are perfectly reflected in prac-
tice: timings are multiplied (roughly) by 4 in column Naive,
and (roughly) by 2 in columns Algorithm 1 and Algorithm 2.
• The asymptotic regime is reached from the very beginning.
• Algorithm 2 is always faster than Algorithm 1, which is itself
much faster than the Naive algorithm, as expected.
• A closer look into the timings shows that for Algorithm 1,
≈ 80% of the time is spent in step (3) (resultant computation),
the other steps taking ≈ 10% each; for Algorithm 2, step (1)
takes ≈ 25%, step (2) takes ≈ 75%, and step (3) is negligible.

6 CONCLUSION AND FUTURE WORK

We have shown that selected terms of q-holonomic sequences can
be computed fast, both in theory and in practice, the key being the
extension of classical algorithms in the holonomic (łq = 1ž) case.
We have demonstrated through several examples that this basic
algorithmic improvement has many other algorithmic implications,
notably on the faster evaluation of many families of polynomials
and on the acceleration of algorithms for q-differential equations.

Here are some questions that we plan to investigate in the future.

1. (Computing curvatures of q-differential equations) In the
differential case, p-curvatures can be computed fast [14ś
16, 22]. What about the q-differential analogue? One strong
motivation comes from the fact that the q-analogue [10] of
Grothendieck’s conjecture (relating equations over Q with

degree N Naive algorithm Algorithm 1 Algorithm 2

2
16

0.04 0.03 0.00

2
18

0.18 0.03 0.01

2
20

0.72 0.06 0.01

2
22

2.97 0.14 0.02

2
24

11.79 0.32 0.04

2
26

47.16 0.73 0.08

2
28

188.56 1.68 0.15

2
30

755.65 3.84 0.31

2
32

3028.25 8.65 0.64

2
34

19.65 1.41

2
36

44.42 2.96

2
38

101.27 6.36

2
40

228.58 14.99

2
42

515.03 29.76

2
44

1168.51 61.69

2
46

2550.28 137.30

2
48

297.60

2
50

731.63

2
52

1395.33

2
54

3355.39

Table 1 Comparative timings (in seconds) for the computation of
∏N−1
i=0 (α − qi) ∈ Fp , with p = 2

30
+ 3 and (α, q) randomly chosen

in Fp × Fp . All algorithms were executed on the same machine, running
Magma v. 2.24. For each target degree N , each execution was limited to
one hour. Naive algorithm could reach degree N = 2

32, Algorithm 1 degree
N = 2

46, and Algorithm 2 degree N = 2
54
= 8 014 398 509 481 984. By

extrapolation, the Naive algorithm would have needed ≈ 4
11 × 3028.25 sec.

≈ 400 years on the same instance, and Algorithm 2 approximately 18 hours.

their reductions modulo primes p) is proved [29]. This could
be used to improve the computation of rational solutions.

2. (Counting points on q-curves) Counting efficiently points
on (hyper-)elliptic curves leads to questions like: for a,b ∈ Z,
compute the coeff. of x

p−1
2 in Gp (x) := (x2 + ax + b)

p−1
2

modulo p, for one [19] or several [41] primes p. A natu-
ral extension is to ask the same with Gp (x) replaced by
∏

p−1
2

k=1
(q2kx2+aqkx+b). This might have applications related

to Question 1, or to counting points on q-deformations [67].

3. (Computing q-deformed real numbers) Recently, Morier-
Genoud and Ovsienko [53] introduced q-analogues of real
numbers. How fast can one compute (truncations / evalua-
tions of) quantized versions of numbers like e or π?

4. (Evaluating more polynomials) Is it possible to evaluate fast
polynomials of the form

∑N
n=0 x

ns , for s ≥ 3, and many oth-
ers that escape the q-holonomic class? E.g., [9] presents a
beautiful generalization of Algorithm 1 to the fast evalua-
tion of isogenies between elliptic curves, by using elliptic

resultants, with applications in isogeny-based cryptography.

Acknowledgements. I thank Luca De Feo for his initial question,
who motivated this work, and for the very interesting subsequent
discussions. My friendly thanks go to Lucia Di Vizio, Kilian Raschel
and Sergey Yurkevich for their careful reading of the manuscript.
I am indebted to the three referees for many helpful remarks. This
work was supported in part by DeRerumNatura ANR-19-CE40-0018.

52

http://magma.maths.usyd.edu.au
https://specfun.inria.fr/chyzak/DeRerumNatura/

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Alin Bostan

REFERENCES
[1] S. A. Abramov, M. Bronstein, and M. Petkovšek. On polynomial solutions of

linear operator equations. In ISSAC’95, pages 290ś296. ACM, 1995.
[2] S. A. Abramov. Rational solutions of linear difference and q-difference equations

with polynomial coefficients. Programmirovanie, (6):3ś11, 1995.
[3] S. A. Abramov, P. Paule, and M. Petkovšek. q-hypergeometric solutions of

q-difference equations. Discrete Math., 180(1-3):3ś22, 1998.
[4] M. Aldaz, G. Matera, J. L. Montaña, and L. M. Pardo. A new method to obtain

lower bounds for polynomial evaluation. TCS, 259(1-2):577ś596, 2001.
[5] G. E. Andrews. The theory of partitions. Addison-Wesley, Reading, 1976.
[6] D. Bar-Natan and S. Garoufalidis. On the Melvin-Morton-Rozansky conjecture.

Invent. Math., 125(1):103ś133, 1996.
[7] M. Beeler, R. Gosper, and R. Schroeppel. HAKMEM. Artificial Intelligence Memo

No. 239. MIT, 1972. http://www.inwap.com/pdp10/hbaker/hakmem/algorithms.
[8] D. J. Bernstein. Fast multiplication and its applications. In Algorithmic number

theory: lattices, number fields, curves and cryptography, MSRIP 44:325ś384. 2008.
[9] D. J. Bernstein, L. De Feo, A. Leroux, and B. Smith. Faster computation of

isogenies of large prime degree. Preprint, 2020. https://eprint.iacr.org/2020/341.
[10] J.-P. Bézivin. Les suites q-récurrentes linéaires. Comp. Math., 80:285ś307, 1991.
[11] L. I. Bluestein. A linear filtering approach to the computation of the discrete

Fourier transform. IEEE Trans. Electroacoustics, AU-18:451ś455, 1970.
[12] H. Böing and W. Koepf. Algorithms for q-hypergeometric summation in com-

puter algebra. J. Symbolic Comput., 28(6):777ś799, 1999.
[13] A. Borodin and S. Cook. On the number of additions to compute specific

polynomials. SIAM J. Comput., 5(1):146ś157, 1976.
[14] A. Bostan, X. Caruso, and É. Schost. A fast algorithm for computing the charac-

teristic polynomial of the p-curvature. In ISSAC’14, pages 59ś66. ACM, 2014.
[15] A. Bostan, X. Caruso, and É. Schost. A fast algorithm for computing the p-

curvature. In ISSAC’15, pages 69ś76. ACM, 2015.
[16] A. Bostan, X. Caruso, and É. Schost. Computation of the similarity class of the

p-curvature. In ISSAC’16, pages 111ś118. ACM, 2016.
[17] A. Bostan, F. Chyzak, T. Cluzeau, and B. Salvy. Low complexity algorithms for

linear recurrences. In ISSAC’06, pages 31ś38. ACM, 2006.
[18] A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms for polynomial solutions of

linear differential equations. In ISSAC’05, pages 45ś52. ACM, 2005.
[19] A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial co-

efficients and application to integer factorization and Cartier-Manin operator.
SIAM J. Comput., 36(6):1777ś1806, 2007.

[20] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC’03,
pages 37ś44. ACM, 2003.

[21] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special
sets of points. J. Complexity, 21(4):420ś446, 2005.

[22] A. Bostan and É. Schost. Fast algorithms for differential equations in positive
characteristic. In ISSAC’09, pages 47ś54. ACM, 2009.

[23] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory,
volume 315 of Grundlehren der Mathematischen Wissenschaften. Springer, 1997.

[24] D. G. Cantor and E. Kaltofen. On fastmultiplication of polynomials over arbitrary
algebras. Acta Inform., 28(7):693ś701, 1991.

[25] P. Cartier. Démonstration łautomatiquež d’identités et fonctions hyper-
géométriques (d’après D. Zeilberger). Astérisque, (206): 41ś91, 1992. S. Bourbaki.

[26] D. V. Chudnovsky and G. V. Chudnovsky. Approximations and complex multi-
plication according to Ramanujan. In Ramanujan revisited (Urbana-Champaign,
Ill., 1987), pages 375ś472. Academic Press, Boston, MA, 1988.

[27] F. Chyzak. Gröbner bases, symbolic summation and symbolic integration. In
Gröbner bases and applications, volume LMS LN 251:32ś60. CUP, 1998.

[28] F. Chyzak. An extension of Zeilberger’s fast algorithm to general holonomic
functions. Discrete Math., 217(1-3):115ś134, 2000.

[29] L. Di Vizio. Arithmetic theory of q-difference equations: the q-analogue of
Grothendieck-Katz’s conjecture on p-curvatures. Invent. Math., 150:517ś578,
2002.

[30] L. Di Vizio, J.-P. Ramis, J. Sauloy, and C. Zhang. Équations aux q-différences.
Gaz. Math., (96):20ś49, 2003.

[31] T. Ekedahl and G. van der Geer. Cycle classes on the moduli of K3 surfaces in
positive characteristic. Selecta Math. (N.S.), 21(1):245ś291, 2015.

[32] T. Ernst. A comprehensive treatment of q-calculus. Birkhäuser/Springer, 2012.
[33] J. Fürlinger and J. Hofbauer. q-Catalan numbers. JCTA, 40(2):248ś264, 1985.
[34] F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14, pages

296ś303. ACM, 2014.
[35] S. Garoufalidis and C. Koutschan. Irreducibility of q-difference operators and

the knot 74 . Algebr. Geom. Topol., 13(6):3261ś3286, 2013.
[36] S. Garoufalidis and T. T. Q. Lê. The colored Jones function is q-holonomic.

Geom. Topol., 9:1253ś1293, 2005.
[37] S. Garoufalidis and T. T. Q. Lê. A survey of q-holonomic functions. Enseign.

Math., 62(3-4):501ś525, 2016.
[38] J. von zur Gathen and J. Gerhard. Modern computer algebra. CUP, 3rd ed., 2013.
[39] I. Gessel. A noncommutative generalization and q-analog of the Lagrange

inversion formula. Trans. Amer. Math. Soc., 257(2):455ś482, 1980.

[40] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm. I.
Appl. Algebra Engrg. Comm. Comput., 14(6):415ś438, 2004.

[41] D. Harvey. Counting points on hyperelliptic curves in average polynomial time.
Ann. of Math. (2), 179(2):783ś803, 2014.

[42] J. Heintz and M. Sieveking. Lower bounds for polynomials with algebraic
coefficients. TCS, 11(3):321ś330, 1980.

[43] P. A. Hendriks. An algorithm for computing a standard form for second-order
linear q-difference equations. J. Pure Appl. Algebra, 117/118:331ś352, 1997.

[44] J. Hua. Counting representations of quivers over finite fields. J. Algebra,
226(2):1011ś1033, 2000.

[45] M. Kauers and C. Koutschan. A Mathematica package for q-holonomic se-
quences and power series. Ramanujan J., 19(2):137ś150, 2009.

[46] D. E. Khmel′ nov. Improved algorithms for solving difference and q-difference
equations. Programmirovanie, (2):70ś78, 2000.

[47] A. A. Kirillov and A. Melnikov. On a remarkable sequence of polynomials.
In Algèbre non commutative, groupes quantiques et invariants (Reims, 1995),
volume 2 of Sémin. Congr., pages 35ś42. Soc. Math. France, Paris, 1997.

[48] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. Hypergeometric orthogonal poly-
nomials and their q-analogues. Monographs in Mathematics. Springer, 2010.

[49] T. H. Koornwinder. On Zeilberger’s algorithm and its q-analogue. J. Comput.
Appl. Math., 48(1-2):91ś111, 1993.

[50] C. Koutschan. A fast approach to creative telescoping. Math. Comput. Sci.,
4(2-3):259ś266, 2010.

[51] H. Labrande. Computing Jacobi’s theta in quasi-linear time. Math. Comp.,
87(311):1479ś1508, 2018.

[52] R. J. Lipton. Polynomials with 0 − 1 coefficients that are hard to evaluate. SIAM
J. Comput., 7(1):61ś69, 1978.

[53] S. Morier-Genoud and V. Ovsienko. On q-deformed real numbers. Exp. Math.,
pages 1ś9, 2019. To appear.

[54] D. Nogneng and É. Schost. On the evaluation of some sparse polynomials. Math.
Comp., 87(310):893ś904, 2018.

[55] A. Ostrowski. On two problems in abstract algebra connected with Horner’s
rule. In Studies in mathematics and mechanics presented to Richard von Mises,
pages 40ś48. Academic Press Inc., 1954.

[56] I. Pak. Partition bijections, a survey. Ramanujan J., 12(1):5ś75, 2006.
[57] V. Y. Pan. Methods of computing values of polynomials. Russian Mathematical

Surveys, 21(1):105ś136, 1966.
[58] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications

necessary to evaluate polynomials. SIAM J. Comput., 2:60ś66, 1973.
[59] P. Paule and S. Radu. Rogers-Ramanujan functions, modular functions, and

computer algebra. In Advances in computer algebra, PROMS 226, 229ś280, 2018.
[60] P. Paule and A. Riese. A Mathematica q-analogue of Zeilberger’s algorithm

based on an algebraically motivated approach to q-hypergeometric telescoping.
In Special functions, q-series and related topics, FIC 14:179ś210. AMS, 1997.

[61] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B . A K Peters, 1996.
[62] J. M. Pollard. Theorems on factorization and primality testing. Proc. Cambridge

Philos. Soc., 76:521ś528, 1974.
[63] L. R. Rabiner, R. W. Schafer, and C. M. Rader. The chirp z-transform algorithm

and its application. Bell System Tech. J., 48:1249ś1292, 1969.
[64] A. Riese. qMultiSumÐa package for proving q-hypergeometric multiple sum-

mation identities. J. Symbolic Comput., 35(3):349ś376, 2003.
[65] C. Sabbah. Systèmes holonomes d’équations aux q-différences. In D-modules

and microlocal geometry (Lisbon, 1990), pages 125ś147. de Gruyter, 1993.
[66] C.-P. Schnorr. improved lower bounds on the number of multiplications /

divisions which are necessary to evaluate polynomials. TCS, 7(3):251ś261, 1978.
[67] P. Scholze. Canonical q-deformations in arithmetic geometry. Ann. Fac. Sci.

Toulouse Math. (6), 26(5):1163ś1192, 2017.
[68] A. Schönhage. SchnelleMultiplikation von Polynomen über Körpern der Charak-

teristik 2. Acta Informatica, 7:395ś398, 1977.
[69] T. Sprenger and W. Koepf. Algorithmic determination of q-power series for

q-holonomic functions. J. Symbolic Comput., 47(5):519ś535, 2012.
[70] V. Strassen. Polynomials with rational coefficients which are hard to compute.

SIAM J. Comput., 3:128ś149, 1974.
[71] V. Strassen. Einige Resultate über Berechnungskomplexität. Jber. Deutsch.

Math.-Verein., 78(1):1ś8, 1976/77.
[72] T. Tao, E. Croot, III, and H. Helfgott. Deterministic methods to find primes.

Math. Comp., 81(278):1233ś1246, 2012.
[73] M. van der Put and M. F. Singer. Galois theory of linear differential equations,

volume 328 of Grundlehren der Mathematischen Wissenschaften. Springer, 2003.
[74] H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric

(ordinary & q) multisum/integral identities. Invent. Math., 108(3):575ś633, 1992.
[75] K.-W. Yang. On the product

∏

n≥1 (1 + q
nx + q2nx 2). J. Austral. Math. Soc.

Ser. A, 48(1):148ś151, 1990.
[76] D. Zagier. Elliptic modular forms and their applications. In The 1-2-3 of modular

forms, Universitext, pages 1ś103. Springer, 2008.
[77] D. Zeilberger. A holonomic systems approach to special functions identities. J.

Comput. Appl. Math., 32(3):321ś368, 1990.

53

http://www.inwap.com/pdp10/hbaker/hakmem/algorithms.html
https://www.cambridge.org/9780521808545
https://eprint.iacr.org/2020/341
https://link.springer.com/book/10.1007/978-3-319-73232-9
https://bookstore.ams.org/fic-14

Separating Variables in Bivariate Polynomial Ideals

Manfred Buchacher∗

Institute for Algebra
Johannes Kepler University

Linz, Austria
manfred.buchacher@jku.at

Manuel Kauers2

Institute for Algebra
Johannes Kepler University

Linz, Austria
manuel.kauers@jku.at

Gleb Pogudin3

Department of Computer Science
Higher School of Economics

Moscow, Russia
LIX, CNRS

École Polytechnique,
Institut Polytechnique de Paris

France
pogudin.gleb@gmail.com

ABSTRACT

We present an algorithm which for any given ideal I ⊆ K[x,y] finds
all elements of I that have the form f (x) − д(y), i.e., all elements in
which no monomial is a multiple of xy.

ACM Reference Format:

Manfred Buchacher, Manuel Kauers, and Gleb Pogudin. 2020. Separating
Variables in Bivariate Polynomial Ideals. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.
3404028

1 INTRODUCTION

One of the fundamental problems in computer algebra and applied
algebraic geometry is the problem of elimination. Here, we are
given a polynomial ideal I ⊆ K[x1, . . . , xn,y1, . . . ,ym] and the
task is to compute generators of the ideal I ∩ K[x1, . . . , xn]. The
resulting ideal of K[x1, . . . , xn] consists of all elements of I that do
not contain any terms that are a multiple of any of the variables yi .
It is well-known that this problem can be solved by computing a
Gröbner basis with respect to an elimination order that assigns
higher weight to terms involving y1, . . . ,ym than to terms not
involving these variables.

It is less clear how to use Gröbner bases (or any other standard
elimination techniques) for finding ideal elements that do not con-
tain any terms which are a multiple of certain prescribed terms
rather than certain prescribed variables. The problem considered
in this paper is an elimination problem of this kind. Here, given

∗Supported by the Austrian FWF grant F5004. Part of this work was done during the
visit of MB to HSE University. MB would like to thank the Faculty of Computer Science
of HSE for its hospitality.
2Supported by the Austrian FWF grants F5004 and P31571-N32
3Supported by NSF grants CCF-1564132, CCF-1563942, DMS-1853482, DMS-1853650,
and DMS-1760448, by PSC-CUNY grants #69827-0047 and #60098-0048.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404028

an ideal I ⊆ K[x1, . . . , xn,y1, . . . ,ym], we are interested in all el-
ements of I that do not involve any terms which are multiples of
any of the terms xiyj (i = 1, . . . ,n, j = 1, . . . ,m). Note that, these
are precisely the elements of I which can be written as the sum of a
polynomial in x1, . . . , xn only and a polynomial in y1, . . . ,ym only,
so the problem under consideration is as follows.

Problem 1.1 (Separation).

Input An ideal I ⊆ K[x1, . . . , xn,y1, . . . ,ym];

Output Description of all f − д ∈ I such that

f ∈ K[x1, . . . , xn] and д ∈ K[y1, . . . ,ym].

At first glance, it may seem that there should be a simple way to
solve this problem with Gröbner bases, similarly as for the classical
elimination problem. However, we were not able to come up with
such an algorithm. The obstruction seems to be that there is no
term order that ranks the term xy higher than both x2 and y2.

We ran into the need for such an algorithm when we tried to
automatize an interesting non-standard elimination step which
appears in Bousquet-Mélou’s łelementaryž solution of Gessel’s
walks [9]. Dealing with certain power series, say u ∈ K[x][[t]] and
v ∈ K[x−1][[t]], she finds polynomials f ,д such that f (u)−д(v) = 0,
and then concludes that f (u) and д(v)must in fact belong to K[[t]].
Deriving a pair (f ,д) automatically from known relations among
u,v amounts to the problem under consideration.

The problem also arises when one wants to compute the inter-
section of two K-algebras. For example, suppose that for given
u,v ∈ K[t1, . . . , tn] one wants to compute K[u] ∩K[v]. This can be
done by finding all pairs (f ,д) such that f (u) = д(v), i.e., all pairs
(f ,д) with f (x) − д(y) ∈ ⟨x − u,y − v⟩ ∩ K[x,y]. See [3, 13] for a
discussion of this and similar problems.

Definition 1.2. Let p ∈ K[x1, . . . , xn,y1, . . . ,ym].

(1) p is called separated if there exist f ∈ K[x1, . . . , xn] and

д ∈ K[y1, . . . ,ym] such that p = f − д.

(2) p is called separable if there is aq ∈ K[x1, . . . , xn,y1, . . . ,ym]

such that qp is separated.

Proposition 1.3. Let I be an ideal in K[x1, . . . , xn,y1, . . . ,ym].

Then

A(I) := { (f ,д) ∈ K[x1, . . . , xn] × K[y1, . . . ,ym] : f − д ∈ I }

is a unital K-algebra with respect to component-wise addition and

multiplication and component-wise multiplication by elements of K.

We refer to A(I) as the algebra of separated polynomials of I .

54

https://doi.org/10.1145/3373207.3404028
https://doi.org/10.1145/3373207.3404028
https://doi.org/10.1145/3373207.3404028

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Manfred Buchacher, Manuel Kauers, and Gleb Pogudin

Proof. We just note that A(I) is clearly a K-vector space, and
that it is closed under component-wise multiplication, as for any
(f ,д), (f ′,д′) ∈ A(I) we have f − д ∈ I and f ′ − д′ ∈ I , so (f −

д)f ′ + д(f ′ − д′) = f f ′ − дд′ ∈ I . It is unital, because we always
have (1, 1) ∈ A(I). □

Given ideal generators of I , we want to determineK-algebra gen-
erators of A(I). This is in general too much to be asked for, because,
as shown in Example 5.1, A(I) may not be finitely generated. On
the positive side, it is known that A(I) is finitely generated if I is a
principal ideal in the ring of bivariate polynomials (see [15]).

The main result of the paper is Algorithm 4.3 for computing
generators of the algebraA(I) for a given bivariate ideal I ⊆ K[x,y].
In particular, it implies that such an algebra is always finitely gen-
erated and yields an algorithm to compute a minimal separated
multiple of a bivariate polynomial [15, Definition 4.1]. An imple-
mentation of the algorithm in Mathematica can be found on the
website of the second author.

The general structure of the algorithm is the following. Every
bivariate ideal is the intersection of a zero-dimensional ideal and
a principal ideal. We solve the separation problem for the zero-
dimensional case (Section 2) and for the principal case (Section 3)
separately. Then we show how to compute the intersection of the
resulting algebras in Section 4. We conclude with discussing the
case of more than two variables in Section 5.

In the context of separated polynomials, many deep results have
been obtained for some kind of łinverse problemž to the problem
considered here, i.e., the study of the shape of factors of polynomials
of the form f (x) − д(y), see [6, 7, 10ś12, 14, 15] and references
therein. We use techniques developed in [10] in our proofs (see
Section 3).

We assume throughout that the ground fieldK has characteristic
zero and that for a given element of an algebraic extension of K we
can decide whether it is a root of unity. This is true, for example,
for every number field (see Section 3.3).

It is an open question whether the assumption on the characteris-
tic of K can be eliminated. In positive characteristic, additional phe-
nomena have to be taken into account. For example, separable poly-
nomials need not be squarefree, as the example (x + y)2 ∈ Z3[x,y]

shows, which is separable because (x+y)(x+y)2 = (x+y)3 = x3+y3.

2 ZERO-DIMENSIONAL IDEALS

When I ⊆ K[x,y] has dimension zero, it is easy to separate variables.
In this case, there are nonzero polynomials p,q with I ∩K[x] = ⟨p⟩

and I ∩ K[y] = ⟨q⟩. Clearly, these univariate polynomials p and q
are separated. Also all K[x]-multiples of p and all K[y]-multiples
of q are separated elements of I .

An arbitrary pair (f ,д) ∈ K[x]×K[y] belongs toA(I) if and only
if (f + up,д +vq) belongs to A(I) for all u ∈ K[x] and v ∈ K[y]. In
particular, we have (f ,д) ∈ A(I) ⇐⇒ (remx (f ,p), remy (д,q)) ∈

A(I). It is therefore sufficient to find all pairs (f ,д) ∈ A(I) with
degx f < degx p and degy д < degy q. These pairs can be found
with linear algebra.

Algorithm 2.1. Input: I ⊆ K[x,y] of dimension zero.

Output: generators of the K-algebra A(I) ⊆ K[x] × K[y]

1 if I = ⟨1⟩, return {(1, 0), (x, 0), (0, 1), (0,y)}.

2 compute p ∈ K[x] and q ∈ K[y] such that

I ∩ K[x] = ⟨p⟩ and I ∩ K[y] = ⟨q⟩.

3 make an ansatz h =
∑degx p−1
i=0 aix

i −
∑degy q−1

j=0 bjy
j with un-

determined coefficients ai ,bj .

4 compute the normal form of h with respect to a Gröbner basis of I

and equate its coefficients to zero.

5 solve the resulting linear system over K for the unknowns ai ,bj
and let (f1,д1), . . . , (fd ,дd) be the pairs of polynomials corre-

sponding to a basis of the solution space.

6 return (f1,д1), . . . , (fd ,дd), (p, 0), . . . , (x
degx p−1p, 0),

(0,q), . . . , (0,ydegy q−1q).

Proposition 2.2. Algorithm 2.1 is correct.

Proof. It is clear by construction that all returned elements
belong to A(I). It remains to show that they generate A(I) as K-
algebra. This is clear if I = ⟨1⟩, because then A(I) = K[x] × K[y].
Now suppose that I , ⟨1⟩ and let (f ,д) ∈ A(I). Because of I , ⟨1⟩,
we have degx p, degy q > 0. Then ⟨p⟩ ⊆ K[x] is generated as a

K-algebra by p, xp, . . . , xdegx p−1p. To see this, we just note that,
by performing repeatedly division by p on a polynomial and the
resulting quotients, any u ∈ ⟨p⟩ can be written

u =

k∑

i=1

rip
i

where ri are polynomials with deg ri < degp. Hence, ⟨p⟩ is a subset
of the algebra generated by p, xp, . . . , xdegx p−1p, and clearly, the
reverse inclusion holds as well. For the same reason, ⟨q⟩ is generated
as K-algebra by q, xq, . . . , xdegx q−1q.

Hence (f ,д) can be expressed in terms of the given generators
if and only if (remx (f ,p), remy (д,q)) can be expressed in terms of
the given generators. Because of degx (remx (f ,p)) < degx (p) and
degy (remy (д,q)) < degy (q), the pair (remx (f ,p), remy (д,q)) is a
K-linear combination of (f1,д1), . . . , (fd ,дd), as required. □

Example 2.3. Consider the 0-dimensional ideal I = ⟨x2y2−1,y5+
y3 + xy2 + x⟩. We have

I ∩K[x] = ⟨x10 + x8 − x2 − 1⟩ and I ∩K[y] = ⟨y10 +y8 −y2 − 1⟩.

Every separated polynomial of I therefore has the form

f (x) + u(x)(x10 + x8 − x2 − 1) − д(y) −v(y)(y10 + y8 − y2 − 1)

for certain f (x),д(y) of degree less than 10 and some u(x),v(y). To

find the pairs (f ,д), compute the normal form of h =
∑9
i=0 aix

i −∑9
i=0 bjy

j with respect to a Gröbner basis of I . Taking a degrevlex

Gröbner basis, this gives

(a0 + a8 − b0) + (a6 − b2)y
2
+ (a7 + b5)xy

2
+ · · · .

Equate the coefficients with respect to x,y to zero and solve the re-

sulting linear system for the unknowns a0, . . . ,a9,b0, . . . ,b9. The

following pairs of polynomials (f ,д) correspond to a basis of the

solution space:

(1, 1), (x − x9,y9 − y), (x2,y8 + y6 − 1), (x9 + x3,−y9 − y3)

(x4,−y8 + y4 + 1), (x5 − x9,y3 − y7), (x6,y8 + y2 − 1)

(x9 + x7,−y5 − y3), (x8, 2 − y8).

55

Separating Variables in Bivariate Polynomial Ideals ISSAC ’20, July 20–23, 2020, Kalamata, Greece

These pairs together with the pairs (x i (x10 + x8 − x2 − 1), 0) and
(0,yi (y10 + y8 − y2 − 1)) for i = 0, . . . , 9 form a set of generators

of A(I).

For an ideal I ⊆ K[x,y] to be zero-dimensional means that its
codimension as K-subspace of K[x,y] is finite. Note that, in this
case, alsoA(I) has finite codimension as K-subspace of K[x] ×K[y].
Since we will need this feature later, let us record it as a lemma.

Lemma 2.4. If I ⊆ K[x,y] has dimension zero, then there is a

finite-dimensional K-subspace V of K[x] × K[y] such that the direct

sum V ⊕ A(I) is equal to K[x] × K[y]. Moreover, we can compute a

basis of such aV , and for every (f ,д) ∈ K[x] ×K[y] we can compute

a (f̃ , д̃) ∈ V such that (f ,д) − (f̃ , д̃) ∈ A(I).

Proof. Let p,q, (f1,д1), . . . , (fd ,дd) be as in Algorithm 2.1. Note
that, as a K-vector space, A(I) has the basis

{(f1,д1), . . . , (fd ,дd)} ∪ {(xkp, 0) : k ∈ N} ∪ {(0,ykq) : k ∈ N}.

Using row-reduction, it can be arranged that the fi have pairwise
distinct degrees. Note that, all fi are nonzero by the choice of q. Let
V be the K-subspace of K[x] × K[y] generated by the pairs (xk , 0)
for all k < degx (p) which are not the degree of some fi and the

pairs (0,yk) for all k < degy (q). We have V ⊕ A(I) = K[x] × K[y].
Given (f ,д) ∈ K[x]×K[y], we compute (remx (f ,p), remy (д,q)),

and then eliminate all terms from the first component whose expo-
nent is the degree of an fi . The resulting pair (f̃ , д̃) is an element
of V with (f ,д) − (f̃ , д̃) ∈ A(I). □

3 PRINCIPAL IDEALS

We now consider the case where I = ⟨p⟩ is a principal ideal of
K[x,y]. Ifp ∈ K[x]∪K[y], the algebraA(I) of separated polynomials
is finitely generated, as we have seen in the proof of Proposition 2.2.
It was shown in [15, Theorem 4.2] that, if p is separable, there
is a separated multiple f (x) − д(y) of p that divides any other
separated multiple of it. We refer to f (x) − д(y) as the minimal

separated multiple of p. Moreover, [15, Theorem 2.3] implies that if
p < K[x]∪K[y], then (f ,д) is an algebra generator forA(I). We note
that, [15, Theorem 2.3] was reproven in [8], and generalized further
in [1, 19]. The proof of [15, Theorem 4.2] was not constructive. In
the following we provide a criterion that allows to decide if p is
separable, and if it is, to compute its minimal separated multiple.

Our criterion is based on considering the highest graded com-
ponent of the polynomial with respect to a certain grading. The
separability of the highest component is a necessary but not a
sufficient condition for the separability of a polynomial itself. Sur-
prisingly, there is a weaker converse, that is, the minimal separated
multiple of the highest component is equal to the highest compo-
nent of the minimal separated multiple of p if the latter exists (see
Theorem 3.5). This allows us to reduce the problem for a general
not necessarily homogeneous polynomial to the same problem for
a homogeneous polynomial (which is solved in Section 3.1) and
solving a linear system. The resulting algorithm is presented in
Section 3.3.

Since the casep ∈ K[x]∪K[y] is trivial, for the rest of the section,
we assume that p ∈ K[x,y] \ (K[x] ∪ K[y]).

3.1 Homogeneous case

Definition 3.1.

(1) A function ω from the set of monomials in x and y to R is

called a weight function if there exist ωx ,ωy ∈ Z>0 such that

ω(x iy j) = ωx i + ωy j for every i, j ∈ Z≥0.

(2) Two weight functions are considered to be equivalent if they
differ by a constant non-zero factor.

(3) For a weight functionω and a nonzero polynomial p ∈ K[x,y],

ω(p) is defined to be the maximum of the weights of the mono-

mials of p.

(4) For a weight function ω and a polynomial p ∈ K[x,y], we

define the ω-leading part of p (denoted by lpω (p)) as the sum
of the terms of p of weight ω(p).

In this subsection, we consider the case of p being homogeneous
with respect to some weight function ω, that is, lpω (p) = p.

Proposition 3.2. Letω be a weight function, and let p ∈ K[x,y]\

(K[x] ∪ K[y]) satisfy lpω (p) = p. Then p is separable if and only if

(1) p involves a monomial only in x , and

(2) all the roots ofp(x, 1) in the algebraic closureK ofK are distinct

and the ratio of every two of them is a root of unity.

Moreover, if p is separable and N is the minimal number such that

the ratio of every pair of roots of p(x, 1) is an N -th root of unity, then

the weight of the minimal separated multiple of p is Nωx .

Proof. Assume that p is separable, and let P be a separated
multiple. Replacing P with lpω (P) if necessary, we will further
assume that P = lpω (P). Since P < K[x] ∪ K[y] and is separated, P
involves a monomial in x only, and hence, so does p.

Since P is ω-homogeneous and separated, it is of the form axm −

byn for some a,b ∈ K \ {0}, so p(x, 1) | axm − b. All roots of the
latter are distinct and the ratio of each of them is anm-th root of
unity. Hence, the same is true for p(x, 1). This proves the only-if
part of the proposition.

To prove the remaining part of the proposition, let N be as in
the statement of the proposition, and γ ∈ K be a root of p(x, 1).
Consider the ω-homogeneous Puiseux polynomial

P := xN − γNyNωx /ωy .

We perform Euclidean division of P by p over the field F of Puiseux
series iny overK. This will yield a representation P = qp+r , where
q and r are alsoω-homogeneous. Since P(x, 1) is divisible by p(x, 1),
we see that r (x, 1) = 0. However, the ω-homogeneity of r implies
that each of its coefficients with respect to x is a Puiseux monomial
iny. Thus, r = 0. Next, assume that Nωx /ωy is not an integer. Then

there is an automorphism σ of the Galois group of F over K(y) that
moves yNωx /ωy . Then

p | P − σ (P) ∈ F ,

which is impossible. Therefore, P is a separated polynomial divisible
by p of weight Nωx . □

Of course, because of symmetry, the statements of Proposition 3.2
also hold for y instead of x .

56

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Manfred Buchacher, Manuel Kauers, and Gleb Pogudin

3.2 Reduction to the homogeneous case

We will start with a necessary condition for p being separable.

Lemma 3.3. Let p ∈ K[x,y] \ (K[x] ∪ K[y]) be separable.

(1) There exists a unique (up to a constant factor) weight function

ω such that lpω (p) involves at least two monomials.

(2) The polynomial lpω (p) is separable.

Proof. Let q ∈ K[x,y] \ {0} be such that qp is separated. Let
degx qp =m and degy qp = n. Define ω(x iy j) = ni +mj. If lpω (p)
contains only one monomial, then every monomial in lpω (qp) is
divisible by it. This is impossible since lpω (qp) involves both xm

and yn .
To prove the uniqueness, assume that there are two nonequiva-

lent weight functionsω1 andω2 with this property. Since lpωi (qp) =
lpωi (q) lpωi (p) for i = 1, 2, we have that both lpω1

(qp) and lpω2
(qp)

contain at least two monomials. However, the only monomials of
qp that can appear in the leading part are xm and yn , and there is a
unique weight function so that they have the same weight.

The second claim of the lemma follows from lpω (q) lpω (p) =
lpω (qp). □

There is an analogous version of Lemma 3.3 with the lowest
homogeneous part in place of the leading homogeneous part. How-
ever, even when both the lowest and the leading homogeneous part
are separable, the whole polynomial need not be separable, as the
following example shows.

Example 3.4. For p = (x3 + x2y + xy2 +

y3) + y2 ∈ Q[x,y], the relevant weight func-

tion for the leading homogeneous part as in

Lemma 3.3 is given by ωx = ωy = 1. It leads
to the leading homogeneous part x3 + x2y +

xy2 + y3. Analogously, the relevant weight

function for the lowest homogeneous part is given by ωx = 2,ωy = 3.
It leads to the lowest homogeneous part x3 +y2. Both the leading and

the lowest homogeneous part are separable. We claim that p is not

separable.

x

y

Let ω be the weight function defined by ω(x iy j) = 2i + 3j, so
that the lowest homogeneous part of p is x3 + y2 (weight 6), and the

next-to-lowest part is x2y (weight 7). With respect toω, any separated

polynomial involving both variables only consists of homogeneous

parts axn + bym whose weight 2n = 3m is a multiple of 6.

Assume that p is separable and let q ∈ Q[x,y]\ {0} be such that qp
is separated. Write q = q0 +q1 + · · · , where q0,q1, . . . are the lowest,

the next-to-lowest, etc. homogeneous parts of q with respect to ω. The

lowest homogeneous part of pq is then q0(x
3
+ y2), and since it must

be separated and involve both variables, we have ω(q0) = 0 mod 6.
Because of ω(q0x

2y) = ω(q0(x
3
+ y2)) + 1 = 1 mod 6, none of

the terms of q0x
2y can appear in qp, so they must all be canceled by

something. We must therefore have ω(q1) = ω(q0) + 1 and q0x2y +
q1(x

3
+ y2) = 0. This implies that x3 + y2 divides q0, which in turn

implies that the lowest homogeneous part q0(x
3
+ y2) of pq has a

multiple factor. On the other hand, q0(x
3
+ y2) = axn + bym for

some a,b , 0, and every such polynomial is squarefree. This is a

contradiction.

The main result of the section is the following łpartial conversež
of Lemma 3.3.

Theorem 3.5. Let p ∈ K[x,y] \ (K[x] ∪ K[y]) be a separable

polynomial. Let ω be the weight function given by Lemma 3.3, and let

P be the minimal separated multiple of p. Then lpω (P) is the minimal

separated multiple of lpω (p).

Before proving the theorem, we will establish some combinato-
rial tools for dealing with divisors of separated polynomials extend-
ing the results of Cassels [10].

Notation 3.6. Consider a separated polynomial f (x) − д(y) with

degx f =m and degy д = n, wherem,n > 0, and a weight function

ω(x iy j) = in + jm. We introduce a new variable t and consider two

auxiliary equations

f (x) = t and д(y) = t .

We solve these equations with respect to x and y in K(t), the algebraic

closure of K(t). Let the solutions be α0, . . . ,αm−1 and β0, . . . , βn−1,

respectively. Then every element π ofGal(K(t)/K(t)), the Galois group

of K(t) over K(t), acts on Zm × Zn by

π (i, j) := (i ′, j ′) ⇐⇒ (π (αi), π (βj)) = (αi′, βj′).

Let G ⊆ Sm × Sn be the group of permutations induced on Zm × Zn
by this action.

Notation 3.7. For a subset T ⊆ Zm × Zn , and (i, j) ∈ Zm × Zn ,

we introduce

Ti ,∗ := {k | (i,k) ∈ T } and T∗, j := {k | (k, j) ∈ T }.

Lemma 3.8. Let T ⊆ Zm × Zn be a G-invariant subset. Then

|T0,∗ | = |T1,∗ | = . . . = |Tm−1,∗ | and |T∗,0 | = |T∗,1 | = . . . = |T∗,n−1 |.

Proof. We show that |T0,∗ | = |T1,∗ |, the rest is analogous. First,
we observe that f (x) − t is irreducible over K(t). If it was not, it
would be reducible over K[t] due to Gauss’s lemma. The latter
is impossible because f (x) − t is linear in t and does not have
factors in K[x]. The irreducibility of f (x) − t implies that its Galois
group acts transitively on the roots. In particular, there exists π ∈

Gal(K(t)/K(t)) such that π (α0) = α1. Hence, π maps T0,∗ to T1,∗,
andwe have |T0,∗ | ⩽ |T1,∗ |. The reverse inequality is analogous. □

Lemma 3.9 (cf. [10, p. 9-10]). Let T ⊆ Zm × Zn be a G-invariant

subset. There exists a divisor p of f (x) − д(y), unique up to a multi-

plicative constant, such that

T = {(i, j) ∈ Zm × Zn | p(αi , βj) = 0}. (1)

Proof. Existence. Let T0,∗ = {j1, . . . , js }. Since f (α0) = t , we

have K(α0) ⊇ K(t), so every element of Gal(K(t)/K(α0)) leaves T
invariant. If α0 is fixed, then βj1 , . . . , βjs are permuted. Therefore,
the polynomial (y − βj1)(y − βj2) . . . (y − βjs) is invariant under the

action of Gal(K(t)/K(α0)). Hence, by the fundamental theorem of
Galois theory, it is a polynomial in K(α0)[y]. Since, by construction,
it divides f (α0) − д(y) over K(α0), and α0 and y are algebraically
independent, it in fact belongs to K[α0,y]. Replacing α0 by x , we
find a polynomial p ∈ K[x,y], which divides f (x) − д(y) in K[x,y].

Let (i, j) ∈ Zm × Zn . Since Gal(K(t)/K(t)) acts transitively on
the roots of f (x) − t (see the proof of Lemma 3.8), there is an
automorphism π with π (αi) = α0. Let βj′ = π (βj). We then have

p(αi , βj) = 0 ⇐⇒ p(α0, βj′) = 0 ⇐⇒ j ′ ∈ T0,∗ ⇐⇒ (i, j) ∈ T .

57

Separating Variables in Bivariate Polynomial Ideals ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Uniqueness. It remains to prove that p is unique up to a multi-
plicative constant. Assume that p̃ is another divisor of f (x) − д(y)

such that p̃(αi , βj) = 0 for all (i, j) ∈ T . The same argument which
proved that p is a divisor of f (x) − д(y) applies to show that p is a
divisor of p̃ in K[x,y], and vice versa. Hence, they only differ by a
multiplicative constant. □

Lemma 3.10. LetT ⊆ Zm×Zn be aG-invariant subset. The unique

factor p corresponding to T ⊆ Zm × Zn (see Lemma 3.9) is separated

if and only if

∀ i, j ∈ Zm : (Ti ,∗ ∩Tj ,∗ = ∅) or (Ti ,∗ = Tj ,∗) (2)

Proof. Assume that T satisfies (2), and let T0,∗ = {j1, . . . , js }.
Consider the corresponding polynomial p constructed in the proof
of Lemma 3.9, which is of the form

p(x,y) = ys + as−1(x)y
s−1
+ · · · + a0(x),

where, for every 0 ⩽ i < s and 0 ⩽ j < m, ai (α j) is (up to sign) the
s − i-th elementary symmetric polynomial in {βk | k ∈ Tj ,∗}.

Since p | f (x) − д(y), we have lpω (p) | lpω (f (x) − д(y)) =

axm − byn , with a,b ∈ K \ {0}. Hence, ys belongs to lpω (p), and
so ω(ai (x)yi) ⩽ ω(ys) =ms for all i ∈ {0, . . . , s − 1}, This implies

degx ai (x) ⩽
ms −mi

n
= (s − i)

m

n
.

Since T is the disjoint union of the Ti ,∗’s and of the T∗, j ’s, re-
spectively, whose cardinality, by Lemma 3.8, does not depend on i

and j, and T0,∗, by definition, consists of s elements, we find that
ms = |T | = n |T∗, j1 |, in particular ℓ := |T∗, j1 | =

ms
n . Hence there

exist 0 = i1 < i2 < . . . < iℓ < m such that j1 ∈ Ti1,∗ ∩ . . . ∩Tiℓ ,∗
and so, by (2), Ti1,∗ = . . . = Tiℓ ,∗. This shows that the polynomial
aj (x) − aj (α0) has at least ℓ pairwise distinct roots, αi1 , . . . ,αiℓ ,
while it has degree less than ℓ for 0 < j < s . Hence, it is the zero
polynomial, and aj (x) is a constant (which we denote by aj). There-
fore, p is separated and of the form p(x,y) = f0(x) − д0(y) with
f0(x) = a0(x) and д0(y) = −(ys + as−1y

s−1
+ · · · + a1y).

To prove the other implication, let p(x,y) = f0(x) − д0(y) be a
separated factor of f (x) − д(y). It is sufficient to show that

(i, j), (i ′, j), (i, j ′) ∈ T =⇒ (i ′, j ′) ∈ T .

Indeed, (i, j), (i ′, j) ∈ T implies that f0(αi) = f0(αi′), so that f0(αi)−
д0(βj′) = 0 implies that f0(αi′) − д0(βj′) = 0, i.e. (i ′, j ′) ∈ T . □

Lemma 3.10 motivates the following definition.

Definition 3.11. (1) A subset T ⊆ Zm × Zn is called sepa-
rated if it satisfies (2), that is

∀ i, j ∈ Zm : (Ti ,∗ ∩Tj ,∗ = ∅) or (Ti ,∗ = Tj ,∗).

(2) The intersection of all separated subsets containing T ⊆ Zm ×

Zn is called the separated closure of T and denoted by T sep.

Notice that the separated closure is separated.

Example 3.12. (1) Let f (x) = x4 and д(y) = y4 + 2y2 + 1. The
group of permutations on pairs of roots of f (x)−t andд(y)−t is

generated by ((0123), (0123)), ((0321), (03)(12)) and (id, (02)).
According to f (x) − д(y) having two separated irreducible

factors, x2 −y2 − 1 and x2 +y2 + 1, we find that there are two
orbits, each of them forming a separated set (Figure 1).

0

0

1

1

2

2

3

3

1
separated

0

0

1

1

2

2

3

3

•
•
•
•

•
•

•
•

x2 + y2 + 1
separated

0

0

1

1

2

2

3

3

•
•
•

•

•
•
•
•

x2 − y2 − 1
separated

0

0

1

1

2

2

3

3

•
•
•
•

•
•

•
•

•
•
•

•

•
•
•
•

x4 − (y2 + 1)2

separated

Figure 1: The factors of x4 − (y2 + 1)2 in Q[x,y] and the sets

T ⊆ Z24 corresponding to them.

0

0

1

1

2

2

3

3

4

4

5

5

1
separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

x − y
separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•

•
•

•

x + y
separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•

•
•

•

x 2 − y2

separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•
•

•
•

x 2
+ xy + y2

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

x 3 − y3

separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

x 3
+2x 2y+2xy2

+y3

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

x 4
+x 3y−xy3−y4

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•
•

•
•

x 2 − xy + y2

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

x 3−2x 2y+2xy2−y3

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

x 3
+ y3

separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

x 4−x 3y+xy3−y4

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

x 4
+ x 2y2

+ y4

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

x 5−x 4y+ · · · −y5

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

x 5
+x 4y+ · · ·+y5

not separated

0

0

1

1

2

2

3

3

4

4

5

5

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

x 6 − y6

separated

Figure 2: The factors of x6 − y6 in Q[x,y] and the sets T ⊆ Z26
corresponding to them. For the unseparated cases, we high-

light one choice of two incompatible rows.

(2) Let f (x) −д(y) = x6 −y6. Let t1/6 ∈ C(t) be any 6th root of t ,

and let ϵ be a primitive 6th root of unity. Then the polynomials

f (x) − t and д(y) − t have the same roots, namely:

αi = βi = ϵi t1/6, i ∈ {0, . . . , 5}.

The Galois group of C(t) permutes these elements cyclically, so

the induced action on Z26 is generated by ((012345), (012345)).

Figure 2 shows the sets T for the various factors of x6 − y6.

Observe that T is separated if and only if the corresponding

factor is separated. Observe also that multiplying two factors

corresponds to taking the union of the corresponding sets T .

58

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Manfred Buchacher, Manuel Kauers, and Gleb Pogudin

Lemma 3.13. Let T ⊆ Zm × Zn be invariant with respect toG ⊆

Sm × Sn . Then T
sep is also G-invariant.

Proof. Let π = (σ , τ) ∈ Sm × Sn , and let S ⊆ Zm × Zn be
a separated set. Since π (S)i ,∗ = τ (Sσ (i),∗), we find that π (S) is
separated as well.

Assume thatT sep is notG-invariant, that is, there exists a π ∈ G

such that π (T sep) , T sep. As we have shown, π (T sep) is separated,
hence so is S := T sep ∩ π (T sep). Observe that, since π (T sep) , T sep,
S ⊊ T sep. Since T is G-invariant, T ⊆ π (T sep), so T ⊆ S . This
contradicts the minimality of T sep. □

Proof of Theorem 3.5. We use Notation 3.6 with K(t) being
identified with a subfield of the field F of Puiseux series in t−1

overK. Letα0, . . . ,αm−1 and β0, . . . , βn−1 denote the roots of f (x)−

t and д(y) − t and α0, . . . ,αm−1 and β0, . . . , βn−1 their highest de-
gree terms. Observe that the highest degree terms are proportional
to t1/n and t1/m , and hence they are the roots of lpω (f (x)) − t and
lpω (д(y)) − t , respectively. We define

T = {(i, j) ∈ Zm × Zn | p(αi , βj) = 0},

T = {(i, j) ∈ Zm × Zn | lpω (p)(α i , β j) = 0}.

If lpω (P) were not the minimal separated multiple of lpω (p), by

Lemma 3.10, we would have T
sep

⊊ Zm × Zn . Therefore, it is
sufficient to show that T

sep
= Zm × Zn .

Since

p(αi , βj) = 0 =⇒ lpω (p)(αi , βj) = 0,

we haveT ⊆ T . By assumption, P is the minimal separated multiple
of p, so, by Lemma 3.13, T sep

= Zm × Zn . Since T sep ⊆ T
sep

, this
implies that T

sep
= Zm × Zn , and finishes the proof. □

3.3 Algorithm

The algorithm for finding a generator of the algebra of separated
polynomials of a principal ideal ⟨p⟩ is based on the results above.
First, it uses Theorem 3.5 to reduce the situation to a homogeneous
polynomial for a suitable grading, then, it uses Proposition 3.2 to
find a degree bound for the minimal separated multiple, and finally,
it uses linear algebra to determine if such a multiple exists.

Algorithm 3.14. Input: p ∈ K[x,y] \ (K[x] ∪ K[y]).

Output: a ∈ K[x] × K[y] such that K[a] = A(⟨p⟩). The algorithm

returns a = (1, 1) iff A(⟨p⟩) � K.

1 let ωx ,ωy ∈ N be maximal such that p contains monomials

xωyy0 and x0yωx . Such parameters exist because p is not uni-

variate.

2 set h = lpω (p) with ω(x
iy j) := ωx i + ωy j.

3 if h does not contain xωy , return (1, 1).

4 let {ζ1, . . . , ζm } ⊆ K be the roots of h(x, 1) ∈ K[x]. If any of

them is not a simple root, return (1, 1).

5 let N ∈ N be minimal such that (ζi/ζj)
N
= 1 for all i, j. If no

such N exists, return (1, 1).

6 make an ansatz

f =

N∑

i=0

aix
i
, д =

Nωx /ωy∑

j=0

bjy
j
,

compute remx (f −д,p) inK(a0, . . . ,aN ,b0, . . . ,bNωx /ωy ,y)[x].

The result lives in K[a0, . . . ,aN ,b0, . . . ,bNωx /ωy ,y, x] because

the leading coefficient of p is in K.

7 equate the coefficients of remx (f − д,p) with respect to x,y to

zero and solve the resulting linear system for the unknowns ai ,bj .

8 if there is a nonzero solution, return the corresponding pair (f ,д),

otherwise return (1, 1).

WhenK is a number field, Step 5 can be carried out as follows: for
each ratio ζi/ζj , one should check whether the minimal polynomial
of this ratio over Q is a cyclotomic polynomial Φn and, if yes,
return such n. This check can be performed using a bound from [18,
Theorem 15] that yields the upper bound on n based on the degree
of the polynomial.

Proposition 3.15. Algorithm 3.14 is correct.

Proof. The algorithm consists of an application of the results of
the previous section and a handling of degenerate cases not covered
by these results. In Steps 3ś5, it is correct to return (1, 1) in the
indicated situations because Proposition 3.2 implies that h is not
separable in these cases, which in combination with Lemma 3.3
implies that p is not separable either.

By Proposition 3.2, when h has a separated multiple at all, it
has one of weight Nωx , and by Theorem 3.5, when p has a sep-
arated multiple at all, it also has one of weight Nωx . Therefore,
if p has a separated multiple, it will have one of the shape set up
Step 6. For f − д to be a separated multiple of p is equivalent to
remx (f −д,p) = 0, which we can safely view as univariate division
with respect to the variable x because the leading coefficient of
p with respect to x does not contain y (nor any of the undeter-
mined coefficients). It is checked in Step 7 whether there is a way
to instantiate the undetermined coefficients in such a way that this
remainder becomes zero. If so, any such way translates into a sepa-
rated multiple, and by [15, Theorem 2.3], it is a generator of A(I). If
there is no non-zero solution, it is correct to return (1, 1). □

4 ARBITRARY BIVARIATE IDEALS

The case of an arbitrary ideal I ⊆ K[x,y] is reduced to the two
cases discussed in Sections 2 and 3. Every ideal I ⊆ K[x,y] can be
written as I =

⋂k
i=1 Pi , where the Pi ’s are primary ideals. Unless

I = {0} or I = ⟨1⟩, these primary ideals have dimensions zero or
one. Primary ideals in K[x,y] of dimension 1 must be principal
ideals, because dim(Pi) = 1 together with Bezout’s theorem implies
that Pi cannot contain any elements p,q with gcd(p,q) = 1, and
then Pi being primary implies that Pi is generated by some power
of an irreducible polynomial.

The intersection of zero-dimensional ideals is zero-dimensional
and the intersection of principal ideals is principal, so there exists a
zero-dimensional ideal I0 and a principal ideal I1 such that I = I0∩I1.
These ideals are obtained as the intersections of the respective
primary components of I . When I0 = ⟨1⟩ or I1 = ⟨1⟩, we have
I = I1 or I = I0, respectively, and are in one of the cases already
considered. Assume now that I1, I0 are both different from ⟨1⟩.

In order to use the results of Section 3, we have to make sure
that the generator of I1 contains both variables. If this is not the
case, say if I1 = ⟨h⟩ for some h ∈ K[x] \ K, then the separated
polynomials in I are precisely the elements of I ∩ K[x]. If p is such

59

Separating Variables in Bivariate Polynomial Ideals ISSAC ’20, July 20–23, 2020, Kalamata, Greece

that ⟨p⟩ = I ∩K[x], then the pairs (x ip, 0) for i = 0, . . . , degx p − 1
are generators ofA(I) (see the proof of Proposition 2.2), so this case
is settled. Therefore, from now on we assume that the generator of
I1 contains both the variables.

We can compute generators of the algebraA(I0) ⊆ K[x]×K[y] of
separated polynomials in I0 as described in Section 2 and a generator
of the algebra A(I1) ⊆ K[x] × K[y] of separated polynomials in I1
as described in Section 3. Clearly, the algebraA(I) ⊆ K[x] ×K[y] of
separated polynomials in I isA(I) = A(I0)∩A(I1). It thus remains to
compute generators for this intersection. In order to do so, we will
exploit that the codimension of A(I0) as K-subspace of K[x] ×K[y]
is finite (Lemma 2.4), and that A(I1) = K[a] for some a ∈ K[x] ×

K[y]. We have to find all polynomials p such that p(a) ∈ A(I0).
Polynomials p with a prescribed finite set of monomials can be
found with the help of Lemma 2.4 as follows.

Algorithm 4.1. Input: a ∈ K[x] × K[y], A(I0) and V as in

Lemma 2.4, and a finite set S = {s1, . . . , sm } ⊆ N.

Output: a K-vector space basis of the space of all polynomials p with

p(a) ∈ A(I0) such that p involves only monomials with exponents

in S .

1 for i = 1, . . . ,m, compute ri ∈ V such that asi − ri ∈ A(I0)

2 compute a basis B of the space of all (c1, . . . , cm) ∈ Km with

c1r1 + · · · + cmrm = 0

3 for every element (c1, . . . , cm) ∈ B, return c1t
s1 + · · · + cmtsm .

Proposition 4.2. Algorithm 4.1 is correct.

Proof. If (c1, . . . , cm) ∈ Km is such that
∑m
i=1 cia

si ∈ A(I0),
then

∑m
i=1 ciri ∈ A(I0), and since ri ∈ V for all i andA(I0)∩V = {0},

we have
∑m
i=1 ciri = 0. Therefore (c1, . . . , cm) is among the vectors

computed in step 2, so the algorithm does not miss any solutions.
Conversely, if (c1, . . . , cm) ∈ Km is such that

∑m
i=1 ciri = 0, then∑m

i=0 cia
si =

∑m
i=0 ci (a

si − ri) ∈ A(I0), so the algorithm does not
return any wrong solutions. □

To find a set of generators ofA(I0)∩A(I1), we apply Algorithm 4.1
repeatedly. First call it with S = {1, . . . , dimV + 1}. Since |S | >

dimV , the output must contain at least one nonzero polynomial p1.
Ifd1 is its degree, we can restrict the search for further generators to
subsets S of N \d1N, because when q is such that q(a) ∈ A(I0), then
we can subtract a suitable linear combination of powers of p1 to
remove from q all monomials whose exponents are multiples of d1.
Whend1 = 1, we haveA(I0)∩A(I1) = K[a] and are done. Otherwise,
N \ d1N is still an infinite set, so we can choose S ⊆ N \ d1N

with |S | > dimV and call Algorithm 4.1 to find another nonzero
polynomial p2, say of degree d2. The search for further generators
can be restricted to polynomials consisting of monomials whose
exponents belong toN\(d1N+d2N). We can continue to find further
generators of degrees d3,d4, . . . with di ∈ N \ (d1N + · · · + di−1N)

for all i . Since the monoid (N,+) has the ascending chain condition,
this process must come to an end.

The end is clearly not reached as long as д := gcd(d1, . . . ,dm) ,

1, because then N\дN is an infinite subset of N\ (d1N+ · · ·+dmN).
Once we have reached д = 1, it is well known [2, 17] thatN\(d1N+
· · ·+dmN) is a finite set, and there are algorithms [5] for computing
its largest element (known as the Frobenius number of d1, . . . ,dm).
We can therefore constructively decide when all generators have
been found.

Putting all steps together, our algorithm for computing the sepa-
rated polynomials in an arbitrary ideal of K[x,y] works as follows.
We use the notation ⟨d1, . . . ,dm⟩ for the submonoidd1N+· · ·+dmN
generated by d1, . . . ,dm in N.

Algorithm 4.3. Input: an ideal I ⊆ K[x,y], given as a finite set

of ideal generators

Output: a finite set of generators for the algebra A(I) of separated

polynomials of I

1 if dim I = 0, call Algorithm 2.1, return the result.

2 compute a zero-dimensional ideal I0 and a principal ideal I1 = ⟨h⟩

with I = I0 ∩ I1 (for example, using Gröbner bases [4] and the

remarks at the beginning of this section).

3 if h ∈ K[x], compute p such that ⟨p⟩ = I ∩K[x], return the pairs

(x ip, 0) for i = 0, . . . , degx p − 1. Likewise if h ∈ K[y].

4 call Algorithm 2.1 to get generators of A(I0), and let V be as in

Lemma 2.4.

5 call Algorithm 3.14 to get an a ∈ K[x] ×K[y] with A(I1) = K[a].

If A(I1) � K, return (1, 1).

6 G = ∅, ∆ = ∅.

7 while gcd(∆) , 1, do:

8 select a set S ⊆ N\⟨∆⟩ with |S | > dimV and call Algorithm 4.1

to find a nonzero polynomial p with p(a) ∈ A(I0) consisting

only of monomials with exponents in S .

9 G = G ∪ {p}, ∆ = ∆ ∪ {degx p}

10 call Algorithm 4.1 with S = N \ ⟨∆⟩ (which is now a computable

finite set) and add the resulting polynomials to G.

11 return G

An implementation of the algorithm in Mathematica can be
found on the website of the second author. Incidentally, the algo-
rithm also shows that A(I) is always a finitely generated K-algebra.

Example 4.4. For the ideal

I = ⟨(x2 − xy + y2)(x3 − 2xy2 − 1), (x2 − xy + y2)(y3 − 2x2y − 1)⟩

we have I0 = ⟨x3 − 2xy2 − 1,y3 − 2x2y − 1⟩ and I1 = ⟨x2 − xy +y2⟩.

Algorithm 2.1 yields a somewhat lengthy list of generators for A(I0)

fromwhich it can be read off that a suitable choice forV is theK-vector

space generated by (0,yi) for i = 0, . . . , 8. In particular, dimV = 9.
Algorithm 3.14 yields A(I1) = K[(x

3,−y3)].

Making an ansatz for a polynomial p of degree at most 10 such that
p(a) ∈ A(I0), we find a solution space of dimension 7. Its lowest degree

element is t4 − 2t2, giving rise to the element (x12 − 2x6,y12 − 2y6) of
A(I0) ∩A(I1). If we discard the other solutions and continue with the

next iteration, we search for polynomials p whose support is contained

{xs : s ∈ S} for S = {1, 2, 3, 5, 6, 7, 9, 10, 11, 13}. Again, the solution
space turns out to have dimension 7. The lowest degree element is

now 9t5 − 26t3 + 17. Since gcd(4, 5) = 1, we can exit the while loop.

In step 10 of the algorithm, we get S = {1, 2, 3, 6, 7, 11}, and this

exponent set leads to a solution space of dimension three, generated

by the polynomials 81t6 − 323t3, 81t7 − 539t3 + 458, and 6561t11 −
191125t3 + 184564. The resulting generators of A(I) = A(I0) ∩A(I1)

are therefore the pairs p((x3,−y3)) where p runs through the five

polynomials found by the algorithm.

60

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Manfred Buchacher, Manuel Kauers, and Gleb Pogudin

5 MORE THAN TWO VARIABLES

It is a natural question whether anything more can be said about
the case of several variables. Incidentally, a multivariate version
would be needed in order to solve the combinatorial problem that
motivated this research in the first place.

Algorithm 2.1 for bivariate zero-dimensional ideals also holds for
zero-dimensional ideals of K[x1, . . . , xn,y1, . . . ,ym] for arbitrary
n,m. Also Lemma 2.4 generalizes without problems. We believe that
with some further work, our results for principal ideals can also be
generalized to the case of several variables. However, in general,
not every polynomial ideal with more than two variables is the
intersection of a principal ideal and a zero-dimensional ideal, so the
route taken in Section 4 is blocked. Also, as the next example shows
we cannot expect an algorithm that finds the algebra of separated
polynomials for an arbitrary ideal I ⊆ K[x1, . . . , xn,y1, . . . ,ym],
since it does not need to be finitely generated.

Example 5.1 (A(I) is not necessarily finitely generated). It

is shown in [16, Example 1.3] that the algebra

R := C[t21 , t
3
1 , t2] ∩ C[t

2
1 , t2 − t1] ⊂ C[t1, t2]

is not finitely generated. Consider the ideal

I = ⟨x1 − t21 , x2 − t31 , x3 − t2,

y1 − t21 ,y2 − (t2 − t1)⟩ ∩ C[x1, x2, x3,y1,y2]

= ⟨x1 − y1,−x2 + x3y1 − y1y2, x
2
3 − y1 − 2x3y2 + y

2
2⟩.

We claim that A(I) � R as C-algebras, implying that A(I) is not

finitely generated. We show that ϕ : A(I) → R defined by ϕ(f ,д) =

f (t21 , t
3
1 , t2) is an isomorphism:

• ϕ is well-defined (the image is contained in R ⊆ C[t21 , t
3
1 , t2]).

To see this, note that, (f ,д) ∈ A(I) means f − д ∈ I , which

by definition of I means f (t21 , t
3
1 , t2) = д(t

2
1 , t2 − t1). Therefore,

f (t21 , t
3
1 , t2) ∈ C[t

2
1 , t

3
2 , t2] ∩ C[t

2
1 , t2 − t1] = R.

• ϕ is surjective. For every p ∈ R there exist polynomials f ,д

with p = f (t21 , t
3
1 , t2) = д(t21 , t2 − t1). By definition of I we

have f (x1, x2, x3) − д(y1,y2) ∈ I , hence (f ,д) ∈ A(I). Now

ϕ(f) = p, so p is in the image of ϕ.

• ϕ is injective. This follows from I ∩ C[y1,y2] = {0}. □

It would still make sense to ask for an algorithm that decides
whether A(I) is nontrivial. We do not have such an algorithm, but
being able to solve the problem in the bivariate case gives rise to a
necessary condition.

Proposition 5.2. Let

ξ : K[x1, . . . , xn] → K[x] and η : K[y1, . . . ,ym] → K[y]

be two homomorphisms, and let I ⊆ K[x1, . . . , xn,y1, . . . ,ym] be an

ideal such that

I ∩ K[y1, . . . ,ym] = {0} and (id ⊗ η)(I) ∩ K[x1, . . . , xn] = {0}.

If the algebra of separated polynomials of I is non-trivial, then so is

the algebra of separated polynomials of J := (ξ ⊗ η)(I) ⊆ K[x,y].

Proof. Let (f ,д) be an arbitrary, non-constant element of A(I).
If (ξ (f),η(д)) ∈ A(J) were a K-multiple of (1, 1), we would find
that f − η(д) were an element of (id ⊗ η)(I) ∩ K[x1, . . . , xn], and
hence, by our assumption, that f itself were a constant. So f − д ∈

I ∩ K[y1, . . . ,ym], and hence, by assumption, д = f is a constant
as well, contradicting that (f ,д) is not a constant. □

The examples below show different reasonable choices for ho-
momorphisms ξ and η.

Example 5.3. Consider the polynomial p = x2 + xy1y2 + y
2
1 + y

2
2 .

Let ξ = id and let η be defined by η(y1) = y, η(y2) = 2. Notice that η
is just the evaluation of y2 at 2. Then (ξ ⊗ η)(p) = x2 + 2xy1 +y21 + 4,
a polynomial that is not separable. Hence p is not separable.

Example 5.4. Consider the polynomial p = x2 +xy1 +y
2
1 +y

4
2 . We

cannot use the same strategy as in the previous example because any

evaluation of y1 or y2 results in a separable polynomial. Nevertheless,

the homomorphism defined by ξ (x) = x , η(y1) = y
2, and η(y2) = y

maps p to (ξ ⊗ η)(p) = x2 + xy2 + 2y4, a polynomial which is not

separable. So p is not separable either.

Acknowledgements. We thank Erhard Aichinger and Josef Schi-
cho for sharing their thoughts on the topic and for providing point-
ers to the literature. We also thank the referees for their careful
reading and their valuable suggestions.

REFERENCES
[1] Erhard Aichinger and Stefan Steinerberger. A proof of a theorem by Fried and

MacRae and applications to the composition of polynomial functions. Archiv der
Mathematik, 97:115ś124, 2011.

[2] Jorge L. Ramírez Alfonsín. The Diophantine Frobenius Problem. Oxford University
Press, 2006.

[3] Robert M. Beals, Joseph L. Wetherell, and Michael E. Zieve. Polynomials with a
common composite. Israel Journal of Mathematics, 174(1):93ś117, 2009.

[4] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases. Springer,
1993.

[5] Dale Beihoffer, Jemimah Hendry, Albert Nijenhuis, and Stan Wagon. Faster
algorithms for Frobenius numbers. Electronic Journal of Combinatorics, 12:R27,
2005.

[6] Yuri F. Bilu. Quadratic factors of f (x) − д(y). Acta Arithmetica, 90(4):341ś355,
1999.

[7] Yuri F. Bilu and Robert Tichy. The diophantine equation f (x) = д(y). Acta
Arithmetica, 95(3):261ś288, 2000.

[8] Franz Binder. Fast computations in the lattice of polynomial rational function
fields. In Proceedings of ISSAC’96, pages 43ś48, 1996.

[9] Mireille Bousquet-Mélou. An elementary solution of Gessel’s walks in the
quadrant. Advances in Mathematics, 303:1171ś1189, 2016.

[10] J. W. S. Cassels. Factorization of polynomials in several variables. In K. E. Aubert
and W. Ljunggren, editors, Proceedings of the 15th Scandinavian Congress Oslo
1968, pages 1ś17. Springer Berlin Heidelberg, 1969.

[11] Pierrette Cassou-Noguès and Jean-Marc Couveignes. Factorisations explicites de
д(y) − h(z). Acta Arithmetica, 87(4):291ś317, 1999.

[12] H. Davenport, D. J. Lewis, and A. Schinzel. Equations of the form f (x) = д(y).
The Quarterly Journal of Mathematics, 12(1):304ś312, 1961.

[13] H. T. Engstrom. Polynomial substitutions. American Journal of Mathematics,
63(2):249ś255, 1941.

[14] Michael D. Fried. The field of definition of function fields and a problem in the
reducibility of polynomials in two variables. Illinois Journal of Mathematics,
pages 128ś146, 1973.

[15] Michael D. Fried and R. E. MacRae. On curves with separated variables. Mathe-
matische Annalen, 180:220ś226, 1969.

[16] Pinaki Mondal. When is the intersection of two finitely generated subalgebras of
a polynomial ring also finitely generated? Arnold Mathematical Journal, 3(3):333ś
350, 2017.

[17] R. W. Owens. An algorithm to solve the Frobenius problem. Mathematics
Magazine, 76(4):264ś275, 2003.

[18] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some func-
tions of prime numbers. Illinois Journal of Mathematics, 6(1):64ś94, 1962.

[19] Josef Schicho. A note on a theorem of Fried and MacRae. Archiv der Mathematik,
65:239ś243, 1995.

61

Robots, Computer Algebra and Eight Connected Components

Jose Capco
Innsbruck University
Innsbruck, Austria

jose.capco@uibk.ac.at

Mohab Safey El Din
Sorbonne Université, CNRS, LIP6
F-75252, Paris Cedex 05, France

mohab.safey@lip6.fr

Josef Schicho
JKU University
Linz, Austria

Josef.Schicho@risc.jku.at

ABSTRACT

Answering connectivity queries in semi-algebraic sets is a long-

standing and challenging computational issue with applications in

robotics, in particular for the analysis of kinematic singularities.

One task there is to compute the number of connected components

of the complementary of the singularities of the kinematic map.

Another task is to design a continuous path joining two given

points lying in the same connected component of such a set. In this

paper, we push forward the current capabilities of computer algebra

to obtain computer-aided proofs of the analysis of the kinematic

singularities of various robots used in industry.

We first show how to combine mathematical reasoning with easy

symbolic computations to study the kinematic singularities of an in-

finite family (depending on paramaters) modelled by the UR-series

produced by the company łUniversal Robotsž. Next, we compute

roadmaps (which are curves used to answer connectivity queries)

for this family of robots. We design an algorithm for łsolvingž posi-

tive dimensional polynomial system depending on parameters. The

meaning of solving here means partitioning the parameter’s space

into semi-algebraic components over which the number of con-

nected components of the semi-algebraic set defined by the input

system is invariant. Practical experiments confirm our computer-

aided proof and show that such an algorithm can already be used

to analyze the kinematic singularities of the UR-series family. The

number of connected components of the complementary of the

kinematic singularities of generic robots in this family is 8.

KEYWORDS

kinematic singularity avoidance, roadmaps, semialgebraic sets

ACM Reference Format:

Jose Capco, Mohab Safey El Din, and Josef Schicho. 2020. Robots, Computer

Algebra and Eight Connected Components. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.

3404048

The three authors are supported by the joint ANR-FWFANR-19-CE48-0015, FWF I 4452-
N ECARP project. Mohab Safey El Din is supported by the ANR grants ANR-18-CE33-
0011 Sesame and ANR-19-CE40-0018 De Rerum Natura, the PGMO grant CAMiSAdo
and the European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement N. 813211 (POEMA). .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404048

1 INTRODUCTION

The individual parts of a serial robot, called links, are moved by

controlling the angle of each joint connecting two links. The inverse

kinematics problem asks for the values of all angles producing a

desired position of the end effector, where łpositionž includes not

just the location of the end effector in 3-space but also the orienta-

tion. In a sense, this means inverting a function which is called the

forward kinematics map in robotics, which determines the position

of the end effector for given angles by a well-known formula (see

Section 2). In robot controlling, the inverse kinematics problem is

often solved incrementally: starting from some known initial angle

configuration and its corresponding end effector position, we want

to compute the change of the angles required to achieve a desired

small change in the end effector position.

Kinematic singularities are defined as critical points of the forward

map, i.e. angle configurations where the Jacobian matrix of the

forward map is rank deficient. There are two known facts that make

rather difficulty to control a robot in a singular or near a singular

configuration. First, if an end effector velocity or force outside the

image of the singular Jacobian is desired, then the necessary joint

velocity or torque is either not defined or very large (see [23] ğ4.3

and [31] ğ5.9). The second reason is that industrial controllers are

based on Newton’s method for the incremental solution of the

inverse problem, and this method is not guaranteed to converge if

it is used with a starting point close to the singular set. For these

reasons, engineers prefer to plan the robot movements avoiding

kinematic singularities.

For a general serial robot with six joints, the singular set is a hyper-

surface defined locally by the Jacobian determinant of the forward

map. Its complementary, a real manifold, is not connected. Counting

the number of connected components of this manifold and answer-

ing connectivity queries in this set is then of crucial importance in

this application domain.

Answering connectivity queries in semi-algebraic sets is a clas-

sical problem of algorithmic semi-algebraic geometry which has

attracted a lot of attention through the development of the so-called

ROADMAP algorithms (see e.g. [6, 8, 9, 11, 12, 21, 27, 28]). Up to

our knowledge, such algorithms had never been developed enough

and implemented efficiently to tackle real-life applications.

In this paper, we push forward the capabilities of computer algebra

in this application domain by solving connectivity queries for the

non singular configuration sets of industrial robots from the UR

series of the company łUniversal Robotsž. For a particular robot in

this series, the UR5, the number of components of the non singular

configuration set is 8 (see Section 3). For two points in the same

component, we show how to construct a connecting path, in two

ways: either by an ad hoc way (which has its own algorithmic inter-

est) taking advantage of the specialty of the geometric parameters

of UR5, and by using the ROADMAP algorithm (see Section 5). Next,

62

https://doi.org/10.1145/3373207.3404048
https://doi.org/10.1145/3373207.3404048
https://doi.org/10.1145/3373207.3404048

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jose Capco, Mohab Safey El Din, and Josef Schicho

we go further and extend our analysis of UR5 to the whole UR series

and prove that outside a proper Zariski closed set (UR5 is outside

this closed set) the number of connected components of the non

singular configuration set is constant. These are computer-aided

mathematical proofs involving ńeasyż symbolic computations

The next contribution is based on the fact that the family of UR

robots is determined by a finite list of real parameters. Hence, an

algorithmic way of tackling the problem of analyzing kinematic

singularities of the whole UR family is to ńsolveż a positive dimen-

sional system depending on parameters (i.e. after specialization of

the parameters, the specialized system is positive dimensional). We

design an algorithm that decomposes the parameter’s space into

semi-algebraic subsets, such that the number of connected com-

ponents of the non singular configurations is constant in each of

these subsets. As far as we know, this is the first algorithm of that

type which is designed.

We also implemented this algorithm and used it for the analysis

of the kinematic singularities of the UR series. Computations are

heavy but already doable (on a standard laptop) within 10 hours.

This is a computational way to retrieve the same results as our

computer-aided mathematical proofs. These computations show

that computer algebra today is efficient enough to solve connectivity

queries that are of practical interest in industrial robot applications.

2 ROBOTICS PROBLEM FORMULATION

We define a manipulator or robot as follows: we have finite ordered

rigid bodies called links which are connected by 𝑛 revolute joints

that are also ordered. To each joint we associate a coordinate system

or a frame. The links are connected in a serial manner i.e. if we

consider the robot as a graph such that the vertices are joints and

the edges are links then this graph is a path (the first and last

joint has degree 1 and all other joints have degree 2) and the joints

allow rotation about its axes, so that if a joint rotates then all other

subsequent links rotate about the axes of this joint. A reference

coordinate system is chosen for the final joint which is called the

end-effector1. See Fig. 1 for an illustration.

{1}

{2}

{3}

{4}

Figure 1: Green objects are links. Joints 1,2,3,4 and their corre-

sponding frames are shown.

In theoretical kinematics one may forget that the links are rigid

bodies so that collision between links are disregarded. In this case we

may as well think of a robot as a differentiable map 𝐹 : SO(2)𝑛 −→
SE(3) where SO(2) is the one-dimensional group of rotations around

a fixed line, parameterised by the rotation angle, and SE(3) is the

1this is usually another frame, but this is just an additional fixed transformation in
SE(3) and w.l.o.g. we assume that the final offset, distance and twist is 0

six-dimensional group of Euclidean congruence transformations.

This map is defined in the following way:

• The 𝑖-th coordinate of an element in SO(2)𝑛 is associated to the

𝑖-th (revolute) joint parameter.

• For joint values ®𝜃 := (𝜃1, . . . , 𝜃𝑛) in SO(2)𝑛 , the image 𝐹 (®𝜃) is
the transformation of the end-effector from the initial position

corresponding to all angles being zero to the final position

obtained by composing the 𝑛 rotations.

The map 𝐹 itself is called the kinematic map (of the robot). Its

domain is called the configuration space, while its image is called

the work-space or the kinematic image.

We use the Denavit-Hartenberg (DH) convention when describing

relations between two joint frames. It is standard in robotics ; its

advantages are discussed in e.g. [31, ğ3.2], [1, ğ4.2]. The transfor-

mation between the frames is given by the following rule:

• The 𝑧-axis of the reference frame will be the axis of rotation of

the joint.

• To obtain the next frame, one starts with a rotation about the

𝑧-axis of the reference frame, called the rotation, followed by

• a translation along the 𝑧-axis of the reference frame, called the

offset, followed by

• a translation along the 𝑥-axis, called the distance, followed by

• a rotation about the 𝑥-axis, called the twist.

The transformation between frame 𝑖 to frame 𝑖 + 1 is

𝑅𝑧 (𝜃𝑖)𝑇𝑧 (𝑑𝑖)𝑇𝑥 (𝑎𝑖)𝑅𝑥 (𝛼𝑖)

where 𝑅𝑧 ,𝑇𝑧 ,𝑇𝑥 , 𝑅𝑥 are rotations or translations with respect to 𝑧-

or 𝑥-axis parameterised by the angle of rotation 𝜃𝑖 (the 𝑖-th joint

parameter), the offset 𝑑𝑖 , the distance 𝑎𝑖 and the angle of twist 𝛼𝑖
of the 𝑖-th frame. For a given robot with 𝑛 joints all DH parameters

except for the rotation are fixed values. So that image of 𝐹 for given

joint values (the rotations) (𝜃1, . . . , 𝜃𝑛) is just the multiplication of

these transformations in SE(3). The parameters 𝑑1, 𝑑𝑛, 𝑎𝑛, 𝛼𝑛 are

assumed to be 0. This is not a loss of generality, because we can

freely choose the frame at the base and at the end-effector. More

detailed discussion on these can be seen in [31].

Example 2.1. The UR5 robot has the following DH parameters:

distances (m.) (𝑎1, . . . , 𝑎6) := (0,− 425
1000 ,− 39225

100000 , 0, 0, 0)

offsets (m.) (𝑑1, . . . , 𝑑6) := (0, 0, 0, 10915
100000 ,

9465
100000 , 0)

twist angles (rad.) (𝛼1, . . . , 𝛼6) := (𝜋2 , 0, 0,
𝜋
2 ,−𝜋2 , 0)

For example, the following joint angles (rotations, in rad.)

(𝜃1, . . . , 𝜃6) :=

(
1

10
,
2

10
,
3

10
,
4

10
,
5

10
,
6

10

)

leads to the following transformation in (𝑅, ®𝑡) ∈ SE(3) (represented as
elements in SO(3)⋊ℝ3) where:

𝑅 ≃ ©«
0.047 −0.977 −0.209
−0.393 0.174 −0.903
0.918 0.123 −0.376

ª®¬
, ®𝑡 ≃ (−6.768,−1.7784,−3.336).

Definition. Given the kinematic map of a manipulator 𝐹 :

SO(2)𝑛 → SE(3), the kinematic singularities in the configuration

space are the points 𝑃 ∈ (ℙ1)𝑛 such that the Jacobian of 𝐹 at 𝑃 is

rank-deficient.

In this paper, we will only deal with 6-jointed manipulators.

Therefore the kinematic map is a differentiable map from the 6-

dimensional configuration space (SO(2))6 to the group SE(3), which

63

Robots, Computer Algebra and Eight Connected Components ISSAC ’20, July 20–23, 2020, Kalamata, Greece

is also 6-dimensional. For non-singular points of the map, the Jaco-

bian is therefore invertible, and 𝐹 is a local homeomorphism. Here

is a well-known geometric description of singularities.

Theorem 2.2. Let 𝐹 : SO(2)6 → SE(3) be the kinematic map of a

robot with 6 joints. Let 𝑃 ∈ SO(2)6. Then the following are equivalent.

(1) 𝑃 is a kinematic singularity.

(2) The Jacobian of 𝐹 at 𝑃 is singular.

(3) If 𝑃1, . . . , 𝑃6 ∈ ℙ5(ℝ) are the Plücker representation of the axes

(lines in ℙ3) of the joints of the robot at the configuration point 𝑃

then the matrix consisting of the Plücker coordinates (𝑝𝑖, 𝑗)𝑖, 𝑗≤6
(𝑃𝑖 = (𝑝𝑖,1 : 𝑝𝑖,2 : · · · : 𝑝𝑖,6) for 𝑖 = 1, . . . , 6) is singular.

Proof. The equivalence of the first two items is clear by definition.

The equivalence of the first and the third item is found in [30, ğ4.5.1],

[23, ğ4.1] or [1, ğ4.5.1.] �

Assume that we have two non-singular points in the configuration

set. As explained earlier, we want to decide if these two configura-

tions can be connected by a curve of configurations which avoids

the singular hypersurface (see [33] ğ1.2 for some history on this

question). If yes, then an explicit construction of such a curve is

also of interest. In order to tackle these problems, we choose param-

eters for SO(2) so that the equation of the hypersurface becomes a

polynomial. This is not the case when we use the angles 𝜃1, . . . , 𝜃𝑛 ,

because the Jacobian contains trigonometric functions in these an-

gles. One well-known strategy is to parametrize by points on a unit

circle, i.e. by two parameters satisfying the equation of the unit cir-

cle. This has a clear disadvantage: the number of variables increases,

and the singular set has co-dimension greater than one. Another

well-known strategy is to replace 𝜃𝑖 by 𝑣𝑖 = tan 𝜃𝑖
2 . The variable

𝑣𝑖 ranges over the projective line, and the angle 𝜋 corresponds to

the point at infinity. If we set 𝑣𝑖 = tan 𝜃𝑖
2 for 𝑖 = 1, . . . , 𝑛, then we

obtain, in general, a polynomial in 𝑣2, . . . , 𝑣5. More precisely, the

degree is 2 in 𝑣2 and 𝑣5 and degree 4 in 𝑣3 and in 𝑣4. The Jacobian

does not depend on the joint angles 𝜃1 and 𝜃6. This is clear from

the third characterization of singularities in Theorem 2.2: only the

position of the axes are relevant, and a rotation along the first or

the last axis does not change the position of any axis.

We define theUR Family to be robots having a similar DH-parameter

as the known UR robots (UR5, UR10, etc.). Such UR robots are

parameterised by the following DH parameters

distances (m.) (𝑎1, . . . , 𝑎6) := (0, 𝑎2, 𝑎3, 0, 0, 0)

offsets (m.) (𝑑1, . . . , 𝑑6) := (0, 0, 0, 𝑑4, 𝑑5, 0)

twist angles (rad.) (𝛼1, . . . , 𝛼6) := (𝜋2 , 0, 0,
𝜋
2 ,−𝜋2 , 0)

For these robots, the determinant of the Jacobian (see [34]), ex-

pressed as a polynomial in 𝑣2, . . . , 𝑣5, is 𝐴 = −𝐵𝑣3𝑣5 with
𝐵 = 𝑎2𝑣

2
2𝑣

2
3𝑣

2
4 − 𝑎3𝑣22𝑣23𝑣24 − 2𝑑5𝑣22𝑣23𝑣4 − 2𝑑5𝑣22𝑣3𝑣24 − 2𝑑5𝑣2𝑣23𝑣24

+ 𝑎2𝑣
2
2𝑣

2
3 + 𝑎2𝑣

2
2𝑣

2
4 − 𝑎2𝑣23𝑣24 − 𝑎3𝑣22𝑣23 + 𝑎3𝑣22𝑣24 + 4𝑎3𝑣2𝑣3𝑣

2
4

+ 𝑎3𝑣
2
3𝑣

2
4 + 2𝑑5𝑣

2
2𝑣3 + 2𝑑5𝑣

2
2𝑣4 + 2𝑑5𝑣2𝑣

2
3 + 8𝑑5𝑣2𝑣3𝑣4

+ 2𝑑5𝑣2𝑣
2
4 + 2𝑑5𝑣

2
3𝑣4 + 2𝑑5𝑣3𝑣

2
4 + 𝑎2𝑣

2
2 − 𝑎2𝑣23 − 𝑎2𝑣24 + 𝑎3𝑣22

+ 4𝑎3𝑣2𝑣3 + 𝑎3𝑣
2
3 − 𝑎3𝑣24 − 2𝑑5𝑣2 − 2𝑑5𝑣3 − 2𝑑5𝑣4 − 𝑎2 − 𝑎3

Note that there is a degree drop in three of the four cases: the degree

in 𝑣3 is only 3, and not 4, and the degree in 𝑣4 is only 2, and not 4, and

the degree in 𝑣5 is only 1, and not 2. The drop in the degree means

that the homogeneous form of the Jacobian has a linear factor that

vanishes if and only if the value of the variable whose degree drops

is infinity, or equivalently, that the corresponding angle is 𝜋 . Since

we are interested in the complement of the singular space, we may

assume that none of these three angles is equal to 𝜋 , and we can

use the parameters 𝑣3, 𝑣4, 𝑣5 without worrying about paths crossing

infinity.

For the angle 𝜃2, the situation is different. There is no degree drop,

hence there are configurations with 𝜃2 = 𝜋 in the non singular

configuration set. If we use the parametrization by half angle, then

we have to take paths in the projective line into account that cross

infinity, or, in other words, consider this variable in the projective

space ℙ1(ℝ). But, to take advantage on algorithms acting on semi-

algebraic sets, one needs variables that range over ℝ.

Hence, we instead use parameters 𝑠2 = sin(𝜃2) and 𝑐2 = cos(𝜃2) and

add the additional equation 𝑠22 + 𝑐22 = 1, obtaining a polynomial

in the variables 𝑠2, 𝑐2, 𝑣3, 𝑣4, 𝑣5 with coefficients depending on the

parameters 𝑎2, 𝑎3, 𝑑4, 𝑑5. Of course, the reason for this more costly

treatment for𝜃2 is just necessary if we use the ROADMAP algorithm

subsequently. For an alternative analysis not using it, it is still better

to use the half tangent ranging over the projective line.

3 ANALYSIS OF THE UR5 ROBOT

We gave in Example 2.1 the Denavit-Hartenberg parameters of the

UR5 robot. These values are used to instantiate 𝑎2, 𝑎3 and 𝑑5 in the

above polynomial 𝐵; the specialized polynomial is then denoted

by �̃� and we let �̃� = �̃�𝑣3𝑣5. Recall that 𝑣2 ranges over ℙ
1, while

𝑣3, 𝑣4, 𝑣5 range only over the affine line.

We investigate the discriminant of �̃� with respect to the variable
𝑣2 (thus the projection of the critical set to the (𝑣3, 𝑣4)-plane). The

discriminant of �̃� with respect to the variable 𝑣2 we denote as
𝑏 ∈ ℝ[𝑣3, 𝑣4]. This discriminant is still factorisable in ℂ[𝑣3, 𝑣4]. In
fact, one checks, that it is the factor of two complex conjugates of
some polynomial in ℝ[𝑣3, 𝑣4]. This implies that 𝑏 = 𝑐2 + 𝑑2 is the
sum of two squares of real polynomials 𝑐, 𝑑 ∈ ℝ[𝑣3, 𝑣4]. These two
polynomials are given by

𝑐 =
1577212𝑣3 − 3561263𝑣4 − 14850585√

2006237

𝑑 =
(
√
2006237𝑣4 + 1239915 − 7144712)𝑣3 + 16090500𝑣4√

2006237

Thus, 𝑏 can have only two real roots (i.e. two pairs (𝑣3, 𝑣4)), i.e the

vanishing set of 𝑏 in ℝ2 is finite, namely they points that are the

zeros of both 𝑐 and 𝑑 . We solve this as floating numbers to have an

idea of their vicinity in an affine chart of the ambient space of the

kinematic singularity. The roots are

𝑞1 = (𝑣3 ≃ −9.140975564 , 𝑣4 ≃ −8.218388067)
𝑞2 = (𝑣3 ≃ 9.140975563 , 𝑣4 ≃ −.1216783622)

For the two special values 𝑞1 and 𝑞2 in the (𝑣3, 𝑣4)-plane, all three

coefficients of �̃� with respect to 𝑣2 are zero.

Now, since the discriminant 𝑏 is positive except at these two points

and since �̃� itself is quadratic with respect to 𝑣2 we conclude that the

preimage of the projection (to (𝑣3, 𝑣4)-plane) are two real points in

the variety defined by �̃�. Thus, the variety defined by �̃� is composed

of two sheets (above any two points (𝑣3, 𝑣4) except 𝑞1 and 𝑞2). Let

𝑋 be the complement of the vanishing points of �̃� in ℙ1 ×𝔸2. Set

𝑌 := 𝔸
2 \ ({𝑞1, 𝑞2} ∪ {(0, 𝑣4) | 𝑣4 ∈ ℝ})

So we have a canonical projection (to the (𝑣3, 𝑣4)-plane) from

𝑋 ∩ (ℙ1 × 𝑌) to 𝑌 . The fiber of this projection is a projective line

64

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jose Capco, Mohab Safey El Din, and Josef Schicho

without two distinct points. Hence, every fiber has two compo-

nents. The sign of �̃� is different for the two components of each

fiber. Then, we have two components of𝑋 for each component of𝑌 .

Obviously, 𝑌 has two components, hence we have a total number

of 4 components.

For the non singular set, which is the complement of the zero set

of �̃�, we get 8 components: for each component of 𝑋 , we have one

component where 𝑣5 is positive and one where 𝑣5 is negative.

Now assume that we have two non singular configuration points

𝑥,𝑦 in the same component, and we want to construct a path con-

necting them. The projections to 𝑌 have to lie in the same compo-

nent of 𝑌 , and because 𝑌 is the plane without a line and two points,

it is easy to connect the images of the projections in 𝑌 : in most

cases, a straight line segment is fine; if the straight line segment

connecting the two image points contains 𝑞1 or 𝑞2, we have to do a

random detour via a third point. The zero set of �̃� is a two-sheeted

covering of 𝑌 . So, for any value of 𝑌 , we have two points in the

zero set of �̃� projecting to it. If we look at these points as points

in SO(2), then it is clear that there are two łmidpointsž in the zero

set of �̃�, which have equal angle distance to these two points. The

value of �̃� is positive for one of the two midpoints and negative for

the other one. The sign of �̃�(𝑥) and �̃�(𝑦), however, must be the same

because the two points are in the same connected component. Sup-

pose, without loss of generality, that �̃�(𝑥) and �̃�(𝑦) are both positive.

Then we first connect 𝑥 to the midpoint over the projection of 𝑥 to

𝑌 with positive sign, by a curve in the fiber. Next, we lift the path

in 𝑌 , connecting the projections of 𝑥 and 𝑦 in the same component,

to a path of midpoints with positive sign, arriving at the midpoint

with positive sign lying over the projection of𝑦. Finally, we connect

this midpoint to 𝑦 by the other fiber.

Below, we show the sheets in Figure 2 to illustrate that:

(i) the regions above and below the sheets can be connected

(ii) the region between the two sheets is the other connected com-

ponent

(iii) the two points 𝑞2 and 𝑞3 are points in the projection where the

sheets get connected (see assymptotes in Fig. 2). Thus, the variety

describing the two sheets is connected.

Legends:

path in component 1

path in component 2

asymptotes

Figure 2: The two sheets of �̃�

4 UR SERIES

We can make a general statement for robots belonging to the UR

family (e.g. UR10, UR3 etc.). We define the UR Family to be robots

which have a similar DH-parameter as the known UR robots (UR5,

UR10 etc.), a robot in this family we shall call a UR robot. Namely

they are parameterised by the following DH parameters :

distances (m.) (𝑎1, . . . , 𝑎6) := (0, 𝑎2, 𝑎3, 0, 0, 0)

offsets (m.) (𝑑1, . . . , 𝑑6) := (0, 0, 0, 𝑑4, 𝑑5, 0)

twist angles (rad.) (𝛼1, . . . , 𝛼6) := (𝜋2 , 0, 0,
𝜋
2 ,−𝜋2 , 0)

i.e. these robots are parameterised by 4 parameters: 𝑎2, 𝑎3, 𝑑4, 𝑑5.
We can write the largest (in number of terms and in degree) poly-
nomial factor of the polynomial whose vanishing points is the
kinematic singularity in configuration space of a UR robot as

𝐵 = 𝑎2𝑣
2
2𝑣

2
3𝑣

2
4 − 𝑎3𝑣22𝑣23𝑣24 − 2𝑑5𝑣22𝑣23𝑣4 − 2𝑑5𝑣22𝑣3𝑣24 − 2𝑑5𝑣2𝑣23𝑣24

+ 𝑎2𝑣
2
2𝑣

2
3 + 𝑎2𝑣

2
2𝑣

2
4 − 𝑎2𝑣23𝑣24 − 𝑎3𝑣22𝑣23 + 𝑎3𝑣22𝑣24 + 4𝑎3𝑣2𝑣3𝑣

2
4

+ 𝑎3𝑣
2
3𝑣

2
4 + 2𝑑5𝑣

2
2𝑣3 + 2𝑑5𝑣

2
2𝑣4 + 2𝑑5𝑣2𝑣

2
3 + 8𝑑5𝑣2𝑣3𝑣4

+ 2𝑑5𝑣2𝑣
2
4 + 2𝑑5𝑣

2
3𝑣4 + 2𝑑5𝑣3𝑣

2
4 + 𝑎2𝑣

2
2 − 𝑎2𝑣23 − 𝑎2𝑣24 + 𝑎3𝑣22

+ 4𝑎3𝑣2𝑣3 + 𝑎3𝑣
2
3 − 𝑎3𝑣24 − 2𝑑5𝑣2 − 2𝑑5𝑣3 − 2𝑑5𝑣4 − 𝑎2 − 𝑎3

Note that 𝑑4 does not affect the singularity of the robot. Taking the

discriminant of 𝐵 with respect to 𝑣2 yields the sum of two squares

i.e. the product of two quadratic complex conjugate polynomials

disc(𝐵, 𝑣2) = 𝑔𝑔.

𝑔 = (−𝑎2𝑣3𝑣4 + 𝑎3𝑣3𝑣4 + 𝑑5𝑣3 + 𝑑5𝑣4 + 𝑎2 + 𝑎3)
+ (−𝑑5𝑣3𝑣4 + 𝑎2𝑣3 + 𝑎2𝑣4 − 𝑎3𝑣3 + 𝑎3𝑣4 + 𝑑5)𝑖

For a robot determined by some real quadruple 𝑢 ∈ ℝ4, let

𝐴𝑢 , 𝐵𝑢 , 𝑔𝑢 be the polynomials obtained by instantiating in 𝐴, 𝐵,𝑔

the variables 𝑎2, 𝑎3, 𝑑4, 𝑑5 by the corresponding real values in the

quadruple. Let 𝑓 : ℝ3 → ℝ2 be the projection (𝑣2, 𝑣3, 𝑣5) ↦→ (𝑣3, 𝑣5).

Let 𝑌𝑢 ⊂ ℝ2 be the complement of (the union of the line 𝑣3 = 0

and the common zero set of Re𝑔𝑢 and Im𝑔𝑢). Then the real zero

set of 𝐵𝑢 in ℝ3 intersected with 𝑓 −1(𝑌𝑢) projects to surjectively

to 𝑌𝑢 , in such a way that there are two sheets, each projecting

homeomorphically to 𝑌𝑢 .

For general robot 𝑢, the real set of 𝑔, which is meaning the set of

all points in the real (𝑣3, 𝑣4)-plane such that both the real part and

the imaginary part of 𝑔 is equal to zero, is a finite subset of ℝ2. All

arguments from the previous sections work in this case as well.

Hence we get 8 components for these parameters’values. Moreover,

we have paths connecting points in the same component, as in the

previous section.

It remains to treat the non-general robots where the real zero set of

𝑔 is one-dimensional. This is the case if and only if 𝑑5 = 𝑎22 −𝑎23 = 0.

The even more special case 𝑑5 = 𝑎2 = 𝑎3 = 0 is easy to analyze:

here, the determinant of the Jacobian 𝐴 is identically zero, which

means that there are no non singular configurations. Excluding

that case, we have two families of robots, and in each family, up to

the value of 𝑑4, the parameters are unique up to scaling. Without

loss of generality, we can reduce to exactly two non-general robots

𝑢 ′ = (1, 1, 0, 0) and 𝑢 ′′ = (1,−1, 0, 0). Then the polynomial 𝐵𝑢′ has

a factor is 𝐶 ′ := 𝑣3𝑣4 − 𝑣3 − 𝑣4 − 1, and the polynomial 𝐵𝑢′′ has a

factor 𝐶 ′′ := 𝑣3𝑣4 + 𝑣3 + 𝑣4 − 1. Apart from that complication, the

analysis proceeds similar as in the general case: the set 𝑌𝑢′ is the

plane minus the line 𝑣3 = 0 minus the hyperbola with equation 𝐶 ′,
and the set 𝑌𝑢′′ is the plane minus the hyperbola with equation𝐶 ′′.
In both cases, the number of components of 𝑌 is 5, as it can be seen

in Figure 3. Consequently, we have 20 components in total. The

paths between points in the same component can be constructed

similarly as in the general case.

5 CONNECTIVITY AND ROADMAPS

We explain the ROADMAP algorithm for the special case where the

semi-algebraic set 𝑆 is given as a subset of some vector space ℝ𝑁 ,

65

Robots, Computer Algebra and Eight Connected Components ISSAC ’20, July 20–23, 2020, Kalamata, Greece

𝑁 ∈ ℕ, defined by an equation 𝑓 (𝑥1, . . . , 𝑥𝑁) = 0 and an inequation

𝑔(𝑥1, . . . , 𝑥𝑁) ̸= 0. We assume that the algebraic set defined by 𝑓 = 0

is smooth. This is sufficient for our application: the inequation is

the determinant of the Jacobian of the kinematic map 𝐴, and the

equality is 𝑠22 + 𝑐
2
2 − 1 = 0.

One first reduces the problem to one where the semi-algebraic

set we consider is bounded. Note that there exists 𝑅 > 0 large

enough such that the connected components of 𝑆 are in one-to-

one correspondence with the intersection of 𝑆 with the hyper-ball

defined by N𝑅 ≤ 0 where N𝑅 = 𝑥21 + · · · + 𝑥2𝑛 − 𝑅. We denote this

intersection by 𝑆 ′. Note that a roadmap of 𝑆 ′ provides a roadmap

of 𝑆 .

Determining such a large enough real number𝑅 is done by choosing

it larger than the largest critical value of the restriction of the map

𝒙 → ∥𝒙 ∥2 to each regular strata of the the Euclidean closure of 𝑆 .

This leads us to compute critical values of that map restricted to

the hypersurface defined by 𝑓 = 0 and next take the limits of the

critical values of the sets defined by 𝑔 = ±𝜀 and 𝑓 = 𝑔 ± 𝜀 = 0 when

𝜀 → 0.

Next, we compute the critical values 𝜂1 < · · · < 𝜂𝑠 of the restriction

of the map 𝒙 → 𝑔(𝒙) to the semi-algebraic set defined by 𝑓 = 0 and

N𝑅 ≤ 0. Following Thom’s isotopy lemma [13], when 𝑒 is chosen

between 0 and min(|𝜂𝑖 |, 1 ≤ 𝑖 ≤ 𝑠), the connected components of

the semi-algebraic set 𝑆+𝑒 (resp. 𝑆−𝑒) defined byN𝑅 ≤ 0, 𝑓 = 𝑔−𝑒 = 0

(resp. N𝑅 ≤ 0, 𝑓 = 𝑔 + 𝑒 = 0) are in one-to-one correspondence

with the connected components of the semi-algebraic set defined

by N𝑅 ≤ 0, 𝑓 = 0, 𝑔 > 0 (resp. N𝑅 ≤ 0, 𝑓 = 0, 𝑔 > 0). Besides,

𝑆+𝑒 ⊂ 𝑆 ′ (resp. 𝑆−𝑒 ⊂ 𝑆 ′). Then a roadmap of 𝑆 ′ is obtained by taking
the union of a roadmap of 𝑆+𝑒 with the roadmap of 𝑆−𝑒 . Hence, we
have performed a reduction to computing roadmaps in the compact

semi-algebraic sets 𝑆+𝑒 and 𝑆−𝑒 .
In our application, the algebraic sets defined by the vanishing of all

subsets of the defining polynomials of 𝑆+𝑒 and 𝑆−𝑒 are smooth. Hence,

we can rely on a slight modification of the roadmap algorithm given

in [12] where we replace computations with multivariate resultants

for solving polynomial systems by computations of Gröbner bases.

The algorithm in [12] then takes as input a polynomial system

defining a closed and bounded semi-algebraic set 𝑆 and proceeds

as follows. The core idea is to start by computing a curve C which

has a non-empty intersection with each connected component of

𝑆 . That curve will be typically the critical locus on the (𝑥1, 𝑥2)-

plane when one is in generic coordinates (else, one just needs to

change linearly generically the coordinate system). A few remarks

are in order here. When 𝑆 is defined by 𝑓1 = · · · = 𝑓𝑝 = 0 and

𝑔1 ≥ 0, · · · , 𝑔𝑠 ≥ 0, to define the critical locus of the projection on

the (𝑥1, 𝑥2)-plane restricted to 𝑆 one takes the union of the critical

Figure 3: Left (resp. right) shows the components of 𝑣3(𝑣3𝑣4 + 𝑣3 +

𝑣4 − 1) ̸= 0 (resp. 𝑣3(𝑣3𝑣4 − 𝑣3 − 𝑣4 − 1) ̸= 0) in 𝑌

loci of that projection restricted to the real algebraic sets defined

for all {𝑖1, . . . , 𝑖ℓ } ⊂ {1, . . . , 𝑠}, by 𝑓1 = · · · = 𝑓𝑝 = 𝑔𝑖1 = · · · = 𝑔𝑖ℓ = 0

and intersect this union of critical loci with 𝑆 (see [12]).

That way, one obtains curves that intersect all connected compo-

nents of 𝑆 but these intersections may not be connected. To repair

these connectivity failures, Canny’s algorithm finds appropriate

slices of 𝑆 . Let 𝜋1 be the canonical projection (𝑥1, . . . , 𝑥𝑛) → 𝑥1.

This basically consists in finding 𝛼1 < . . . < 𝛼𝑘 in ℝ such that the

union of ∪𝑘𝑖=1𝑆 ∩𝜋−11 (𝛼𝑖) with the critical curve C has a non-empty

and connected intersection with each connected component of 𝑆 .

The way Canny proposes to find those 𝛼𝑖 ’s is to compute the crit-

ical values of the restriction of 𝜋1 to C . By the algebraic Sard’s

theorem (see e.g. [28, Appendix B]), these values are in finite num-

ber and Canny proposes to take 𝛼1, · · · , 𝛼𝑘 as those critical values.

This leads to compute with real algebraic numbers which can be

encoded with their minimal polynomials and isolating intervals.

Since these minimal polynomials may have large degrees (singly

exponential in 𝑛), that step can be prohibitive for practical computa-

tions. We use then the technique introduced in [22] which consists

in replacing 𝛼1 < · · · < 𝛼𝑘 with rational numbers 𝜌1 < · · · < 𝜌𝑘−1
with 𝛼𝑖 < 𝜌𝑖 < 𝛼𝑖+1. We refer to [22] for the rationale justify-

ing this trick. All in all, one obtains a recursive algorithm with a

decreasing number of variables at each recursive call. Combined

with efficient Gröbner bases engines, we illustrate in Section 7

that the ROADMAP algorithm (with the modifications introduced

above) can be used in practice to answer connectivity queries in

semi-algebraic sets in concrete applications.

The concept of roadmap and the algorithm computing it, described

above, may seem cumbersome and unnecessarily sophisticated, es-

pecially when compared with the much more direct CAD approach

[29]. The CAD algorithm is also a recursive algorithm, producing its

recursive instance by projecting the hypersurface to ℝ𝑛+1 and ana-

lyzing the discriminant. This leads to an iteration of discriminants,

and it is easy to see that the degree of the iterated discriminants

grows double exponentially in 𝑛: roughly, the degree of the discrim-

inant is squared in every iteration. There lies the motivation for all

the sophistication of the ROADMAP algorithm: for each instance in

the all recursive calls, the degree of the input polynomial is exactly

the same as the degree of the initially given polynomial 𝑓 . This

leads to an asymptotic complexity which is only single exponential

in𝑛2. We refer to [8, 9, 27, 28] for more recent algorithms improving

the complexity of roadmap computations.

6 PARAMETRIC POLYNOMIAL SYSTEMS

Let 𝐹 = (𝑓1, . . . , 𝑓𝑝) and 𝐺 = (𝑔1, . . . , 𝑔𝑞) in ℚ[𝒙,𝒚] with 𝒙 =

(𝑥1, . . . , 𝑥𝑛) and𝒚 = (𝑦1, . . . , 𝑦𝑡). We consider further𝒚 as a sequence

of parameters and the polynomial system

𝑓1 = · · · = 𝑓𝑝 = 0, 𝑔1 𝜎1 0, . . . , 𝑔𝑞 𝜎𝑞 0

with 𝜎𝑖 ∈ {>, ≥}. We let 𝑆 ⊂ ℝ𝑛 × ℝ𝑡 be the semi-algebraic set

defined by this system. For 𝑦 ∈ ℝ𝑡 , we denote by 𝐹𝑦 and 𝐺𝑦 the

sequences of polynomials obtained after instantiating 𝒚 to 𝑦 in 𝐹

and𝐺 respectively. Also, we denote by 𝑆𝑦 ⊂ ℝ𝑛 the semi-algebraic

set defined by the above system when 𝒚 is specialized to 𝑦. The

algebraic set defined by the simultaneous vanishing of the entries

of 𝐹 (resp. 𝐹𝑦) is denoted by 𝑉 (𝐹) ⊂ ℂ𝑛+𝑡 (resp. 𝑉 (𝐹𝑦) ⊂ ℂ𝑛).

66

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jose Capco, Mohab Safey El Din, and Josef Schicho

We describe an algorithm for solving such a parametric polynomial

system without assuming that for a generic point 𝑦 in ℂ𝑡 , 𝑉 (𝐹𝑦)

is finite. In that situation, solving such a parametric polynomial

system may consist in partitioning the parameters’space ℝ𝑡 into

semi-algebraic sets 𝑇1, . . . ,𝑇𝑟 such that, for 1 ≤ 𝑖 ≤ 𝑟 , the number

of connected components of 𝑆𝑦 is invariant for any choice of 𝑦 in

𝑇𝑖 . We prove below that such an algorithmic problem makes sense.

Proposition 6.1. Let 𝑆 ⊂ ℝ𝑛 ×ℝ𝑡 be a semi-algebraic set and 𝜋 be

the canonical projection

(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑡)→ (𝑦1, . . . , 𝑦𝑡).

There exist semi-algebraic sets 𝑇1, . . . ,𝑇𝑟 in ℝ𝑡 such that

• ℝ𝑡 = 𝑇1 ∪ · · · ∪𝑇𝑟 ,
• there exists 𝑏𝑖 ∈ ℕ such that for any 𝑦 ∈ 𝑇𝑖 , the number of

connected components of 𝑆𝑦 is 𝑏𝑖 .

Proof. Observe that the restriction of 𝜋 to 𝑆 is semi-algebraically

continuous. From Hardt’s semi-algebraic triviality theorem [10,

Theorem 9.3.2], there exists a finite partition of ℝ𝑡 into semi-

algebraic sets 𝑇1, . . . ,𝑇𝑟 and for each 1 ≤ 𝑖 ≤ 𝑟 , a trivialization

𝜗𝑖 : 𝑇𝑖 × 𝐸𝑖 → 𝜋−1(𝑇𝑖) ∩ 𝑆 (where 𝐸𝑖 is a fiber 𝜋
−1(𝑦) ∩ 𝑆 for some

𝑦 ∈ 𝑇𝑖). Fix 𝑖 and choose an arbitrary point 𝑦′ ∈ 𝑇𝑖 . Observe that we
are done once we have proved that 𝜋−1(𝑦′)∩𝑆 and 𝐸𝑖 have the same

number of connected components. Recall that, by definition of a

trivialization (see [10, Definition 9.3.1]), 𝜃𝑖 : 𝑇𝑖 × 𝐸𝑖 → 𝜋−1(𝑇𝑖) ∩ 𝑆
is a semi-algebraic homeomorphism and for any (𝑦′, 𝑥) ∈ 𝑇𝑖 × 𝐸𝑖 ,
𝜋 ◦ 𝜃𝑖 (𝑦′, 𝑥) = 𝑦′. Hence, we deduce that 𝐸𝑖 is homeomorphic

𝜋−1(𝑦′) ∩ 𝑆 . As a consequence, they both have the same number of

connected components. �

Instead of computing a partition of the parameters’space into semi-

algebraic sets 𝑇1, . . . ,𝑇𝑟 as above, one will consider non-empty

disjoint open semi-algebraic sets 𝑈1, . . . ,𝑈ℓ in ℝ𝑡 such that the

complement of𝑈1 ∪ · · · ∪𝑈ℓ in ℝ𝑡 is a semi-algebraic set of dimen-

sion less than 𝑡 and such that for 1 ≤ 𝑖 ≤ 𝑡 , there exists 𝑏𝑖 ∈ ℕ such

that 𝑏𝑖 is the number of connected components of 𝑆𝑦 for any𝑦 ∈ 𝑈𝑖 .

For instance, one can take 𝑈1, . . . ,𝑈ℓ as the non-empty interiors

(for the Euclidean topology) of 𝑇1, . . . ,𝑇𝑟 .

Our strategy to solve this problem is to first compute a polynomial

∆ in ℚ[𝒚] − {0} defining a Zariski closed set D ⊂ ℂ𝑡 such that D

contains ℝ𝑡 − (𝑈1 ∪ · · · ∪𝑈ℓ). The next lemma is immediate.

Lemma 6.2. Let E ⊂ ℝ𝑡 be a finite set of points which has a non-

empty intersection with any of the connected components of the semi-

algebraic set defined by ∆ ̸= 0. For 1 ≤ 𝑖 ≤ ℓ , E ∩𝑈𝑖 is not empty.

Hence, computing sample points in each connected component of

the set defined by ∆ ̸= 0 (e.g. using the algorithm in [26] applied to

the set defined by 𝑧∆ − 1 = 0 where 𝑧 is a new variable) is enough

to obtain at least one point per connected component of𝑈1, . . . ,𝑈ℓ .

Finally, for each such a point 𝑦, it remains to count the number of

connected components of the set 𝑆𝑦 by using a roadmap algorithm.

We call partial semi-algebraic resolution of (𝐹,𝐺) the data

(𝑏1, 𝜂1), . . . , (𝑏𝑘 , 𝜂𝑘) where 𝑏𝑖 is the number of connected compo-

nents of 𝑆𝜂𝑖 and {𝜂1, . . . , 𝜂𝑘 } has a non-empty intersection with

each connected component of𝑈1 ∪ · · · ∪𝑈ℓ .

Hence, our algorithm relies on three subroutines. The first one,

which we call Eliminate, takes as input 𝐹 and 𝐺 , as well as 𝒙 and

𝒚 and outputs ∆ ∈ ℚ[𝒚] as above ; we let D = 𝑉 (∆). The second

one, which we call SamplePoints takes as input ∆ and outputs a

finite set of sample points {𝜂1, . . . , 𝜂𝑘 } (with 𝜂𝑖 ∈ ℚ𝑡) which meets

each connected component of ℝ𝑡 −D . The last one, which we call

NumberOfConnectedComponents takes 𝐹𝜂 and 𝐺𝜂 and for some

𝜂 ∈ ℚ𝑡 and computes the number of connected components of the

semi-algebraic set 𝑆𝜂 . The algorithm is described hereafter.

Algorithm 1: ParametricSolve(𝐹,𝐺, 𝒙,𝒚)

Data: Finite sequences 𝐹 and 𝐺 in ℚ[𝒙,𝒚] with

𝒙 = (𝑥1, . . . , 𝑥𝑛) and 𝒚 = (𝑦1, . . . , 𝑦𝑡).

Result: a partial semi-algebraic resolution of (𝐹,𝐺)

1 ∆← Eliminate(𝐹,𝐺, 𝒙,𝒚)

2 {𝜂1, . . . , 𝜂𝑘 } ← SamplePoints(∆ ̸= 0)

3 for 𝑖 from 1 to 𝑘 do

4 𝑏𝑖 = NumberOfConnectedComponents(𝐹𝜂𝑖 ,𝐺𝜂𝑖)

5 end

6 return {(𝑏1, 𝜂1), . . . , (𝑏𝑘 , 𝜂𝑘)}.

While the rationale of algorithm ParametricSolve is mostly straight-

forward, detailing each of its subroutines is less. The easiest ones

are SamplePoints and NumberOfConnectedComponents: they rely

on known algorithms using the critical point method [5, 7], polar

varieties [3, 4, 24, 26] and for computing roadmaps [6, 9, 27, 28].

Themost difficult one is subroutine Eliminate. We provide a detailed

description of it under the following regularity assumption. We say

that (𝐹,𝐺) satisfies assumption (A)

(A) for any {𝑖1, . . . , 𝑖𝑠 } in {1, . . . , 𝑞}, the Jacobian matrix associated

to (𝑓1, . . . , 𝑓𝑝 , 𝑔𝑖1 , . . . , 𝑔𝑖𝑠) has maximal rank at any complex so-

lution to

𝑓1 = · · · = 𝑓𝑝 = 𝑔𝑖1 = · · · = 𝑔𝑖𝑠 = 0

Note that using the Jacobian criterion [14, Chap. 16], it is easy to

decide whether (A) holds. Note also that it holds generically.

For 𝒊 = {𝑖1, . . . , 𝑖𝑠 } ⊂ {1, . . . , 𝑞}, under assumption (A), the algebraic

set 𝑉𝒊 ⊂ ℂ𝑛+𝑡 defined by

𝑓1 = · · · = 𝑓𝑝 = 𝑔𝑖1 = · · · = 𝑔𝑖𝑠 = 0.

are smooth and equidimensional and these systems generate radical

ideals (applying the Jacobian criterion [14, Theorem 16.19]). Besides,

the tangent space to 𝑧 ∈ 𝑉𝒊 coincides with the the (left) kernel of

the Jacobian matrices associated to (𝑓1, . . . , 𝑓𝑝 , 𝑔𝑖1 , . . . , 𝑔𝑖𝑠) at 𝑧.

Let 𝐼 be the ideal generated by (𝑓1, . . . , 𝑓𝑝 , 𝑔𝑖1 , . . . , 𝑔𝑖𝑠) and the

maximal minors of the truncated Jacobian matrix associated to

(𝑓1, . . . , 𝑓𝑝 , 𝑔𝑖1 , . . . , 𝑔𝑖𝑠) obtained by removing the columns corre-

sponding to the partial derivatives w.r.t. the 𝒚-variables. Under

assumption (A), one can compute the set of critical values of the

restriction of the projection 𝜋 to the algebraic set𝑉𝒊 by eliminating

the variables 𝒙 from 𝐼 .

Hence, using elimination algorithms, which include Gröbner bases

[15, 16] with elimination monomial orderings, or triangular sets

(see e.g. [2, 32]) or geometric resolution algorithms [18ś20], one

can compute a polynomial ∆𝒊 ∈ ℚ[𝒚] whose vanishing set is the

set of critical values of the restriction of 𝜋 to 𝑉𝒊 . By the algebraic

Sard’s theorem (see e.g. [28, App. A]), ∆𝒊 is not identically zero (the

critical values are contained in a Zariski closed subset of ℂ𝑡).

67

Robots, Computer Algebra and Eight Connected Components ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Under assumption (A), we define the set of critical points (resp.

values) of the restriction of 𝜋 to the Euclidean closure of 𝑆 as the

union of the set of critical points (resp. values) of the restriction

of 𝜋 to 𝑉𝒊 ∩ℝ𝑛+𝑡 when 𝒊 ranges over the subsets of {1, . . . , 𝑞}. We

denote the Euclidean closure of 𝑆 by 𝑆 , the set of critical points

(resp. values) of the restriction of 𝜋 to 𝑆 by W (𝜋, 𝑆) (resp. D (𝜋, 𝑆)).

We say that 𝑆 satisfies a properness assumption (P) if:

(P) the restriction of 𝜋 to 𝑆 is proper (∀𝑦 ∈ ℝ𝑡 , there exists a ball

𝐵 ∋ 𝑦 s.t. 𝜋−1(𝐵) ∩ 𝑆 is closed and bounded).

Our interest in critical points and values is motivated by the semi-

algebraic version of Thom’s isotopy lemma (see [13]) which states

the following, under assumption (P). Take an open semi-algebraic

subset𝑈 ⊂ ℝ𝑡 which does not meet the set of critical values of the

restriction of 𝜋 to 𝑆 , 𝑦 ∈ 𝑈 and 𝐸 = 𝜋−1(𝑦) ∩ 𝑆 . Then, there exists a
semi-algebraic trivialization 𝜗 : 𝑈 × 𝐸 → 𝜋−1(𝑈) ∩ 𝑆 .
Hence, ∪𝒊⊂{1,...,𝑞 }D (𝜋,𝑉𝒊) contains the boundaries of the open

disjoint semi-algebraic set𝑈1, . . . ,𝑈ℓ . Recall that by Sard’s theorem

it has co-dimension ≥ 1. This leads to the following algorithm.

Algorithm 2: EliminateProper(𝐹,𝐺, 𝒙,𝒚)

Data: Finite sequences 𝐹 and 𝐺 in ℚ[𝒙,𝒚] with

𝒙 = (𝑥1, . . . , 𝑥𝑛) and 𝒚 = (𝑦1, . . . , 𝑦𝑡), defining a

semi-algebraic set 𝑆 ⊂ ℝ𝑛 ×ℝ𝑡 .

Assumes that assumptions (A) and (P) hold.

Result: ∆ ∈ ℚ[𝒚] such that 𝜋 realizes a fibration over all

connected components of ℝ𝑡 − {∆ = 0}
1 for all subsets 𝒊 in {1, . . . , 𝑞} do
2 M ← maximal minors of jac([𝐹,𝐺 𝒊], 𝒙)

3 ∆𝒊 ← AlgebraicElimination([𝐹,𝐺 𝒊,M], 𝒙)

4 end

5 ∆←∏
𝒊 ∆𝒊 .

6 return ∆.

Lemma 6.3. On input (𝐹,𝐺) inℚ[𝒙,𝒚] satisfying (A), algorithm Elim-

inateProper is correct.

For some applications, deciding if (P) holds is easy (e.g. when the

inequalities in 𝐺 define a box). However, in general, one needs to

generalize EliminateProper to situations where (P) does not hold.

To do so, we use a classical technique from effective real algebraic

geometry. Let 𝜀 be an infinitesimal and ℝ⟨𝜀⟩ be the field of Puiseux

series in 𝜀 with coefficients in ℝ. By [7, Chap. 2], ℝ⟨𝜀⟩ is a real

closed field and one can define semi-algebraic sets over ℝ⟨𝜀⟩𝑛+𝑡 . In
particular the set solutions in ℝ⟨𝜀⟩𝑛+𝑡 to the system defining 𝑆 is a

semi-algebraic set which we denote by ext(𝑆,ℝ⟨𝜀⟩). We refer to [7]

for properties of real Puiseux series fields and semi-algebraic sets

defined over such field. We make use of the notions of bounded

points of ℝ⟨𝜀⟩𝑛 over ℝ (those whose all coordinates have non-

negative valuation) and their limits in ℝ (when 𝜀 → 0). We denote

by lim0 the operator taking the limits of such points.

For 𝑎 = (𝑎1, . . . , 𝑎𝑛), we consider the intersection of ext(𝑆,ℝ⟨𝜀⟩)
with the semi-algebraic set defined by

Φ(𝑎) = 𝑎1𝑥
2
1 + · · · + 𝑎𝑛𝑥2𝑛 − 1/𝜀 ≤ 0

where 𝑎𝑖 > 0 in ℝ for 1 ≤ 𝑖 ≤ 𝑛. We denote by 𝑆 ′𝜖 this intersection.

Since 𝑎𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑛, 𝑆 ′𝜖 satisfies (P).

Lemma 6.4. Assume that (𝐹,𝐺) satisfies (A). There exists a non-empty

Zariski open setA ⊂ ℂ𝑛 such that for any choice of𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈
A , (𝐹,𝐺 (𝑎)) satisfies (A) with 𝐺 (𝑎) = 𝐺 ∪ {Φ(𝑎)}.

Proof. Let 𝒊 = {𝑖1, . . . , 𝑖𝑠 } ⊂ {1, . . . , 𝑞}. We prove below that

there exists a non-empty Zariski open set A𝒊 ⊂ ℂ𝑛 such that

for (𝑎1, . . . , 𝑎𝑛) ∈ A𝒊 , the following property (A)𝒊 holds. Denot-

ing by 𝐺 (𝑎),𝒊 the sequence (𝑔𝑖1 , . . . , 𝑔𝑖𝑠 ,Φ
(𝑎)), the Jacobian matrix of

(𝐹,𝐺 (𝑎),𝒊) has maximal rank at any point of 𝑉 (𝐹,𝐺 (𝑎),𝒊). Taking the

intersection of the (finitely many) A𝒊 ’s is then enough to define A .

Consider new indeterminates 𝛼1, . . . , 𝛼𝑛 and the polynomial Φ(𝛼) =

𝛼1𝑥
2
1 + · · · + 𝛼𝑛𝑥2𝑛 − 1/𝜀. Let Ψ be the map

Ψ : (𝑥, 𝑎)→ 𝐹 (𝑥), 𝑔𝑖1 (𝑥), . . . , 𝑔𝑖𝑠 (𝑥),Φ
(𝑎)(𝑥)

Observe that 0 is a regular value for Ψ since (𝐹,𝐺) satisfies (A).

Hence, Thom’s weak transversality theorem (see e.g. [28, App. B])

implies that there exists A𝒊 such that (A)𝒊 for any 𝑎 ∈ A𝒊 . �

Assume for the moment that (𝐹,𝐺 ′) satisfies assumption (A). Ob-

serve that the coefficients of 𝐹 and 𝐺 ′ lie in ℚ(𝜀). Hence, applying

the subroutine EliminateProper to (𝐹,𝐺 ′) and the above inequality

will output a polynomial ∆𝜀 ∈ ℚ(𝜀)[𝒚] such that the restriction

of 𝜋 to 𝑆 ′𝜀 realizes a trivialization over each connected component

of ℝ⟨𝜀⟩𝑡 − {∆𝜀 = 0}. Without loss of generality, one can assume

that ∆𝜀 ∈ ℚ[𝜀][𝒚] and has content 1. In other words, one can write

∆𝜀 = ∆0 + 𝜀∆̃ with ∆0 ∈ ℚ[𝒚] and ∆̃ ∈ ℚ[𝜀][𝒚].

Lemma 6.5. Let 𝑈 be a connected component of ℝ𝑡 − {∆0 = 0}.
Then, there exists a semi-algebraically connected component 𝑈𝜀 of

ℝ⟨𝜀⟩𝑡 − {∆𝜀 = 0} such that ext(𝑈 ,ℝ⟨𝜀⟩) ⊂ 𝑈𝜀 .

Proof. Let 𝑦 and 𝑦′ be two distinct points in𝑈 . Since𝑈 is a semi-

algebraically connected component of ℝ𝑡 − {∆0 = 0}, there exists
a semi-algebraic continuous function 𝛾 : [0, 1]→ 𝑈 with 𝛾 (0) = 𝑦

and 𝛾 (1) = 𝑦′ such that ∆0 is sign invariant over 𝛾 ([0, 1]) (assume,

without loss of generality that it is positive). Note also for all 𝑡 ∈
[0, 1], ∆0(𝛾 (𝑡)) ∈ ℝ. We deduce that ∆𝜀 (𝛾 (𝑡)) > 0 for all 𝑡 ∈ [0, 1].

Now, take 𝜗 ∈ ext([0, 1],ℝ⟨𝜀⟩). Observe that 𝜗 is bounded over ℝ

and then lim0 𝜗 exists and lies in [0, 1]. We deduce that ∆𝜀 (lim0 𝜗) >

0 and its limit when 𝜀 → 0 is ∆0(lim0 𝜗) > 0 in ℝ. We deduce that

∆𝜀 (𝜗) > 0. Hence, ∆𝜀 is sign invariant over ext(𝛾 ([0, 1]),ℝ⟨𝜀⟩) and
then 𝑦 and 𝑦′ both lie in the same semi-algebraically connected

component of ℝ⟨𝜀⟩𝑡 − {∆𝜀 = 0}. �

We deduce that there exists 𝑏 ′ ∈ ℕ such that for all 𝑦 ∈ 𝑈 , the

number of semi-algebraically connected components of 𝑆 ′𝜀 ∩𝜋−1(𝑦)
is 𝑏. Using the transfer principle as in [9], we deduce that there

exists 𝑒 ′ ∈ ℝ positive and small enough such that, the following

holds. There exists 𝑏 ∈ ℕ such that for all 𝑒 ∈]0, 𝑒 ′[the number of

connected components of 𝑆 ∩ {𝑎1𝑥21 + · · · + 𝑎𝑛𝑥2𝑛 ≤ 1
𝑒 } ∩ 𝜋−1(𝑦). is

𝑏 when 𝑦 ranges over𝑈 . This proves the following lemma.

Lemma 6.6. Let𝑈 be as above. Then the number of connected compo-

nents of 𝑆𝑦 is invariant when 𝑦 ranges over𝑈 .

Finally, we can describe the subroutine Eliminatewhose correctness

follows from the previous lemma.

68

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jose Capco, Mohab Safey El Din, and Josef Schicho

Algorithm 3: Eliminate(𝐹,𝐺, 𝒙,𝒚)

Data: Finite sequences 𝐹 and 𝐺 in ℚ[𝒙,𝒚] with

𝒙 = (𝑥1, . . . , 𝑥𝑛) and 𝒚 = (𝑦1, . . . , 𝑦𝑡), defining a

semi-algebraic set 𝑆 ⊂ ℝ𝑛 ×ℝ𝑡 .

Assumes that (𝐹,𝐺) satisfies assumption (A).

Result: ∆ ∈ ℚ[𝒚] such that the number of connected

components of 𝑆𝑦 is invariant when 𝑦 ranges over a

connected component of ℝ𝑡 − {∆ = 0}
1 Choose 𝑎1 > 0, . . . , 𝑎𝑛 > 0 in ℚ randomly and let

𝑔← 𝑎1𝑥
2
1 + · · · + 𝑎𝑛𝑥2𝑛 ≤ 1

𝜀

2 ∆← EliminateProper(𝐹,𝐺 ∪ 𝑔, 𝒙,𝒚)
3 ∆← Normalize(∆) return ∆0.

7 COMPUTATIONS

We have implemented several variants of the roadmap algorithms

sketched in Section 5 as well as variants of the algorithm Para-

metricSolve. To perform algebraic elimination, we use Gröbner

bases implemented in the FGb library by J.-C. Faugère [17]. The

roadmap algorithm and the routines for computing sample points

in semi-algebraic sets are implemented in the RAGlib library [25].
We have not directly applied the most general version of Paramet-
ricSolve to the polynomial 𝐵. Indeed, since its variables 𝑣2, 𝑣3, 𝑣4 lie
in the Cartesian product ℙ1(ℝ)×ℙ1(ℝ)×ℙ1(ℝ) (which is compact),
the projection on the parameter’s space is proper and it suffices to
compute critical loci of that projection. There is one technical (but
easy) difficulty to overcome: polynomial 𝐵 actually admits a posi-
tive dimensional singular locus. But an easy computation shows
that this singular locus has one purely complex component (which
satisfies 𝑣24 + 1) which can then be forgotten. The other component
has a projection on the paramaters’space which Zariski closed (it
is contained in the set satisfied by 𝑎2𝑎3 = 0). This way, we directly
obtain the following polynomial for ∆ by computing the critical
locus and consider additionally the set defined by 𝑎2𝑎3 = 0.

𝑎2𝑎3𝑑5 (𝑎2 + 𝑎3 + 𝑑5) (𝑎2 + 𝑎3 − 𝑑5)
Computing ∆ as above does not take more than 3 sec. on a standard
laptop using FGb. Getting sample points in the set defined by ∆ ̸= 0
is trivial. We obtain the following 10 sample points using RAGlib

{𝑎2 = −1, 𝑎3 = −3,𝑑5 = 3}, {𝑎2 = −1, 𝑎3 = −1,𝑑5 = 3}, {𝑎2 = −1, 𝑎3 = 2,𝑑5 = 3}, {𝑎2 =

−1, 𝑎3 = 5,𝑑5 = 3}, {𝑎2 = −1, 𝑎3 =
1

2
,𝑑5 = 3}, {𝑎2 = 1, 𝑎3 = −120,𝑑5 = 118}, {𝑎2 = 1, 𝑎3 =

−118,𝑑5 = 118}, {𝑎2 = 1, 𝑎3 = 1,𝑑5 = 118}, {𝑎2 = 1, 𝑎3 = 118,𝑑5 = 118}, {𝑎2 = 1, 𝑎3 =

−1/2,𝑑5 = 118}

Our implementation allows us to compute a roadmap for one sam-

ple point within 20 minutes on a standard laptop. Analyzing the

connectivity of these roadmaps is longer as it takes 40 min. All in

all, approximately 10 hours are required to handle this positive di-

mensional parametric system. The data we computed are available

at http://ecarp.lip6.fr/papers/materials/issac20/. These

computations allow to retrieve the conclusions of our theoretical

analysis of the UR family. They illustrate that prototype implemen-

tations of our algorithms are becoming efficient enough to tackle

automated kinematic singularity analysis in robotics.

REFERENCES
[1] Angeles, J. Fundamentals of Robotic Mechanical Systems, Theory, Methods, and

Algorithms. Springer, 2007.
[2] Aubry, P., Lazard, D., and Maza, M. M. On the theories of triangular sets.

Journal of Symbolic Computation 28, 1-2 (1999), 105ś124.

[3] Bank, B., Giusti, M., Heintz, J., and Mbakop, G. Polar varieties and efficient
real equation eolving: the hypersurface case. J. of Complexity 13, 1 (1997), 5ś27.

[4] Bank, B., Giusti, M., Heintz, J., Safey El Din, M., and Schost, E. On the
geometry of polar varieties. Applicable Algebra in Engineering, Communication
and Computing 21, 1 (2010), 33ś83.

[5] Basu, S., Pollack, R., and Roy, M.-F. On computing a set of points meeting
every cell defined by a family of polynomials on a variety. Journal of Complexity
13, 1 (1997), 28 ś 37.

[6] Basu, S., Pollack, R., and Roy, M.-F. Computing roadmaps of semi-algebraic
sets on a variety. Journal of the American Mathematical Society 13, 1 (2000), 55ś82.

[7] Basu, S., Pollack, R., and Roy, M.-F. Algorithms in real algebraic geometry.
Springer-Verlag, 2003.

[8] Basu, S., and Roy, M.-F. Divide and conquer roadmap for algebraic sets. Discrete
& Computational Geometry 52, 2 (2014), 278ś343.

[9] Basu, S., Roy, M.-F., Safey El Din, M., and Schost, É. A baby stepśgiant step
roadmap algorithm for general algebraic sets. Foundations of Computational
Mathematics 14, 6 (2014), 1117ś1172.

[10] Bochnak, J., Coste, M., and Roy, M.-F. Real Algebraic Geometry. Springer-Verlag,
1998.

[11] Canny, J. The complexity of robot motion planning. MIT press, 1988.
[12] Canny, J. Computing roadmaps of general semi-algebraic sets. The Computer

Journal 36, 5 (1993), 504ś514.
[13] Coste, M., and Shiota, M. Thom’s first isotopy lemma: a semialgebraic version,

with uniform bound. In Real Analytic and Algebraic Geometry: Proc. of the
International Conference, Trento (1995), Walter de Gruyter, p. 83.

[14] Eisenbud, D. Commutative Algebra: with a view toward algebraic geometry,
vol. 150. Springer Science & Business Media, 2013.

[15] Faugère, J.-C. A new efficient algorithm for computing gröbner bases (f4).
Journal of pure and applied algebra 139, 1-3 (1999), 61ś88.

[16] Faugère, J. C. A new efficient algorithm for computing gröbner bases without
reduction to zero (f 5). In Proc. of the 2002 international symposium on Symbolic
and algebraic computation (2002), ACM, pp. 75ś83.

[17] Faugère, J.-C. Fgb: A library for computing gröbner bases. In Mathematical
Software - ICMS 2010 (Berlin, Heidelberg, September 2010), K. Fukuda, J. Hoeven,
M. Joswig, and N. Takayama, Eds., vol. 6327 of Lecture Notes in Computer Science,
Springer, pp. 84ś87.

[18] Giusti, M., Heintz, J., Morais, J.-E., Morgenstern, J., and Pardo, L.-M. Straight-
line programs in geometric elimination theory. Journal of Pure and Applied
Algebra 124 (1998), 101ś146.

[19] Giusti, M., Heintz, J., Morais, J.-E., and Pardo, L.-M. When polynomial
equation systems can be solved fast? In AAECC-11 (1995), vol. 948 of LNCS,
Springer, pp. 205ś231.

[20] Giusti, M., Lecerf, G., and Salvy, B. A gröbner free alternative for polynomial
system solving. Journal of Complexity 17, 1 (2001), 154 ś 211.

[21] Gournay, L., and Risler, J.-J. Construction of roadmaps in semi-algebraic sets.
Applicable Algebra in Engineering, Communication and Computing 4, 4 (1993),
239ś252.

[22] Mezzarobba, M., and Safey El Din, M. Computing roadmaps in smooth real
algebraic sets. In Proc. of Transgressive Computing (2006), J.-G. Dumas, Ed.,
pp. 327ś338.

[23] Murray, R., Li, Z., and Sastry, S. A Mathematical Introduction to Robotic Ma-
nipulation. CRC Press Taylor & Francis Group, 1994.

[24] Safey El Din, M. Finding sampling points on real hypersurfaces is easier in
singular situations. MEGA (Effective Methods in Algebraic Geometry) Electronic
proceedings (2005).

[25] Safey El Din, M. Real algebraic geometry library. available at
http://www-polsys.lip6.fr/˜safey, 2007.

[26] Safey El Din, M., and Schost, E. Polar varieties and computation of one point
in each connected component of a smooth real algebraic set. In Proc. of the 2003
Int. Symp. on Symb. and Alg. Comp. (NY, USA, 2003), ISSAC’03, ACM, pp. 224ś231.

[27] Safey El Din, M., and Schost, E. A baby steps/giant steps probabilistic algorithm
for computing roadmaps in smooth bounded real hypersurface. Disc. Comput.
Geom. 45, 1 (2011), 181ś220.

[28] Safey El Din, M., and Schost, É. A nearly optimal algorithm for deciding
connectivity queries in smooth and bounded real algebraic sets. Journal of the
ACM (JACM) 63, 6 (2017), 48.

[29] Schwartz, J. T., and Sharir, M. Algorithmic motion planning in robotics. In
Algorithms and Complexity. Elsevier, 1990, pp. 391ś430.

[30] Selig, J. Geometric Fundamentals of Robotics. Monographs in Computer Science.
Springer, 2005.

[31] Spong, M., Hutchinson, S., and Vidyasagar, M. Robot Dynamics and Control,
2nd ed. Monographs in Computer Science. John Wiley & Sons, 2005.

[32] Wang, D. Elimination methods. Springer Science & Business Media, 2001.
[33] Wenger, P. Cuspidal robots. In Singular Configurations of Mechanisms and

Manipulators, Z. D. Müller A., Ed. Springer International Publishing, 2019, pp. 67ś
100.

[34] Weyrer, M., Brandstötter, M., and Husty, M. Singularity avoidance control
of a non-holonomic mobile manipulator for intuitive hand guidance. Robotics 8,
1 (2019).

69

Signature-based Algorithms
for Gröbner Bases over Tate Algebras

Xavier Caruso
Université de Bordeaux, CNRS, INRIA

Bordeaux, France
xavier.caruso@normalesup.org

Tristan Vaccon
Université de Limoges; CNRS, XLIM

UMR 7252
Limoges, France

tristan.vaccon@unilim.fr

Thibaut Verron
Johannes Kepler University

Institute for Algebra
Linz, Austria

thibaut.verron@jku.at

ABSTRACT

Introduced by Tate in [Ta71], Tate algebras play a major role in the

context of analytic geometry over the 𝑝-adics, where they act as a

counterpart to the use of polynomial algebras in classical algebraic

geometry. In [CVV19] the formalism of Gröbner bases over Tate

algebras has been introduced and effectively implemented. One

of the bottlenecks in the algorithms was the time spent on reduc-

tion, which are significantly costlier than over polynomials. In the

present article, we introduce two signature-based Gröbner bases al-

gorithms for Tate algebras, in order to avoid many reductions. They

have been implemented in SageMath. We discuss their superiority

based on numerical evidence.

CCS CONCEPTS

· Computing methodologies→ Algebraic algorithms.

KEYWORDS

Algorithms, Power series, Tate algebra, Gröbner bases, F5 algorithm,

𝑝-adic precision

ACM Reference Format:

Xavier Caruso, Tristan Vaccon, and Thibaut Verron. 2020. Signature-based

Algorithms for Gröbner Bases over Tate Algebras. In International Sympo-

sium on Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020,

Kalamata, Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

1145/3373207.3404035

This article is dedicated to the memory of John Tate.

1 INTRODUCTION

For several decades, many computational questions arising from

geometry and arithmetics have received much attention, leading

to the development of more and more efficient algorithms and

software. A typical example is the development of the theory of

Gröbner bases, which provides nowadays quite efficient tools for

The first author is supported by the ANR grant CLapśCLap, referenced ANR-18-CE40-
0026-01. The third author is supported by the FWF grant P31571-N32.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404035

manipulating ideals in polynomial algebras and, eventually, alge-

braic varieties and schemes [Magma, Macaulay2, Sage, Singular].

At the intersection of geometry and number theory, one finds 𝑝-adic

geometry and, more precisely, the notion of 𝑝-adic analytic vari-

eties first defined by Tate in [Ta71] (see also [FP04]), which plays

an important role in many modern theories and achievements (e.g.

𝑝-adic cohomologies [LS07], 𝑝-adic modular forms [Go88]).

The main algebraic objects upon which Tate’s geometry is built

are Tate algebras and their ideals. In an earlier paper [CVV19],

the authors started to study computational aspects related to Tate

algebras, introduced Gröbner bases in this context and designed

two algorithms (adapted from Buchberger’s algorithm and the F4

algorithm, respectively) for computing them.

In the classical setting, the main complexity bottleneck in Gröb-

ner bases computations is the time spent reducing elements modulo

the basis. The most costly reductions are typically reductions to 0,

because they require successively eliminating all terms from the

polynomial; yet their output has little value for the rest of the algo-

rithm. Fortunately, it turns out that many such reductions can be

predicted in advance (for example those coming from the obvious

equality 𝑓 𝑔 − 𝑔𝑓 = 0) by keeping track of some information on the

module representation of elements of an ideal, called their signature.

This idea was first presented in Algorithm F5 [Fa02] and led to the

development of many algorithms showing different ways to define

signatures, to use them or to compute them. The interested reader

can look at [EF17] for an extensive survey.

The Tate setting is not an exception to the wisdom that reduc-

tions are expensive. The situation is actually even worse since

reductions to 0 are theorically the result of an infinite sequence

of reduction steps converging to 0. In practice, the process actu-

ally stops because we are working at finite precision; however, the

higher the precision is, the more expensive the reductions to 0

are, for no benefit. This observation motivates investigating the

possibility of adding signatures to Gröbner bases algorithms for

Tate series.

Our contribution. In this paper, we present two signature-based

algorithms for the computation of Gröbner bases over Tate algebras.

They differ in that they use different orderings on the signatures.

Our first variant, called the PoTe (position over term) algorithm,

is directly adapted from the G2V algorithm [GGV10]. It adopts

an incremental point of view and uses the so-called cover crite-

rion [GVW16] to detect reductions to 0. A key difficulty in the

Tate setting is that the usual way to handle signatures assumes the

constant term 1 to be the smallest one. However, this assumption

fails in the Tate setting. We solve this issue by importing ideas from

the paper [L+18], in which the case of local algebras is addressed.

70

https://doi.org/10.1145/3373207.3404035
https://doi.org/10.1145/3373207.3404035
https://doi.org/10.1145/3373207.3404035

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Xavier Caruso, Tristan Vaccon, and Thibaut Verron

In the classical setting, incremental algorithms have the disad-

vantage of sometimes computing larger Gröbner bases for inter-

mediate ideals, only to discard them later on. In order to mitigate

this misfeature, the F5 algorithm uses a signature ordering taking

into account the degree of the polynomials first, in order to pro-

cess lower-degree elements first. In the Tate setting, the degree

no longer makes sense and a better measure of progression of the

algorithms is the valuation. Nonetheless, in analogy with the clas-

sical setting, an incremental algorithm could perform intermediate

computations to high valuation and just discard them later on. The

second algorithm we will present, called the VaPoTe (valuation over

position over term) algorithm, uses an analogous idea to that of F5

to mitigate this problem.

Organization of the article. In Section 2, we recall the basic defi-

nitions and properties of Tate algebras and Gröbner bases over

them, together with the principles of the G2V algorithm. Sections

3 and 4 are devoted to the PoTe and the VaPoTe algorithms respec-

tively: they are presented and their correctness and termination are

proved. Finally, implementation, benchmarks and possible future

improvements are discussed in Section 5.

Notations.Throughout this article, we fix a positive integer𝑛 and use

the short notation X for (𝑋1, . . . , 𝑋𝑛). Given i = (𝑖1, . . . , 𝑖𝑛) ∈ N
𝑛 ,

we shall write Xi for 𝑋 𝑖1
1 · · ·𝑋

𝑖𝑛
𝑛 .

2 INGREDIENTS

In this section, we present the two main ingredients we are going

to mix together later on. They are, first, the G2V [GGV10] and

GVW [GVW16] signature-based algorithms, and, second, the Tate

algebras and the theory of Gröbner bases over them as developed

in [CVV19].

2.1 The G2V algorithm

In what follows, we present the G2V algorithm which was designed

by Gao, Guan and Volny IV in [GGV10] as an incremental variant

of the classical F5 algorithm. Our presentation includes the cover

criterion which was formulated later on in [GVW16] by Gao, Volny

IV and Wang. The incremental point of view is needed for the

application we will discuss in Section 4. Moreover we believe that

it has two extra advantages: first, it leads to simplified notations

and, more importantly, it shows clearly where intermediate inter-

reductions are possible.

Let 𝑘 be a field and 𝑘 [X] denote the ring of polynomials over

𝑘 with indeterminates X. We endow 𝑘 [X] with a fixed monomial

order ≤𝜔 . Let 𝐼0 be an ideal in 𝑘 [X]. Let𝐺0 be a Gröbner basis of 𝐼0
with respect to ≤𝜔 . Let 𝑓 ∈ 𝑘 [X]. We aim at computing a GB of the

ideal 𝐼 = 𝐼0 + ⟨𝑓 ⟩ . Let 𝑀 ⊂ 𝑘 [X] × 𝑘 [X] be the 𝑘 [X]-sub-module

defined by the (𝑢, 𝑣) such that 𝑢𝑓 − 𝑣 ∈ 𝐼0. The leading monomial

𝐿𝑀 (𝑢) of 𝑢 is the signature of (𝑢, 𝑣).

Definition 2.1 (Regular reduction). Let 𝑝1 = (𝑢1, 𝑣1) and 𝑝2 =

(𝑢2, 𝑣2) be in𝑀 . We say that 𝑝1 is top-reducible by 𝑝2 if

(1) either 𝑣2 = 0 and 𝐿𝑀 (𝑢2) divides 𝐿𝑀 (𝑢1),

(2) or 𝑣1𝑣2 ≠ 0, 𝐿𝑀 (𝑣2) divides 𝐿𝑀 (𝑣1) and:

𝐿𝑀 (𝑣1)

𝐿𝑀 (𝑣2)
· 𝐿𝑀 (𝑢2) ≤ 𝐿𝑀 (𝑢1).

The corresponding top-reduction is

𝑝 = 𝑝1 − 𝑡𝑝2 = (𝑢1 − 𝑡𝑢2, 𝑣1 − 𝑡𝑣2)

where 𝑡 =
𝐿𝑀 (𝑢1)
𝐿𝑀 (𝑢2)

is the first case and 𝑡 =
𝐿𝑀 (𝑣1)
𝐿𝑀 (𝑣2)

in the second

case. This top-reduction is called regular when 𝐿𝑀 (𝑢1) > 𝑡𝐿𝑀 (𝑢2),

that is when the signature of the reduced pair 𝑝 agrees with that of

𝑝1; it is called super otherwise.

Definition 2.2 (Strong Gröbner basis). A finite subset 𝐺 of 𝑀 is

called a strong Gröbner basis (SGB, for short) of𝑀 if any nonzero

(𝑢, 𝑣) ∈ 𝑀 is top-reducible by some element of 𝐺 .

The G2V strategy derives the computation of a Gröbner basis

through the computation of an SGB. They are related through the

following proposition.

Proposition 2.3. Suppose that 𝐺 = {(𝑢1, 𝑣1), . . . , (𝑢𝑠 , 𝑣𝑠)} is an

SGB of𝑀. Then:

(1) {𝑢 s.t. (𝑢, 0) ∈ 𝐺} is a Gröbner basis of (𝐼0:𝑓) .

(2) {𝑣 s.t. (𝑢, 𝑣) ∈ 𝐺 for some 𝑢} is a Gröbner basis of 𝐼 .

To compute an SGB, we rely on J-pairs instead of S-polynomials.

Definition 2.4 (J-pair). Let 𝑝1 = (𝑢1, 𝑣1) and 𝑝2 = (𝑢2, 𝑣2) be two

elements in 𝑀 such that 𝑣1𝑣2 ≠ 0. Let 𝑡 = lcm(𝐿𝑀 (𝑣1), 𝐿𝑀 (𝑣2))

and set 𝑡𝑖 = 𝑡/𝐿𝑀 (𝑣𝑖) for 𝑖 ∈ {1, 2}. Then:

• if 𝑡1𝐿𝑀 (𝑢1) < 𝑡2𝐿𝑀 (𝑢2), the J-pair of (𝑝1, 𝑝2) is 𝑡2𝑝2,

• if 𝑡1𝐿𝑀 (𝑢1) > 𝑡2𝐿𝑀 (𝑢2), the J-pair of (𝑝1, 𝑝2) is 𝑡1𝑝1,

• if 𝑡1𝐿𝑀 (𝑢1) = 𝑡2𝐿𝑀 (𝑢2), the J-pair of (𝑝1, 𝑝2) is not defined.

Definition 2.5 (Cover). We say that 𝑝 = (𝑢, 𝑣) is covered by𝐺 ⊂ 𝑀

if there is a pair (𝑢𝑖 , 𝑣𝑖) ∈ 𝐺 such that 𝐿𝑀 (𝑢𝑖) divides 𝐿𝑀 (𝑢) and:

𝐿𝑀 (𝑢)

𝐿𝑀 (𝑢𝑖)
· 𝐿𝑀 (𝑣𝑖) < 𝐿𝑀 (𝑣) .

Theorem 2.6 (Cover Theorem). Let 𝐺 be a finite subset of 𝑀

such that:

• 𝐺 contains (1, 𝑓);

• the set {𝑔 ∈ 𝑘 [X] : (0, 𝑔) ∈ 𝐺} forms a Gröbner basis of 𝐼0.

Then 𝐺 is an SGB of𝑀 iff every J-pair of 𝐺 is covered by 𝐺 .

This theorem leads naturally to the G2V algorithm (see [GGV10,

Fig. 1]) which is rephrased hereafter in Algorithm 1 (page 4). We

underline that, in Algorithm 1, the SGB does not entirely appear.

Indeed, we remark that one can always work with pairs (𝐿𝑀 (𝑢), 𝑣)

in place of (𝑢, 𝑣), reducing then drastically the memory occupation

and the complexity. The algorithm maintains two lists 𝐺 and 𝑆

which are related to the SGB in construction as follows:𝐺∪(𝑆×{0})

is equal to the set of all (𝐿𝑀 (𝑢), 𝑣) when (𝑢, 𝑣) runs over the SGB.

The criterion coming from the cover theorem is implemented on

lines 10 and 11: the first (resp. the second) statement checks if (𝑢, 𝑣)

is covered by an element of 𝐺 (resp. an element of 𝑆 × {0}).

Syzygies. The G2V algorithm does not give a direct access to the

module of syzygies of the ideal. However, it does give access to

a GB of (𝐼0:𝑓) (see Proposition 2.3), from which one can recover

partial information about the syzygies, as shown below.

Definition 2.7. Given 𝑓1, . . . , 𝑓𝑚 ∈ 𝑘 [X], we define

𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚) =
{

(𝑎1, . . . , 𝑎𝑚) ∈ 𝑘 [X]
𝑚 s.t.

𝑚
∑

𝑖=1

𝑎𝑖 𝑓𝑖 = 0
}

.

71

Signature-based Algorithms for Gröbner Bases over Tate Algebras ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 2.8. Let 𝑓1, . . . , 𝑓𝑚 generate 𝐼0 and let 𝑢1, . . . , 𝑢𝑠 generate

(𝐼0:𝑓). For 𝑖 ∈ {1, . . . , 𝑠}, we write

−𝑢𝑖 𝑓 = 𝑎𝑖,1 𝑓1 + · · · + 𝑎𝑖,𝑚 𝑓𝑚 (𝑎𝑖, 𝑗 ∈ 𝑘 [X])

and define 𝑧𝑖 = (𝑎𝑖,1, . . . , 𝑎𝑖,𝑚, 𝑢𝑖) ∈ 𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚, 𝑓). Then

𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚, 𝑓) = (𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚) × {0}) + ⟨𝑧1, . . . , 𝑧𝑠 ⟩ .

Proof. Let (𝑎1, . . . , 𝑎𝑚, 𝑢) ∈ 𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚, 𝑓). Then 𝑢 ∈ (𝐼0:𝑓)

and we can write 𝑢 =
∑𝑠
𝑖=1 𝑏𝑖𝑢𝑖 . Then the syzygy (𝑎1, . . . , 𝑎𝑚, 𝑢) −

∑𝑠
𝑖=1 𝑏𝑖𝑧𝑖 has its last coordinate equal to 0 and thus belongs to

(𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚) × {0}), which is enough to conclude. □

2.2 Tate algebras

Definitions. We fix a field 𝐾 equipped with a discrete valuation

val : 𝐾 → Z ⊔ {+∞}, normalized by val(𝐾×) = Z. We assume that

𝐾 is complete with respect to the distance defined by val. We let 𝐾◦

be the subring of𝐾 consisting of elements of nonnegative valuation

and 𝜋 be a uniformizer of 𝐾 , that is an element of valuation 1. We

set 𝑘 = 𝐾◦/𝜋𝐾◦. The Tate algebra 𝐾{X} is defined by:

𝐾{X} :=
{
∑

i∈N𝑛

𝑎iX
i s.t. 𝑎i ∈ 𝐾 and val(𝑎i) −−−−−−−→

|i |→+∞
+∞

}

Series in 𝐾{X} have a natural analytic interpretation: they are

analytic functions on the closed unit disc in 𝐾𝑛 . We recall that

𝐾{X} is equipped with the so-called Gauss valuation defined by:

val
(
∑

i∈N𝑛

𝑎i𝑋
i
)

= min
i∈N𝑛

val(𝑎i) .

Series with nonnegative valuation form a subring 𝐾{X}◦ of 𝐾{X}.

The reduction modulo 𝜋 defines a surjective homomorphism of

rings 𝐾{X}◦ → 𝑘 [X].

Terms and monomials. By definition, an integral Tate term is an

expression of the form 𝑎Xi with 𝑎 ∈ 𝐾◦, 𝑎 ≠ 0 and i ∈ N𝑛 . Integral

Tate terms form a monoid, denoted by 𝑇 {X}◦, which is abstractly

isomorphic to (𝐾◦\{0}) ×N𝑛 . We say that two Tate terms 𝑎Xi and

𝑏Xj are equivalent when val(𝑎) = val(𝑏) and i = j. Tate terms

modulo equivalence define a quotient T{X}◦ of 𝑇 {X}◦, which is

isomorphic to N × N𝑛 . The image in T{X}◦ of a term 𝑡 ∈ 𝑇 {X}◦ is

called the monomial of 𝑡 and is denoted by mon(𝑡).

We fix a monomial order ≤𝜔 on N𝑛 and order T{X}◦ ≃ N ×

N𝑛 lexicographically by block with respect to the reverse natural

ordering on the first factor N and the order ≤𝜔 on N𝑛 . Pulling back

this order along the morphism mon, we obtain a preorder of𝑇 {X}◦

that we shall continue to denote by ≤. The leading term of a Tate

series 𝑓 =
∑

𝑎iX
i ∈ 𝐾{X}◦ is defined by:

𝐿𝑇 (𝑓) = max
i∈N𝑛

𝑎i𝑋
i ∈ 𝑇 {X}◦ .

We observe that the 𝑎i𝑋
i’s are pairwise nonequivalent in 𝑇 {X}◦,

showing that there is no ambiguity in the definition of 𝐿𝑇 (𝑓). The

leading monomial of 𝑓 is by definition 𝐿𝑀 (𝑓) = mon(𝐿𝑇 (𝑓)).

Gröbner bases. The previous inputs allow us to define the notion of

Gröbner bases for an ideal of 𝐾{X}◦.

Definition 2.9. Let 𝐼 be an ideal of 𝐾{X}◦. A family (𝑔1, . . . , 𝑔𝑠) ∈

𝐼𝑠 is a Gröbner basis (in short, GB) of 𝐼 if, for all 𝑓 ∈ 𝐼 , there exists

𝑖 ∈ {1, . . . , 𝑠} such that 𝐿𝑀 (𝑔𝑖) divides 𝐿𝑀 (𝑓).

A classical argument shows that any GB of an ideal 𝐼 generates

𝐼 . The following theorem is proved in [CVV19, Theorem 2.19].

Theorem 2.10. Every ideal of 𝐾{X}◦ admits a GB.

The explicit computation of such a GB is of course a central

question. It was addressed in [CVV19], in which the authors de-

scribe a Buchberger algorithm and an F4 algorithm for this task.

The aim of the present article is to improve on these results by

introducing signatures in this framework and eventually design

F5-like algorithms for the computation of GB over Tate algebras.

Important remarks. For the simplicity of exposition, we chose to

restrict ourselves to the Tate algebra 𝐾{X} and not consider the

variants 𝐾{X; r} allowing for more general radii of convergence.

However, using the techniques developed in [CVV19] (paragraph

General log-radii of Section 3.2), all the results we will obtain in this

article can be extended to 𝐾{X; r}.

In practice, the elements of 𝐾 need to be truncated to fit in

the memory of the computer; when doing so, we say that we are

working at finite precision. We refer to [CVV19] (see in particular

Theorem 3.8 and comments around it) for a thorough study of the

behaviour of GB with respect to finite precision computations.

3 POSITION OVER TERM

The goal of this section is to adapt the G2V algorithm to the setting

of Tate algebras. Although all definitions, statements and algorithms

are formally absolutely parallel to the classical setting, proofs in

the framework of Tate algebras are more subtle, due to the fact

that the orderings on Tate terms are not well-founded but only

topologically well-founded. In order to accomodate this weaker

property, we import ideas from [L+18] where the case of local rings

is considered.

3.1 The PoTe algorithm

We fix a monomial order ≤𝜔 of N𝑛 and write ≤ for the term order

on 𝑇 {X}◦ it induces. We consider an ideal 𝐼0 in 𝐾{X}
◦ along with

a GB 𝐺0 of 𝐼0. Let 𝑓 ∈ 𝐾{X}
◦. We are interested in computing a

GB of 𝐼 = 𝐼0 + ⟨𝑓 ⟩. Mimicking what we have recalled in ğ2.1, we

introduce the 𝐾{X}◦-sub-module𝑀 ⊂ 𝐾{X}◦ ×𝐾{X}◦ consisiting

of pairs (𝑢, 𝑣) such that 𝑢𝑓 − 𝑣 ∈ 𝐼0. The definitions of regular

reduction (Definition 2.1), strong Gröbner bases (Definition 2.2),

J-pair (Definition 2.4) and cover (Definition 2.5) extend verbatim to

the context of Tate algebras, with the precaution that the leading

monomial is now computed with respect to the order ≤ as explained

in Section 2.2.

Proposition 3.1. Suppose that 𝐺 = {(𝑢1, 𝑣1), . . . , (𝑢𝑠 , 𝑣𝑠)} is an

SGB of𝑀. Then:

(1) {𝑢 s.t. (𝑢, 0) ∈ 𝐺} is a Gröbner basis of (𝐼0 : 𝑓).

(2) {𝑣 s.t. (𝑢, 𝑣) ∈ 𝐺 for some 𝑢} is a Gröbner basis of 𝐼 .

Proof. Let 𝐺 be an SGB of M.

Let ℎ ∈ (𝐼0:𝑓) . Then ℎ𝑓 ∈ 𝐼0 and (ℎ, 0) ∈ 𝑀 . By definition, since

𝐺 is an SGB of𝑀 , there exists (𝑢, 0) ∈ 𝐺 such that 𝐿𝑀 (𝑢) divides

𝐿𝑀 (ℎ). This implies the first statement of the proposition.

Let now ℎ ∈ 𝐼 . If 𝐿𝑀 (ℎ) ∈ 𝐼0, there exists a pair (0, ℎ′) ∈ 𝑀

with 𝐿𝑀 (ℎ) = 𝐿𝑀 (ℎ′). This pair is divisible by some (0, 𝑣) ∈ 𝐺 ,

proving that 𝐿𝑀 (𝑣) divides 𝐿𝑀 (ℎ′) = 𝐿𝑀 (ℎ) in this case. We now

72

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Xavier Caruso, Tristan Vaccon, and Thibaut Verron

Algorithm 1: G2V (resp. PoTe) algorithm

input : 𝑓1, . . . , 𝑓𝑚 in 𝑘 [X] (resp. 𝐾{X}◦)

output :a GB of the ideal generated by the 𝑓𝑖 ’s

1 𝑄 ← (𝑓1, . . . , 𝑓𝑚)

2 GBasis← ∅

3

4 for 𝑓 ∈ 𝑄 do

5 𝐺 ← {(0, 𝑔) : 𝑔 ∈ GBasis} ∪ {(1, 𝑓)}

6 𝑆 ← {𝐿𝑀 (𝑔) : 𝑔 ∈ GBasis}

7 𝐵 ← {J-pair((1, 𝑓), (0, 𝑔)) : 𝑔 ∈ GBasis}

8 while 𝐵 ≠ ∅ do

9 pop (𝑢, 𝑣) from 𝐵, with smallest 𝑢

10 if (𝑢, 𝑣) is covered by 𝐺 then continue

11 if 𝑢 is divisible by some 𝑠 ∈ 𝑆 then continue

12 𝑣0 ← regular_reduce (𝑢, 𝑣,𝐺)

13 if 𝑣0 = 0 then

14 add 𝑢 to 𝑆

15 else

16 for (𝑠, 𝑔) ∈ 𝐺 do

17 if J-pair((𝑢, 𝑣0), (𝑠, 𝑔)) is defined then

18 add J-pair((𝑢, 𝑣0), (𝑠, 𝑔)) to 𝐵

19 add (𝑢, 𝑣0) to 𝐺

20 GBasis← {𝑣 : (𝑢, 𝑣) ∈ 𝐺}

21 return GBasis

suppose that 𝐿𝑀 (ℎ) ∉ 𝐿𝑀 (𝐼0). This assumption implies that any

𝑎 ∈ 𝐾{X}◦ with (𝑎, ℎ) ∈ 𝑀 (i.e. 𝑎𝑓 − ℎ ∈ 𝐼0) must satisfy 𝐿𝑀 (𝑎) ≥

𝐿𝑀 (ℎ)/𝐿𝑀 (𝑓). We can then choose a series 𝑎 ∈ 𝐾{X}◦ such that

(𝑎, ℎ) ∈ 𝑀 and 𝐿𝑀 (𝑎) is minimal for this property. Moreover, since

𝐺 is an SGB, the pair (𝑎, ℎ) has to be top-reducible by some (𝑢, 𝑣) ∈

𝐺 . If 𝑣 ≠ 0, we deduce that 𝐿𝑀 (𝑣) divides 𝐿𝑀 (ℎ). Otherwise, letting

𝑡 = 𝐿𝑇 (𝑎)/𝐿𝑇 (𝑢), we obtain (𝑎 − 𝑡𝑢, ℎ) ∈ 𝑀 with 𝐿𝑀 (𝑎 − 𝑡𝑢) <

𝐿𝑀 (𝑎), contradicting the minimality of 𝐿𝑀 (𝑎). As a conclusion, we

have shown that 𝐿𝑀 (𝑣) divides 𝐿𝑀 (ℎ) in all cases, which readily

implies (2). □

Theorem 3.2 (Cover Theorem). Let 𝐺 be a finite subset of 𝑀

such that:

• 𝐺 contains (1, 𝑓);

• the set {𝑔 ∈ 𝐾{X}◦ : (0, 𝑔) ∈ 𝐺} forms a Gröbner basis of 𝐼0.

Then 𝐺 is an SGB of𝑀 iff every J-pair of 𝐺 is covered by 𝐺 .

The proof of Theorem 3.2 is presented in Section 3.2 below.

Before this, let us observe that Theorem 3.2 readily shows that

the G2V algorithm (see Algorithm 1) extends verbatim to Tate

algebras. The resulting algorithm is called the PoTe1 algorithm.

The correctness of the PoTe algorithm is clear thanks to Theorem

3.2. Its termination is not a priori guaranteed because the call to

regular_reduce may enter an infinite loop (see [CVV19, Sec. 3.1]).

However, if we assume that all regular reductions terminate (which

is guaranteed in practice by working at finite precision), the PoTe

algorithm terminates as well thanks to the Noetherianity of 𝐾{X}◦.

1PoTe means łPosition over Termž.

Algorithm 2: VaPoTe algorithm

input : 𝑓1, . . . , 𝑓𝑚 in 𝐾{X}◦

output :a GB of the ideal generated by the 𝑓𝑖 ’s

1 𝑄 ← (𝑓1, . . . , 𝑓𝑚)

2 GBasis← ∅

3 while 𝑄 ≠ ∅ do

4 pop 𝑓 from 𝑄 , with smallest valuation

5 𝐺 ← {(0, 𝑔) : 𝑔 ∈ GBasis} ∪ {(1, 𝑓)}

6 𝑆 ← {𝐿𝑀 (𝑔) : 𝑔 ∈ GBasis}

7 𝐵 ← {J-pair((1, 𝑓), (0, 𝑔)) : 𝑔 ∈ GBasis}

8 while 𝐵 ≠ ∅ do

9 pop (𝑢, 𝑣) from 𝐵, with smallest 𝑢

10 if (𝑢, 𝑣) is covered by 𝐺 then continue

11 if 𝑢 is divisible by some 𝑠 ∈ 𝑆 then continue

12 𝑣0 ← regular_reduce (𝑢, 𝑣,𝐺)

13 if val(𝑣0) > val(𝑓) then

14 add 𝑢 to 𝑆 ; add 𝑣0 to 𝑄

15 else

16 for (𝑠, 𝑔) ∈ 𝐺 do

17 if J-pair((𝑢, 𝑣0), (𝑠, 𝑔)) is defined then

18 add J-pair((𝑢, 𝑣0), (𝑠, 𝑔)) to 𝐵

19 add (𝑢, 𝑣0) to 𝐺

20 GBasis← {𝑣 : (𝑢, 𝑣) ∈ 𝐺}

21 return GBasis

3.2 Proof of the cover theorem

Throughout this subsection, we consider a finite set 𝐺 satisfying

the assumptions of Theorem 3.2.

We first assume that 𝐺 is an SGB of𝑀 . Let 𝑝1, 𝑝2 ∈ 𝐺 and write

𝑝𝑖 = (𝑢𝑖 , 𝑣𝑖) for 𝑖 ∈ {1, 2}. We set 𝑡 = lcm(𝐿𝑀 (𝑣1), 𝐿𝑀 (𝑣2)) ∈

T{X}◦ and 𝑡𝑖 = 𝑡/𝐿𝑀 (𝑣𝑖). If 𝐿𝑀 (𝑡1𝑢1) = 𝐿𝑀 (𝑡2𝑢2), the 𝐽 -pair of

(𝑝1, 𝑝2) is not defined and there is nothing to prove. Otherwise, if 𝑖

(resp. 𝑗) is the index for which 𝐿𝑀 (𝑡𝑖𝑢𝑖) is maximal (resp. 𝐿𝑀 (𝑡 𝑗𝑢 𝑗)

is minimal), the 𝐽 -pair of (𝑝1, 𝑝2) is 𝑡𝑖𝑝𝑖 , which is regularly top-

reducible by 𝑝 𝑗 . Continuing to apply regular top-reductions by

elements of 𝐺 as long as possible, we reach a pair (𝑢0, 𝑣0) ∈ 𝑀

which is no longer regularly top-reducible by any element of𝐺 and

for which 𝐿𝑀 (𝑢0) = 𝐿𝑀 (𝑡𝑖𝑢𝑖) and 𝐿𝑀 (𝑣0) < 𝐿𝑀 (𝑡𝑖𝑣𝑖). Since 𝐺 is

an SGB of 𝑀 , (𝑢0, 𝑣0) must be super top-reducible by some pair

(𝑢, 𝑣) ∈ 𝐺 . By definition of super top-reducibility, 𝐿𝑀 (𝑢) divides

𝐿𝑀 (𝑢0) = 𝐿𝑀 (𝑡𝑖𝑢𝑖) and 𝐿𝑀 (𝑣) · 𝐿𝑀 (𝑢0) = 𝐿𝑀 (𝑣0) · 𝐿𝑀 (𝑢). This

shows that 𝐿𝑀 (𝑣) · 𝐿𝑀 (𝑢𝑖) < 𝐿𝑀 (𝑣𝑖) · 𝐿𝑀 (𝑢) and then that (𝑢, 𝑣)

covers 𝑡𝑖𝑝𝑖 .

We now focus on the converse and assume that each 𝐽 -pair of𝐺

is covered by 𝐺 . We define:

𝑊 =
{

(𝑢, 𝑣) ∈ 𝑀, top-reducible by no pair of 𝐺
}

and assume by contradiction that𝑊 is not empty.

Lemma 3.3. The set𝑊 does not contain any pair of the form (𝑢, 𝑣)

with 𝑢 = 0 or 𝐿𝑀 (𝑣) ∈ 𝐿𝑀 (𝐼0).

Proof. By our assumptions, if 𝐿𝑀 (𝑣) ∈ 𝐿𝑀 (𝐼0), 𝑣 is reducible

by some 𝑔 with (0, 𝑔) ∈ 𝐺 . In particular, (𝑢, 𝑣) is top-reducible by

73

Signature-based Algorithms for Gröbner Bases over Tate Algebras ISSAC ’20, July 20–23, 2020, Kalamata, Greece

(0, 𝑔) and cannot be in𝑊 . If 𝑢 = 0, then 𝑣 ∈ 𝐼0 and we are reduced

to the previous case. □

Lemma 3.4. Let 𝑝0 = (𝑢0, 𝑣0) ∈ 𝑊 . Then there exists a pair

𝑝1 = (𝑢1, 𝑣1) ∈ 𝐺 such that 𝐿𝑇 (𝑢1) divides 𝐿𝑇 (𝑢0), say 𝐿𝑇 (𝑢0) =

𝑡1𝐿𝑇 (𝑢1), and 𝑡1𝐿𝑇 (𝑣1) is minimal for this property.

Furthermore, 𝑡1𝑝1 is not regularly top-reducible by 𝐺 .

Proof. We have already noticed that 𝑢0 ≠ 0. Since (1, 𝑓) ∈ 𝐺 ,

there exists a pair in𝐺 satisfying the first condition. Since𝐺 is finite,

there exists one that further satisfies the minimality condition.

We assume by contradiction that 𝑡1𝑝1 is regularly top-reducible

by 𝐺 . Consider 𝑝2 = (𝑢2, 𝑣2) ∈ 𝐺 be a regular reducer of 𝑡1𝑝1, in

particular there exists a term 𝑡2 such that 𝑡2𝐿𝑇 (𝑣2) = 𝑡1𝐿𝑇 (𝑣1), and

𝑡2𝐿𝑇 (𝑢2) < 𝑡1𝐿𝑇 (𝑢1). The J-pair of 𝑝1 and 𝑝2 is then defined and

equals 𝜏 · (𝑢1, 𝑣1) with 𝜏 dividing 𝑡1. Write 𝑡1 = 𝜏𝑡
′
1 for some term 𝑡 ′1.

By hypothesis, this J-pair is covered, so there exists 𝑃 = (𝑈 ,𝑉) ∈ 𝐺

and a term 𝜃 such that 𝜃 · 𝐿𝑇 (𝑈) = 𝜏 · 𝐿𝑇 (𝑢1) and 𝜃 · 𝐿𝑇 (𝑉) <

𝜏 · 𝐿𝑇 (𝑣1). As a consequence:

𝑡 ′1𝜃 · 𝐿𝑇 (𝑈) = 𝑡1 · 𝐿𝑇 (𝑢1) = 𝐿𝑇 (𝑢0)

𝑡 ′1𝜃 · 𝐿𝑇 (𝑉) < 𝑡 · 𝐿𝑇 (𝑣1) .

So 𝑡 ′1𝑃 contradicts the minimality of 𝑝1. □

Let 𝜈 be the minimal valuation of a series 𝑣 for which (𝑢, 𝑣) ∈𝑊 .

We make the following additional assumption: 𝜈 < +∞. In other

words, we assume that𝑊 contains at least one element of the form

(𝑢, 𝑣) with 𝑣 ≠ 0. We set:

𝑊1 =
{

(𝑢, 𝑣) ∈𝑊 s.t. val(𝐿𝑀 (𝑣)) = 𝜈
}

.

Lemma 3.5. The set 𝐿 = {𝐿𝑀 (𝑢) : (𝑢, 𝑣) ∈𝑊1} admits a minimal

element.

Proof. We assume by contradiction that 𝐿 does not have a min-

imal element. Thus, we can construct a sequence (𝑢𝑘 , 𝑣𝑘)𝑘≥1 with

values in 𝑊1 such that 𝐿𝑀 (𝑢𝑘) is strictly decreasing. As a con-

sequence, in the Tate topology, 𝑢𝑘 𝑓 converges to 0. Hence, for

𝑘 large enough, val(𝑢𝑘 𝑓) > 𝜈 = val(𝑣𝑘). From𝑊1 ⊂ 𝑀 , we get

𝑣𝑘−𝑢𝑘 𝑓 ∈ 𝐼0 and 𝐿𝑀 (𝑣𝑘) = 𝐿𝑀 (𝑣𝑘−𝑢𝑘 𝑓) ∈ 𝐿𝑀 (𝐼0). By Lemma 3.3,

this is a contradiction. □

Let𝑊2 be the subset of𝑊1 consisting of pairs (𝑢, 𝑣) for which

𝐿𝑀 (𝑢) is minimal. Note that by Lemma 3.3, this minimal value is

nonzero.

Lemma 3.6. For any (𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈𝑊2, 𝐿𝑀 (𝑣1) = 𝐿𝑀 (𝑣2).

Proof. Let (𝑢1, 𝑣1) and (𝑢2, 𝑣2) in𝑊2, and assume that the lead-

ing terms are not equivalent, that is 𝐿𝑀 (𝑣1) ≠ 𝐿𝑀 (𝑣2). Without

loss of generality, we can assume that 𝐿𝑀 (𝑣1) > 𝐿𝑀 (𝑣2). By con-

struction of𝑊2, 𝐿𝑀 (𝑢1) = 𝐿𝑀 (𝑢2), that is 𝐿𝑇 (𝑢1) = 𝑎𝐿𝑇 (𝑢2) for

some 𝑎 ∈ 𝐾 , val(𝑎) = 0. Since 𝑢1 and 𝑢2 are nonzero, we can write

𝑢1 = 𝐿𝑇 (𝑢1) + 𝑟1 and 𝑢2 = 𝐿𝑇 (𝑢2) + 𝑟2. Eliminating the leading

terms, we obtain a new element (𝑢 ′, 𝑣 ′) = (𝑟1−𝑎𝑟2, 𝑣1−𝑎𝑣2). By as-

sumption, 𝐿𝑀 (𝑣 ′) = 𝐿𝑀 (𝑣1), and 𝐿𝑀 (𝑢
′) < 𝐿𝑀 (𝑢1). Observe that

(𝑢 ′, 𝑣 ′) cannot be top-reduced by 𝐺 as otherwise, (𝑢1, 𝑣1) would

also be top-reducible by 𝐺 . Hence (𝑢 ′, 𝑣 ′) ∈𝑊1, contradicting the

minimality of 𝐿𝑀 (𝑢1). □

Let now 𝑝0 = (𝑢0, 𝑣0) ∈𝑊2 . From Lemma 3.4, there exists 𝑝1 =

(𝑢1, 𝑣1) ∈ 𝐺 and a term 𝑡 such that 𝐿𝑇 (𝑡𝑢1) = 𝐿𝑇 (𝑢0) and 𝑡𝑝1 is

not regular top-reducible by 𝐺 . We define

𝑝∗ = (𝑢∗, 𝑣∗) = 𝑝0 − 𝑡𝑝1 = (𝑢0, 𝑣0) − 𝑡 (𝑢1, 𝑣1).

We remark that 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0). Moreover 𝐿𝑀 (𝑣0) ≠ 𝐿𝑀 (𝑡𝑣1)

since otherwise 𝑝0 would be top-reducible by 𝑝1, contradicting the

fact that 𝑝0 ∈𝑊 .

We first examine the case where 𝐿𝑀 (𝑣0) < 𝐿𝑀 (𝑡𝑣1). It im-

plies that 𝐿𝑀 (𝑣∗) = 𝐿𝑀 (𝑡𝑣1) > 𝐿𝑀 (𝑣0). Let us prove first that

𝑝∗ ∉𝑊 . We argue by contradiction. From 𝑝∗ ∈𝑊 , we would derive

val(𝑣∗) ≥ 𝜈 = val(𝑣0) and then val(𝑣∗) = val(𝑣0) since the inequal-

ity in the other direction holds by assumption.We conclude by notic-

ing that 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0) contradicts the minimality of 𝐿𝑀 (𝑢0).

So 𝑝∗ ∉𝑊 , i.e. 𝑝∗ is top-reducible by 𝐺 . Let 𝑝2 = (𝑢2, 𝑣2) ∈ 𝐺 be

top-reducing 𝑝∗. If 𝑣2 = 0, then 𝐿𝑀 (𝑢2) divides 𝐿𝑀 (𝑢∗). Besides,

the pair 𝑝 ′∗ = (𝑢 ′∗, 𝑣∗) =
(

𝑢∗ −
𝐿𝑇 (𝑢∗)
𝐿𝑇 (𝑢2)

𝑢2, 𝑣∗
)

satisfies 𝐿𝑀 (𝑢 ′∗) <

𝐿𝑀 (𝑢∗) and thus cannot be in𝑊 either. We iterate this process

until we can only find a reductor 𝑞 = (𝑈 ,𝑉) ∈ 𝐺 with 𝑉 ≠ 0. Let

𝑡2 = 𝐿𝑀 (𝑣∗)/𝐿𝑀 (𝑉). Then 𝑡2𝐿𝑀 (𝑉) = 𝐿𝑀 (𝑣∗) = 𝐿𝑀 (𝑡𝑣1) and

𝑡2𝐿𝑀 (𝑈) ≤ 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑡𝑢1) if 𝑈 ≠ 0. Therefore 𝑞 regularly

top-reduces 𝑡𝑝1, which contradicts Lemma 3.4.

Let us now move to the case where 𝐿𝑀 (𝑣0) > 𝐿𝑀 (𝑡𝑣1). Then

𝐿𝑀 (𝑣∗) = 𝐿𝑀 (𝑣0). Since 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0), it follows that 𝑝∗ ∉𝑊 ,

i.e. 𝑝∗ is top-reducible by 𝐺 . As in the previous case, we construct

𝑞 = (𝑈 ,𝑉) ∈ 𝐺 with 𝑉 ≠ 0, and a term 𝑡2 with the properties that

𝑡2𝐿𝑀 (𝑉) = 𝐿𝑀 (𝑣∗) = 𝐿𝑀 (𝑣0) and 𝑡2𝐿𝑀 (𝑈) ≤ 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0)

if𝑈 ≠ 0. Thus 𝑞 regularly top-reduces 𝑝0, which contradicts 𝑝0 ∈

𝑊 .

As a conclusion, in both cases, we have reached a contradiction.

This ensures that 𝜈 = +∞. In particulier,𝑊 contains an element 𝑝0
of the form (𝑢0, 0). Let 𝑝1 = (𝑢1, 𝑣1) ∈ 𝐺 be given by Lemma 3.4.

If 𝑣1 = 0, this pair would be a reducer of (𝑢0, 0) ∈ 𝑊 , which is a

contradiction. So 𝑣1 ≠ 0. Set 𝑡 =
𝐿𝑇 (𝑢)
𝐿𝑇 (𝑢1)

. Let:

𝑝∗ = (𝑢∗, 𝑣∗) = (𝑢0, 0) − 𝑡 (𝑢1, 𝑣1) = (𝑢0 − 𝑡𝑢1,−𝑣1)

Then 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0) and 𝐿𝑀 (𝑣∗) = 𝑡𝐿𝑀 (𝑣1). From 𝑣1 ≠ 0,

we deduce 𝑝∗ ∉ 𝑊 . So 𝑝∗ is top-reducible by 𝑝2 = (𝑢2, 𝑣2) ∈ 𝐺 ,

meaning that there exists a term 𝑡1 such that 𝑡1𝐿𝑀 (𝑣2) = 𝐿𝑀 (𝑣∗) =

𝑡𝐿𝑀 (𝑣1) and 𝑡1𝐿𝑀 (𝑢2) ≤ 𝐿𝑀 (𝑢∗) < 𝑡𝐿𝑀 (𝑢1). So 𝑝2 is a regular

top-reducer of 𝑡𝑝1, which contradicts Lemma 3.4.

Finally, we conclude that𝑊 is empty. By construction,𝐺 is an

SGB of𝑀 .

4 VALUATION OVER POSITION OVER TERM

In this section, we design a variant of the PoTe algorithm in which,

roughly speaking, signatures are first ordered by increasing valua-

tions.

4.1 The VaPoTe algorithm

The VaPoTe2 algorithm is Algorithm 2 (page 4). It is striking to

observe that it looks formally very similar to the PoTe Algorithm

(Algorithm 1) as they only differ on lines 3ś4 and, more importantly,

on lines 13ś14. However, these slight changes may have signifi-

cant consequences on the order in which the inputs are processed,

2VaPoTe means łValuation over Position over Termž

74

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Xavier Caruso, Tristan Vaccon, and Thibaut Verron

implying possibly important differences in the behaviour of the

algorithms.

The VaPoTe algorithm has a couple of interesting features. First,

if we stop the execution of the algorithm at the moment when

we first reach a series 𝑓 of valuation greater than 𝑁 on line 4,

the value of GBasis is a GB of the image of 𝐼 = ⟨𝑓1, . . . , 𝑓𝑚⟩ in

𝐾{X}◦/𝜋𝑁𝐾{X}◦. In other words, the VaPoTe algorithm can be

used to compute GB of ideals of 𝐾{X}◦/(𝜋𝑁) ≃ 𝐾◦ [X]/(𝜋𝑁) (for

our modified order) as well.

Secondly, Algorithm 2 remains correct if the reduction on line 12

is interrupted as soon as the valuation rises. The property allows for

delaying some reductions, which might be expensive at one time

but cheaper later (because more reductors are available). It also has

a theoretical interest because the reduction process may a priori

hang forever (if we are working at infinite precision); interrupting

it prematurely removes this defect and leads to more satisfying

termination results.

4.2 Proof of correctness and termination

We introduce some notation. For a series 𝑓 ∈ 𝐾{X}◦, we write

𝜈 (𝑓) = 𝜋− val(𝑓) 𝑓 (which has valuation 0 by construction) and de-

fine 𝜌 (𝑓) as the image of 𝜈 (𝑓) in 𝐾{X}◦/𝜋𝐾{X}◦ ≃ 𝑘 [X]. More

generally if 𝐴 is a subset of 𝐾{X}◦, we define 𝜈 (𝐴) and 𝜌 (𝐴) ac-

cordingly.

We consider 𝑓1, . . . , 𝑓𝑚 ∈ 𝐾{X}
◦ and write 𝐼 for the ideal of

𝐾{X}◦ they generate. For an integer𝑁 , we set 𝐼𝑁 = 𝐼∩(𝜋𝑁𝐾{X}◦).

Clearly 𝐼𝑁+1 ⊂ 𝐼𝑁 for all 𝑁 . Let 𝐼𝑁 be the image of 𝜋−𝑁 𝐼𝑁 in

𝑘 [X]; we have a canonical isomorphism 𝐼𝑁 ≃ 𝐼𝑁 /𝐼𝑁+1. Besides, the

morphism 𝐼𝑁 → 𝐼𝑁+1, 𝑓 ↦→ 𝜋 𝑓 induces an inclusion 𝐼𝑁 ↩→ 𝐼𝑁+1.

Hence, the 𝐼𝑁 ’s form a nondecreasing sequence of ideals of 𝑘 [X].

We define 𝑄all as the set of all series that are popped from 𝑄 on

line 13 during the execution of Algorithm 2. Since the algorithm

terminates when 𝑄 is empty, 𝑄all is also the set of all series that

have been in 𝑄 at some moment. For an integer 𝑁 , we define

𝑄>𝑁 =
{

𝑓 ∈ 𝑄all s.t. val(𝑓) > 𝑁
}

.

and similarly 𝑄𝑁 and 𝑄≤𝑁 . Let also 𝜏𝑁 be the first time we enter

in the while loop on line 3 with 𝑄 ⊂ 𝜋𝑁𝐾{X}◦. If this event never

occurs, 𝜏𝑁 is defined as the time the algorithm exits the main while

loop. We finally let GBasis𝑁 be the value of the variable GBasis at

the checkpoint 𝜏𝑁 .

Lemma 4.1. Between the checkpoints 𝜏𝑁 and 𝜏𝑁+1:

(1) the elements popped from 𝑄 are exactly those of 𝑄𝑁 , and

(2) the łreduction modulo 𝜋𝑁+1ž of the VaPoTe algorithm behaves

like the G2V algorithm, with input polynomials 𝜌 (𝑄𝑁) and initial

value of GBasis set to 𝜌 (GBasis𝑁).

Proof. We observe that, after the time 𝜏𝑁 , only elements with

valuation at least 𝑁+1 are added to 𝑄 . The first statement then

follows from the fact that the elements of 𝑄 have been popped by

increasing valuation. The second statement is a consequence of (1)

together with the fact that all 𝑓 and 𝑣 manipulated by Algorithm 2

between the times 𝜏𝑁 and 𝜏𝑁+1 have valuation 𝑁 . □

Since the G2V algorithm terminates for polynomials over a field,

Lemma 4.1 ensures that each checkpoint 𝜏𝑁 is reached in finite

time if the call to regular_reduce does not hang forever. This latter

property holds when we are working at finite precision and is also

guaranteed if we interrupt the reduction as soon as the valuation

raises.

We are now going to relate the ideals 𝐼𝑁 with the sets𝑄𝑁 ,𝑄≤𝑁
and𝑄>𝑁 . For this, we introduce the syzygies between the elements

of 𝜌 (𝑄≤𝑁). More precisely, we set:

𝑆𝑁 =

{

(𝑎𝑓)𝑓 ∈𝑄≤𝑁 s.t.
∑

𝑓 ∈𝑄≤𝑁

𝑎𝑓 𝜈 (𝑓) ≡ 0 (mod 𝜋)
}

.

and let 𝑆𝑁 be the image of 𝑆𝑁 under the projection 𝐾{X}◦→𝑘 [X];

in other words, 𝑆𝑁 is the module of syzygies of the set 𝜌 (𝑄≤𝑁),

i.e. 𝑆𝑛 = 𝑆𝑦𝑧 (𝜌 (𝑄≤𝑁)) with the notation of Definition 2.7. We also

define a linear mapping 𝜑𝑁 : (𝐾{X}◦)𝑄≤𝑁 → 𝐾{X}◦ by

𝜑𝑁 : (𝑎𝑓)𝑓 ∈𝑄≤𝑁 ↦→
∑

𝑓 ∈𝑄≤𝑁

𝑎𝑓 𝜈 (𝑓) .

By definition, 𝜑𝑁 takes its values in the ideal generated by 𝜈 (𝑄≤𝑁)

and 𝜑𝑁 (𝑆𝑁) ⊂ 𝜋𝐾{X}
◦.

Proposition 4.2. For any integer 𝑁 , the following holds:

(a) The family 𝜌 (GBasis𝑁+1) is a GB of 𝐼𝑁 .

(b) 𝜑𝑁 (𝑆𝑁) ⊂
〈

𝜋 ·𝜈 (𝑄≤𝑁), 𝜋
−𝑁𝑄>𝑁

〉

.

(c) 𝐼𝑁+1 =
〈

𝜋𝑁+1·𝜈 (𝑄≤𝑁+1), 𝑄>𝑁+1
〉

.

(d) 𝐼𝑁+1 =
〈

𝜌 (𝑄≤𝑁+1)
〉

.

Proof. When 𝑁 < 0, we have 𝑆𝑁 = 0 and 𝐼𝑁+1 = 𝐼 , so that the

proposition is obvious. We now consider a nonnegative integer 𝑁

and assume that the proposition holds for 𝑁−1. By the induction

hypothesis, we know that 𝜌 (GBasis𝑁) is a GB of 𝐼𝑁−1. It then

follows from Lemma 4.1 that 𝜌 (GBasis𝑁+1) is a GB of the ideal

generated by 𝐼𝑁−1 and 𝜌 (𝑄𝑁), which is equal to 𝐼𝑁 by the induction

hypothesis. The assertion (a) is then proved.

Between the checkpoints 𝜏𝑁 and 𝜏𝑁+1, each signature 𝑢 added

to 𝑆 on line 14 corresponds to a family (𝑎𝑓)𝑓 ∈𝑄≤𝑁 for which the

sum
∑

𝑓 𝑎𝑓 𝑓 equals the element 𝑣0 added to 𝑄 on the same line.

Rescaling the 𝑎𝑓 ’s, we cook up an element 𝑧 ∈ 𝑆𝑁 with the property

that𝜑𝑁 (𝑧) = 𝜋
−𝑁 𝑣0. Let𝑍 ⊂ 𝑆𝑁 be the set of those elements. From

Proposition 2.3 and Lemma 2.8, we derive that 𝑆𝑁 is generated by

𝑆𝑁−1 (viewed as a submodule of 𝑆𝑁 by filling new coordinates with

zeroes) and 𝑍 . Thus:

𝜑𝑁 (𝑆𝑁) = 𝜑𝑁−1 (𝑆𝑁−1) +
〈

𝜑𝑁 (𝑍), 𝜋 ·𝜈 (𝑄≤𝑁)
〉

⊂ 𝜑𝑁−1 (𝑆𝑁−1) +
〈

𝜋−𝑁𝑄>𝑁 , 𝜋 ·𝜈 (𝑄≤𝑁)
〉

.

The assertion (b) now follows from the induction hypothesis, once

we have observed that 𝑄>𝑁−1 = 𝜋
𝑁 𝜈 (𝑄𝑁) ∪𝑄>𝑁 .

Let us now prove (c). Let ℎ ∈ 𝐼𝑁+1. Then ℎ ∈ 𝐼𝑁 and we can use

the induction hypothesis to write

ℎ = 𝜋𝑁
∑

𝑓 ∈𝑄≤𝑁

𝑎𝑓 𝜈 (𝑓) +
∑

𝑔∈𝑄>𝑁

𝑏𝑔𝑔

for some 𝑎𝑓 , 𝑏𝑔 ∈ 𝐾{X}
◦. Reducing modulo 𝜋𝑁+1, we find that

the family (𝑎𝑓)𝑓 ∈𝑄≤𝑁 belongs to 𝑆𝑁 . From (b), we deduce that
∑

𝑓 ∈𝑄≤𝑁 𝑎𝑓 𝜈 (𝑓) ∈
〈

𝜋 ·𝜈 (𝑄≤𝑁), 𝜋
−𝑁𝑄>𝑁

〉

. We then conclude by

noticing that 𝑄>𝑁 = 𝜋𝑁+1𝜈 (𝑄𝑁+1) ∪𝑄>𝑁+1.

Finally, (d) follows from (c) by dividing by 𝜋𝑁+1 and reducing

modulo 𝜋 . □

75

Signature-based Algorithms for Gröbner Bases over Tate Algebras ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Termination. Since 𝑘 [X] is noetherian, the sequence of ideals (𝐼𝑁)

is eventually constant. This implies that GBasis cannot grow indef-

initely; in other words, the final value of GBasis is reached in finite

time. However, the reader should be careful that this does not mean

that Algorithm 2 terminates. Indeed, once the final value of GBasis

has been computed, one still has to check that the remaining series

in𝑄 reduce to zero; this is achieved by performing divisions and can

hang forever if we are working at infinite precision. Nevertheless,

this misfeature seems very difficult to avoid since, when working

at infinite precision, the input series contain themselves an infinite

number of coefficients and any modification on one of them could

have a strong influence on the final result.

Correctness. Let𝐺 be the output of Algorithm 2, that is the limit of

the ultimately constant sequence (GBasis𝑁). For a positive integer

𝑁 , we define 𝐺≤𝑁 as the set of 𝑓 ∈ 𝐺 with val(𝑓) ≤ 𝑁 . Since

only elements of valuation at least 𝑁+1 are added to GBasis after

the checkpoint 𝜏𝑁+1, we deduce that 𝐺≤𝑁 = GBasis𝑁+1. Hence,

by Proposition 4.2, 𝜌 (𝐺≤𝑁) is a GB of 𝐼𝑁 for all 𝑁 ≥ 0. We are

going to show that this sole property implies that 𝐺 is indeed a

GB of 𝐼 . For this, we consider 𝑓 ∈ 𝐼 . We write 𝑁 = val(𝑓), so

that 𝜌 (𝑓) is the image in 𝑘 [X] of 𝜋−𝑁 𝑓 . Moreover, we know that

𝐿𝑀 (𝜌 (𝑓)) is divisible by 𝐿𝑀 (𝜌 (𝑔)) for some 𝑔 ∈ 𝐺≤𝑁 , i.e. there

exists i ∈ N𝑛 such that 𝐿𝑀 (𝜌 (𝑓)) = Xi·𝐿𝑀 (𝜌 (𝑔)). This readily

implies that 𝐿𝑀 (𝑓) = 𝜋𝑁−val(𝑔) · Xi · 𝐿𝑀 (𝑔), showing that 𝐿𝑀 (𝑔)

divides 𝐿𝑀 (𝑓) in T{X}◦ given that val(𝑔) ≤ 𝑁 . We have then

proved that the leading monomial of any element of 𝐼 is divisible

by some 𝐿𝑀 (𝑔) with 𝑔 ∈ 𝐺 , i.e. that 𝐺 is a GB of 𝐼 .

5 IMPLEMENTATION

We have implemented both the PoTe and VaPoTe algorithms in

SageMath3. Our implementation includes the following optimiza-

tion: at the end of the loop (i.e. after line 20), we minimize and

reduce the current GB in construction. This operation is allowed

since all signatures are discarded after each iteration of the loop.

Similarly, we reduce each new series 𝑓 popped from 𝑄 on line 4

before proceeding it. These ideas were explored in the algorithm

F5-C [EP10] and, as mentioned before, were one of the main moti-

vations for adopting an incremental point of view.

Our implementation is also able to compute GB of ideals in𝐾{X}.

For this, we simply use a reduction (for no extra cost) to the case

of 𝐾{X}◦ (see [CVV19, Proposition 2.23]). We also normalize the

signatures in 𝑆 to be monic after each iteration of the main loop;

in the PoTe algorithm, this renormalization gives a stronger cover

criterion and thus improves the performances.

As mentioned in Section 4.1, Algorithm 2 remains correct if the

reductions are interrupted as soon as the valuation rises. This can

be done in the reduction step before processing the next 𝑓 , before

adding elements to the SGB, as well as in the inter-reduction step.

Delaying reductions could be interesting, for instance, if the input

ideal is saturated: indeed, in this case, the algorithm never considers

elements with positive valuation and delayed reductions do not

need to be done afterwards. On the other hand, performing more

reductions earlier leads to shorter reducers and potentially faster

reductions later. In practice, in our current implementation, we have

observed all possible scenarios: interrupting the reductions can

3https://trac.sagemath.org/ticket/28777

Table 1: Timings for the computation of GBs related to the

torsion points on the Tate curve (all times in seconds)

Parameters Buchberger PoTe VaPoTe

𝑝 = 5, ℓ = 5, prec = 12 87.9 72.2 19.2

𝑝 = 11, ℓ = 5, prec = 12 321 30.5 28.9

𝑝 = 57637, ℓ = 5, prec = 12 83.2 13.3 13.3

𝑝 = 7, ℓ = 7, prec = 9 62.3 45.3 27.7

𝑝 = 11, ℓ = 7, prec = 9 168 36.0 28.5

make the computation faster, slower, or not make any significant

difference.

5.1 Some timings

Numerous experimentations on various random inputs show that

the VaPoTe algorithm performs slightly better than the PoTe al-

gorithm on average. Besides, both PoTe and VaPoTe algorithms

usually perform much better than Buchberger algorithm, although

we observed important variations depending on the input system.

As mentioned in the introduction, Tate algebras are the building

blocks of 𝑝-adic geometry. One can then cook up interesting sys-

tems associated to meaningful geometrical situations. As a basic

example, let us look at torsion points on elliptic curves.

We recall briefly that (a certain class of) elliptic curves over

𝐾 = Q𝑝 are in one-to-one correspondence with a parameter 𝑞

lying in the open unit disc [Ta95]. The parametric equation of these

curves is 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎4 (𝑞) 𝑥 + 𝑎6 (𝑞) with:

𝑎4 (𝑞) = 5

∞
∑

𝑛=0

𝑛3
𝑞𝑛

1 − 𝑞𝑛
, 𝑎6 (𝑞) =

∞
∑

𝑛=0

7𝑛5 + 5𝑛3

12

𝑞𝑛

1 − 𝑞𝑛
.

In order to fit with the framework of this article, we only con-

sider parameters 𝑞 in the closed unit disc of radius |𝑝 | and perform

the change of variables 𝑞 = 𝑝𝑡 . Given an auxiliary prime number

ℓ , we consider the ℓ-th division polynomial Φℓ (𝑥, 𝑡) ∈ 𝐾{𝑡}
◦ [𝑥]

associated to the Weierstrass form of the above equation. By def-

inition, its roots are the abscissas of ℓ-torsion points of the Tate

curve. We now fix 𝑝 and ℓ and consider the system in 3 variables

Φℓ (𝑥, 𝑡1) = Φℓ (𝑥, 𝑡2) = 0. Its solutions parametrize the pairs of

elliptic curves sharing a common ℓ-torsion point. Computing a

GB of it then provides information about torsion points on 𝑝-adic

elliptic curves. Related (but more sophisticated) computations are

likely to appear in the study of the arithmetics of 𝑝-adic modular

forms [Go88] or the development of 𝑝-adic analogues and refine-

ments of Tate’s isogeny Theorem [Ta66].

Table 1 shows the timings obtained for computing a GB of the

above systems for different values of 𝑝 , ℓ and different precisions.

We clearly see on these examples that both PoTe and VaPoTe out-

perform the Buchberger algorithm.

5.2 Towards further improvements

Faster reductions. Observing how our algorithms behave, one im-

mediately notices that reductions are very slow. It is not that sur-

prising since our reduction algorithm is currently very naive. For

this reason, we believe that several structural improvements are

quite possible. An idea in this direction would be to store a well-

chosen representative sample of reductions and reuse them later on.

76

https://trac.sagemath.org/ticket/28777

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Xavier Caruso, Tristan Vaccon, and Thibaut Verron

Typically, we could cache the reductions of all terms of the form

𝑥2
𝑒1

1 · · · 𝑥
2𝑒𝑛
𝑛 (with respect to the current GB in construction) and

use them to emulate a fast exponentation algorithm in the quotient

ring 𝐾{X}◦/⟨𝐺𝐵⟩.

Another attractive idea for accelerating reduction is to incorpo-

rate Mora’s reduction algorithm [Mo82, MRW17] in our framework.

Let us recall that Mora’s algorithm is a special method for reducing

terms with respect to local or mixed orders (i.e. orders for which

there exist terms 𝑡 < 1), avoiding infinite loops in the reduction

process. In our framework, infinite loops of reductions cannot arise

since the computations are truncated at a given precision. Nev-

ertheless, we believe that Mora’s algorithm can still be used to

short-circuit some reductions.

The situation for Tate terms is actually significantly simpler than

that of general local orders. Indeed, Mora’s reduction algorithm

roughly amounts to add 𝜋𝑟 to our list of reductors each time we en-

counter a remainder 𝑟 (including 𝑓 itself) in the reduction process.

We believe that this optimization, if it is carefully implemented,

could already have some impact on the performances. Besides, ob-

serving that the equality 𝑓 = 𝑟 + 𝜋𝑞𝑓 also reads 𝑓 = (1 − 𝜋𝑞)−1𝑟 ,

we realize that Mora reductions of a Tate series are somehow re-

lated to its Weierstrass decomposition. Moreover, at least in the

univariate case, it is well known that Weierstrass decompositions

can be efficiently computed using a well-suited Newton iteration.

It could be interesting to figure out whether this strategy extends

to multivariate series and, more generally, to the computation of

arbitrary Mora reductions.

Using overconvergence properties. In a different direction, we would

like to underline that the orderings we are working with are by

design block orders (comparing first the valuation). However, in

the classical setting, we all know that graded orders often lead to

much more efficient algorithms. Unfortunately, in the setting of

this article, the very first definition of a Tate series already forces

us to give the priority to the valuation in the comparison of terms;

otherwise, the leading term would not be defined in general.

Nonetheless, we emphasize that even if graded orders do not

exist over 𝐾{X}, they do exist over some subrings. Precisely, recall

that, given a tuple r = (𝑟1, . . . , 𝑟𝑛), we have defined
4:

𝐾{X; r} :=
{
∑

i∈N𝑛

𝑎iX
i s.t. 𝑎i ∈ 𝐾 and val(𝑎i) − r·i −−−−−−−→

|i |→+∞
+∞

}

where r·i denotes the scalar product of the vectors r and i. When

the 𝑟𝑖 ’s are all nonnegative, 𝐾{X; r} embeds naturally into 𝐾{X};

precisely, elements in 𝐾{X; r} are those series that overconverges

over the polydisk of polyradius (|𝜋 |−𝑟1 , . . . , |𝜋 |−𝑟𝑛). Moreover, the

algebra 𝐾{X; r} is equipped with the valuation valr defined by:

valr

(
∑

i∈N𝑛

𝑎iX
i
)

= min
i∈N𝑛

val(𝑎i) − r·i.

This valuation defines a new term ordering ≤r. We observe that,

from the point of view of 𝐾{X}, it really looks like a graded order:

the quantity valr (𝑓) plays the role of (the opposite of) a łtotal

degreež which mixes the contribution of the valuation and that of

the classical degree.

4We refer to [CVV19] for more details

In light of the above remarks, we formulate the following ques-

tion. Suppose that we are given an ideal 𝐼 ⊂ 𝐾{X}◦ (say, of dimen-

sion 0) generated by some series 𝑓1, . . . , 𝑓𝑚 . If we have the promise

that the 𝑓𝑖 ’s all overconverge, i.e. all lie in 𝐾{X; r} for a given r, can

we imagine an algorithm that computes a GB of 𝐼 taking advantage

of the term ordering ≤r? As an extreme case, if we have the promise

that all the 𝑓𝑖 ’s are polynomials (that is 𝑟𝑖 = +∞ for all 𝑖), can one

use this assumption to accelerate the computation of a GB of 𝐼?

REFERENCES
[BGR84] Bosch Siegfried, Günzter Ulrich and Remmert Reinhold, Non-Archimedean

analysis, Springer-Verlag (1984)
[Bu65] Buchberger Bruno, Ein Algorithmus zum Auffinden der Basiselemente des

Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm
for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimen-
sional Polynomial Ideal), English translation in J. of Symbolic Computation,
Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol.
41, Number 3-4, Pages 475ś511, 2006

[CL14] Caruso Xavier and Lubicz David, Linear Algebra over Z𝑝 [[𝑢]] and related
rings, LMS J. Comput. Math. 17 (2014), 302-344

[CVV19] Caruso Xavier, Vaccon Tristan and Verron Thibaut, Gröbner bases over Tate
algebras, in Proceedings: ISSAC’19.

[EF17] Eder Christian and Faugère Jean-Charles, A survey on signature-based algo-
rithms for computing Gröbner bases, J. of Symbolic Computation, 2017

[EP10] Eder Christian and Perry John, F5C: A variant of Faugère’s F5 algorithm with
reduced Gröbner bases, J. of Symbolic Computation, 2010

[Fa99] Faugère Jean-Charles, A new efficient algorithm for computing Gröbner bases
(F4), Journal of Pure and Applied Algebra, 1999

[Fa02] Faugère, Jean-Charles, A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5), in Proceedings: ISSAC’02.

[FP04] Fresnel Jean and van der Put Marius, Rigid analytic geometry and its applica-
tions, Birkhäuser, 2004

[GGV10] Gao Shuhong, Guan Yinhua and Volny IV Frank, A new incremental
algorithm for computing Groebner bases, In Proceedings: ISSAC’10.

[GVW16] Gao Shuhong, Volny IV Frank, and Wang Mingsheng, A new framework
for computing Gröbner bases, Mathematics of computation, 2016, vol. 85, no
297, p. 449-465.

[Go88] Gouvea Fernando, Arithmetic of 𝑝-adic Modular Forms, Lecture Notes in
Mathematics 1304, Springer-Verlag, 1988

[GR95] Gräbe Hans-Gert, Algorithms in Local Algebra, J. of Symbolic Computation
19, 1995, 545ś557

[LS07] Le Stum Bernard, Rigid Cohomology, Cambridge tracts in mathematics 172,
Cambridge University Press, 2007

[L+18] Lu Dong, Wang Dingkang, Xiao Fanghiu, Zhou Jie, Extending the GVW
Algorithm to Local Ring, Proceedings of 43th International Symposium on
Symbolic and Algebraic Computation, ISSAC’18, New York, USA

[Macaulay2] Grayson Daniel R. and Stillman Michael, Macaulay2, a software system
for research in algebraic geometry, available at https://faculty.math.illinois.edu/
Macaulay2/

[Magma] Bosma Wieb, Cannon John, and Playoust Catherine, The Magma algebra
system. I. The user language, J. Symbolic Comput. 24, 1997, 235ś265

[MRW17] Markwig Thomas, Ren Yue and Wienand Olivier, Standard bases in mixed
power series and polynomial rings over rings, J. of Symbolic Computation 79,
2017, 119ś139

[Mo82] Mora Ferdinando, An algorithm to compute the equations of tangent cones,
Proceedings of European Computer Algebra Conference in Marseille, 1982, 158ś
165

[NS01] Norton Graham H. and Sălăgean Ana, Strong Grobner bases and cyclic codes
over a finite-chain ring, Electronic notes in discrete maths 6, 2001, 240ś250

[Sage] SageMath, the Sage Mathematics Software System (Version 8.6), The Sage
Development Team, 2018, http://www.sagemath.org

[Singular] Decker Wolfram, Greuel Gert-Martin., Pfister Gerhard and Schönemann
Hans, Singular 4-1-2ÐA computer algebra system for polynomial computations,
http://www.singular.uni-kl.de, 2019

[Ta66] Tate John, Endomorphisms of abelian varieties over finite fields, Inventiones
Mathematicae 2, 1966, 134ś144

[Ta71] Tate John, Rigid analytic spaces, Inventiones Mathematicae 12, 1971, 257ś289
[Ta95] Tate John, A review of non-Archimedean elliptic functions, in Elliptic curves,

modular forms and Fermat’s last theorem, Series in Number Theory, Int. Press,
Cambridge, MA, 1995, 162ś184

77

https://faculty.math.illinois.edu/Macaulay2/
https://faculty.math.illinois.edu/Macaulay2/
http://www.sagemath.org

Syzygies of Ideals of Polynomial Rings over Principal Ideal
Domains

Hara Charalambous
Dep. of Mathematics, Aristotle University of Thessaloniki

Thessaloniki, Greece
hara@math.auth.gr

Kostas Karagiannis
Dep. of Mathematics, Aristotle University of Thessaloniki

Thessaloniki, Greece
kkaragia@math.auth.gr

Sotiris Karanikolopoulos
Dep. of Mathematics, National and Kapodistrian

University of Athens
Athens, Greece

sotiriskaran@gmail.com

Aristides Kontogeorgis
Dep. of Mathematics, National and Kapodistrian

University of Athens
Athens, Greece

kontogar@math.uoa.gr

ABSTRACT

We study computational aspects of syzygies of graded modules

over polynomial rings 𝑅 [𝑤1, . . . ,𝑤𝑔] when the base 𝑅 is a discrete

valuation ring. In particular, we use the torsion of their syzygies

over 𝑅 to provide a formula which describes the behavior of the

Betti numbers when changing the base to the residue field or the

fraction field of 𝑅. Our work is motivated by the deformation theory

of curves.

CCS CONCEPTS

·Theory of computation→Computational geometry; ·Math-

ematics of computing;

KEYWORDS

Commutive algebra, syzygies, principal ideal domains, reduction,

lifting MSC:13D02, 13P20

ACM Reference Format:

Hara Charalambous, Kostas Karagiannis, Sotiris Karanikolopoulos, and Aris-

tides Kontogeorgis. 2020. Syzygies of Ideals of Polynomial Rings over Prin-

cipal Ideal Domains. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3373207.3404046

1 INTRODUCTION

The study of syzygies of modules is one of the main topics of

interest of combinatorial commutative algebra with numerous al-

gorithmic applications. In the context of computational algebraic

geometry, usually one studies syzygies of ideals of the polyno-

mial ring 𝑘 [𝑤1, . . . ,𝑤𝑔], where 𝑘 is a field. However, deformation

theory of curves deals with flat families of curves over discrete

valuation rings 𝑅. In particular, non-hyperelliptic curves of genus

𝑔 are better understood in terms of their canonical ideal, the ideal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404046

in 𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔] that defines the canonical embedding of the

family in P
𝑔−1
𝑅

.

The last two authors have studied the 𝑅-modules of relative

polydifferentials for certain cyclic covers of the projective line [7],

which lead to a description of the relative canonical ideal by the

first, second and fourth author in [3]. Applications of syzygies and

free resolutions to the study of curves with automorphisms are

given by Terezakis, Tsouknidas and the fourth author in [8]. The

difference in the behaviour of the Betti numbers in the special and

generic fibre is expected to provide new obstructions to the theory

of lifting of curves with automorphisms, see [9], [10], since liftings

of indecomposable representations of the automorphism group

should respect the free and torsion part. Moreover the relative

point of view contributes to the understanding of the situation

concerning Green’s conjecture in positive characteristic, see [2] for

a refined version.

Let 𝑅 be a discrete valuation ring with maximal ideal 𝔪𝑅 = ⟨𝑥⟩,

fraction field𝐾 and residue field𝑘 . Deformation theory andmodular

representation theory are related to the effect of taking the base to

be any of the three rings 𝑅, 𝐾, 𝑘 . Let 𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔] and consider

an 𝑆-module𝑀 such that the generator 𝑥 of𝔪𝑅 is not a zero divisor

on 𝑀 . This leads to the study a) of 𝑆 = 𝐾 [𝑤1, . . . ,𝑤𝑔] and the

respective 𝑆-module𝑀 = 𝑀 ⊗ 𝑆 (corresponding to the generic fibre)

and b) of 𝑆 = 𝑘 [𝑤1, . . . ,𝑤𝑔] and the respective 𝑆-module𝑀 = 𝑀 ⊗𝑆

(corresponding to the special fibre).

Grothendieck’s relative point of view leads to the question of

how the syzygies and the Betti numbers of the special and the

generic fibre of a family are related when considered over 𝑘 or

𝐾 or even over 𝑅. The study of syzygies becomes automatically

more challenging over 𝑅 since the non-zero elements of the PID

may not be invertible and modules might have torsion, see [1, chap.

4] for a more comprehensive account and also [12]. On the other

hand simplicial homology over Z has been extensively studied and

techniques have been developed to account for that case and the

different behavior over Q, [4]. It is well known that, even in the

case of monomial ideals, the minimal free resolution depends on

the characteristic of the ground field, the classical example being

the triangulation of the projective plane.

Example 1. The Betti numbers of

𝐵 = ⟨𝑎𝑏𝑐, 𝑎𝑏𝑓 , 𝑎𝑐𝑒, 𝑎ℎ𝑒, 𝑎ℎ𝑓 , 𝑏𝑐ℎ, 𝑏ℎ𝑒, 𝑏𝑒 𝑓 , 𝑐ℎ𝑓 , 𝑐𝑒 𝑓 ⟩ ◁ 𝑘 [𝑎, 𝑏, 𝑐, 𝑒, 𝑓 , ℎ]

78

https://doi.org/10.1145/3373207.3404046
https://doi.org/10.1145/3373207.3404046

ISSAC ’20, July 20–23, 2020, Kalamata, Greece H. Charalambous, K. Karagiannis, S. Karanikolopoulos, and A. Kontogeorgis

differ when char(𝑘) = 0 (table on the left) and char(𝑘) = 2 (table

on the right).

0 1 2 3

0 1 0 0 0

1 0 0 0 0

2 0 10 15 6

3 0 0 0 0

0 1 2 3 4

0 1 0 0 0 0

1 0 0 0 0 0

2 0 10 15 6 1

3 0 0 0 1 0

Thus when char(𝑘) = 2, the ideal 𝐵 has a third and a fourth graded

syzygy of degree 6 which do not appear over characteristic zero

(or any other characteristic 𝑝 ≠ 2 for that matter), see also [11, Ex.

12.4].

In the sequel we give explicit reasons for this behavior. We con-

sider syzygies of finitely generated graded 𝑆-modules of the poly-

nomial ring 𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔]. We will see that it makes sense to

consider minimal free resolutions of the graded 𝑆-module𝑀 , and

we will define the graded Betti numbers of𝑀 .

The structure of this paper is as follows: we first discuss min-

imal free resolutions of graded modules over 𝑅 [𝑤1, . . . ,𝑤𝑔] and

Nakayama’s lemma (Lemma 2). Using the classification theorem

for modules over PIDs, we see how the existence of 𝑅-torsion on

the syzygies affects the resolution (Theorem 6).

We also explain how torsion can be read from the Smith normal

form of the reduced matrix of the differentials (Corollary 7). In

the last section we give a detailed computation of Example 1 and

conclude with a method (Algorithm 1) which, given the genera-

tors of a graded ideal 𝐼 of Z[𝑤1, . . . ,𝑤𝑔], outputs all primes 𝑝 for

which the Betti numbers of 𝐼 in F𝑝 [𝑤1, . . . ,𝑤𝑔] differ from the Betti

numbers of 𝐼 in Q[𝑤1, . . . ,𝑤𝑔] and give information for possible

obstructions.

2 SYZYGIES OVER GENERAL RINGS

Let (𝑅, 𝔪𝑅) be as in the introduction, and let 𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔] be

the polynomial ring in 𝑔 variables, graded by assigning the degree 1

to each𝑤𝑖 , 𝑖 = 1, . . . , 𝑔. Thus 𝑆 =
∑
𝑖≥0 𝑆𝑖 , with 𝑆0 = 𝑅. We let𝔪 and

𝔪𝑆 be respectively the prime and maximal ideals𝔪 = ⟨𝑤1, . . . ,𝑤𝑔⟩,

𝔪𝑆 = 𝔪 +𝔪𝑅𝑆 of 𝑆 . Observe that 𝑘 = 𝑆/𝔪𝑆 = 𝑅/𝔪𝑅 .

Let 𝑀 be a finitely generated graded 𝑆-module. Thus we have

𝑀 =
∑
𝑖≥𝑎𝑀𝑖 , where 𝑆 𝑗𝑀𝑖 ⊂ 𝑀𝑖+𝑗 and in particular 𝑀𝑖 is an 𝑅-

module, for 𝑖 ≥ 𝑎. Let 𝑚1, . . . ,𝑚𝑛 form a generating set of 𝑀 . It

is clear that {𝑚𝑖 = 𝑚𝑖 +𝔪𝑆𝑀, 𝑖 = 1, . . . , 𝑛} is a generating set of

𝑀/𝔪𝑆𝑀 . The converse, i.e. Nakayama’s lemma, holds when the

elements𝑚𝑖 are homogeneous. The proof follows the same lines as

the standard proof for the graded case, [5, lemma 1.4]. We include

it here for completeness of the exposition.

Lemma 2 (Nakayama). Let 𝑀 be a finitely generated positively

graded 𝑆-module, 𝑚1, . . . ,𝑚𝑛 ∈ 𝑀 homogeneous so that 𝑚𝑖 , 𝑖 =

1, . . . , 𝑛 generate𝑀/𝔪𝑆𝑀 . Then𝑚1, . . . ,𝑚𝑛 generate𝑀 .

Proof. Let𝑀 ′
=
∑𝑛
𝑖=1 𝑆𝑚𝑖 and consider the finitely generated

graded 𝑆-module 𝑁 = 𝑀/𝑀 ′. By our assumption on the𝑚𝑖 ,𝑀
′ +

𝔪𝑆𝑀 = 𝑀 , thus 𝑁 /𝔪𝑆𝑁 = 0 and 𝔪𝑆𝑁 = 𝑁 . If 𝑁 ≠ 0, there is a

nonzero graded element of least degree in 𝑁 . Since 𝔪𝑆𝑁 = 𝑁 , this

element must have degree zero. It follows that 𝑁0 = 𝔪𝑅𝑁0. Since

𝑅 is a local PID, Nakayama’s lemma in the local case gives that

𝑁0 = 0. It follows that 𝑁 = 0 as desired. □

It follows that the least number of homogeneous elements needed

to generate𝑀 is the dimension of the 𝑆/𝔪𝑆 -vector space𝑀/𝔪𝑆𝑀 .

We proceed to construct aminimal graded free resolution of𝑀 .

Let 𝑚1, . . . ,𝑚𝑛 be a minimal set of homogeneous generators of

𝑀 . We let 𝐹0 be the free module 𝐹0 =

⊕
𝑖 𝑆𝑒𝑖 on generators 𝑒𝑖 ,

deg(𝑒𝑖) = deg(𝑚𝑖) (𝑖 = 1, . . . 𝑛) and let 𝜋0 : 𝐹0 −→ 𝑀 be the

epimorphism determined by 𝜋0 (𝑒𝑖) =𝑚𝑖 . This gives the short exact

sequence

0 → ker 𝜋0
𝜄0
−→ F0

𝜋0
−→ M → 0,

where ker𝜋0 ⊂ 𝔪𝑆𝐹0. Since ker𝜋0 is a finitely generated graded

𝑆-module we repeat this procedure to obtain 𝜋1 : 𝐹1 −→ ker𝜋0

and 𝛿1 : 𝐹1 −→ 𝐹0 as the composition 𝐹1
𝜋1
−→ ker𝜋0

𝜄0
−→ 𝐹0. Note

that 𝛿1 (𝐹1) = ker𝜋0 and that we have specified the basis of 𝐹1 that

maps to a minimal homogeneous generating set of ker𝜋0. Iterating

this procedure, we obtain a free graded resolution of 𝑀 which is

minimal since by construction ker𝜋𝑖 ⊂ 𝔪𝑆𝐹𝑖 for all 𝑖 ≥ 0:

(𝐹•, 𝛿•) : · · · −→ 𝐹1
𝛿1
−→ 𝐹0

𝜋0
−→ 𝑀 −→ 0

For each 𝑖 ≥ 1, the resolution above breaks into a short exact

sequence

0 → ker 𝜋i
𝜄i

−→ Fi
𝜋i
−→ ker 𝜋i−1 → 0, (1)

𝛿𝑖 : 𝐹𝑖 → 𝐹𝑖−1 being the composition 𝜄𝑖−1𝜋𝑖 for 𝑖 ≥ 1. We note that

the differentials 𝛿𝑖 are of degree zero, 𝛿𝑖 (𝐹𝑖) ⊂ 𝔪𝑆𝐹𝑖−1 and that 𝛿𝑖
maps a basis of 𝐹𝑖 to a minimal set of homogeneous generators of

𝛿𝑖 (𝐹𝑖), as in [5, Corollary 1.5]. We write each 𝐹𝑖 as a direct sum,

indexed by Z, of copies of 𝑆 shifted by the degrees of the generators:

𝐹𝑖 =
⊕
𝑗 ∈Z

𝑆 (− 𝑗)𝛽𝑖,𝑗 ,

where finitely many of the 𝛽𝑖, 𝑗 are nonzero. The exponent 𝛽𝑖, 𝑗 ∈ N

that counts the number of minimal generators of degree 𝑗 in 𝐹𝑖 is

called the (𝑖, 𝑗)-graded Betti number of𝑀 and equals the dimen-

sion dim𝑘 Tor
𝑆
𝑖 (𝑘,𝑀) 𝑗 as in [5, Corollary 1.7]. We write 𝛽𝑖, 𝑗 (𝑀)

when needed to emphasize the module𝑀 . The 𝑆-modules

Π𝑖 = ker𝜋𝑖−1 = ker𝛿𝑖−1, (2)

for 𝑖 ≥ 1, are known as the 𝑖-th syzygies of𝑀 , and we set Π0 = 𝑀 ,

so that Π𝑖 is a graded 𝑆-module for all 𝑖 . By successively taking

homology of the short exact sequences in (1) we get that

Tor𝑆1 (Π𝑖−1, 𝑅) = Tor𝑆𝑖 (𝑀,𝑅), 𝑖 ≥ 1. (3)

We let 𝐹𝑖, 𝑗 be the direct summand of 𝐹𝑖 at degree 𝑗 and denote by

𝛿𝑖, 𝑗 the restriction

𝛿𝑖, 𝑗 = 𝛿𝑖 |𝐹𝑖,𝑗 : 𝐹𝑖, 𝑗 −→ 𝐹𝑖−1, 𝑗 .

Remark 3. Let 𝐹• be aminimal graded free resolution of the graded

𝑆-module 𝑀 . By tensoring 𝐹• with 𝑅 = 𝑆/𝔪 (over 𝑆) we obtain a

graded complex of 𝑅-modules:

𝐹• ⊗ 𝑅 : · · · −→ 𝐹1 ⊗ 𝑅
𝛿1⊗1𝑅
−→ 𝐹0 ⊗ 𝑅 −→ 𝑀 ⊗ 𝑅 −→ 0

whose homology at the 𝑖-th position is Tor𝑆𝑖 (𝑅,𝑀), a graded 𝑆-

module. Note that, for 𝛼 > 0, 𝑆 (−𝛼) ⊗𝑅 only lives in degree 𝛼 . Thus,

to compute Tor𝑆𝑖 (𝑅,𝑀) 𝑗 = Tor𝑆1 (𝑅,Π𝑖−1) 𝑗 one needs to consider

the following s.e.s. derived from (1):

0 → Tor𝑆1 (Π𝑖 , 𝑅) 𝑗 → (Π𝑖+1) 𝑗⊗𝑅→(𝑆 (− 𝑗)𝛽𝑖,𝑗 ⊗𝑅) 𝑗→(Π𝑖) 𝑗⊗𝑅 → 0.

(4)

79

Syzygies of Ideals of Polynomial Rings over Principal Ideal Domains ISSAC ’20, July 20–23, 2020, Kalamata, Greece

3 SYZYGIES OVER GENERIC AND SPECIAL

FIBRES

Let us start by recalling the notation set-up in the introduction:

𝑅 is a discrete valuation ring with maximal ideal 𝔪𝑅 = ⟨𝑥⟩, 𝐾 is

the fraction field of 𝑅 and 𝑘 = 𝑅/𝔪𝑅 is the residue field. We set

𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔],𝔪 = ⟨𝑤1, . . . ,𝑤𝑔⟩ ◁ 𝑆 and𝔪𝑆 = ⟨𝑥,𝑤1, . . . ,𝑤𝑔⟩.

Let 𝑀 be a finitely generated graded 𝑆-module. Note that 𝑆 =

𝐾 [𝑤1, . . . ,𝑤𝑔] is the localization of 𝑆 at the multiplicatively closed

subset 𝑅∗ and similarly for𝑀 = 𝑀⊗𝑆 . Finally,𝔪 = ⟨𝑤1, . . . ,𝑤𝑔⟩◁𝑆

is the maximal graded ideal of 𝑆 = 𝑘 [𝑤1, . . . ,𝑤𝑔] and𝑀 = 𝑀/𝑥𝑀 .

We note that if 𝑁 is a finitely generated 𝑅-module, then since 𝑅

is a local PID, 𝑁 is a direct sum of the form

𝑁 =

rk(𝑁)⊕
𝑅 ⊕ tor(𝑁),

where rk(𝑁) is the rank of 𝑁 as an 𝑅-module, while tor(𝑁), the

torsion part of 𝑁 , is a direct sum of the form

tor(𝑁) =

𝑡 (𝑁)⊕
𝜈=1

𝑅/𝑅𝑥𝑎 (𝜈,𝑁) , where 𝑎(𝜈, 𝑁) ∈ N, for 𝜈 = 1, . . . , 𝑡 (𝑁) .

Observe that tor(𝑁) is still visible when tensoring with 𝑘 (spe-

cial fibre), since 𝑁 ⊗𝑅 𝑘 = 𝑘rk(𝑁)+𝑡 (𝑁) , while it disappears when

tensoring with 𝐾 (generic fibre), since 𝑁 ⊗𝑅 𝐾 = 𝐾rk(𝑁) .

Let𝑀 be a finitely generated graded 𝑆-module such that 𝑥 is a

not a zero divisor on𝑀 , i.e. multipication by 𝑥 is injective and𝑀 is

a flat 𝑅-module. Let 𝐹• be a minimal free resolution of𝑀 . To study

𝑀 we will tensor 𝐹• with 𝑅 and get a complex of 𝑅-modules.

It is known that under our assumptions, reduction to the special

fibre preserves exactness, see for example [11, Thm 20.3]. The short

proof is included here for completeness of the exposition.

Lemma 4. If 𝐹• is a free resolution of 𝑀 as an 𝑆-module, then

𝐹• ⊗ 𝑆/𝑥𝑆 is a free resolution of𝑀/𝑥𝑀 as an 𝑆/𝑥𝑆-module.

Proof. The short exact sequences 0 → 𝑆 → 𝑆 → 𝑆/𝑥𝑆 → 0

and 0 → 𝑀 → 𝑀 → 𝑀/𝑥𝑀 → 0, imply that Tor𝑆𝑖 (𝑀, 𝑆/𝑥𝑆) = 0,

for 𝑖 ≥ 1 and thus 𝐹• ⊗ 𝑆/𝑥𝑆 is exact. □

We also note that flatness of 𝐾 over 𝑅 implies flatness of the ring

𝐾 [𝑤1, . . . ,𝑤𝑔] over 𝑆 . Thus we have the following:

Lemma 5. If 𝐹• is a free resolution of 𝑀 , seen as an 𝑆-module

then 𝐹• = 𝐹• ⊗ 𝐾 [𝑤1, . . . ,𝑤𝑔] is a free resolution of 𝑀 = 𝑀 ⊗

𝐾 [𝑤1, . . . ,𝑤𝑔] as an 𝐾 [𝑤1, . . . ,𝑤𝑔]-module.

Let (𝐹•, 𝛿•) be a minimal graded free resolution of the graded

𝑆-module 𝑀 . By Lemma 5, 𝐹• is a graded free resolution of 𝑀 ,

however it might not be minimal. We write Π𝑖, 𝑗 for the 𝑗-th graded

piece of Π𝑖 = ker(𝛿𝑖−1) and Π𝑖, 𝑗 for the 𝑅-module Π𝑖, 𝑗 ⊗ 𝑅 which

we decompose into its cyclic 𝑅-components. We will see that the

quantities 𝑓𝑖, 𝑗 := rk(Π𝑖, 𝑗), 𝑡𝑖, 𝑗 := 𝑡 (Π𝑖, 𝑗) and 𝑠𝑖, 𝑗 = rk(Tor𝑆1 (𝑅,Π𝑖) 𝑗)

are critical when we measure the difference between the graded

Betti numbers of the generic and the special fibre.

Theorem 6. Let 𝑆 be 𝑅 [𝑤1, . . . ,𝑤𝑔], 𝑀 be a finitely generated

graded 𝑆-module which is flat as an 𝑅-module, Π𝑖 be the 𝑖-th syzygy

of𝑀 and 𝑡𝑖, 𝑗 be the number of nonzero cyclic summands of Π𝑖, 𝑗 , for

𝑖 ≥ 0.

(1) 𝛽𝑖, 𝑗 (𝑀) = 𝛽𝑖, 𝑗 (𝑀), for 𝑖 ≥ 0.

(2) 𝛽𝑖, 𝑗 (𝑀) = 𝛽𝑖, 𝑗 (𝑀) + 𝑡𝑖, 𝑗 + 𝑡𝑖−1, 𝑗 for 𝑖 ≥ 1.

Proof. Let 𝐹• be a minimal graded free resolution of the graded

𝑆-module𝑀 . By Lemma 4, it follows that 𝐹• = 𝐹• ⊗ 𝑆/𝑥𝑆 is a free

resolution of 𝑀 . Moreover, since 𝛿𝑖 (𝐹𝑖) ⊂ 𝔪𝑆𝐹𝑖−1, it follows that

𝛿𝑖 (𝐹𝑖) ⊂ 𝔪𝐹 𝑖−1 and 𝐹• is a minimal free resolution of 𝑀 . Thus

𝛽𝑖, 𝑗 (𝑀) = 𝛽𝑖, 𝑗 (𝑀).

For the generic fibre, by Lemma 5, 𝐹 = 𝐹• ⊗ 𝐾 [𝑤1, . . . ,𝑤𝑔] is a

free resolution of𝑀 and we need to compute dim𝐾 Tor𝑆𝑖 (𝑀,𝐾) 𝑗 . By

the Künneth formula [13, Th. 3.6.1], Tor𝑆𝑖 (𝑀,𝐾) is the localization

of Tor𝑆𝑖 (𝑀,𝑅) at 𝑅
∗ and

Tor𝑆𝑖 (𝑀,𝐾) 𝑗 � Tor𝑆𝑖 (𝑀,𝑅) 𝑗 ⊗ 𝐾.

Thus by (3) it suffices to examine the 𝑅-structure of Tor𝑆1 (Π𝑖−1, 𝑅) 𝑗 .

We consider the tensor product 𝐹• ⊗ 𝑅. By (4) we have

0 → Tor𝑆1 (Π𝑖−1, 𝑅) 𝑗 → Π𝑖, 𝑗−→𝑅𝛽𝑖−1, 𝑗−→Π𝑖−1, 𝑗 → 0.

Since Π𝑖, 𝑗/Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗 ↩→ 𝑅𝛽𝑖−1, 𝑗 , it follows that the quotient

Π𝑖, 𝑗/Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗 is free and

tor(Tor𝑆1 (Π𝑖−1, 𝑅) 𝑗) = tor(Π𝑖, 𝑗).

Thus

Π𝑖, 𝑗/Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗 = 𝑅

𝑓𝑖,𝑗−𝑠𝑖−1, 𝑗 .

By the short exact sequence

0 // Π𝑖, 𝑗/Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗

// 𝑅𝛽𝑖−1, 𝑗 // Π𝑖−1, 𝑗
// 0

𝑅 𝑓𝑖,𝑗−𝑠𝑖−1, 𝑗 𝑅 𝑓𝑖−1, 𝑗 ⊕ tor(Π𝑖−1, 𝑗)

we have that

• 𝛽𝑖−1, 𝑗 = 𝑓𝑖−1, 𝑗 + 𝑡𝑖−1, 𝑗 (from the epimorphism),

• 𝛽𝑖−1, 𝑗 =
(
𝑓𝑖, 𝑗 − 𝑠𝑖−1, 𝑗

)
+ 𝑓𝑖−1, 𝑗 (from the additivity of ranks).

It follows that the rank 𝑠𝑖−1, 𝑗 of Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗 is equal to

𝑠𝑖−1, 𝑗 =
(
𝑓𝑖, 𝑗 + 𝑓𝑖−1, 𝑗

)
− 𝛽𝑖−1, 𝑗 = 𝑓𝑖, 𝑗 +

(
𝑓𝑖−1, 𝑗 − 𝛽𝑖−1, 𝑗

)
=(

𝛽𝑖, 𝑗 − 𝑡𝑖, 𝑗
)
− 𝑡𝑖−1, 𝑗 .

We tensor Tor𝑆𝑖 (𝑅,𝑀) 𝑗 with 𝐾 to obtain that

𝛽𝑖, 𝑗 (𝑀) = 𝑠𝑖−1, 𝑗 = 𝛽𝑖, 𝑗 (𝑀) − 𝑡𝑖, 𝑗 − 𝑡𝑖−1, 𝑗 .

□

How does one compute 𝑡𝑖, 𝑗 ? This can be done by computing the

Smith normal form of the matrix of differentials 𝛿𝑖, 𝑗 = 𝛿𝑖, 𝑗 ⊗ 𝑅. We

proceed as in [4]. Note that 𝑅𝛽𝑖,𝑗 = 𝐹𝑖, 𝑗 ⊗𝑅, while 𝑅
𝛽𝑖−1, 𝑗 = 𝐹𝑖−1, 𝑗 ⊗𝑅

and 𝛿𝑖, 𝑗 : 𝑅
𝛽𝑖,𝑗 −→ 𝑅𝛽𝑖−1, 𝑗 . Let 𝐵𝑖, 𝑗 be the matrix of 𝛿𝑖, 𝑗 with respect

to the canonical bases of 𝑅𝛽𝑖,𝑗 and 𝑅𝛽𝑖−1, 𝑗 . There is a change of basis

for 𝑅𝛽𝑖,𝑗 and 𝑅𝛽𝑖−1, 𝑗 so that the matrix of 𝛿𝑖, 𝑗 with respect to these

new bases is the Smith normal form of 𝐵𝑖, 𝑗 , say 𝐴𝑖, 𝑗 . The Smith

normal form 𝐴𝑖, 𝑗 contains an upper left diagonal block

diag
(
𝑏1, 𝑏2, . . . , 𝑏𝑡 (𝑖−1, 𝑗)

)
,

with 𝑏1 |𝑏2 | · · · |𝑏𝑡 (𝑖−1, 𝑗) ≠ 0, while the rest of the blocks of 𝐴𝑖, 𝑗 are

zero. We note that since 𝐹• is a minimal resolution, all 𝑏𝑎 ∈ 𝔪𝑅 , for

𝑎 = 1, . . . , 𝑡 (𝑖 − 1, 𝑗) and thus 𝑏𝑎 = 𝑥𝑒 (𝑎) , for some positive integer

80

ISSAC ’20, July 20–23, 2020, Kalamata, Greece H. Charalambous, K. Karagiannis, S. Karanikolopoulos, and A. Kontogeorgis

𝑒 (𝑎). It is clear that 𝑡 (𝑖−1, 𝑗) is the rank of Im 𝛿𝑖, 𝑗 and thus the rank

of ker𝛿𝑖, 𝑗 equals 𝛽𝑖, 𝑗 − 𝑡 (𝑖 − 1, 𝑗). Let us now consider the Smith

normal form for 𝛿𝑖+1, 𝑗 . Suppose that its nonzero block is

diag
(
𝑐1, 𝑐2, . . . , 𝑐𝑡 (𝑖, 𝑗)

)
and let 𝜖1, . . . , 𝜖𝛽𝑖,𝑗 be the basis of 𝑅𝛽𝑖,𝑗 relative to this normal

form. Thus 𝑐𝑎𝜖𝑎 ∈ Im 𝛿𝑖+1, 𝑗 . Since 𝛿𝑖, 𝑗𝛿𝑖+1, 𝑗 = 0, we have that

𝛿𝑖, 𝑗 (𝑐𝑎𝜖𝑎) = 𝑐𝑎𝛿𝑖, 𝑗 (𝜖𝑎) = 0, and we conclude that 𝜖1, . . . , 𝜖𝑡 (𝑖, 𝑗) are

in ker𝛿𝑖, 𝑗 , for 𝑎 = 1, . . . , 𝑡 (𝑖, 𝑗). Thus,

Tor𝑆𝑖 (𝑀,𝑅) 𝑗 � 𝑅
𝛽𝑖,𝑗−𝑡 (𝑖−1, 𝑗)−𝑡 (𝑖, 𝑗) ⊕ 𝑅/𝑐1𝑅 ⊕ · · · ⊕ 𝑅/𝑐𝑡 (𝑖, 𝑗)𝑅.

By the uniqueness of the decomposition of Tor𝑆𝑖 (𝑀,𝑅) 𝑗 and induc-

tion on 𝑖 , it follows that 𝑡 (𝑖, 𝑗) = 𝑡𝑖, 𝑗 for all 𝑖 . We have shown the

following:

Corollary 7. If (𝐹•, 𝛿•) is a minimal graded free resolution of

𝑀 over 𝑆 and the Smith normal form of the matrix of 𝛿𝑎,𝑗 has rank

𝑡 (𝑎 − 1, 𝑗), 𝑎 ≥ 1, then 𝑡𝑖, 𝑗 = 𝑡 (𝑖, 𝑗) for 𝑖 ≥ 0 and 𝛽𝑖, 𝑗 (𝑀) = 𝛽𝑖, 𝑗 (𝑀)−

𝑡𝑖, 𝑗 − 𝑡𝑖−1, 𝑗 .

4 EXAMPLE

Let us now return to Example 1. Let Z2 be the ring of 2-adic integers

with fraction field Q2 and residue field F2. Let 𝑆 = Z2 [𝑎, . . . , ℎ],

𝔪 = ⟨𝑎, . . . , ℎ⟩, 𝐵 = ⟨𝑎𝑏𝑐, 𝑎𝑏𝑓 , 𝑎𝑐𝑒, 𝑎ℎ𝑒, 𝑎ℎ𝑓 , 𝑏𝑐ℎ, 𝑏ℎ𝑒, 𝑏𝑒 𝑓 , 𝑐ℎ𝑓 , 𝑐𝑒 𝑓 ⟩

and𝑀 = 𝑆/𝐵. We will show that

𝛽0,0 (𝑀) = 1, 𝛽1,3 (𝑀) = 10,

𝛽2,4 (𝑀) = 15, 𝛽3,5 (𝑀) = 6, 𝛽3,6 (𝑀) = 1, 𝛽4,6 (𝑀) = 1,

and that𝑀 has a minimal graded free resolution over 𝑆 of the form

𝐹4 𝐹3 𝐹2 𝐹1

0 // 𝑆 (−6)
𝛿4

// 𝑆 (−5)6 ⊕ 𝑆 (−6)
𝛿3

// 𝑆 (−4)15
𝛿2

// 𝑆 (−3)10

𝛿1

// 𝑆 = 𝐹0 // 𝑀 −→ 0

(5)

We will show that Π4, the kernel of 𝛿3 : 𝐹3 → 𝐹2, has a minimal

generating set of two elements, with the generator of degree 6

becoming torsion in 𝐹• ⊗𝑆 𝑅 � 𝐹• ⊗ 𝑆/𝔪, impling that 𝑡4,6 = 1.

This means that for 𝑆 = Q2 [𝑎, . . . , ℎ], we get the following exact

diagram:

0 // 𝑆 (−6)
�

//
� _

��

𝑆 (−6) //
� _

��

0

0 // 𝑆 (−6)
𝛿4

// 𝑆 (−5)6 ⊕ 𝑆 (−6)
𝛿3

// 𝑆 (−4)15

𝛿2

// 𝑆 (−3)10
𝛿1

// 𝑆 // 𝑀 // 0

The degree 6 elements in both 𝐹4, 𝐹3 have to be removed in order

to obtain a minimal free resolution in the generic fibre.

We used Macaulay2 [6] in order to compute the above resolution.

The following code

T = ZZ[a,b,c,e,f,h]

J = ideal(a*b*c,a*b*f,a*c*e,a*h*e,a*h*f,

b*c*h,b*h*e,b*e*f,c*h*f,c*e*f)

rs = res J

rs.dd

produces the free resolution 𝐺• of 𝑇 /𝐽 over 𝑇

0 // 𝑇 2 𝜃4
// 𝑇 10 𝜃3

// 𝑇 17 𝜃2
// 𝑇 10 𝜃1

// 𝑇, (6)

where the differentials 𝜃3, 𝜃4 correspond to the matrices (also de-

noted for simplicity by 𝜃3, 𝜃4)

𝜃4 =

©«

0 𝑓

𝑒 0

−𝑏 0

−ℎ 0

0 −𝑐

−𝑐 0

0 𝑎

𝑎 0

−1 1

−1 −1

ª®®®®®®®®®®®®®®®®¬

𝜃3 =

©«

0 −ℎ 0 𝑒 0 0 0 0 −𝑒 ℎ −𝑒 ℎ

−ℎ 0 0 −𝑓 0 0 0 0 𝑓 ℎ 0

−𝑏 0 −𝑓 0 0 0 0 0 𝑏 𝑓 0

0 0 −𝑐 0 0 𝑏 0 0 0 0

0 −𝑐 0 0 0 −𝑒 0 0 0 0

𝑒 𝑓 0 0 0 0 0 0 0 𝑒 𝑓

𝑎 0 0 0 0 0 −𝑓 0 0 0

−𝑐 0 0 0 −𝑓 0 0 0 0 0

0 0 0 0 𝑎 0 𝑐 0 0 0

0 0 0 𝑐 ℎ 0 0 0 0 −𝑐 ℎ

0 𝑎 0 0 0 0 0 −𝑒 0 0

0 −𝑏 −𝑒 0 0 0 0 0 0 0

0 0 𝑎 0 0 0 0 𝑏 0 0

0 0 0 𝑎 0 0 0 ℎ 0 0

0 0 ℎ −𝑏 0 0 0 0 0 0

0 0 0 0 −1 1 0 0 −𝑐 0

0 0 0 0 0 0 −1 −1 0 −𝑎

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
The matrix of 𝜃4 is reduced modulo ⟨𝑎, . . . , ℎ⟩ to a 10 × 2 matrix,

which is zero in all entries except for the lower 2× 2 submatrix. We

see that (
−1 1

−1 −1

)
=

(
1 1

0 1

) (
2 0

0 1

) (
0 1

−1 −1

)
.

A similar computation shows that the reduction of the matrix of 𝜃3
modulo ⟨𝑎, . . . , ℎ⟩ has a Smith normal formwhose nonzero diagonal

block is the two by two identity matrix. Thus, through a series of

base changes 𝐺• ⊗ Z2 [𝑎, . . . , ℎ] breaks into

0 // 𝑆
�

// 𝑆 // 0
⊕ ⊕

0 // 𝑆
𝛿4

// 𝑆7
𝛿3

// 𝑆15
𝛿2

// 𝑆10
𝛿1

// 𝑆
⊕ ⊕

0 // 𝑆2
�

// 𝑆2 // 0

81

Syzygies of Ideals of Polynomial Rings over Principal Ideal Domains ISSAC ’20, July 20–23, 2020, Kalamata, Greece

The middle row above gives the minimal graded free resolution

(𝐹•, 𝛿•) of (5). In particular, with respect to the appropriate basis

of 𝑆7, the differential 𝛿4 is

𝜃4 =
(
−𝑓 𝑒 −𝑏 ℎ 𝑐 𝑎 2

)𝑇
and we can see that the kernel of 𝛿3 ⊗𝑆 𝑆/𝔪 is isomorphic to

Z62 ⊕ Z2/2Z2.

Let us now consider 𝐵 in 𝑆 = Z𝑝 [𝑎, . . . , ℎ], where 𝑝 is a prime,

𝑝 ≠ 2. We note that 2 is now a unit and through a series of base

changes 𝐺• ⊗ 𝑆 breaks into

0 // 𝑆2
�

// 𝑆2 // 0
⊕

0 // 𝑆7
𝛿3

// 𝑆15
𝛿2

// 𝑆10
𝛿1

// 𝑆
⊕ ⊕

0 // 𝑆2
�

// 𝑆2 // 0

where hemiddle row above gives theminimal graded free resolution

𝑆/𝐵. In this case the Betti numbers of𝑀 = 𝑆/𝐵 in the special and

generic fibre coincide. The uniqueness of the Smith normal form

leads us to the following algorithm, to decide whether the Betti

numbers differ in the special and generic fibre.

Algorithm 1: Testing whether the minimal free resolution

depends on the characteristic of the base field.

Input: Homogeneous elements

𝑓1, . . . , 𝑓𝑠 ∈ 𝑇 = Z[𝑤1, . . . ,𝑤𝑔].

Output: The set of primes 𝑝 for which the Betti numbers of

𝐼 = ⟨𝑓1, . . . , 𝑓𝑠 ⟩ in 𝑘 [𝑤1, . . . ,𝑤𝑔] depend on char(𝑘).

Method:

(1) Compute a free resolution (𝐺•, 𝜃•) of 𝑇 /𝐼 .

(2) Let 𝐴𝑖 be the corresponding matrices of the differentials, for

𝑖 ≥ 1. Set𝑤1, . . . ,𝑤𝑔 = 0 for all entries of 𝐴𝑖 to obtain the

matrices 𝐵𝑖 , for 𝑖 ≥ 1.

(3) Compute the Smith normal form of 𝐵𝑖 , for 𝑖 ≥ 1.

(4) Collect all primes 𝑝 that divide some nonzero entry of the

Smith normal form of 𝐵𝑖 , for 𝑖 ≥ 1.

We note that given a graded ideal 𝐼 of Z[𝑤1, . . . ,𝑤𝑔], the above

algorithm indicates the primes for which the Betti numbers of

𝐼Q𝑝 [𝑤1, . . . ,𝑤𝑔] differ from the Betti numbers of 𝐼F𝑝 [𝑤1, . . . ,𝑤𝑔]

and provide possible obstruction to the lifting problem.

ACKNOWLEDGMENTS

Received financial support by program: łSupporting researchers

with emphasis to young researchers, cycle Bž, MIS 5047968.

REFERENCES
[1] William W. Adams and Philippe Loustaunau. An introduction to Gröbner bases,

volume 3 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 1994. doi:10.1090/gsm/003.

[2] Christian Bopp and Frank-Olaf Schreyer. A version of green’s conjec-
ture in positive characteristic. Experimental Mathematics, 0(0):1ś6, 2019.
arXiv:https://doi.org/10.1080/10586458.2019.1576082, doi:10.1080/

10586458.2019.1576082.
[3] Hara Charalambous, Kostas Karagiannis, and Aristides Kontogeorgis. The relative

canonical ideal of the Artin-Schreier-Kummer-Witt family of curves, 2019. arXiv:
arXiv:1905.05545.

[4] Jean-Guillaume Dumas, Frank Heckenbach, David Saunders, and VolkmarWelker.
Computing simplicial homology based on efficient Smith normal form algorithms.
In Algebra, geometry, and software systems, pages 177ś206. Springer, Berlin, 2003.

[5] David Eisenbud. The geometry of syzygies, volume 229 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2005. A second course in commutative
algebra and algebraic geometry.

[6] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system
for research in algebraic geometry. Available at http://www.math.uiuc.edu/
Macaulay2/.

[7] Sotiris Karanikolopoulos and Aristides Kontogeorgis. Integral representations
of cyclic groups acting on relative holomorphic differentials of deformations of
curves with automorphisms. Proc. Amer. Math. Soc., 142(7):2369ś2383, 2014. URL:
https://doi.org/10.1090/S0002-9939-2014-12010-7.

[8] Aristides Kontogeorgis, Alexios Terezakis, and Ioannis Tsouknidas. Automor-
phisms and the canonical ideal, 2019. arXiv:arXiv:1909.10282.

[9] Andrew Obus. The (local) lifting problem for curves. In Galois-Teichmüller theory
and arithmetic geometry, volume 63 of Adv. Stud. Pure Math., pages 359ś412. Math.
Soc. Japan, Tokyo, 2012.

[10] Andrew Obus. Lifting of curves with automorphisms. In Open problems in
arithmetic algebraic geometry, volume 46 of Adv. Lect. Math. (ALM), pages 9ś59.
Int. Press, Somerville, MA, [2019] ©2019.

[11] Irena Peeva. Graded syzygies, volume 14 of Algebra and Applications. Springer-
Verlag London, Ltd., London, 2011. doi:10.1007/978-0-85729-177-6.

[12] Mahrud Sayrafi. Computations over local rings in macaulay2, 2017. arXiv:

arXiv:1710.09830.
[13] Charles A. Weibel. An introduction to homological algebra. Cambridge University

Press, Cambridge, 1994.

82

https://doi.org/10.1090/gsm/003
http://arxiv.org/abs/https://doi.org/10.1080/10586458.2019.1576082
https://doi.org/10.1080/10586458.2019.1576082
https://doi.org/10.1080/10586458.2019.1576082
http://arxiv.org/abs/arXiv:1905.05545
http://arxiv.org/abs/arXiv:1905.05545
http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
https://doi.org/10.1090/S0002-9939-2014-12010-7
http://arxiv.org/abs/arXiv:1909.10282
https://doi.org/10.1007/978-0-85729-177-6
http://arxiv.org/abs/arXiv:1710.09830
http://arxiv.org/abs/arXiv:1710.09830

Compatible Rewriting of Noncommutative Polynomials for
Proving Operator Identities

Cyrille Chenavier∗

Clemens Hofstadler∗

Clemens G. Raab†

Georg Regensburger
{cyrille.chenavier,clemens.hofstadler,clemens.raab,georg.regensburger}@jku.at

Institute for Algebra, Johannes Kepler University
Linz, Austria

ABSTRACT
The goal of this paper is to prove operator identities using equalities

between noncommutative polynomials. In general, a polynomial

expression is not valid in terms of operators, since it may not be

compatible with domains and codomains of the corresponding oper-

ators. Recently, some of the authors introduced a framework based

on labelled quivers to rigorously translate polynomial identities to

operator identities. In the present paper, we extend and adapt the

framework to the context of rewriting and polynomial reduction.

We give a sufficient condition on the polynomials used for rewrit-

ing to ensure that standard polynomial reduction automatically

respects domains and codomains of operators. Finally, we adapt

the noncommutative Buchberger procedure to compute additional

compatible polynomials for rewriting. In the package OperatorGB,

we also provide an implementation of the concepts developed.

CCS CONCEPTS
· Theory of computation→ Equational logic and rewriting;
Automated reasoning; · Computing methodologies→ Symbolic

calculus algorithms.

KEYWORDS
Rewriting, noncommutative polynomials, quiver representations,

automated proofs, completion

ACM Reference Format:
Cyrille Chenavier, Clemens Hofstadler, Clemens G. Raab, and Georg Re-

gensburger. 2020. Compatible Rewriting of Noncommutative Polynomials

for Proving Operator Identities. In International Symposium on Symbolic

and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404047

∗The author was supported by the Austrian Science Fund (FWF): P 27229 and P 32301.
†The author was supported by the Austrian Science Fund (FWF): P 31952.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404047

1 INTRODUCTION
Properties of linear operators can often be expressed in terms of

identities they satisfy. Algebraically, these identities can be repre-

sented in terms of noncommutative polynomials in some setX . The

elements of X correspond to basic operators and polynomial multi-

plication models composition of operators. In contrast to addition

and multiplication of polynomials, addition and composition of

operators are restricted by their domains and codomains. Similarly,

also in path algebras all elements can be added together without

restriction. Hence, not every computation with polynomials (or in

path algebras) can be translated into a computation with operators.

Proving that a claimed operator identity follows from assumed

identities corresponds to the polynomial associated to the claimed

identity being expressible in terms of polynomials associated to the

assumptions. However, having such a representation is not enough

for proving an operator identity in general, since computations

with noncommutative polynomials ignore compatibility conditions

between domains and codomains of the operators. Our aim is to

work out criteria so that the computations with polynomials are

automatically valid in terms of operators.

In order to represent domains and codomains of operators, we

use the framework introduced recently in [19]. So, we consider a

quiver (i.e., a directed multigraph) Q , where vertices correspond

to functional spaces and edges correspond to basic operators be-

tween those spaces and are labelled with symbols from X . Then,

paths inQ correspond to composition of basic operators and induce

monomials over X that are compatible withQ . We denote the set of

polynomials associated to the assumptions by F and the polynomial

associated to the claimed identity by f . Note that we can allow the

same label for different edges if the corresponding operators satisfy

the same identities. For instance, differential and integral operators

can act on different functional spaces, as illustrated in our running

example below. Even though it is always possible to label edges

uniquely, using the same label for different edges allows to reduce

the number of indeterminates and polynomials in the computa-

tion. In particular, certain infinite quivers can also be treated with

finitely many polynomials. Informally, a polynomial is compatible

with the quiver if it makes sense in terms of operators and f is

called Q-consequence of F if it can be obtained from F by doing

computations using compatible polynomials only. This means that

these computations also make sense in terms of operators.

Obviously, the claim f and the assumptions F have to be compat-

ible with Q . In [19], it was shown that f is a Q-consequence of F if

83

https://doi.org/10.1145/3373207.3404047
https://doi.org/10.1145/3373207.3404047

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cyrille Chenavier, Clemens Hofstadler, Clemens G. Raab, and Georg Regensburger

f lies in the two-sided ideal (F) and each element of F is uniformly

compatible. Uniform compatibility of a polynomial means that all

its monomials can be assigned the same combinations of domains

and codomains. This is in particular the case when each edge has a

unique label and polynomials do not have a constant term. Note

that ideal membership can be checked independently of Q and is

undecidable in general. In practice, however, it can often be checked

by computing a (partial) noncommutative Gröbner basis G from

F and reducing f to zero by G, see [17]. The package OperatorGB

[13] can check compatibility of polynomials with quivers and, us-

ing partial Gröbner bases, can compute explicit representations

of polynomials in terms of generators of the ideal. For more de-

tails on algorithmic aspects and the package see [12]. Versions for

Mathematica and SageMath along with documentation can be

obtained at:

http://gregensburger.com/softw/OperatorGB

In this paper, we first generalize the algebraic framework of [19]

so that the quiver can be chosen in a more flexible way and more

operator statements can be proven, see the running example below.

Doing so requires to work out a proper way to arrange polynomial

rewriting and partial noncommutative Gröbner basis computations

algorithmically. In particular, in Section 3, we generalize the formal

definition of Q-consequences to the case when elements of F are

compatible but not necessarily uniformly compatible. Then, we

show in Section 4 that being a Q-consequence implies that the cor-

responding operator identity can indeed be proven by computations

with operators, see Theorem 15. Since elements of F do not have to

be uniformly compatible, we impose in Section 5 restrictions on the

polynomial rewriting, so that it respects the quiver. For the same

reason, we also impose restrictions on the computation of partial

Gröbner bases in Section 6. Based on such a partial Gröbner ba-

sis, one often can prove algorithmically that f is a Q-consequence

of F just by standard polynomial reduction, see Corollary 24 and

Theorem 28. To this end, we also extend the package OperatorGB.

Gröbner bases for noncommutative polynomials have been ap-

plied to operator identities in the pioneering work [10, 11], where

Gröbner bases are used to simplify matrix identities in linear sys-

tems theory. In [9, 15], the main strategy for solving matrix equa-

tions, coming from factorization of engineering systems and matrix

completion problems, is to apply Gröbner bases with respect to an

ordering appropriate for elimination. The same approach was used

in [20] to compute Green’s operators for linear two-point boundary

problems with constant coefficients.

If edges of the quiver have unique labels, it has been observed

in the literature that the operations used in the noncommutative

analog of Buchberger’s algorithm respect compatibility of polyno-

mials with domains and codomains of operators, cf. [10, Thm. 25].

See also Remark 31 and Theorem 32 for a formal statement using

the framework of the present paper. For an analogous observation

in the context of path algebras, see [18, Sec. 47.10], for which a

Gröbner basis theory has been established, see also e.g. [7]. We

were informed in personal communication that questions related

to proving operator identities via computations of Gröbner bases

are also addressed in [16].

Alternatively, computations with operators can also be modelled

by partial algebras arising from diagrams, for which an analogous

notion of Gröbner bases was sketched in [1, Sec. 9] and developed

in [3]. Moreover, generalizations of Gröbner bases and syzygies

are considered in [8], where higher-dimensional linear rewriting

systems are introduced for rewriting of operators with domains

and codomains.

We conclude this section with a small running example that

we use throughout the paper to illustrate the notions that we in-

troduce from practical point of view. This example, which was

treated in [19] with infinite smoothness of coefficients and an infi-

nite quiver, can be proven now for finite smoothness of coefficients

using a finite quiver and non-uniformly compatible polynomials. A

Mathematica notebook that illustrates the use of the new func-

tionality of the package using this running example can be obtained

at the webpage mentioned above.

Example 1. Consider the inhomogeneous linear differential equa-

tion

y′′(x) +A1 (x)y
′(x) +A0 (x)y (x) = r (x)

and assume that it can be factored into the two first-order equations

y′(x) − B2 (x)y (x) = z (x) and z′(x) − B1 (x)z (x) = r (x).

It is well-known that a particular solution is given by the nested

integral

y (x) = H2 (x)

∫ x

x2

H2 (t)
−1H1 (t)

∫ t

x1

H1 (u)
−1r (u) du dt , (1)

whereHi (x) is a solution of y
′(x)−Bi (x)y (x) = 0 such thatHi (x)

−1

exists. In order to translate this claim into an operator identity, let us

consider the differentiation ∂ : y (x) 7→ y′(x) and the two integrations

∫
1
: y (x) 7→

∫ x

x1

y (t) dt and
∫
2
: y (x) 7→

∫ x

x2

y (t) dt .

Moreover, any function F (x) induces a multiplication operator F :

y (x) 7→ y (x)F (x) and · denotes the composition of operators. Thus,

the factored differential equation and the solution correspond to the

following operators

L := (∂ − B1) · (∂ − B2), S := H2·
∫
2
·H−12 ·H1·

∫
1
·H−11

and the claim corresponds to the identity L · S = id. In terms of

functions, this means that y (x) = (Sr) (x) is a solution of

(Ly) (x) = r (x). (2)

We express properties used in the proof by identities. By the Leibniz

rule, Hi being a solution of the factor differential equation means

∂ · Hi = Hi · ∂ + Bi · Hi

and the invertibility corresponds to Hi · H
−1
i = id. The fundamental

theorem of calculus corresponds to

∂ ·
∫
1
= id, ∂ ·

∫
2
= id .

In Example 4, we will show how these operator identities can be

translated into noncommutative polynomials that are compatible

with a quiver. Then, we complete the proof of L · S = id using our

algebraic framework in Examples 8 and 16.

Throughout the paper, we fix a commutative ring R with unit as

well as a set X .

84

http://gregensburger.com/softw/OperatorGB

Compatible Rewriting of Noncommutative Polynomials for Proving Operator Identities ISSAC ’20, July 20–23, 2020, Kalamata, Greece

2 PRELIMINARIES
In this section, we recall themain definitions and basic facts from [19]

that formalize compatibility of polynomials with a labelled quiver.

We consider the free noncommutative algebra R⟨X ⟩ generated by

the alphabet X : it can be regarded as the ring of noncommutative

polynomials in the set of indeterminates X with coefficients in

R, where indeterminates commute with coefficients but not with

each other. The monomials are words x1 . . . xn ∈ ⟨X ⟩, xi ∈ X ,

including the empty word 1. Every polynomial f ∈ R⟨X ⟩ has a

unique representation as a sum

f =
∑

m∈⟨X ⟩

cmm

with coefficients cm ∈ R, such that only finitely many coefficients

are nonzero, and its support is supp(f) := {m ∈ ⟨X ⟩ | cm , 0}.

Recall that a quiver is a tuple (V ,E,s,t), where V is a set of

vertices, E is a set of edges, and s,t : E → V are source and target

maps, that are extended to all paths p = en · · · e1 by letting s (p) =

s (e1) and t (p) = t (en). For every vertex v ∈ V , there is a distinct

empty path ϵv that starts and ends in v without passing through

any edge and satisfies ϵt (p)p = p = pϵs (p) for all paths p. A labelled

quiver,Q = (V ,E,X ,s,t ,l) is a quiver equipped with a label function

l : E → X of edges into the alphabet X . We extend l into a function

from paths to monomials by letting l (p) = l (en) · · · l (e1) ∈ ⟨X ⟩, and

l (ϵv) = 1 is the empty word for every vertex v . For the remainder

of this section, we fix a labelled quiver Q = (V ,E,X ,s,t ,l).

Definition 2. Given a monomialm ∈ ⟨X ⟩, we define the set of

signatures ofm as

σ (m) := {(s (p),t (p)) | p a path in Q with l (p) =m} ⊆ V ×V .

A polynomial f ∈ R⟨X ⟩ is said to be compatible with Q if its set of

signatures σ (f) is nonempty, where:

σ (f) :=
⋂

m∈supp(f)

σ (m) ⊆ V ×V .

Finally, we denote by s (f) and t (f) the images of σ (f) under the

natural projections of V ×V on V .

Note that we have σ (0) = V ×V and σ (1) = {(v,v) | v ∈ V }.

Computing with compatible polynomials does not always result

in compatible polynomials. However, under some conditions, the

sum and product of compatible polynomials are compatible as well.

The following properties of sets of signatures are straightforward

to prove; see also Lemmas 10 and 11 in [19].

Lemma 3. Let f ,д ∈ R⟨X ⟩ be compatible with Q . Then,

(1) If σ (f) ∩ σ (д) , ∅, then f + д is compatible and σ (f + д)

contains σ (f) ∩ σ (д).

(2) If s (f) ∩ t (д) , ∅, then f д is compatible and σ (f д) contains

{(u,w) | ∃v ∈ s (f) ∩ t (д) : (u,v) ∈ σ (д)∧ (v,w) ∈ σ (f)}.

Example 4. Let us continue the running example. The Leibniz

rule and invertibility for H1 and H2 and the fundamental theorem of

calculus correspond to the following noncommutative polynomials in

Z⟨X ⟩, where X = {h1,h2,b1,b2,h̃1,h̃2,i,d }.

f1 = dh1 − h1d − b1h1, f2 = dh2 − h2d − b2h2,

f3 = h1h̃1 − 1, f4 = h2h̃2 − 1, f5 = di − 1

We collect these polynomials in the set F := { f1, . . . , f5}. Notice that

we represent the two integrals by a single indeterminate, so we only

need one polynomial for the fundamental theorem of calculus. The

claimed identity corresponds to

f := (d − b1) (d − b2)h2ih̃2h1ih̃1 − 1.

Since integration and differentiation decrease and increase the reg-

ularity of functions, it is natural to consider the following labelled

quiver with 3 vertices (more details are given Section 4) with labels in

the alphabetX . Instead of giving names to vertices and edges, we draw

them as bullets and arrows oriented from source to target, respectively,

and the label of an edge is shown next to the arrow representing that

edge.

• • •

d d

b1b2

i i

h1 h1h2

h2 h̃1h̃2

Either directly or by the package, we check that f and each element

of F are compatible with the quiver. Denoting the vertices from left to

right by v1,v2,v3, we obtain the following signatures.

σ (f1) = {(v2,v3)}, σ (f2) = {(v1,v2)},

σ (f3) = {(v3,v3)}, σ (f4) = {(v2,v2)},

σ (f5) = {(v2,v2), (v3,v3)}, σ (f) = {(v3,v3)}

To determineσ (f), for example, notice thatσ (h2ih̃2h1ih̃1) = {(v3,v1)}

and that σ (dd) = σ (b1d) = σ (db2) = σ (b1b2) = {(v1,v3)} and re-

call that σ (1) contains all pairs of the form (vi ,vi).

3 Q-CONSEQUENCES
The following definition characterizes the situations when a repre-

sentation of the claim f in terms of the assumptions F is also valid

in terms of operators. This generalizes the notion ofQ-consequence

given in [19] and we prove new properties of this notion. Through-

out the section, we fix a labelled quiver Q with labels in X .

Definition 5. A Q-consequence of some F ⊆ R⟨X ⟩ is a poly-

nomial f ∈ R⟨X ⟩, compatible with Q , such that there exist n ∈ N,

дi ∈ F , ai ,bi ∈ R⟨X ⟩, 1 ≤ i ≤ n, such that

f =

n∑
i=1

aiдibi (3)

and, for every (u,v) ∈ σ (f) and every i , there exist vertices ui ,vi
such that (u,ui) ∈ σ (bi), (ui ,vi) ∈ σ (дi), and (vi ,v) ∈ σ (ai).

The conditions on the signatures mean that, for each i , there exist

three paths in the quiver as illustrated in the following diagram.

u v

ui vi

f

bi

дi

ai

Representations of the form (3) are not unique and finding them

is a hard problem in general, their existence is even undecidable.

However, proving that a given representation (3) satisfies the re-

quired conditions of the above definition is straightforward, but in

85

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cyrille Chenavier, Clemens Hofstadler, Clemens G. Raab, and Georg Regensburger

general these conditions are not satisfied. In Proposition 7, we give

an alternative criterion forQ-consequences. This criterion will play

an important role later in Section 5 on rewriting. Before, we need

the following lemma.

Lemma 6. Let m ∈ ⟨X ⟩ and д ∈ R⟨X ⟩ such that σ (m) ⊆ σ (д).

Then, for all monomials a,b ∈ ⟨X ⟩, we have σ (amb) ⊆ σ (aдb).

Moreover, for every (u,v) ∈ σ (amb), there exist two vertices ũ,ṽ such

that (u,ũ) ∈ σ (b), (ũ,ṽ) ∈ σ (д), and (ṽ,v) ∈ σ (a).

Proof. For every (u,v) ∈ σ (amb), there exists a path from u to

v with label amb. We split this path in 3 parts: the first part β has

label b, the third part α has label a, and the second part has label

m. Since σ (m) ⊆ σ (д), for every m̃ ∈ supp(д), there exists a path γ

from ũ := t (β) to ṽ := s (α) with label m̃. Hence, am̃b is the label of

αγ β . Consequently, (ũ,ṽ) ∈ σ (m̃) and σ (amb) ⊆ σ (am̃b) for every

m̃ ∈ supp(д), i.e. (ũ,ṽ) ∈ σ (д) and σ (amb) ⊆ σ (aдb). □

Proposition 7. Let F ⊆ R⟨X ⟩ be a set of polynomials such that

for every д ∈ F , there existsmд ∈ supp(д) such that σ (mд) ⊆ σ (д).

Let f ∈ R⟨X ⟩ be a compatible polynomial such that there exist n ∈ N,

λi ∈ R, дi ∈ F , ai ,bi ∈ ⟨X ⟩, 1 ≤ i ≤ n, such that

f =

n∑
i=1

λiaiдibi , (4)

and σ (f) ⊆ σ (aimдibi) for all i . Then, f is a Q-consequence of F .

Proof. By hypotheses, f is compatible and for every (u,v) ∈

σ (f) and for every 1 ≤ i ≤ n, we have (u,v) ∈ σ (aimдibi). Hence,

using the hypothesis σ (mдi) ⊆ σ (дi), from Lemma 6, there exist

vertices ui and vi such that (u,ui) ∈ σ (bi), (ui ,vi) ∈ σ (дi) and

(vi ,v) ∈ σ (ai). As a consequence, f is a Q-consequence of F . □

Note that if for mд ∈ supp(д), we have σ (mд) ⊆ σ (д), then

σ (mд) = σ (д) holds by definition.

Example 8. Let us continue Example 4. We show that f is a Q-

consequence of F by considering the following representation:

f = f1ih̃1 + (d − b1) f2ih̃2h1ih̃1 + f3 + (d − b1) f4h1ih̃1

+ (d − b1)h2 f5h̃2h1ih̃1 + h1 f5h̃1. (5)

Such a representation can be obtained with the package by tracking

cofactors in polynomial reduction w.r.t. a monomial order. Here, we

consider any degree-lexicographic order (i.e. monomials are sorted

first by their length then from left to right by their letters) such

that d is greater than hi ’s and bi ’s. Then, f can be reduced to zero

using F , which gives (5). While the package only computes over the

field Q, one can check that this representation also holds over the

ring Z. Representations computed by the package are not necessarily

optimal regarding their degree or number of terms. Now, we have

to check assumptions on signatures by checking either Definition 5

or the assumptions of Proposition 7, both options are implemented

in the package. For applying Proposition 7 by hand, we can choose

mf1 = dh1,mf2 = h2d,mf3 = h1h̃1,mf4 = h2h̃2, andmf5 = di , which

satisfy mfi ∈ supp(fi) and σ (mfi) = σ (fi). Expanding (5) in the

form (4), we may check that σ (aimдibi) = {(v3,v3)} = σ (f) for

every summand in the representation (4), which proves that f is a

Q-consequence of F .

In Section 6, we will exploit that being a Q-consequence is tran-

sitive, which requires a new proof compared to [19, Corollary 18].

Proposition 9. Let F ,G ⊆ R⟨X ⟩ be sets of polynomials such that

each element of G is a Q-consequence of F . Then, any Q-consequence

of G is also a Q-consequence of F .

Proof. Let h be a Q-consequence of G . So, it is compatible with

Q . Moreover,h =
∑
i aiдibi , withдi ∈ G and ai ,bi ∈ R⟨X ⟩ such that

for every (u,v) ∈ σ (h) and every i , there exist vertices ui ,vi such

that (u,ui) ∈ σ (bi), (ui ,vi) ∈ σ (дi), and (vi ,v) ∈ σ (ai). For every

i , since дi is a Q-consequence of F , there exist ai,j ,bi,j ∈ R⟨X ⟩ and

fi,j ∈ F such that дi =
∑
j ai,j fi,jbi,j and, for every (ui ,vi) ∈ σ (дi)

and every j, there exist (ui,j ,vi,j) ∈ σ (fi,j) such that (ui ,ui,j) ∈

σ (bi,j) and (vi,j ,vi) ∈ σ (ai,j). Altogether, we have

h =
∑
i

∑
j

aiai,j fi,jbi,jbi .

For all i, j, the vertices ui and vi belong to s (bi,j) ∩ t (bi) and

s (ai)∩t (ai,j), respectively, so that, by Item 2 of Lemma 3, (u,ui,j) ∈

σ (bi,jbi) and (vi,j ,v) ∈ σ (aiai,j), respectively. Hence, h is a Q-

consequence of F . □

4 REALIZATIONS
In this section, we formalize the translation of polynomials to opera-

tors by substituting indeterminates by basic operators. In particular,

we show in Theorem 15 that being aQ-consequence is enough to en-

sure that the corresponding operator identity can be inferred from

the assumed operator identities. To this end, first, we summarize

the relevant notions and basic facts from [19, Section 5].

For a quiver (V ,E,s,t) and a ring R, (M,φ) is called a repre-

sentation of the quiver (V ,E,s,t), if M = (Mv)v ∈V is a fam-

ily of R-modules and φ is a map that assigns to each e ∈ E an

R-linear map φ (e) : Ms (e) → Mt (e) , see e.g. [5, 6]. Note that

any nonempty path en . . .e1 in the quiver induces an R-linear map

φ (en)·. . .·φ (e1), since the maps φ (ei+1) and φ (ei) can be composed

for every i ∈ {1, . . . ,n − 1} by definition of φ. Similarly, for every

v ∈ V , the empty path ϵv induces the identity map onMv .

Remark 10. All notions and results of this section naturally gener-

alize to R-linear categories by considering objects and morphisms in

such a category instead of R-modules and R-linear maps, respectively.

For more details, see Section 5.2 in [19].

Definition 11. Let Q be a labelled quiver with labelling l . We

call a representation (M,φ) of Q consistent with the labelling l if

for any two nonempty paths p = en . . .e1 and q = dn . . .d1 in Q with

the same source and target, equality of labels l (p) = l (q) implies

φ (en)·. . .·φ (e1) = φ (dn)·. . .·φ (d1) as R-linear maps.

Remark 12. If all paths with the same source and target have

distinct labels, then every representation of that labelled quiver is

consistent with its labelling. In particular, this holds if for every vertex

all outgoing edges have distinct labels or analogously for incoming

edges. These sufficient conditions can be verified without the need for

considering all possible paths.

For Definition 13 and Lemma 14, we fix a labelled quiver Q =

(V ,E,X ,s,t ,l) and a consistent representation R = (M,φ) of Q .

In order to define realizations of a polynomial, we first need to

86

Compatible Rewriting of Noncommutative Polynomials for Proving Operator Identities ISSAC ’20, July 20–23, 2020, Kalamata, Greece

introduce some notation. Given two verticesv,w , we writeR⟨X ⟩v,w
for the set of polynomials f ∈ R⟨X ⟩ such that (v,w) ∈ σ (f). By

Item 1 of Lemma 3, R⟨X ⟩v,w is a module, which is free with the

monomialsm such that (v,w) ∈ σ (m) as its basis. Also, we denote

by HomR (Mv ,Mw) the set of R-linear maps fromMv toMw .

Definition 13. For vertices v,w ∈ V , we define the R-linear map

φv,w : R⟨X ⟩v,w → HomR (Mv ,Mw) by

φv,w (l (en . . .e1)) := φ (en)·. . .·φ (e1)

for all nonempty paths en . . .e1 in Q from v tow and, if v = w , also

by φv,v (1) := idMv
. For all f ∈ R⟨X ⟩v,w , we call the R-linear map

φv,w (f) a realization of f w.r.t. the representation R of Q .

Notice that the map φv,w is well-defined since, by consistency

of R, for every monomial m ∈ R⟨X ⟩v,w , its realization φv,w (m)

does not depend on the path from v tow with labelm.

In the proof of Theorem 15, we use an intermediate result given

in [19, Lemma 31], whose statement is the following.

Lemma 14. Let u,v,w ∈ V . Then, for all f ∈ R⟨X ⟩v,w and д ∈

R⟨X ⟩u,v , we have that f д ∈ R⟨X ⟩u,w and

φu,w (f д) = φv,w (f)·φu,v (д).

Theorem 15. Let F ⊆ R⟨X ⟩ be a set of polynomials and let Q

be a labelled quiver with labels in X . If a polynomial f ∈ R⟨X ⟩ is

a Q-consequence of F , then for all consistent representations of the

quiver Q such that all realizations of all elements of F are zero, all

realizations of f are zero.

Proof. Assume that f is a Q-consequence, so that it is compati-

ble with Q and it can be written in the form
∑
i aiдibi , such that

for each (u,v) ∈ σ (f) and each i , there exist vertices ui ,vi such

that (u,ui) ∈ σ (bi), (ui ,vi) ∈ σ (дi) and (vi ,v) ∈ σ (ai). Let us fix

a consistent representation R = (M,φ) of Q . By linearity of φu,v
and from Lemma 14, we have

φu,v (f) =
∑
i

φu,v (aiдibi) =
∑
i

φvi ,v (ai)·φui ,vi (дi)·φu,ui (bi).

Hence, if all realizations of all elements of F are zero, thenφu,v (f) =

0, which means that all realizations of f w.r.t. R are zero. □

Example 16. We finish our proof of (2) by considering certain

representations of the quiver of Example 4. For a nonnegative integer

k and an open interval I ⊆ R, we assign the spaces Ck (I), Ck+1 (I),

andCk+2 (I) to the vertices from right to left. Hence, differentiation and

integration induce operators ∂ : Ck+1 (I) → Ck (I), ∂ : Ck+2 (I) →

Ck+1 (I),
∫
1
: Ck (I) → Ck+1 (I), and

∫
2
: Ck+1 (I) → Ck+2 (I). We

also assume the following regularity of functions: B1 is C
k , H1 and

B2 are C
k+1, and H2 is C

k+2 on I . Then, the natural representation

associated with these operators is consistent. Moreover, we have seen in

Example 8 that f is aQ-consequence of F . Since all realizations of fi ’s

are zero, by Theorem 15, all realizations of f are zero. In particular,

for every nonnegative integer k and every r (x) ∈ Ck (I), the function

y (x) defined by (1) is a solution of the differential equation (2).

Instead of considering scalar differential equations we could con-

sider differential systems of the form (2) for vector-valued functions

y (x) of arbitrary dimension n. More explicitly, we can also consider

coefficients B1 (x),B2 (x) as n × n matrices, r (x) as a vector of di-

mension n, and H1 (x) and H2 (x) as fundamental matrix solutions

of the homogeneous systems y′(x) − Bi (x)y (x) = 0. We still obtain

consistent representations of the quiver where the vertices are mapped

to Ck (I)n , Ck+1 (I)n , and Ck+2 (I)n , respectively. Then, Theorem 15

immediately proves that the function y (x) defined by (1) is a solution

of the inhomogeneous differential equation (2). Similarly, analogous

statements for other suitable functional spaces can be proven just by

choosing different representations of the quiver.

5 COMPATIBLE REWRITING
In this section, we give conditions on the polynomials used for

rewriting such that rewriting any compatible polynomial to zero

by them proves that it is aQ-consequence. First, we recall from [19,

Definition 2] a general notion of rewriting one polynomial by an-

other in terms of an arbitrary monomial division. Notice that the

standard polynomial reduction is a particular case, wherem is the

leading monomial of д w.r.t. a monomial order and λ is such that

amb is cancelled in (6).

Definition 17. Let f ,д ∈ R⟨X ⟩ and letm ∈ supp(д) such thatm

divides some monomialmf ∈ supp(f), i.e.,mf = amb for monomials

a,b ∈ ⟨X ⟩. For every λ ∈ R, we say that f can be rewritten to

h := f + λaдb, (6)

using (д,m).

We fix a labelled quiver Q with labels in X . It turns out that to

obtain Q-consequences using rewriting (Theorem 21), we need to

choose suitable divisor monomials such that sets of signatures only

increase. In particular, this is the case when divisor monomials have

minimal set of signatures, as stated in the following lemma.

Lemma 18. Let f ,д ∈ R⟨X ⟩ and let m ∈ supp(д) be such that

σ (m) = σ (д). If f can be rewritten to h = f +λaдb using (д,m), then

σ (f) ⊆ σ (h) and σ (f) ⊆ σ (amb).

Proof. By definition of signatures, σ (f) ⊆ σ (amb). By Lemma 6

and fromσ (m) = σ (д), we haveσ (amb) ⊆ σ (aдb). Altogether,σ (f)

is included in σ (aдb), which itself is contained in σ (λaдb). By Item 1

of Lemma 3, we deduce σ (f) ⊆ σ (h). □

Now, we define the rewriting relation induced by a fixed choice

of divisor monomials and its compatibility with a quiver. For any

rewriting relation we denote single rewriting steps by→ and the

reflexive transitive closure by
∗
→.

Definition 19. Let G ⊆ R⟨X ⟩ be a set of polynomials and let

DM : G → P (⟨X ⟩) be a function fromG to the power set of ⟨X ⟩, such

that DM(д) ⊆ supp(д), for every д ∈ G.

(1) For д ∈ G , we say thatm ∈ DM(д) is a divisor monomial of д

w.r.t. DM.

(2) We say that f rewrites to h by (G,DM), denoted as f →G,DM

h, if there exists д ∈ G and a divisor monomialm ∈ DM(д)

such that f can be rewritten to h using (д,m).

(3) We say that DM is compatible with a labelled quiver Q if, for

every д ∈ G and everym ∈ DM(д), we have σ (m) = σ (д).

From now on, we fix a set of polynomials G ⊆ R⟨X ⟩ as well as a

map DM selecting divisor monomials.

87

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cyrille Chenavier, Clemens Hofstadler, Clemens G. Raab, and Georg Regensburger

Remark 20. Notice that there exist two extreme cases for DM:

(1) DM selects exactly one monomial for each д ∈ G , for instance,

the leading monomial LM(д) w.r.t. a monomial order, see the

example in Section 6.

(2) Allmonomials in supp(д) are divisormonomials. Then,→G,DM

coincides with the rewriting relation introduced in [19, Defini-

tion 2], for which ideal membership is equivalent to reduction

to zero, see Lemma 4 in [19]. Moreover, if such aDM is compati-

ble withQ , then all polynomials inG are uniformly compatible,

i.e., all monomials of a polynomial have the same signature

set. The following theorem generalizes Corollary 17 in [19].

Theorem 21. Let G ⊆ R⟨X ⟩ and let DM be a function select-

ing divisor monomials as in Definition 19. Let f ∈ R⟨X ⟩ such that

f
∗
→G,DM 0. Then, for every labelled quiver Q with labels in X such

that DM is compatible with Q , we have that

f is compatible with Q ⇐⇒ f is a Q-consequence of G .

Proof. Since f rewrites to zero, for some n ∈ N, there exists

a sequence f = h0 → h1 → · · · → hn = 0. Hence, there exist

λi ∈ R, ai ,bi ∈ ⟨X ⟩, дi ∈ G, and mi ∈ DM(дi) such that hi =

hi−1 + λiaiдibi and aimibi ∈ supp(hi−1). Hence, f can be written

as f =
∑n
i=1 −λiaiдibi . From Lemma 18, we conclude inductively

that σ (f) ⊆ σ (hi−1) ⊆ σ (aimibi). Hence, if f is compatible with

Q , then f is a Q-consequence of G by Proposition 7. Conversely, if

f is a Q-consequence of G, then it is compatible by definition. □

Example 22. Let us translate Example 8 in the language introduced

in this section. The leading monomials w.r.t. the degree-lexicographic

order used in that example can be understood as the divisor mono-

mials selected by the function DM defined on F such that DM(fi) =

{LM(fi)} holds for all i . In particular,

DM(f1) = {dh1}, DM(f2) = {dh2},

DM(f3) = {h1h̃1}, DM(f4) = {h2h̃2}, DM(f5) = {di}.

Then, DM is not compatible with Q , since σ (f2) = {(v1,v2)} is

not equal to σ (dh2) = {(v1,v2), (v2,v3)}. Hence, we cannot apply

Theorem 21 to show that f is a Q-consequence of F even though

f
∗
→F ,DM 0. So, we need to look at the explicit representation of f

induced by this reduction, see Example 8. To apply Theorem 21, we

need to redefine DM so that it is compatible with Q . In particular,

we need to impose DM(f2) ⊆ {h2d,b2h2}. If b2h2 ∈ DM(f2), then

f
∗
→F ,DM 0, which gives another proof that f is a Q-consequence

of F based on Theorem 21. Otherwise, if DM(f2) = {h2d }, then f

is irreducible w.r.t.
∗
→F ,DM. Therefore, we need to complete F with

Q-consequences of it such that DM remains compatible withQ and f

reduces to zero, which is the topic of the next section.

6 COMPATIBLE REDUCTIONS AND PARTIAL
GRÖBNER BASES

In this section, we discuss standard noncommutative polynomial

reduction as a special case of the rewriting approach from the

previous section. Since in the noncommutative case, Gröbner bases

are not necessarily finite, see [17], we also have to work with partial

Gröbner bases which are obtained by finitely many iterations of the

Buchberger procedure. We adapt the noncommutative Buchberger

procedure for computing (partial) Gröbner bases that can be used

for compatible rewriting.

In what follows, R is assumed to be a field K and we fix a mono-

mial order ≤ on ⟨X ⟩, that is, a well-founded total order compatible

with multiplication on ⟨X ⟩. We also fix a labelled quiver Q with

labels in X and a set of polynomials F ⊆ K⟨X ⟩. Given a set of poly-

nomials G ⊆ K⟨X ⟩, one step of the standard polynomial reduction

w.r.t. G is denoted by f →G h.

As explained in Remark 20, the monomial order induces the DM

function that selects leading monomials of a set G ⊆ K⟨X ⟩. This

DM function is compatible with Q if and only if all elements of G

are Q-order compatible in the following sense.

Definition 23. A compatible polynomial f is said to be Q-order

compatible if σ (LM(f)) = σ (f).

By transitivity of Q-consequences, see Proposition 9, and Theo-

rem 21, we obtain the following statement.

Corollary 24. Let F ⊆ K⟨X ⟩, G ⊆ (F), and f ∈ K⟨X ⟩ such that

f
∗
→G 0. Then, for all labelled quivers Q such that all elements of G

are both Q-consequences of F and Q-order compatible, we have

f is compatible with Q ⇐⇒ f is a Q-consequence of F .

Remark 25. For polynomials, beingQ-order compatible can also be

interpreted in terms of a partial monomial order. Givenm,m′ ∈ ⟨X ⟩,

we definem ≤Q m′ ifm ≤ m′ and σ (m′) ⊆ σ (m). The partial order

≤Q respects multiplication since, by Lemma 6, σ (m′) ⊆ σ (m) implies

σ (am′b) ⊆ σ (amb) for all a,b ∈ ⟨X ⟩. Then, f is Q-order compatible

if and only if supp(f) admits a greatest element.

Candidates forG as in Corollary 24 are partial Gröbner bases that

are computed by the noncommutative Buchberger procedure [4,

17]. However, in view of the assumptions, we only add reduced

S-polynomials that are both Q-consequences of F and Q-order

compatible in each iteration. Checking Q-order compatibility is

easy. Selecting Q-consequences is harder since we do not want to

use explicit representations as in Definition 5. Instead, we propose

a simpler criterion based on the following lemma and discussion.

First, we recall some terminology and fix notation for S-polyno-

mials. Let G ⊆ K⟨X ⟩. Ambiguities of G defined in [1], also called

compositions in [2], are given by minimal overlaps or inclusions

of the two leading monomials LM(д) and LM(д′), where д and д′

belong toG . Formally, each ambiguity can be described by a 6-tuple

a = (д,д′,a,b,a′,b ′), where a,b,a′,b ′ are monomials such that,

among other conditions, we have

a LM(д)b = a′ LM(д′)b ′.

This monomial is called the source of a and, if w.l.o.g. д and д′ are

monic, the S-polynomial of a is SP(a) := aдb − a′д′b ′, cf. [17].

Lemma 26. Let G ⊆ K⟨X ⟩ be a set of Q-order compatible poly-

nomials and let s be a S-polynomial of G with compatible source

m ∈ ⟨X ⟩. Then σ (m) ⊆ σ (s). If, moreover, s
∗
→G ŝ with σ (ŝ) ⊆ σ (m),

then σ (s) = σ (ŝ) = σ (m) and ŝ is a Q-consequence of G.

Proof. W.l.o.g. we assume that elements in G are monic. Since

s is a S-polynomial of G of source m, there exist д,д′ ∈ G and

monomials a,a′,b,b ′ ∈ ⟨X ⟩ such that s = (m − aдb) − (m − a′д′b ′)

with a LM(д)b = a′ LM(д′)b ′ =m.

88

Compatible Rewriting of Noncommutative Polynomials for Proving Operator Identities ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Let us prove the first assertion. The polynomials д and д′ being

Q-order compatible, we have σ (LM(д)) = σ (д) and σ (LM(д′)) =

σ (д′). Hence, from Lemma 6, we have

σ (m) = σ (a LM(д)b) ⊆ σ (aдb),

σ (m) = σ (a′ LM(д′)b ′) ⊆ σ (a′д′b ′).
(7)

From this and s = a′д′b ′ − aдb, we get that σ (m) ⊆ σ (s).

Now, we assume that s
∗
→G ŝ , that is there is a rewriting sequence

s0 = s →G s1 →G · · · →G sn = ŝ,

for some n ∈ N, so that there exist дi ∈ G, ai ,bi ∈ ⟨X ⟩, and λi ∈ K,

1 ≤ i ≤ n, such that ai LM(дi)bi ∈ supp(si) and si+1 = si+λiaiдibi ,

so that we have ŝ − s =
∑
i λiaiдibi and

ŝ =

n∑
i=1

λiaiдibi + a
′д′b ′ − aдb .

Using inductively si →G si+1 and Lemma 18, we get

σ (s) ⊆ σ (ŝ) and σ (s) ⊆ σ (ai LM(дi)bi), (8)

so that we have

σ (m) ⊆ σ (s) ⊆ σ (ŝ).

If, moreover σ (ŝ) ⊆ σ (m), then we get the following inclusions:

σ (ŝ) ⊆ σ (m) ⊆ σ (s) ⊆ σ (ŝ).

Hence, the equality σ (ŝ) = σ (s) = σ (m) holds. Now, we show that

ŝ is a Q-consequence using Proposition 7. Since the elements of G

are Q-order compatible, we have σ (LM(д̃)) = σ (д̃), for all д̃ ∈ G.

Moreover, sincem is compatible and σ (ŝ) = σ (m), ŝ is compatible.

Finally, from (7) and (8), we have the following inclusions: σ (ŝ) ⊆

σ (a LM(д)b), σ (ŝ) ⊆ σ (a′ LM(д′)b ′), and σ (ŝ) ⊆ σ (ai LM(дi)bi).

As a conclusion, ŝ is a Q-consequence of G. □

Starting with a set of Q-order compatible polynomials F , we

apply this lemma in the case whereG is the current partial Gröbner

basis computed during the completion procedure. In particular, if a

reduced S-polynomial ŝ satisfies σ (ŝ) ⊆ σ (m) as in the lemma, then

it is aQ-consequence ofG . By transitivity, it is also aQ-consequence

of F , which follows from the following observation.

Remark 27. Consider a set F ⊆ K⟨X ⟩ of compatible polynomials

and a family of sets Gi inductively defined by G0 = ∅ and Gi+1 =

Gi∪{дi+1}, whereдi+1 is aQ-consequence of F∪Gi . Using inductively

transitivity ofQ-consequences proven in Proposition 9, we obtain that,

for each i , all elements of F ∪Gi are Q-consequences of F .

In summary, we obtain the following adaptation of the non-

commutative version of Buchberger’s procedure for computing

a partial Gröbner basis composed of elements that are both Q-

consequences of F and Q-order compatible. At each step, we select

an S-polynomial s whose sourcem is a compatible monomial, and

we keep a reduced form ŝ only if it is Q-order compatible and

σ (ŝ) ⊆ σ (m). This procedure is implemented in the Mathematica

package OperatorGB. Note that since the Buchberger procedure

does not terminate in general for noncommutative polynomials,

also our adaptation of it is not guaranteed to terminate.

Notice that the completion procedure just described can be

slightly generalized by not necessarily computing reduced forms

of S-polynomials. Instead, we only reduce an S-polynomial as long

as it remains a Q-consequence, see the discussion above, and it

remains Q-order compatible. This is stated formally in Procedure 1.

Procedure 1 Q-order compatible completion

Input: F ⊆ K⟨X ⟩, a labelled quiver Q with labels in X , and a

monomial order ≤ such that every f ∈ F isQ-order compatible

Output: G ⊇ F a set of Q-consequences of F that are Q-order

compatible

1: P := ambiguities of F ; G := F

2: while P , ∅ do
3: choose a ∈ P

4: P := P \ {a}; s := SP(a);m := the source of a

5: if m is compatible and σ (s) ⊆ σ (m) and s is Q-order com-

patible then
6: while ∃s ′ : s →G s ′ do
7: if s ′ = 0 then
8: go to 2 (i.e., break the outer if statement)

9: else if σ (s ′) ⊆ σ (m) and s ′ is Q-order compatible

then
10: s := s ′

11: else
12: go to 15 (i.e., break the inner while loop)
13: end if
14: end while
15: G := G ∪ {s}

16: P := P ∪ {ambiguities created by s}

17: end if
18: end while
19: return G

Due to the checks in lines 5 and 9, each element of the outputG of

the procedure is both aQ-consequence of F andQ-order compatible.

In summary, we have shown that our procedure is correct.

Theorem 28. Let F ⊆ K⟨X ⟩, letQ be a labelled quiver with labels

in X and let ≤ be a monomial order such that each element of F is

Q-order compatible. Then, each element of the outputG of Procedure 1

is both a Q-consequence of F and Q-order compatible.

Remark 29. In practice, additional criteria are needed to ensure

termination of Procedure 1. In our package, we implement a stopping

criterion by ignoring all ambiguities whose sources exceed a degree

bound. In fact, the implementation proceeds in generations by defer-

ring new ambiguities until all previous ones have been treated (instead

of adding them in line 16). This ensures a fair selection strategy [17]

and provides an additional stopping criterion on the number of gener-

ations. Moreover, in the package, cofactors are tracked through the

computation to provide cofactor representations of elements ofG in

terms of F . For further details on the implementation see [12].

Example 30. Let us continue Example 22 in the case DM(f2) =

{h2d }. For that, we consider the fieldK = Q and a degree-lexicographic

order such that d < b2 < h2 and d is greater than b1 and h1. Then,

choosing the ambiguity (f2, f5,1,i,h2,1), the first iteration of the

outer loop in Procedure 1 yields G := F ∪ {b2h2i − dh2i + h2}. With

this G, we have f
∗
→G 0. From this reduction to 0, and since f is

compatible with Q , f is a Q-consequence of F by Corollary 24. These

89

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cyrille Chenavier, Clemens Hofstadler, Clemens G. Raab, and Georg Regensburger

computations can also be done by the package, see the example file

accompanying this paper at the webpage of the package.

Remark 31. We consider the special case when all edges ofQ have

unique labels. Then, all non-constant monomials have at most one

signature. Therefore, every compatible polynomial is Q-order com-

patible for any monomial order, since the monomial 1 is the smallest.

Moreover, one can show easily that the source of an ambiguity of

two polynomials is compatible whenever these two polynomials are

compatible with Q . In addition, from Lemma 18, it follows that poly-

nomial reduction of compatible polynomials by compatible ones does

not change the set of signatures unless the result of the reduction

lies in K. Altogether, Procedure 1 reduces to the standard Buchberger

procedure (i.e., without checking signatures and compatibility dur-

ing computation) as long as no S-polynomial is (or is reduced to)

a nonzero constant. In other words, we have the following theorem,

which, together with Theorem 15, generalizes Theorem 1 in [19].

Theorem 32. Let F ⊆ K⟨X ⟩, let G be a (partial) Gröbner basis

computed from F by the standard Buchberger procedure, and let

f ∈ K⟨X ⟩ such that f
∗
→G 0. If G does not contain a constant

polynomial, then for every labelled quiver Q such that edges have

unique labels in X and elements of F are compatible with Q , we have

f is compatible with Q ⇐⇒ f is a Q-consequence of F .

Moreover, if 1 < (F), then this equivalence holds for every f ∈ (F).

7 SUMMARY AND DISCUSSION
By Theorem 15, for proving new operator identities from known

ones, it suffices to show that the corresponding polynomials are

Q-consequences. In practice, there are several options to prove that

a compatible polynomial f is a Q-consequence of some set F of

compatible polynomials. Each of these options can be turned into a

certificate that f is a Q-consequence of F . Given an explicit repre-

sentation (3) of f in terms of F , one can either check Definition 5

directly, or expand cofactors into monomials and apply Proposi-

tion 7. Alternatively, using compatible rewriting, if f
∗
→F ,DM 0

and the selection of divisor monomials by DM is compatible with

Q , then f is a Q-consequence by Theorem 21. Altogether, from

Theorems 15 and 21, we immediately obtain the following.

Corollary 33. Let F be a set of polynomials, DM a function se-

lecting divisor monomials, and f a polynomial such that f
∗
→F ,DM 0.

Then, for all labelled quivers Q such that f , F , and DM are compat-

ible with Q and for all consistent representations of Q such that all

realizations of all elements of F are zero, all realizations of f are zero.

Note that rewriting to zero w.r.t. F and DM is independent of

the quiver Q . In particular, Theorem 32 in [19], which is the main

result there, is obtained as a special case by Remark 20, if the above

corollary is interpreted in terms of R-linear categories.

More generally, if one cannot verify that f can be rewritten to

zero by F , there still might exist a set G of Q-consequences of F

with divisor monomials selected by some DM such that f
∗
→G,DM 0

and Proposition 9 can be applied. Algorithmically, based on suitable

monomial orderings, Procedure 1 produces candidates G such that

Corollary 24 can be used to prove that f is a Q-consequence of F

by standard polynomial reduction.

Notice that Procedure 1 can be extended in various directions. For

example, in order to systematically generate moreQ-consequences,

reduced S-polynomials that are not Q-order compatible could be

collected in a separate set, which should not be used for construct-

ing and reducing new S-polynomials. Instead of fixing a monomial

ordering from the beginning, one might start with a partial ordering

that is then extended during the completion procedure in order to

make obtained S-polynomials Q-order compatible. More generally,

without any partial ordering on monomials, one might even con-

sider compatible functions DM which not necessarily select only

one divisor monomial per polynomial and aim at completing the

induced rewriting relation. However, termination of such rewriting

relations is an issue. Finally, another topic for future research is

to generalize the results of this paper to tensor reduction systems

used for modelling linear operators as described in [14].

REFERENCES
[1] George M. Bergman. 1978. The diamond lemma for ring theory. Adv. in Math. 29

(1978), 178ś218.
[2] Leonid A. Bokut’. 1976. Imbeddings into simple associative algebras. Algebra i

Logika 15 (1976), 117ś142, 245.
[3] Leonid A. Bokut, Yuqun Chen, and Yu Li. 2012. Gröbner-Shirshov bases for

categories. In Operads and universal algebra. World Sci. Publ., Hackensack, NJ,
1ś23.

[4] Bruno Buchberger. 1965. Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenrings nach einem nulldimensionalen Polynomideal. Universität
Innsbruck, Austria, Ph. D. Thesis (1965). English translation in J. Symbolic
Comput. 41 (2006), 475ś511.

[5] Harm Derksen and Jerzy Weyman. 2005. Quiver representations. Notices Amer.
Math. Soc. 52 (2005), 200ś206.

[6] Peter B. Gothen and Alastair D. King. 2005. Homological algebra of twisted
quiver bundles. J. London Math. Soc. (2) 71 (2005), 85ś99.

[7] Edward L. Green. 1999. Noncommutative Gröbner bases, and projective resolu-
tions. In Computational methods for representations of groups and algebras (Essen,
1997). Birkhäuser, Basel, 29ś60.

[8] Yves Guiraud, Eric Hoffbeck, and Philippe Malbos. 2019. Convergent presenta-
tions and polygraphic resolutions of associative algebras. Math. Z. 293 (2019),
113ś179.

[9] J. William Helton and Mark Stankus. 1999. Computer assistance for łdiscoveringž
formulas in system engineering and operator theory. J. Funct. Anal. 161 (1999),
289ś363.

[10] J. William Helton, Mark Stankus, and John J. Wavrik. 1998. Computer simplifica-
tion of formulas in linear systems theory. IEEE Trans. Automat. Control 43 (1998),
302ś314.

[11] J. William Helton and John J. Wavrik. 1994. Rules for computer simplification
of the formulas in operator model theory and linear systems. In Nonselfadjoint
operators and related topics (Beer Sheva, 1992). Birkhäuser, Basel, 325ś354.

[12] Clemens Hofstadler. 2020. Certifying operator identities and ideal membership of
noncommutative polynomials. Master’s thesis. Johannes Kepler University Linz,
Austria.

[13] Clemens Hofstadler, Clemens G Raab, and Georg Regensburger. 2019. Certifying
operator identities via noncommutative Gröbner bases. ACM Commun. Comput.
Algebra 53 (2019), 49ś52.

[14] Jamal Hossein Poor, Clemens G. Raab, andGeorg Regensburger. 2018. Algorithmic
operator algebras via normal forms in tensor rings. J. Symbolic Comput. 85 (2018),
247ś274.

[15] F. Dell Kronewitter. 2001. Using noncommutative Gröbner bases in solving
partially prescribed matrix inverse completion problems. Linear Algebra Appl.
338 (2001), 171ś199.

[16] Viktor Levandovskyy and Leonard Schmitz. 2020. Algorithmic algebraic proofs
of identities between not only matrices. In preparation.

[17] Teo Mora. 1994. An introduction to commutative and noncommutative Gröbner
bases. Theoret. Comput. Sci. 134 (1994), 131ś173.

[18] Teo Mora. 2016. Solving polynomial equation systems. Vol. IV. Buchberger theory
and beyond. Cambridge University Press, Cambridge.

[19] Clemens G Raab, Georg Regensburger, and Jamal Hossein Poor. 2019. Formal
proofs of operator identities by a single formal computation. arXiv:1910.06165v1
[math.RA] (2019).

[20] Markus Rosenkranz, Bruno Buchberger, and Heinz W. Engl. 2003. Solving linear
boundary value problems via non-commutative Gröbner bases. Appl. Anal. 82
(2003), 655ś675.

90

Integral Bases for P-Recursive Sequences∗

Shaoshi Chena,b , Lixin Dua,b,c , Manuel Kauersc , and Thibaut Verronc
aKLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

bSchool of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
c Institute for Algebra, Johannes Kepler University, Linz, A4040, Austria

schen@amss.ac.cn,dulixin17@mails.ucas.ac.cn
manuel.kauers@jku.at,thibaut.verron@jku.at

ABSTRACT

In an earlier paper, the notion of integrality known for algebraic

number fields and fields of algebraic functions has been extended

to D-finite functions. The aim of the present paper is to extend the

notion to the case of P-recursive sequences. In order to do so, we

formulate a general algorithm for finding all integral elements for

valued vector spaces and then show that this algorithm includes

not only the algebraic and the D-finite cases but also covers the

case of P-recursive sequences.

CCS CONCEPTS

· Computing methodologies→ Algebraic algorithms.

ACM Reference Format:

Shaoshi Chena,b , Lixin Dua,b,c , Manuel Kauersc , and Thibaut Verronc .

2020. Integral Bases for P-Recursive Sequences. In International Symposium

on Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kala-

mata, Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3373207.3404004

1 INTRODUCTION

Singularities play an essential role in algorithms for analyzing re-

currence or differential equations, and for symbolic summation and

integration. The łlocalž behaviour at a singularity typically gives

rise to severe restrictions of the possible łglobalž shape of a solution,

and such restrictions are exploited in the design of algorithms for

finding such solutions. It is therefore important to have access to

information about what is going on at the singularities. Integral

bases provide such access.

For algebraic number fields and algebraic function fields, this is

a classical notion. Let k = C (x) be the field of rational functions in

x over a field C and K = k (α) be an algebraic extension of k . Every

element of K has a minimal polynomialm ∈ C[x][y]. An element

∗S. Chen was supported by the NSFC grants 11871067, 11688101 and the Fund of the
Youth Innovation Promotion Association, CAS. L. Du was supported by the NSFC
grant 11871067 and the Austrian FWF grant P31571-N32. M. Kauers was supported
by the Austrian FWF grants F5004 and P31571-N32. T. Verron was supported by the
Austrian FWF grant P31571-N32.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404004

of K is called integral if all its series expansions only involve terms

with nonnegative exponents. The integral elements of K form a

C[x]-submodule of K , which somehow plays the role in K that Z

plays in Q. An integral basis of K is a k-vector space basis of K

which at the same time is a C[x]-module basis of the module of

integral elements.

Trager [2ś4, 17] used integral bases in his integration algorithm

for algebraic functions. This was one of the motivations for intro-

ducing the notion of integral D-finite functions [14], which were

then used not only for integration [5] but also for solving differen-

tial equations in terms of hypergeometric series [11, 12]. Also for

D-finite functions, integrality is defined in terms of the exponents

appearing in the series expansions. The goal of the present paper is

to introduce a notion of integrality for the recurrence case. Our hope

is that this work will subsequently be useful for the development

of new summation algorithms.

A major difference between the differential case and the shift

case is the fact that singularities are no longer isolated points α ∈ C .

Instead, as pointed out for instance in [19], singularities should be

viewed as orbits α + Z ∈ C/Z consisting of some α ∈ C together

with all elements of C that have integer distance to α . Instead of

certain kinds of series solutions at α of differential operators or

algebraic equations, we have to consider certain kinds of sequence

solutions α+Z→ C of a recurrence operator. This makes the matter

considerably more technical.

We proceed in two stages. In the first stage (Sections 2 and 3), we

give a general formulation of the algorithm proposed by van Hoeij

for algebraic function fields [18] and adapted to D-finite functions

by Kauers and Koutschan [14]. The general formulation applies to

arbitrary valued vector spaces, and we identify the computational

assumptions on which the correctness and termination arguments

of the algorithms are based. In Section 4, we show how it indeed

generalizes the previous algorithms. In the second stage (Section 5),

we show how the general setting developed in Sections 2 and 3 can

be applied to the shift case.

2 VALUE FUNCTIONS AND INTEGRAL

ELEMENTS

In this section, we recall basic terminologies about valuations on

fields and vector spaces from [10, 16, 20]. Let k be a field of char-

acteristic zero and Γ be a totally ordered abelian group, written

additively, and let Γ∞ = Γ ∪ {∞} in which α +∞ = ∞ + α = ∞ for

all α ∈ Γ∞ and β < ∞ for all β ∈ Γ. A mapping ν : k → Γ∞ is called

a valuation on k if for all a,b ∈ k ,

(i) ν (a) = ∞ if and only if a = 0;

91

https://doi.org/10.1145/3373207.3404004
https://doi.org/10.1145/3373207.3404004
https://doi.org/10.1145/3373207.3404004

ISSAC ’20, July 20–23, 2020, Kalamata, Greece S. Chen, L. Du, M. Kauers, and T. Verron

(ii) ν (ab) = ν (a) + ν (b);

(iii) ν (a + b) ≥ min{ν (a),ν (b)}.

The pair (k,ν) is called a valued field and ν (k \ {0}) ⊆ Γ is called

the value group of ν . The set O(k,ν) := {a ∈ k | ν (a) ≥ 0} forms a

subring of k that is called the valuation ring of ν .

Example 1. A typical example of a valued field is the field of

rational functions. Let C be a field of characteristic 0 and Γ = Z. For

any irreducible p ∈ C[x] and f ∈ C (x) \ {0}, we can always write

f = pma/b for somem ∈ Z and a,b ∈ C[x] with gcd(a,b) = 1 and

p ∤ ab. The valuation νp (f) of f at p is defined as the integerm. Set

νp (0) = ∞. Then (C (x),νp) is a valued field with O(C (x),νp) = { f ∈

C (x) | νp (f) ≥ 0} being a local ring with its maximal ideal generated

by p. The valuation ν∞ defined by ν∞ (f) = degx (b) − degx (a) for

any f = a/b ∈ C (x) is called the valuation at ∞. Any valuation ν

on the field C (x) is either ν∞ or νp for some irreducible p ∈ C[x]

(see [6, Chapter 1, § 3] in the language of places). When p = x − z

with z ∈ C , we will write νz instead of νp . For z ∈ C , the field of

formal Laurent series C ((x − z)) admits a valuation ν(z) , defined as

ν(z)
(

∑

i≥n ci (x − z)
i
)

= n, where cn , 0. Any r ∈ C (x) admits a

representation rL in C ((x − z)) with νz (r) = ν(z) (rL).

Definition 2. LetV be a vector space over a valued field (k,ν). A

map val : V → Γ∞ is called a value function on V if for all x ,y ∈ V

and a ∈ k ,

(i) val(x) = ∞ if and only if x = 0;

(ii) val(ax) = ν (a) + val(x);

(iii) val(x + y) ≥ min{val(x), val(y)}.

The pair (V , val) is called a valued vector space over k . An element

x ∈ V is said to be integral if val(x) ≥ 0.

Remark 3. LetU be any subspace of a valued vector space (V , val).

Then the restriction of val onU is also a value function onU , which

makes (U , val) a valued vector space.

Proposition 4. Let (k,ν) be a valued field and (V , val) be a val-

ued vector space over k . The set O(V ,val) ⊆ V of all integral elements

in V forms an O(k,ν)-module.

Proof. For any a,b ∈ O(k,ν) and x ,y ∈ O(V ,val) , we have

val(ax + by) ≥ min{val(ax), val(by)}

= min{ν (a) + val(x),ν (b) + val(y)}.

Since ν (a),ν (b) ≥ 0 and val(x), val(y) ≥ 0, we have val(ax +by) ≥

0. So ax + by ∈ O(V ,val) .

A k-vector space basis of a valued vector space (V , val) which is

at the same time an O(k,ν)-module basis of O(V ,val) is called a (local)

integral basis with respect to val. Assume that the module O(V ,val)

has a local integral basis {x1, . . . ,xr } and x = a1x1+ · · ·+arxr ∈ V .

Then val(x) ≥ 0 if and only if ν (ai) ≥ 0 for all i = 1, . . . , r . When

does a local integral basis exist and how to construct such a basis

are the main problems we study in this paper. Value functions and

integral bases for algebraic function fields have been extensively

studied both theoretically [6, 9, 16] and algorithmically [17ś19] and

have also been extended to the D-finite case [14].

Example 5. (See [16, Example 3.3]) Any finite dimensional k-

vector space can be equipped with a valuation. More precisely, let

V be a vector space over a valued field (k,ν) of dimension r . Let

{B1, . . . ,Br } be a basis of V . Take values γ1, . . . ,γr in Γ and define

val : V → Γ ∪ {∞} by for all a1, . . . ,ar ∈ k ,

val *,
r

∑

i=1

aiBi+- = min{γ1 + ν (a1), . . . ,γr + ν (ar)}.

It is easy to check that val is a value function on V .

Example 6. Let C be an algebraically closed field of characteristic

0, k = C (x) and νz be the valuation of k at z ∈ C as in Example 1.

Then (k,νz) is a valued field. LetK = k (β) with β being algebraic over

C (x). Let β1, . . . , βr be all conjugates of β over k and each conjugate

βℓ can be expanded as a Puiseux series around z. We extend the

valuation νz on k to a nonzero Puiseux series

P =
∑

i≥0

ci (x − z)
ri ,

defined as νz (P) = r0, where ci ∈ C with c0 , 0 and ri ∈ Q with

r0 < r1 < · · · . Any element B ∈ K can be uniquely written as B =

f (β) with f = f0 + f1y + . . . + fr−1y
r−1 ∈ k[y]. The value function

valz : K → Q∪{∞} is then defined by valz (B) = minr
ℓ=1
{νz (f (βℓ))}.

In this setting, O(K,valz) is a free C[x]-module.

Example 7. Let C be an algebraically closed field of characteristic

0 and consider a linear differential operator L = ℓ0 + · · · + ℓrD
r ∈

C (x)[D] with ℓr , 0. The quotient module V = C (x)[D]/⟨L⟩ is a

C (x)-vector space with 1,D, . . . ,Dr−1 as a basis. Its element 1 is a

solution of L. If z ∈ C is a so-called regular singular point of L [13],

then there are r linearly independent solutions in the C-vector space

generated by

C[[[x − z]]] :=
⋃

ν ∈C

(x − z)νC[[x − z]][log(x − z)].

Following [14], we construct a value function valz on V as follows.

First choose a function ι : C/Z × N→ C with ι (ν + Z, j) ∈ ν + Z for

every ν ∈ C and j ∈ N, with

ι (ν1 + Z, j1) + ι (ν2 + Z, j2) − ι (ν1 + ν2 + Z, j1 + j2) ≥ 0

for every ν1,ν2 ∈ C and j1, j2 ∈ N, and with ι (Z, 0) = 0. This function

picks from each Z-equivalence class in C a canonical representative.

Using this auxiliary function, the valuation valz (t) of a term t :=

(x −z)ν+i log(x −z) j is the integer ν +i− ι (ν +i, j), and the valuation

valz (f) of a series f ∈ C[[[x−z]]] is theminimum of the valuations of

all the terms appearing in it (with nonzero coefficients). The valuation

of 0 is defined as∞.

The value function valz (·) : V → Z ∪ {∞} is then defined as the

smallest valuation of a series B · f , when f runs through all solutions

of L. We now check that the function valz is indeed a value function.

(i) Let B ∈ V . Clearly if B = 0, valα (B) = ∞ for all α ∈ C .

Conversely, assume that valα (B) = ∞, then by definition

valα (B · f) = ∞ and so B · f = 0 for all f ∈ Solα (L), which

implies that the dimension of the solution space of B is at least

r . But the order of B is less than r , and the dimension of the

solution space of a nonzero operator cannot exceed its order, so

it follows that B = 0.

(ii) For anya ∈ C (x) ⊆ C[[[x−α]]] and f ∈ C[[[x−α]]], the valu-

ation of af is the sum of the valuations of a and f by definition.

Then for any B ∈ V , valα (aB) = minf ∈Solα (L) {valα (aB · f)},

which is then equal to να (a) + valα (B).

92

Integral Bases for P-Recursive Sequences ISSAC ’20, July 20–23, 2020, Kalamata, Greece

(iii) By valα ((B1 +B2) · f)) ≥ min{valα (B1 · f), valα (B1 · f)} for

all f ∈ Solα (L), we have for any B1,B2 ∈ V ,

valα (B1 + B2) ≥ min{valα (B1), valα (B2)}.

When Γ = Z, the valued field (k,ν) can be endowed with a topol-

ogy. We summarize here the relevant constructions, more details

can be found in [15, Chapter 2]. For a ∈ k , let |a | = e−ν (a) . The

properties of the valuation ensure that | · | is an absolute value, called

the ν-adic absolute value. This absolute value defines a topology

on k , in which elements are łsmallž if their valuation is łlargež.

Recall that a sequence of elements (cn) ∈ k
N is said to be Cauchy

if for each ϵ > 0, there exists N ∈ N such that for everym,n > N ,

|cm −cn | < ϵ , or, equivalently, if for eachM ∈ Z, there exists N ∈ N

such that for everym,n > N , ν (cm − cn) > M . The field k is said

to be complete if every Cauchy sequence is convergent.

The completion of k is a minimal field extension kν which is

complete. It can be constructed as follows. As a set, let kν be the

set of all Cauchy sequences in k , modulo the equivalence relation

(cn) ≡ (dn) ⇔ (cn − dn) converges to 0 at infinity. The field k is

contained in kν via the constant sequences. Ring operations on k

extend to kν component-wise, and make kν a field. The valuation

on k extends to kν by taking the limit of the valuations of the terms

of the sequences, we use the same letter ν for that valuation.

An important feature of the topology on k and kν is that the ν-

adic absolute value is ultrametric: it satisfies the stronger triangular

condition |a + b | ≤ max(|a |, |b |). In particular, any series
∑∞
n=0 an

with an ∈ kν and |an | → 0 is convergent in kν .

Example 8. The completion ofC (x) w.r.t. the valuationνz isC ((x−

z)), and its completion w.r.t. ν∞ is C ((1/x)).

These definitions extend naturally to a valuedk-vector space. Just

like in the case of fields, the hypotheses (i) and (iii) of Definition 2

ensure that we can define a norm on V by setting | |v | | = e− val(v) .

This turns V into a topological vector space: addition and scalar

multiplication are continuous.

Part (ii) of Definition 2 further ensures that | |cv | | = |c | · | |v | | for

c ∈ k , v ∈ V . In particular, if a sequence (an)n∈N in k converges

to 0, then (anv)n∈N converges to 0 in V .

More generally, if B1, . . . ,Br ∈ V and (a
(1)
n), . . . , (a

(r)
n) are se-

quences in k converging to a
(1)
∞ , . . . ,a

(r)
∞ , respectively, then the se-

quence (a
(1)
n B1+ · · ·+a

(r)
n Br) inV converges to a

(1)
∞ B1+ · · ·+a

(r)
∞ Br .

Let Vν be the kν -vector space obtained from scalar extension

of V . If V is finite dimensional and B1, . . . ,Br is a basis, Vν can be

seen as the kν -vector space generated by B1, . . . ,Br , identifying

its elements with elements of V whenever possible, and it is the

completion of V with respect to the above topology.

Remark 9. The inequality dimkν Vν ≤ dimk V always holds, but

it may happen that the inequality is strict. For example, consider

C ((x)) as a C (x)-vector space, with valuation ν = ν0, and let V be

a r -dimensional sub-vector space of C ((x)). Then Vν = C ((x)) has

dimension 1 over C ((x)).

3 COMPUTING INTEGRAL BASES

In this section, we present a general algorithm for computing local

and global integral bases of valued vector spaces and conditions on

the termination of this algorithm.

3.1 The local case

Given a valued field (k,ν), a basis of a k-vector space V of dimen-

sion r , and a value function val onV , our goal is to compute a local

integral basis of V if it exists. The algorithm described below is

based on the algorithm given by van Hoeij [18] for computing inte-

gral bases of algebraic function fields. It also covers the adaption

by Kauers and Koutschan to D-finite functions [14]. For simplicity,

we restrict to the case Γ = Z.

For the algorithm to apply in the general setting, we need to

make the following assumptions.

(A) Arithmetic in k and V is constructive, and ν and val are

computable.

(B) We know an element x ∈ k with ν (x) = 1.

(C) For any given B1, . . . ,Bd ∈ V , we can find α1, . . . ,αd−1 in k

such that

val(α1B1 + · · · + αd−1Bd−1 + Bd) > 0

or prove that no such αi ’s exist.

(D) The completion Vν of V has dimension r .

Algorithm 10. INPUT: a k-vector space basis B1, . . . ,Br of V

OUTPUT: a local integral basis of V w.r.t. val

1 for d = 1, . . . , r , do:

2 replace Bd by x− val(Bd)Bd .

3 while there exist α1, . . . ,αd−1 ∈ k such that

val(α1B1 + · · · + αd−1Bd−1 + Bd) > 0,

4 choose such α1, . . . ,αd−1.

5 replace Bd by x−1 (α1B1 + · · · + αd−1Bd−1 + Bd).

6 return B1, . . . ,Br .

Theorem 11. Alg. 10 is correct.

Proof. We show by induction on d that for every d = 1, . . . , r ,

the output elements B1, . . . ,Bd form a local integral basis for the

subspace ofV generated by the input elements B1, . . . ,Bd . From the

updates in lines 2 and 5, it is clear that the output elements generate

the same subspace, so the only claim to be proven is that they are

also module generators for the module of integral elements.

For d = 1, line 2 ensures that val(B1) = 0, and no further change

is going to happen in the while loop. When val(B1) = 0, then the

integral elements of the subspace generated by B1 are precisely the

elements uB1 for u ∈ k with ν (u) ≥ 0, so B1 is an integral basis.

Now assume that d is such that B1, . . . ,Bd−1 is an integral basis,

and let Bd ∈ V . After executing line 2, we may assume val(Bd) ≥ 0.

After termination of the while loop, we know that there are no

α1, . . . ,αd−1 ∈ k such that val(α1B1 + · · · + αd−1Bd−1 + Bd) > 0.

Let α1, . . . ,αd ∈ k be such thatA = α1B1+ · · ·+αdBd is an integral

element. We have to show that ν (αi) ≥ 0 for i = 1, . . . ,d .

We cannot have ν (αd) < 0, otherwise, val(α−1
d
A) > 0, which

would contradict the termination condition of the while loop. Thus

ν (αd) ≥ 0. But then, val(αdBd) ≥ 0, so A − αdBd is also integral.

SinceA−αdBd is in the k-subspace generated by B1, . . . ,Bd−1 and

the latter is an integral basis by induction hypothesis, it follows

that ν (αi) ≥ 0 for i = 1, . . . ,d − 1.

We prove that under the assumptions (A), (B), (C), the termi-

nation of Alg. 10 is equivalent to assumption (D). It is moreover

93

ISSAC ’20, July 20–23, 2020, Kalamata, Greece S. Chen, L. Du, M. Kauers, and T. Verron

equivalent to the the existence of a discriminant function, which

is defined as follows and generalizes the corresponding notion for

fields of algebraic numbers or functions. With such a function at

hand, we can also bound the number of iterations of the main loop.

Definition 12. Let (V , val) be a valued vector space of finite

dimension r over a valued field (k,ν) with the value group Z. Let

x ∈ k be such that ν (x) = 1 and BV denote the set of all bases of V .

A map Disc : BV → Z is called a discriminant function on V if for

every basis B1, . . . ,Br of V , we have

(i) γ := Disc({B1, . . . ,Br }) ≥ 0 if all the Bi ’s are integral in V

(ii) for all α1, . . . ,αd−1 ∈ k with d ≤ r ,

Disc(B1, . . . ,Bd−1,α1B1 + · · · + αd−1Bd−1 + Bd ,Bd+1, . . . ,Br) = γ

(iii) Disc(B1, . . . ,Bd−1,x
−1Bd ,Bd+1, . . . ,Br) < γ .

Theorem 13. Let (V , val) be a valued vector space of finite di-

mension r over a valued field (k,ν) with the value group Z. Then the

following four statements are equivalent under the hypotheses (A),

(B), (C):

(a) There is a local integral basis of V w.r.t. val.

(b) There is a discriminant function Disc : BV → Z.

(c) Alg. 10 terminates.

(d) The topological assumption (D) on V is satisfied.

Proof. (c) ⇒ (a) follows from Theorem 11.

(a) ⇒ (b): Given a local integral basis {C1, . . . ,Cr } and a basis

B = {B1, . . . ,Br } of V with Bi =
∑r
j=1 bi, jCj for some bi, j ∈ k , the

discriminant function can be defined as

Disc(B) := ν (det((bi, j)
r
i, j=1)).

(b) ⇒ (c): By assumption (B), there exists x ∈ k such that

ν (x) = 1. Let {B1, . . . ,Br } be any basis ofV over k . We may always

assume that val(Bi) = 0 by replacing Bi by x− val(Bi)Bi for all i .

It suffices to show that Alg. 10 terminates on {B1, . . . ,Br }. Let

γ = Disc({B1, . . . ,Br }) ∈ N. At any intermediate step of Alg. 10,

B1, . . . ,Br are always integral and form a basis ofV . If αi ’s exist in

the while loop, γ decreases strictly. So there can be at most γ basis

updates, which implies that Alg. 10 terminates.

(d) ⇒ (c): Assume that for some d ∈ {1, . . . , r }, the inner loop

does not terminate. Let Bd,i be the value of Bd before entering the

ith iteration, and let B̃d,i = x iBd,i . The operation for computing

Bd,i from Bd,i−1 (step 5) ensures that for all i , val(Bd,i) ≥ 0 and

val(B̃d,i) ≥ i . For all i ∈ N, there exists aj,i ∈ k for j ∈ {0, . . . ,d−1}

such that

B̃d,i = x i ·
1

x

*.
,Bd,i−1 +

d−1
∑

j=0

aj,iBj
+/
- = B̃d,i−1 + x

i−1
d−1
∑

j=0

aj,iBj

and Bd,i has valuation 0. We can unroll the sum as

B̃d,i = Bd,0 +

d−1
∑

j=0

*.
,
i−1
∑

ℓ=0

xℓaj, ℓ
+/
-Bj .

Viewing this equality in Vν and taking the limit as i → ∞ yields

B̃d,∞ := lim
i→∞

B̃d,i = Bd,0 +

d−1
∑

j=0

*.
,
∞
∑

ℓ=0

xℓaj, ℓ
+/
-Bj .

Furthermore, B̃d,∞ has valuation∞, so it is zero and

Bd,0 = −

d−1
∑

j=0

*.
,
∞
∑

ℓ=0

xℓaj, ℓ
+/
-Bj in Vν .

But by hypothesis (D), Vν has dimension r , so B1, . . . ,Br must

be linearly independent over kν too, a contradiction. So the loop

terminates.

(c) ⇒ (d): Let B1, . . . ,Br be the output of Alg. 10. If the di-

mension falls, then there exist some ai ∈ kν and d ≤ r such that

Bd =
∑d−1
i=1 aiBi . For each i , let ai, j be a sequence in k converging

to ai . Let B̃d, j = Bd −
∑d−1
i=1 ai, jBi . By assumption, B̃d, j goes to 0

when j goes to infinity, so its valuation goes to infinity. We can

assume val(B̃d, j) ≥ j . Then Bd, j := x−j B̃d, j is an infinite sequence

such that Alg. 10 does not terminate, a contradiction.

3.2 The global case

In a next step, we seek integral bases with respect to several valua-

tions simultaneously. Instead of a single valuation val : V → Z∪{∞},

we have a set of valuations νz : k → Z ∪ {∞} (z ∈ Z) and a set of

value functions valz : V → Z ∪ {∞} (z ∈ Z) and want to find a

vector space basis B1, . . . ,Br of V that is also an O(k,νz)-module

basis of O(V ,valz) for every z ∈ Z . The idea is to apply Alg. 10

repeatedly. In order to make this work, we impose the following

additional assumptions:

(B′) For every z ∈ Z we know an element xz ∈ k with νz (xz) = 1

and νζ (xz) = 0 for all ζ ∈ Z \ {z}.

(C′) For every z ∈ Z and any given B1, . . . ,Bd ∈ V , we can

compute α1, . . . ,αd−1 ∈ k with νζ (αi) ≥ 0 for all i and all

ζ ∈ Z \ {z} such that

valz (α1B1 + · · · + αd−1Bd−1 + Bd) > 0,

or prove that no such αi ’s exist.

(D′) For every z ∈ Z , the completion Vνz of V has dimension r .

(E) We know a finite set Z0 ⊆ Z and a basis B1, . . . ,Br ofV that

is an integral basis for all z ∈ Z \ Z0.

Under these circumstances, we can proceed as follows.

Algorithm 14. INPUT: a k-vector space basis B1, . . . ,Br of V

which is an integral basis for all z ∈ Z \ Z0
OUTPUT: an integral basis for all z ∈ Z

1 for all z ∈ Z0, do:

2 apply Alg. 10 to B1, . . . ,Br , using νz , valz and xz in place of

ν , val, and x , and ensuring in step 3 that νζ (αi) ≥ 0 for all i and

all ζ ∈ Z .

3 replace B1, . . . ,Br by the output of Alg. 10.

4 return B1, . . . ,Br .

Theorem 15. Alg. 14 is correct.

Proof. We only have to show that one application of Alg. 10

does not destroy the integrality properties arranged in earlier calls.

To see that this is the case, consider the effects of steps 2 and 5

with respect to a value function other than valz . If valζ is such

a function, then by (B′), we have νζ (xz) = 0, so B1, . . . ,Bd−1,Bd
and B1, . . . ,Bd−1,x

e
zBd generate the same O(k,νζ)-module, for any

e ∈ Z. Hence this step is safe. Likewise, by the choice of the αi

94

Integral Bases for P-Recursive Sequences ISSAC ’20, July 20–23, 2020, Kalamata, Greece

in step 5, {B1, . . . ,Bd−1,Bd } and {B1, . . . ,Bd−1,Bd +
∑d−1
i=1 αiBi }

generate the same O(k,νζ)-module. So this step is safe too.

3.3 Avoiding constant field extensions

We shall discuss one more refinement, which also appears already

in earlier versions of the algorithm [11, 14, 18]. In applications, we

typically have k = C̄ (x) where C is a field and C̄ is an algebraic

closure of C , with the usual valuation νz for z ∈ C̄ (see Example 1).

For this valuation, xz = x − z is a canonical choice.

For theoretical purposes it is advantageous to work with vector

spaces over k , but computationally it would be preferable to work

with coefficients inC (x) rather than C̄ (x). It is therefore desirable to

ensure that the basis elements returned by Alg. 14 have coefficients

in C (x) with respect to the input basis.

Note that in this setting, we have the following properties:

Lemma 16. (1) For every automorphism σ : C̄ → C̄ leaving C

fixed, for every z ∈ Z , and for everyu ∈ C̄ (x), we have νz (u) =

νσ (z) (σ (u)), where σ (u) is the element of C̄ (x) obtained by

applying σ to the coefficients of u.

(2) For every u ∈ C̄ (x) \ {0}, and for every z ∈ Z , u admits a

unique Laurent series expansion

u = cz (x − z)
νz (u)

+ (x − z)νz (u)+1r

with cz ∈ C̄ \ {0} and νz (r) ≥ 0.

The constant cz in item 2 is called the leading coefficient of u.

The second property of the lemma ensures that the coefficients

α1, . . . ,αd−1 ∈ C̄ (x) from (C) and (C′) can be chosen in C̄ . Indeed,

we can replace αi by its leading coefficient if νz (αi) = 0 and by zero

otherwise, because whenever α1, . . . ,αd−1 ∈ C̄ (x) is a solution and

β1, . . . , βd−1 ∈ C̄ (x) are arbitrary with νz (βi) ≥ 1 for all i , then

also α1 + β1, . . . ,αd−1 + βd−1 is a solution.

If we restrict α1, . . . ,αd−1 to C̄ , then there can be at most one

solution whenever we seek a solution in step 3 of Alg. 10, because

the difference of any two distinct solutions would be a nontrivial

C̄-linear combination of B1, . . . ,Bd−1, and by the invariant of the

outer loop, B1, . . . ,Bd−1 already form an integral basis of the k-

subspace they generate.

We shall adopt the following last assumption, stating that we

can apply σ on V :

(F) We know a basis B1, . . . ,Br as in (E) such that for every

automorphism σ : C̄ → C̄ fixingC , and for all α1, . . . ,αr ∈ k ,

we have valz (α1B1 + · · · + αrBr) = valσ (z) (σ (α1)B1 + · · · +

σ (αr)Br).

Using this assumption, it can further be shown that the unique

elements α1, . . . ,αd−1 ∈ C̄ from (C′) must in fact belong to C (z)

(if they exist at all). This is because if some αi were in C̄ \ C (z),

then there would be some automorphism σ : C̄ → C̄ fixing C (z)

but moving αi , and (F) would imply that σ (α1), . . . ,σ (αd) would

be another solution to (C′), in contradiction to the uniqueness.

In order to ensure that the output elements of Alg. 14 are C (x)-

linear combinations of the input elements, we adjust Alg. 10 as

follows. LetG be the Galois group ofC (z) overC . In step 2, instead

of replacing Bd by x
− valz (Bd)
z , we replace Bd by
(

∏

σ ∈G

σ (xz)
− valz (Bd)

)

Bd .

Note that
∏

σ ∈G σ (xz) =
∏

σ ∈G σ (x−z) is the minimal polynomial

of z in C[x].

In step 5 of Alg. 10, we choose α1, . . . ,αd−1 ∈ C (z) (if there are

any), and instead of replacing Bd by x−1z (α1B1 + · · · + αd−1Bd−1 +

αdBd) (with αd = 1), we replace Bd by

A :=

d
∑

i=1

(

∑

σ ∈G

σ

(

αi

xz

))

Bi .

Proposition 17. When the steps 2 and 5 of Alg. 10 are adjusted

as indicated, Alg. 14 returns an integral basis of V whose elements

are C (x)-linear combinations of the input elements.

Proof. By Galois theory,
∏

σ ∈G σ (xz) =
∏

σ ∈G σ (x−z) ∈ C (x)

and α̃i :=
∑

σ ∈G σ (αi/(x − z)) ∈ C (x) for every i . Therefore, all

updates in the modified Alg. 10 replace certain basis elements by

C (x)-linear combinations of basis elements.

It remains to show that the output is an integral basis for all z ∈ Z .

To see this, we have to check the effect of Alg. 10 concerning valz
and concerning valζ for ζ ∈ Z \ {z}. For the latter, we distinguish

the case when ζ is conjugate to z and when it is not.

By part 1 of Lemma 16, for all ζ ∈ Z that are not conjugate

to z we have νζ (α̃i) ≥ 0 for i = 1, . . . ,d − 1 and νζ (α̃d) = 0.

Therefore, B1, . . . ,Bd−1 and A generate the same O(k,νζ)-module

as B1, . . . ,Bd−1 and Bd , for every ζ ∈ Z that is not conjugate to z.

This settles the case when ζ is not conjugate to z.

Next, observe that valz (x
−1
z (α1B1 + · · · + αdBd)) ≥ 0 by the

assumptions on xz ,α1, . . . ,αd . Moreover, by part 1 of Lemma 16,

νz (σ (x − z)) = νσ −1 (z) (x − z) = 0 for every σ ∈ G \ {id}, and

νz (σ (αi)) = νσ −1 (z) (αi) ≥ 0 because νζ (αi) ≥ 0 for all ζ . Therefore

valz (σ (x
−1
z) (σ (α1)B1 + · · · + σ (αd)Bd) ≥ 0 for every σ ∈ G \ {id}.

It follows that

valz (A) ≥ max
σ ∈G

valz

(d
∑

i=1

σ

(

αi

x − z

)

Bi

)

≥ 0.

Moreover, since αd = 1 and valσ (z) (xz) = 0 for all σ , id, we

have that B1, . . . ,Bd−1 and A generate the same O(k,νz)-module as

B1, . . . ,Bd−1 and x
−1
z (α1B1 + · · · + αdBd). This settles the concern

about valz .

Finally, if ζ is conjugate to z, say ζ = σ (z) for some automor-

phism σ ∈ G, then valζ (A) = valζ (σ (A)) = valz (A) ≥ 0 by as-

sumption (F), becauseA is aC (x)-linear combination of the original

basis elements. So A belongs to the O(k,νζ)-module of all integral

elements (w.r.t. valζ) of the subspace generated by B1, . . . ,Bd inV ,

so we are not making the module larger than we should. Con-

versely, the old Bd belongs to the O(k,νζ)-module generated by

B1, . . . ,Bd−1 and A, so by updating Bd to A, the module generated

by B1, . . . ,Bd does not become smaller.

Informally, what happens by taking the sums over the Galois

group is that the algorithm working locally at z simultaneously

works at all its conjugates. If for a certain z, the set Z0 contains

z as well as its conjugates, it is fair (and advisable) to discard all

the conjugates from Z0 and only keep z. More precisely, the whole

process requires only knowing the minimal polynomial of z inC[x],

so for applications where the set Z0 is computed as the set of roots

of some polynomial p ∈ C[x], the algorithms can proceed with the

factors of p instead of all its roots.

95

ISSAC ’20, July 20–23, 2020, Kalamata, Greece S. Chen, L. Du, M. Kauers, and T. Verron

4 THE ALGEBRAIC AND D-FINITE CASES

We will see below how the algorithms in [14, 18] for computing

integral bases are special cases of the general formulation in Sec-

tion 3. Let C be a computable subfield of C and k = C̄ (x) with a

valuation νz for z ∈ C̄ . The value function valz on V = k (β) with

β ∈ C (x) is defined in Example 6 and on V = C̄ (x)[D]/⟨L⟩ with

L ∈ C[x][D] and all local exponents ν of solutions contained in C

is defined in Example 7. We show that the assumptions imposed

on value functions in Section 3 are fulfilled in the algebraic and

D-finite settings. Note that (B), (C), (D) are subsumed in (B′), (C′),

(D′), respectively.

(A) It is assumed that C is a computable field, so it is clear that

arithmetic in C̄ (x) andV are computable, and that νz on C̄ (x)

is also computable. The value functions valz for algebraic and

D-finite functions are computable since we can determine

first few terms of Puiseux or generalized series solutions by

algorithms in [8, 13].

(B′) For every z ∈ Z , we can take xz = x −z such that νz (xz) = 1

and νζ (xz) = 0 for all ζ ∈ Z \ {z}.

(C′) Done in [14, Section 4].

(D′) Clear.

(E) In the algebraic case, we can choose as Z0 the set of singular-

ities of β ∈ C (x) which is clearly a finite set. In the D-finite

case, we can choose as Z0 the set of zeros of ℓr which are

the only possible singularities by [14, Lemma 9].

(F) If α and ᾱ are conjugates, let σ be an element of the Galois

group of C̄/C such that ᾱ = σ (α). In particular σ (L) = L

and σ (B) = B. For all i ∈ {1, . . . , r }, σ (fα,i) ∈ C̄[[[x − ᾱ]]]

is a solution of σ (L) = L. Since σ is an automorphism, the

σ (fα,i) form a fundamental system of L in C̄[[[x − ᾱ]]]. For

all i ∈ {1, . . . , r }, B ·σ (fα,i) = σ (B) ·σ (fα,i) = σ (B · fα,i), and

the equality of the valuations follows. In the algebraic case,

this equality follows from the property of Duval’s rational

Puiseux series (see the remarks on [8, page 120]).

The termination of the general algorithm 10 in the algebraic and

D-finite cases have been shown in [14, 18] by using classical discrim-

inants and generalized Wronskians. The discriminant functions in

these cases can be taken as the compositions of the valuation νz and

these functions. More precisely, for a basis B1, . . . ,Br of V = k (β),

the discriminant function Disc in the algebraic setting is defined as

Disc({B1, . . . ,Br }) = νz (det(Tr(BiBj))),

where Tr is the trace map from V to C̄ (x). If B1, . . . ,Br are inte-

gral, det(Tr(BiBj)) ∈ C̄[x] and then Disc({B1, . . . ,Br }) ∈ N. Let

α1, . . . ,αd−1 ∈ k , replacing Bd by α1B1 + · · · + αd−1Bd−1 + Bd is

equivalent to multiplying the matrix (Tr(BiBj)) left and right by

elementary transformation matrices with determinant 1, so the de-

terminant (and its valuation) are constant. Similarly, replacing Bd
by (x − z)−1Bd is equivalent to multiplying the matrix (Tr(BiBj))

left and right by a matrix with determinant (x − z)−1, so the dis-

criminant decreases by 2. So Disc is indeed a discriminant function

on k (β).

In the case of D-finite functions, for any basis B = {B1, . . . ,Br }

of V = C̄ (x)[D]/⟨L⟩ and fundamental series solutions b1, . . . ,br ∈

C̄[[[x − z]]] of L , the generalized Wronskian is defined as

wrL,z (B) := det(((Bi · bj))
r
i, j=1) ∈ C̄[[[x − z]]].

The discriminant function Disc can be defined as the valuation of

wrL,z (B) at z. By the proof of Theorem 18 in [14], Disc is indeed a

discriminant function on C̄ (x)[D]/⟨L⟩.

5 THE P-RECURSIVE CASE

5.1 Solution Spaces

For the case of recurrence operators, we use a setting that has

already been used for instance in [1, 7, 19] in the context of finding

hypergeometric solutions. The relevant parts of the construction are

summarized in this section. We consider the Ore algebra C (x)[S]

with the commutation rule Sx = (x + 1)S . We fix an operator

L = ℓ0 + ℓ1S + · · · + ℓrS
r ∈ C (x)[S] with ℓ0, ℓr , 0, and we

consider the vector space V = C̄ (x)[S]/⟨L⟩, where ⟨L⟩ = C̄ (x)[S]L.

The operator L acts on a sequence f : α + Z → C̄ through (L ·

f) (z) := ℓ0 (z) f (z)+ · · ·+ℓr (z) f (z+r) for all z ∈ α +Z. This action

turns C̄α+Z into a (left) C[x][S]-module, but not to a (left) C (x)[S]-

module, because a sequence f : α + Z → C̄ cannot meaningfully

be divided by a polynomial which has a root in α + Z. In order

to obtain a C (x)[S]-module, consider the space C̄ ((q))α+Z of all

sequences f : α + Z→ C̄ ((q)) whose terms are Laurent series in a

new indeterminate q, and define the action of L = ℓ0 + · · · + ℓrS
r ∈

C (x)[S] on a sequence f : α + Z → C̄ ((q)) through (L · f) (z) :=

ℓ0 (z + q) f (z) + · · · + ℓr (z + q) f (z + r) for all z ∈ α + Z. Note that

no ℓi ∈ C (x) can have a pole at z +q for any z ∈ α +Z when α ∈ C̄

and q < C̄ .

For a fixed operator L = ℓ0+ · · ·+ℓrS
r ∈ C[x][S] with ℓ0, ℓr , 0,

the set Sol(L) := { f : α + Z → C̄ ((q)) : L · f = 0 } is a C̄ ((q))-

vector space of dimension r . Indeed, a basis b1, . . . ,br is given by

specifying the initial values bi (α + j) = δi, j for i, j = 1, . . . , r and

observing that the operator L uniquely extends any choice of initial

values indefinitely to the left as well as to the right. The reason is

again that q < C̄ implies ℓ0 (z +q), ℓr (z +q) , 0 for every z ∈ α +Z,

so there is no danger that computing a certain sequence term bi (z)

from bi (z + 1), . . . ,bi (z + r) or from bi (z − 1), . . . ,bi (z − r) could

produce a division by zero. Instead of a division by zero, we can

only observe a division by q.

The valuation νq (a) of a nonzero Laurent series a ∈ C̄ ((q)) is

the smallest n ∈ Z such that the coefficient [qn]a of qn in a is

nonzero. We further define νq (0) = +∞. For a nonzero solution

f : α +Z→ C̄ ((q)) of an operator L ∈ C[x][S], we will be interested

in how the valuation changes as z ranges through α + Z. As we

have noticed, there can be occasional divisions by q as we extend

f towards the left or the right, so νq (f (z)) can go up and down as

z moves through α + Z. In fact, it can go up and down arbitrarily

often, as the solution f : Z → C̄ ((q)), f (z) = 1 + q + (−1)z of the

operator L = S2 − 1 shows. However, only when z is a root of ℓ0
we can have

νq (f (z)) < min{νq (f (z + 1)), . . . ,νq (f (z + r))},

and only when z is a root of ℓr (x − r) we can have

νq (f (z)) < min{νq (f (z − 1)), . . . ,νq (f (z − r))}.

Since the nonzero polynomials ℓ0, ℓr have at most finitely many

roots in α + Z, we can conclude that both

lim inf
n→−∞

νq (f (α + n)) and lim inf
n→+∞

νq (f (α + n))

96

Integral Bases for P-Recursive Sequences ISSAC ’20, July 20–23, 2020, Kalamata, Greece

are well-defined for every solution f : α + Z→ C̄ ((q)) of L. Their

difference

vg f := lim inf
n→+∞

νq (f (α + n)) − lim inf
n→−∞

νq (f (α + n))

is called the valuation growth of f .

5.2 A Valuation Function

In our context, solutions with negative valuation growth are trou-

blesome, because we want to define the valuation of a residue

class B ∈ C̄ (x)[S]/⟨L⟩ at z in terms of the valuations of the se-

quence terms (B · b) (z) ∈ C̄ ((q)), where b runs through Sol(L).

When b ∈ Sol(L) has negative valuation growth, then we can have

νq ((B · b) (z)) < 0 for infinitely many z, which makes it hard to

meet assumption (E). Moreover, if all solutions have positive val-

uation growth, we have νq ((B · b) (z)) > 0 for infinitely many z,

which is also in conflict with assumption (E). In order to circum-

vent this problem, we let Z ⊆ C̄ be such that for each orbit α + Z

with Z ∩ (α + Z) , ∅ and for which L has a solution in C̄ ((q))α+Z

with nonzero valuation growth, the set Z ∩ (α + Z) has a (com-

putable) right-most element. We then define the value function

valz : V → Z ∪ {∞} by

valz (B) := min
b ∈Sol(L)

(

νq ((B · b) (z)) − lim inf
n→∞

νq (b (z − n))

)

.

We use the convention∞−∞ = ∞.

Proposition 18. valz is a value function for every z ∈ Z .

Proof. We check the conditions of Def. 2.

(i) If B = 0, then B · b is the zero sequence for every b ∈ Sol(L),

so νq ((B · b) (z)) = ∞ for all n ∈ Z.

Conversely, let B ∈ C̄ (x)[S] be such that valz ([B]) = ∞.

We may assume that the order of B is less than r , so that

[B] = 0 is equivalent to B = 0. By valz ([B]) = ∞ we have

νq ((B · b) (z)) = ∞ for all b ∈ Sol(L), i.e., (B · b) (z) = 0 for

all b ∈ Sol(L).

If b1, . . . ,br is a basis of Sol(L), then the matrix

M = ((bj (z + i − 1)))
r
i, j=1 ∈ C̄ ((q))

r×r

is regular. Now if B were nonzero and βkS
k is a nonzero

term appearing in B, then multiplying the kth row of M

by βk and adding suitable multiples of other rows to the

kth row, we obtain a matrix whose kth row is 0, because

(B · b1) (z) = · · · = (B · br) (z) = 0. On the other hand, the

determinant of this matrix is equal to βk det(M) , 0, so B

cannot be nonzero.

(ii) Clear by νq ((u f) (z)) = νq (u) + νq (f (z)) for all u ∈ C̄ ((q))

and f ∈ C̄ ((q))z+Z.

(iii) Clear by νq (((B1+B2) ·u) (z)) = νq ((B1 ·u) (z)+ (B2 ·u) (z)) ≥

min(νq ((B1 ·u) (z)),νq ((B2 ·u) (z))) for allu ∈ C̄ ((q))
z+Z.

Next, we show that we can meet the computability assumptions

of Section 3. Note again that (B), (C), (D) are subsumed in (B′), (C′),

(D′), respectively.

(A) It is assumed that C is a computable field, so it is clear that

arithmetic in C̄ (x) and V are computable, and that νz is

computable. We show that valz is computable as well.

Let ζ ∈ z + Z be such that all roots of ℓ0ℓr contained in

z+Z are to the right of ζ , and consider the basis b1, . . . ,br of

Sol(L) in C̄ ((q))z+Z defined by the initial valuesbj (ζ+i−1) =

δi, j (i, j = 1, . . . , r). We shall prove that for all η ∈ z + Z,

valη (B) =
r

min
j=1

νq ((B · bj) (η)).

Since we can compute (B · bj) (η) for any j = 1, . . . , r and

η ∈ z + Z, this implies that valη is computable. In particular,

valz is then computable.

We have minri=1 νq (bj (ζ + i − 1)) = 0 for j = 1, . . . , r by

construction, and in fact lim infn→+∞ νq (bj (ζ − n)) = 0 for

j = 1, . . . , r , because at no position ζ − n the valuation can

be smaller than the minimum valuation of its r neighbors to

the right or than the minimum valuation of its r neighbors

to the left, due to the lack of roots of ℓ0ℓr in the range under

consideration.

Let now b = c1b1 + · · · + crbr for coefficients c1, . . . , cr ∈

C̄ ((q)). Let v := minrj=1 νq (c j). Assume that v = 0, and let j0
be such that νq (c j0) = 0. Then for all η ∈ z + Z,

νq (b (η)) ≥
r

min
j=1

νq (bj (η))

and νq ((B · b) (η)) ≥ minrj=1 νq ((B · bj) (η)).

Furthermore, by construction of the basis of bj ’s, for all

i ∈ {1, . . . , r }, b (ζ +i−1) = ci , so minri=1 νq (b (ζ +i−1)) = 0.

Again, for lack of roots of ℓ0ℓr left of ζ , it implies that

lim inf
n→+∞

νq (b (ζ − n)) = 0.

It follows from the above that

νq ((B · b) (η)) − lim inf
n→+∞

νq (b (η − n)) ≥
r

min
j=1

νq ((B · bj) (η)).

Assume now that v , 0. In that case, consider q−vb =

q−vc1b1 + · · · + q
−vcrbr , with minrj=1 νq (q

−vc j) = 0. From

the above,

νq ((B · q
−vb) (η)) − lim inf

n→+∞
νq (q

−vb (η − n))

≥
r

min
j=1

νq ((B · bj) (η)).

Since for all η ∈ z + Z we have νq (q
−vb (η)) = νq (b (η)) −v

and

νq ((B · q
−vb) (η)) = νq ((q

−vB · b) (η)) = νq ((B · b) (η)) −v,

it still holds that

νq ((B · b) (η)) − lim inf
n→+∞

νq (b (η − n)) ≥
r

min
j=1

νq ((B · bj) (η)),

so that indeed valη (B) = minrj=1 νq ((B · bj) (η)).

(B′) We can take xz = x − z.

(C′) Let B1, . . . ,Bd ∈ C̄ (x)[S]/⟨L⟩ be given. We can then com-

pute v := mindi=1 valz (Bi) and we can find the required

α1, . . . ,αd−1 ∈ C̄ by equating the coefficients of qn for n ≤ v

in the linear combination α1 (B1 · bj) (z) + · · · + αd−1 (Bd−1 ·

bj) (z) + (Bd · bj) (z) to zero and solving the resulting inho-

mogeneous linear system for α1, . . . ,αd−1.

(D′) Clear.

(E) First we shall prove that if α + Z does not contain a root

of ℓ0ℓr , then B = {1, S, . . . , S
r−1} is an integral basis for all

z ∈ Z ∩ α + Z. For such z, consider the basis b1, . . . ,br of

97

ISSAC ’20, July 20–23, 2020, Kalamata, Greece S. Chen, L. Du, M. Kauers, and T. Verron

Sol(L) ⊆ C̄ ((q))α+Z with bj (z + i − 1) = δi, j (i, j = 1, . . . , r).

By the discussion of (A), for any operator A ∈ V , we have

valz (A) =
r

min
j=1

νq ((A · bj) (z)).

LetA = p0+· · ·+pr−1S
r−1 be an operator inV = C̄ (x)[S]/⟨L⟩.

By the construction of the basis bj ’s, for all j = {1, . . . , r },

(A · bj) (z) = pj−1 (x + q − z). It imples that

r
min
j=1

νq ((A · bj) (z)) =
r−1
min
j=0

νz (pj).

So A is integral if and only if νz (pj) ≥ 0 for all j and B is an

integral basis at z. Since ℓ0ℓr can only have at finitely many

roots, we can restrict Z0 to finitely many orbits α + Z. In

each of these orbits, there is a natural bound for Z0 to the left

after lack of roots of ℓ0ℓr by the similar argument as above.

If L has a solution with nonzero valuation growth, then the

bound to the right is given by the choice of Z . Now suppose

all solutions of L in C̄ ((q))α+Z have zero valuation growth.

Let ζ ∈ α + Z be such that all roots of ℓ0ℓr are contained to

the left. For each z = ζ + n with n ≥ 0, choosing the basis

bj (z + i − 1) = δi, j (i, j = 1, . . . , r), we get

lim inf
n→+∞

νq (bj (z + n)) =
r

min
i=1

νq (bj (z + i − 1)) = 0

for all j = 1, . . . , r . Then lim infn→+∞ νq (bj (z − n)) = 0.

For any operator A ∈ V , it again follows that valz (A) =

minrj=1 νq ((A · bj) (z)) and hence B is an integral basis at

such a point z for the same reason.

(F) We can take any basis of V = C̄ (x)[S]/⟨L⟩ whose basis ele-

ments belong to C (x)[S]/⟨L⟩, for example 1, S, . . . , Sr−1.

If z, z̃ ∈ C̄ are conjugates, let σ be an element of the Galois

group of C̄ over C that maps z to z̃. Then for every solution

f ∈ C̄ ((q))z+Z of L also σ (f) ∈ C̄ ((q))z̃+Z is a solution of L,

because L has coefficients in C , so σ (L) = L.

Since we have

σ ((α0 + · · · + αr−1S
r−1) (f))

= (σ (α0) + · · · + σ (αr−1)S
r−1) (σ (f))

for any α0, . . . ,αr−1 ∈ C̄ (x), it follows that

valz (α0+ · · ·+αr−1S
r−1) ≥ valz̃ (σ (α0)+ · · ·+σ (αr−1)S

r−1).

Equality follows by exchanging z and z̃.

We now define the discriminant function in the shift setting. For

each α ∈ Z , by the item (A), we can choose a basis b1, . . . ,br of

Sol(L) such that valα (B) = minrj=1 νq ((B ·bj) (α)). For any k-vector

space basis B = {B1, . . . ,Br } of V = C̄ (x)[S]/⟨L⟩, we can take

Discα (B) := νq (det(((Bi · bj) (α))
r
i, j=1)) ∈ Z.

It is well-defined since the matrix ((Bi ·bj) (α)) = (pi, ℓ) · (bj (α +ℓ−

1)) is regular, where Bi =
∑r
j=1 pi, ℓS

ℓ−1 with pi, ℓ ∈ C̄ (x). If Bi ’s

are integral for α , then νq ((Bi · bj) (α)) ≥ 0 for all i, j = 1, . . . , r . It

follows that Discα (B) ≥ 0.

Let α1, . . . ,αd−1 ∈ k , replacing Bd by α1B1+ · · ·+αd−1Bd−1+Bd
(resp. by (x −α)−1Bd) is equivalent to multiplying the matrix ((Bi ·

bj) (α)) by a matrix with determinant 1 (resp. with determinant

(x − α)−1) and it follows that the valuation of the determinant is

constant (resp. is strictly decreasing).

Example 19. Let L = (x + 2)2 + xS2 + (x + 2)S3. For every α < Z,

we have that {1, S, S2} is a local integral basis forV = C (x)[S]/⟨L⟩ at

α + Z. For the orbit Z, choosing bj (−2 + i − 1) = δi, j for i, j = 1, 2, 3,

we obtain a basis of the solution space in C ((q))Z:

n · · · −2 −1 0 1 2 · · ·

b1 (n) · · · 1 0 0 −q
q (q−1)
q+1 · · ·

b2 (n) · · · 0 1 0 0 −q − 1 · · ·

b3 (n) · · · 0 0 1
−q+2
q

q2−3q+2
q (q+1)

· · ·

Then valα (B) = min3j=1 νq ((B · bj) (α)) for any operator B ∈ V and

α ∈ Z. Since the solution b3 has negative valuation growth, for a

global integral basis the set Z has to be bounded on the right in the

orbit Z. Take Z = C \ {1, 2, . . .}. At α = 0, we have 1 is locally integral,

but S, S2 are not since val0 (S) = val0 (S
2) = −1. However, xS,xS2 are

locally integral. By Alg. 10, we can find a local integral basis at 0:{
1, x−2

x 2 +
1
x S,

−2
x + S

2
}
.

Using such a basis as an input, continue to find all locally integral

elements at α = −1. Similarly replace B3 =
−2
x + S

2 by (x + 1)B3
since val1 (B3) = −1. This operation does change the local integrality

at Z \ {−1}, because x + 1 is invertible in the localization of C[x] at

any z , −1. So the output local integral basis at α = −1 is also a

global integral basis for Z :
{

1, x−2
x 2 +

1
x S,

−x+2
x 2 +

−3x−1
x (x+1)2

S + 1
x+1S

2
}

.

Acknowledgement.We thank the referees for their careful read-

ing and their valuable suggestions, in particular the referee who

pointed out the implication (a) ⇒ (b) in Theorem 13.

REFERENCES
[1] Sergei A. Abramov, Moulay A. Barkatou, Mark van Hoeij, and Marko Petkovsek.

Subanalytic solutions of linear difference equations and multidimensional hyper-
geometric sequences. J. Symb. Comput., 46(11):1205ś1228, 2011.

[2] M. Bronstein. The lazy Hermite reduction. Technical Report 3562, INRIA, 1998.
[3] Manuel Bronstein. Symbolic integration tutorial. ISSAC’98, 1998.
[4] Shaoshi Chen, Manuel Kauers, and C. Koutschan. Reduction-based creative

telescoping for algebraic functions. In Proc. ISSAC’16, pages 175ś182, 2016.
[5] Shaoshi Chen, Mark van Hoeij, Manuel Kauers, and Christoph Koutschan.

Reduction-based creative telescoping for fuchsian D-finite functions. J. Symb.
Comput., 85:108ś127, 2018.

[6] Claude Chevalley. Introduction to the Theory of Algebraic Functions of One
Variable. AMS Mathematical Surveys, 1951.

[7] Thomas Cluzeau and Mark van Hoeij. Computing hypergeometric solutions of
linear recurrence equations. AAECC, 17:83ś115, 2006.

[8] Dominique Duval. Rational Puiseux expansions. Compositio Mathematica,
70(2):119ś154, 1989.

[9] Antonio J. Engler and Alexander Prestel. Valued Fields. Springer, 2005.
[10] László Fuchs. Vector spaces with valuations. J. of Algebra, 35(1-3):23ś38, 1975.
[11] Erdal Imamoglu. Algorithms for Solving Linear Differential Equations with Rational

Function Coefficients. PhD thesis, Florida State University, 2017.
[12] Erdal Imamoglu and Mark van Hoeij. Computing hypergeometric solutions of

second order linear differential equations using quotients of formal solutions and
integral bases. J. Symb. Comput., 83:254ś271, 2007.

[13] Edward L. Ince. Ordinary Differential Equations. Dover, 1926.
[14] Manuel Kauers and Christoph Koutschan. Integral D-finite functions. In Proc.

ISSAC’15, pages 251ś258, 2015.
[15] Jean-Pierre Serre. Local fields. Graduate Texts in Mathematics, 1979.
[16] Jean Pierre Tignol and Adrian R. Wadsworth. Value Functions on Simple Algebras,

and Associated Graded Rings. Springer, 2015.
[17] Barry M. Trager. Integration of Algebraic Functions. PhD thesis, MIT, 1984.
[18] Mark van Hoeij. An algorithm for computing an integral basis in an algebraic

function field. Journal of Symbolic Computation, 18(4):353ś363, 1994.
[19] Mark van Hoeij. Finite singularities and hypergeometric solutions of linear

recurrence equations. Journal of Pure and Applied Algebra, 139:109ś131, 1999.
[20] G. Zeng. Valuations on a module. Communic. Algebra, 35(8):2341ś2356, 2007.

98

A Gröbner-Basis Theory for Divide-and-Conquer Recurrences

Frédéric Chyzak
frederic.chyzak@inria.fr

INRIA

Philippe Dumas
philippe.dumas@inria.fr

INRIA

ABSTRACT
We introduce a variety of noncommutative polynomials that repre-

sent divide-and-conquer recurrence systems. Our setting involves

at the same time variables that behave like words in purely noncom-

mutative algebras and variables governed by commutation rules

like in skew polynomial rings. We then develop a Gröbner-basis

theory for left ideals of such polynomials. Strikingly, the nature

of commutations generally prevents the leading monomial of a

polynomial product to be the product of the leading monomials. To

overcome the difficulty, we consider a specific monomial ordering,

together with a restriction to monic divisors in intermediate steps.

After obtaining an analogue of Buchberger’s algorithm, we develop

a variant of the 𝐹4 algorithm, whose speed we compare.

CCS CONCEPTS
· Computing methodologies→ Algebraic algorithms.

KEYWORDS
Gröbner bases, divide-and-conquer recurrences, skew polynomials

ACM Reference Format:
Frédéric Chyzak and Philippe Dumas. 2020. A Gröbner-Basis Theory for

Divide-and-Conquer Recurrences. In International Symposium on Symbolic

and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404055

Divide-and-conquer recurrences appear at the interface between

mathematics and (theoretical) computer science, namely, in relation

to number systems, formal languages, number theory, and complex-

ity theory. For example, the total number 𝑢𝑛 of operations (+,−,×)

in Karatsuba’s algorithm when multiplying polynomials of degree

less than 𝑛 satisfies 𝑢0 = 0, 𝑢1 = 1, and the system of recurrences

𝑢2𝑛+2 −3𝑢𝑛+1 = 8𝑛 +4, 𝑢2𝑛+3 −2𝑢𝑛+2 −𝑢𝑛+1 = 8𝑛 +8 for 𝑛 ≥ 0.

So far, the literature has focused almost exclusively on finding the

asymptotic behavior of some sequence defined by first-order re-

currences; see the references in [5, 9]. In the example above, the

sequence undoubtedly exists and is defined uniquely. But can we

guarantee that any given divide-and-conquer system actually de-

fines a sequence, and this uniquely? This motivates an algorithmic

study of suitable left ideals that encode divide-and-conquer systems.

In Section 1, we explain how divide-and-conquer recurrences

can be expressed as polynomials of a noncommutative algebra.

In Section 2, we develop a Gröbner-basis theory in it, by using a

specific monomial ordering that we call breadth-first ordering. This

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404055

leads to a Buchberger algorithm whose correctness we prove by an

analogue of the usual criterion on 𝑆-polynomials. We then replace

the pair-completion approach by a linear-algebraic one in Section 3,

and we develop a variant of the algorithm 𝐹4. Timings are briefly

presented in Section 4, together with a speed comparison.

We close this introduction with a short review of related works

on Gröbner bases, which we hope the reader will keep in mind and

contrast to our contribution. The Gröbner-basis theory for commu-

tative polynomial algebras 𝑘 [𝑥1, . . . , 𝑥𝑛] over a given field 𝑘 is well

understood, see textbooks like [2, 4]. The theory has since long been

studied in relation to linear algebra [13]. This led to developments

like Faugère’s algorithm 𝐹4 [6], a big algorithmic speed-up. Exten-

sions to noncommutative contexts range between two extremes.

A first line of research is towards free noncommutative algebras

𝑘 ⟨𝑎1, . . . , 𝑎𝑛⟩ [16ś18] and path algebras 𝑘Γ [8, 20], replacing com-

mutative monomials by words on letters 𝑎𝑖 or by paths on a graph Γ.

Noetherianity is typically lost, but algorithms have been given both

for one-sided and two-sided ideals. In these contexts, monomials

commute with the coefficients from 𝑘 and the one-sided case is

regarded to be simpler than the two-sided. Another line of research

concerns 𝑘-algebras given by generators and relations, for well-

identified forms of relations. Early works in this direction provided

algorithms forWeyl algebras, 𝑘 ⟨𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ; 𝑦 𝑗𝑥𝑖 = 𝑥𝑖𝑦 𝑗 +

𝛿𝑖, 𝑗 , 𝑦 𝑗𝑦𝑖 = 𝑦𝑖𝑦 𝑗 , 𝑥 𝑗𝑥𝑖 = 𝑥𝑖𝑥 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛⟩, where 𝛿𝑖, 𝑗 is 1 if 𝑖 = 𝑗

and 0 otherwise [7], and for enveloping algebras of Lie algebras, that

is, given a finite-dimensional Lie algebra 𝔤 with 𝑘-basis (𝑎1, . . . , 𝑎𝑛),

the associative algebra 𝑘 ⟨𝑥1, . . . , 𝑥𝑛 ; 𝑥 𝑗𝑥𝑖 = 𝑥𝑖𝑥 𝑗 + [𝑎 𝑗 , 𝑎𝑖], 1 ≤

𝑖, 𝑗 ≤ 𝑛⟩ [1]. These studies focus on one-sided ideals, which is nat-

ural for [7] as Weyl algebras have no nontrivial two-sided ideals.

They were extended to noncommutative polynomial rings of solv-

able type 𝑘 ⟨𝑥1, . . . , 𝑥𝑛 ; 𝑥 𝑗𝑥𝑖 = 𝑐𝑖, 𝑗𝑥𝑖𝑥 𝑗 + 𝑝𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛⟩, where

the 𝑐𝑖, 𝑗 are nonzero and the 𝑝𝑖, 𝑗 are polynomials smaller than 𝑥𝑖𝑥 𝑗
in a suitable sense [10, 14]. In all such algebras given by generators

and relations, again, the monomials commute with the coefficients

from 𝑘 . In contrast, the rings of difference-differential operators

over rational-function coefficients [19] can be obtained by tensoring

Weyl algebras or similar algebras with the field 𝐹 = 𝑘 (𝑥1, . . . , 𝑥𝑛):

they involve variables 𝑦𝑖 that commute with one another but gen-

erally not with the coefficients from the field 𝐹 . A similar situation

occurs with Ore algebras [3], which are generalizations to more

types of linear functional operators. A generalization of [10] to

a sort of solvable polynomials rings whose monomials in the 𝑥𝑖
need not commute with the coefficients from 𝑘 was developed in

[11]. All these cases are (left, right, two-sided) Noetherian rings.

For an integer 𝑏 ≥ 2, the algebra 𝐴 := 𝑘 ⟨𝑥,𝑦;𝑦𝑥 = 𝑥𝑏𝑦⟩ of linear

𝑏-Mahler operators with polynomial coefficients directly relates to

the algebras of section operators discussed in the present article;

see our Conclusion. Its analogue with rational-function coefficients,

𝑘 (𝑥) ⊗𝑘 [𝑥] 𝐴, is a case of Ore algebras, while the algebra 𝐴 itself

is non-Noetherian. The theory was adapted to 𝐴 so as to provide

99

https://doi.org/10.1145/3373207.3404055
https://doi.org/10.1145/3373207.3404055

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Frédéric Chyzak and Philippe Dumas

computable Gröbner bases for finitely generated one-sided and

two-sided ideals [21]. The setting to be introduced in Section 1

inherits from both the free noncommutative algebras 𝑘 ⟨𝑎1, . . . , 𝑎𝑛⟩

and Ore algebras by considering skew polynomials whose monomi-

als are words that have commutation rules with their coefficients in

a field 𝑘 (𝑥). It is non-Noetherian. A similar situation, but distinct

in that the monomials are not just noncommutative words but sat-

isfy commutation rules as well, was introduced in an application

to the calculation of symmetries of discrete systems [15]; see the

generalization [12].

Acknowledgement. Supported in part by ANR-19-CE40-0018.

1 SKEW POLYNOMIALS
In this work, 𝑘 is a commutative, computable field. The sequences

we have in mind are defined on the set of nonnegative integers Z≥0.

We also see them as those sequences defined on Z that have their

supports in Z≥0. To a sequence (𝑢𝑛)𝑛∈Z≥0 , we associate the formal

power series
∑

𝑛≥0 𝑢𝑛𝑥
𝑛 in 𝑘 [[𝑥]]. The ring 𝑘 [[𝑥]] is a subring of

the field of formal Laurent series 𝑘 ((𝑥)), which proves to be the

right algebraic set to think of our sequences.

1.1 Section operators
To formalize the study of divide-and-conquer recurrences we intro-

duce what we call section operators. We fix an integer 𝑏 ≥ 2, which

the reader can think of as the radix of a numeration system. For

each integer 0 ≤ 𝑟 < 𝑏, we consider, with the same notation, the op-

erators 𝑆𝑏,𝑟 that act 𝑘-linearly on sequences in 𝑘Z, and, respectively,

on formal Laurent series in 𝑘 ((𝑥)) by

𝑆𝑏,𝑟 · 𝑢𝑛 = 𝑢𝑏𝑛+𝑟 , 𝑆𝑏,𝑟 ·
∑

𝑛

𝑢𝑛𝑥
𝑛
=

∑

𝑛

𝑢𝑏𝑛+𝑟𝑥
𝑛, (1)

where, in each case, 𝑛 ranges in Z.

The operators 𝑆𝑏,𝑟 given by 0 ≤ 𝑟 < 𝑏 generate a monoid of

endomorphisms, which, by extension of the notation, are the 𝑆𝑏ℓ ,𝑟
obtained for all integers ℓ ≥ 1 and 0 ≤ 𝑟 < 𝑏ℓ , and are related by

the composition rule

𝑆𝑏ℓ ,𝑟𝑆𝑏ℓ′ ,𝑟 ′ = 𝑆𝑏ℓ+ℓ′ ,𝑏ℓ′𝑟+𝑟 ′ . (2)

Moreover, for any ℓ ≥ 1 and for each 0 ≤ 𝑟 < 𝑏ℓ , there is a

‘Leibniz’ formula: for any two formal Laurent series 𝑓 (𝑥) and 𝑔(𝑥),

𝑆𝑏ℓ ,𝑟 · (𝑓 (𝑥)𝑔(𝑥)) =

𝑟
∑

𝑠=0

(

𝑆𝑏ℓ ,𝑟−𝑠 · 𝑓 (𝑥)
) (

𝑆𝑏ℓ ,𝑠 · 𝑔(𝑥)
)

+ 𝑥

𝑏ℓ−1
∑

𝑠=𝑟+1

(

𝑆𝑏ℓ ,𝑟−𝑠+𝑏ℓ · 𝑓 (𝑥)
) (

𝑆𝑏ℓ ,𝑠 · 𝑔(𝑥)
)

.

(3)

1.2 Skew polynomials
In order to give a polynomial version of the section operators,

we introduce the associative 𝑘 (𝑥)-algebra 𝑘 (𝑥)⟨𝑇 ⟩ generated by

indeterminates 𝑇𝑏,𝑟 with 0 ≤ 𝑟 < 𝑏, subject to the product rule

𝑇𝑏,𝑟 × 𝑓 (𝑥) =

𝑟
∑

𝑠=0

(

𝑆𝑏,𝑟−𝑠 · 𝑓 (𝑥)
)

𝑇𝑏,𝑠 +𝑥

𝑏−1
∑

𝑠=𝑟+1

(

𝑆𝑏,𝑟−𝑠+𝑏 · 𝑓 (𝑥)
)

𝑇𝑏,𝑠

(4)

for all 𝑓 (𝑥) ∈ 𝑘 (𝑥), which reflects (3) when ℓ = 1. We refer to the

elements of 𝑘 (𝑥)⟨𝑇 ⟩ as skew polynomials.

As this rule can be used to rewrite its left-hand side into its

right-hand side, polynomials from the 𝑘 (𝑥)-algebra can be viewed

as having monomials that are noncommutative words in the 𝑇𝑏,𝑟
and coefficient from 𝑘 (𝑥), written on the left of monomials.

We can view elements 𝑓 (𝑥) from 𝑘 (𝑥) as operators on 𝑘 ((𝑥)),

by considering their action by multiplication, and each 𝑇𝑏,𝑟 as an

operator on 𝑘 ((𝑥)) by endowing it with the action of the section

operator 𝑆𝑏,𝑟 . Then, the Leibniz formula (3) provides an expression

for 𝑇𝑏,𝑟 · 𝑓 (𝑥) · 𝑔(𝑥) = 𝑆𝑏,𝑟 · (𝑓 (𝑥)𝑔(𝑥)), which, by (4), matches the

result (𝑇𝑏,𝑟 𝑓 (𝑥)) ·𝑔(𝑥) of the action of the operator𝑇𝑏,𝑟 𝑓 (𝑥) on𝑔(𝑥).

One checks that this defines a left action of 𝑘 (𝑥)⟨𝑇 ⟩ on 𝑘 ((𝑥)).

1.3 Exponent notation
In the classical commutative case, computations on ideals use mono-

mial orderings and very basic results about the exponents, which

are elements of Z𝑚≥0. This leads us to introduce a parallel notation

for the monomials. As exponents, we use words over the alpha-

bet A of the numeration system with radix 𝑏, that is, the alpha-

bet A = {0, 1, . . . , 𝑏 − 1}. In other words, we have two notations

𝑇 𝑟 = 𝑇𝑏,𝑟 with 0 ≤ 𝑟 < 𝑏 for the generators of 𝑘 (𝑥)⟨𝑇 ⟩.

To make an explicit link with section operators, for any word

𝑤 ∈ A∗ introduce the integer 𝑟 whose 𝑏-ary expansion is𝑤 :

𝑟 = (𝑤)𝑏 = 𝑤ℓ−1𝑏
ℓ−1 + · · · +𝑤0𝑏

0 .

The monomial 𝑇𝑤 acts on 𝑘 ((𝑥)) as does 𝑆𝑏ℓ ,𝑟 , which results from

applying Equation (2) iteratively, since the action of a section op-

erator 𝑆𝑏ℓ ,𝑟 on 𝑘 ((𝑥)) is the same as the action of 𝑇𝑤 , obtained as

the composition of the action of 𝑇𝑤ℓ−1 after the action of𝑤ℓ−2, . . . ,

after the action of 𝑇𝑤0 .

Hence we can extend the notation 𝑇𝑏,𝑟 with 0 ≤ 𝑟 < 𝑏 into 𝑇𝑏ℓ ,𝑟
with 0 ≤ 𝑟 < 𝑏ℓ by the relation

𝑇𝑤
= 𝑇𝑏ℓ ,𝑟 , with ℓ = |𝑤 |, 𝑟 = (𝑤)𝑏 . (5)

Upon setting ℓ := |𝑤 |, ℓ ′ := |𝑤 ′ |, 𝑟 := (𝑤)𝑏 , and 𝑟
′ := (𝑤 ′)𝑏 , Equa-

tion (2) thus provides the simple formula 𝑇𝑤𝑇𝑤′
= 𝑇𝑤𝑤′

, where

the word𝑤𝑤 ′ is the concatenation of𝑤 and𝑤 ′. As a consequence,

the monoid of words and the monoid of monomials are clearly

isomorphic. Furthermore, Formula (4) generalizes by changing 𝑏

to 𝑏ℓ in the formula, thus mimicking (3) for general ℓ . Written more

loosely and after reindexing by words, the formula becomes

𝑇𝑤 × 𝑓 (𝑥) =
∑

|𝑤′ |= |𝑤 |

𝑔𝑤′ (𝑥)𝑇𝑤′

, (6)

for suitable rational functions 𝑔𝑤′ (𝑥).

For example, with 𝑏 = 2, both formulas 𝑇 01𝑇 101 = 𝑇 01101 and

𝑇4,1𝑇8,5 = 𝑇32,13 mean the same; after applying to a sequence𝑢, they

become 𝑢8(4𝑛+1)+5 = 𝑢32𝑛+13.

The length of words plays a role akin to the degree in the com-

mutative case. This leads us to define the degree in 𝑘 (𝑥)⟨𝑇 ⟩ by

deg 0 = −∞ and for a nonzero polynomial by the formula

deg
∑

𝑤

𝑐𝑤𝑇
𝑤
= max

{

|𝑤 | | 𝑐𝑤 ≠ 0
}

. (7)

It satisfies the usual property of a degree with respect to the multi-

plication and the addition.

In computational commutative algebra, it is usual to support a

piece of reasoning by drawing so-called stairs. A polynomial is seen

through its carrier, which is the set of its exponents. Similarly, we

100

https://specfun.inria.fr/chyzak/DeRerumNatura/

A Gröbner-Basis Theory for Divide-and-Conquer Recurrences ISSAC ’20, July 20–23, 2020, Kalamata, Greece

𝑇 𝜀
1,0

𝑇 0
2,0

𝑇 00
4,0

𝑇 000
8,0 𝑇 100

8,4

𝑇 10
4,2

𝑇 010
8,2 𝑇 110

8,6

𝑇 1
2,1

𝑇 01
4,1

𝑇 001
8,1 𝑇 101

8,5

𝑇 11
4,3

𝑇 011
8,3 𝑇 111

8,7

0

0

1

Figure 1: The tree of monomials for 𝑏 = 2. Each node 𝑇𝑤
𝑏ℓ ,𝑟

denotes a monomial in two notations: 𝑇𝑤 = 𝑇𝑏ℓ ,𝑟 . The path
from the root to a monomial follows the word𝑤 , read from
right to left, that is, from the least significant digits first.

view a polynomial in 𝑘 (𝑥)⟨𝑇 ⟩ via the set of its exponents, which

are words in A∗. Owing to noncommutativity, these are the nodes

of a 𝑏-ary tree, instead of the nodes of the square lattice (Fig. 1).

2 GRÖBNER BASES
In this section, we develop a theory for ideals of section operators,

adapting what can be of the classical commutative theory [2, 4].

2.1 Monomial ordering
As opposed to the ordinary theories of Gröbner bases, our new

theorymakes use of a single monomial ordering, which is motivated

by two constraints.

First, in our applications to divide-and-conquer recurrences, we

do not want to produce recurrence formulas like 𝑢2𝑛+1 = 𝑢8𝑛+3 +

𝑢4𝑛 + 𝑢𝑛 , where the term 𝑢𝑏ℓ+𝑟 on the left-hand side is defined by

using some 𝑢𝑏ℓ′+𝑟 ′ where ℓ
′ is larger than ℓ . Hence, we need an

ordering that refines the degree.

Our second constraint is technical: Property 3 in Proposition 1

below will prove to be crucial to make our theory possible, in

particular by the proof of Lemma 3. In practice, this leads to the

choice of a single monomial ordering used in what follows.

Ordering monomials 𝑇𝑤 is equivalent to ordering words𝑤 . In

the case 𝑏 = 2, our ordering lists the words involved as superscripts

in Figure 1 in the order they appear when read by a breadth-first (left

to right) traversal of the tree. We call it the breadth-first ordering:

𝜀 < 0 < 1 < 00 < 10 < 01 < 11 < 000 < 100 < 010 < 110 <

001 < 101 < 011 < 111 < · · · . It can be defined formally as follows.

First, order the alphabet A according to 0 < 1 < · · · < 𝑏 − 1. Next,

words over A are first ranked by length, with ties broken by the

lexicographical ordering on words read from right to left. (With our

convention for defining (𝑤)𝑏 , this means from the least significant

digit to the most significant one.) In other words, we define𝑤 < 𝑤 ′

if |𝑤 | < |𝑤 ′ |, or else if |𝑤 | = |𝑤 ′ | and the two words can be written

𝑤 = 𝑢 𝑗𝑣 and𝑤 ′ = 𝑢 ′ 𝑗 ′𝑣 for words 𝑢, 𝑢 ′, and 𝑣 , and letters 𝑗 < 𝑗 ′.

Proposition 1. The breadth-first ordering on the monoid of mono-

mials satisfies the following properties:

1. it is total and refines the degree,

2. every set of monomials has a smallest element,

3. it is left compatible with concatenation, that is if |𝑣 | = |𝑣 ′ |

and 𝑇 𝑣
< 𝑇 𝑣′ , then 𝑇𝑢𝑣 < 𝑇𝑢

′𝑣′ whenever |𝑢 | = |𝑢 ′ |.

Proof. The first and third assertions are direct consequences

of the definition of the order on words. The second assertion fol-

lows from the first and the fact that there exist only finitely many

monomials of a given degree. □

2.2 Leading monomials
With a total ordering on monomials at our disposal, we can consider

leading monomials and leading coefficients.

Definition 2. The leading monomial lm(𝐹) of a nonzero skew poly-

nomial 𝐹 is the largest monomial in 𝐹 with respect to breadth-first

ordering. The leading coefficient lc(𝐹) is the coefficient of the leading

monomial lm(𝐹).

A key point in the commutative case is the fact that the leading

monomial of a product is the product of the leading monomials.

Formula (4) induces a breach to this law, which seems to preclude

the translation of the commutative case into our noncommutative

case. Indeed, when we multiply a term 𝑐 (𝑥)𝑇 𝑣 by a monomial𝑇𝑢 on

the left, we generally obtain all the monomials 𝑇𝑢
′𝑣 with |𝑢 ′ | = |𝑢 |

and not only the monomial 𝑇𝑢𝑣 .

Lemma 3. The leading monomial w.r.t. breadth-first ordering of

the product of two nonzero skew polynomials is the product of their

leading monomials whenever the right-hand factor is monic.

Proof. Let 𝐹 and 𝐺 be the two skew polynomials to be multi-

plied, with 𝐹 nonzero and 𝐺 monic. Without loss of generality, we

can also assume that 𝐹 is monic, as changing 𝐹 into 1/lc(𝐹)×𝐹 does

not modify the leading monomial of the left factor, and, by associa-

tivity, of the product 𝐹𝐺 . Let 𝑇𝑢 and 𝑇 𝑣 be the leading monomials

of 𝐹 and𝐺 , respectively. Without loss of generality, we can neglect

the terms with degree smaller than the degree of those leading

monomials, since the ordering refines the degree. So we consider

𝐹 = 𝑇𝑢 +
∑

𝑢′
<𝑢

𝑐𝑢′ (𝑥)𝑇𝑢
′

, 𝐺 = 𝑇 𝑣 +
∑

𝑣′<𝑣

𝑑𝑣′ (𝑥)𝑇
𝑣′,

where 𝑢 ′ and 𝑣 ′ are words subject to |𝑢 ′ | = |𝑢 |, |𝑣 ′ | = |𝑣 |. Apart

from the monomial 𝑇𝑢𝑇 𝑣 = 𝑇𝑢𝑣 , which bears coefficient 1, the

product 𝐹𝐺 includes two types of terms: first, terms 𝑒 (𝑥)𝑇𝑢
′′𝑣′

with |𝑢 ′′ | = |𝑢 |, 𝑣 ′ < 𝑣 ; second, terms 𝑐𝑢′ (𝑥)𝑇𝑢
′𝑣 with 𝑢 ′ < 𝑢. In

the first case, the monomial 𝑇𝑢
′′𝑣′ is smaller than 𝑇𝑢𝑣 since the

breadth-first ordering is left compatible. In the second case, 𝑇𝑢
′𝑣 is

smaller than𝑇𝑢𝑣 because 𝑢 ′ is smaller than 𝑢 and, again, by the left

compatibility with concatenation. Hence the leading monomial of

the product is the product of the leading monomial. □

For convenience, we augment the monoid of monomials with

the element 0, and its ordering so that 0 becomes its minimal el-

ement. We then extend the map lm(·) by giving it the value 0 at

the polynomial 0, so that lm(0) = 0 < lm(𝐹) for any nonzero

skew polynomial 𝐹 . The total order on the augmented monoid of

monomials then induces a preorder on skew polynomials: for any 𝐹

and 𝐺 in 𝑘 (𝑥)⟨𝑇 ⟩, we say that 𝐹 is smaller than 𝐺 , denoted 𝐹 < 𝐺 ,

if lm(𝐹) < lm(𝐺), and that 𝐹 is smaller than or equivalent to𝐺 , de-

noted 𝐹 ≤ 𝐺 , if lm(𝐹) ≤ lm(𝐺). Observe that the inequality 𝐹 < 𝐺

is equivalent to any of the three inequalities obtained by replacing 𝐹

by lm(𝐹), 𝐺 by lm(𝐺), or both. We will use this equivalence freely.

The property of left compatibility for monomials extends to skew

polynomials in the form of the next lemma.

101

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Frédéric Chyzak and Philippe Dumas

Input: A dividend 𝐴, a list of nonzero divisors (𝐵1, . . . , 𝐵𝑠).

Output: A list of quotients (𝑄1, . . . , 𝑄𝑠) and a remainder 𝑅.

1. For 𝑖 from 1 to 𝑠 , do 𝐵′𝑖 := lc(𝐵𝑖)
−1 × 𝐵𝑖 .

2. 𝑅 := 0. For 𝑖 from 1 to 𝑠 , do 𝑄 ′
𝑖 := 0.

3. While 𝐴 ≠ 0 do

a. if there exists 𝑖 between 1 and 𝑠 such that lm(𝐵′𝑖) divides

lm(𝐴) on the right, then:

(1) pick such an 𝑖 ,

(2) 𝑀 := lc(𝐴) lm(𝐴) lm(𝐵′𝑖)
−1,

(3) 𝑄 ′
𝑖 := 𝑄

′
𝑖 +𝑀 , 𝐴 := 𝐴 −𝑀𝐵′𝑖 ;

b. otherwise: 𝑅 := 𝑅 + lc(𝐴) lm(𝐴), 𝐴 := 𝐴 − lc(𝐴) lm(𝐴).

4. For 𝑖 from 1 to 𝑠 , do 𝑄𝑖 := 𝑄
′
𝑖 × lc(𝐵𝑖)

−1.

5. Return the list (𝑄1, . . . , 𝑄𝑠) and 𝑅.

Algorithm 1: Right division algorithm in 𝑘 (𝑥)⟨𝑇 ⟩.

Lemma 4. For any skew polynomials 𝐻 , 𝐾1 and 𝐾2 from 𝑘 (𝑥)⟨𝑇 ⟩,

if 𝐻 ≠ 0 and 𝐾1 < 𝐾2, then 𝐻𝐾1 < 𝐻𝐾2.

Proof. As lm(𝐾1) < lm(𝐾2), the second of these monomials is

nonzero. Therefore, the polynomial 𝐾2 is nonzero, and so is 𝐻𝐾2.

Writing 𝑞 = lc(𝐾2), we have 𝐻 × 𝑞 ≠ 0 and 𝑞−1𝐾1 < 𝑞−1𝐾2, so

it is sufficient to prove the result for monic 𝐾2. If 𝐾1 = 0, then

𝐻𝐾1 = 0 < 𝐻𝐾2 and the result is proved. There remains the case

𝐾1 ≠ 0. For any term ℎ(𝑥)𝑇𝑢 of 𝐻 and any term 𝑘 (𝑥)𝑇 𝑣 of 𝐾1, by

Formula (6) there exist coefficients 𝑔𝑢′ (𝑥) such that

ℎ(𝑥)𝑇𝑢𝑘 (𝑥)𝑇 𝑣
=

∑

𝑢′

𝑔𝑢′ (𝑥)𝑇𝑢
′𝑣,

with a sum over those𝑢 ′ satisfying |𝑢 ′ | = |𝑢 |. The left-compatibility

of breadth-first ordering and the strict inequality 𝑇 𝑣 ≤ lm(𝐾1) <

lm(𝐾2) imply 𝑇𝑢
′𝑣

< 𝑇𝑢 lm(𝐾2) for each 𝑢
′. Therefore,

ℎ(𝑥)𝑇𝑢𝑘 (𝑥)𝑇 𝑣 ≤ max
𝑢′

𝑇𝑢
′𝑣

< 𝑇𝑢 lm(𝐾2) ≤ lm(𝐻𝐾2),

where the last inequality results from the monicity of 𝐾2. Taking a

maximum over 𝑢 and 𝑣 , we get 𝐻𝐾1 ≤ max lm(ℎ(𝑥)𝑇𝑢𝑘 (𝑥)𝑇 𝑣) <

𝐻𝐾2, thus proving the result. □

2.3 Division
The needed restriction of right quotients tomonic skew polynomials

is first involved in right division. To work around the difficulty, we

write a right division𝐴 = 𝑄𝐵+𝑅 in the form𝐴 = (𝑄×𝑐) (𝑐−1×𝐵)+𝑅

where 𝑐 is the leading coefficient of the polynomial 𝐵. Of course, we

next adjust the computation by changing the quotient 𝑄 ′ = 𝑄 × 𝑐

into 𝑄 = 𝑄 ′ × 𝑐−1. This leads to Algorithm 1, which is a simple

adaptation to our setting of the usual division algorithm.

Proposition 5. Given a tuple (𝐵1, . . . , 𝐵𝑠) of nonzero polynomials

in𝑘 (𝑥)⟨𝑇 ⟩, every𝐴 ∈ 𝑘 (𝑥)⟨𝑇 ⟩ can be written𝐴 = 𝑄1𝐵1+· · ·+𝑄𝑠𝐵𝑠+

𝑅 for polynomials 𝑄1, . . . , 𝑄𝑠 , 𝑅 satisfying the following conditions:

ś the monomials in the remainder 𝑅 are not divisible by any of

the leading monomials of the divisors 𝐵1, . . . , 𝐵𝑠 ;

ś furthermore, each 𝑄𝑖𝐵𝑖 satisfies 𝑄𝑖𝐵𝑖 ≤ 𝐴.

Such a division is provided by Algorithm 1, whatever choices are made

to resolve nondeterminism at Step 3a(1).

Proof. The proof is based on Algorithm 1. Let𝑇 𝑣 be the leading

monomial of the dividend 𝐴 at any stage of the computation. If

no divisor has a leading monomial that divides 𝑇 𝑣 , then the term

with this monomial is moved from 𝐴 to the remainder, so that the

dividend is made smaller. If there is a divisor

𝐵′ = 𝑇𝑢 +
∑

𝑢′
<𝑢

𝑐𝑢′ (𝑥)𝑇𝑢
′

whose leading monomial 𝑇𝑢 divides 𝑇 𝑣 , then 𝑣 = 𝑤𝑢 for some

word𝑤 . Then we subtract 𝑇𝑤𝐵′ from 𝐴 so that its leading mono-

mial 𝑇 𝑣 = 𝑇𝑤𝑇𝑢 is killed. According to Lemma 4,

𝑇𝑤
∑

𝑢′
<𝑢

𝑐𝑢′ (𝑥)𝑇𝑢
′

< 𝑇𝑤𝑇𝑢 = 𝑇 𝑣,

so the next dividend, 𝐴 −𝑇𝑤𝐵′, is smaller than 𝐴.

This process thus produces a strictly decreasing sequence of

monomials, given by the lm(𝐴), which by Proposition 1 must have

a lowest element. The process therefore terminates. The correction

of the algorithm results from a loop invariant: the value of 𝐴 +

𝑄 ′
1𝐵

′
1 + · · · +𝑄 ′

𝑠𝐵
′
𝑠 + 𝑅 at each entry into the loop body of Step 3 is

equal to the initial value of 𝐴. As the final value of 𝐴 is zero, this

proves the existence of the division. As the proof above does not

depend on the choice of 𝑖 at Step 3a(1), the final assertion holds. □

Example 6 (Natural ordering). Instead of breadth-first ordering,

we could have considered the ‘natural’ ordering <nat. As breadth-

first ordering, it refines degree and is based on lexicographic order-

ing. But it compares 𝑏-ary expansions of integers from the most

significant digit to the least significant digit, that is from left to

right, contrary to breadth-first ordering which reads from right to

left. In other words, given any ℓ and 0 ≤ 𝑟, 𝑟 ′ < 𝑏ℓ , natural ordering

has 𝑇𝑏ℓ ,𝑟 <nat 𝑇𝑏ℓ ,𝑟 ′ if and only if 𝑟 < 𝑟 ′.

Lemma 3 about the leading monomial of a product does not

hold true with natural ordering. For example, with 𝑏 = 2, 𝐹 = 𝑇4,2,

𝐺 = 𝑇2,1 +
𝑥3

1−𝑥4𝑇2,0, the product is 𝐹𝐺 = 𝑇8,5 +
𝑥

1−𝑥𝑇8,6, with leading

monomial𝑇8,6 for natural ordering, while the product of the leading

monomials is 𝑇4,2𝑇2,1 = 𝑇8,5.

Moreover, with <nat, it is possible that the division algorithm

does not end. For 𝑏 = 2, consider the dividend 𝐹 = 𝑇8,6 and the

divisors 𝐹1 = 𝑇2,1 −
𝑥3

1−𝑥4𝑇2,0, 𝐹2 = 𝑇4,2 −
1

1−𝑥2𝑇4,1. The successive

dividends are 𝑃2𝑘 =
𝑥𝑘

(1−𝑥)2𝑘
𝑇8,6, 𝑃2𝑘+1 =

𝑥𝑘

(1−𝑥)2𝑘+1
𝑇8,5, 𝑘 ≥ 0.

The carrier of the 𝑃𝑘 alternates between 𝑇8,6 and 𝑇8,5. Note that

for breadth-first ordering, the division process ends immediately,

because lm(𝐹1) = 𝑇2,1 and lm(𝐹2) = 𝑇4,1, none of which divides𝑇8,6.

2.4 Gröbner bases
In contrast with the commutative case, neither Hilbert’s basis the-

orem nor Dickson’s lemma is available. As a consequence, in the

sequel we restrict to finitely generated left ideals by requesting that

ideals be presented by an explicit finite set of generators.

Definition 7. A Gröbner basis of a left ideal I in 𝑘 (𝑥)⟨𝑇 ⟩ is a finite

subset G of I whose elements are monic and such that for every 𝐹

in I, the leading monomial lm(𝐹) is a left multiple of the leading

monomial lm(𝐺) of some polynomial 𝐺 in G.

Proposition 8. Let G be a Gröbner basis for a left ideal I. For every

polynomial 𝐹 , there is a unique polynomial 𝑅 such that 𝐹 ≡ 𝑅 mod I

and no monomial of 𝑅 is divisible by a monomial in lm(G). As a

102

A Gröbner-Basis Theory for Divide-and-Conquer Recurrences ISSAC ’20, July 20–23, 2020, Kalamata, Greece

consequence, 𝑅 is the remainder of the division by G regardless of the

chosen division strategy.

Proof. Let us assume that we have 𝐹 ≡ 𝑅1 ≡ 𝑅2 mod I for dis-

tinct 𝑅1 and 𝑅2, both satisfying the condition with regard to lm(G).

Then 𝑅1 − 𝑅2 is in I and nonzero. By the definition of a Gröbner

basis, the leading monomial lm(𝑅1 −𝑅2) is divisible by a monomial

in lm(G). But this is impossible since none of the monomials of 𝑅1
and 𝑅2 is divisible by a monomial in lm(G). We have thus shown

the uniqueness of 𝑅.

In addition, whatever choices resolve nondeterminism in the

division process, division provides us with some polynomial satis-

fying the two properties, and as a consequence of uniqueness, this

polynomial is independent of the choices. □

A crucial ingredient in the theory of Gröbner bases in polynomial

rings is the notion of 𝑆-polynomials: for two nonzero polynomials

𝐹 and 𝐺 , one considers the least common multiple of their leading

monomials and forms a combination of 𝐹 and 𝐺 that kills this

monomial. Owing to noncommutativity, least common multiples

of monomials do not always exist in 𝑘 (𝑥)⟨𝑇 ⟩ and they are very

specific when they do. In 𝑘 (𝑥)⟨𝑇 ⟩, a monomial 𝑇𝑢 indeed divides

another monomial 𝑇 𝑣 on the right, meaning there exists a quotient

𝑄 ∈ 𝑘 (𝑥)⟨𝑇 ⟩ satisfying 𝑇𝑢 = 𝑄𝑇 𝑣 if and only if 𝑣 is a suffix of 𝑢, in

which case there exists a monomial 𝑤 satisfying 𝑢 = 𝑤𝑣 and 𝑄 =

𝑇𝑤 . Thus, when two monomials 𝑇𝑢 and 𝑇 𝑣 have a least common

multiple, this is necessarily one of the two monomials.

As is usual in theories of Gröbner bases where monomials need

not have common multiples, like in the theory for polynomial

modules, we define the 𝑆-polynomial of two monic polynomials 𝑃

and 𝑄 of 𝑘 (𝑥)⟨𝑇 ⟩, with respective leading monomials 𝑇𝑢 and 𝑇 𝑣 ,

to be 0 when neither 𝑇𝑢 divides 𝑇 𝑣 nor 𝑇 𝑣 divides 𝑇𝑢 , and to be

𝑃 − 𝑇𝑤𝑄 when 𝑇𝑢 = 𝑇𝑤𝑇 𝑣 for some 𝑤 , respectively 𝑄 − 𝑇𝑤𝑃

when𝑇 𝑣 = 𝑇𝑤𝑇𝑢 for some𝑤 . Observe that we restrict the definition

to monic polynomials, as nonmonic divisors are ill-behaved.

We next obtain a characterization of Gröbner bases in 𝑘 (𝑥)⟨𝑇 ⟩

akin to that in commutative polynomial rings, via 𝑆-polynomials.

Theorem 9. A family G = (𝐺𝑖)1≤𝑖≤𝑚 of monic polynomials is a

Gröbner basis of the left ideal I it generates if and only if, whenever

𝑖 ≠ 𝑗 , there exists a choice resolving nondeterminism in the division of

the 𝑆-polynomial of 𝐺𝑖 and 𝐺 𝑗 by G that leads to a zero remainder.

In relation to the forward implication, notice that by Proposi-

tion 8, any resolution of nondeterminism leads to a zero remainder.

Proof. Given a Gröbner basis G, let us consider any two of

its elements, 𝐻1 and 𝐻2, and their 𝑆-polynomial 𝐻 . The division

of 𝐻 by G produces a remainder 𝑅 in I. If it was nonzero, by the

definition of a Gröbner basis, its leading monomial would be a

multiple of an element of G, contradicting that 𝑅 is a remainder. So

𝑅 is nothing but 0, and more generally so do all 𝑆-polynomials.

Conversely, let G = (𝐺𝑖)1≤𝑖≤𝑚 be a family of monic polynomials

whose 𝑆-polynomials all admit zero as a remainder upon division

by G. Further, let 𝐹 be a nonzero polynomial in the left ideal I

generated by G, which can be written

𝐹 =

𝑚
∑

𝑖=1

𝐻𝑖𝐺𝑖 . (8)

In particular, 𝐻𝑖 is a nonzero polynomial for at least one 𝑖 . We set

𝑀𝑖 := lm(𝐻𝑖𝐺𝑖) for 1 ≤ 𝑖 ≤ 𝑚, and 𝑀 := max1≤𝑖≤𝑚 𝑀𝑖 . Note the

inequalities 0 < lm(𝐹) ≤ 𝑀 . We will show that if lm(𝐹) < 𝑀 ,

then we can change the representation of 𝐹 so as to reduce 𝑀 .

Postponing the proof, we therefore assume the equality lm(𝐹) = 𝑀 ,

implying that𝑀 is one of the𝑀𝑖 , and that lm(𝐹) is right divisible

by lm(𝐺𝑖). This proves that G is a Gröbner basis.

When lm(𝐹) < 𝑀 , we can without loss of generality assume

that for some integer 𝑠 ,

𝑀 = 𝑀1 = · · · = 𝑀𝑠 > 𝑀𝑠+1 ≥ · · · ≥ 𝑀𝑚 ≥ 0,

and that lm(𝐺𝑠) = min1≤𝑖≤𝑠 lm(𝐺𝑖). Then, for each ℓ < 𝑠 , there

exists 𝑤ℓ such that lm(𝐺ℓ) = 𝑇
𝑤ℓ lm(𝐺𝑠), so that, by assumption,

the 𝑆-polynomial 𝐺ℓ − 𝑇
𝑤ℓ𝐺𝑠 admits zero as a remainder upon

division by G: there is an exact-division formula

𝐺ℓ −𝑇
𝑤ℓ𝐺𝑠 =

𝑚
∑

𝑖=1

𝐴ℓ,𝑖𝐺𝑖 ,

where the inequality𝐴ℓ,𝑖𝐺𝑖 < lm(𝐺ℓ) = lm(𝑇𝑤ℓ𝐺𝑠) holds for each 𝑖 .

By rewriting the𝐺ℓ in terms of those new sums into (8), we deduce

the new expression

𝐹 =

𝑠−1
∑

ℓ=1

𝐻ℓ

(

𝑇𝑤ℓ𝐺𝑠 +

𝑚
∑

𝑖=1

𝐴ℓ,𝑖𝐺𝑖

)

+

𝑚
∑

𝑖=𝑠

𝐻𝑖𝐺𝑖 = 𝑄𝐺𝑠 + 𝑅

for

𝑄 := 𝐻𝑠 +

𝑠−1
∑

ℓ=1

𝐻ℓ𝑇
𝑤ℓ , 𝑅 :=

𝑠−1
∑

ℓ=1

𝑚
∑

𝑖=1

𝐻ℓ𝐴ℓ,𝑖𝐺𝑖 +

𝑚
∑

𝑖=𝑠+1

𝐻𝑖𝐺𝑖 .

Since𝑀 > 0, note that𝐻ℓ is nonzero if ℓ < 𝑠 . So, for ℓ < 𝑠 and any 𝑖 ,

this and the inequality𝐴ℓ,𝑖𝐺𝑖 < lm(𝐺ℓ) imply by Lemma 4 the strict

inequality 𝐻ℓ𝐴ℓ,𝑖𝐺𝑖 < lm(𝐻ℓ𝐺ℓ) = 𝑀 . For 𝑖 > 𝑠 , the inequality

𝐻𝑖𝐺𝑖 < 𝑀 is strict as well. Adding all terms, this implies 𝑅 < 𝑀 ,

then, because 𝐹 < 𝑀 , also𝑄𝐺𝑠 = 𝐹 −𝑅 < 𝑀 . Up to reordering, this

makes 𝑄𝐺𝑠 + 𝑅 a new representation of 𝐹 , with lowered maximal

monomial𝑀 . □

2.5 A variant of Buchberger’s algorithm
Buchberger’s algorithm generalizes with minimal alterations.

Theorem 10. The noncommutative variant of Buchberger’s algo-

rithm provided by Algorithm 2 terminates. Moreover, with the breadth-

first ordering, it computes a Gröbner basis for the left ideal generated

by the input (𝐹𝑖)1≤𝑖≤𝑠 .

Proof. According to Proposition 5, the calls to the division al-

gorithm in Step 3b(2) return. The set G := (𝐺𝑖)𝑖=1,...,𝑚 can change

only in Step 3b(3)iii, if the remainder 𝑅 is nonzero. In this case,

the set of the leading monomials of the elements of G increases at

this point. But all encountered monomials in the algorithm have a

degree that is not more than the maximal degree in F , primarily

because the 𝑆-polynomials 𝐻 considered at Step 3b(2) have this

property. So the set lm(G) cannot grow indefinitely, proving that

Step 3b(3)iii can happen only finitely many times. After that, for

each 𝑆-polynomial 𝐻 there exists a division of 𝐻 by G with remain-

der 0, so that the algorithm terminates.

Let G𝑓 be the value of G output from the algorithm, and consider

a pair (𝐺,𝐺 ′) in it, with 𝐺 appearing as at a smaller index than 𝐺 ′

103

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Frédéric Chyzak and Philippe Dumas

Input: A finite list F = (𝐹𝑖)𝑖=1,...,𝑠 of nonzero skew polynomials.

Output: A finite list G = (𝐺𝑖)𝑖=1,...,𝑚 of nonzero skew polynomials.

1. 𝑚 := 𝑠 . For 𝑖 from 1 to𝑚, do 𝐺𝑖 := lc(𝐹𝑖)
−1 × 𝐹𝑖 .

2. P := {(𝐺𝑖 ,𝐺 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑚}.

3. While P ≠ ∅ do:

a. choose a pair (𝐻1, 𝐻2) and remove it from P;

b. if one of the leading monomials of the pair divides the

other, say, if lm(𝐻2) = 𝑇
𝑤 lm(𝐻1):

(1) compute the 𝑆-polynomial 𝐻 = 𝐻2 −𝑇
𝑤𝐻1,

(2) divide 𝐻 by (𝐺𝑖)𝑖=1,...,𝑚 ,

(3) if the remainder 𝑅 is not 0 then

i. 𝑅 := lc(𝑅)−1 × 𝑅,

ii. P := P ∪ {(𝐺𝑖 , 𝑅) | 1 ≤ 𝑖 ≤ 𝑚},

iii. set𝑚 :=𝑚 + 1, then 𝐺𝑚 := 𝑅.

4. Return (𝐺𝑖)𝑖=1,...,𝑚 .

Algorithm 2: A variant of Buchberger’s algorithm for the
noncommutative algebra 𝑘 (𝑥)⟨𝑇 ⟩.

in G𝑓 . As the algorithm never removes any element from G, the

pair must have been introduced into P during the execution, and

must have later been dealt with. Let G0 be the value of G at the time

the pair has been considered, and considering the 𝑆-polynomial 𝐻

of 𝐺 and 𝐺 ′. A possible choice for the division of 𝐻 by the final

set G𝑓 is, first, to reuse the exact same division steps that led to 𝑅,

thus using only elements from G0, and, second, in case 𝑅 is nonzero,

to add with one division step, dividing by the element 𝑅 of G𝑓 . In

all cases, the division obtains zero as its remainder. Therefore, the

output G is a Gröbner basis, as a consequence of Theorem 9. □

2.6 Reduced Gröbner bases
We continue by exploring properties of Gröbner bases that ensure

their uniqueness for a fixed ideal 𝐼 (and breadth-first ordering). The

results and proofs of the present section are very similar to those

of the classical commutative case.

Definition 11. A Gröbner basis G is minimal, respectively reduced,

if, for any two polynomials 𝐹 and 𝐺 in G, the leading monomial

of 𝐹 does not divide the leading monomial of 𝐺 , respectively any

monomial of 𝐺 .

Proposition 12. Every Gröbner basis G of a given left ideal 𝐼 con-

tains a minimal Gröbner basis for the same ideal 𝐼 . Furthermore, any

two minimal Gröbner bases for 𝐼 have the same number of elements

and the same set of leading monomials.

Proof. Suppose 𝐹 and 𝐺 in G are such that lm(𝐺) is a left mul-

tiple of lm(𝐹). By transitivity of right divisibility, G′ := G \ {𝐺}

is another Gröbner basis. Let 𝐻 = 𝐺 − 𝑇𝑤𝐹 be the 𝑆-polynomial

of 𝐹 and 𝐺 . The division of 𝐻 by G cannot involve the divisor 𝐺 ,

as leading monomials exclude this possibility, and it has a zero

remainder, because the set G is a Gröbner basis. So𝐺 is in the ideal

generated by G′. The latter is also a Gröbner basis for 𝐼 .

Let F = (𝐹𝑖)𝑖=1,...,𝑛 and G = (𝐺𝑖)𝑖=1,...,𝑚 be two minimal Gröb-

ner bases of 𝐼 . Because G is a Gröbner basis, the leading mono-

mial lm(𝐹1) is divisible by the leading monomial of some 𝐺𝑖 . With-

out loss of generality, we can reindex the family G so that lm(𝐺1) di-

vides lm(𝐹1). But lm(𝐺1) is by the same argument divisible by

Input: A Gröbner basis F = (𝐹𝑖)𝑖=1,...,𝑚 of an ideal of 𝑘 (𝑥)⟨𝑇 ⟩.

Output: A reduced Gröbner basis G = (𝐺𝑖)𝑖=1,...,𝑟 of the same ideal.

1. 𝑟 :=𝑚.

2. While some lm(𝐹𝑖) is a left multiple of some lm(𝐹 𝑗) with 𝑗 ≠

𝑖 , set F := (𝐹1, . . . , 𝐹𝑖−1, 𝐹𝑖+1, . . . , 𝐹𝑟) and 𝑟 := 𝑟 − 1.

3. Set G := F .

4. For 𝑖 from 1 to 𝑟 :

a. G′ := (𝐺1, . . . ,𝐺𝑖−1,𝐺𝑖+1, . . . ,𝐺𝑟);

b. set 𝐺𝑖 to the remainder 𝑅 of 𝐺𝑖 upon division by G′.

5. Return G = (𝐺𝑖)𝑖=1,...,𝑟 .

Algorithm 3: Gröbner-basis reduction algorithm.

some lm(𝐹𝑖), so that lm(𝐹𝑖) divides lm(𝐹1), hence 𝑖 = 1 as F is

minimal. Consequently, lm(𝐺1) divides lm(𝐹1) and lm(𝐹1) divides

lm(𝐺1), so that they are equal. We continue with lm(𝐹2), which nei-

ther divides lm(𝐹1) on the right nor is a left multiple of it, because

the Gröbner basis F is minimal. As previously, up to some reindexa-

tion, we get 𝐺2 satisfying lm(𝐹2) = lm(𝐺2). The process continues

until one of the lists is finished. If there remains an element in

the other, say 𝐺𝑚 in G, we obtain a contradiction to minimality:

lm(𝐺𝑚) would be divisible by some leading monomial lm(𝐹𝑖), that

it to say by lm(𝐺𝑖) with 𝑖 < 𝑚. □

Both following propositions show that a reduced Gröbner basis

of a left ideal generated by a finite set of skew polynomials exists

and is unique. Note that the monomial ordering used is the breadth-

first ordering and only this one.

Proposition 13. A reduced Gröbner basis of a left ideal of 𝑘 (𝑥)⟨𝑇 ⟩

is unique.

Proof. Observe that reduced Gröbner bases are minimal, so that

their cardinality is fixed, and so are their set of leading monomials.

Let G = {𝐺1, 𝐺2 . . . 𝐺𝑠 } and G′ = {𝐺 ′
1, 𝐺

′
2 . . . 𝐺

′
𝑠 } be two reduced

Gröbner bases of the same left ideal. Without loss of generality, we

can assume lm(𝐺𝑖) = lm(𝐺 ′
𝑖) for each 𝑖 . Suppose that 𝐺𝑖 and 𝐺

′
𝑖

are different for some 𝑖 . Then, the difference 𝐺𝑖 −𝐺
′
𝑖 is in the ideal,

and its leading monomial 𝑀 appears in at least one of 𝐺𝑖 and 𝐺
′
𝑖 ,

strictly below their leading monomials. If in𝐺𝑖 ,𝑀 is a left multiple

of some lm(𝐺 𝑗) for 𝑗 ≠ 𝑖 , contradicting that G is reduced. If in 𝐺 ′
𝑖 ,

a similar argument applies. Therefore, G = G′. □

Proposition 14. Algorithm 3 computes a reduced Gröbner basis

from a Gröbner basis.

Proof. Let I be the input ideal. The first two steps of Algo-

rithm 3 replace F by some minimal Gröbner basis generating the

same ideal by the method implicit in the proof of Proposition 12.

Observe that the successive values of G along the loop at Step 4 are

all minimal Gröbner bases of I, with the family lm(G) kept invari-

ant, as a result of 𝐺𝑖 and 𝑅 sharing the same leading monomial at

Step 4b. Additionally, for each 𝑖 , the remainder 𝑅 write lm(𝐺𝑖) −𝑄

where 𝑄 involves no left multiple of any element of lm(G′), and

in fact of any element of lm(G) as 𝑄 < 𝐺𝑖 . As a result, the final

family G is a reduced Gröbner basis of I. □

104

A Gröbner-Basis Theory for Divide-and-Conquer Recurrences ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Example 15. Let us consider the family of skew polynomials

𝑇4,3 +
1

1 − 2𝑥
𝑇4,2 +

𝑥

1 − 𝑥2
𝑇2,1 +𝑇2,0, 𝑇8,3 +

1

1 − 𝑥
𝑇8,2,

𝑥𝑇8,4 +
2 − 𝑥

1 − 𝑥
𝑇4,2 +𝑇4,0, 𝑇8,1 +𝑇8,0 +𝑇4,3, 𝑇8,1 +𝑇8,2 +𝑇8,0,

−
𝑥3

1 − 𝑥4
𝑇8,2 +𝑇8,4 +𝑇2,1, 𝑇8,5 +

𝑥2

1 − 3𝑥
𝑇8,4 +𝑇2,1 .

An instance of execution of Algorithm 2 begins by considering

the pair between the first two polynomials, because of the relation

𝑇8,3 = 𝑇2,0𝑇4,3. This provides the 𝑆-polynomial

𝑇8,6 −
2𝑥5 − 8𝑥4 − 3𝑥3 − 3𝑥2 − 9𝑥 + 6

2𝑥4 (2𝑥2 − 3𝑥 + 1)
𝑇4,2 +

4𝑥 − 1

2 − 2𝑥
𝑇2,0

−
4𝑥4 + 2𝑥3 + 3𝑥2 + 3𝑥 + 3

2𝑥4
𝑇4,0 +

3𝑥6 + 4𝑥5 − 4𝑥4 − 3𝑥2 + 3

2𝑥3 (𝑥3 − 𝑥2 − 𝑥 + 1)
𝑇2,1 .

The computation results in a Gröbner basis with 14 elements, whose

leading monomials are: 𝑇8,3, 𝑇8,5, 𝑇8,1, 𝑇8,6, 𝑇8,2, 𝑇8,4, 𝑇8,0, 𝑇4,3, 𝑇4,1,

𝑇4,2, 𝑇4,0, 𝑇2,1, 𝑇2,0. One of the polynomials in the basis has rational

functions coefficients with degree 31 and numerical coefficients of

order 1011. There were 81 pairs dealt with. Among them, 21 gave

𝑆-polynomials and 14 of the 21 𝑆-polynomials reduced to 0. After

reduction by Algorithm 3, we find the Gröbner basis {𝑇2,0,𝑇2,1}.

3 THE LINEAR ALGEBRA APPROACH
In this section, we develop an algorithm reminiscent of Faugère’s

algorithm 𝐹4 [6], but properties of section operators departing from

those of commutative polynomials make specific variations needed.

First, it results directly from the properties of division and the defi-

nition of 𝑆-polynomials that our variant of Buchberger’s algorithm,

Algorithm 2, performs all its calculations on an input F in the

𝑘 (𝑥)-vector space generated by the monomials 𝑇𝑤 ≤ max lm(F).

Second, divisions tend to involve dense polynomials, owing to the

relation (6), which is amplified by the exponential growth with 𝑑

of the number of monomials 𝑇𝑤 of degree |𝑤 | = 𝑑 .

Consequently, it seems adequate to perform a calculation that is

incremental in the way of 𝐹4, but with the unusual property of being

confined in a finite-dimensional vector space known beforehand.

Given a finite set of generators of an ideal, we use the basis B of

all monomials that are not larger than an adequate monomial 𝑇𝑢 .

Then, any polynomial 𝐹 ≤ 𝑇𝑢 in 𝑘 (𝑥)⟨𝑇 ⟩ can be represented by

the row vector 𝑉 = matB (𝐹), and conversely, any row vector 𝑉

represents a polynomial 𝐹 = polyB (𝑉) =
∑

𝑣≤𝑢 𝑉𝑣𝑇
𝑣 . By view-

ing matrices as families of rows, indexed by integers, a similar

bijection is in place between families F of 𝑠 polynomials and rect-

angular matrices 𝑀 with 𝑠 rows. We write 𝑀 = matB (F) and

F = polyB (𝑀) accordingly. Furthermore, we extend the notion

of leading monomial to vectors through these bijections, that is,

we define lm(𝑉) := lm(polyB (𝑉)). In the previous discussion, all

(row) vectors and matrices have columns indexed by the words 𝑣

such that 𝜀 ≤ 𝑣 ≤ 𝑢. For pivoting considerations in linear algebra,

we view those columns as sorted according to decreasing 𝑣 , that is,

so to say with 𝑢 to the left and 𝜀 to the right.

As already emphasized in Section 2.4, the notion of 𝑆-polynomial

is very particular in our context. A pair (𝐻1, 𝐻2) of polynomi-

als admits a nonzero 𝑆-polynomial 𝐻2 − 𝑇
𝑤𝐻1 only if lm(𝐻2) =

𝑇𝑤 lm(𝐻1) (up to order). A direct analogue of Faugère’s łhalf pairsž

Input: A finite family F of skew polynomials.

Output: A Gröbner basis G of the left ideal generated by F .

1. Set B := (𝑇 𝑣)𝑢≥𝑣≥𝜀 for 𝑢 such that 𝑇𝑢 = max lm(F).

2. 𝑅 := RowEchelon((matB (lc(𝐹)−1 × 𝐹))𝐹 ∈F).

3. 𝑃 := Preproc(HalfPairs(𝑅, 𝑅), 𝑅).

4. While 𝑃 ≠ ∅ do

a. 𝑅0 := 𝑅 augmented by stacking it above 𝑃 ,

b. 𝑅 := RowEchelon(𝑅0),

c. 𝑅+ := the rows 𝑉 of 𝑅 such that lm(𝑉) is not in lm(𝑅0),

d. 𝑃 := Preproc(HalfPairs(𝑅, 𝑅+), 𝑅).

5. Return G = polyB (𝑅).

where:

∗ HalfPairs(𝑅1, 𝑅2) returns the rows matB (𝑇𝑤 polyB (𝑉 ′)) satis-

fying lm(𝑉) = 𝑇𝑤 lm(𝑉 ′) for some word 𝑤 , some row 𝑉 in 𝑅1

or 𝑅2, and some row 𝑉 ′ in the other one.

∗ RowEchelon(𝑀) returns the variant of a row echelon form of𝑀

obtained by reducing each row by the rows above it, without

interchanging any rows, but removing null rows, and by using

leading coefficients of rows as pivots.

∗ Preproc(𝑃, 𝑅) takes a monomial that appears in polyB (𝑃) but

not in lm(𝑅 ∪ 𝑃), and is expressible as a product 𝑇𝑤 lm(𝑉) for

some word𝑤 , some row 𝑉 in 𝑅, then adds matB (𝑇𝑤 polyB (𝑉))

to 𝑃 , and repeats until no such product can be added.

Algorithm 4: A variant of the 𝐹4 algorithm for the noncom-
mutative algebra 𝑘 (𝑥)⟨𝑇 ⟩.

would therefore consist of both polynomials 𝐻2 and 𝑇𝑤𝐻1. But

when we get to consider a pair (𝐻1, 𝐻2) in our variant of the 𝐹4 algo-

rithm, the polynomial𝐻2 is already in the polynomial list polyB (𝑅)

of polynomials available as divisors. So, it suffices to add 𝑇𝑤𝐻1 to

the list 𝑃 of new half pairs. This motivates that our definition of

HalfPairs intentionally forgets 𝐻2.

Theorem 16. The variant of the 𝐹4 algorithm provided by Algo-

rithm 4 terminates and returns a Gröbner basis of the left ideal

of 𝑘 (𝑥)⟨𝑇 ⟩ generated by its input.

Proof. The successive matrices 𝑅 at Step 4b generate an increas-

ing family of 𝑘 (𝑥)-vector spaces of rows, all of dimension at most

the cardinality of B. The termination of the algorithm is then imme-

diate: as the span of 𝑅 cannot grow indefinitely, at some point 𝑅+

is empty, forcing 𝑃 to be empty as well at the next step.

After the initialization of 𝑅 at Step 2, the left ideal generated

by polyB (𝑅) is exactly the ideal generated by the input F . Whether

it be after Step 3 or Step 4d, polyB (𝑃) contains only elements of the

ideal generated by polyB (𝑅). The ideal generated by polyB (𝑅0)

is therefore equal to that generated by polyB (𝑅), and this ideal is

left unchanged upon changing 𝑅0 to RowEchelon(𝑅0). We get that

the ideal generated by polyB (𝑅) remains unchanged after Steps 4a

and 4b. By induction, this ideal, and therefore the ideal generated

by the output G, is the ideal generated by the input F .

Next, the construction of 𝑅0 at Step 4a and the definition of

RowEchelon are so that the matrix 𝑅 obtained at Step 4b is equal

to the matrix 𝑅 before, stacked above the matrix 𝑅+ that will be

extracted at Step 4c. Thus, any row vector introduced into 𝑅 by

Step 2 or 4b will remain there until the end of the algorithm.

105

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Frédéric Chyzak and Philippe Dumas

problem 01 35 38 14 39 42 18 15 43

radix 2 2 3 2 3 2 3 2 2

deg/dim 3/14 6/127 4/161 5/63 5/485 4/31 4/161 6/127 5/63

#in/#out 7/2 5/5 5/5 5/5 5/5 24/1 4/4 6/6 48/1

Buchberger 0.29 1.89 2.09 0.46 9.10 4.90 1.64 1.98 69.95

F4 0.26 0.65 0.77 2.76 2.86 5.39 9.68 25.50 77.41

speed-up 1.09 2.91 2.70 0.17 3.18 0.91 0.17 0.08 0.90

Table 1: Selected timings, comparing the speeds of Algo-
rithm 4 (F4) and Algorithm 2 (Buchberger). Our running ex-
ample (Examples 15 and 17) corresponds to problem 01.

Finally, consider any two polynomials 𝐻1 and 𝐻2 of the out-

put G satisfying lm(𝐻1) = 𝑇
𝑤 lm(𝐻2) for some word𝑤 . This𝑤 is

nonempty since lm(G) has no repeated no element. If both row vec-

tors𝑉1 = matB (𝐻1) and𝑉2 = matB (𝐻2) were introduced at Step 2,

they are considered at Step 3 to produce the half pairmatB (𝑇𝑤𝐻2).

Otherwise, the most recent of 𝑉1 and 𝑉2 was introduced at Step 4b

and both vectors are considered at Step 4d to produce the half

pair matB (𝑇𝑤𝐻2). In both cases, 𝑃 is thus nonempty and the cal-

culation continues to Step 4a with both 𝑉1 and 𝑉2 in 𝑅. After 4b,

they are still in 𝑅, and matB (𝑇𝑤𝐻2) is a linear combination of the

rows of 𝑅. As a consequence, the remainder of the division of the 𝑆-

polynomial𝐻1−𝑇
𝑤𝐻2 by polyB (𝑅) is zero, and so is the remainder

under division by G. By Theorem 9, G is a Gröbner basis. □

Example 17 (Example 15 continued). The maximum monomial

is 𝑇8,3 = 𝑇
011 so that we use the basis of the 𝑇𝑤 with𝑤 = 011, 101,

001, 110, . . . , 0, 𝜀, that is𝑇8,3,𝑇8,5,𝑇8,1,𝑇8,6, . . . ,𝑇2,0,𝑇1,0. The leading

monomials of the input polynomials are𝑇4,3 and𝑇8,𝑟 with 1 ≤ 𝑟 ≤ 5.

The row echelon reduction at Step 2 brings up the monomial𝑇4,2. As

𝑇4,3 divides𝑇8,3 and𝑇4,2 divides𝑇8,2, Step 3 computes two half pairs

that are rows with leading monomials 𝑇8,3 and 𝑇8,2. Preprocessing

adds a row with leading monomial 𝑇8,6, resulting in 𝑃 consisting of

3 rows. After stacking 𝑅 and 𝑃 at the first execution of the loop, the

reduction at Step 4b discovers the monomials 𝑇8,0 and 𝑇4,1, hence

the matrix 𝑅+ at Step 4c has two rows. Next, Step 4d produces

three half pairs with leading monomials 𝑇8,6, 𝑇8,1, and 𝑇8,5, before

preprocessing finds no row to be added, resulting in 𝑃 consisting

of only 3 rows. At this point, the matrix contains polynomials with

maximal degree 14. It takes 3 executions of the main loop before the

computation ends and returns a Gröbner basis with 13 polynomials,

whose leading monomials are in fact all the elements of the basis B

except for 𝑇 𝜀 = 𝑇1,0. The polynomials in intermediate calculations

have degrees up to 19 and use integer coefficients up to ≈ 3.7 1019.

4 IMPLEMENTATION AND EXPERIMENT
We implemented Algorithms 2 and 4 in Maple and computed re-

duced Gröbner bases of over 40 ideals. The script and the data are

available at https://specfun.inria.fr/chyzak/gbdacr/. The timings

obtained (Table 1) do not indicate any clear advantage of F4.

5 CONCLUSION
We have achieved our initial goal of a theory of Gröbner bases for

divide-and-conquer systems. To the best of our knowledge, this

is the first time such a theory has been developed in a context

involving noncommutative words and twisted commutation rules

simultaneously. We could overcome the difficulty that the leading

monomial of a polynomial product need not be the product of the

leading monomials.

As to efficiency, the contribution of the 𝐹4 algorithm is unclear. It

needs to be further studied in relation to other ingredients: rejection

criteria; an incremental selection strategy of half pairs; modular

variants of 𝑘 (𝑥) compatible with the action of sections operators.

On the other hand, our theory extends to an algorithmic module

theory, which we use in applications involving nonhomogeneous re-

currence equations and systems. This will be developed elsewhere.

Finally, remark that Example 15 provides a system whose series

solutions are all zero, although the ideal does not contain 1. Any

series annihilated by the computed Gröbner basis, {𝑇 0,𝑇 1}, has

indeed odd and even parts that are zero, and so is zero. Recov-

ering 1 in the ideal is possible if one extends the algebra with a

generator𝑀 to represent the Mahler operator, acting on series by

𝑀 · 𝑓 (𝑥) = 𝑓 (𝑥𝑏). When 𝑏 = 2, the action on series leads to the

identity 1 = 𝑀𝑇 0 +𝑥𝑀𝑇 1 to be enforced in the algebra. However, it

also leads to 𝑇 0𝑀 = 1 and 𝑇 1𝑀 = 0, hence to an algebra with zero

divisors. We have not tried to develop a Gröbner-basis theory for it.

REFERENCES
[1] J. Apel and W. Lassner. An extension of Buchberger’s algorithm and calculations

in enveloping fields of Lie algebras. J. Symbolic Comput., 6(2-3):361ś370, 1988.
[2] T. Becker and V. Weispfenning. Gröbner Bases. Springer, 1993.
[3] F. Chyzak and B. Salvy. Non-commutative elimination in Ore algebras proves

multivariate identities. Journal of Symbolic Computation, 26(2):187ś227, 1998.
[4] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer,

2015.
[5] P. Dumas. Asymptotic expansions for linear homogeneous divide-and-conquer

recurrences. Theoretical Computer Science, 548:25ś53, Sept. 2014.
[6] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).

Journal of Pure and Applied Algebra, 139(1ś3):61ś88, June 1999.
[7] A. Galligo. Some algorithmic questions on ideals of differential operators. In

Eurocal’85, Vol. 2 (Linz, 1985), volume 204 of Lecture Notes in Comput. Sci., pages
413ś421. Springer, 1985.

[8] E. L. Green. An introduction to noncommutative Gröbner bases. In K. G. Fischer,
P. Loustaunau, J. Shapiro, E. L. Green, and D. Farkas, editors, Computational
Algebra, volume 151 of Lecture Notes in Pure and Appl. Math., pages 167ś190.
Dekker, 1994. Proc. of the 5th Mid-Atlantic Algebra Conference (1993).

[9] H.-K. Hwang, S. Janson, and T.-H. Tsai. Exact and asymptotic solutions of a
divide-and-conquer recurrence dividing at half. ACM Transactions on Algorithms,
13(4):1ś43, Dec. 2017.

[10] A. Kandri-Rody and V.Weispfenning. Noncommutative Gröbner bases in algebras
of solvable type. Journal of Symbolic Computation, 9(1):1ś26, 1990.

[11] H. Kredel. Solvable Polynomial Rings. Reihe Mathematik. Shaker, Germany, 1993.
[12] R. La Scala and V. Levandovskyy. Skew polynomial rings, Gröbner bases and

the letterplace embedding of the free associative algebra. J. Symbolic Comput.,
48:110ś131, 2013.

[13] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of
algebraic equations. In Lecture Notes in Comput. Sci., pages 146ś156. 1983.

[14] V. Levandovskyy and H. Schönemann. Plural: a computer algebra system for
noncommutative polynomial algebras. In Proceedings of ISSAC’03 (Philadelphia,
USA). ACM Press, 2003.

[15] E. L. Mansfield and A. Szanto. Elimination theory for differential difference
polynomials. In Proceedings of ISSAC’03 (Philadelphia, USA). ACM Press, 2003.

[16] F. Mora. Groebner bases for non-commutative polynomial rings. In Algebraic
Algorithms and Error-Correcting Codes, pages 353ś362. Springer, 1986.

[17] T. Mora. Standard bases and non-noetherianity: Non-commutative polynomial
rings. In T. Beth and M. Clausen, editors, Applicable Algebra, Error-Correcting
Codes, Combinatorics and Computer Algebra, pages 98ś109. Springer, 1988.

[18] T. Mora. Groebner bases in non-commutative algebras. In Proceedings of ISSAC’89
(Portland, USA), pages 150ś161. Springer, 1989.

[19] N. Takayama. Gröbner basis and the problem of contiguous relations. Japan
Journal of Applied Mathematics, 6(1):147ś160, 1989.

[20] V. A. Ufnarovskiı̆. On the use of graphs for computing a basis, growth and Hilbert
series of associative algebras. Math. Sb., 68(2):417ś428, 1991.

[21] V. Weispfenning. Finite Gröbner bases in non-Noetherian skew polynomial rings.
In Proceedings of ISSAC’92 (Berkeley, USA). ACM Press, 1992.

106

https://specfun.inria.fr/chyzak/gbdacr/

Bounds for Degrees of Minimal µ−bases of Parametric Surfaces

Teresa Cortadellas
Universitat de Barcelona, Facultat

d’Educació
Barcelona, Spain

terecortadellas@ub.edu

Carlos D’Andrea
Universitat de Barcelona,

Departament de Matemàtiques i
Informàtica

Barcelona, Spain
cdandrea@ub.edu

M. Eulàlia Montoro
Universitat de Barcelona,

Departament de Matemàtiques i
Informàtica

Barcelona, Spain
eula.montoro@ub.edu

ABSTRACT

By adapting the effective version of Quillen-Suslin Theorem given

in [8], we show that if the ideal defining a rational parametrization

of degree d of an algebraic surface in 3-dimensional space is radical

and has D points, then a µ-basis of this parametrization can be

found of degree bounded by 5max(1,D − 1)4(2d + 1)4. This bound

improves those obtained recently in [4] in our setup, and it is also

sensitive to the number of base points.

KEYWORDS

µ-bases, syzygies, parametrization, Quillen-Suslin Theorem, effec-

tive bounds

ACM Reference Format:

Teresa Cortadellas, Carlos D’Andrea, and M. Eulàlia Montoro. 2020. Bounds

for Degrees of Minimal µ−bases of Parametric Surfaces. In International

Symposium on Symbolic and Algebraic Computation (ISSAC ’20), July 20–23,

2020, Kalamata, Greece. ACM, New York, NY, USA, 7 pages. https://doi.org/

10.1145/3373207.3404039

1 INTRODUCTION

The concept of µ−basis was introduced in [5] in the case of parametrized

rational curves. Let K be a field, s an indeterminate over K and

n ∈ N. An (n + 1)-tuple P(s) = (a1(s), . . . ,an+1(s)) ∈ K[s]
n+1 can

be regarded as the parametrization of a rational curve in Kn via

the map K d Kn given by
(a1(s)
an+1(s)

, . . .
an (s)
an+1(s)

)
.With this in mind,

we can assume w.l.o.g. that дcd(ai (s)) = 1. The sygyzy module of P

over K[s] is defined as

Syz(P) = {(A1(s), . . . ,An+1(s)) ∈ K[s]
n+1 :

n+1∑
i=1

Ai (s)ai (s) = 0}.

This module is free of rank n.

Assume that d = max (deg(ai)) ≥ 1. By applying the Extended

Euclidean Algorithm to the input (see [5] and [10]) one can find

a basis {p1(s), . . . ,pn (s)} of Syz(P) such that deg(pi (s)) = µi with

µ1 + . . . + µn = d . Such a basis is called a µ-basis in the literature.

So, essentially, µ-bases are bases of Syz(P) of controlled degree. For

algorithms to compute µ−bases of curves, see [3, 5, 10, 12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20–23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404039

To show that the degree of a µ-basis is sharp in the sense that

the condition
∑n
i=1 deg(pi (s)) < d can never happen for any basis

{p1(s), . . . ,pn (s)} of Syz(P), some finer results from Commutative

Algebra are needed. We state it here for convenience of the reader,

as it will also be used later in the proof of our main result.

Theorem 1.1. (Hilbert-Burch Theorem [7, Theorem 3.2]) Suppose

that an ideal I in a Noetherian ring R admits a free resolution of

length 1 as follows:

0 → F
M
→ G → I → 0.

If the rank of the free module F is n, then the rank of G is n + 1, and

there exists a nonzero divisor a ∈ R such that I is equal to a times the

ideal of n × n minors of the matrix M with respect with any given

bases of F and G. The generator of I that is the image of the i-th

basis vector of G is ±a times the determinant of the submatrix ofM

formed from all except the i-th row. Moreover, the grade of the ideal

of maximal minors is 2.

Conversely, given a (n + 1) × n matrix M with entries in R such

that the grade of the ideal of n × n minors of M is at least 2, and a

given nonzero divisor a ∈ R, the ideal I generated by a times the n×n

minors of M admits a free resolution of length one as above. It has

grade 2 if and only if a is a unit.

By applying the Hilbert-Burch Theorem to the case R = K[s, s0]

with s0 being a new indeterminate over K, and I being the ideal

generated by the homogeneization of the ai (s), 1 ≤ i ≤ n + 1, we

will deduce that

P(s, s0) = p1(s, s0) ∧ . . . ∧ pn (s, s0), (1)

where each of the objects appearing above are the homogeneiza-

tions of those defined in one variable. The wedge product notation

here only means that the coordinates of P(s, s0) are -up to a nonzero

constant in K- equal to the signed maximal minors of the (n+1)×n

matrix having in the i-th column the coordinates of pi (s, s0).

From (1) we deduce straightforwardly that

deg(P(s, s0)) =

n+1∑
i=1

deg(pi (s, s0)),

which shows that the degree in µ-bases for curves is sharp.

For parametric surfaces the situation is more complicated as

no Euclidean Algorithm is possible in more than one variable.

Yet µ-bases exist, and the Hilbert-Burch Theorem still applies in

this case. Let t be another indeterminate over K. An (n + 1)-tuple

P(s, t) = (a1(s, t), . . . ,an+1(s, t)) ∈ K[s, t]n+1 can be regarded as

the parametrization of a surface in Kn as before. So, we can assume

again that дcd(ai (s, t)) = 1. In the Appendix of [2], it is shown that

107

https://doi.org/10.1145/3373207.3404039
https://doi.org/10.1145/3373207.3404039
https://doi.org/10.1145/3373207.3404039

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cortadellas and D’Andrea, et al.

the syzygy module

Syz(P) = {(A1(s, t), . . . ,An+1(s, t)) ∈ K[s, t]
n+1

:

A1(s, t)a1(s, t) + . . . +An+1(s, t)an+1(s, t) = 0}

is also free of rank n. In that paper, a µ-basis of P(s, t) was defined

as any basis of Syz(P). No were neither required nor deduced on

the degrees of any of these bases. A minimal µ-basis was defined as

a basis {p1(s, t), . . . ,pn (s, t)} of Syz(P) such that
∑n
i=1 deg(pi (s, t))

is minimal among all the bases of Syz(P), and the question on

explicit bounds on the degree of such a minimal µ-basis was raised.

Algorithms to compute µ-bases for this case can be found in [6], but

no bounds on the degree of these elements can be easily derived

from these algorithms.

In [4] the first of such bounds is produced for surfaces in K3, i.e.

when n = 3. Indeed, it is shown in [4, Theorem A] that a minimal

µ-basis in this situation has degree bounded by O(d33). Several sub-

cases were considered with better bounds in all of them. However,

it is not clear yet whether these bounds are sharp, and there is

definitely a lot of room for improvements.

In this paper, we present one of such sharpenings. To keep the

notation simple and also to compare with previous results, we set

ourselves in the case n = 3, but the generalization to any n is

straightforward. So, for the rest of the text, we will deal with a

parametrization

P(s, t) = (a1(s, t),a2(s, t),a3(s, t),a4(s, t)) ∈ K[s, t]
4 (2)

with deg(P) = max (deg(ai (s, t))) = d and дcd(ai (s, t)) = 1. We de-

note with IP = ⟨a1(s, t),a2(s, t),a3(s, t),a4(s, t)⟩ ⊂ K[s, t] the ideal

defined by these polynomials, and VP ⊂ K
2
the variety defined

by this ideal in the algebraic closure of K. Note that the condi-

tion дcd(ai (s, t)) = 1 implies that VP is a finite set. Let D be its

degree, meaning the number of points in VP counted with their

corresponding multiplicities.

It is known that a radical zero-dimensional ideal I ⊂ K[s, t] has

-after possibly a linear change of coordinates- system of generators

of the form {p(s), t −q(s)}. The converse of course holds for a larger

class of ideals containing those radical and zero-dimensional, and

have been characterized geometrically in [1]. These ideals are said

to have a shape basis.

Wewill use the effective version of Quillen-Suslin Theorem given

in [8] to give an algorithmic proof of the following result:

Theorem 1.2. Let P(s, t) be as in (2) with d = deg(P) and D =

deg(VP). If IP has a shape basis, then a µ−basis {p1(s, t), p2(s, t), p3(s, t)}

of P(s, t) can be found with degree bounded by

5max(1,D − 1)4(2d + 1)4. (3)

As a consequence of this result, ifVP = ∅ (i.e. IP = K[s, t] thanks

to Hilbert’s Nullstellensatz), we have that D = 0 and hence (3) boils

down to a bound of the size O(d4) which is the one appearing in

[8] for this situation, and refines the amount O(d22) obtained in [4]

for this case.

In order to obtain a bound only depending on d , note that by

Bézout Theorem we always have D ≤ d2, and hence (3) is always

bounded by a quantity of the size of O(d12). This is also a major

improvement over the results in [4]. It should be said however, that

our results are restricted to the case of IP having a shape basis,

and our techniques depend strongly on the particular properties of

this kind of ideals, so no extensions to the general case seem to be

deduced from our approach and extra ideas are needed to improve

the bounds already known. On the plus side, by following the steps

of our proof one can compute a µ-basis of P(s, t) with such bounds

in the degree, see Algorithm 4.1.

The paper is organized as follows: in Section 2 we will revisit the

effective version of Quillen-Suslin Theorem given in [8] to obtain

bounds for a minimal µ-basis in the case VP = ∅. In Section 3 we

will prove the general case by reducing it to the situation of Quillen-

Suslin. All our steps are computationally feasible so we collect all

of them in Algorithm 4.1 in Section 4, where a running example is

also provided.

2 THE UNIMODULAR CASE

Recall that a matrix in K[s, t]n×m is said to be unimodular if the

ideal generated by its maximal minors is the whole ring K[s, t].

We will consider P as a 1 × 4 matrix, and consider the situation

when P is unimodular which equivalently means that IP = K[s, t]

or VP = ∅.

Theorem 2.1. [8] If P(s, t) being as in (2) is a unimodular matrix,

there exists a unimodular matrix M ∈ K[s, t]4×4 of degree O(d4),

such that

P(s, t)M = (1, 0, 0, 0). (4)

Corollary 2.2. Let M be the matrix of above, and write M =

(M1M2M3M4), withMi being the i-th column ofM . Then, the set

{M2
,M3
,M4} is a µ−basis of Syz(P).

Proof. We clearly have P · Mi
= 0 for i = 2, 3, 4. Also, these

columns areK[s, t]-linearly independent as they are part of a matrix

of full rank. To show that they generate Syz(P), letA be any element

in this module, asM is unimodular, we have that {M1
,M2
,M3
,M4}

generates K[s, t]4, and hence we get A =
∑4
j=1 pjM

j with pj ∈

K[s, t], j = 1, 2, 3, 4. As P · A = 0, from (4) we deduce straightfor-

wardly that p1 = 0, which then implies that A ∈ ⟨M2
,M3
,M4⟩.

This concludes with the proof of the claim. □

We will review now the algorithm proposed in [8] to compute

such amatrixM . This will give explicit bounds for the degrees of the

elements of a µ-basis thanks to Corollary 2.2. We will assume that

K is infinite, otherwise we can work in an extension of it. Suppose

w.l.o.g. that degt (a1) = d . If this is not the case, we can redefine

a1 with this property after a linear combination of the ai ’s, and if

necessary also after applying the change of variable s̃ = s + λt with

λ ∈ K \ {0}.

Lemma 2.3. If IP = K[s, t], then there exist α3, α4 ∈ K and

β2, β3, β4 ∈ K, such that by setting ã2 := a2 +α3a3 +α4a4, and ã3 :=

β2a2 + β3a3 + β4a4, the polynomials r12(s) := Rest (a1(s, t), ã2(s, t))

and r13(s) := Rest (a1(s, t), ã3(s, t)) are coprimes.

Proof. If r12(s) = Rest (a1(s, t), ã2(s, t)) ≡ 0∀α3,α4 ∈ K, then

a1(s, t) and ã2(s, t) would have a common factor д(s, t) of positive

degree in t which divides a1,a2,a3 and a4. This is a contradiction

because we are assuming V (a1,a2,a3,a4) = ∅.

108

Bounds for Degrees of Minimal µ−bases of Parametric Surfaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

So, we can find α3,α4 ∈ K such that r12(s) , 0, and this implies

that V (a1, ã2) is finite. If it is empty, the claim follows straightfor-

wardly. Otherwise, we list its elements:

V (a1, ã2) = {(si , ti), i = 1, . . . , l} ⊂ K2.

Set now S = {(si , ti j) | a1(si , ti j) = 0, i = 1, . . . , l}.

Since V (a1, ã2,a3,a4) = ∅ and K is infinite, there must exist

(β2, β3, β4) such that

(β2, β3, β4) < ∪(si ,ti j)∈S

〈(
ã2(si , ti j),a3(si , ti j),a4(si , ti j)

)〉⊥
.

For these values of the βi ’s, the claim follows straitghtforwardly.

□

Theorem 2.4. Let P(s, t) be as in (2) with 1 ∈ IP . Then, a µ−basis

of Syz(P) has degree bounded by 4d4.

Proof. Assume w.l.o.g. that a1,a2 and a3 have already been

modified according to the hypothesis of Lemma 2.3. We will apply

the constructive method given in [8] for the proof of Theorem 2.1

with two steps:

(a1(s, t),a2(s, t),a3(s, t),a4(s, t))

step1
−−−−−→ (a1(s,B

′),a2(s,B
′),a3(s,B

′),a4(s,B
′))

step2
−−−−−→ (a1(s, 0),a2(s, 0),a3(s, 0),a4(s, 0))

For the first step we compute

r12(s) = Rest (a1(s, t),a2(s, t)) and r13(s) = Rest (a1(s, t),a3(s, t)).

By Bézout’s Identities, there exist A1(s, t), A2(s, t), A
∗
1
(s, t), and

A∗
2
(s, t) ∈ K[s, t] such that

A1(s, t)a1(s, t) +A2(s, t)a2(s, t) = r12(s)

and

A∗
1
(s, t)a1(s, t) +A

∗
2
(s, t)a3(s, t) = r13(s)

with

deg(r12), deg(r13) ≤ d2, deg(Ai (s, t)), deg(A
∗
i (s, t)) ≤ d2 − d .

By Lemma 2.3, r12(s) and r13(s) are coprimes. So, again by Bézout’s

Identity, there exist R12(s), R13(s) ∈ K[s] such that

R12(s)r12(s) + R13(s)r13(s) = 1, (5)

and multiplying by t the two sides we get

R12(s)r12(s)t + R13(s)r13(s)t = t .

Therefore in Step 1 we can take

{
B = t,

B′
= R13(s)r13(s)t

Note that we have

max(deg(R12(s)r12(s)), deg(R13(s)r13(s))) ≤ 2d2 − 1,

therefore

deg(B) = 1, deg(B′) ≤ 2d2

Continuing with step 1 of the algorithm, we compute a unimod-

ular matrix N1 ∈ K[s, t]4×4 such that

P(s, t)N1 = P(s,B′).

Thismatrixwill be obtained as a product of twomatrices,N1 = E1S1,

where E1 ∈ K[s, t]4×4 satisfies

P(s, t)E1 = (a1(s, t),a2(s, t),a3(s,B
′),a4(s,B

′)),

and S1 ∈ K[s, t]4×4 is such that

(a1(s, t),a2(s, t),a3(s,B
′),a4(s,B

′))S1 = P(s,B′).

To be more precise,

E1 =

(
I2 E12
0 I2

)
,

where I2 is the identity 2 × 2 matrix, and

E12 =

(
−α(s, t)A1(s, t) −β(s, t)A1(s, t)

−α(s, t)A2(s, t) −β(s, t)A2(s, t)

)
,

with

α(s, t) =
1

r12(s)
(a3(s, t) − a3(s,B

′))

and

β(s, t) =
1

r12(s)
(a4(s, t) − a4(s,B

′)).

The fact that both α(s, t), β(s, t) ∈ K[s, t] can be deduced straight-

forwardly from (5) because

t − B′
= t − R13(s)r13(s)t = (1 − R13(s)r13(s))t = R12(s)r12(s)t,

which implies that ai (s, t) − ai (s,B
′) is a multiple of r12(s) for all

i = 1, 2, 3, 4.

Estimating degrees, we get

deg(α) ≤ d deg(B′) = 2d3, deg(β) ≤ d deg(B′) = 2d3

and therefore

deg(E1) ≤ 2d3 + d2 − d .

The matrix S1 ∈ K[s, t]4×4 is of the form

S1 =

(
S11 0

0 I2

)
,

with

S11 =

(
A1(s ,t)a1(s ,B

′)+A2(s ,B
′)a2(s ,t)

r12(s)
A1(s ,t)a2(s ,B

′)−A1(s ,B
′)a2(s ,t)

r12(s)
A2(s ,t)a1(s ,B

′)−A2(s ,B
′)a1(s ,t)

r12(s)
A2(s ,t)a2(s ,B

′)+A1(s ,B
′)a1(s ,t)

r12(s)

)
.

Again the fact that the entries of S11 are polynomials can be deduced

from (5). We compute

deg(S1) ≤ max {d2 − d + d deg(B′), (d2 − d) deg(B′) + d}

=

2d4 − 2d3 + d

Finally, we have

N1 = E1S1 =

(
S11 E12
0 I2

)
,

and hence

deg(N1) ≤ 2d4 − 2d3 + d

Now we pass to step 2 of the algorithm, where we compute a

unimodular matrix N2 ∈ K[s, t]4×4 such that

P(s,B′)N2 = P(s, 0).

As before, this matrix is obtained as a product of two unimodular

matrices N2 = E2S2, where E2 ∈ K[s, t]4×4 satisfies

P(s,B′)E2 = (a1(s,B
′),a2(s, 0),a3(s,B

′),a4(s, 0)),

and S2 ∈ K[s, t]4×4 is such that

(a1(s,B
′),a2(s, 0),a3(s,B

′),a4(s, 0))S2 = P(s, 0).

109

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cortadellas and D’Andrea, et al.

To be more precise, we have

E2 =

©«

1 −α̃(s, t)A∗
1
(s,B′) 0 −β̃(s, t)A∗

1
(s,B′)

0 1 0 0

0 −α̃(s, t)A∗
2
(s,B′) 1 −β̃(s, t)A∗

2
(s,B′)

0 0 0 1

ª®®®¬
,

where

α̃(s, t) =
1

r13(s)
(a2(s,B

′) − a2(s, 0))

and

β̃(s, t) =
1

r13(s)
(a4(s,B

′) − a4(s, 0)),

Computing the degrees, we get

deg(α̃(s, t)), deg(β̃(s, t)) ≤ d deg(B′) = 2d3

and therefore

deg(E2) ≤ (2d4 − 2d3) + 2d3 = 2d4 .

The other matrix is

S2 =

©«

A∗
1(s ,B

′)a1(s ,0)+A
∗
2(s ,0)a3(s ,B

′)

r13(s)
0

A∗
1(s ,B

′)a3(s ,0)−A
∗
1(s ,0)a3(s ,B

′)

r13(s)
0

0 1 0 0
A∗
2(s ,B

′)a1(s ,0)−A
∗
2(s ,0)a1(s ,B

′)

r13(s)
0

A∗
2(s ,B

′)a3(s ,0)+A
∗
1(s ,0)a1(s ,B

′)

r13(s)
0

0 0 0 1

ª®®®®®¬
with deg(S2) ≤ 2d4 + d . So, we have that N2 = E2S2, and as

before the coefficients do not get mixed in the product, so we have

deg(N2) ≤ 2d4 + d .

Therefore, we have that

P(s, t)N1N2 = P(s, 0)

with degree

deg(N1N2) ≤ 4d4 − 2d3 + 2d .

Note that P(s, 0) ∈ K[s]4 is also a unimodular matrix of degree d .

It is known that (see for instance [10]) there exists a unimodular

matrixM ∈ K[s]4×4 with deg(M) ≤ d such that

P(s, t)N1N2M = P(s, 0)M = (1, 0, 0, 0).

As a consequence of Corollary 2.2, we get that the last three columns

of N1N2M are a µ−basis of Syz(P) of degree is bounded by

deg(N1N2M) ≤ 4d4 − 2d3 + 3d ≤ 4d4.

□

Example 2.5. Let us consider

P(s, t) = (s2, t2, s2 − 1, s2 + 1).

Applying the constructive proof of Theorem 2.4 we have that B′
=

t − s4t . As the last two polynomials do not depend on t , we get that

E1 = I4,

S1 =

©«

1 s2(−2 + s4)t2 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬
,

and hence

N1 = E1 S1 =

©«

1 −2s2t2 + s6t2 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬
.

Similarly, we compute E2 and S2 in the second step of the algorithm

to get the matrix

N2 = E2 S2 =

©«

1 0 0 0

0 1 0 0

0 t2 + s2t2 − s4t2 − s6t2 1 0

0 0 0 1

ª®®®¬
.

We also compute

M =

©«

−1 0 −2 0

0 1 0 0

0 0 1 s2 + 1

1 0 1 −s2 + 1

ª®®®¬
,

so we have that

N1N2M =

©«

−1 −2s2t2 + s6t2 −2 0

0 1 0 0

0 t2 + s2t2 − s4t2 − s6t2 1 1 + s2

1 0 1 1 − s2

ª®®®¬
and a µ−basis {p, q, r } of P(s, t) is given by the last three columns

of the above matrix, that is

p1(s, t) = (−2s2t2 + s6t2, 1, t2 + s2t2 − s4t2 − s6t2, 0),

p2(s, t) = (−2, 0, 1, 1), and p3(s, t) = (0, 0, 1 + s2, 1 − s2).

Example 2.6. Let us consider

P(s, t) = (2st, 2t, 2s, s2 + t2 + 1).

Note that in this case V (a1,a2,a3) , ∅, but we can resort the se-

quence and get

P(s, t) = (s2 + t2 + 1, 2t, 2s, 2st).

which suits better to our computations. Now B′
= −s2t and we

compute

N1 =

©«

s2t2 + 1 −2t 0 −2st

− 1
2 t

(
s2t2 + s2 + 1

)
t2 + 1 0 st2

0 0 1 0

0 0 0 1

ª®®®¬
,

N2 =

©«

1 0 0 0

0 1 0 0

− 1
2s

3t2 st 1 s2t

0 0 0 1

ª®®®¬
and

M =

©«

1 0 0 −2s

0 1 0 0

−s/2 0 0 s2 + 1

0 0 1 0

ª®®®¬
.

Therefore the three last columns of

N1N2M =

©«

s2t2 + 1 −2t −2st −2s3t2 − 2s

− 1
2s

2t3 − s2t
2 − t

2 t2 + 1 st2 s3t3 + s3t + st

− 1
2s

3t2 − s
2 st s2t s4t2 + s2 + 1

0 0 1 0

ª®®®¬
,

110

Bounds for Degrees of Minimal µ−bases of Parametric Surfaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

are a µ−basis of P(s, t), i.e. we have in this case

p1(s, t) = (−2t, t2 + 1, st, 0), p2(s, t) = (−2st, st2, st, 0), and

p3(s, t) = (−2s3t2 − 2s, s3t3 + s3t + st, s4t2 + s2 + 1, 0).

3 PROOF OF THEOREM 1.2

Now we will consider the case when IP has -maybe after a linear

change of coordinates- a shape basis, i.e.

⟨a1(s, t),a2(s, t),a3(s, t),a4(s, t)⟩ = ⟨p(s), t − q(s)⟩ (6)

with

deg(p(s)) = D, deg(q(s)) ≤ D − 1.

By Bézout’s Theorem, we have straightforwardly that D ≤ d2.

This setup contains the case when IP is a radical ideal.

From (6) we get that there exist Ai (s, t),Bi (s), i = 1, 2, 3, 4 such

that

ai (s, t) = Ai (s, t)(t − q(s)) + Bi (s)p(s). (7)

We can compute explicitly these polynomials and bound their de-

grees as follows. SetD∗ := max(1,D−1), so that deg(t −q(s)) ≤ D∗
.

By applying the Division Algorithm between ai (s, t) and t − q(s),

we have

ai (s, t) = Ai (s, t)(t − q(s)) + ri (s)

with ri (s) = ai (s,q(s)), and then

deg(ri (s)) = deg(ai (s,q(s))) ≤ dD∗
.

Moreover, from (7) we deduce that ri (s) = p(s)Bi (s). Therefore,

deg(Bi (s)) ≤ deg(ri (s)) − deg(p(s)) = dD∗ − D ≤ D∗(d − 1),

and deg(Ai (s, t)) ≤ dD∗.

Then, we can write P(s, t) as

(t − q(s) p(s)) ·

(
A1(s, t) A2(s, t) A3(s, t) A4(s, t)

B1(s) B2(s) B3(s) B4(s)

)

with

deg(Ai ,Bi) ≤ dD∗
.

From (6) we have also that

P(s, t) ·

©«

α1(s, t) β1(s, t)

α2(s, t) β2(s, t)

α3(s, t) β3(s, t)

α4(s, t) β4(s, t)

ª®®®¬
= (t − q(s) p(s))

for suitable polynomials αi (s, t), βi (s, t) ∈ K[s, t], i = 1, 2, 3, 4.

So, we get

t − q(s) =

4∑
i=1

αi (s, t)ai (s, t)

and

p(s) =

4∑
i=1

βi (s, t)ai (s, t) =

=

4∑
i=1

βi (s, t)(Ai (s, t)(t − q(s)) + Bi (s)p(s)) ⇒

⇒

(
1 −

4∑
i=1

βi (s, t)Bi (s)

)
p(s) =

4∑
i=1

βi (s, t)Ai (s, t)(t − q(s)) ⇒

⇒

{
1 −

∑4
i=1 βi (s, t)Bi (s) = A(s, t)(t − q(s))∑4
i=1 βi (s, t)Ai (s, t) = A(s, t)p(s)

(8)

for a suitable A(s, t) ∈ K[s, t].We set t = q(s) in the first equation

of (8) and get

4∑
i=1

βi (s,q(s))Bi (s) = 1,

that is gcd(B1(s),B2(s),B3(s),B4(s)) = 1 and by the results of [10]

we can compute a unimodular matrixMB ∈ K[s]4×4 such that

(
A1(s, t) A2(s, t) A3(s, t) A4(s, t)

B1(s) B2(s) B3(s) B4(s)

)
·MB

=

©«
Ã1(s, t) Ã2(s, t) Ã3(s, t) Ã4(s, t)

1 0 0 0

ª®¬
,

(9)

with

deg(MB) ≤ D∗(d − 1), deg(Ãi) ≤ 2dD∗
.

Set now

(ã1(s, t), ã2(s, t), ã3(s, t), ã4(s, t)) := P(s, t) ·MB . (10)

From (9), we have that IP is actually equal to the ideal generated by

Ã1(s, t)(t − q(s)) + p(s), Ã2(s, t)(t − q(s)), Ã3(s, t)(t − q(s)),

Ã4(s, t)(t − q(s)),
,

and therefore, there exist γi (s, t) ∈ K[s, t], i = 1, 2, 3, 4, such that

(t−q(s)) = γ1(s, t)(Ã1(s, t)(t−q(s))+p(s))+

4∑
i=2

γi (s, t)Ãi (s, t)(t−q(s)).

Replacing t = q(s) in the above equation, we obtain thatγ1(s,q(s)) =

0 and therefore we have γ1(s, t) = γ̃1(s, t)(t − q(s)), so

1 = γ̃1(s, t)(Ã1(s, t)(t − q(s)) + p(s)) +

4∑
i=2

γi (s, t)Ãi (s, t),

that is, ⟨(Ã1(s, t)(t−q(s))+p(s), Ã2(s, t), Ã3(s, t), Ã4(s, t))⟩ = K[s, t].

So, we can apply Theorem 2.1 to

Ã = (Ã1(s, t)(t − q(s)) + p(s), Ã2(s, t), Ã3(s, t), Ã4(s, t)), (11)

which has deg(Ã) ≤ 2d(D − 1) − 1, to get a unimodular matrix

M
Ã
∈ K[s, t]4×4 such that

(Ã1(s, t)(t − q(s)) + p(s), Ã2(s, t), Ã3(s, t), Ã4(s, t))MÃ
= (1, 0, 0, 0)

(12)

with

deg(M
Ã
) ≤ 4(2dD∗

+ D∗)4 = 4D∗4(2d + 1)4.

If we denote with M2
Ã
, M3

Ã
, M4

Ã
the three last columns of M

Ã
,

then by the Hilbert-Burch Theorem (Theorem 1.1) we have that

-up to a nonzero constant in K-

M2
Ã
∧M3

Ã
∧M4

Ã
= (Ã1(s, t)(t −q(s))+p(s), Ã2(s, t), Ã3(s, t), Ã4(s, t)).

(13)

111

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Cortadellas and D’Andrea, et al.

WriteM
Ã
=

(
mi j

)
1≤i , j≤4 , and set

M
P̃
=

©«

m12(t − q(s)) m13(t − q(s)) m14(t − q(s))

m22 m23 m24

m32 m33 m34

m42 m43 m44

ª®®®¬
. (14)

We clearly have

deg(M
P̃
) ≤ 4D∗4(2d + 1)4 + D∗

.

and from (13) we deduce that M2
P̃
∧M3

P̃
∧M4

P̃
is the vector with

coordinates Ã1(s, t)(t−q(s))+p(s), (t−q(s))Ã2(s, t), (t−q(s))Ã3(s, t),

and (t − q(s))Ã4(s, t)).

So, by the converse of the Hilbert-Burch Theorem (Theorem 1.1)

we deduce that {M2
P̃
, M3

P̃
, M4

P̃
} is a µ-basis of the parametrization

given by these four components.

To conclude, we set M̃ = MBMP̃
∈ K[s, t]4×3. From (9) and (10)

we deduce that

P(s, t) · M̃ = (0, 0, 0). (15)

AsMB is unimodular, and the columns ofM
P̃
a µ-basis of the afore-

mentioned parametrization, we deduce straightforwardly that the

columns of M̃ are a µ−basis of P(s, t). Computing it straightfor-

wardly we get

deg(M̃) ≤ D∗(d − 1) + 4D∗4(2d + 1)4 + D∗ ≤ 5D∗4(2d + 1)4,

which concludes with the proof of the Theorem.

4 ALGORITHM AND RUNNING EXAMPLE

We collect here all the steps needed to compute a µ-basis of a given

parametrization P(s, t).

Algorithm 4.1.

Input: A parametrization P(s, t) := (a1(s, t), a2(s, t), a3(s, t), a4(s, t))

of polynomials in K[s, t]4 such that gcd(ai (s, t)) = 1 and that the

ideal IP they generate is radical.

Output: A matrix M̃ =
(
mi j

)
1≤i≤4,1≤j≤3 from (15) such that its

three columns are a µ-basis of P(s, t).

Procedure:

(1) Compute p(s), q(s) ∈ K[s] such that IP = ⟨p(s), t − q(s)⟩.

Some linear change of variables may be needed at this step.

(2) For i = 1, 2, 3, 4, compute Ai (s, t), Bi (s) as in (7).

(3) Compute the unimodular matrixMB from (9). Note that at

these steps the polynomials Ãi (s, t) are defined, 1 ≤ i ≤ 4.

(4) By applying the effective Quillen-Suslin (Theorem 2.1), com-

pute the matrixM
Ã
from (12).

(5) By using (14), computeM
P̃
.

(6) Set M̃ := MBMP̃
∈ K[s, t]4×3.

We conclude the paper by illustrating the algorithm with a con-

crete case.

Example 4.1. Consider the following parametrization:

a1(s, t) = 11 − 4s + 3s2 + 4t

a2(s, t) = 5 − 4s + 2s2 + 4t − 2st + t2

a3(s, t) = 1 + 3s2 − s3 + s2t

a4(s, t) = 7 − 3s + s2 + 3t .

(1) By computing a Gröbner Basis of these polynomials with

respect to lex t > s, we get that IP = ⟨2− s + t, 1+ s2⟩, so we

haved = 3, D = 2 in this case, andp(s) = 1+s2, q(s) = −s+2.

(2) We compute explicitly Ai (s, t), Bi (s), 1 ≤ i ≤ 4, as in (7) to

get

©«

A1(s, t) B1(s)

A2(s, t) B2(s)

A3(s, t) B3(s)

A4(s, t) B4(s)

ª®®®¬
=

©«

4 3

2 − s + t 1

s2 1

3 1

ª®®®¬
(3) A unimodular matrixMB as in (9) can be the following:

MB =

©«

0 1 1 1

1 −3 0 0

0 0 −3 0

0 0 0 −3

ª®®®¬
.

With this choice ofMB , we have(
Ã1(s, t), Ã2(s, t), Ã3(s, t), Ã4(s, t)

)
=

(A1(s, t),A2(s, t),A3(s, t),A4(s, t)) ·MB

=(
2 − s + t,−2 + 3s − 3t, 4 − 3s2,−5

)
,

so Ã from (11) is equal to

(5 − 4s + 2s2 + 4t − 2st + t2,−2 + 3s − 3t, 4 − 3s2,−5),

which we can confirm (by computing Gröbner bases for

instance) that it is a unimodular matrix.

(4) The matrixM
Ã
from (12) is equal to

©«

0 5 − 150t
37 +

45st
37 − 540t 2

1369 +
405s2t 2

1369
135t
37 0

0 m1 5 + 150t
37 − 45st

37 +
45t 2

37 0

0 − 60t
37 +

30st
37 − 180t 2

1369 +
135s2t 2

1369
45t
37 5

− 1
5 5 − 4s + 2s2 −2 + 3s 4 − 3s2

ª®®®®¬
with

m1 = −
125t

37
+

100st

37
−
2450t 2

1369
+

735st 2

1369
+

450s2t 2

1369
−
135s3t 2

1369
−
180t 3

1369
+

135s2t 3

1369

(5) M
P̃
is deduced easily fromM

Ã
, as shown in (14).

(6) By computingMBMP̃
we get M̃ =

(
mi j

)
1≤i≤4,1≤j≤3 , with

m11 = 5 − 4s + 2s2 − 5t + 130st
37 − 2630t 2

1369 +
735st 2

1369 +

+
585s2t 2

1369 − 135s3t 2

1369 − 180t 3

1369 +
135s2t 3

1369 ,

m21 = 10 − 5s + 260t
37 − 60st

37 − 45s2t
37 +

720t 2

1369 − 540s2t 2

13

m31 =
180t
37 − 90st

37 +
540t 2

1369 − 405s2t 2

1369 ,

m41 = −15 + 12s − 6s2,

m12 = 3 + 3s + 195t
37 − 45st

37 +
45t 2

37 ,

m22 = −15 − 180t
37

m32 = − 135t
37 ,

m42 = 6 − 9s,

m13 = 9 − 3s2,

m23 = 0,

m33 = −15,

m43 = −12 + 9s2.

112

Bounds for Degrees of Minimal µ−bases of Parametric Surfaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

ACKNOWLEDGMENTS

All our computations were done with the aid of Macaulay2 ([9])

and Mathematica ([11]). T. Cortadellas is supported by the Spanish

MEC research project MTM2013-40775-P, C. D’Andrea and E. Mon-

toro are supported by the SpanishMINECO/FEDER research project

MTM 2015-65361-P. C. D’Andrea is also supported by the European

Union’s Horizon 2020 research and innovation programme un-

der the Marie Skłodowska-Curie grant agreement “GRAPESž No.

860843.

REFERENCES
[1] Eberhard Becker, Maria Marinari, Teo Mora, and Carlo Traverso. 1994. The shape

of the Shape Lemma. ISSAC’94: Proceedings of the International Symposium on
Symbolic and Algebraic Computation (08 1994), 129ś133. DOI:http://dx.doi.org/
https://doi.org/10.1145/190347.190382

[2] Falai Chen, David Cox, and Yang Liu. 2005. The µ-basis and implicitization of a
rational parametric surface. Journal of Symbolic Computation 39, 6 (2005), 689 ś
706. DOI:http://dx.doi.org/https://doi.org/10.1016/j.jsc.2005.01.003

[3] Falai Chen and Wenping Wang. 2002. The µ-basis of a planar rational curve
- properties and computation. Graph. Model. 64, 6 (2002), 368ś381. DOI:http:
//dx.doi.org/10.1016/S1077-3169(02)00017-5

[4] Yairon Cid-Ruiz. 2019. Bounding the degrees of a minimal µ-basis for a rational
surface parametrization. Journal of Symbolic Computation 95 (2019), 134 ś 150.
DOI:http://dx.doi.org/https://doi.org/10.1016/j.jsc.2019.02.003

[5] David A. Cox, Thomas W. Sederberg, and Falai Chen. 1998. The moving line ideal
basis of planar rational curves. Computer Aided Geometric Design 15, 8 (1998),
803 ś 827. DOI:http://dx.doi.org/https://doi.org/10.1016/S0167-8396(98)00014-4

[6] Jiansong Deng, Falai Chen, and Li-Yong Shen. 2005. Computing µ-bases of
rational curves and surfaces using polynomial matrix factorization. In ISSAC’05.
ACM, New York, 132ś139. DOI:http://dx.doi.org/10.1145/1073884.1073904

[7] David Eisenbud. 2005. The geometry of syzygies. Graduate Texts in Mathematics,
Vol. 229. Springer-Verlag, New York. A second course in commutative algebra
and algebraic geometry.

[8] Noaï Fitchas and André Galligo. 1990. Nullstellensatz effectif et Conjecture
de Serre (Théorème de Quillen-Suslin) pour le Calcul Formel. Mathematische
Nachrichten 149, 1 (1990), 231ś253.

[9] Daniel R. Grayson and Michael E. Stillman. 2018. Macaulay2, a software system
for research in algebraic geometry. (2018). Available at http://www.math.uiuc.
edu/Macaulay2/.

[10] Hoon Hong, Zachary Hough, and Irina A. Kogan. 2017. Algorithms for computing
µ-bases of univariate polynomials. Journal of Symbolic Computation 80 (2017),
844 ś 874. DOI:http://dx.doi.org/https://doi.org/10.1016/j.jsc.2016.08.013

[11] Wolfram Research, Inc. 2018. Mathematica, Version 11. (2018). Champaign, IL.
[12] Ning Song and Ron Goldman. 2009. µ-bases for polynomial systems in one

variable. Comput. Aided Geom. Design 26, 2 (2009), 217ś230. DOI:http://dx.doi.
org/10.1016/j.cagd.2008.04.001

113

http://dx.doi.org/https://doi.org/10.1145/190347.190382
http://dx.doi.org/https://doi.org/10.1145/190347.190382
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2005.01.003
http://dx.doi.org/10.1016/S1077-3169(02)00017-5
http://dx.doi.org/10.1016/S1077-3169(02)00017-5
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2019.02.003
http://dx.doi.org/https://doi.org/10.1016/S0167-8396(98)00014-4
http://dx.doi.org/10.1145/1073884.1073904
http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2016.08.013
http://dx.doi.org/10.1016/j.cagd.2008.04.001
http://dx.doi.org/10.1016/j.cagd.2008.04.001

On A Non-Archimedean Broyden Method

Xavier Dahan
Tohoku University, IEHE

Sendai, Japan
xdahan@gmail.com

Tristan Vaccon
Université de Limoges; CNRS, XLIM UMR 7252

Limoges, France
tristan.vaccon@unilim.fr

ABSTRACT

Newton’s method is an ubiquitous tool to solve equations, both in

the archimedean and non-archimedean settings Ð for which it does

not really differ. Broyden was the instigator of what is called łquasi-

Newton methodsž. These methods use an iteration step where one

does not need to compute a complete Jacobianmatrix nor its inverse.

We provide an adaptation of Broyden’s method in a general non-

archimedean setting, compatible with the lack of inner product, and

study its Q and R convergence. We prove that our adapted method

converges at least Q-linearly and R-superlinearly with R-order 2
1
2𝑚

in dimension𝑚. Numerical data are provided.

CCS CONCEPTS

· Computing methodologies→ Exact arithmetic algorithms.

KEYWORDS

System of equations, Broyden’s method, Quasi-Newton, p-adic

approximation, Power series, Symbolic-numeric, p-adic algorithm

ACM Reference Format:

Xavier Dahan and Tristan Vaccon. 2020. On A Non-Archimedean Broyden

Method. In International Symposium on Symbolic and Algebraic Computation

(ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3373207.3404045

1 INTRODUCTION
In the numerical world. Quasi-Newton methods refer to a class of

variants of Newton’s method for solving square nonlinear systems,

with the twist that the inverse of the Jacobian matrix is łapproxi-

matedž by another matrix. When compared to Newton’s method,

they benefit from a cheaper update at each iteration (See e.g. [10,

p.49-50, 53]), but suffer from a smaller rate of convergence. They

were mainly introduced by Broyden in [6], which has sparked

numerous improvements, generalizations, and variants (see the

surveys [10, 19]). It is now a fundamental numerical tool (that finds

its way in entry level numerical analysis textbooks [8, ğ 10.3]). To

some extent, this success stems from: the specificities of machine

precision arithmetic as commonly used in the numerical commu-

nity, the fact that Newton’s method is usually not quadratically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404045

convergent from step one, and that the arithmetic cost of an itera-

tion is independent of the quality of the approximation reached. In

another direction, variants of Broyden’s method have known dra-

matic success for unconstrained optimization Ð the target system

is the gradient of the objective function, the zeros are then critical

pointsÐ where it takes advantage of the special structure of the

Hessian (see Sec. 7 of [10]). Another appealing feature of Broyden’s

method is the possibility to design derivative-free methods gener-

alizing to the multivariate case the classical secant method (which

can be thought of as Broyden’s in dimension one). This feature is a

main motivation for this work.

Non-archimedean. It is a natural wish to transpose such a fun-

damental numerical method to the non-archimedean framework,

offering new tools to perform exact computations, typically for sys-

tems with 𝑝-adic or power series coefficients. For this adaptation,

several non-trivial difficulties have to be overcome: e.g. no inner

products, a more difficult proof of convergence, or a management of

arithmetic at finite precision far more subtle. This article presents

satisfactory solutions for all these difficulties, which we believe can

be expanded to a broader variety of quasi-Newton methods.

Bach proved in [1] that in dimension one, the secant method can

be on an equal footing with Newton’s method in terms of complexi-

ty. We investigate how this comparison is less engaging in superior

dimension (see Section 6). To our opinion, this is due to the remark-

able behavior of Newton’s method in the non-archimedean setting.

No inversion of the Jacobian is required at each iteration (simply

a matrix multiplication, this is now classical see [5, 16, 17]). The

evaluation of the Jacobian is also efficient for polynomial functions

(in dimension𝑚, it involves only 𝑂 (𝑚) evaluations, instead of𝑚2

over R, see [2]). It displays also true quadratic behavior from step

one which, when combined with the natural use of finite preci-

sion arithmetic (against machine precision over R), offers a ratio

cost/precision gained that is hard to match.

And indeed, our results show that for large dimension𝑚 and

polynomials as input, there is little hope for Broyden to outperform

Newton, although it depends on the order of superlinear conver-

gence of Broyden’s method. In this respect more investigation is

necessary, but for now the interest lies more in the theoretical ad-

vances and in the situations mentioned in łMotivationsž thereafter.

Relaxed arithmetic. Since the cost of one iteration of Broyden’s

method involves𝑚2 instead of𝑚𝜔 for Newton, we should mention

the relaxed framework (a.k.a online [11]) which show essentially the

same decrease of complexity, while maintaining quadratic conver-

gence. It has been implemented efficiently for power series [23], and

for 𝑝-adic numbers [3]. In case of a smaller𝑚 and a larger precision

of approximation required, FFT trading [24] has to be mentioned.

These techniques are however unlikely to be suited to the Broyden

iteration, since it is a priori not described by a fixed-point equation,

a necessity for the relaxed machinery.

114

https://doi.org/10.1145/3373207.3404045
https://doi.org/10.1145/3373207.3404045

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Xavier Dahan and Tristan Vaccon

Motivations. As explains Remark 6.4, it seems unlikely in the

non-archimedean world that with polynomials or rational fractions,

a quasi-Newton method meets the standard of Newton’s method.

The practical motivations concern:

1/ Derivative-freemethod: instead of startingwith the Jacobian at

precision one, use a divided-difference matrix. A typical application

is when the function is given by a łblack-boxž and there is no direct

access to the Jacobian.

2/ When computing the Jacobian does not allow shortcuts like

in the case of rational fractions [2], evaluating it may require up

to 𝐿𝑚2 operations, where 𝐿 is the complexity of evaluation of the

input function. Regarding the complexity of Remark 6.4, Broyden’s

method then becomes beneficial when 𝐿 ≳ 𝑚2 −𝑚𝜔−1.

3/While Newton’s method over general Banach spaces of infinite

dimension can be made effective when the differential is effectively

representable (integral equations [15, ğ 5][14] are a typical exam-

ple), it is in general difficult or impossible to compute it. On the

other hand, Broyden’s method or its variants have the ability to

work with approximations of the differential, including of finite

rank, by considering a projection (as shown in [14, 15] and the ref-

erences therein; the dimension of the projection is increased at each

iteration). In the non-archimedean context, ODEs with parameters,

for example initial conditions, constitute a natural application.

Organization of the paper. Definitions and notations are intro-

duced in Section 2. Section 3 explains how Broyden’s method can

be adapted to an ultrametric setting. In Section 4, we study the Q

and R-order of convergence of Broyden’s method (see Definition

2.1), presenting our main results. It is followed by Section 5, where

are introduced developments and conjectures on Q-superlinearity.

Finally, in Section 6, we explain how our Broyden’s method can

be implemented with dynamical handling of the precision, and we

conclude with some numerical data in Section 7.

2 BROYDEN’S METHOD AND NOTATIONS

2.1 General notations

Throughout the paper, 𝐾 refers to a complete, discrete valuation

field, val : 𝐾 ↠ Z ∪ {+∞} to its valuation, O𝐾 its ring of integers

and 𝜋 a uniformizer.1 For 𝑘 ∈ N, we write 𝑂 (𝜋𝑘) for 𝜋𝑘O𝐾 .

Let𝑚 ∈ Z≥1. We are interested in computing an approximation

of a non-singular zero 𝑥★ of 𝑓 : 𝐾𝑚 → 𝐾𝑚 through an iterative

sequence of approximations, (𝑥𝑛)𝑛∈N ∈ (𝐾
𝑚)N . Note that all our

vectors are column-vectors. For any𝑥 ∈ 𝐾𝑚 where it is well-defined,

we denote by 𝑓 ′(𝑥) ∈ 𝑀𝑚 (𝐾) the Jacobian matrix of 𝑓 at 𝑥 . We

will use the following notations (borrowed from [13]):

𝑓𝑛 = 𝑓 (𝑥𝑛), 𝑦𝑛 = 𝑓𝑛+1 − 𝑓𝑛, 𝑠𝑛 = 𝑥𝑛+1 − 𝑥𝑛 (1)

We denote by (𝑒1, . . . , 𝑒𝑚) the canonical basis of 𝐾
𝑚 . In 𝐾𝑚, 𝑂 (𝜋𝑘)

means 𝑂 (𝜋𝑘)𝑒1 + · · · +𝑂 (𝜋
𝑘)𝑒𝑚 .

Newton’s iteration produces a sequence (𝑥𝑛)𝑛∈N given by:

𝑥𝑛+1 = 𝑥𝑛 − 𝑓
′(𝑥𝑛)

−1 · 𝑓 (𝑥𝑛). (N)

For quasi-Newton methods, the iteration is given by:

𝑥𝑛+1 = 𝑥𝑛 − 𝐵
−1
𝑛 · 𝑓 (𝑥𝑛), (⇒ 𝑠𝑛 = −𝐵−1𝑛 · 𝑓𝑛) (QN)

1Discrete valuation is only needed in Section 6. For the rest complete and ultrametric
is enough.

with 𝐵𝑛 presumably not far from 𝑓 ′(𝑥𝑛) . More precisely, it is a

generalization of the design of the secant method over 𝐾 where

one approximates 𝑓 ′(𝑥𝑛) by
𝑓 (𝑥𝑛)−𝑓 (𝑥𝑛−1)

𝑥𝑛−𝑥𝑛−1
. In quasi-Newton, it is

thus required that:

𝐵𝑛 · (𝑥𝑛 − 𝑥𝑛−1) = 𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1) (⇒ 𝐵𝑛 · 𝑠𝑛−1 = 𝑦𝑛−1) (2)

By this condition alone, 𝐵𝑛 is obviously underdetermined. To mit-

igate this issue, 𝐵𝑛 is taken as a one-dimensional modification of

𝐵𝑛−1 satisfying (2). Concretely, a sequence (𝑢𝑛)𝑛∈N ∈ (𝐾
𝑚)N is

introduced such that:

𝐵𝑛 = 𝐵𝑛−1 + (𝑦𝑛−1 − 𝐵𝑛−1𝑠𝑛−1) · 𝑢𝑛−1
𝑡 . (3)

1 = 𝑢𝑛−1
𝑡 · 𝑠𝑛−1 . (4)

In Broyden’s method over R, 𝑢𝑛−1 is defined by:

𝑢𝑛−1 =
𝑠𝑛−1

𝑠𝑛−1𝑡 · 𝑠𝑛−1
. (5)

The computation of the inverse of 𝐵𝑛 can then be done using the

Sherman-Morrison formula (see [22]):

𝐵−1𝑛 = 𝐵−1𝑛−1 +
(𝑠𝑛−1 − 𝐵

−1
𝑛−1𝑦𝑛−1) · 𝑠𝑛−1

𝑡𝐵−1𝑛−1

𝑠𝑛−1𝑡𝐵
−1
𝑛−1𝑦𝑛−1

. (6)

This formula gives rise to the so-called łgood Broyden’s methodž.

Using [22] provides the following alternative formulae:

𝐵𝑛 = 𝐵𝑛−1 + 𝑓𝑛 · 𝑢𝑛−1
𝑡 , 𝐵−1𝑛 = 𝐵−1𝑛−1 −

𝐵−1𝑛−1 𝑓𝑛 · 𝑢𝑛−1
𝑡𝐵−1𝑛−1

𝑢𝑛−1𝑡𝐵
−1
𝑛−1𝑦𝑛−1

. (7)

2.2 Convergence

We recall some notions on convergence of sequences commonly

used in the analysis of the behavior of Broyden’s method.

Definition 2.1 ([20] Chapter 9). A sequence (𝑥𝑘)𝑘∈N ∈ (𝐾
𝑚)N

has Q-order of convergence 𝜇 ∈ R>1 to a limit 𝑥★ ∈ 𝐾𝑚 , if:

∃𝑟 ∈ R+, ∀𝑘 large enough,
∥𝑥𝑘+1 − 𝑥

★∥

∥𝑥𝑘 − 𝑥
★∥𝜇

≤ 𝑟 .

If we can take 𝜇 = 1 and 𝑟 < 1 in the previous inequality, we say

that (𝑥𝑘)𝑘∈N has Q-linear convergence. For 𝜇 = 2, we say it has

Q-quadratic convergence. The sequence is said to have Q-superlinear

convergence if

lim
𝑘→+∞

∥𝑥𝑘+1 − 𝑥
★∥

∥𝑥𝑘 − 𝑥
★∥

= 0.

It is said to have R-order of convergence2 𝜇 ∈ R≥1 if

lim sup ∥𝑥𝑘 − 𝑥
★∥1/𝜇

𝑘
< 1.

Remark 2.2. For both Q and R, we write has convergence 𝜇 to mean

has convergence at least 𝜇.

Broyden’s method satisfies the following convergence results:

Theorem 2.3. OverR𝑚, under usual regularity assumptions, Broy-

den’s method defined by Eq. (5) converges locally3 Q-superlinearly

[7], exactly in 2𝑚 steps for linear systems, and with R-order at least

2
1
2𝑚 > 1 [13].

2R-convergence is a weaker notion, aimed at sequences not monotonically decreasing.
3By locally, we mean that for any 𝑥0 and 𝐵0 in small enough balls around 𝑥★ and
𝑓 ′ (𝑥★) , the following convergence property is satisfied.

115

On A Non-Archimedean Broyden Method ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Unfortunately, for general 𝐾, Eq. (5) is not a good fit. Indeed, the

quadratic form 𝑥 ↦→ 𝑥𝑡𝑥 can be isotropic over 𝐾𝑚 , i.e. there can

be an 𝑠𝑛 ≠ 0 such that 𝑠𝑛
𝑡 · 𝑠𝑛 = 0. This is the case, for example if

𝑠𝑛 = (𝑋,𝑋) in F2J𝑋 K2 . Consequently, (5) has to be modified. Trying

to seek for another quadratic form that would not be isotropic is

pointless, since for example there is none over Q𝑚𝑝 for𝑚 ≥ 5 [21].

Remark 2.4. In the sequel, all the 𝐵𝑖 ’s will be invertible matrices.

Consequently, 𝑠𝑛+1 = 0 if and only if 𝑓 (𝑥𝑛) = 0.We therefore adopt

the convention that if for some 𝑥𝑛, we have 𝑓 (𝑥𝑛) = 0, then the

sequences (𝑥𝑣)𝑣≥𝑛 and (𝐵𝑣)𝑣≥𝑛 will be constant, and this case does

not require any further development.

3 NON-ARCHIMEDEAN ADAPTATION

3.1 Norms

We use the following natural (non-normalized) norm on 𝐾 defined

from its valuation: for any 𝑥 ∈ 𝐾, ∥𝑥 ∥ = 2− val(𝑥) , except for 𝐾 =

Q𝑝 , where we take the more natural 𝑝− val(𝑥) over Q𝑝 . Our norm
4

on 𝐾 can naturally be extended to 𝐾𝑚 : for any 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈

𝐾𝑚, ∥𝑥 ∥ = max𝑖 |𝑥𝑖 |.We denote by val(𝑥) the minimal valuation

among the val(𝑥𝑖)’s. It defines the norm of 𝑥 .

Lemma 3.1. Let
g
·
g
be the norm on 𝑀𝑚 (𝐾) induced by ∥ · ∥.

Let us abuse notations by denoting with ∥ · ∥ the max-norm on the

coefficients of the matrices of𝑀𝑚 (𝐾). Then
g
·
g
= ∥ · ∥ .

Proof. Let 𝐴 ∈ 𝑀𝑛 (𝐾). If 𝑥 ∈ 𝐾
𝑚 is such that ∥𝑥 ∥ ≤ 1, then by

ultrametricity, it is clear that ∥𝐴𝑥 ∥ ≤ ∥𝐴∥, hence
g
𝐴

g
≤ ∥𝐴∥. If

𝑖 ∈ N is such that ∥𝐴∥ is obtained with a coefficient on the column

of index 𝑖 , then ∥𝐴𝑒𝑖 ∥ = ∥𝐴∥, whence the equality. □

Consequently, the max-norm on the coefficients of a matrix is a

matrix norm. For rank-one matrices, the computation of the norm

can be made easy using the following corollary of Lemma 3.1.

Corollary 3.2. Let 𝑎, 𝑏 ∈ 𝐾𝑚 be two vectors. Then

∥𝑎𝑡 · 𝑏∥ = ∥𝑎∥ · ∥𝑏∥. (8)

3.2 Constraints and optimality

For the sequence (𝑥𝑛)𝑛∈N to be well defined, the sequence (𝑢𝑛)𝑛∈N
must satisfy Eqs (3)-(4) and also:

𝑠𝑛
𝑡𝐵−1𝑛 𝑦𝑛 ≠ 0, (9)

to ensure Eq. (6) makes sense. Many different 𝑢𝑛 ’s can satisfy those

conditions. Over R, Broyden’s choice of 𝑢𝑛 defined by (5) can be

characterized by minimizing the Frobenius norm of 𝐵𝑛+1 − 𝐵𝑛 .We

can proceed similarly over 𝐾.

Lemma 3.3. If 𝐵𝑛+1 satisfies (2), then:

∥𝐵𝑛+1 − 𝐵𝑛 ∥ ≥
∥𝑦𝑛 − 𝐵𝑛𝑠𝑛 ∥

∥𝑠𝑛 ∥
. (10)

Proof. It is clear as in this case, (𝐵𝑛+1 −𝐵𝑛)𝑠𝑛 = 𝑦𝑛 −𝐵𝑛𝑠𝑛 . □

This inequality can become an equality with a suitable choice of

𝑢𝑛 as shown in the following lemma.

4Over R, it is of course denoted by ∥ · ∥∞ , but when based on a non-archimedean
absolute value, this notation is not used since it is implicitly unambiguous: other norms
such as the ∥ · ∥𝑝 are mostly useless.

Lemma 3.4. Let 𝑙 be such that val(𝑠𝑛,𝑙) = val(𝑠𝑛). Then

𝑢𝑛 = 𝑠−1
𝑛,𝑙
𝑒𝑙

satisfies (4) and reaches the bound in (10).

Nevertheless, this is not enough to have 𝐵𝑛 invertible in general,

as we can see from the Sherman-Morrison formula (7):

Lemma 3.5. 𝐵𝑛 defined by Eq.(3) is invertible if and only if

𝑢𝑛−1
𝑡𝐵−1𝑛−1𝑦𝑛−1 ≠ 0. (11)

The next lemma shows how to choose 𝑙 , up to the condition

(𝐵−1𝑛−1𝑦𝑛−1)𝑙 ≠ 0, which actually never occurs after Corollary 4.3.

Lemma 3.6. Let 𝑙 be the smallest index such that val(𝑠𝑛,𝑙) =

val(𝑠𝑛) . If
(

𝐵−1𝑛−1𝑦𝑛−1

)

𝑙
≠ 0, then

𝑢𝑛 = 𝑠−1
𝑛,𝑙
𝑒𝑙 (12)

satisfies Eq. (4), reaches the bound in Eq. (10) and satisfies Eq.(11).

4 LOCAL CONVERGENCE

4.1 Local Linear convergence

Let 𝐸 and 𝐹 be two finite-dimensional normed vector spaces over 𝐾

We denote by 𝐿(𝐸, 𝐹) the space of 𝐾-linear mappings from 𝐸 to 𝐹 .

Definition 4.1. Let 𝑈 be an open subset of 𝐸. A function 𝑓 :

𝑈 → 𝐹 is strictly differentiable at 𝑥 ∈ 𝑈 if there exists an 𝑓 ′(𝑥) ∈

𝐿(𝐸, 𝐹) satisfying the following property: for all 𝜀 > 0, there exists a

neighborhood𝑈𝑥,𝜀 ⊂ 𝑈 of 𝑥 , on which for any 𝑦, 𝑧 ∈ 𝑈𝑥,𝜖 :

∥ 𝑓 (𝑧) − 𝑓 (𝑦) − 𝑓 ′(𝑥) · (𝑧−𝑦)∥𝐹 ≤ 𝜀 · ∥𝑧−𝑦∥𝐸 . (13)

Note that both 𝑧 and 𝑦 can vary. This property is natural in the

ultrametric context (see 3.1.3 of [9]), as the counterpart of Fréchet

differentiability over R does not provide meaningful local infor-

mation. Polynomials and converging power series satisfy strict

differentiability everywhere they are defined.

We can then adapt Theorem 3.2 of [7] in our ultrametric setting.

Theorem 4.2. Let 𝑓 : 𝐾𝑚 → 𝐾𝑚 and 𝑥★ ∈ 𝑈 be such that 𝑓

is strictly differentiable at 𝑥★, 𝑓 ′(𝑥★) is invertible and 𝑓 (𝑥★) = 0.

Then any quasi-Newton method whose choice of 𝑢𝑛 yields for all

𝑛, ∥𝑢𝑛 ∥ = ∥𝑠𝑛 ∥
−1 (which includes Broyden’s choice of Eq. (12)), is

locally 𝑄-linearly converging to 𝑥★ with ratio 𝑟 for any 𝑟 ∈ (0, 1).

Proof. Let 𝑟 ∈ (0, 1) . Let the constants 𝛾, 𝛿, and 𝜆 be satisfying:

𝛾 ≥ ∥ 𝑓 ′(𝑥★)−1∥, 0 < 𝛿 ≤
𝑟

𝛾 (1 + 𝑟) (3 − 𝑟)
, 0 < 𝜆 ≤ 𝛿 (1−𝑟) . (14)

Let 𝜂 > 0 be given by the strict differentiability at 𝑥★ and such that

on the ball 𝐵(𝑥★, 𝜂),

∥ 𝑓 (𝑧) − 𝑓 (𝑦) − 𝑓 ′(𝑥★) · (𝑧−𝑦)∥ ≤ 𝜆 · ∥𝑧−𝑦∥.

We restrict further 𝜂 so as to have: 𝜂 ≤ 𝛿 (1− 𝑟). Let us assume that

∥𝐵0 − 𝑓
′(𝑥★)∥ ≤ 𝛿, ∥𝑥0 − 𝑥

★∥ < 𝜂.

We have from the condition on 𝛿 that 𝛿 𝛾 (1+ 𝑟) (3− 𝑟) ≤ 𝑟 . Since

3 − 𝑟 > 2, then 2𝛿 𝛾 (1 + 𝑟) ≤ 𝑟 . Consequently,

1

1 − 2𝛿𝛾
≤ 1 + 𝑟,

the denominator being non zero because 𝛿 < (2𝛾)−1 .

116

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Xavier Dahan and Tristan Vaccon

Since ∥ 𝑓 ′(𝑥★)−1∥ ≤ 𝛾 and ∥𝐵0 − 𝑓
′(𝑥★)∥ < 2𝛿, the Banach

Perturbation Lemma ([20] page 45) in the Banach algebra𝑀𝑚 (𝐾)

implies that 𝐵0 is invertible and:

∥𝐵−10 ∥ ≤
𝛾

1 − 2𝛾𝛿
≤ (1 + 𝑟)𝛾 .

We can now estimate what happens to 𝑥1 = 𝑥0 − 𝐵
−1
0 𝑓 (𝑥0).

∥𝑥1 − 𝑥
★∥ = ∥𝑥0 − 𝑥

★ − 𝐵−10 𝑓 (𝑥0)∥, (15)

= ∥ − 𝐵−10
(

𝑓 (𝑥0) − 𝑓 (𝑥
★) − 𝑓 ′(𝑥★) · (𝑥0 − 𝑥

★)
)

− 𝐵−10
(

𝑓 ′(𝑥★) (𝑥0 − 𝑥
★) − 𝐵0 (𝑥0 − 𝑥

★)
)

∥,

= ∥ − 𝐵−10
(

𝑓 (𝑥0) − 𝑓 (𝑥
★) − 𝑓 ′(𝑥★) · (𝑥0 − 𝑥

★)
)

− 𝐵−10
(

(𝑓 ′(𝑥★) − 𝐵0) (𝑥0 − 𝑥
★)

)

∥,

≤ ∥𝐵−10 ∥
(

𝜆∥𝑥0 − 𝑥
★∥ + 2𝛿 ∥𝑥0 − 𝑥

★∥
)

,

≤ ∥𝐵−10 ∥(𝜆 + 2𝛿)∥𝑥0 − 𝑥
★∥,

≤ 𝛾 (1 + 𝑟) (𝛿 (1 − 𝑟) + 2𝛿)∥𝑥0 − 𝑥
★∥,

≤ 𝛾 (1 + 𝑟)𝛿 (3 − 𝑟)∥𝑥0 − 𝑥
★∥ by Eq. (14) (middle)

≤ 𝑟 ∥𝑥0 − 𝑥
★∥ . (16)

Consequently, ∥𝑥1 −𝑥
★∥ ≤ 𝑟 ∥𝑥0 −𝑥

★∥ and ∥𝑥1 −𝑥
★∥ ≤ 𝑟𝜂 < 𝜂,

i.e. 𝑥1 ∈ 𝐵(𝑥
★, 𝜂) .

Eq. (3) defines 𝐵1 by 𝐵1 = 𝐵0 − (𝑦1 − 𝐵0𝑠1) · 𝑢1
𝑡 for some 𝑢1

verifying ∥𝑢1∥ = ∥𝑠1∥
−1 (see Eqs. (4), Corollary 3.2). Then:

∥𝐵1 − 𝐵0∥ = ∥ 𝑓 (𝑥1) − 𝑓 (𝑥0) − 𝐵0 (𝑥1 − 𝑥0)∥ · ∥𝑥1 − 𝑥0∥
−1 .

Therefore,

∥𝐵1 − 𝑓
′(𝑥★)∥ ≤ max

(

∥𝐵0 − 𝑓
′(𝑥★)∥ , (17)

∥ 𝑓 (𝑥1) − 𝑓 (𝑥0) − 𝐵0 (𝑥1 − 𝑥0)∥∥𝑥1 − 𝑥0∥
−1
)

,

≤ max
(

∥𝐵0 − 𝑓
′(𝑥★)∥ ,

∥
(

𝐵0 − 𝑓
′(𝑥★)

)

(𝑥1 − 𝑥0)∥∥𝑥1 − 𝑥0∥
−1,

∥ 𝑓 (𝑥1) − 𝑓 (𝑥0) − 𝑓
′(𝑥★) (𝑥1 − 𝑥0)∥∥𝑥1 − 𝑥0∥

−1
)

,

≤ max(𝛿, 𝜆) ≤ 𝛿.

We can then carry on and prove by induction that for all 𝑘 ,

(i) ∥𝑥𝑘 − 𝑥
★∥ ≤ 𝑟𝑘 ∥𝑥0 − 𝑥

★∥, and (ii) 𝐵𝑘 ∈ 𝐵(𝑓
′(𝑥★), 𝛿) . (18)

Heredity for Inequality (18)-(i) comes from: a same use of the

Banach Perturbation Lemma on 𝐵𝑘 so that 𝐵𝑘 is invertible; that

∥𝐵−1
𝑘
∥ ≤ (1 + 𝑟)𝛾 and by repeating the computations (15) to (16):

∥𝑥𝑘+1 − 𝑥
★∥ ≤ ∥𝐵𝑘 ∥

−1 (𝜆 + 2𝛿)∥𝑥𝑘 − 𝑥
★∥,

≤ (1 + 𝑟)𝛾𝛿 (3 − 𝑟)∥𝑥𝑘 − 𝑥
★∥,

≤ 𝑟 ∥𝑥𝑘 − 𝑥
★∥ .

We can deal with (18)-(ii) using a similar computation as (17):

∥𝐵𝑘+1 − 𝑓
′(𝑥★)∥ ≤ max

(

∥𝐵𝑘 − 𝑓
′(𝑥★)∥, (19)

∥ 𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) − 𝐵𝑘 (𝑥𝑘+1 − 𝑥𝑘)∥∥𝑥𝑘+1 − 𝑥𝑘 ∥
−1)

≤ max
(

∥𝐵𝑘 − 𝑓
′(𝑥★)∥,

∥ 𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) − 𝑓
′(𝑥★) (𝑥𝑘+1 − 𝑥𝑘)∥∥𝑥𝑘+1 − 𝑥𝑘 ∥

−1),

≤ max(𝛿, 𝜆) ≤ 𝛿. □

Corollary 4.3. Locally, one can take definition (12) to define all

the 𝑢𝑛 ’s and all the 𝐵𝑛 ’s will still be invertible.

Proof. With the assumptions of the proof of Theorem 4.2, for

𝑢𝑛 defined by (12), ∥𝑢𝑛−1∥ = ∥𝑠𝑛−1∥
−1 and (4) are satisfied, and by

the Banach Perturbation Lemma, 𝐵𝑛 defined by (3) is invertible. □

Remark 4.4. The fact that Broyden’s method has locally Q-linear

convergence with ratio 𝑟 for any 𝑟 is not enough to prove that ithas

Q-superlinear convergence. Indeed, as 𝑥𝑘 is going closer to 𝑥★,

there is no reason for 𝐵𝑘 to get closer to 𝑓 ′(𝑥★). Consequently, we

cannot expect from the previous result that 𝑥𝑘 and 𝐵𝑘 enter loci of

smaller ratio of convergence as 𝑘 goes to infinity. In fact, in general,

𝐵𝑘 does not converge to 𝑓 ′(𝑥★) .

Finally, the next lemma, consequence of the previous theorem,

will be useful in the next subsection to obtain the R-superlinear

convergence.

Lemma 4.5. Using the same notations as in the proof of Theorem

4.2, if 𝑟 ≤
(

𝛾 ∥𝑓 ′ (𝑥★) ∥
2

)−1
, and ∥𝐵0−𝑓

′(𝑥★)∥ < 𝛿 and ∥𝑥0−𝑥
★∥ < 𝜂,

then for all 𝑛 ∈ N,
∥ 𝑓𝑛+1∥ ≤ ∥ 𝑓𝑛 ∥.

Proof. Let 𝑛 ∈ N. We have ∥𝑠𝑛 ∥ ≤ 𝑟 ∥𝑠𝑛−1∥. Indeed, from

∥𝑥𝑛+1 − 𝑥𝑛 ∥ ≤ max(∥𝑥𝑛+1 − 𝑥
★∥, ∥𝑥★ − 𝑥𝑛 ∥), and ∥𝑥𝑛+1 − 𝑥𝑛 ∥ <

∥𝑥𝑛−𝑥
★∥, we see that ∥𝑠𝑛 ∥ = ∥𝑥

★−𝑥𝑛 ∥ ≤ 𝑟 ∥𝑥
★−𝑥𝑛−1∥ = 𝑟 ∥𝑠𝑛−1∥.

Then using (QN) and the Q-linear convergence with ratio 𝑟, we

get that ∥ 𝑓𝑛+1∥ ≤ 𝑟 ∥𝐵𝑛+1∥∥𝐵
−1
𝑛 ∥∥ 𝑓𝑛 ∥ . Using (19), the definition of

𝛿, 𝛾 in (14), and the fact that 0 < 𝑟 < 1, we get that ∥𝐵𝑛+1∥∥𝐵
−1
𝑛 ∥ ≤

2𝛾 ∥ 𝑓 ′(𝑥★)∥, which concludes the proof. □

4.2 Local R-superlinear convergence

We first remark that the 2𝑛-step convergence in the linear case

proved by Gay in [13] is still valid. Indeed, it is only a matter of

linear algebra.

Theorem 4.6 (Theorem 2.2 in [13]). If 𝑓 is defined by 𝑓 (𝑥) =

𝐴𝑥 − 𝑏 for some 𝐴 ∈ 𝐺𝐿𝑚 (𝐾), then any quasi-Newton method con-

verges in at most 2𝑚 steps (i.e. 𝑓 (𝑥2𝑚) = 0).

With this and under a stronger differentiability assumption on

𝑓 , we can obtain R-superlinearity, similarly to Theorem 3.1 of [13].

The proof also follows the main steps thereof.

Theorem 4.7. Let us assume that on a neighborhood 𝑈 of 𝑥★,

there is a 𝑐0 ∈ R>0 such that 𝑓 satisfies5

∀𝑥,𝑦 ∈ 𝑈 , ∥ 𝑓 (𝑥) − 𝑓 (𝑦) − 𝑓 ′(𝑥★) · (𝑥 − 𝑦)∥ ≤ 𝑐0∥𝑥 − 𝑦∥
2 . (20)

Then there are 𝜂, 𝛿 and Γ in R>0 such that if 𝑥0 ∈ 𝐵(𝑥
★, 𝜂) and

𝐵0 ∈ 𝐵(𝑓
′(𝑥★), 𝛿), then for any𝑤 ∈ Z≥0,

∥𝑥𝑤+2𝑚 − 𝑥
★∥ ≤ Γ∥𝑥𝑤 − 𝑥

★∥2 .

Proof. Step 1: Preliminaries.Condition (20) is stronger than strict

differentiability as stated in Theorem 4.2. From its proof and Lemma

4.5, let 𝑟 ∈ (0, 1) and 𝛾 ≥ ∥ 𝑓 ′(𝑥★)−1∥, as well as 𝜂 and 𝛿 such that:

𝑟 ≤
(

𝛾 ∥𝑓 ′ (𝑥★) ∥
2

)−1
, and if 𝑥0 ∈ 𝐵(𝑥

★, 𝜂) and 𝐵0 ∈ 𝐵(𝑓
′(𝑥★), 𝛿),

the sequences (𝑥𝑛)𝑛∈N and (𝐵𝑛)𝑛∈N defined by Broyden’s method

5This condition is satisfied by polynomials or converging power series.

117

On A Non-Archimedean Broyden Method ISSAC ’20, July 20–23, 2020, Kalamata, Greece

(using (12)) are well defined and moreover the four following in-

equalities are satisfied: for any 𝑘 ∈ N,

∥𝐵𝑘 − 𝑓
′(𝑥★)∥ ≤ 𝛿, ∥𝑥𝑘+1 − 𝑥

★∥ ≤ 𝑟 ∥𝑥𝑘 − 𝑥
★∥,

∥𝐵−1
𝑘
∥ ≤ (1 + 𝑟)𝛾, ∥ 𝑓 (𝑥𝑘+1)∥ ≤ ∥ 𝑓 (𝑥𝑘)∥ .

Let 𝑥0 ∈ 𝐵(𝑥
★, 𝜂), 𝐵0 ∈ 𝐵(𝑓

′(𝑥★), 𝛿), and (𝑥𝑛)𝑛∈N and (𝐵𝑛)𝑛∈N
be defined by Broyden’s method. Let𝑤 ∈ N and ℎ = ∥𝑥𝑤 −𝑥

★∥ .We

must show that there is a Γ, independent of𝑤 such that ∥𝑥𝑤+2𝑚 −

𝑥★∥ ≤ Γℎ2 .

Step 2: reference to a linear map. Let the linear affine map 𝑓 (𝑥) =

𝑓 ′(𝑥★)
(

𝑥 − 𝑥★
)

, and 𝑥0 = 𝑥𝑤 and �̂�0 = 𝐵𝑤 . Broyden’s method (us-

ing first (12)) applied to those data produces the sequences (𝑥𝑛)𝑛∈N
and (�̂�𝑛)𝑛∈N,which are constant for 𝑛 ≥ 2𝑚, as a result of Theorem

4.2. We define similarly 𝑠𝑛 = 𝑥𝑛+1 −𝑥𝑛 . We have again for all 𝑘 ∈ N

the four inequalities:

∥�̂�𝑘 − 𝑓
′(𝑥★)∥ ≤ 𝛿, ∥𝑥𝑘+1 − 𝑥

★∥ ≤ 𝑟 ∥𝑥𝑘 − 𝑥
★∥,

∥�̂�−1
𝑘
∥ ≤ (1 + 𝑟)𝛾 ∥ 𝑓 (𝑥𝑘+1)∥ ≤ ∥ 𝑓 (𝑥𝑘)∥ .

The key to the proof is that 𝑥2𝑚 = 𝑥★ and 𝑥𝑘 and 𝑥𝑤+𝑘 are not too

much far apart.

Step 3: Statement of the induction. More concretely, we prove by

induction on 𝑗 that there exist 𝛾1, 𝑗 and 𝛾2, 𝑗 , independent of𝑤 , such

that for 0 ≤ 𝑗 ≤ 2𝑚, we have the two inequalities:

∥𝐵𝑤+𝑗 − �̂� 𝑗 ∥ · ∥ 𝑓𝑤+𝑗 ∥ ≤ 𝛾1, 𝑗ℎ
2, (𝐸1, 𝑗)

∥𝑥𝑤+𝑗 − 𝑥 𝑗 ∥ ≤ 𝛾2, 𝑗ℎ
2 . (𝐸2, 𝑗)

Step 4: Base case. Since 𝐵𝑤 = �̂�0 and 𝑥𝑤 = 𝑥0, (𝐸1,0) and (𝐸2,0)

are clear, with 𝛾1,0 = 𝛾2,0 = 0. Now, let us assume that (𝐸1,𝑘) and

(𝐸2,𝑘) are true for a given 𝑘 such that 0 ≤ 𝑘 < 2𝑚.

Step 5: We first prove (𝐸2,𝑘+1) . One part of the inequality (21) is

obtained thanks to: 𝐵−1
𝑤+𝑘
− �̂�−1

𝑘
= 𝐵−1

𝑤+𝑘
(�̂�𝑘 − 𝐵𝑤+𝑘)�̂�

−1
𝑘
.

∥𝑠𝑤+𝑘 − 𝑠𝑘 ∥ = ∥𝐵
−1
𝑤+𝑘

𝑓𝑤+𝑘 − �̂�
−1
𝑘
𝑓 (𝑥𝑘)∥

≤ max
(

∥𝐵−1
𝑤+𝑘
∥ · ∥�̂�−1

𝑘
∥ · ∥𝐵𝑤+𝑘 − �̂�𝑘 ∥ · ∥ 𝑓𝑤+𝑘 ∥, (21)

∥�̂�−1
𝑘
∥ · ∥ 𝑓𝑤+𝑘 − 𝑓 (𝑥𝑘)∥

)

≤ ∥�̂�−1
𝑘
∥max

(

∥𝐵−1
𝑤+𝑘
∥ · ∥𝐵𝑤+𝑘 − �̂�𝑘 ∥ · ∥ 𝑓𝑤+𝑘 ∥ ,

∥ 𝑓𝑤+𝑘 − 𝑓 (𝑥𝑤+𝑘)∥ , ∥ 𝑓 (𝑥𝑤+𝑘) − 𝑓 (𝑥𝑘)∥
)

(22)

The first term on the r.h.s. of (22) is upper-bounded by (1+𝑟)2𝛾2𝛾1,𝑘ℎ
2

using (𝐸1,𝑘) and ∥𝐵
−1
𝑤+𝑘
∥ ≤ (1 + 𝑟)𝛾 .

For the second term of (22), using (20):

∥ 𝑓𝑤+𝑘 − 𝑓 (𝑥
★) − 𝑓 ′(𝑥★) · (𝑥𝑤+𝑘 − 𝑥

★)∥ ≤ 𝑐0∥𝑥𝑤+𝑘 − 𝑥
★∥2

and ∥𝑥𝑤+𝑘 − 𝑥
★∥ ≤ ∥𝑥𝑤 − 𝑥

★∥ = ℎ, it is upper-bounded by 𝑐0ℎ
2 .

Finally, the last term is equal to 𝑓 ′(𝑥★) (𝑥𝑤+𝑘 − 𝑥𝑘) whose norm is

upper-bounded by ∥ 𝑓 ′(𝑥★)∥𝛾2,𝑘ℎ
2 thanks to (𝐸2,𝑘). This is enough

to define 𝛾3,𝑘 such that ∥𝑠𝑤+𝑘 − 𝑠𝑘 ∥ ≤ 𝛾3,𝑘ℎ
2 (‡). Consequent-

ly, with 𝛾2,𝑘+1 = max(𝛾3,𝑘 , 𝛾2,𝑘), we do have ∥𝑥𝑤+𝑘+1 − 𝑥𝑘+1∥ ≤

𝛾2,𝑘+1ℎ
2, and (𝐸2,𝑘+1) is satisfied.

Step 6.0: We now prove (𝐸1,𝑘+1). We first deal with some pre-

liminary cases. If 𝑠𝑤+𝑘 = 0, (that is 𝑥𝑤+𝑘+1 = 𝑥𝑤+𝑘) then the

property (2) 𝑠𝑤+𝑘 = −𝐵−1
𝑤+𝑘

𝑓𝑤+𝑘 implies that 𝑓𝑤+𝑘 = 0, and the

property 𝐵𝑤+𝑘+1𝑠𝑤+𝑘 = 𝑦𝑤+𝑘 implies that 𝑓𝑤+𝑘 = 𝑓𝑤+𝑘+1 = 0.

Thus (𝐸1,𝑘+1) is satisfied with 𝛾1,𝑘+1 = 0. If 𝑠𝑘 = 0, then similarly

𝑓 (𝑥𝑤+𝑘) = 𝑓 (𝑥𝑤+𝑘+1) = 0. Therefore, as we have seen before,

∥ 𝑓𝑤+𝑘+1∥ = ∥ 𝑓𝑤+𝑘+1 − 𝑓 (𝑥𝑤+𝑘+1) + 𝑓 (𝑥𝑤+𝑘+1) − 𝑓 (𝑥𝑘+1)∥,

≤ max
(

𝑐0, ∥ 𝑓
′(𝑥★)∥𝛾2,𝑘+1

)

ℎ2 .

Then, using that ∥𝐵𝑤+𝑘+1−�̂�𝑘+1∥ ≤ max(∥𝐵𝑤+𝑘+1−𝑓
′(𝑥★)∥, ∥�̂�𝑘+1−

𝑓 ′(𝑥★)∥) ≤ 𝛿, (𝐸1,𝑘+1) is satisfied with:

𝛾1,𝑘+1 = 𝛿ℎ
2max

(

𝑐0, ∥ 𝑓
′(𝑥★)∥𝛾2,𝑘+1

)

.

Step 6.1 :We can now assume that both 𝑠𝑘 and 𝑠𝑘 are non zero.

To prove that there is a 𝛾1,𝑘+1 (independent of𝑤) such that (𝐸1,𝑘+1)

holds, then in view of the fact that ∥ 𝑓𝑤+𝑘+1∥ ≤ ∥ 𝑓𝑤+𝑘 ∥ (Lemma 4.5)

of (𝐸1,𝑘) and of the definition (Eq. (3)) of 𝐵𝑘+1 and �̂�𝑘+1, it is enough

to prove that there is some 𝛾4,𝑘+1 (independent of𝑤) such that:

∥ (𝑦𝑤+𝑘 − 𝐵𝑤+𝑘𝑠𝑤+𝑘) 𝑢𝑤+𝑘
𝑡−

(

𝑦𝑘 − �̂�𝑘𝑠𝑘

)

𝑢𝑘
𝑡 ∥ · ∥ 𝑓𝑤+𝑘+1∥ ≤ 𝛾4,𝑘+1ℎ

2 . (23)

Using that ∥ 𝑓𝑤+𝑘+1∥ ≤ ∥ 𝑓𝑤+𝑘 ∥ (by Lemma 4.5), we obtain:

∥ 𝑓𝑤+𝑘+1∥ · ∥ (𝑦𝑤+𝑘 − 𝐵𝑤+𝑘𝑠𝑤+𝑘) 𝑢𝑤+𝑘
𝑡 −

(

𝑦𝑘 − �̂�𝑘𝑠𝑘

)

𝑢𝑘
𝑡 ∥

≤∥ 𝑓𝑤+𝑘 ∥max
(

∥𝑦𝑤+𝑘 − 𝑓
′(𝑥★)𝑠𝑤+𝑘 ∥ · ∥𝑢𝑤+𝑘

𝑡 ∥ ,

∥(𝑓 ′(𝑥★) − 𝐵𝑤+𝑘)𝑠𝑤+𝑘𝑢𝑤+𝑘
𝑡 − (𝑓 ′(𝑥★) − �̂�𝑘)𝑠𝑘𝑢𝑘

𝑡 ∥
)

≤∥ 𝑓𝑤+𝑘 ∥max
(

∥𝑦𝑤+𝑘 − 𝑓
′(𝑥★)𝑠𝑤+𝑘 ∥ · ∥𝑢𝑤+𝑘

𝑡 ∥ , (24)

∥(𝑓 ′(𝑥★) − �̂�𝑘) (𝑠𝑤+𝑘𝑢𝑤+𝑘
𝑡 − 𝑠𝑘𝑢𝑘

𝑡)∥, (25)

∥(𝐵𝑤+𝑘 − �̂�𝑘)𝑠𝑤+𝑘𝑢𝑤+𝑘
𝑡 ∥
)

. (26)

Step 6.2: From 𝑓𝑤+𝑘 = −𝐵𝑤+𝑘𝑠𝑤+𝑘 , we have ∥ 𝑓𝑤+𝑘 ∥ ≤ ∥𝑠𝑤+𝑘 ∥ ·

max(∥𝐵𝑤+𝑘 − 𝑓
′(𝑥★)∥, ∥ 𝑓 ′(𝑥★)∥) ≤ ∥𝑠𝑤+𝑘 ∥ ·max(𝛿, ∥ 𝑓 ′(𝑥★)∥) (•) .

Otoh by (20), ∥𝑦𝑤+𝑘 − 𝑓
′(𝑥★)𝑠𝑤+𝑘 ∥ ≤ 𝑐0∥𝑠𝑤+𝑘 ∥

2. It follows that

the first term (24) can be upper-bounded in the following way:

(24) ≤ 𝑐0∥𝑠𝑤+𝑘 ∥
3∥𝑢𝑤+𝑘

𝑡 ∥max(𝛿, ∥ 𝑓 ′(𝑥★)∥) ≤ 𝑐0ℎ
2max(𝛿, ∥ 𝑓 ′(𝑥★)∥),

the rightmost inequality being obtained from ∥𝑢𝑤+𝑘
𝑡 ∥ = ∥𝑠𝑤+𝑘 ∥

−1

and ∥𝑠𝑤+𝑘 ∥ ≤ max(∥𝑥𝑤+𝑘+1−𝑥
★∥, ∥𝑥𝑤+𝑘 −𝑥

★∥) = ∥𝑥𝑤+𝑘 −𝑥
★∥ ≤

∥𝑥𝑤 − 𝑥
★∥ = ℎ.

Step 6.3: The third one (26) can be upper-bounded using (𝐸1,𝑘):

(26) ≤ ∥ 𝑓𝑤+𝑘 ∥∥(𝐵𝑤+𝑘 − �̂�𝑘)𝑠𝑤+𝑘𝑢𝑤+𝑘
𝑡 ∥ ≤ 𝛾1,𝑘ℎ

2 .

Step 6.4: For the second one (25), observe that:

𝑠𝑤+𝑘𝑢𝑤+𝑘
𝑡 − 𝑠𝑘𝑢𝑘

𝑡
= (𝑠𝑤+𝑘 − 𝑠𝑘)𝑢𝑤+𝑘

𝑡 − 𝑠𝑘 (𝑢𝑤+𝑘
𝑡 − 𝑢𝑘

𝑡). (27)

The first term is easy to manage using the previous inequality (•) on

∥ 𝑓𝑤+𝑘 ∥, the inequality (‡) on ∥𝑠𝑤+𝑘 − 𝑠𝑘 ∥ and ∥𝑠𝑤+𝑘 ∥∥𝑢𝑤+𝑘
𝑡 ∥ = 1:

∥ 𝑓𝑤+𝑘 ∥ · ∥(𝑠𝑤+𝑘 − 𝑠𝑘)𝑢𝑤+𝑘
𝑡 ∥ ≤ max(𝛿, ∥ 𝑓 ′(𝑥★)∥)𝛾3,𝑘ℎ

2 . (28)

The second one of Eq. (27) is a little bit trickier. Define as in (12),

𝑢𝑤+𝑘 = 𝑠−1
𝑤+𝑘,𝑙

𝑒𝑙 and 𝑢𝑘 = 𝑠−1
𝑘,𝑙
𝑒
𝑙
for some given 𝑙 and 𝑙 .

If 𝑙 = 𝑙, we have: (the last inequality below follows from (‡)).

∥𝑢𝑤+𝑘 − 𝑢𝑘 ∥ = |𝑠
−1
𝑤+𝑘,𝑙

− 𝑠−1
𝑘,𝑙
| =
|𝑠𝑤+𝑘,𝑙 − 𝑠𝑘,𝑙 |

|𝑠𝑤+𝑘,𝑙 | · |𝑠𝑘,𝑙 |
=

|𝑠𝑤+𝑘,𝑙 − 𝑠𝑘,𝑙 |

∥𝑠𝑤+𝑘 ∥ · ∥𝑠𝑘 ∥

≤
∥𝑠𝑤+𝑘 − 𝑠𝑘 ∥

∥𝑠𝑤+𝑘 ∥ · ∥𝑠𝑘 ∥
≤

𝛾3,𝑘ℎ
2

∥𝑠𝑤+𝑘 ∥ · ∥𝑠𝑘 ∥
.

118

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Xavier Dahan and Tristan Vaccon

From this and from ∥ 𝑓𝑤+𝑘 ∥ = ∥𝐵𝑤+𝑘 ∥ · ∥𝑠𝑤+𝑘 ∥ we get:

∥ 𝑓𝑤+𝑘 ∥ · ∥𝑢𝑤+𝑘 − 𝑢𝑘 ∥ · ∥𝑠𝑘 ∥ ≤ 𝛾3,𝑘 max
(

𝛿, ∥ 𝑓 ′(𝑥★)∥
)

ℎ2 . (29)

If 𝑙 ≠ 𝑙, then either ∥𝑠𝑤+𝑘 − 𝑠𝑘 ∥ = ∥𝑠𝑤+𝑘 ∥, if ∥𝑠𝑘 ∥ ≤ ∥𝑠𝑤+𝑘 ∥, or

∥𝑠𝑤+𝑘 − 𝑠𝑘 ∥ = ∥𝑠𝑘 ∥, if ∥𝑠𝑤+𝑘 ∥ ≤ ∥𝑠𝑘 ∥. In the first case, we have

∥𝑢𝑤+𝑘 − 𝑢𝑘 ∥ = ∥𝑠𝑘 ∥
−1,

and then, the second term of (27) multiplied by ∥ 𝑓𝑤+𝑘 ∥ verifies:

∥ 𝑓𝑤+𝑘 ∥ · ∥𝑢𝑤+𝑘 − 𝑢𝑘 ∥ · ∥𝑠𝑘 ∥ ≤ max
(

𝛿, ∥ 𝑓 ′(𝑥★)∥
)

∥𝑠𝑤+𝑘 ∥

≤ max
(

𝛿, ∥ 𝑓 ′(𝑥★)∥
)

𝛾3,𝑘ℎ
2 . (30)

The second case followswith the same computation. Eqs (30) (29) (28)

prove together the bound on the expression (25) in (27). In turn with

the bounds on the terms (24) and (26), prove (23). This concludes

the proof of (𝐸1,𝑘+1), and finally the induction.

Step 7: Consequently, ∥𝑥𝑤+2𝑚 − 𝑥2𝑚 ∥ ≤ 𝛾2,2𝑚ℎ
2 . Thanks to

Theorem 4.2, 𝑥2𝑚 = 𝑥★, and thus, we have proved that for any𝑤,

∥𝑥𝑤+2𝑚 − 𝑥
★∥ ≤ 𝛾2,2𝑚 ∥𝑥𝑤 − 𝑥

★∥2 . □

Theorem 4.7 has for immediate consequence:

Theorem 4.8. Broyden’s method has locally R-order of conver-

gence 2
1
2𝑚 .

Proof. Let us take 𝑥0 and 𝐵0 as in the proof of the previous

theorem, and same constants and notations. For any𝑤, ∥𝑥𝑤+2𝑚 −

𝑥★∥ ≤ Γ∥𝑥𝑤 − 𝑥
★∥2 .

Consequently, for 0 ≤ 𝑘 < 2𝑚, 𝑙 ∈ N, and 𝜇 = 21/2𝑚,

∥𝑥2𝑙𝑚+𝑘 − 𝑥
★∥𝜇

−2𝑙𝑚−𝑘
≤ ∥𝑥𝑘 − 𝑥

★∥2
𝑙 𝜇−2𝑙𝑚−𝑘

Γ
(2𝑙−1)𝜇−2𝑙𝑚−𝑘

≤ ∥𝑥𝑘 − 𝑥
★∥2

𝑙 2−𝑙−
𝑘
2𝑚

Γ
(2𝑙−1)2−𝑙−

𝑘
2𝑚

≤ ∥𝑥𝑘 − 𝑥
★∥2

− 𝑘
2𝑚

Γ
(1−2−𝑙)2−

𝑘
2𝑚
.

For simplicity, we can assume that Γ ≥ 1. Thus,

∥𝑥2𝑙𝑚+𝑘 − 𝑥
★∥𝜇

−2𝑙𝑚−𝑘
≤ ∥𝑥𝑘 − 𝑥

★∥2
− 𝑘
2𝑚

Γ
2−

𝑘
2𝑚
.

≤ ∥𝑥0 − 𝑥
★∥2

− 𝑘
2𝑚

Γ
2−

𝑘
2𝑚
.

Therefore, for ∥𝑥0 − 𝑥
★∥ small enough, we get that for all 𝑘

such that 0 ≤ 𝑘 < 2𝑚, ∥𝑥0 − 𝑥
★∥2

− 𝑘
2𝑚

Γ
2−

𝑘
2𝑚

< 1, and hence,

lim sup𝑠 ∥𝑥𝑠 − 𝑥
★∥𝜇

𝑠
< 1. From 9.2.7 of [20], we then obtain that

Broyden’s method do have locally R-order of convergence 2
1
2𝑚 . □

5 QUESTIONS ON Q-SUPERLINEARITY

A Q-order of 𝜇 implies an R-order of 𝜇. The converse is not true.

Over R, one of the most important result concerning Broyden’s

method is that it is Q-superlinear. The extension of this result to

the non-archimedean case remains an open question.

5.1 Dimension 1: secant method

In dimension one, Broyden’s method reduces to the secant method.

It is known since [1] that the 𝑝-adic secant method applied on

polynomials has order Φ, the golden ratio. Its generalization to a

general non-archimedean context is straightforward.

Proposition 5.1. Let us assume that𝑚 = 1 and on a neighborhood

𝑈 of 𝑥★, there is a 𝑐0 ∈ R>0 such that 𝑓 satisfies (20) on𝑈 . Then the

secant method has locally Q-order of convergence Φ.

Proof. Let us assume that we are in the same context as in the

proof of Theorem 4.7, with some Q-linear convergence of ratio

𝑟 < 1. Let us define 𝜀𝑘 = 𝑥𝑘 − 𝑥
★ for 𝑘 ∈ N. For all 𝑘 ∈ N,

|𝜀𝑘+1 | < |𝜀𝑘 |. Then by ultrametricity, |𝑥𝑘+1 − 𝑥𝑘 | = |𝜀𝑘 |. Also,

we further assume that 𝑐0 |𝜀0 | < |𝑓
′(𝑥★) | so that for all 𝑘 ∈ N,

|𝑓 ′(𝑥★) × (𝑥𝑘+1 − 𝑥𝑘) | > 𝑐0 | (𝑥𝑘+1 − 𝑥𝑘) |
2, which also implies by

ultrametricity and (20) that for all 𝑘 ∈ N,

|𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) | = |𝑓
′(𝑥★) × (𝑥𝑘+1 − 𝑥𝑘) |.

Similarly, |𝑓 (𝑥𝑘) | = |𝑓
′(𝑥★) | |𝜀𝑘 |.

Now, let 𝑛 ∈ Z>0 . Broyden’s iteration is given by:

𝑥𝑛+1 = 𝑥𝑛 −
𝑥𝑛 − 𝑥𝑛−1

𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
.

It rewrites as:

|𝜀𝑛+1 | = |𝜀𝑛 −
𝜀𝑛 𝑓 (𝑥𝑛) − 𝜀𝑛−1 𝑓 (𝑥𝑛)

𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
| = |

𝜀𝑛−1 𝑓 (𝑥𝑛) − 𝜀𝑛 𝑓 (𝑥𝑛−1)

𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
|

≤ 𝑐0
max

(

|𝜀𝑛−1 | |𝜀𝑛 |
2 , |𝜀𝑛−1 |

2 |𝜀𝑛 |
)

|𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1) |
≤

𝑐0

|𝑓 ′(𝑥★) |
|𝜀𝑛 | |𝜀𝑛−1 |.

Let us write 𝐶 =
𝑐0

|𝑓 ′ (𝑥★) |
and 𝑣𝑛 = 𝐶𝜀𝑛 . Then, 𝑣𝑛+1 ≤ 𝑣𝑛𝑣𝑛−1 for

any 𝑛 > 0 and consequently,

𝑣𝑛+1/(𝑣
Φ

𝑛) ≤ 𝑣
1−Φ
𝑛 𝑣𝑛−1 ≤

(

𝑣𝑛/𝑣
Φ

𝑛−1

)1−Φ
,

as Φ2
= Φ + 1. If we define (𝑌𝑛)𝑛∈Z≥1 by 𝑌1 =

𝑣1
𝑣Φ0

and 𝑌𝑛+1 = 𝑌
1−Φ
𝑛 ,

then 𝑣𝑛+1
𝑣Φ𝑛
≤ 𝑌𝑛 . Since |1−Φ| < 1, then𝑌𝑛 converges to 1. Therefore,

it is bounded by some 𝐷 ∈ R+, and
𝑣𝑛+1
𝑣Φ𝑛
≤ 𝐷 for all 𝑛 ∈ Z≥1 . This

concludes the proof. □

5.2 General case

Over R, Broyden’s method is known to converge Q-superlinearly.

The key point is that for any 𝐸 ∈ 𝑀𝑚 (R) and 𝑠 ∈ R
𝑚 \ {0},

∥𝐸

(

𝐼 −
𝑠 · 𝑠𝑡

(𝑠𝑡 · 𝑠)

)

∥2𝐹 = ∥𝐸∥2𝐹 −

(

∥𝐸𝑠 ∥2

∥𝑠 ∥2

)2

, (31)

equation (5.5) of [10]. The minus sign is a blessing as it allows the

appearance of a telescopic sum which plays a key role in proving

that
∥𝑥𝑛+1−𝑥

★ ∥
∥𝑥𝑛−𝑥★ ∥

converges to zero. Unfortunately, there does not

seem to be a non-archimedean analogue to this equality. Thanks to

Theorem 4.7, we nevertheless believe in the following conjecture.

Conjecture 5.2. In the same setting as Theorem 4.7, Broyden’s

method has locally Q-superlinear convergence.

6 FINITE PRECISION

6.1 Design and notations

One remarkable feature of Newton’s method in an ultrametric

context is the way it can handle precision. For example, if 𝜋 is

a uniformizer, if we assume that ∥ 𝑓 ′(𝑥★)−1∥ = 1, 𝑥𝑛 known at

precision 𝑂 (𝜋2
𝑛
) is enough to obtain 𝑥𝑛+1 at precision 𝑂 (𝜋

2𝑛+1) .

To that intent, it thus suffices to double the precision at each new

iteration. Hence the working precision of Newton’s method can be

taken to grow at the same rate as the rate of convergence.

The handling of precision is more subtle in Broyden. This is

however crucial to design efficient implementations. Note that in

the real numerical setting, most works using Broyden’s methods

119

On A Non-Archimedean Broyden Method ISSAC ’20, July 20–23, 2020, Kalamata, Greece

are employing fixed finite precision arithmetic, and do not address

precision. Additionally, the lack of a knowledge of a precise expo-

nent of convergence requires special care, and the presence of a

division also complicates the matter. We explain hereafter how to

cope with those issues.

We will make the following hypotheses throughout this sec-

tion, which correspond to the standard ones in the Newton-Hensel

method. They are that the starting 𝑥0 and 𝐵0 are in a basin of con-

vergence at least linear. This allows us to replace any encountered

𝑥𝑛 by its lift 𝑥𝑛 to a higher precision (and same for 𝐵𝑛). Indeed, 𝑥𝑛
will still be in the basin of convergence and then follows the same

convergence property. These liftings allow to mitigate the fact that

some divisions are reducing the amount of precision so that only

arbitrary added digits are destroyed by the divisions. 6

Assumption 6.1. We assume that 𝑥0 and 𝑥
★ are in O𝐾 , and that

∥ 𝑓 ′(𝑥★)∥ = ∥ 𝑓 ′(𝑥★)−1∥ = ∥𝐵0∥ = ∥𝐵−10 ∥ = 1. We also assume

that some 𝜌1 ≤ 1 and 𝜌2 ≤ 1 are given such that 𝐵(𝑥★, 𝜌1) ×

𝐵(𝑓 ′(𝑥★), 𝜌2), is a basin of convergence at least linear and for any

𝑥 ∈ 𝐵(𝑥★, 𝜌1), and 𝜌 ≤ 𝜌1, 𝑓 (𝑥 + 𝐵(0, 𝜌)) = 𝑓 (𝑥) + 𝑓
′(𝑥★) · 𝐵(0, 𝜌)

(see the Precision Lemma 3.16 of [9])

The assumption on 𝐵0 and 𝑓
′(𝑥★) states that they are unimodu-

lar, which is the best one can assume regarding to conditioning and

precision. Indeed if𝑀 ∈ 𝐺𝐿𝑚 (𝐾) is unimodular (∥𝑀 ∥ = ∥𝑀−1∥ =

1), then for any 𝑥 ∈ 𝐾𝑚, ∥𝑀𝑥 ∥ = ∥𝑥 ∥. Over Q𝑝 , 𝑀 ∈ 𝑀𝑚 (Z𝑝)

is unimodular if and only if its reduction in 𝑀𝑚 (Z/𝑝Z) is invert-

ible (and idem for QJ𝑇 K and Q). The last assumption is there to

provide the precision on the evaluations 𝑓 (𝑥𝑘)’s. It is satisfied if

𝑓 ∈ O𝐾 [𝑋1, . . . , 𝑋𝑚] .

Precision and complexity settings. LetM(𝑁) be a superadditive

upper-bound on the arithmetic complexity over the residue field of

O𝐾 for the computation of the product of two elements in O𝐾 at

precision 𝑂 (𝜋𝑁), and 𝐿 be the size of a straight-line program that

computes the system 𝑓 . One can takeM(𝑁) ∈ 𝑂 (̃𝑁).

Working over 𝐾 with zealous arithmetic, the ultrametric coun-

terpart of interval arithmetic [9, ğ 2.1], the interval of integers

[[𝑎, 𝑏 [[indicates the coefficients of an element 𝑥 ∈ 𝐾 represented

in the computer as 𝑥 =
∑𝑏−1
𝑖=𝑎 𝑥𝑖𝜋

𝑖 , with 𝑥𝑖 ∈ O𝐾/⟨𝜋⟩. In this way

val(𝑥) = 𝑎, its absolute precision is abs(𝑥) = 𝑏, and its relative preci-

sion is rel(𝑥) = 𝑏 − 𝑎. We recall the usual precision formulae, and

assume in the algorithm below that it is how the software manages

zealous arithmetic (as in Magma, SageMath, Pari). See loc. cit. for

more details.

[[𝑎, 𝑏 [[×[[𝑐, 𝑑 [[= [[𝑎 + 𝑐, min(𝑎 + 𝑑, 𝑏 + 𝑐) [[

[[𝑎, 𝑏 [[/[[𝑐, 𝑑 [[= [[𝑎 − 𝑐, min(𝑎 + 𝑑 − 2𝑐, 𝑏 − 𝑐) [[(P)

The cost of multiplying two elements of relative precision 𝑎 and

𝑏 is within M(max(𝑎, 𝑏)), and to divide one by the other is in

4M(max(𝑎, 𝑏)) +max(𝑎, 𝑏) [25, Thm 9.4].

To perform changes in the precision, we use the same notation

as Magma’s function for doing so. If 𝑥 has interval [[𝑎, 𝑏 [[, the

(destructive) procedure łChangePrec(~𝑥, 𝑐)ž either truncates 𝑥 to
absolute precision 𝑐 if 𝑐 ≤ 𝑏, or lifts with zero coefficients 0𝜋𝑏 +
· · · + 0𝜋𝑐−1 to fit the interval [[𝑎, 𝑐 [[, if 𝑐 > 𝑏. The non-destructive
counterpart is denoted łChangePrec(𝑥, 𝑐)ž without ~.

6This an example of an adaptive method, which can also be used in Newton’s method
when divisions occur.

6.2 Effective Broyden’s method

We start from an initial approximation 𝑥0 at precision one, for ex-
ample given by a modular method. The inverse of the Jacobian at
precision one provides 𝐵−10 . It yields a cost of 𝑂 (𝑚𝜔), but the com-
plexity analysis of Remark 6.4 shows that it is negligible. Obtaining
these data is not always obvious [12], but is the standard hypothesis
in the context of modular methods. We write 𝑣𝑘 = val(𝑓𝑘),

In an ideal situation. Assume an oracle provides the valuations
𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑛, . . . (computed by a Broyden method at arbitrarily
large precision). From this ideal situation, we derive the simple and
costless modifications required in reality. This analysis allows us to
know how efficient can a Broyden method be, which is noteworthy
for comparing it to Newton’s. The implementation of Iteration 𝑛
(𝑛 = 0 included) follows the lines hereunder. The rightmost inter-
val indicates the output interval precision of the object computed
(following (P)), while the middle indicates a complexity estimate.

Input: (1) 𝐵−1𝑛 has interval [[0, 𝑣𝑛 [[and is unimodular.

(2) 𝑥𝑛 has interval [[0, 𝑣𝑛 + 𝑣𝑛+1 [[(non-zero entries in [[0, 𝑣𝑛−1 + 𝑣𝑛 [[).

(3) 𝑓𝑛 has interval [[𝑣𝑛, 𝑣𝑛 + 𝑣𝑛+1 [[.

Output: (i) 𝐵−1𝑛+1 with interval [[0, 𝑣𝑛+1 [[, (val(det(𝐵−1𝑛)) = 0).

(ii) 𝑥𝑛+1 in the interval [[0, 𝑣𝑛+1+𝑣𝑛+2 [[(non-zero entries in [[0, 𝑣𝑛+𝑣𝑛+1 [[).
(iii) 𝑓𝑛+1 in the interval [[0, 𝑣𝑛+1 + 𝑣𝑛+2 [[.

(1) ChangePrec(~𝐵−1𝑛 , 𝑣𝑛+1) ; [[0, 𝑣𝑛+1 [[

(2) 𝑠𝑛 ← −𝐵−1𝑛 · 𝑓𝑛 ; 𝑚2M(𝑣𝑛+1) [[𝑣𝑛, 𝑣𝑛 + 𝑣𝑛+1 [[

(3) 𝑥𝑛+1 ← 𝑥𝑛 + 𝑠𝑛 ; [[0, 𝑣𝑛 + 𝑣𝑛+1 [[

(4) ChangePrec(~𝑥𝑛+1, 𝑣𝑛+1 + 𝑣𝑛+2) ; [[0, 𝑣𝑛+1 + 𝑣𝑛+2 [[

(5) 𝑓𝑛+1 ← 𝑓 (𝑥𝑛+1) ;
. 𝐿 ·M(𝑣𝑛+1 + 𝑣𝑛+2) [[𝑣𝑛+1, 𝑣𝑛+1 + 𝑣𝑛+2 [[

(6) 𝑓𝑛+1 ← ChangePrec(𝑓𝑛+1, 𝑣𝑛 + 𝑣𝑛+1) ; [[𝑣𝑛+1, 𝑣𝑛+1 + 𝑣𝑛 [[

(7) ℎ𝑛 ← 𝐵−1𝑛 · 𝑓𝑛+1 ; 𝑚2M(𝑣𝑛+1) [[𝑣𝑛+1, 𝑣𝑛 + 𝑣𝑛+1 [[

(8) 𝑢𝑛 ← Eq.(12) ; (negligible) [[−𝑣𝑛, 𝑣𝑛+1 − 𝑣𝑛 [[

(9) 𝑟𝑛 ← 𝑢𝑇𝑛 · ChangePrec(𝐵
−1
𝑛 , 𝑣𝑛) ; 𝑚2M(𝑣𝑛+1) [[−𝑣𝑛, 0[[

(10) ChangePrec(~𝑓𝑛+1, 2𝑣𝑛) ; [[𝑣𝑛+1, 2𝑣𝑛 [[

(11) den← 1 + 𝑟𝑛 · 𝑓𝑛+1 ; 𝑚M(𝑣𝑛+1) [[0, 𝑣𝑛 [[

(12) Num← ℎ𝑛 · 𝑟𝑛 ; 𝑚2M(𝑣𝑛) [[𝑣𝑛+1 − 𝑣𝑛, 𝑣𝑛+1 [[

(13) N𝑛 ← Num/den ; 4𝑚2M(𝑣𝑛) [[𝑣𝑛+1 − 𝑣𝑛, 𝑣𝑛+1 [[

(14) 𝐵−1𝑛+1 ← 𝐵−1𝑛 − N𝑛 ; [[0, 𝑣𝑛+1 [[

(15) return 𝐵−1𝑛+1, 𝑥𝑛+1, 𝑓𝑛+1
We emphasize again that thanks to the careful changes of pre-

cision undertaken, the precisions are automatically managed by
the software, would it have zealous arithmetic implemented. It is
then immediate to check that the output verifies the specifications.
Moreover from the positive valuation of N𝑛 it is clear that 𝐵𝑛+1 is
unimodular. Thus Iteration 𝑛 + 1 can be initiated with these outputs.

Complexity of the ideal situation. The arithmetic cost of Itera-
tion 𝑛 is within (3𝑚2 +𝑚)M(𝑣𝑛+1) +5𝑚

2M(𝑣𝑛) +𝐿 ·M(𝑣𝑛+2 +𝑣𝑛+1).
If we assume an exponent of convergence 𝛼 > 1, i.e. 𝑣𝑛+1 ≈ 𝛼𝑣𝑛
for łnot too smallž 𝑛, then the total cost to reach a precision 𝑁 ≈
𝛼ℓ+1 ≈ 𝑣ℓ+1 (ℓ steps, including a 0-th one) is upper-bounded by

(5𝑚2 + (3𝑚2 +𝑚)𝛼2 + 𝐿(1 + 𝛼)2𝛼2)M(𝑁 /(𝛼 − 1)) (32)

In reality. Using the same notations and inputs at Iteration 𝑛 as
in the ideal situation above, what changes in reality is that while
𝑣𝑛 is known 𝑣𝑛+1 and 𝑣𝑛+2 are not, but are approximated by 𝛼𝑣𝑛 ≥

120

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Xavier Dahan and Tristan Vaccon

𝑣𝑛+1 and 𝛼2𝑣𝑛 ≥ 𝑣𝑛+2 respectively, where 𝛼 is fixed by the user.
Precisely, 𝐵−1𝑛 and 𝑥𝑛 are known at the correct precision, but 𝑓𝑛 has
an approximated interval [[0, 𝑣𝑛 +𝛼𝑣𝑛 [[. To minimize the overhead
cost it induces compared to the ideal situation, once we know
𝑣𝑛+1 (Line 5) we insert some intermediate corrective steps denoted
(5.1)-(5.5) thereafter, between Line (5) and Line (6); they require no
arithmetic operations.

(5.1) ChangePrec(~𝐵−1𝑛 , 𝑣𝑛+1)
(5.2) ChangePrec(~𝑠𝑛, 𝑣𝑛 + 𝑣𝑛+1)
(5.3) Tune 𝛼 if necessary using the new ratio 𝑣𝑛+1

𝑣𝑛
(5.4) ChangePrec(~𝑥𝑛, 𝑣𝑛+1 + 𝛼𝑣𝑛+1)
(5.5) ChangePrec(~𝑓𝑛+1, 𝑣𝑛+1 + 𝛼𝑣𝑛+1)

Most importantly, the remaining Lines (6)-(15) are not impact-
ed since these computations involve now the known 𝑣𝑛+1 (and
not the unknown 𝑣𝑛+2): the intervals, and thus costs obtained are
the same as in the ideal situation. On the other hand, Lines (1)-(5)
are performed as such with an overhead cost. Among them, only
Lines (2), (5) have a non negligible cost. At Line (2), 𝐵−1𝑛 has approx-
imated interval [[0, 𝛼𝑣𝑛 [[, yielding a cost of𝑚2M(𝛼𝑣𝑛). At Line (5)
𝑥𝑛+1 has approximated interval [[0, 𝑣𝑛 (𝛼 + 𝛼2) [[, yielding a cost of
𝐿M(𝑣𝑛 (𝛼 (1 + 𝛼))). Thus the overhead cost łovh𝑛ž at Iteration 𝑛 is:

𝑚2 (M(𝛼𝑣𝑛) −M(𝑣𝑛+1)) +𝐿(M(𝑣𝑛𝛼 (1+𝛼)) −M(𝑣𝑛+1+𝑣𝑛+2)) (33)

This quantity depends on the gaps 𝛼𝑣𝑛 − 𝑣𝑛+1 and 𝛼2𝑣𝑛 − 𝑣𝑛+2.
These gaps increase with 𝑛, but, thanks to the tuning of Step (5.3),
reasonably at a linear rate:

Assumption 6.2. The łerror gapž |𝛼𝑣𝑛 − 𝑣𝑛+1 | = 𝑂 (𝑛).

Under this assumption it is easy to (crudely) bound
∑ℓ+1
𝑛=0 ovh𝑛

of Eq. (33) by (𝐿 +𝑚2)𝑂 (𝑁 log(𝑁)). Being independent on 𝛼 this
is negligible in front of 𝑂 (𝐿 +𝑚2)M(𝑁𝛼−1) for 𝛼 < 2. The theorem
below wraps up the considerations made above with Eq. (32):

Theorem 6.3. If Broyden’s method has Q-order of convergence 𝛼

on 𝐵(𝑥★, 𝜌1) ×𝐵(𝑓
′(𝑥★), 𝜌2), then under Assumption 6.1 and 6.2, the

cost of computing 𝑥★ +𝑂 (𝜋𝑁) is in 𝑂
(

(𝑚2 + 𝐿)
)

M
(

𝑁
𝛼−1

)

.

Remark 6.4. Understanding the 𝑄-order of convergence is a major
and notoriously difficult problem in the numerical analysis com-
munity. Numerical evidence shows it deteriorates with𝑚, and is
larger than 21/2𝑚 (Theorems 4.7-4.8). Some experiments suggest
that taking 𝛼 ≈ 21/𝑚 is not unreasonable. We then get a cost

in 𝑂
(

(𝑚2 + 𝐿)M
(

𝑁
𝛼−1

))

≈ 𝑂
(

(𝑚2 + 𝐿)M (𝑁𝑚)
)

. For comparison,

denoting𝜔 < 3 the exponent of the cost of matrix product, the stan-
dard analysis of Newton’s method for rational fractions would lead
to𝑂 ((𝑚𝜔 +𝑚𝐿)M (𝑁)). Consequently, in this setting, for large𝑚,
there is little hope that Broyden’s method can outperform New-
ton’s when both are available. Remember though other worthwile
applications in the paragraph łMotivationsž in Introduction.

7 NUMERICAL DATA

An implementation of our ultrametric Broyden method in Mag-
ma [4] with more data is available at http://xdahan.sakura.ne.jp/
broyden20.html. We report the data obtained using the three fam-
ilies of systems, derived from page 36 of [18]. The families are
indexed by 𝑡 ∈ 𝜋O𝐾 :

• 𝐹1 =
(

(𝑥1−1)2+ (𝑥2−1)2−4−𝑡𝑥1𝑥2−𝑡2𝑥1, (𝑥1+1)2+ (𝑥2+1)2−4−𝑡𝑥1
)

in 𝐾 [𝑥1, 𝑥2].
• 𝐹2 =

(

(𝑥1 − 1)2 + (𝑥2 − 1)2 + (𝑥3 − 1)2 − 5− 𝑡 − 𝑡2, (𝑥1 + 1)2 + (𝑥2 + 1)2 +
(𝑥3 + 1)2 − 5 − 𝑡, 2𝑥21 + 𝑥

2
2 + 𝑥

2
3 − 3 − 𝑡

2) in 𝐾 [𝑥1, 𝑥2, 𝑥3].
• 𝐹3 =

(

(𝑥1 − 1)2 + (𝑥2 − 1)2 + (𝑥3 − 1)2 + (𝑥4 − 1)2 − 8 − 𝑡 − 𝑡2, (𝑥1 +
1)2 + (𝑥2 + 1)2 + (𝑥3 + 1)2 + (𝑥4 + 1)2 − 8 − 𝑡, 2𝑥21 + 𝑥

2
2 + 𝑥

2
3 + 𝑥

2
4 − 5 −

𝑡2, 2𝑥1 𝑥2 + 𝑥3 𝑥2 − 2𝑥3 𝑥4 + 2𝑥4 𝑥1 + 3 − 𝑡2
)

in 𝐾 [𝑥1, 𝑥2, 𝑥3, 𝑥4].

Valuation of 𝑓 (𝑥𝑘) and numerical estimation of the order of Q-
convergence for QJ𝑇 K are compiled in the following graphic. For
𝐾 = Q𝑝 , and F𝑝J𝑡K with 𝑝 = 17 we experienced the same behaviour.

REFERENCES
[1] E. Bach. Iterative root approximation in p-adic numerical analysis. J. of Com-

plexity, 25(6):511ś529, 2009.
[2] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical

computer science, 22(3):317ś330, 1983.
[3] J. Berthomieu, J. Van Der Hoeven, and G. Lecerf. Relaxed algorithms for p-adic

numbers. J. Théor. Nombres Bordeaux, 23(3):541ś577, 2011.
[4] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user

language. J. Symbolic Computation, 24(3-4):235ś265, 1997.
[5] RP Brent and HT Kung. Fast algorithms for manipulating formal power series. J.

of the ACM, 25(4):581ś595, 1978.
[6] CG Broyden. A class of methods for solving nonlinear simultaneous equations.

Mathematics of computation, 19(92):577ś593, 1965.
[7] CG Broyden, JE Dennis Jr, and JJ Moré. On the local and superlinear convergence

of quasi-Newton methods. IMA J. Applied Mathematics, 12(3):223ś245, 1973.
[8] RL Burden and JD Faires. Numerical analysis. Brooks/Cole, Cengage Learning,

9th edition, 2011.
[9] X. Caruso. Computations with 𝑝-adic numbers. cours CIRM, 5(1):1ś75, 2017.
[10] JE Dennis, Jr and JJ Moré. Quasi-Newton methods, motivation and theory. SIAM

review, 19(1):46ś89, 1977.
[11] MJ Fischer and LJ Stockmeyer. Fast on-line integer multiplication. J. Computer

and System Sciences, 9(3):317 ś 331, 1974.
[12] AS Fraenkel and Y. Yesha. Complexity of solving algebraic equations. Information

Processing Letters, 10(4):178 ś 179, 1980.
[13] DM Gay. Some convergence properties of Broyden’s method. SIAM J. Numerical

Analysis, 16(4):623ś630, 1979.
[14] CTKelley and EWSachs. Broyden’s method for approximate solution of nonlinear

integral equations. J. Integral Equations, 9(1):25ś43, 1985.
[15] CT Kelley and EW Sachs. Approximate quasi-Newton methods. Mathematical

Programming, 48(1-3):41ś70, 1990.
[16] HT Kung. On computing reciprocals of power series. Numerische Mathematik,

22(5):341ś348, 1974.
[17] HT Kung and JF Traub. All algebraic functions can be computed fast. J. of the

ACM, 25(2):245ś260, 1978.
[18] G. Lecerf. Une alternative aux méthodes de réécriture pour la résolution des systèmes

algébriques. PhD thesis, École polytechnique, France, 2001.
[19] JM Martínez. Practical quasi-Newton methods for solving nonlinear systems. J.

Computational and Applied Mathematics, 124(1):97 ś 121, 2000.
[20] JM Ortega and WC Rheinboldt. Iterative solution of nonlinear equations in several

variables, volume 30. Siam, 1970.
[21] J.-P. Serre. A course in arithmetic. Springer GTM 7, 1973.
[22] J. Sherman and WJ Morrison. Adjustment of an inverse matrix corresponding to

a change in one element of a given matrix. The Annals of Mathematical Statistics,
21(1):124ś127, 1950.

[23] J. van der Hoeven. Relax, but don’t be too lazy. J. Symbolic Computation, 34(6):479
ś 542, 2002.

[24] J. van der Hoeven. Newton’s method and FFT trading. J. Symbolic Computation,
45(8):857ś878, 2010.

[25] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, New York, NY, USA, 2003. Second Edition.

121

http://xdahan.sakura.ne.jp/broyden20.html
http://xdahan.sakura.ne.jp/broyden20.html

Decidability of Membership Problems for Flat Rational Subsets
of GL(2,Q) and Singular Matrices

Volker Diekert
Formale Methoden der Informatik,

Universität Stuttgart
Stuttgart, Germany

diekert@fmi.uni-stuttgart.de

Igor Potapov
Department of Computer Science,

University of Liverpool
Liverpool, United Kingfom
potapov@liverpool.ac.uk

Pavel Semukhin
Department of Computer Science,

University of Oxford
Oxford, United Kingfom

pavel.semukhin@cs.ox.ac.uk

ABSTRACT

This work relates numerical problems onmatrices over the rationals
to symbolic algorithms on words and finite automata. Using exact
algebraic algorithms and symbolic computation, we prove new
decidability results for 2× 2 matrices over Q. Namely, we introduce
a notion of flat rational sets: if 𝑀 is a monoid and 𝑁 ≤ 𝑀 is its
submonoid, then flat rational sets of 𝑀 relative to 𝑁 are finite
unions of the form 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 where all 𝐿𝑖s are rational subsets
of 𝑁 and 𝑔𝑖 ∈ 𝑀 . We give quite general sufficient conditions under
which flat rational sets form an effective relative Boolean algebra.
As a corollary, we obtain that the emptiness problem for Boolean
combinations of flat rational subsets of GL(2,Q) over GL(2,Z) is
decidable.

We also show a dichotomy for nontrivial group extension of
GL(2,Z) in GL(2,Q): if 𝐺 is a f.g. group such that GL(2,Z) < 𝐺 ≤

GL(2,Q), then either 𝐺 � GL(2,Z) × Z𝑘 , for some 𝑘 ≥ 1, or 𝐺
contains an extension of the Baumslag-Solitar group BS(1, 𝑞), with
𝑞 ≥ 2, of infinite index. It turns out that in the first case the mem-
bership problem for 𝐺 is decidable but the equality problem for
rational subsets of𝐺 is undecidable. In the second case, decidability
of the membership problem is open for every such 𝐺 . In the last
section we prove new decidability results for flat rational sets that
contain singular matrices. In particular, we show that the mem-
bership problem is decidable for flat rational subsets of 𝑀 (2,Q)
relative to the submonoid that is generated by the matrices from
𝑀 (2,Z) with determinants 0,±1 and the central rational matrices.

CCS CONCEPTS

· Theory of computation→ Formal languages and automata

theory; · Computing methodologies → Symbolic and alge-

braic algorithms.

KEYWORDS

membership problem, rational sets, general linear group

Partial support for V. Diekert by the DFG grant DI 435/7, for I. Potapov by the EPSRC
grant EP/R018472/1 and for P. Semukhin by the ERC grant AVS-ISS (648701) is greatly
acknowledged.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404038

ACM Reference Format:

Volker Diekert, Igor Potapov, and Pavel Semukhin. 2020. Decidability of
Membership Problems for Flat Rational Subsets of GL(2,Q) and Singular
Matrices. In International Symposium on Symbolic and Algebraic Computa-

tion (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3373207.3404038

1 INTRODUCTION

Many problems in the analysis of matrix products are inherently
difficult to solve even in dimension two, and most of such problems
become undecidable in general starting from dimension three or
four. One of these hard questions is themembership problem for ma-
trix semigroups: Given 𝑛 × 𝑛 matrices {𝑀,𝑀1, . . . , 𝑀𝑚}, determine
whether there exist an integer 𝑘 ≥ 1 and 𝑖1, . . . , 𝑖𝑘 ∈ {1, . . . ,𝑚}

such that 𝑀 = 𝑀𝑖1 · · ·𝑀𝑖𝑘 . In other words, determine whether a
matrix belongs to a finitely generated (f.g. for short) semigroup.
The membership problem has been intensively studied since 1947
when A. Markov showed in [29] that this problem is undecidable
for matrices in Z6×6. A natural and important generalization is the
membership problem in rational subsets of a monoid. Rational sets
are those which can be specified by regular expressions. A special
case is the problem above: membership in the semigroup generated
by the matrices𝑀1, . . . , 𝑀𝑚 . Another difficult question is to decide
the knapsack problem: ł∃𝑥1, . . . , 𝑥𝑚 ∈ N : 𝑀𝑥1

1 · · ·𝑀
𝑥𝑚
𝑚 = 𝑀?ž. Even

significantly restricted cases of these problems become undecidable
for high dimensional matrices over the integers [6, 26]; and very
few cases are known to be decidable, see [3, 7, 12]. The decidability
of the membership problem remains open even for 2 × 2 matrices
over integers [11, 14, 21, 25, 33].

Membership in rational subsets of GL(2,Z) (the 2 × 2 integer
matrices with determinant ±1) is decidable. Indeed, GL(2,Z) has
a free subgroup of rank 2 and of index 24 by [32]. Hence it is a
f.g. virtually free group, and therefore the family of rational sub-
sets forms an effective Boolean algebra [38, 40]. Two recent results
which extended the border of decidability for the membership prob-
lem beyond GL(2,Z) were [34, 35]. The first one is in case of the
semigroups of 2 × 2 nonsingular integer matrices, and the second
one is in case of GL(2,Z) extended by integer matrices with zero
determinant.

This paper pushes the decidability border even further. First of
all, we consider membership problems for 2×2 matrices over the ra-
tionals whereas [34, 35] deal only with integer matrices. Since decid-
ability of the rational membership problem is known for GL(2,Z),
we focus on subgroups 𝐺 of GL(2,Q) which contain GL(2,Z).

In Sec. 4 we prove a dichotomy result. In the first case of the
dichotomy, 𝐺 is generated by GL(2,Z) and central matrices

(

𝑟 0
0 𝑟

)

.

122

https://doi.org/10.1145/3373207.3404038
https://doi.org/10.1145/3373207.3404038

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Volker Diekert, Igor Potapov, and Pavel Semukhin

In that case 𝐺 is isomorphic to GL(2,Z) × Z𝑘 for 𝑘 ≥ 1. It can be
derived from known results in the literature about free partially
commutative monoids and groups that equality test for rational
sets in𝐺 is undecidable, but the membership problem in rational
subsets is still decidable. So, this is the best we can hope for if a
group is sitting strictly between GL(2,Z) and GL(2,Q), in general.

If such a group 𝐺 is not isomorphic to GL(2,Z) × Z𝑘 , then our
dichotomy states that it contains a Baumslag-Solitar group BS(1, 𝑞)
for 𝑞 ≥ 2. The Baumslag-Solitar groups BS(𝑝, 𝑞) are defined by two
generators 𝑎 and 𝑡 with the defining relation 𝑡𝑎𝑝𝑡−1 = 𝑎𝑞 . They
were introduced in [4] and widely studied since then. It is fairly
easy to see (much more is known) that they have no free subgroup
of finite index unless 𝑝𝑞 = 0 [18]. As a consequence, in both cases
of the dichotomy, GL(2,Z) has infinite index in 𝐺 . Actually, we

prove more, namely, if𝐺 contains a matrix of the form
(

𝑟1 0
0 𝑟2

)

with

|𝑟1 | ≠ |𝑟2 | (which is the second case in the dichotomy), then 𝐺
contains some BS(1, 𝑞) for 𝑞 ≥ 2 which has infinite index in𝐺 . It is
wide open whether the membership to rational subsets of 𝐺 can
be decided in that second case. For example, let 𝑝 ≥ 2 be a prime,

and let 𝐺 ′ be generated by
(0 −1
1 0

)

,
(1 1
0 1

)

, and
(

1 0
0 𝑝

)

. In this case
(

𝑝 0
0 𝑝−1

)

also belongs to 𝐺 ′. Due to [5], the matrices
(0 −1
1 0

)

,
(1 1
0 1

)

,

and
(

𝑝 0
0 𝑝−1

)

generate the group SL(2,Z[1/𝑝]). 1 So 𝐺 ′ contains

SL(2,Z[1/𝑝]) as a subgroup. The structure SL(2,Z[1/𝑝]) is known
[39, II.1 Cor. 2] as an amalgam of two copies of SL(2,Z) over com-
mon subgroup of finite index. It is not even known how to decide

subgroup membership in such amalgams. Moreover,
(

1 0
0 𝑝

)

acts by

conjugation on SL(2,Z[1/𝑝]), and since
(

1 0
0 𝑝

)

generates an infinite

cyclic group, we have that 𝐺 ′
= SL(2,Z[1/𝑝]) ⋊ Z. Hence, even

if subgroup membership for SL(2,Z[1/𝑝]) was decidable, then it
could still be undecidable in 𝐺 ′. The situation is better for the sub-
group UT(2,Z[1/𝑝]) ⋊ Z � 𝑍 [1/𝑝] ⋊ Z � BS(1, 𝑝) of 𝐺 ′ (which is

generated by
(1 1
0 1

)

and
(

1 0
0 𝑝

)

) because the subgroup membership

is decidable in f.g. metabelian groups [36].2

The complicated structures of simple examples of subgroups in
SL(2,Q) and GL(2,Q) provide strong reasons to believe that the
membership in rational sets becomes undecidable for subgroups
of GL(2,Q), in general. The dichotomy result Thm. 4.1 makes that
very concrete. It led us in the direction where we came up with a
new, but natural subclass of rational subsets. It is the class of flat
rational sets Frat(𝑀, 𝑁). The new class satisfies surprisingly good
properties. Frat(𝑀, 𝑁) is a relative notion where 𝑁 is a submonoid
of 𝑀 . It consists of all finite unions of the form 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 ,
where 𝑔𝑖 ∈ 𝑀 and 𝐿𝑖 ∈ Rat(𝑁). Of particular interest in our con-
text is the class Frat(𝐺,𝐻) where 𝐻 and 𝐺 are f.g. groups, Rat(𝐻)
forms a Boolean algebra, and 𝐺 is the commensurator3 of 𝐻 . In
this case Thm. 3.3 shows that Frat(𝐺,𝐻) forms a relative Boolean
algebra, i.e., it satisfies 𝐿, 𝐾 ∈ Frat(𝐺,𝐻) =⇒ 𝐿 \ 𝐾 ∈ Frat(𝐺,𝐻).
Under some mild effectiveness assumptions this means that the

1For the notation Z[1/𝑝] and some elementary calculations see Sec. 6.
2Decidability of membership for rational subsets in BS(1, 𝑞) for 𝑞 ≥ 2 was shown
only very recently by Cadilhac, Chistikov, and Zetzsche in [10].
3The notion of commensurator is a standard concept in group theory which includes
many more than matrix groups; the formal definition is given in Sec. 2.1.

emptiness of finite Boolean combinations of sets in Frat(𝐺,𝐻) can
be decided. Thus, we have an abstract general condition to de-
cide such questions for a natural subclass of all rational sets in 𝐺
where the whole class Rat(𝐺) need not be an effective Boolean
algebra. The immediate application in the present paper concerns
Frat(GL(2,Q),GL(2,Z)), see Thm. 3.3 and Cor. 3.4. For example,
GL(2,Z) × Z appears in GL(2,Q) and Rat(GL(2,Z) × Z) is not an
effective Boolean algebra. Still the smaller class of flat rational sets
Frat(GL(2,Z) × Z ,GL(2,Z)) is a relative Boolean algebra. In or-
der to apply Thm. 3.3, we need Rat(𝐻) to be an effective relative
Boolean algebra. It happens to be an effective Boolean algebra for
virtually free groups and many other groups. This class includes, for
example, all f.g. abelian groups, and it is closed under free products.

The power of flat rational sets is even more apparent in the con-
text of the membership problem for rational subsets of GL(2,Q). Let
𝑃 (2,Q) denote the monoid GL(2,Z)∪{ℎ ∈ GL(2,Q) | |det(ℎ) | > 1};
then Thm. 3.6 states that we can solve the membership problem
ł𝑔 ∈ 𝑅?ž for all 𝑔 ∈ GL(2,Q) and all 𝑅 ∈ Frat(GL(2,Q), 𝑃 (2,Q)).
Thm. 3.6 generalizes the main result in [34].

Let us summarize the statements about groups𝐺 sitting between
GL(2,Z) and GL(2,Q). Our current knowledge is as follows. There
is some evidence that membership in rational subsets of 𝐺 is decid-

able if and only if 𝐺 doesn’t contain any
(

𝑟1 0
0 𝑟2

)

where |𝑟1 | ≠ |𝑟2 |.

However, we can always decide the membership problem for all
𝐿 ∈ Frat(GL(2,Q), 𝑃 (2,Q)). Moreover, it might be that such a posi-
tive result is close to the border of decidability.

We also consider singular matrices and generalize the main re-
sult of [35] as follows. Let 𝑔 be a singular matrix in 𝑀 (2,Q) and
let 𝑃 be the submonoid generated by

{(

𝑟 0
0 𝑟

)
�

� 𝑟 ∈ N
}

∪ GL(2,Z) ∪
{ℎ ∈ 𝑀 (2,Z) | det(ℎ) = 0}. Then we can decide the membership
problem ł𝑔 ∈ 𝑅?ž for all 𝑅 ∈ Frat(𝑀 (2,Q), 𝑃).

Our paper concentrates on decidability. For the complexity of
our algorithms with respect to binary encoding of matrices a trivial
upper bound is exponential space. This follows, for instance, from
[38]. We conjecture that membership for flat rational subsets of
GL(2,Q) over GL(2,Z) is in NP and that the emptiness problem for
Boolean combinations of such sets is in PSPACE.

The following facts about complexities are known: [20] shows
that the subgroup membership problem is decidable in polynomial
time for matrices from the modular group PSL(2,Z). In [8], Thm. 5.2
says that membership for rational subsets for PSL(2,Z) is in NP;
and Cor. 5.2 states that the problem ž1 ∈ {𝑀1, . . . , 𝑀𝑛}

∗?ž is NP-
complete for SL(2,Z).

Note that solving the membership problem for rational sets plays
an important role in modern group theory as highlighted for exam-
ple in [41] and used in [13].

2 PRELIMINARIES

By𝑀 (𝑛, 𝑅) we denote the ring of 𝑛 × 𝑛 matrices over a commuta-
tive ring 𝑅, and det : 𝑀 (𝑛, 𝑅) → 𝑅 is the determinant. By GL(𝑛, 𝑅)
we mean the group of invertible matrices, that is, the matrices
𝑔 ∈ 𝑀 (𝑛, 𝑅) for which det(𝑔) is a unit in 𝑅. By SL(𝑛, 𝑅) we denote
the normal subgroup det−1 (1) of GL(𝑛, 𝑅), called the special lin-
ear group. Explicit calculation for SL(2,Z) and for special linear
groups over rings of p-adic numbers and function fields are e.g.

123

Decidability of Membership Problems for Flat Rational Subsets ISSAC ’20, July 20–23, 2020, Kalamata, Greece

in [39]. BS(𝑝, 𝑞) denotes the Baumslag-Solitar group BS(𝑝, 𝑞) =

⟨𝑎, 𝑡 | 𝑡𝑎𝑝𝑡−1 = 𝑎𝑞⟩.
For groups (and more generally for monoids) we write 𝑁 ≤ 𝑀

if 𝑁 is a submonoid of 𝑀 and 𝑁 < 𝑀 if 𝑁 ≤ 𝑀 but 𝑁 ≠ 𝑀 . If
𝑀 is a monoid, then 𝑍 (𝑀) denotes the center of 𝑀 , that is, the
submonoid of elements which commute with all elements in𝑀 . A
subsemigroup 𝐼 of a monoid𝑀 is an ideal if𝑀 𝐼 𝑀 ⊆ 𝐼 .

2.1 Smith normal forms and commensurators

The standard application for all our results is GL(2,Q), but the
results are more general and have the potential to go far beyond.
Let 𝑛 ∈ N. It is a classical fact from linear algebra that each nonzero
matrix 𝑔 ∈ 𝑀 (𝑛,Q) admits a Smith normal form. This is a factoriza-
tion 𝑔 = 𝑟 𝑒 𝑠𝑞 𝑓 such that 𝑟 ∈ Q∗ with 𝑟 > 0, 𝑒, 𝑓 ∈ SL(𝑛,Z), and

𝑞 ∈ Z where 𝑠𝑞 =

(

1 0
0 𝑞

)

. The matrices 𝑒 and 𝑓 in the factorization

are not unique, but both the numbers 𝑟 and 𝑞 are. The existence
and uniqueness of 𝑟 and 𝑠𝑞 are easy to see by the corresponding
statement for integer matrices. Clearly, 𝑟2𝑞 = det(𝑔). So, for 𝑔 ≠ 0,
the sign of det(𝑔) is determined by the sign of 𝑞. It is known that
the Smith normal form can be computed in polynomial time [23].

The notion of łcommensuratorž is well established in group
theory. Let 𝐻 be a subgroup in 𝐺 , then the commensurator of 𝐻 in
𝐺 is the set of all 𝑔 ∈ 𝐺 such that 𝑔𝐻𝑔−1 ∩ 𝐻 has finite index in 𝐻 .
This also implies that 𝑔𝐻𝑔−1 ∩ 𝐻 has finite index in 𝑔𝐻𝑔−1, too. If
𝐻 has finite index in 𝐺 , then 𝐺 is always a commensurator of 𝐻
because the normal subgroup 𝑁 =

⋂
{

𝑔𝐻𝑔−1
�

�𝑔 ∈ 𝐺
}

is of finite
index in 𝐺 if and only if 𝐺/𝐻 is finite.

Moreover, if 𝐻 ≤ 𝐻 ′ is of finite index and 𝐻 ′ ≤ 𝐺 ′ ≤ 𝐺 such
that𝐺 is a commensurator of 𝐻 , then𝐺 ′ is a commensurator of 𝐻 ′.
The notion of a commensurator pops up naturally in our context.
Indeed, let𝐻 = SL(2,Z) and write 𝑔 ∈ GL(2,Q) in its Smith normal
form 𝑔 = 𝑟 𝑒 𝑠𝑞 𝑓 . Then the index of 𝑔𝐻𝑔−1 ∩𝐻 in 𝐻 is the same as

the index of 𝑠𝑞𝐻𝑠−1𝑞 ∩𝐻 in𝐻 ; and every matrix of the form
(

𝑎 𝑏/𝑞
𝑞𝑐 𝑑

)

is in 𝑠𝑞𝐻𝑠−1𝑞 if
(

𝑎 𝑏
𝑐 𝑑

)

∈ SL(2,Z). Thus, the index of 𝑠𝑞𝐻𝑠−1𝑞 ∩𝐻 in

𝐻 is bounded by the size of the finite group SL(𝑛,Z/𝑞Z). For 𝑛 = 2
this size is in O(𝑞3). It follows that GL(2,Q) is the commensurator
of SL(2,Z), and hence of GL(2,Z). In fact, it is known that GL(𝑛,Q)
is the commensurator of SL(𝑛,Z) for all 𝑛 ∈ N, e.g., see [22].

2.2 Rational and recognizable sets

The results in this section are not new. An exception is however
Lem. 2.6. We follow the standard notation as in Eilenberg [16].
Let 𝑀 be any monoid, then Rat(𝑀) has the following inductive
definition using rational (aka regular) expressions.

(1) |𝐿 | < ∞, 𝐿 ⊆ 𝑀 =⇒ 𝐿 ∈ Rat(𝑀).
(2) 𝐿1, 𝐿2 ∈ Rat(𝑀) =⇒ 𝐿1 ∪ 𝐿2, 𝐿1 · 𝐿2, 𝐿

∗
1 ∈ Rat(𝑀).

For 𝐿 ⊆ 𝑀 the set 𝐿∗ denotes the submonoid of 𝑀 which is gen-
erated by 𝐿. The submonoid 𝐿∗ is also called the Kleene-star of 𝐿.
Note that the definition of Rat(𝑀) is intrinsic without reference
to any generating set. It is convenient to define simultaneously a
basis 𝐵(𝐿) for 𝐿 (more precisely for a given rational expression):
If |𝐿 | < ∞, then 𝐵(𝐿) = 𝐿. Moreover, 𝐵(𝐿1 ∪ 𝐿2) = 𝐵(𝐿1) ∪ 𝐵(𝐿2),
𝐵(𝐿1 · 𝐿2) = 𝐵(𝐿1) ∪ 𝐵(𝐿2) if both 𝐿1 and 𝐿2 are nonempty, and
𝐵(𝐿1 · 𝐿2) = ∅ otherwise. Finally, 𝐵(𝐿∗) = 𝐵(𝐿) ∪ {1}. Since

𝐵(𝐿) is finite, 𝐿 is a subset of the f.g. submonoid 𝐵(𝐿)∗. Note that
𝐵(𝐿) = ∅ ⇐⇒ 𝐿 = ∅, hence the emptiness problem is decidable
for rational subsets of𝑀 if, for example, they are given by rational
expressions.

Definition 2.1. Let𝑀 be a monoid.4 The membership problem for

rational subsets is defined as follows: given 𝑔 ∈ 𝑀 and 𝑅 ∈ RAT(𝑀),
decide whether 𝑔 ∈ 𝑅.

Definition 2.2. Let C be a family of subsets of𝑀 . We say that C
is a relative Boolean algebra if it is closed under finite unions and
𝐾, 𝐿 ∈ C implies 𝐾 \ 𝐿 ∈ C. It is an effective relative Boolean algebra

if first, every 𝐿 ∈ C is given by an effective description and second,
for 𝐿, 𝐾 ∈ C the union 𝐿 ∪ 𝐾 and the relative complement 𝐾 \ 𝐿

are computable. If additionally,𝑀 belongs to C, then C is called an
(effective) Boolean algebra.

By definition, a relative Boolean algebra is closed under finite
unions, it follows that it is closed under finite intersection, too.

Note that Rat(Q) is a relative Boolean algebra because every
finitely generated subgroup is isomorphic to Z. It is not a Boolean
algebra by Prop. 2.4 because Q ∉ Rat(Q) as (Q, +) is not f.g.

Proposition 2.3. The class of monoids𝑀 for which Rat(𝑀) is an

effective Boolean algebra satisfies the following properties:

(1) It contains only f.g. monoids. (Trivial.)

(2) It contains all f.g. free monoids, f.g. free groups, and f.g. abelian

monoids [9, 17, 24].

(3) It contains all f.g. virtually free groups [38, 40].

(4) It is closed under the operation of free product. [37].

We also use the following well-known fact from [2].

Proposition 2.4. Let 𝐺 be a group. If a subgroup 𝐻 is in Rat(𝐺),
then 𝐻 is finitely generated.

The family of recognizable subsets Rec(𝑀) is defined as follows.
We have 𝐿 ∈ Rec(𝑀) if and only if there is a homomorphism
𝜑 : 𝑀 → 𝑁 such that |𝑁 | < ∞ and 𝜑−1𝜑 (𝐿) = 𝐿.

The following assertions are well-known and easy to show [16].

(1) Theorem of McKnight [30]: 𝑀 is finitely generated ⇐⇒

Rec(𝑀) ⊆ Rat(𝑀).
(2) 𝐿, 𝐾 ∈ Rat(𝑀) doesn’t imply 𝐿 ∩ 𝐾 ∈ Rat(𝑀), in general.
(3) 𝐿 ∈ Rec(𝑀), 𝐾 ∈ Rat(𝑀) =⇒ 𝐿 ∩ 𝐾 ∈ Rat(𝑀).
(4) Let 𝐻 be a subgroup of a group 𝐺 . Then |𝐺/𝐻 | < ∞ ⇐⇒

𝐻 ∈ Rec(𝐺).

The following (well-known) consequence is easy to show.

Corollary 2.5. Let 𝐺 be any group and 𝐻 ≤ 𝐺 be a subgroup of

finite index. Then {𝐿 ∩ 𝐻 | 𝐿 ∈ Rat(𝐺)} = {𝐿 ⊆ 𝐻 | 𝐿 ∈ Rat(𝐺)} .

Cor. 2.5 doesn’t hold if 𝐻 has infinite index in 𝐺 . For example, it
fails for 𝐹2 × Z = 𝐹 (𝑎, 𝑏) × 𝐹 (𝑐) which does not have the so-called
Howson property: there are f.g. subgroups 𝐻,𝐾 such that 𝐻 ∩ 𝐾 is
not finitely generated.

The assertion of Lem. 2.6 below is not obvious. It was proved
first under the assumption that 𝐻 has finite index in 𝐺 , [19, 38, 40].
We show that this assumption is not necessary.5

4If𝑀 is not f.g., then we assume that all elements in𝑀 have an effective representation,
like in GL(2,Q) .
5Sénizergues has a proof of Lem. 2.6 using finite transducers, personal communication.

124

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Volker Diekert, Igor Potapov, and Pavel Semukhin

Lemma 2.6. Let 𝐺 be any group and 𝐻 ≤ 𝐺 be a subgroup. Then

{𝐿 ⊆ 𝐻 | 𝐿 ∈ Rat(𝐺)} = Rat(𝐻).

Moreover, suppose (i) that 𝐺 is a f.g. group with decidable word

problem and (ii) that the question ł𝑔 ∈ 𝐻?ž is decidable for 𝑔 ∈ 𝐺 .

Then for any NFA 𝐴 with 𝑛 states and labels in𝐺 that accepts 𝐿 ⊆ 𝐻 ,

we can effectively construct an NFA 𝐴′ with 𝑛 states and labels in 𝐻

such that 𝐴′ also accepts 𝐿.

Proof. Let 𝑅 ⊆ 𝐺 be such that, first, 1 ∈ 𝑅 and, second, each
right coset 𝐻𝑟 ∈ 𝐻\𝐺 is represented by exactly one 𝑟 ∈ 𝑅.

Let 𝐿 ⊆ 𝐻 and 𝐿 = 𝐿(𝐴) for an NFA 𝐴 with state set 𝑄 . Since
𝐺 = ⟨𝐻 ∪ 𝑅⟩ as a monoid and since 1 ∈ 𝑅 and 1 ∈ 𝐻 wemay assume
that all transition are labeled by elements from 𝐺 having the form
𝑠𝑎 with 𝑠 ∈ 𝑅 and 𝑎 ∈ 𝐻 . Moreover, we may assume that every state
𝑝 is on some accepting path. Since there are only finitely many
transitions there are finite subsets 𝐻 ′ ⊆ 𝐻 and 𝑆 ⊆ 𝑅 such that if
𝑠𝑎 with 𝑠 ∈ 𝑅 labels a transition, then 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐻 ′. Moreover,
𝐺 ′

= ⟨𝐻 ′ ∪ 𝑆⟩ is a f.g. subgroup 𝐺 ′ ≤ 𝐺 such that 𝐿 ∈ Rat(𝐺 ′).
Assume we read from some initial state a word 𝑢 over the alpha-

bet 𝐻 ′ ∪ 𝑆 such that reading that word leads to the state 𝑝 with
𝑢 ∈ 𝐻𝑟 for 𝑟 ∈ 𝑅. Then there is some 𝑓 ∈ 𝐺 which leads us to a final
state. Thus, 𝑢𝑓 ∈ 𝐿(𝐴) ⊆ 𝐻 , and therefore 𝑢 ∈ 𝐻 𝑓 −1. This means
𝐻 𝑓 −1 = 𝐻𝑟 and therefore 𝑟 doesn’t depend on 𝑢. It depends on 𝑝
only: each state 𝑝 ∈ 𝑄 łknowsž its value 𝑟 = 𝑟 (𝑝) ∈ 𝑅. If 𝑢 ′ is any
word which we can read from the initial state to 𝑝 , then𝑢 ′ ∈ 𝐻𝑟 (𝑝).
Moreover, if 𝑝 is any initial or final state, then we have 𝑟 (𝑝) = 1.

This will show that we only need the finite subset 𝑅′ of 𝑅. The
set 𝑅′ contains 𝑆 and all 𝑟 ∈ 𝑅 such that 𝐻 𝑓 −1𝑝 = 𝐻𝑟 where 𝑓𝑝
is the label of a shortest path from a state 𝑝 to a final state. Let
𝑟 = 𝑟 (𝑝) ∈ 𝑅′ for 𝑝 ∈ 𝑄 . We introduce exactly one new state (𝑝, 𝑟)

with transitions 𝑝
𝑟−1

−→ (𝑝, 𝑟) and (𝑝, 𝑟)
𝑟

−→ 𝑝 . This does not change
the language.

Now for each outgoing transition 𝑝
𝑠𝑎
−→ 𝑞 with 𝑟 = 𝑟 (𝑝) and

𝑡 = 𝑟 (𝑞) ∈ 𝑅′ define 𝑏 ∈ 𝐻 by the equation 𝑏 = 𝑟𝑠𝑎𝑡−1. Recall if
we read 𝑢 reaching 𝑝 , then 𝑢𝑟−1 ∈ 𝐻 and 𝑢𝑠𝑎𝑡−1 ∈ 𝐻 . Therefore,
𝑢𝑟−1𝑟𝑠𝑎𝑡−1 ∈ 𝐻 and hence 𝑏 ∈ 𝐻 . We add a transition

(𝑝, 𝑟)
𝑏

−→ (𝑞, 𝑡).

This doesn’t change the language as 𝑏 = 𝑟𝑠𝑎𝑡−1 in𝐺 and before we

added the transition there was a path (𝑝, 𝑟)
𝑟

−→ 𝑝
𝑠𝑎
−→ 𝑞

𝑡−1

−→ (𝑞, 𝑡)

as can be seen in the following picture:

(𝑝, 𝑟) (𝑞, 𝑡)

𝑝 𝑞

𝑏

𝑠𝑎
𝑟−1𝑟 𝑡−1𝑡

Now, the larger NFA still accepts 𝐿, but the crucial point is that for
𝑢 ∈ 𝐿(𝐴) we can accept the same element in𝐺 by reading just labels

from 𝐻 . Indeed, consider any path 𝑝0
𝑠1𝑎1
−→ 𝑝1 · · ·

𝑠𝑘𝑎𝑘
−→ 𝑝𝑘 , where

𝑘 ≥ 0 and 𝑝0 is an initial. We claim that the new NFA contains a
path labeled by 𝑏1 · · ·𝑏𝑘 with 𝑏1, . . . , 𝑏𝑘 ∈ 𝐻 from 𝑝0 to (𝑝𝑘 , 𝑟 (𝑝𝑘))

such that 𝑏1 · · ·𝑏𝑘 = 𝑠1𝑎1 · · · 𝑠𝑘𝑎𝑘𝑟 (𝑝𝑘)
−1 .

This holds for 𝑘 = 0 because 𝑟 (𝑝0) = 1 and there is a transition
with label 1 from 𝑝0 to (𝑝0, 1). Let 𝑘 ≥ 1. By induction the claim

holds for 𝑘−1. Inspecting the figure above, where 𝑏 = 𝑏𝑘 , 𝑠𝑎 = 𝑠𝑘𝑎𝑘 ,
(𝑝, 𝑟) = (𝑝𝑘−1, 𝑟 (𝑝𝑘−1)) and (𝑞, 𝑡) = (𝑝𝑘 , 𝑟 (𝑝𝑘)), we see that the
claim holds for 𝑘 since 𝑟 (𝑝𝑘−1)

−1𝑏𝑘 = 𝑠𝑘𝑎𝑘𝑟 (𝑝𝑘)
−1; and so:

𝑏1 · · ·𝑏𝑘−1𝑏𝑘 = 𝑠1𝑎1 · · · 𝑠𝑘−1𝑎𝑘−1𝑟 (𝑝𝑘−1)
−1𝑏𝑘

= 𝑠1𝑎1 · · · 𝑠𝑘−1𝑎𝑘−1𝑠𝑘𝑎𝑘𝑟 (𝑝𝑘)
−1 .

We are done, since 𝑟 (𝑝𝑘) = 1 whenever 𝑝𝑘 is final and hence there
is a transition with label 1 from (𝑝𝑘 , 1) to 𝑝𝑘 .

Now we can remove all original states since they are good for
nothing anymore by making (𝑝, 1) initial (resp. final) if and only if
𝑝 was initial (resp. final). Let us denote the new NFA by 𝐴′. Then
𝐴′ has exactly the same number of states as 𝐴.

This shows the non-effective version for all groups 𝐺 with sub-
groups 𝐻 . Finally, in order to make the construction effective it is
sufficient that, first,𝐺 is f.g. and has a decidable word problem and,
second, that the question ł𝑔 ∈ 𝐻?ž is decidable for 𝑔 ∈ 𝐺 . □

Proposition 2.7. Let𝐻 be a subgroup of finite index in a f.g group

𝐺 . If the membership problem for rational subsets of 𝐻 is decidable,

then it is decidable for rational subsets of 𝐺 .

Proof. Since 𝐻 is of finite index, there is a normal subgroup 𝑁
of finite index in𝐺 such that 𝑁 ≤ 𝐻 ≤ 𝐺 , [28]. Using the canonical
homomorphism from 𝐺 to 𝐺/𝑁 we see that 𝐻 is recognizable.
Hence, ł𝑔 ∈ 𝐻?ž is decidable. We want to decide ł𝑔 ∈ 𝑅?ž for
some 𝑅 ∈ Rat(𝐺). Suppose 𝑢1, . . . , 𝑢𝑘 are all representatives of
right cosets of 𝐻 in 𝐺 . Choose 𝑖 such that 𝑔𝑢−1𝑖 ∈ 𝐻 . Then 𝑔 ∈ 𝑅

if and only if 𝑔𝑢−1𝑖 ∈ 𝑅𝑢−1𝑖 ∩ 𝐻 . Since 𝐻 is recognizable, we have

𝑅𝑢−1𝑖 ∩𝐻 ∈ Rat(𝐺). By Lem. 2.6, we have 𝑅𝑢−1𝑖 ∩𝐻 ∈ Rat(𝐻); and
hence we can decide whether 𝑔 ∈ 𝑅. □

3 FLAT RATIONAL SETS

The best situation is when Rat(𝑀) is an effective Boolean algebra
because in this case all decision problems we are studying here are
decidable. However, our focus is on matrices over the rational or
integer numbers, in which case such a strong assertion is either
wrong or not known to be true. Our goal is to search for weaker
conditions under which it becomes possible to decide emptiness
of finite Boolean combinations of rational sets or (even weaker) to
decide membership in rational sets. Again, in various interesting
cases the membership problem in rational subsets is either unde-
cidable or not known to be decidable. The most prominent example
is the direct product 𝐹2 × 𝐹2 of two free groups of rank 2 in which,
due to the construction of Mihailova [31], there exists a finitely
generated subgroup with undecidable membership problem.

We introduce a notion of flat rational sets and show that the
membership problem and (even stronger) the emptiness problem for
Boolean combinations of flat rational sets are decidable in GL(2,Q).

Definition 3.1. Let𝑁 be a submonoid of𝑀 .We say that 𝐿 ⊆ 𝑀 is a
flat rational subset of𝑀 relative to𝑁 (or over𝑁) if 𝐿 is a finite union
of languages of the form 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 where all 𝐿𝑖 ∈ Rat(𝑁) and
𝑔𝑖 ∈ 𝑀 . The family of these sets is denoted by Frat(𝑀, 𝑁).

In our applications we use flat rational sets in the following
setting: 𝐻 is a subgroup of 𝐺 , and 𝐺 sits inside a monoid𝑀 , where
𝑀 \𝐺 is an ideal (possibly empty). For example, 𝐻 = GL(2,Z) <
𝐺 ≤ GL(2,Q) and𝑀 \𝐺 is a (possibly empty) semigroup of singular

125

Decidability of Membership Problems for Flat Rational Subsets ISSAC ’20, July 20–23, 2020, Kalamata, Greece

matrices. In such a situation there is an equivalent characterization
of flat rational sets in𝑀 with respect to 𝐻 . Prop. 3.2 shows it can
be defined as the family of rational sets when the Kleene-star is
restricted to subsets which belong to the submonoid 𝐻 .

Proposition 3.2. Let 𝐻 be a subgroup of 𝐺 and 𝐺 be a subgroup

of a monoid𝑀 such that𝑀 \𝐺 is an ideal. Then the family Frat(𝑀,𝐻)
is the smallest family R of subsets of𝑀 such that the following holds.

• R contains all finite subsets of𝑀 ,

• R is closed under finite union and concatenation,

• R is closed under taking the Kleene-star over subsets of 𝐻

which belong to R.

Proof. Clearly, all flat rational sets relative to 𝐻 are contained
in R. To prove inclusion in the other direction, we need to show
that the family of flat rational subsets of𝑀 relative to𝐻 (i) contains
all finite subsets of𝑀 , (ii) is closed under finite union and concate-
nation, and (iii) is closed under taking the Kleene-star over subsets
of 𝐻 . The first two conditions are obvious. To show (iii), let 𝐿 be a
flat rational set relative to𝐻 such that 𝐿 ⊆ 𝐻 . Recall that 𝐿 is a finite
union of languages 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 , where ∅ ≠ 𝐿𝑖 ∈ Rat(𝐻) and
𝑔𝑖 ∈ 𝑀 . If𝑔𝑖 ∈ 𝑀\𝐺 for some 𝑖 , thenwe have 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 \𝐺 ≠ ∅

because𝑀 \𝐺 is an ideal, and hence 𝐿 ̸⊆ 𝐻 .
So if 𝐿 ⊆ 𝐻 , then all 𝑔𝑖 ∈ 𝐺 and 𝐿 ∈ Rat(𝐺). By Lem. 2.6, 𝐿 is

a rational subset of 𝐻 , and hence 𝐿∗ ∈ Rat(𝐻). In particular, 𝐿∗ is
flat rational relative to 𝐻 . □

Theorem 3.3. Let𝐻 be a subgroup of a f.g. group𝐺 with decidable

word problem such that the following conditions hold:

• Rat(𝐻) is an effective relative Boolean algebra.6

• 𝐺 is the commensurator of 𝐻 , and moreover for a given 𝑔 ∈ 𝐺

we can compute the index of 𝐻𝑔 in 𝐻 .

• The membership to 𝐻 (that is, ł𝑔 ∈ 𝐻?ž) is decidable.

Then Frat(𝐺,𝐻) forms an effective relative Boolean algebra. In

particular, given a finite Boolean combination 𝐵 of flat rational sets

of 𝐺 over 𝐻 , we can decide the emptiness of 𝐵.

Before proving Thm. 3.3 let us first state a consequence.

Corollary 3.4. Let 𝐵 ⊆ GL(2,Q) be a finite Boolean combination

of flat rational sets of GL(2,Q) over GL(2,Z), then we can decide the

emptiness of 𝐵.

Proof. It is a well-known classical fact that GL(2,Z) is a finitely
generated virtually free group, namely, it contains a free subgroup
of rank 2 and index 24. Hence Rat(GL(2,Z)) is an effective Boolean
algebra by [40]. Let𝐺 be a f.g. subgroup of GL(2,Q) that contains 𝐵.
Clearly,𝐺 has a decidable word problem. It is also well-known that
GL(2,Q) is the commensurator subgroup of GL(2,Z) in GL(2,Q).
Hence𝐺 is the commensurator of GL(2,Z), too. Thus all hypotheses
of Thm. 3.3 are satisfied. □

A direct consequence of Cor. 3.4 is that we can decide the mem-
bership in flat rational subsets of GL(2,Q) over GL(2,Z). However
in Sec. 4 we explain why we are far away from knowing how to
decide the membership for all rational subsets of GL(2,Q).

For the proof of Thm. 3.3 we need the following observation.

6Recall that this does not imply 𝐻 ∈ Rat(𝐻) : possibly 𝐻 it not f.g.

Lemma 3.5. Let 𝐿 ∈ Rat(𝐻) and 𝑔 ∈ 𝐺 . Recall that

𝐻𝑔 = 𝑔𝐻𝑔−1 ∩ 𝐻 =
{

ℎ ∈ 𝐻
�

�𝑔−1ℎ𝑔 ∈ 𝐻
}

.

Then under the assumptions of Thm. 3.3 we can compute an expression

for 𝑔−1 (𝐿 ∩ 𝐻𝑔)𝑔 ∈ Rat(𝐻).

Proof. Since 𝑔𝐻𝑔−1 ∩ 𝐻 is of finite index in 𝐻 , we can com-
pute the expression for 𝐿′ = 𝐿 ∩ 𝐻𝑔 ∈ Rat(𝐻𝑔) over a basis
𝐵′ ⊆ 𝐻𝑔 by Lem. 2.6. Now, for any 𝑔 and 𝐾 ∈ Rat(𝐻𝑔) we have
𝑔−1𝐾∗𝑔 = (𝑔−1𝐾𝑔)∗, 𝑔−1 (𝐿1𝐿2)𝑔 = 𝑔−1𝐿1𝑔𝑔

−1𝐿2𝑔, and 𝑔−1 (𝐿1 ∪
𝐿2)𝑔 = 𝑔−1𝐿1𝑔∪𝑔

−1𝐿2𝑔. Hence, we simply replace the basis 𝐵′ ⊆ 𝐻𝑔

by 𝑔−1𝐵′𝑔 ⊆ 𝐻 . This gives a rational expression for 𝑔−1 (𝐿 ∩𝐻𝑔)𝑔

over 𝐻 . □

Proof of Thm. 3.3. Let 𝑔 ∈ 𝐺 and 𝐾 ∈ Rat(𝐻). First, we claim
that we can rewrite 𝐾𝑔 ∈ Rat(𝐺) as a finite union of languages
𝑔′𝐾 ′ with 𝑔′ ∈ 𝐺 and 𝐾 ′ ∈ Rat(𝐻).

Note that we can compute a set 𝑈𝑔 ⊆ 𝐻 of left-representatives
such that 𝐻 =

⋃
{

𝑢𝐻𝑔

�

�𝑢 ∈ 𝑈𝑔
}

. Indeed, by assumption, the mem-
bership to 𝐻 is decidable, and hence the membership to 𝑔𝐻𝑔−1 and
to 𝐻𝑔 = 𝑔𝐻𝑔−1 ∩𝐻 is decidable, too. By the second assumption, we
can compute the index 𝑘 = |𝐻 : 𝐻𝑔 |. Thus we can enumerate the
elements of 𝐻 until we find 𝑘 elements that belong to 𝑘 different
left cosets of𝐻𝑔 . Checking if two elements belong to the same coset
is decidable since the membership to 𝐻𝑔 can be decided. Thus,

𝐾𝑔 =

⋃

{

𝐾 ∩ 𝑢𝐻𝑔

�

�𝑢 ∈ 𝑈𝑔
}

𝑔 =

⋃

{

𝑢𝑔𝑔−1 (𝑢−1𝐾 ∩ 𝐻𝑔)𝑔
�

�𝑢 ∈ 𝑈𝑔
}

=

⋃
{

𝑔′𝑔−1 (𝑔𝑔′
−1
𝐾 ∩ 𝐻𝑔)𝑔

�

�

�𝑔′ ∈ 𝑈𝑔𝑔
}

.

Using Lem. 3.5 we obtain 𝑔−1 (𝑔𝑔′−1𝐾 ∩𝐻𝑔)𝑔 = 𝐾 ′ ∈ Rat(𝐻). This
shows the claim.

Let 𝐿 be a flat rational subset of 𝐺 , that is, 𝐿 is equal to a finite
union of languages 𝐿0𝑔1𝐿1 · · ·𝑔𝑡𝐿𝑡 where all 𝐿𝑖 ∈ Rat(𝐻). Using
the claim, we can write 𝐿 as a finite union of languages 𝑔𝐾 with
𝑔 ∈ 𝐺 and 𝐾 ∈ Rat(𝐻). Since membership in𝐻 is decidable, we can
computably enumerate a set 𝑆 of all distinct representatives of the
right cosets of𝐻 , and moreover for each 𝑔 ∈ 𝐺 find a representative
𝑔′ ∈ 𝑆 such that 𝑔 ∈ 𝑔′𝐻 . Since 𝑔 = 𝑔′ℎ for some ℎ ∈ 𝐻 , we
can write 𝑔𝐾 = 𝑔′(ℎ𝐾), where ℎ𝐾 ∈ Rat(𝐻). Therefore, every flat
rational set 𝐿 can be written as a union 𝐿 =

⋃𝑛
𝑖=1 𝑔𝑖𝐾𝑖 , where 𝑔𝑖 ∈ 𝑆

and 𝐾𝑖 ∈ Rat(𝐻). Since 𝑔𝐾1 ∪ 𝑔𝐾2 = 𝑔(𝐾1 ∪ 𝐾2), we may assume
that all 𝑔𝑖 in the expression 𝐿 =

⋃𝑛
𝑖=1 𝑔𝑖𝐾𝑖 are different.

Now let 𝐿 and 𝑅 be two flat rational sets. By the above argument
we may assume that 𝐿 =

⋃𝑛
𝑖=1 𝑎𝑖𝐿𝑖 and 𝑅 =

⋃𝑚
𝑗=1 𝑏 𝑗𝑅 𝑗 , where

𝑎𝑖 , 𝑏 𝑗 ∈ 𝑆 and 𝐿𝑖 , 𝑅 𝑗 ∈ Rat(𝐻). Then we have 𝐿 \ 𝑅 =
⋃𝑛

𝑖=1

(

𝑎𝑖𝐿𝑖 \
⋃𝑚

𝑗=1 𝑏 𝑗𝑅 𝑗
)

. Note that if 𝑎𝑖 ∉ {𝑏1, . . . , 𝑏𝑚}, then 𝑎𝑖𝐿𝑖 \
⋃𝑚

𝑗=1 𝑏 𝑗𝑅 𝑗 =

𝑎𝑖𝐿𝑖 , but if 𝑎𝑖 = 𝑏 𝑗 for some 𝑗 then 𝑎𝑖𝐿𝑖 \
⋃𝑚

𝑗=1 𝑏 𝑗𝑅 𝑗 = 𝑎𝑖 (𝐿𝑖 \

𝑅 𝑗). Since Rat(𝐻) is an effective relative Boolean algebra, we can
compute the rational expression for 𝐿𝑖 \ 𝑅 𝑗 in 𝐻 . Hence we can
compute the flat rational expression for 𝐿 \ 𝑅. □

Below we give one more application of Thm. 3.3. Let 𝑃 (2,Q)
denote the following submonoid of GL(2,Q) of matrices:

𝑃 (2,Q) = {ℎ ∈ GL(2,Q) | | det(ℎ) | > 1} ∪ GL(2,Z).

Note that 𝑃 (2,Q) contains all nonsingular matrices from𝑀 (2,Z).
So, the next theorem is a generalization of the main result in [34].

126

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Volker Diekert, Igor Potapov, and Pavel Semukhin

Theorem 3.6. For any 𝑔 ∈ GL(2,Q) and for any flat rational

subset 𝑅 of GL(2,Q) relative to 𝑃 (2,Q), it is decidable whether 𝑔 ∈ 𝑅.

Proof. Writing 𝑔 in Smith normal form, we obtain

𝑔 = 𝑐𝑟𝑒𝑠𝑛 𝑓 = 𝑐𝑟𝑒
(1 0
0 𝑛

)

𝑓 ,

where 𝑐𝑟 =
(

𝑟 0
0 𝑟

)

is central, 𝑒, 𝑓 ∈ SL(2,Z) and 𝑟 ∈ Q. Replacing 𝑅
by 𝑟−1𝑒−1𝑅𝑓 −1, we may assume that 𝑔 = 𝑠𝑛 with 0 ≠ 𝑛 ∈ Z. More-
over, by making guesses we may assume that 𝑅 = 𝑅0𝑔1𝑅1 · · ·𝑔𝑡𝑅𝑡
where 𝑅𝑖 ∈ Rat(𝑃 (2,Q)) and each 𝑔𝑖 is of the form 𝑔𝑖 =

(

𝑟 0
0 𝑟

)

with
0 < 𝑟 < 1. Multiplying 𝑔 and 𝑅 with some appropriate natural
number, we can assume that 𝑔 =

(

𝑚 0
0 𝑛

)

with𝑚,𝑛 ∈ N \ {0} and
𝑅 ∈ Rat(𝑃 (2,Q)).

Without restriction we may assume that 𝑅 is given by a trim NFA
A with state space𝑄 , initial states 𝐼 and final states 𝐹 . (Trim means
that every state is on some accepting path.) Note that a path in A

accepting 𝑔 can use transitions with labels from 𝑃 (2,Q) \ GL(2,Z)

at most 𝑘 =

⌊

log(𝑚𝑛)
log 𝑡

⌋

many times, where

𝑡 = min{ | det(ℎ) | : | det(ℎ) | > 1 and ℎ appears as

a label of a transition in A }.

Consider a new automaton B with state space𝑄 × {0, . . . , 𝑘}, initial
states 𝐼 × {0} and final states 𝐹 × {0, . . . , 𝑘}. The transitions of B
are defined as follows:

• for each transition 𝑝
𝑔

−→ 𝑞 in A with 𝑔 ∈ GL(2,Z), there is

a transition (𝑝, 𝑖)
𝑔

−→ (𝑞, 𝑖) in B for every 𝑖 = 0, . . . , 𝑘 ;

• for every transition 𝑝
𝑔

−→ 𝑞 inA with𝑔 ∈ 𝑃 (2,Q) \GL(2,Z),

there is a transition (𝑝, 𝑖)
𝑔

−→ (𝑞, 𝑖 + 1) in B for every 𝑖 =
0, . . . , 𝑘 − 1.

The automatonB defines a flat rational subset 𝑅′ ⊆ 𝑅 over GL(2,Z)
such that 𝑔 ∈ 𝑅′ ⇐⇒ 𝑔 ∈ 𝑅. So, using Thm. 3.3, we can decide
whether 𝑔 ∈ 𝑅′ and hence whether 𝑔 ∈ 𝑅. □

4 DICHOTOMY IN GL(2,Q)
Below we show a dichotomy result. To the best of the authors
knowledge the result has not been stated elsewhere. The dichotomy
shows that extending our decidability results beyond flat rational
sets over GL(2,Z) seems to be quite demanding.

Theorem 4.1. Let 𝐺 be a f.g. group such that GL(2,Z) < 𝐺 ≤

GL(2,Q). Then there are two mutually exclusive cases.

(1) 𝐺 is isomorphic to GL(2,Z) × Z𝑘 , with 𝑘 ≥ 1, and it does not
contain the Baumslag-Solitar group BS(1, 𝑞) for any 𝑞 ≥ 2.

(2) 𝐺 contains a subgroup which is an extension of infinite index

of BS(1, 𝑞) for some 𝑞 ≥ 2.

Proof. Let 𝐻 = GL(2,Z). There are two cases. In the first
case some finite generating set for 𝐺 contains only elements from
𝐻 and from the center 𝑍 (𝐺). Since GL(2,Z) ≤ 𝐺 we see that
𝑍 (𝐺) ≤

{(

𝑟 0
0 𝑟

)
�

� 𝑟 ∈ Q
}

. Moreover, since
(

−1 0
0 −1

)

∈ 𝐻 , we may
assume in the fist case that 𝐺 is generated by 𝐻 and f.g. subgroup
𝑍 ≤

{(

𝑟 0
0 𝑟

)
�

� 𝑟 ∈ Q ∧ 𝑟 > 0
}

. The homomorphism 𝑔 ↦→ |det(𝑔) | em-
beds 𝑍 into the torsion free group {𝑟 ∈ Q∗ | 𝑟 > 0}. Hence, 𝑍 is
isomorphic to Z𝑘 for some 𝑘 ≥ 1. Since 𝑍 ∩𝐻 = {1}, the canonical
surjective homomorphism from 𝑍 × 𝐻 onto 𝐺 is an isomorphism.

In the second case we start with any generating set and we

write the generators in Smith normal form 𝑒
(

𝑟 0
0 𝑟𝑞

)

𝑓 . Since 𝑒, 𝑓 ∈

GL(2,Z) and GL(2,Z) < 𝐺 , without restriction, the generators are

either from GL(2,Z) or they have the form
(

𝑟 0
0 𝑟𝑞

)

with 𝑟 > 0 and

0 ≠ 𝑞 ∈ N. So, if we are not in the first case, there is at least one

generator 𝑠 =
(

𝑟 0
0 𝑟𝑞

)

where 𝑟 > 0 and 2 ≤ 𝑞 ∈ N.

Let BS be the subgroup of 𝐺 which is generated by
(1 0
1 1

)

and
𝑠 and BS(1, 𝑞) be the Baumslag-Solitar group with generators 𝑏
and 𝑡 such that 𝑡𝑏𝑡−1 = 𝑏𝑞 . We have 𝑠

(1 0
1 1

)

𝑠−1 =
(1 0
1 1

)𝑞 . Hence,
there is a surjective homomorphism 𝜑 : BS(1, 𝑞) → BS such that
𝜑 (𝑡) = 𝑠 and 𝜑 (𝑏) =

(1 0
1 1

)

. Let us show that 𝜑 is an isomorphism.

Every element𝑔 ∈ BS(1, 𝑞) can be written in the form 𝑡𝑘𝑏𝑥 𝑡𝑛 where
𝑘, 𝑥, 𝑛 are integers. Suppose 𝜑 (𝑡𝑘𝑏𝑥 𝑡𝑛) = 1. Then

(1 0
𝑥 1

)

= 𝜑 (𝑏𝑥) =

𝜑 (𝑡−𝑘−𝑛) =
(

𝑟 0
0 𝑟𝑞

)−𝑘−𝑛
is a diagonal matrix. But then 𝑔 = 𝑡𝑚 and

𝜑 (𝑔) = 𝑠𝑚 = 1 implies 𝑚 = 0. Hence, 𝜑 is an isomorphism and
BS is the group BS(1, 𝑞). Moreover, consider any 𝑔 ∈ BS∩ SL(2,Z).
As above 𝑔 = 𝑠𝑘

(1 0
1 1

)𝑥
𝑠𝑚 with 𝑥, 𝑘,𝑚 ∈ Z. Since by assumption

det(𝑔) = 1 we obtain𝑚 = −𝑘 and hence 𝑔 =

(

1 0
𝑞𝑘𝑥 1

)

∈
〈(1 0

1 1

)〉

.

Therefore SL(2,Z) ∩ BS is the infinite cyclic group
〈(1 0

1 1

)〉

= Z,
which has infinite index in SL(2,Z). It follows that 𝐺 contains an
extension of BS(1, 𝑞) of infinite index.

But this is not enough, we need to show that GL(2,Z) × Z𝑘

cannot contain BS(1, 𝑞), otherwise there is no dichotomy. Actually,
we do more: there is no abelian group 𝐴 such that BS(1, 𝑞) is a
subgroup of GL(2,Z) ×𝐴.

Assume by contradiction that it is. Then there are generators
𝑏 = (𝑎, 𝑥), 𝑡 = (𝑠,𝑦) ∈ GL(2,Z) × 𝐴 such that 𝑡𝑏𝑡−1 = 𝑏𝑞 . This
implies (𝑞 − 1)𝑥 = 0. Since 𝑞 ≥ 2, the element 𝑥 generates a
finite subgroup in 𝐴. Since 𝑏 generates an infinite cyclic group,
we conclude that 𝑎𝑚 ≠ 1 for all 𝑚 ≠ 0. Consider the canonical
projection 𝜑 of GL(2,Z) ×𝐴 onto GL(2,Z) such that 𝜑 (𝑏) = 𝑎 and
𝜑 (𝑡) = 𝑠 . We claim that the restriction of 𝜑 to ⟨𝑏, 𝑡⟩ is injective.

Let 𝜑 (𝑔) = 1 for 𝑔 ∈ ⟨𝑏, 𝑡⟩. As above we write 𝑔 = 𝑡𝑘𝑏𝑧𝑡𝑛 with
𝑧, 𝑘, 𝑛 ∈ Z. Then we have 𝑠𝑘𝑎𝑧𝑠𝑛 = 1 ∈ GL(2,Z); and therefore
𝑎𝑧 = 𝑠−𝑘−𝑛 . Hence 𝑎𝑧 commutes with 𝑠 . Hence 𝑎𝑧 = 𝑠𝑎𝑧𝑠−1 = 𝑎𝑞𝑧 .
We conclude 𝑎 (𝑞−1)𝑧 = 1. Since 𝑎𝑚 ≠ 1 for all𝑚 ≠ 0 and 𝑞 ≥ 2 we
have 𝑧 = 0. Hence 𝑔 = 𝑡𝑚 for some𝑚 ∈ Z. Since 𝜑 (𝑔) = 1, we know
𝑠𝑚 = 1. Therefore, 𝑡𝑚 = (𝑠𝑚,𝑚𝑦) acts trivially on 𝑏. But in BS(1, 𝑞)
this happens for 𝑚 = 0, only. This tells us that 𝜑 is injective on
⟨𝑏, 𝑡⟩, and the claim follows.

The above claim implies that BS(1, 𝑞) appears as a subgroup in
GL(2,Z). However, no virtually free group can contain BS(1, 𝑞) by
[18]7; and GL(2,Z) is virtually free. A contradiction. □

Proposition 4.2. Let𝐺 be isomorphic toGL(2,Z)×Z𝑘 with𝑘 ≥ 1.
Then, the question ł𝐿 = 𝑅?ž on input 𝐿, 𝑅 ∈ Rat(𝐺) is undecidable.
However, the question ł𝑔 ∈ 𝑅?ž on input 𝑔 ∈ 𝐺 and 𝑅 ∈ Rat(𝐺) is
decidable.

7Actually, [18] shows a stronger result. If a Baumslag-Solitar group BS(𝑝,𝑞) appears
in a group𝐺 with 𝑝𝑞 ≠ 0, then𝐺 is not hyperbolic. The result is stronger since all f.g.
virtually free groups are hyperbolic.

127

Decidability of Membership Problems for Flat Rational Subsets ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Proof. The group GL(2,Z) contains a free monoid {𝑎, 𝑏}∗ of
rank 2. Thus, under the conditions above, 𝐺 contains the free par-
tially commutative monoid𝑀 = {𝑎, 𝑏}∗ × {𝑐}∗. It is known that the
question ł𝐿 = 𝑅?ž on input 𝐿, 𝑅 ∈ Rat(𝐺) is undecidable for𝑀 [1].

For the decidability we use the fact that GL(2,Z) has a free
subgroup 𝐹 of rank two and index 24. By [27] the question ł𝑔 ∈ 𝑅?ž
is decidable in 𝐹 × Z𝑘 . Since 𝐹 × Z𝑘 is of finite index (actually 24)
in 𝐺 , the membership problem in 𝐺 is decidable by Prop. 2.7. □

Remark 1. Let𝐺 be a group extension of GL(2,Z) inside GL(2,Q)
which is not isomorphic to GL(2,Z) × Z𝑘 for 𝑘 ≥ 0. Then, by
Thm. 4.1, the group 𝐺 contains an infinite extension of BS(1, 𝑞)
for 𝑞 ≥ 2. By [10] the membership in rational sets of BS(1, 𝑞) is
decidable. However, to date it is not clear how to extend this result
to infinite extensions of BS(1, 𝑞).

5 SINGULAR MATRICES

In this section we show that the membership problem is decidable
for flat rational sets containing singular matrices. This extends the
results of [35] which considers only integer matrices.

For 𝐻 ∈ GL(2,Z) and 𝑎 ∈ Z we let

𝑀𝑖 𝑗 (𝑎) =
{(𝑔11 𝑔12

𝑔21 𝑔22

)

∈ 𝐻
�

�𝑔𝑖 𝑗 = 𝑎
}

⊆ M(2,Z).

Throughout we will use Lem. 5.1; for a proof see [15, 35].

Lemma 5.1. The sets𝑀𝑖 𝑗 (𝑎) are rational for all 𝑖, 𝑗 and 𝑎 ∈ Z.

Theorem 5.2. Let 𝑃 be the submonoid of M(2,Q) which is gen-

erated by GL(2,Z), all central matrices
(

𝑟 0
0 𝑟

)

with 𝑟 ∈ N, and all

matrices ℎ ∈ M(2,Z) with det(ℎ) = 0. If 𝑅 ⊆ M(2,Q) is flat rational
over 𝑃 , then ł𝑔 ∈ 𝑅?ž is decidable for singular matrices 𝑔 ∈ M(2,Q).

Proof. Without restriction, 𝑅 is given by a trim NFA A over a
f.g. submonoid𝑀 of M(2,Q) such that transitions are labeled with
elements of 𝐻 or with matrices 𝑟𝑠𝑞 where 𝑞 ∈ N or 𝑟 ≥ 0. If 𝑔 = 0
and there is one transition labeled by 0, then we know 𝑔 ∈ 𝑅. For
𝑔 ≠ 0 we cannot use any transition labeled by 0. Hence without
restriction, if a transition is labeled by a rational number 𝑟 , then
𝑟 > 0. Using Smith normal form and writing 𝑟𝑠𝑞 as a product, in the
beginning all transitions are labeled either by a matrix in GL(2,Z)
or by a central matrix

(

𝑟 0
0 𝑟

)

or by 𝑠0 =
(1 0
0 0

)

.
Since det(𝑔) = 0, the label 𝑠0 must be used at least once. By

writing 𝑅 as a finite union 𝑅1 ∪ 𝑅𝑚 and guessing the correct 𝑗 we
may assume without restriction that 𝑔 ∈ 𝑅 𝑗 = 𝑅 = 𝐿1𝑠0𝐿2 where
𝐿𝑖 ∈ Rat(𝑀). Note that the 𝐿𝑖 are just rational, and not assumed
to be flat rational. Throughout we use the following equation for
𝑟 ∈ Q and 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z:

𝑠0𝑟
(

𝑎 𝑏
𝑐 𝑑

)

𝑠0 = 𝑠0
(

𝑟𝑎 0
0 0

)

𝑠0 = 𝑠0𝑟𝑎𝑠0 = 𝑟𝑎𝑠0 . (1)

Now, we perform a Benois-type (cf. [9]) of łflooding-the-NFAž.

First Round. More transitions without changing the state set.

(1) For all states 𝑝, 𝑞 ofA consider the subautomatonB where 𝑝
is the unique initial and 𝑞 is the unique final state and where
all transitions are labeled by ℎ ∈ 𝐻 (all other are removed
from A). This defines a rational language 𝐿(𝑝, 𝑞) ∈ Rat(𝐻).

(2) Introduce for all states 𝑝, 𝑞 ofA an additional new transition
labeled by 𝐿(𝑝, 𝑞).

(3) If 𝑔 = 0 and 0 ∈ 𝐿(𝑝, 𝑞), then accept 𝑔 ∈ 𝑅. After that replace
all 𝐿(𝑝, 𝑞) by 𝐿(𝑝, 𝑞) \ {0}.

(4) If 1 ∈ 𝐿(𝑝, 𝑞), where 1 =
(1 0
0 1

)

is the identity matrix, replace

𝐿(𝑝, 𝑞) by 𝐿(𝑝, 𝑞) \ {1} and add a new transition 𝑝
1

−→ 𝑞.

After that we may assume that all accepting paths of A are as
follows:

𝑝1
𝐿1
−→ 𝑞1

𝑟1𝑠0
−→ 𝑝2

𝐿2
−→ · · ·

𝑟𝑘𝑠0
−→ 𝑝𝑘

𝐿𝑘
−→ 𝑞𝑘 (2)

where 𝑟𝑖 ∈ Q, 𝑟𝑖 > 0, and 0, 1 ∉ 𝐿𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . We may

assume without restriction that the transition 𝑝1
𝐿1
−→ 𝑞1 is the only

transition leaving a unique initial state 𝑝1.
It is convenient to assume that the states are divided into two

sets: 𝑝-states where outgoing transitions are labeled by rational
subsets of𝐻 andwhich lead to𝑞-states; and𝑞-states where outgoing
transitions are labeled by 𝑟𝑠0 and lead to 𝑝-states. In particular,
𝑝𝑖 ≠ 𝑞 𝑗 for all 𝑖, 𝑗 .

Since 𝑅 is flat over 𝑃 , there is a constant 𝜌 depending on 𝑅
such that each accepting path as in (2) uses a transition labeled by
𝑟 =

(

𝑟 0
0 𝑟

)

with 𝑟 ∉ N at most 𝜌 times. Splitting 𝑅 again into a finite
union we may assume that all accepting paths have the form

𝑞0
𝑟

−→ 𝑝1
𝐿1
−→ 𝑞1

𝑟1𝑠0
−→ 𝑝2

𝐿2
−→ · · ·

𝑟𝑘𝑠0
−→ 𝑝𝑘

𝐿𝑘
−→ 𝑞𝑘 (3)

where the 𝑟 ∈ Q, 𝑟 ≠ 0, 𝑟𝑖 ∈ N \ {0}, and 0, 1 ∉ 𝐿𝑖 ∈ Rat(𝑀). Here,
𝑞0 is a new unique initial state. We choose some 𝑧 ∈ Z such that
𝑟𝑧 ∈ N; and we aim to decide 𝑧𝑔 ∈ 𝑧𝑅. The NFA for 𝑧𝑅 is obtained
by making the unique 𝑝1-state initial again, to remove 𝑞0, and to

replace all outgoing transitions 𝑞1
𝑟1𝑠0
−→ 𝑝2 by 𝑞1

𝑧𝑟1𝑠0
−→ 𝑝2. After that

little excursion we are back at a situation as in (2). The difference
is that all 𝑟𝑖 are positive natural numbers. In order to have 𝑔 ∈ 𝑅,
we must have 𝑔 ∈ M(2,Z). So, we can assume that, too.

Phrased differently, without restriction from the very beginning
assume 𝑔 ∈ M(2,Z), det(𝑔) = 0, and A accepts 𝑅 such that all
accepting paths are as in (2) where all 𝑟𝑖 ∈ N \ {0}.

Let 𝑔 =
(𝑔11 𝑔12
𝑔21 𝑔22

)

. We define a target value 𝑡 ∈ N by the greatest
common divisor of the numbers in {𝑔11, 𝑔12, 𝑔21, 𝑔22}.

We keep the following assertion as an invariant. If a transition

𝑞
𝑟𝑠0
−→ appears in A, then 𝑟 divides 𝑡 .

Second Round. As long as possible, do the following.

• Choose a sequence of transitions 𝑞′
𝑟𝑠0
−→ 𝑝

𝐿
−→ 𝑞

𝑟 ′𝑠0
−→ 𝑝 ′ and

an integer 𝑧 ∈ Z such that:
(1) 𝑧 = 0 ⇐⇒ 𝑔 = 0,
(2) the integer 𝑟𝑧𝑟 ′ divides 𝑡 ,
(3) we have 𝐿 ∩𝑀11 (𝑧) ≠ ∅,

(4) there is no transition 𝑞′
𝑟𝑧𝑟 ′

−→ 𝑝 ′.

• Introduce an additional transition 𝑞′
𝑟𝑧𝑟 ′

−→ 𝑝 ′.

It is clear that the procedure terminates since for 𝑔 ≠ 0 the target 𝑡
has only finitely many divisors. So, the number of integers 𝑟 , 𝑧, 𝑟 ′

such that 𝑟𝑧𝑟 ′ divides 𝑡 is finite for 𝑔 ≠ 0. For 𝑔 = 0 we have 𝑧 = 0
and 0 divides the target 0. The accepted language of A was not
changed. But now, every accepting path for 𝑔 can take short cuts.
As a consequence, we may assume that all accepting paths for 𝑔

have length three: 𝑝1
𝐿1
−→ 𝑞1

𝑟𝑠0
−→ 𝑝2

𝐿2
−→ 𝑞2 . By guessing such a

128

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Volker Diekert, Igor Potapov, and Pavel Semukhin

sequence of length three, we may assume that the NFA is equal to
that path with those four states and where 𝑟 divides 𝑡 .

We are ready to check whether 𝑔 ∈ 𝐿(A). Indeed, we know
that each matrix 𝑚 ∈ 𝐿(A) can be written as 𝑚 = 𝑓1𝑟𝑠0 𝑓2 with

𝑓𝑘 ∈ 𝐿𝑘 ∈ Rat(𝐻) for 𝑘 = 1, 2. We can write 𝑓1𝑟𝑠0 = 𝑟
(

𝑎 0
𝑏 0

)

and

𝑠0 𝑓2 =
(

𝑐 𝑑
0 0

)

where the 𝑎, 𝑏, 𝑐, 𝑑 depend on the pair (𝑓1, 𝑓2). Hence,

𝑚 = 𝑟 𝑓 𝑠0ℎ = 𝑟 𝑓 𝑠0𝑠0ℎ = 𝑟
(

𝑎 0
𝑏 0

)

(

𝑐 𝑑
0 0

)

= 𝑟
(

𝑎𝑐 𝑎𝑑
𝑏𝑐 𝑏𝑑

)

. Remember

that 0 ≠ 𝑟 ∈ Z. We make the final tests. We have 𝑔 ∈ 𝑅 if and
only if 𝑟 , 𝐿1, and 𝐿2 allow to have the four values 𝑟𝑎𝑐, 𝑟𝑎𝑑, 𝑟𝑏𝑐, 𝑟𝑏𝑑
to be the corresponding 𝑔𝑖 𝑗 . To see this we start with eight tests
ł0 ∈ 𝑀𝑖 𝑗 (0) ∩ 𝐿𝑘 = ∅?ž. Now, it is enough to consider entries 𝑔𝑖 𝑗
where 𝑔𝑖 𝑗 ≠ 0. But then each 𝑔𝑖 𝑗/𝑟 has finitely many divisors 𝑒 ∈ Z,
only. Thus, a few tests ł𝑀𝑖 𝑗 (𝑒)∩𝐿𝑘 = ∅?ž suffice to decide𝑔 ∈ 𝑅. □

Theorem 5.3. Let 𝑃 ′ be the submonoid of M(2,Q) which is gen-

erated by GL(2,Z), all central matrices
(

𝑟 0
0 𝑟

)

with 𝑟 ∈ Q, and all

matrices ℎ ∈ M(2,Z) with det(ℎ) = 0. If 𝑅 ⊆ M(2,Q) is flat rational
over 𝑃 ′, then we can decide

(0 0
0 0

)

∈ 𝑅.

Note that 𝑃 ′ = 𝑃 ·
{(

𝑟 0
0 𝑟

)
�

� 𝑟 ∈ Q
}

where 𝑃 is from Thm. 5.2. The
proof of Thm. 5.3 is straightforward, details are in [15].

6 GENERATORS OF SL(2,Z[1/𝑝])
As usual, Z[1/𝑝] denotes the ring {𝑝𝑛𝑟 ∈ Q | 𝑛, 𝑟 ∈ Z}. We give a
simple proof for thewell-known fact that SL(2,Z[1/𝑝]) is generated

by
(0 −1
1 0

)

,
(1 1
0 1

)

, and
(

𝑝 0
0 𝑝−1

)

. We use the following notation: let

𝛼, 𝛽,𝛾, 𝛿 denote elements in Z[1/𝑝], and 𝑎, 𝑏, 𝑐, 𝑑 denote elements

in Z. Starting with a matrix
(

𝛼 𝛽
𝛾 𝛿

)

we do the following:

(1) Multiply by
(

𝑝−1 0
0 𝑝

)

on the left until we reach
(

𝛼 𝛽
𝑐 𝑑

)

.

(2) Multiply by
(0 −1
1 0

)

,
(1 ±1
0 1

)

, and
(1 0
±1 1

)

until we reach
(

𝛼 𝛽
0 𝑑

)

.

This is trivial for |𝑐 | = |𝑑 |. In the other case we may as-

sume |𝑐 | > |𝑑 |. Next, transform
(

𝛼 𝛽
𝑐 𝑑

)

into a matrix of type
(

𝛼 𝛽
𝑐±𝑑 𝑑

)

such that |𝑐 ± 𝑑 | < |𝑐 |. Use induction on |𝑐 | + |𝑑 |.

(3) Multiply by
(

𝑝 0
0 𝑝−1

)

on the left until we reach
(

𝛼 𝑏
0 𝛿

)

.

(4) Now, 𝛼𝛿 = 1. Hence 𝛼 = 𝑝𝑚𝑎 and 𝛿 = 𝑝𝑛𝑑 where gcd(𝑎, 𝑝) =
gcd(𝑑, 𝑝) = 1. Since 𝑝 is a prime,𝑚 + 𝑛 = 0 and 𝑎𝑑 = 1.

(5) WLOG 𝑎 = 𝑑 = 1 and𝑚 ≥ 1 and hence,
(

𝛼 𝑏
0 𝛿

)

=

(

𝑝𝑚 𝑏
0 𝑝−𝑚

)

.

(6) Using
(1 ±1
0 1

)

we can add or subtract the lower row 𝑝𝑚 |𝑏 |

times to the upper row. Since𝑚 ≥ 1 we obtain
(

𝑝 0
0 𝑝−1

)𝑚
.

REFERENCES
[1] IJ. J. Aalbersberg andH. J. Hoogeboom. 1989. Characterizations of the Decidability

of Some Problems for Regular Trace Languages. Math. Syst. Th. 22 (1989), 1ś19.
[2] Anatolij V. Anisimow and Franz D. Seifert. 1975. Zur algebraischen Charakteristik

der durch kontext-freie Sprachen definierten Gruppen. Elektron. Inf.-Verarbeit.
Kybernetik 11 (1975), 695ś702.

[3] László Babai, Robert Beals, Jin-yi Cai, Gábor Ivanyos, and Eugene M. Luks. 1996.
Multiplicative Equations over Commuting Matrices. In Proc. 7th SODA. 498ś507.

[4] Gilbert Baumslag and Donald Solitar. 1962. Some two-generator one-relator
non-Hopfian groups. Bull. Amer. Math. Soc. 68 (1962), 199ś201.

[5] H. Behr and J. Mennicke. 1968. A presentation of the groups PSL(2, p). Canadian
Journal of Mathematics 20 (1968), 1432ś1438.

[6] P. Bell, V. Halava, T. Harju, J. Karhumäki, and I. Potapov. 2008. Matrix Equations
and Hilbert’s Tenth Problem. Int. J. Algebra Comp. 18 (2008), 1231ś1241.

[7] P. Bell, I. Potapov, and P. Semukhin. 2019. On the Mortality Problem: From
Multiplicative Matrix Equations to Linear Recurrence Sequences and Beyond. In
Proc. 44th MFCS (LIPIcs). 83:1ś83:15. https://doi.org/10.4230/LIPIcs.MFCS.2019.83

[8] P. C. Bell, M. Hirvensalo, and I. Potapov. 2017. The identity problem for matrix
semigroups in SL2 (Z) is NP-complete. In Proc. SODA’17. SIAM, 187ś206.

[9] Michèle Benois. 1969. Parties rationelles du groupe libre. C. R. Acad. Sci. Paris,
Sér. A 269 (1969), 1188ś1190.

[10] Michaël Cadilhac, Dmitry Chistikov, and Georg Zetzsche. 2020. Rational subsets
of Baumslag-Solitar groups. To appear: Proc. of the 47th ICALP 2020 in LIPIcs.

[11] J. Cassaigne, V. Halava, T. Harju, and F. Nicolas. 2014. Tighter Undecidability
Bounds for Matrix Mortality, Zero-in-the-Corner Problems, and More. arXiv
eprints abs/1404.0644 (2014).

[12] Émilie Charlier and Juha Honkala. 2014. The freeness problem over matrix
semigroups and bounded languages. Inf. Comp. 237 (2014), 243ś256.

[13] Laura Ciobanu and Murray Elder. 2019. Solutions Sets to Systems of Equations in
Hyperbolic Groups Are EDT0L in PSPACE. In Proc. 46th ICALP (LIPIcs, Vol. 132).
110:1ś110:15. https://doi.org/10.4230/LIPIcs.ICALP.2019.110

[14] T. Colcombet, J. Ouaknine, P. Semukhin, and J. Worrell. 2019. On Reachability
Problems for Low-Dimensional Matrix Semigroups. In Proc. 46th ICALP (LIPIcs).
44:1ś44:15. https://doi.org/10.4230/LIPIcs.ICALP.2019.44

[15] Volker Diekert, Igor Potapov, and Pavel Semukhin. 2019. Decidability of mem-
bership problems for flat rational subsets of GL(2,Q) and singular matrices. arXiv
eprints abs/1910.02302 (2019).

[16] S. Eilenberg. 1974. Automata, Languages, and Machines. Vol. A. Academic Press.
[17] Samuel Eilenberg and Marcel-Paul Schützenberger. 1969. Rational sets in com-

mutative monoids. J. Algebra 13 (1969), 173ś191.
[18] S. M. Gersten. 1992. Dehn functions and 𝑙1-norms of finite presentations. In

Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989).
Math. Sci. Res. Inst. Publ., Vol. 23. 195ś224.

[19] Z. Grunschlag. 1999. Algorithms in Geometric Group Theory. Ph.D. Dissertation.
[20] Yuri Gurevich and Paul Schupp. 2007. Membership problem for the modular

group. SIAM J. Comput. 37, 2 (2007), 425ś459.
[21] Tero Harju. 2009. Post Correspondence Problem and Small Dimensional Matrices.

In Proc. 13th DLT (LN in Comp. Sci, Vol. 5583). 39ś46.
[22] J. Hillman. 2007. Commensurators and deficiency. (2007). http://www.maths.

usyd.edu.au/u/pubs/publist/preprints/2007/hillman-18.pdf
[23] R. Kannan and A. Bachem. 1979. Polynomial Algorithms for Computing the

Smith and Hermite Normal Forms of an Integer Matrix. SIAM J. Comput. 8 (1979),
499ś507. https://doi.org/10.1137/0208040

[24] S. Kleene. 1956. Representation of events in nerve nets and finite automata. In
Automata Studies. Number 34 in Annals of Mathematics Studies. 3ś40.

[25] S. Ko, R. Niskanen, and I. Potapov. 2018. On the Identity Problem for the Special
Linear Group and the Heisenberg Group. In Proc. 45th ICALP (LIPIcs). 132:1ś
132:15. https://doi.org/10.4230/LIPIcs.ICALP.2018.132

[26] Daniel König, Markus Lohrey, and Georg Zetzsche. 2015. Knapsack and subset
sum problems in nilpotent, polycyclic, and co-context-free groups. arXiv eprints
abs/1507.05145 (2015).

[27] Markus Lohrey and Benjamin Steinberg. 2008. The submonoid and rational
subset membership problems for graph groups. J. Algebra 320 (2008), 728ś755.

[28] Roger Lyndon and Paul Schupp. 2001. Combinatorial Group Theory. Springer.
[29] A. Markov. 1947. On certain insoluble problems concerning matrices. Dok. Akad.

Nauk SSSR 57 (1947), 539ś542.
[30] J. D. McKnight. 1964. Kleene quotient theorem. Pac. J. Math. (1964), 1343ś1352.
[31] K. A. Mihailova. 1958. The occurrence problem for direct products of groups.

Dokl. Akad. Nauk SSSR 119 (1958), 1103ś1105. English translation in: Math. USSR
Sbornik, 70: 241ś251, 1966.

[32] Morris Newman. 1962. The structure of some subgroups of the modular group.
Illinois J. Math. 6 (1962), 480ś487.

[33] Igor Potapov. 2019. Reachability Problems in Matrix Semigroups. Dagstuhl
Reports 9 (2019), 95ś98. https://doi.org/10.4230/DagRep.9.3.83

[34] Igor Potapov and Pavel Semukhin. 2017. Decidability of the Membership Problem
for 2 × 2 integer matrices. In Proc. 28th SODA. 170ś186.

[35] Igor Potapov and Pavel Semukhin. 2017. Membership Problem in GL(2, Z)
Extended by Singular Matrices. In Proc. 42nd MFCS. 44:1ś44:13.

[36] Nikolay S. Romanovskiı̆. 1974. Some algorithmic problems for solvable groups.
Algebra i Logika 13 (1974), 26ś34, 121.

[37] Jacques Sakarovitch. 1992. The łlastž decision problem for rational trace lan-
guages. In Proc. LATIN’92 (LN in Comp. Sci, Vol. 583), I. Simon (Ed.). 460ś473.

[38] Géraud Sénizergues. 1996. On the rational subsets of the free group. Acta Inf. 33
(1996), 281ś296.

[39] Jean-Pierre Serre. 1980. Trees. Springer.
[40] Pedro V. Silva. 2002. Recognizable subsets of a group: finite extensions and the

abelian case. Bulletin EATCS 77 (2002), 195ś215.
[41] P. V. Silva. 2017. An Automata-Theoretic Approach to the Study of Fixed Points of

Endomorphisms. In Algorithmic and Geometric Topics Around Free Groups and Au-
tomorphisms, J. González-Meneses, M. Lustig, and E. Ventura (Eds.). Birkhäuser.

129

https://doi.org/10.4230/LIPIcs.MFCS.2019.83
https://doi.org/10.4230/LIPIcs.ICALP.2019.110
https://doi.org/10.4230/LIPIcs.ICALP.2019.44
http://www.maths.usyd.edu.au/u/pubs/publist/preprints/2007/hillman-18.pdf
http://www.maths.usyd.edu.au/u/pubs/publist/preprints/2007/hillman-18.pdf
https://doi.org/10.1137/0208040
https://doi.org/10.4230/LIPIcs.ICALP.2018.132
https://doi.org/10.4230/DagRep.9.3.83

On the Apolar Algebra of a Product of Linear Forms

Michael DiPasquale
Colorado State University

michael.dipasquale@colostate.edu

Zachary Flores
Colorado State University
flores@math.colostate.edu

Chris Peterson
Colorado State University

peterson@math.colostate.edu

ABSTRACT

Apolarity is a important tool in commutative algebra and algebraic

geometry which studies a form, f , by the action of polynomial dif-

ferential operators on f . The quotient of all polynomial differential

operators by those which annihilate f is called the apolar algebra of

f . In general, the apolar algebra of a form is useful for determining

its Waring decomposition, which consists of writing the form as a

sum of powers of linear forms with as few summands as possible.

In this article we study the apolar algebra of a product of linear

forms, which generalizes the case of monomials and connects to

the geometry of hyperplane arrangements. In the first part of the

article we provide a bound on theWaring rank of a product of linear

forms under certain genericity assumptions; for this we use the

defining equations of so-called star configurations due to Geramita,

Harbourne, and Migliore. In the second part of the article we use

the computer algebra system Bertini, which operates by homotopy

continuation methods, to solve certain rank equations for catalec-

ticant matrices. Our computations suggest that, up to a change of

variables, there are exactly six homogeneous polynomials of degree

six in three variables which factor completely as a product of linear

forms defining an irreducible multi-arrangement and whose apolar

algebras have dimension six in degree three. As a consequence

of these calculations, we find six cases of such forms with cactus

rank six, five of which also have Waring rank six. Among these

are products defining subarrangements of the braid and Hessian

arrangements.

CCS CONCEPTS

· Computing methodologies → Special-purpose algebraic sys-

tems; Hybrid symbolic-numeric methods; · Applied comput-

ing→Mathematics and statistics; ·Mathematics of comput-

ing → Solvers.

KEYWORDS

Apolar algebras, Waring rank, hyperplane arrangements, tensor

decomposition, numerical algebraic geometry

ACM Reference Format:

Michael DiPasquale, Zachary Flores, and Chris Peterson. 2020. On the Ap-

olar Algebra of a Product of Linear Forms. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404014

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.

3404014

1 INTRODUCTION

Given a homogeneous polynomial f of degree d , the apolar algebra

Rf is the ring of polynomial differential operators modulo those

which annihilate f . This algebra has been studied for a variety of

reasons; in particular the apolar algebra of a form of degree d is

always an Artinian Gorenstein algebra with socle degree d and

every Artinian Gorenstein algebra with socle degree d can be rep-

resented as the apolar algebra of a form of degree d . This explicit

correspondence, via the apolar algebra, between forms of degree

d and Artinian Gorenstein algebras with socle degree d is well ex-

posited by Iarrabino and Kanev in [10]. The apolar algebra of a

homogeneous polynomial f of degree d is also key to studying the

Waring rank of f ś this is the smallest integer r for which there

exist linear forms ℓ1, . . . , ℓr so that f = ℓd1 + · · · + ℓ
d
r (we call such

a representation aWaring decomposition). The Waring rank often

depends on the field chosen ś in this note we will work over an

algebraically closed field. Note that homogeneous polynomials of

degree d correspond to supersymmetric d-dimensional tensors and

that the dth power of a linear form corresponds to a rank 1 su-

persymmetric d-dimensional tensor. Through this correspondence,

Waring rank connects to (supersymmetric) tensor rank and Waring

decomposition to (supersymmetric) tensor decomposition.

In this note we study the apolar algebra of a form f of degree

d which can be written as a product of d , not necessarily distinct,

linear forms. Such forms correspond geometrically to hyperplane

arrangements (in the case of distinct linear forms) and hyperplane

multi-arrangements (in the case of non-distinct linear forms). To

simplify exposition, we conflate a multi-arrangement with its defin-

ing equation. That is, if we refer to the Waring rank of a multi-

arrangement, we mean the Waring rank of its defining equation.

Our inspiration for studying this problem stems largely from the

thesis of Max Wakefield [16], where several questions are posed

about apolar algebras of multi-arrangements. In particular, we study

when the apolar algebra of a multi-arrangement is a complete in-

tersection.

If the apolar algebra of a form is a complete intersection, it is

often easier to compute its Waring rank. Two important classes of

examples (all multi-arrangements) serve to illustrate this point. The

first is the case of a monomial, whose apolar algebra is generated by

powers of variables. The Waring rank of monomials over the field

of complex numbers is completely determined in [4]. The second

class is when f is the fundamental skew invariant of a complex

reflection groupW , which is the product of the linear forms defining

the pseudo-reflections ofW . In this case the apolar algebra Rf is

isomorphic to the ring of covariants ofW [11, Chapter 26], which

is the quotient of the polynomial ring by the ideal generated by

invariants ofW . This is a complete intersection since the ring of

130

https://doi.org/10.1145/3373207.3404014
https://doi.org/10.1145/3373207.3404014
https://doi.org/10.1145/3373207.3404014

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Michael DiPasquale, Zachary Flores, and Chris Peterson

invariants is itself a polynomial ring by the celebrated Chevalley-

Shephard-Todd theorem. In [14], Teitler and Woo determine the

Waring rank of (and a Waring decomposition of) the fundamental

skew invariant of a complex reflection arrangement under some

mild conditions.

Following a section providing preliminary background material,

we briefly discuss reducible arrangements, which are arrangements

that can be written as a product of lower dimensional arrangements.

In Section 4 we make use of the defining equations of star config-

urations determined by Geramita, Harbourne, and Migliore [7] to

give a lower bound on the initial degree of the apolar algebra of

a generic arrangement (Proposition 4.10). We give two corollaries

to Proposition 4.10 ś the first is a lower bound on the size of a

generic arrangement whose apolar ideal is a complete intersection

and the second is a lower bound on the Waring rank of a generic

arrangement. Section 5 gives a case study of six lines in P2. In par-

ticular, we use the numerical computer algebra system Bertini [3]

to compute what we suspect is a complete list of irreducible multi-

arrangements consisting of six lines (counting multiplicity) and

annihilated by at least three cubics. We record this list in Conjec-

ture/Theorem* 5.1 (the asterix indicates this is a computational

result which can, in theory, be turned into a theorem by numerical

certification). This leads to what we expect is a complete list of

irreducible multi-arrangements consisting of six lines that have

cactus rank equal to six (all but one of these also have Waring rank

equal to six). Macaulay2 [8], Sage [15], and Bertini scripts we

used to find this list and check the resulting Waring ranks can be

found under the Research tab at https://midipasq.github.io/. The

final section of the paper provides closing comments and gives

suggestions for further research.

2 PRELIMINARIES

Let K be an algebraically closed field of characteristic zero and put

R = K[X0, . . . ,Xn]. Let S = K[x0, . . . ,xn] be the R-module defined

by R acting on S via partial differentiation. That is, if f ∈ S and

Φ ∈ R,

Φ ◦ f = Φ

(
∂

∂x0
, . . . ,

∂

∂xn

)
f .

This is known as the apolar action of R on S . The expository article

of Geramita [6] is an excellent introduction to applications of apo-

larity, the book of Iarrabino and Kanev [10] can be used to go into

more detail, and the article of De Paris [5] gives a recent summary

of apolarity and tensor rank.

Given a form f ∈ S , the apolar ideal of f is

AnnR (f) = {Φ ∈ R : Φ ◦ f = 0} .

We write Rf = R/AnnR (f); this is the apolar algebra of f . The

apolar algebra Rf is a graded Artinian Gorenstein algebra, and

every graded Artinian Gorenstein algebra arises in this way [10,

Lemma 2.12].

Now suppose f ∈ Sd (where Sd denotes the degree d forms in S).

AWaring decomposition of f is a decomposition f = c1ℓ
d
1 + · · · +

ck ℓ
d
k
, where ℓ1, . . . , ℓk are linear forms and c1, . . . , ck ∈ K (we do

not strictly need c1, . . . , ck sinceK is algebraically closed, but it will

be useful for us to consider these). The smallest number of linear

forms needed in a Waring decomposition of f is theWaring rank

of f . The following lemma relates the apolarity action and Waring

decompositions. See [10, Lemma 1.15] for a proof. In what follows,

we say a linear form ℓ =
∑n
i=0 aixi ∈ K[x0, . . . ,xn] is dual to the

point P = [a0 : · · · : an] ∈ PnK. Any non-zero constant multiple of ℓ

is of course dual to the same point P .

Lemma 2.1 (Apolarity Lemma). Let f ∈ S = K[x0, . . . ,xn] be a
form of degree d , X = {P1, . . . , Pk } ⊂ PnK a set of points, and IX ⊂ R

its corresponding ideal. Write ℓ1, . . . , ℓk for linear forms in S dual to

the points P1, . . . , Pk . Then f = c1ℓ
d
1 + . . .+ ck ℓ

d
k
for some constants

c1, . . . , ck if and only if IX ⊂ AnnR (f).

From the apolarity lemma we see that the Waring rank of a form

is the same as the minimum degree of a zero-dimensional radical

ideal contained in its apolar ideal. A related notion is the cactus

rank of a form; this is the minimum degree of a zero-dimensional

saturated ideal contained in its apolar ideal (we will see this notion

in Section 5).

We will focus on forms f ∈ S = K[x0, . . . ,xn] which decom-

pose as a product of (not necessarily distinct) linear forms as f =

ℓ
m1

1
· · · ℓmk

k
. If д ∈ S , write V (д) for the set of points in Kn+1

at which д vanishes. A natural geometric object to attach to the

product f = ℓm1

1
· · · ℓmk

k
is the multi-arrangement (A,m) where

A = ∪ki=1V (ℓi) is the union of the hyperplanes V (ℓi) ⊂ Kn+1 and
m is a function which assigns to each hyperplaneH ∈ A the integer

m(H), where m(H) is the power to which the corresponding linear

form appears in f . We put |m| = ∑
H m(H), which is the degree of

the polynomial f . If m(H) = 1 for all H ∈ A we will say (A,m)
is a simple arrangement and write A instead of (A,m). Given a

multi-arrangement (A,m) we define Q(A,m) :=
∏

H ∈A α
m(H)
H

,

where αH is a choice of linear form vanishing on H . If A is simple

then we write Q(A) for the product∏H ∈A αH . We call Q(A,m)
and Q(A) the defining polynomial of the multi-arrangement and

arrangement, respectively. Moreover we write |A| for the num-

ber of hyperplanes in A, so that if f = Q(A,m), then |A| is the
number of distinct linear factors of f . For simplicity, throughout

this note we will conflate a multi-arrangement or arrangement

with its defining polynomial. For instance, by łthe apolar algebra

of an arrangement" we will mean the apolar algebra of its defining

equation.

If A1 = ∪si=1Gi ⊂ V � Kn and A2 = ∪tj=1Hj ⊂ W � K
m are

two simple arrangements, then the product ofA1 andA2 is defined

by

A1 × A2 =
(
∪si=1Gi ×W

)
∪
(
V × ∪tj=1Hj

)
⊂ V ×W

If (A1,m1) and (A2,m2) aremulti-arrangements, the productmulti-

arrangement (A1 × A2,m) satisfies m(H ×W) = m(H) if H ∈ A1

and m(V ×G) = m(G) if G ∈ A2. Following [12], we will say that

a simple arrangement A is reducible if, after a change of coordi-

nates, A = A1 × A2 for some simple arrangements A1 and A2.

Otherwise we say that A is irreducible.

Suppose A ⊂ Kn is a reducible arrangement and Q(A) is its
defining polynomial. Then there is a change of variables so that

A = A1 × A2, where A1 ⊂ Ks and A2 ⊂ Kt for some posi-

tive integers s, t satisfying s + t = n. Put S1 = K[x1, . . . ,xs] and
S2 = K[y1, . . . ,yt]. Then, under this change of variables, Q(A) =
Q(A1)Q(A2). Algebraically, the defining polynomials of reducible

131

https://midipasq.github.io/

On the Apolar Algebra of a Product of Linear Forms ISSAC ’20, July 20–23, 2020, Kalamata, Greece

arrangements are those which, after an appropriate change of vari-

ables, split as a product of two defining polynomials in disjoint sets

of variables.

In this note we only consider hyperplane arrangements all of

whose hyperplanes pass through the origin (these are called cen-

tral arrangements). Hence we will freely pass between a central

arrangement in Kn+1 and its natural quotient in Pn ś this does not

affect the algebra.

3 PRODUCTS OF ONE AND TWO
DIMENSIONAL ARRANGEMENTS

In this section we observe that if (A,m) is reducible, so (A,m) =
(A1,m1) × (A2,m2) after a change of variables, then Rf � Rf1 ⊗K
Rf2 , where f = Q(A,m), f1 = Q(A1,m1), and f2 = Q(A2,m2).
Our observation hinges on the following proposition. We suspect

this is well-known but we include a proof since we were not able

to find one in the literature.

Proposition 3.1. Suppose s and t are positive integers, f ∈ S1 =

K[x1, . . . ,xs] and д ∈ S2 = K[y1, . . . ,yt]. Put S = S1 ⊗K S2. We

write R1,R2, and R for the polynomial rings dual to S1, S2, and S .

Then

(1) Rf д � (R1)f ⊗K (R2)д and

(2) AnnR (f д) = AnnR1
(f) ⊗K R2 + AnnR2

(д) ⊗K R1

Remark 3.2. The tensor product ring S = S1 ⊗K S2 is isomorphic

as a ring to the polynomial ringK[x1, . . . ,xs ,y1, . . . ,yt] via the map

xi ⊗ yj → xiyj (extended linearly). This is because the polynomials

are in different sets of variables. Thus there is no harm in regarding

tensors in S and R as multiplication in their corresponding polynomial

rings; we do this in the proof of Proposition 3.1.

Proof. Since AnnR1
(f)R2 + AnnR2

(д)R1 is the kernel of the

natural map from R to (R1)f ⊗K (R2)д , it is clear that (1) and (2) are
equivalent. We prove (2).

Suppose Φ =
∑
α,β cα,βX

αY β ∈ R, where α = (α0, · · · ,αs), β =
(β0, . . . , βt),Xα

= X
α0

0
· · ·Xαs

s , Y β
= Y

β0
0

· · ·Y βt
t , and cα,β ∈ K.

Then

Φ ◦ (f д) =
∑
α,β

cα,β
∂ f

∂xα
∂д

∂yβ
.

Similarly, if φ1 ∈ R1 and φ2 ∈ R2, then φ1φ2 ◦ f д = (φ1 ◦ f)(φ2 ◦д).
From this observation it is clear that AnnR1

(f)R2 + AnnR2
(д)R1 ⊆

AnnR (f д).
We prove that AnnR (f д) ⊆ AnnR1

(f)R2 +AnnR2
(д)R1. For this

we consider several maps: αf : R1 → S1 given by φ → φ ◦ f , αд :

R2 → S2 by φ → φ ◦д, the tensor product maps α ′
f
:= αf ⊗K idR2

:

R1 ⊗K R2 → S1 ⊗K R2 and α ′
д := idS1 ⊗K αд : S1 ⊗K R2 → S1 ⊗K S2.

By the above observations, AnnR (f д) = ker(α ′
д ◦ α ′

f
).

Suppose Φ =
∑
α,β cα,βX

αY β ∈ AnnR (f д). Then

Φ ◦ f д =
∑
α,β

cα,β
∂ f

∂xα
∂д

∂yβ
= 0. (1)

Suppose themonomialxγ appears in
∂f
∂xα

with coefficientdγ ,α ∈ K.
Equating coefficients of xγ in Equation (1) yields

xγ
∑
α,β

dγ ,αcα,β
∂д

∂yβ
= 0.

It follows that
∑
α,β dγ ,αcα,βY

β ∈ ker(α ′
д) = AnnR2

(д). Thus

α ′
f
(Φ) =

∑
α,β

cα,β
∂ f

∂xα
Y β ∈ AnnR2

(д)αf (R1).

Notice that

α ′
f
(AnnR1

(f)R2 + AnnR2
(д)R1) = AnnR2

(д)αf (R1).

Sinceα ′
f
(AnnR (f д)) ⊆ AnnR2

(д)αf (R1) and ker(α ′
f
) = AnnR1

(f)R2,
we have AnnR (f д) ⊆ AnnR1

(f)R2 + AnnR2
(д)R1, as desired. □

Corollary 3.3. Suppose S � S1 ⊗K · · · ⊗K Sk , where Si is a

polynomial ring in one or two variables for i = 1, . . . ,k . If a form

f ∈ S factors as f = f1 · · · fk where fi ∈ Si for i = 1, . . . ,k , then

AnnR (f) is a complete intersection.

Proof. It is well known that the apolar algebra of a homoge-

neous polynomial in one or two variables is a complete intersection

(since Gorenstein coincides with complete intersection in one and

two variables). The corollary follows directly from this fact and

Proposition 3.1. □

Remark 3.4. Over an algebraically closed field it is clear that the

factors f1, . . . , fk in Corollary 3.3 are in fact products of linear forms.

Remark 3.5. Corollary 3.3 shows that the apolar algebra of a

multi-arrangement which is a product of one and two dimensional

arrangements is a complete intersection. One may ask the reverse ques-

tion: if the apolar algebra of Q(A,m) is a complete intersection for

every choice of multiplicity m, is A necessarily a product of one and

two dimensional arrangements? A similar question has an affirmative

answer: in [1] it is proved that if the module of multi-derivations

D(A,m) is free for every multiplicity m, then A is indeed a product

of one and two dimensional arrangements.

4 GENERIC ARRANGEMENTS

In this section we derive a lower bound on the initial degree of the

apolar ideal of a generic arrangement A ⊂ Pn with at least n + 1

hyperplanes (Proposition 4.10). All arrangements in this section are

simple arrangements.

Definition 4.1. An arrangement in Pn is generic if the intersection

of any k of its hyperplanes has codimension min{k,n + 1}.
In preparation we give several lemmas and definitions. Given a

form G ∈ R, the gradient of G is the vector ∇G :=
(
∂G
∂X0
, . . . , ∂G

∂Xn

)
.

Lemma 4.2. Suppose д ∈ S is a homogeneous polynomial and write

f = ℓд for some linear form ℓ. Let F ∈ R be homogeneous of degree

d ≥ 1. Then, if we abuse notation and write ℓ for the corresponding

linear form in R, we have

F ◦ f = (∇F · ∇ℓ) ◦ д + ℓ (F ◦ д) .
(Here ∇F · ∇ℓ denotes the dot product.) In particular, if f = ℓ1ℓ2 · · · ℓt
is a product of t ≥ n linear forms, n of which are linearly independent,

then there is an ℓ ∈ {ℓ1, . . . , ℓt } such that ∇F · ∇ℓ is nonzero.

132

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Michael DiPasquale, Zachary Flores, and Chris Peterson

Proof. Write ℓ = a0x0+ · · ·+anxn . First, let F be a monomial of

degree d , say F = X
d1
i1

· · ·Xdt
it
, where d1, . . . ,dt are positive. Then

it is easy to see that F ◦ f is given by

©«
t∑
j=1

djajX
d1
i1

· · ·Xdj−1
i j

· · ·Xdt
it

ª®¬
◦ д + ℓ(F ◦ д) =

(∇F · ∇ℓ) ◦ д + ℓ(F ◦ д) (⋆)

By linearity of the gradient, (⋆) holds for arbitrary polynomials

F . The rest is clear. □

Definition 4.3. If f is a form, the kth order Jacobian of f is the

ideal generated by all partials of f of order k and is denoted by

Jk (f).

Remark 4.4. The Jacobian of f is J1(f); geometrically, V (J1(f))
is the singular locus of f . Analogously,V (Jk (f)) is the set of singular
points with multiplicity at least k + 1.

Remark 4.5. Since we assume f is homogeneous, the Euler identity∑
xi

dд
dxi
= deg(д)·д applied repeatedly to f and its partials yields the

containments (f) ⊂ J1(f) ⊂ J2(f) ⊂ · · · ⊂ Jk (f). Geometrically,

this yields a nested sequence of subvarieties of the hypersurface V (f)
ordered according to the severity of the singularities.

Remark 4.6. If f is a form of degree d , the degree k component of

the apolar algebra (Rf)k , is isomorphic (as a vector space over K) to

Jd−k (f)k via apolarity. Hence AnnR (f)k = 0 if and only if Jd−k (f)
is the kth power of the maximal ideal.

According to Remark 4.4, if f is a product of linear forms, then

V (Jk (f)) is exactly those points which lie at the intersection of at

least k + 1 of the hyperplanes defined by the linear forms whose

product is f . Now we arrive at the crucial point: if f = Q(A) for
a generic arrangement, V (Jk (f)) is precisely the union of all codi-

mension k + 1 intersections of hyperplanes fromA. ThusV (Jk (f))
is a star configuration [7]; a star configuration is by definition the

union of all codimension c intersections of a generic arrangement

(in [7, Definition 2.1] the property of meeting properly is exactly

what we mean by a generic arrangement). In [7] it is shown that

the ideal of codimension c intersections of an arrangement of |A|
hyperplanes is generated by all distinct products of |A| − c + 1 of

the linear forms defining A.

Lemma 4.7. Suppose f decomposes non-trivially as a product f =

дh; write I = AnnR (h) and I ′ = AnnR (f) = AnnR (дh). If D ∈ I ′
k
\ Ik ,

then д ∈ Jk−1(h) : (D ◦ h).

Proof. Repeatedly using the product rule yields that D ◦ дh =
д(D ◦ h) +T , where T ∈ Jk−1(h). Since D ◦ дh = 0, this gives the

result. □

Corollary 4.8. Suppose f is a product of at least n + 2 distinct

linear forms defining a generic arrangement A in Pn . Factor f as

a product f = дh so that deg(h) ≥ n + 1. Write I = AnnR (h) and
I ′ = AnnR (f) = AnnR (дh). If Ik = 0 for any k ≤ n then I ′

k
= 0.

Proof. Suppose to the contrary that D ∈ I ′
k
and D , 0. By

Lemma 4.7, д ∈ Jk−1(h) : (D ◦ h). Write h = ℓ1ℓ2 · · · ℓt , where

t ≥ n + 1; then V (Jk−1(h)) is the union of linear spaces which are

the intersections of at least k of the hyperplanes V (ℓ1), · · · ,V (ℓt).
This is nonempty since k ≤ n < t . As A is a generic arrange-

ment, none of the factors of д vanish along any component of

V (Jk−1(h)); in other words д is not in any prime ideal that com-

prises the intersection that is the radical of Jk−1(h). This means

that д ∈ Jk−1(h) : (D ◦ h) only if D ◦ h is in every minimal prime

of Jk−1(h). In other words, D ◦ h is in the radical of Jk−1(h). Let
K =

√
Jk−1(h); this is the ideal of the union of linear spaces which

are the intersections of k of the hyperplanes V (ℓ1), · · · ,V (ℓt). As
previously noted, this is a star configuration, and by [7, Proposi-

tion 2.9], K is generated by all possible products of t − k + 1 of the

linear forms ℓ1, . . . , ℓt . On the other hand D ◦ h has degree t − k ,

so D ◦ h < K . With this contradiction, we must have I ′
k
= 0. □

Remark 4.9. Consider the A3 arrangement in P2, defined by f =

xyz(x − y)(x − z)(y − z). Write f = дh with д = y − z and h =

xyz(x − y)(x − z). Set I ′ = AnnR (f) and I = AnnR (h). Then I2 = 0

but I ′2 , 0. Thus the hypothesis that A is generic in Corollary 4.8 is

necessary.

Now we give the main result of this section ś a bound on the

initial degree of the apolar ideal of a generic arrangement. For an

ideal I ⊂ R we will denote by α(I) its initial degree, that is, the
smallest degree d for which Id , 0.

Proposition 4.10. Suppose A is a generic arrangement of at

least n + 1 hyperplanes in Pn and f = Q(A). Then α(AnnR (f)) ≥
min{|A| − n + 1,n + 1}.

Proof. We first prove by induction on |A| that if n + 1 ≤ |A| ≤
2n, then α(AnnR (f)) ≥ |A| − n + 1. If |A| = n + 1 then without

loss of generality, f = x0x1 · · · xn and AnnR (f) = (x20 , . . . ,x
2
n), so

α(AnnR (f)) = 2 = |A| − n + 1.

Suppose now that n + 1 < |A| ≤ 2n, and additionally suppose

for a contradiction that there is some D ∈ AnnR (f) |A |−n . Since
A is defined by more than n linearly independent linear forms, by

Lemma 4.2 there is some ℓ ∈ A so that ∇ℓ ·∇D , 0. Writing f = дℓ,

with deg(д) = n, and using Lemma 4.2 again, we have

0 = D ◦ f = (∇ℓ · ∇D) ◦ д + ℓ(D ◦ д).

Suppose D ◦ д = 0, so that (∇ℓ · ∇D) ◦ д = 0. Now deg(∇ℓ · ∇D) =
|A|−n−1, and by induction α(AnnR (д)) ≥ |A|−1−n+1 = |A|−n.
With this contradiction, D ◦ д , 0.

With the above, ℓ(D ◦ д)) = −(∇ℓ · ∇D) ◦ д, so ℓ(D ◦ д) ∈
J |A |−n−1(д). Write K =

√
J |A |−n−1(д), so that K is the ideal defin-

ing all possible intersections of |A| − n hyperplanes of д; by [7],

α(K) = (|A| − 1) − (|A| − n) + 1 = n. Since deg(D ◦ д) = (|A| −
1) − (|A| − n) = n − 1, D ◦ д < K . Since K is radical, ℓ must be in at

least one minimal prime of K . This would imply that V (ℓ) passes
through a codimension |A| − n intersection of A. As |A| ≤ 2n,

K is not the homogeneous maximal ideal, so that this contradicts

that A is a generic arrangement. Hence no such D can exist, and it

follows that α(AnnR (f)) ≥ |A| − n + 1.

If |A| ≥ 2n we prove by induction on |A| that α(AnnR (f)) ≥
n + 1. The base case |A| = 2n has already been shown. If |A| > 2n

then the result follows from Corollary 4.8. □

133

On the Apolar Algebra of a Product of Linear Forms ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Remark 4.11. We learned in a personal communication from Zach

Teitler that he has obtained, with several collaborators, results over-

lapping with Proposition 4.10. These results have not yet appeared in

print.

Corollary 4.12. If A is a generic arrangement of at least n + 2

hyperplanes in Pn whose apolar ideal is a complete intersection, then

|A| ≥ n(n + 1).

Proof. Put f = Q(A). If AnnR (f) is a complete intersection

generated in degrees d0 ≤ . . . ≤ dn , then (d0 − 1) + (d1 − 1) + · · · +
(dn − 1) = |A|, so d0 + · · · + dn = |A| + n + 1. With this notation,

α(AnnR (f)) = d0, and this gives d0 ≤ (|A| + n + 1)/(n + 1).
It is straightforward to check that if n + 1 < |A| ≤ 2n then

the lower bound for α(AnnR (f)) from Proposition 4.10 is strictly

larger than (|A| +n + 1)/(n + 1), so AnnR (f) cannot be a complete

intersection.

If |A| > 2n then we obtain from Proposition 4.10 that n + 1 ≤
(|A| + n + 1)/(n + 1) or equivalently n(n + 1) ≤ |A|, proving the

corollary. □

Corollary 4.13. The Waring rank of a generic arrangementA ⊂
P
n with at least n + 1 hyperplanes is at least min{

(|A |
n

)
,
(2n
n

)
}.

Proof. Put f = Q(A). By Proposition 4.10, α(AnnR (f)) ≥
min{|A|−n+1,n+1}. Suppose f = ∑k

i=1 ℓ
|A |
i , and letX = {Pi }ki=1

be the dual points in Pn found by stripping off the coordinates of

the linear forms ℓi . By Lemma 2.1, IX ⊂ AnnR (f). For this to hap-

pen, X must impose independent conditions on forms of degree

d = α(AnnR (f)) − 1. In other words, X must consist of at least

as many points as the dimension of the vector space Sd , where

S = k[x0, . . . ,xn]. Since dim Sd =
(n+d
n

)
, this gives the result. □

Remark 4.14. If A is a generic arrangement of k ≤ n + 1 hyper-

planes in Pn , then up to a change of variables Q(A) = x0 · · · xk−1.
Put f = x0 · · · xk−1. It is straightforward that AnnR (f) is the com-

plete intersection ⟨X 2
0 , . . . ,X

2
k−1⟩, and it is known that Q(A) has

Waring rank 2k−1 and explicit Waring decomposition of the form∑
i1, ...,ik−1

γi0, ...,ik−1 (x0 + (−1)i1x1 + · · · + (−1)ik−1xk−1)k ,

where the sum runs over all possibilities of ih ∈ {0, 1} for h =

1, . . . ,k − 1 and γi0, ...,ik−1 are constants. See [4, Proposition 4.5].

Remark 4.15. As Corollary 4.13 does not account for the degree

of Q(A), we suspect that Corollary 4.13 is not optimal for |A| > 2n.

However we will see in Section 5 that, even if A is generic, Q(A) can
be annihilated by many forms of unexpectedly low degree.

5 SIX LINES IN P2

In this section we give a computational case study of irreducible

multi-arrangements in P2(C) with six lines, counting multiplicity.

Our motivation for this case study comes from [16, Example III.3.2],

where Wakefield observes that the determinant of the catalecticant

matrix (defined below) is not enough to show that the apolar alge-

bra of a generic arrangement of six lines in P2(C) is not a complete

intersection. As a consequence of our case study, we can say with

reasonable certainty that there are indeed no generic arrangements

of six lines in P2 whose apolar algebra is a complete intersection.

Another motivation for this case study is that, according to Corol-

lary 4.12, a generic line arrangement must have at least six lines

in order for its apolar algebra to have the possibility of being a

complete intersection.

By Proposition 4.10, a generic arrangementA of six lines cannot

be annihilated by any quadrics. It follows that if the apolar ideal of

A is a complete intersection then it must be generated by a regu-

lar sequence of three cubics. In the process of looking for generic

arrangements with this property, computations in the computer

algebra systems Bertini andMacaulay2 led us to the following

(computational) result. We have no theoretical justification for this

and have not used software such as alphaCertified for Bertini

to give a theoretical guarantee that the computations are correct ś

hence we will denote it as a Conjecture/Theorem*. The asterix em-

phasizes that this Conjecture/Theorem* can presumably be turned

into a theorem by numerical certification.

Conjecture/Theorem∗ 5.1. Suppose that (A,m) is an irreducible
multi-arrangement in P2(C) and |m| = 6. Put f = Q(A,m). Suppose
that f satisfies either:

(1) dimAnnR (f)3 ≥ 3

(2) f has cactus rank at most 7

Then, up to a change in coordinates, f is one of the following six

polynomials:

• f1 = xyz(x + y + z)(x + αy + ᾱz)(x + ᾱy + αz)
• f2 = xyz(x + y + z)(x + ηy + ωz)(x + η̄y + ω̄z)
• f3 = xyz(x + y + z)(x + ω̄y + ωz)(x + η̄y + ηz)
• f4 = xyz(x + y + z)(x + ωy + ω̄z)(x + ηy + η̄z)
• f5 = xyz(x + y + z)(x + y)(y + z)
• f6 = x3yz(x + y + z),

where α = exp(2πi3),ω = exp(πi3),η = 1√
3
exp(πi6), and the bar

denotes complex conjugation.

In fact, dimAnnR (fi)3 = 4 and the cactus rank of fi is 6 for

1 ≤ i ≤ 6. If instead we require that f has Waring rank six, then f

must be one of f1, f2, f3, f4, or f5.

Before we discuss the simplifications and further computations

leading to this result, we make some remarks about the polynomials

listed in Conjecture/Theorem* 5.1.

• The forms f1, f2, f3, and f4 each define generic arrange-

ments.

• After changing coordinates, f5 is the defining polynomial of

the A3 braid arrangement.

• The product f1 is exactly half of the well-known Hessian

arrangement (see [12, Example 6.30]).

• For each of i = 1, . . . , 6, AnnR (fi) has four cubics (these are
all listed in Table 1). In particular, Proposition 4.10 is tight

for these.

• For each of i = 1, . . . , 6, the ideal Ji generated by the ele-

ments of degree at most 3 in AnnR (fi) is the ideal of a zero-
dimensional scheme of degree six in P2. Except for i = 6, the

ideal Ji is the ideal of six reduced points in P2. These points

are listed in Table 2. Via the apolarity lemma (Lemma 2.1),

the ideals Ji (1 ≤ i ≤ 5) yield an explicit Waring decompo-

sition for fi which is also listed in Table 2. In Table 2, the

point pi is dual to the form ℓi .

134

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Michael DiPasquale, Zachary Flores, and Chris Peterson

α = exp(2πi3),ω = exp(πi3),η = 1√
3
exp(πi6)

Annihilating cubics of fi

f1 X 3 − Y 3,X 3 − Z 3,XY 2
+ YZ 2

+ ZX 2,

X 2Y + Y 2Z + Z 2X

f2 X 2Z −XZ 2, 3Y 2Z −3YZ 2
+Z 3,X 3−3X 2Y +

3XY 2,X 2Y − 3XY 2
+ 3Y 3

+ 2XYZ − XZ 2 −
2YZ 2

+ Z 3

f3 −6ηXY 2
+ 6ηY 3

+ 6ηXZ 2
+ 3ηYZ 2 − 6ηZ 3

+

X 3
+ 2XY 2 − 3Y 3

+ 2XYZ − 4XZ 2 − 3YZ 2
+

3Z 3,−3ηXY 2
+ 3ηY 3

+ X 2Y − Y 3, 3ηXZ 2 −
3ηZ 3

+ X 2Z − 3XZ 2
+ 2Z 3, 3ηYZ 2

+ Y 2Z −
2YZ 2

f4 −6η̄XY 2
+ 6η̄Y 3

+ 6η̄XZ 2
+ 3η̄YZ 2 − 6η̄Z 3

+

X 3
+ 2XY 2 − 3Y 3

+ 2XYZ − 4XZ 2 − 3YZ 2
+

3Z 3,−3η̄XY 2
+ 3η̄Y 3

+ X 2Y − Y 3, 3η̄XZ 2 −
3η̄Z 3

+ X 2Z − 3XZ 2
+ 2Z 3, 3η̄YZ 2

+ Y 2Z −
2YZ 2

f5 X 2−XY+Y 2−YZ+Z 2,Y 3−2Y 2Z+2YZ 2,Z 4

(generators for ideal)

f6 Z 3,Y 2Z−YZ 2,Y 3,XY 2−XYZ+XZ 2
+2YZ 2

Table 1: Annihilating cubics of forms fi in Conjec-

ture/Theorem* 5.1

• It is known that the Waring (and cactus) rank of a form f

is at least as large as dim(Rf)k for any k ; since dim(Rfi)k
is maximal when k = 3 and dim(Rfi)3 = 6 for each of

i = 1, . . . , 6, the minimum value the Waring (respectively,

cactus) rank can be is 6. Thus the Waring rank of f1, . . . , f5
is six. For f1, . . . , f4, this is the lower bound predicted by

Corollary 4.13.

Now we explain the computations that led us to Conjecture/

Theorem* 5.1. We first reduce the number of variables needed.

Lemma 5.2. If A is an irreducible arrangement in P2 then we can

change variables so that f = Q(A) has the form f = xyz(x + y +
z)ℓ1ℓ2 · · · ℓt , where ℓ1, . . . , ℓt are linear forms.

Proof. If A is irreducible then f = Q(A) must have three

factors which are linearly independent (otherwise A will decom-

pose as a product of a one or two dimensional arrangement with

the ‘empty’ arrangement). Furthermore f must have at least four

factors since otherwise it will decompose as a product of three

one-dimensional arrangements.

Changing variables, we may assume that f has the form f =

xyzℓ0 · · · ℓt (t ≥ 0). We claim that f has a collection of four factors

α = exp(2πi3), β = 1 + i,ω = exp(πi3),η = 1√
3
exp(πi6)

Form Dual Points Waring Decomposition

f1 p1 = [α : 1 : 1]
p2 = [ᾱ : 1 : 1]
p3 = [1 : α : 1]
p4 = [1 : ᾱ : 1]
p5 = [1 : 1 : α]
p6 = [1 : 1 : ᾱ]

2α+1
270 (−ℓ61 + ℓ

6
2 − ℓ

6
3 + ℓ

6
4 − ℓ

6
5 + ℓ

6
6)

f2 p1 = [1 : η : 1]
p2 = [1 : η̄ : 1]
p3 = [0 : η : 1]
p4 = [0 : η̄ : 1]
p5 = [1 : η : 0]
p6 = [1 : η̄ : 0]

2η−1
10 (−ℓ61 + ℓ

6
2 + ℓ

6
3 − ℓ

6
4 + ℓ

6
5 − ℓ

6
6)

f3 p1 = [ω : 1 : ω]
p2 = [1 : 1 : ω]
p3 = [ω : 1 : 0]
p4 = [1 : 1 : 0]
p5 = [1 : 0 : ω]
p6 = [1 : 0 : 1]

2ω−1
90 (ℓ61 − ℓ

6
2 − ℓ

6
3 + ℓ

6
4 + ℓ

6
5 − ℓ

6
6)

f4 p1 = [ω̄ : 1 : ω̄]
p2 = [1 : 1 : ω̄]
p3 = [ω̄ : 1 : 0]
p4 = [1 : 1 : 0]
p5 = [1 : 0 : ω̄]
p6 = [1 : 0 : 1]

2ω̄−1
90 (ℓ61 − ℓ

6
2 − ℓ

6
3 + ℓ

6
4 + ℓ

6
5 − ℓ

6
6)

f5 p1 = [β : 2 : β̄]
p2 = [β̄ : 2 : β]
p3 = [β : 2 : β]
p4 = [β̄ : 2 : β̄]
p5 = [1 : 0 : i]
p6 = [1 : 0 : ī]

ℓ61 + ℓ
6
2 − ℓ

6
3 − ℓ

6
4 − 8iℓ65 − 8iℓ66

1920

Table 2: Waring decompositions of the forms fi in Conjec-

ture/Theorem* 5.1. The points pi give the coefficients of the

linear forms ℓi .

no three of which are linearly dependent. Suppose for a contra-

diction that every collection of four factors of f has a subset of

three factors which are linearly dependent. Applying this suppo-

sition to the collection {x ,y, z, ℓi } yields that one of the subsets
{x ,y, ℓi }, {x , z, ℓi }, or {y, z, ℓi } is linearly dependent. Hence ℓi must

be a linear form in only two variables for i = 0, . . . , t . If each ℓi
(i = 0, . . . , t) is a function of the same two variables, the arrange-

ment clearly decomposes as a product. Hence we may assume

without loss that ℓ1 = x + αy and ℓ2 = x + βz, where α , β , 0. But

then y, z,x + αy,x + βz forms a collection of four factors of f no

three of which are linearly independent, proving the claim.

Since f has a collection of four factors no three of which are

linearly independent, we can change variables to make three of

these factors x ,y, and z. The fourth factor must involve all three

variables, hence we can apply scaling in the x ,y and z directions to

135

On the Apolar Algebra of a Product of Linear Forms ISSAC ’20, July 20–23, 2020, Kalamata, Greece

normalize the coefficients of the fourth factor to one. Thus f can

be written in the form f = xyz(x + y + z)ℓ1 · · · ℓt . □

Corollary 5.3. If (A,m) is an irreducible multi- arrangement in

P
2 with six lines, then there is a change of variables so thatQ(A,m) =

xyz(x + y + z)ℓ1ℓ2, with ℓ1 and ℓ2 linear forms.

Definition 5.4. Let f ∈ S be a form of degree d and 0 ≤ t ≤ d

an integer. The map Catf (t) : Rt → Sd−t defined by Φ → Φ ◦ f

is the catelecticant map. Choosing the usual basis of monomials

for Rt and Sd−t , we obtain the corresponding catalecticant matrix.

Abusing notation, we will refer to this matrix also as Catf (t). The
rows of Catf (t) correspond to monomials in the basis of Sd−t , and
the columns of Catf (t) correspond to monomials in the basis of Rt .

Suppose Xα is a monomial in Rd and xβ is a monomial in Sd−t .
The entry of Catf (t) in the row corresponding to Xα and column

corresponding to xβ is the coefficient of the monomial xβ in
∂f
∂xα

.

It is straightforward to see that ker(Catf (t)) is AnnR (f)t .

We return now to the computation at hand. By Corollary 5.3

we make a change of variables so that f = xyz(x + y + z)ℓ1ℓ2.
Introducing symbolic constants a,b, c,d, e, and f we can write

f = xyz(x + y + z)(ax + by + cz)(dx + ey + f z). Now consider

the condition in Conjecture/Theorem* 5.1 that dimAnnR (f)3 ≥ 3.

Here R = K[X ,Y ,Z] and S = K[x ,y, z]. Using Definition 5.4, we see
that AnnR (f)3 = ker Catf (3) : R3 → S3. Evidently Catf (3) is a ten
by ten matrix with entries of bi-degree (1, 1) in the variables a,b, c

and d, e, f ; this matrix is shown in [16, Example III.3.2]. To say

dimAnnR (f)3 ≥ 3 is equivalent to imposing that rank(Catf (3)) ≤
7. Thus the forms from Conjecture/Theorem* 5.1 can be found as

the zero locus of the seven by seven minors of this matrix. As one

may imagine, this approach is computationally infeasible.

To impose the rank condition we use an idea from [2] which

reduces computation by introducing many auxiliary variables. Ex-

plicitly, we introduce a ten by three matrix Z whose first three

rows form a three by three identity matrix and whose remaining

entries are filled with new variables:

Z =

1 0 0

0 1 0

0 0 1

A B C

D E F

G H V

J K L

M N O

P Q R

S T U

.

We then impose the condition Catf (3)Z = 0; this guarantees that

Catf (3) will have rank at most 7. This yields a system of 30 equa-

tions of total degree three in the 27 variables a,b, c,d, e, f ,A, . . . ,V

(we replace the variable I withV since this is reserved for the imag-

inary unit in Bertini). We denote this system by F . Since we only

look for solutions up to constant multiple in the variable groups

a,b, c and d, e, f , we seek solutions in the 25 dimensional space

P
2 × P2 × C21. In Bertini we can specify this by using the option

for homogeneous variable groups. However we still must square

the system, which we do by taking 25 random linear combinations

of the 30 equations resulting from Catf (3)B = 0. This squared sys-

tem, which we denote by F□, consists of 25 equations which are

each homogeneous of degree 1 in the variables a,b, c and d, e, f (re-

spectively), and of total degree 1 in the variables A, . . . ,V can now

be solved by Bertini. Homogenizing with respect to the variables

A, . . . ,V , we can regard this as a system of 25 equations of type

(1, 1, 1) in P2 × P2 × P21.
The multi-homogeneous Bezout number for a system of 25 equa-

tions of type (1, 1, 1) in P2 × P2 × P21 is the multinomial coefficient(25
2,2,21

)
= 75, 900. Thus Bertini starts by tracking 75, 900 paths from

a generic multi-homogeneous start system. We ran this computa-

tion twice on a local cluster. Using eight nodes with 24 processors

on four of the nodes and 20 processors on the other four nodes, this

computation took about three hours. Bertini tracked the 75, 900

paths to 29, 079 solutions on the first run and 29, 027 solutions on

the second run. Most of the ≈ 29000 approximate solutions of the

system F□ are not actually solutions of the system F . Selecting

those solutions to F□ which are approximate solutions to F within

a tolerance of 10−6 yields a list of about 1500 approximate solutions

to F (this number might vary depending on the choice of squared

system F□). This step ś selecting a tolerance of 10−6 ś is the most

arbitrary step and the most likely step in which some solutions

could have been lost.

We project the list of ≈ 1500 (approximate) solutions of F to the

coordinates corresponding to a,b, c,d, e, f . Now we consider the

productQ(a,b, c,d, e, f) = (ax +by + cz)(dx + ey + f z) for each of

these; we are only concerned with distinct productsQ(a,b, c,d, e, f)
up to constant multiple. Taking only those solutions for which

Q(a,b, c,d, e, f) is distinct, up to constant multiple, we arrive at a

list of 16 or 17 solutions (for the two choices of F□ that we made).

Each of these was equivalent to one of the polynomials listed in

Conjecture/Theorem* 5.1 via a permutation of x ,y, z (such a per-

mutation fixes the first four factors) or, in the case of f6, via the

change of variables ϕ defined by x → x + y + z,y → −y, z → −z.
In fact, it is straightforward to check that the list f1, . . . , f6 yields a

list of twenty polynomials under permutations of x ,y, and z, along

with the change of variables ϕ for f6 (which gives xyz(x + y + z)3).
In both of the computations that we ran, we ended up with a subset

of these 20 polynomials; thus allowing us to simplify the final list

to the six polynomials in Conjecture/Theorem* 5.1.

The scripts in Macaulay2, Bertini, and Sage which we used to

find the forms in Conjecture/Theorem* 5.1 and verify their prop-

erties may be found under the Research tab at https://midipasq.

github.io/. Python scripts for post-processing the data from Bertini

are also available upon request.

6 CONCLUSIONS AND FURTHER QUESTIONS

There are two main results of this paper. The first is a bound on

the initial degree of the apolar ideal of a generic arrangement,

attained using defining equations of star configurations from [7].

From this we obtained a necessary condition on the size of a generic

arrangement with a complete intersection apolar algebra, as well

as a lower bound on the Waring rank of a generic arrangement. A

subsequent question raised by Wakefield [16] remains wide open

ś is the apolar algebra of a generic arrangement ever a complete

intersection? To this we add two additional questions concerning

136

https://midipasq.github.io/
https://midipasq.github.io/

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Michael DiPasquale, Zachary Flores, and Chris Peterson

the optimality of Proposition 4.10 and Corollary 4.13. First, are there

arbitrarily large generic arrangements in Pn whose apolar ideals

have initial degree n + 1? Second, are there arbitrarily large generic

arrangements in Pn whose Waring rank is
(2n
n

)
?

The second main result of this paper is the use of apolar algebras

and numerical algebraic geometry to determine the irreducible

multi-arrangements with six lines in P2 with minimal Waring rank.

We determined that, up to a change of coordinates, there are six

irreducible multi-arrangements that have cactus rank equal to six,

five of which also have Waring rank equal to six. These results are

summarized in Conjecture/Theorem* 5.1. The * indicates that this

is a łnumerically established theoremž and thus falls short of being

a rigorously proved theorem. While one can check that each of

these forms has the claimed Waring decomposition, one can’t be

certain that there do not exist further examples without further

work. Thus, an obvious extension of this paper, that needs to be

carried out, would be to either provide an alternate approach to

establish that these are the only such forms that have this property

or else utilize software such as alphaCertified for Bertini to

give a theoretical guarantee that the computations are correct. At

present, the way we have chosen to make the computations is too

expensive to carry out using alphaCertified for Bertini on the

system that we used.

The general problem of determining the degree d irreducible

multi-arrangements in Pn that have minimal Waring rank (and

minimal cactus rank) is currently out of reach but we leave it as a

suggestion for a further path of research. It is worth noting that

each of the extremal examples we found has interesting combina-

torial properties. In particular, after a change of coordinates, one

is the defining ideal of the A3 braid arrangement. Another is half

of the Hessian arrangement. We do not know if there is a deeper

connection to reflection arrangements in the examples we have

found, but perhaps there is a clue in the structure of these exam-

ples that can help one search for higher degree extremal examples.

Another promising avenue is to look for extremal behavior among

subarrangements of reflection arrangements or the simplicial line

arrangements catalogued by Grunbaum [9]; such arrangements

have recently led to interesting examples for the containment prob-

lem between regular and symbolic powers [13]. For now, we leave

this as an open problem for the interested reader.

ACKNOWLEDGMENTS

We thank Tanner Strunk for running our Bertini script on a local

CSU computer cluster. We would also like to thank Max Wakefield

for pointing out to us that f1 in Table 1 is half of the Hessian

arrangement. We thank Zach Teitler for comments on the first

draft, and for informing us of work he has done on this problem.

The third author was partially supported by NSF 1712788 and NSF

1830676.

REFERENCES
[1] Takuro Abe, Hiroaki Terao, and Masahiko Yoshinaga. 2009. Totally free ar-

rangements of hyperplanes. Proc. Amer. Math. Soc. 137, 4 (2009), 1405ś1410.
https://doi.org/10.1090/S0002-9939-08-09755-4

[2] Daniel J Bates, Jonathan D Hauenstein, Chris Peterson, and Andrew J Sommese.
2009. Numerical decomposition of the rank-deficiency set of a matrix of multi-
variate polynomials. In Approximate Commutative Algebra. Springer, 55ś77.

[3] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W.
Wampler. [n. d.]. Bertini: Software for Numerical Algebraic Geometry. Available
at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5. ([n. d.]).

[4] Enrico Carlini, Maria Virginia Catalisano, and Anthony V Geramita. 2012. The
solution to theWaring problem formonomials and the sum of coprimemonomials.
Journal of algebra 370 (2012), 5ś14.

[5] Alessandro De Paris. 2018. Seeking for the Maximum Symmetric Rank. Mathe-
matics 6, 11 (2018), 247.

[6] Anthony V. Geramita. 1996. Inverse systems of fat points: Waring’s problem,
secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals.
In The Curves Seminar at Queen’s, Vol. X (Kingston, ON, 1995). Queen’s Papers in
Pure and Appl. Math., Vol. 102. Queen’s Univ., Kingston, ON, 2ś114.

[7] A. V. Geramita, B. Harbourne, and J. Migliore. 2013. Star configurations in Pn . J.
Algebra 376 (2013), 279ś299. https://doi.org/10.1016/j.jalgebra.2012.11.034

[8] Daniel R. Grayson and Michael E. Stillman. [n. d.]. Macaulay2, a software system
for research in algebraic geometry. Available at http://www.math.uiuc.edu/
Macaulay2/. ([n. d.]).

[9] Branko Grünbaum. 2009. A catalogue of simplicial arrangements in the real
projective plane. Ars Math. Contemp. 2, 1 (2009), 1ś25. https://doi.org/10.26493/
1855-3974.88.e12

[10] Anthony Iarrobino and Vassil Kanev. 1999. Power sums, Gorenstein algebras, and
determinantal loci. Lecture Notes in Mathematics, Vol. 1721. Springer-Verlag,
Berlin. xxxii+345 pages. https://doi.org/10.1007/BFb0093426 Appendix C by
Iarrobino and Steven L. Kleiman.

[11] Richard Kane. 2001. Reflection groups and invariant theory. CMS Books in Math-
ematics/Ouvrages de Mathématiques de la SMC, Vol. 5. Springer-Verlag, New
York. x+379 pages. https://doi.org/10.1007/978-1-4757-3542-0

[12] Peter Orlik and Hiroaki Terao. 1992. Arrangements of hyperplanes. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], Vol. 300. Springer-Verlag, Berlin. xviii+325 pages. https://doi.org/10.
1007/978-3-662-02772-1

[13] Justyna Szpond and Grzegorz Malara. 2017. The containment problem and a
rational simplicial arrangement. Electron. Res. Announc. Math. Sci. 24 (2017),
123ś128.

[14] Zach Teitler and Alexander Woo. 2015. Power sum decompositions of defining
equations of reflection arrangements. J. Algebraic Combin. 41, 2 (2015), 365ś383.
https://doi.org/10.1007/s10801-014-0539-0

[15] The Sage Developers. 2017. SageMath, the Sage Mathematics Software System
(Version 8.1). https://www.sagemath.org.

[16] Max Wakefield. 2006. On the derivation module and apolar algebra of an
arrangement of hyperplanes. ProQuest LLC, Ann Arbor, MI. 85 pages.
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:
ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3224129
Thesis (Ph.D.)śUniversity of Oregon.

137

https://doi.org/10.1090/S0002-9939-08-09755-4
https://doi.org/10.1016/j.jalgebra.2012.11.034
http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
https://doi.org/10.26493/1855-3974.88.e12
https://doi.org/10.26493/1855-3974.88.e12
https://doi.org/10.1007/BFb0093426
https://doi.org/10.1007/978-1-4757-3542-0
https://doi.org/10.1007/978-3-662-02772-1
https://doi.org/10.1007/978-3-662-02772-1
https://doi.org/10.1007/s10801-014-0539-0
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3224129
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3224129

Global Optimization via the Dual SONC Cone and Linear
Programming

Mareike Dressler
University of California, San Diego, Department of

Mathematics
La Jolla, CA 92093-0112, USA

mdressler@ucsd.edu

Janin Heuer
Technische Universität Braunschweig, Institut für

Analysis und Algebra, AG Algebra
38106 Braunschweig, Germany

janin.heuer@tu-braunschweig.de

Helen Naumann
Goethe Universität, FB 12- Institut für Mathematik

D-60054, Frankfurt a.M., Germany
naumann@math.uni-frankfurt.de

Timo de Wolff
Technische Universität Braunschweig, Institut für

Analysis und Algebra, AG Algebra
38106 Braunschweig, Germany
t.de-wolff@tu-braunschweig.de

ABSTRACT

Using the dual cone of sums of nonnegative circuits (SONC), we

provide a relaxation of the global optimization problem to mini-

mize an exponential sum and, as a special case, a multivariate real

polynomial. Our approach builds on two key observations. First,

that the dual SONC cone is contained in the primal one. Hence,

containment in this cone is a certificate of nonnegativity. Second,

we show that membership in the dual cone can be verified by a

linear program. We implement the algorithm and present initial

experimental results comparing our method to existing approaches.

CCS CONCEPTS

·Mathematics of computing→Nonconvex optimization; Semi-

definite programming; Mathematical software performance; Linear

programming.

KEYWORDS

circuit polynomial, dual cone, linear programming, nonconvex

global optimization, SONC

ACM Reference Format:

Mareike Dressler, Janin Heuer, Helen Naumann, and Timo de Wolff. 2020.

Global Optimization via the Dual SONC Cone and Linear Programming. In

International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3373207.3404043

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404043

1 INTRODUCTION

LetA ⊆ Rn be a finite set and let RA denote the space of all (sparse)

exponential sums supported on A. These are of the form

f =
∑

α ∈A

cα e
⟨x,α ⟩ ∈ RA, cα ∈ R for all α ∈ A. (1)

We consider the following global optimization problem

inf
x∈Rn

f (x), (2)

which is the unconstrained version of a signomial optimization prob-

lem. Signomial programs are a rich class of nonconvex optimization

problems with a broad range of applications; see e.g., [5, 11] for an

overview.

If A ⊆ Nn , then RA coincides with the space of real polynomials

on the positive orthant supported on A. Thus, (2) also represents

all unconstrained polynomial optimization problems on Rn
>0; see e.g.

[4, 20, 21] for an overview about polynomial optimization problems

and their applications.

Under the assumption that (2) has a finite solution, minimizing

f ∈ RA is equivalent to adding a minimal constant γ such that f +

γ ≥ 0. Hence, we consider the (convex, closed) sparse nonnegativity

cone in RA, which is defined as

P+A = { f ∈ RA : f (x) ≥ 0 for all x ∈ Rn }. (3)

It is well-known that deciding nonnegativity is NP-hard even in

the polynomial case; see e.g., [22]. Thus, a commonway to attack (2),

is to search for certificates of nonnegativity. These conditions, which

imply nonnegativity, are easier to test than nonnegativity itself,

and are satisfied for a vast subset of P+
A
. In the polynomial case, a

well-known example of a certificate of nonnegativity are sums of

squares (SOS), which can be tested via semidefinite programming

[19, 26]. Unfortunately, SOS decompositions do not preserve the

sparsity of A.

Another certificate of nonnegativity is a decomposition of f into

sums of nonnegative circuit functions (SONC), whichwere introduced

by Iliman and the last author for polynomials [16] generalizingwork

by Reznick [27]. Recently, the SONC approach was generalized and

reinterpreted by Forsgård and the last author [14]. A circuit function

is a function, which is supported on a minimally affine dependent

set; see Definition 2.1. For these kind of functions nonnegativity

138

https://doi.org/10.1145/3373207.3404043
https://doi.org/10.1145/3373207.3404043

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Dressler, Heuer, Naumann, and de Wolff

can effectively be decided by solving a system of linear equations;

see Theorem 2.2.

SONCs form a closed convex cone S+
A
⊆ P+

A
. This cone and the

functions therein respectively were investigated independently by

other authors using a separate terminology. The perspective of con-

sidering S+
A
as a subclass of nonnegative signomials was originally

introduced by Chandrasekaran and Shah [6] under the name SAGE,

which was later generalized by Chandrasekaran, Murray, and Wier-

mann [24, 25]. Furthermore, the notion of SONC was re-interpreted

by Katthän, Theobald and the third author [18] under the name

S-cone. We discuss the relation of these different approaches to

each other in Section 2.

The key idea of this article is to relax the problem (2) via opti-

mizing over the dual SONC cone Š+
A+,A− ; see Definition 3.1 for a

rigorous definition. Our approach is motivated by the recent works

[10], [24], and [18], and builds on two key observations, which are

the main theoretical contributions:

(1) The dual SONC cone is contained in the primal one; see

Proposition 3.6.

(2) Optimizing over the dual cone can be carried out by linear

programming; see Proposition 4.1.

We emphasize that neither the primal nor the dual SONC cone is

polyhedral; see in this context also the results in [14]. The approach

works as follows: First, we investigate a lifted version of the dual

cone involving additional linear auxiliary variables (Theorem 3.2

(3)). Second, we show that the coefficients of a given exponential

sum can be interpreted as variables of the dual cone; see (8). Third,

we observe that fixing these coefficient variables yields an opti-

mization problem only involving the linear auxiliary variables; see

(4.1)

Based on our two key observations stated above, we present in

Section 4 two linear programs (LPA+) and (LPA−) solving a relax-

ation of (2). We implemented the proposed algorithm and provide

a collection of examples showing that (LPA+) and (LPA−) work in

practice. Using the software POEM [30], we compare our approach

exemplarily to existing algorithms for finding SONC and SAGE

decompositions via the primal cone S+
A
, as well as to SOS bounds.

ACKNOWLEDGMENTS

We thank Thorsten Theobald for his help and input during the

development of this article. We thank the anonymous referees for

their helpful comments.

TdW is supported by the DFG grant WO 2206/1-1.

2 PRELIMINARIES

Wedisplay vectors in bold notation, e.g.,x for (x1, . . . ,xn). Through-

out the article we write R>0 = {x ∈ R : x > 0}. Given a setA ⊆ Rn

we denote by conv(A) its convex hull. We refer to the vertices of

conv(A) as Vert (conv(A)). For a given linear space L we denote

by Ľ its dual space, and, similarly, for a given cone C ⊆ Rn , we

denote by Č its dual cone. For the logarithmic function, we use the

conventions 0 ln(0y) = 0, ln(
y
0) = ∞ if y > 0 and ln(00) = 0 and in

addition ln(0) = −∞.

2.1 Nonnegativity and the SONC Cone

Let A ⊆ Rn be a finite set referred to as the support set; in what

follows we set d = #A. Recall that we consider exponential sums

of the form (1). For such an f , we set supp(f) = A and denote the

vector of coefficients as c . If f is comprised by a single term, then

we call it an exponential monomial.

Following the approach of fewnomial theory (also referred to

as łA-philosophyž by Gelfand, Kapranov and Zelevinsky; see e.g.,

[15]), we fix A ⊆ Rn and consider the space RA of all functions

with support set A, i.e.,

R
A
= spanR

({
e ⟨x,α ⟩ : α ∈ A

})
.

Since A is fixed, every f ∈ RA can be identified with its coefficient

vector and hence there exists a canonical isomorphism RA ≃ Rd ,

i.e., we denote both, vectors and functions, as elements in RA. If

A ⊆ Nn , RA coincides with the space of real polynomials on the

positive orthant supported on A.

Recall that the sparse nonnegativity cone P+
A
defined in (3) is

a full-dimensional convex closed cone in RA. It is a well-known

fact that f ∈ P+
A
only if all coefficients associated to vertices of

conv(supp(f)) are positive; see e.g., [12] for a detailed proof. Thus,

we make the assumption

α ∈ Vert (conv(supp(f))) ⇒ cα > 0. (4)

Since decidingmembership inP+
A
is NP-hard, we intend to certify

membership in P+
A
via considering a subcone. For us, the main

ingredient is an object called a circuit function. Recall that a subset

A′ of A is called a circuit if A is minimally affine dependent (i.e., all

real subsets of A′ are affinely independent); see e.g., [23]. A special

version of circuit functions was first introduced under the name

simplicial AGI-form by Reznick in [27], the general definition was

given by Iliman and the last author in [16] focusing on polynomials.

Here, we build on a recent, generalized notion by Forsgård and the

last author [14].

Definition 2.1 (circuit function). A function f ∈ RA is called a

circuit function if supp(f) is a circuit, conv(supp(f)) is a simplex,

and it satisfies (4).

In the special caseA ⊆ Nn , circuit functions are precisely circuit

polynomials on Rn
>0 as introduced in [16].

A crucial fact about a circuit function f is that its nonnegativ-

ity can be decided by an invariant Θf called the circuit number

alone. Specifically, Iliman and the last author showed for the case of

polynomials, which immediately generalizes to the case of circuit

functions:

Theorem 2.2 ([16], Theorem 1.1). Let f =
∑r
j=0 cα (j)x

α (j)
+

cβx
β with 0 ≤ r ≤ n be a circuit polynomial with α (0), . . . ,α (r) ∈

(2N)n , and let λ ∈ Rr
>0 denote the vector of barycentric coordinates

of β in terms of the α (0), . . . ,α (r). Then f is nonnegative if and

only if

|cβ | ≤ Θf =

r∏

j=0

(
cα (j)

λj

)λj

or if f is a sum of monomial squares.

139

Global Optimization via the Dual SONC Cone and LP ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Note furthermore that a circuit polynomial is nonnegative on

R
n if and only if it is nonnegative on Rn

>0 (this is, of course, not the

case for general polynomials). Thus, if one is specifically interested

in certifying nonnegativity of polynomials on the entire Rn using

circuit polynomials, then one needs to relax the problem first such

that the minimum is attained on Rn
>0. We refer readers who are

interested in further details to the discussion in [16, Section 3.1].

We consider now the cone of all sums of nonnegative circuits.

Definition 2.3. We define the SONC cone S+
A
as the subset of all

f ∈ P+
A
, which can be written as a sum of nonnegative circuit

functions or nonnegative exponential monomials.

It is easy to see thatS+
A
indeed is a convex cone (compare e.g., [14,

16]), and it can be shown that dim(P+
A
) = dim(S+

A
); see [8, Theorem

4.1] for the non-sparse, polynomial case, which generalizes verbatim

to the sparse case considered here.

The SONC cone was studied over the past years by other au-

thors using different approaches and terminology. We especially

emphasize two of them:

(1) Katthän, Theobald, and the third author studied the S-cone

in [18]. This cone contains sums of nonnegative functions

f : Rn → R ∪ {∞} of the form

f (x) =
∑

α ∈A

cα |x|α +
∑

β ∈B

dβx
β
,

where A ⊆ Rn and B ⊆ Nn \ (2N)n are finite sets of expo-

nents, {cα : α ∈ A} ⊆ R, {dβ : β ∈ B} ⊆ R with either

at most one β ∈ B such that dβ , 0 and cα ≥ 0 for every

α ∈ A, or dβ = 0 for all β ∈ B and there exists at most one

α ∈ A such that cα < 0. Since each term with exponent

in A is isomorphic to an exponential monomial, and it is

sufficient to test nonnegativity of these functions on Rn
>0,

the functions in the S-cone can be regarded as an exponen-

tial sum of the form (1). Furthermore, one can show that for

B = ∅ the S-cone coincides with the SONC cone as given

in Definition 2.3.

(2) Chandrasekaran and Shah introduced an object called SAGE

cone in [6], which was then studied further in follow-up

articles by Chandrasekaran, Murray, and Wiermann [24,

25]. This cone contains sums of nonnegative AGE functions,

where an AGE function is of the form

f (x) =
∑

α ∈A′

cα e
⟨x,α ⟩

+ cβe
⟨x,β ⟩ ∈ RA,

such that A′ ⊆ A ⊆ Rn , β ∈ A \A′, and cα > 0, cβ ∈ R.

Note that for an AGE-function to be nonnegative, it needs

to hold that β ∈ conv(A).

The SAGE cone coincides with the SONC cone S+
A
. This was

shown by Reznick in the case of AGI-forms already 1989

in [27]. AGI-forms are a special case of circuit polynomials

when choosing cα = λj and cβ = −1. For the general case

it was first shown (but not explicitly stated) by Wang [31].

Briefly afterwards, Chandrasekaran, Murray, and Wiermann

[24] finally were the first to explicitly state this fact, which

was then observed again in the language of the S-cone by

Katthän, Theobald, and the third author in [18].

2.2 The Signed SONC Cone

As a next step, motivated by our approach from optimization, we

make a restriction when investigating the SONC cone. For a fixed

exponential sum f , which we intend to minimize, we have addi-

tional information on the signs of the coefficients of f . Since every

coefficient corresponds to an element in A due to the isomorphism

R
d ≃ RA described above, we obtain a decomposition

A = A+ ∪A− (5)

with disjoint sets ∅ , A+ ⊆ Rn , corresponding to positive coeffi-

cients cα , and A
− ⊆ Rn corresponding to the remaining nonposi-

tive coefficients cβ in the exponential sum that we consider. Thus,

we represent exponential sums in this case as

f =
∑

α ∈A+

cα e
⟨x,α ⟩

+

∑

β ∈A−

cβe
⟨x,β ⟩ ∈ RA . (6)

If we minimize a given function f using the SONC approach,

then we restrict to circuits respecting the sign-pattern indicated by

f . This is the common, tractable approach used by various authors

in previous works, e.g., [9, 17, 24, 25]; it motivates the following

definition.

Definition 2.4 (Signed SONC cone). Let A ⊆ Rn be a finite set

joint with a decomposition A = A+ ∪A− in the sense of (5). Then

the signed SONC cone S+
A+,A− is the cone of all functions that can

be written as a sum of nonnegative circuit functions of the form

(6) or as nonnegative exponential monomials with support in A+.

In other words, S+
A+,A− is the intersection of S+

A
with a particular

orthant indicated by the pair (A+,A−). We denote the special case

A−
= {β} as S+

A+,β
.

In fact, by using a generalization of the circuit number and the

subsequent notation, we can refine the representation of S+
A+,β

.

Definition 2.5. For a non-empty finite set A+ ⊆ Rn and β ∈ Rn

let Λ(A+, β) be the polytope

Λ(A+, β) =

{

λ ∈ RA
+

≥0 :
∑

α ∈A+

λαα = β,
∑

α ∈A+

λα = 1

}

. (7)

The polytope Λ(A+, β) is nonempty if and only if β is contained

in the convex hull of A+ and Λ(A+, β) consists of a single element

whenever the elements in A+ are affinely independent. Particularly,

λ ∈ Λ(A+, β) is, in general, not unique for functions in S+
A+,β

.

Using (7), we may express S+
A+,β

as follows:

Theorem 2.6 ([18], Theorem 2.7). Let A = A+ ∪ {β} be defined

as in (5). The signed SONC cone is the set

S+
A+,β

=

∑

α ∈A+

cα e
⟨x,α ⟩

+ cβe
⟨x,β ⟩ :

∃λ ∈ Λ(A+, β) such that
∏

α ∈A+:λα >0

(
cα
λα

)λα
≥ −cβ

.

Note that nonnegativity of an AGE function f can be certified by

using the analog of the circuit number Θf =
∏

α ∈A+:λα >0

(
cα
λα

)λα

given in the theorem. There is no need to decompose f into a sum

of nonnegative circuit functions.

140

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Dressler, Heuer, Naumann, and de Wolff

3 THE DUAL SONC CONE

In what follows, we study the dual SONC cone to show containment

of the dual in the primal SONC cone (Section 3.2) and to obtain a

fast linear approximation for global optimization (Section 4).

Due to our goals in this article, we discuss here duality with

respect to the signed SONC cone. However, everything generalizes

to the full SONC cone immediately.

3.1 Representations of the Dual SONC Cone

Definition 3.1 (The dual signed SONC cone). For an exponential

sum f ∈ RA with coefficient vector c ∈ RA we consider the natural

duality pairing

v(f) =
∑

α ∈A+

vα cα +
∑

β ∈A−

vβcβ ∈ R,

where, as in the primal case, v(·) ∈ ŘA is canonically identified

with its (dual) coefficient vectorv , and hence ŘA ≃ Řd . Using this

definition, the dual signed SONC cone is defined as the set

Š+A+,A− =

{
v ∈ ŘA : v(f) ≥ 0 for all f ∈ S+A+,A−

}
.

For brevity, we refer to this cone simply as the dual SONC cone.

The following theorem provides two representations of this cone.

We need the first one to show containment of the dual SONC cone in

the primal one, and the second representation to obtain the linear

program approximating the solution of our global optimization

problem (2).

Theorem 3.2 (The dual SONC cone). Let A = A+ ∪A− be as in

(5). The following sets are equal.

(1) Š+
A+,A− ,

(2)
{
v ∈ ŘA :

∀α ∈ A+,vα ≥ 0, and ∀β ∈ A−
,∀λ ∈ Λ(A+, β),

ln(|vβ |) ≤
∑
α ∈A+ λα ln(vα)

}
,

(3)
{

v ∈ ŘA :
∀α ∈ A+,vα ≥ 0, and ∀β ∈ A−

∃τ ∈ Rn ,

∀ α ∈ A+, ln
(
|vβ |

vα

)
≤ (α − β)T τ

}

.

To prove these representations, we adapt the subsequent theorem

from [24] to our setting, which basically states that a function in

the SONC cone supported on A = A+ ∪ A− can be decomposed

into a sum of nonnegative AGE functions supported on A+ ∪ {β},

β ∈ A−, i.e., the decomposition only uses the support A and there

is only one summand per element in A−.

Theorem 3.3 ([24], Theorem 2). Let f ∈ S+
A+,A− with a vector

of coefficients c . Let A−
, ∅. Then there exist { f (β) : β ∈ A−} ⊆ RA

with coefficient vectors {c(β) : β ∈ A−} satisfying

(1) c =
∑
β ∈A− c(β) ,

(2) f (β) ∈ S+
A+,β

, and

(3) c
(β)
α = 0 for all α , β in A−.

We obtain the following representation of the SONC cone and

its dual.

Corollary 3.4.

(1) The SONC cone is the Minkowski sum

S+A+,A− =

∑

β ∈A−

S+
A+,β
.

(2) The dual SONC cone is the set

Š+A+,A− =

⋂

β ∈A−

Š+
A+,β
.

Proof. The first statement is a direct consequence of Theo-

rem 3.3. For the second statement note that Minkowski sum and

intersection are dual operations; see, e.g., [28, Theorem 1.6.3]. □

In particular, this corollary tells us that every nonnegative AGE

function is a sum of nonnegative circuit functions.

In order to finally prove Theorem 3.2 we need another statement,

which essentially combines Lemma 3.6 and a part of the proof of

Proposition 3.9 in [18].

Lemma 3.5 ([18]). For β ∈ A−, the dual cone of nonnegative

circuit functions Š+
A+,β

consists of those v ∈ ŘA, where vα ≥ 0

for all α ∈ A+, vα = 0 for all α ∈ A− \ {β} and one of the following

equivalent conditions hold:

(1) ln(|vβ |) ≤
∑
α ∈A+ λα ln(vα) for all λ ∈ Λ(A+, β).

(2) There exists τ ∈ Rn such that for all α ∈ A+ : ln
(
|vβ |

vα

)
≤

(α − β)T τ .

Proof of Theorem 3.2. The statement follows by Corollary 3.4

and Lemma 3.5 . Namely, the first representation can be deduced

from (1), and the second one from (2). □

3.2 The Dual SONC Cone is Contained in the

Primal SONC Cone

For A = A+ ∪A− defined as in (5), we identified the dual space of

exponential sums supported onAwith ŘA. Now we use the reverse

identification. For everyv ∈ ŘA we associate a function

f (x) =
∑

α ∈A+

vα e
⟨x,α ⟩

+

∑

β ∈A−

vβe
⟨x,β ⟩
. (8)

Note that circuit functions and AGE-functions are special cases

of these functions. With this consideration, we identify the dual

cone Š+
A+,β

of nonnegative circuit functions having exponents in

A+ ∪ {β} with the cone of all functions of the form (8) having

coefficients in Š+
A+,β

. In order to keep notation short, we write

Š+
A+,β

for this cone as well. For the cone Š+
A+,A− we use the same

identification with the notation Š+
A+,A− .

Proposition 3.6. It holds that

(1) Š+
A+,β

⊆ S+
A+,β
.

(2) Š+
A+,A− ⊆ S+

A+,A− .

In particular, every function of the form (8) with coefficients in

Š+
A+,β

or Š+
A+,A− is nonnegative.

We point out that Proposition 3.6 was already observed by

Katthän, Theobald, and the third author in [18, Remark 3.7] without

providing a proof.

141

Global Optimization via the Dual SONC Cone and LP ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Proof.

(1) Let f ∈ Š+
A+,β

with a corresponding vector of coefficients

v ∈ ŘA. By representation (2) of Theorem 3.2, we have

vα ≥ 0 for all α ∈ A+ and for all λ ∈ Λ(A+, β) it holds that

ln(|vβ |) ≤
∑

α ∈A+

λα ln(vα) ≤
∑

α ∈A+,λα >0

λα ln

(
vα

λα

)

= ln(Θf),

whereΘf denotes the circuit number of f . The last inequality

holds as λα ∈ [0, 1] for every α ∈ A+ and the logarithmic

function is monotonically increasing. Thus, −vβ ≤ |vβ | ≤

Θf . Applying Theorem 2.6 we obtain the claimed result.

(2) By Definition 2.4, Definition 3.1 and part (1), we obtain

Š+A+,A− ⊆ Š+
A+,β

⊆ S+
A+,β

⊆ S+A+,A− .

□

We remark that the reverse implication does not hold in general.

Example 3.7. Consider the function f (x) ≔ 1 − 2ex + e2x with

the sets A+ = {0, 2}, A−
= {1} and v0 = v2 = 1,v1 = −2. As

1 =
1

2
· 0 +

1

2
· 2 and −vβ = |vβ | = (21/2)2,

we have f ∈ S+
A+,A− . But since

∑

α ∈A+

λα ln(vα) = 2

(
1

2
ln(1)

)
= 0 < ln(2) = ln(|v1 |)

it follows that f < Š+
A+,A− .

4 OPTIMIZING OVER THE DUAL SONC CONE

VIA LINEAR PROGRAMMING

In this section, we obtain a computationally fast approximation of

the global optimization problem

inf
x∈Rn

f (x) (9)

for exponential sums f ∈ RA and A = A+ ∪A− defined as in (5) via

the representations of the dual SONC cone in Theorem 3.2.

4.1 Formulation of the Optimization Problem

First, we prove that deciding membership in the dual SONC cone

can be done via linear programming.

Proposition 4.1. Let

f =
∑

α ∈A+

vα e
⟨x,α ⟩

+

∑

β ∈A−

vβe
⟨x,β ⟩

withv ∈ ŘA and vα ≥ 0 for every α ∈ Vert (conv(A)).

The following linear feasibility program in #A− many variables

(τ (β))β ∈A− verifies containment in the dual SONC cone.

ln

(
|vβ |

vα

)

≤ (α − β)T τ (β) for all β ∈ A−
, α ∈ A+ (10)

Proof. The program checks the conditions of Theorem 3.2(3).

Note that the assumptions łvα ≥ 0 for every α ∈ Vert (conv(A))ž

on f are necessary due to (4). Asv ∈ ŘA is fixed, the inequalities

are linear and hence (10) is a linear program. Moreover, vα ≥ 0 for

every α ∈ A+ holds by assumption (or we know trivially that f

does not belong to the dual SONC cone). The last inequalities in

Theorem 3.2(3) are satisfied trivially. □

In particular, fixing the non-auxiliary variables v in a lifted

version of the dual cone forms a polyhedron; see Theorem 3.2 and

Proposition 4.1.

To show that Proposition 4.1 can be used to obtain an exact

linear optimization problem over the dual SONC cone, observe that

equivalently to (9), we can solve the optimization problem

min
{
γ : f (x) + γ ≥ 0 for all x ∈ Rn

}
.

Instead of using containment in the SONC cone as a certificate for

nonnegativity, i.e., solving

min
{
γ : f (x) + γ ∈ S+A+,A−

}
,

we use the dual cone Š+
A+,A− . Recall that Š

+

A+,A− ⊆ S+
A+,A− by

Proposition 3.6. In particular, we do not dualize the LP to approxi-

mate the solution but optimize f to be a function in the dual cone

instead of the primal cone. Hence, we compute

−γ̌ ∗ = min
{
γ̌ : v + γ̌ · e0 ∈ Š+A+,A−

}
, (11)

where e0 ∈ RA is the unit vector corresponding to e ⟨x,0⟩ , i.e.,v0 + γ̌

is the coefficient corresponding to e ⟨x,0⟩ .

Considerv to be given via

f (x) + γ̌ =
∑

α ∈A+

vα e
⟨x,α ⟩

+

∑

β ∈A−

vβe
⟨x,β ⟩

+ γ̌ =

∑

α ∈A+\{0}

vα e
⟨x,α ⟩

+

∑

β ∈A−\{0}

vβe
⟨x,β ⟩

+ (v0 + γ̌).

Note that the constant term v0 of f (x) can be zero. By The-

orem 3.2(3), and assuming w0 := γ̌ + v0 and wα := vα for all

α ∈ A \ {0}, solving (11) is equivalent to solving

min

{

γ̌ :
∀α ∈ A+,wα ≥ 0 and ∀β ∈ A−

∃τ ∈ Rn ,

∀α ∈ A+, ln
(
|wβ |

wα

)
≤ (α − β)T τ

}

. (12)

Before stating the corresponding optimization program, we em-

phasize the fact that 0 is not necessarily contained in A, i.e., for the

next result we need to include it either in A+ or A−, although we

have to determine later to which one of the sets it belongs.

First, we prove several statements addressing this choice.

Lemma 4.2. Let A = A+ ∪ A− ⊆ Rn as in (5) and f ∈ Š+
A+,A−

with 0 ∈ A. If f is a polynomial, then 0 ∈ A+.

Proof. For a polynomial f , we have A ⊆ Nn . As 0 ∈ A, we

necessarily have 0 ∈ Vert (conv(A)). With (4) and the fact that

Š+
A+,A− ⊆ S+

A+,A− , we obtain the statement. □

142

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Dressler, Heuer, Naumann, and de Wolff

Lemma 4.3. Let 0 ∈ A = A+ ∪A− ⊆ Rn as in (5) and f ∈ Š+
A+,A−

with coefficient vector v ∈ ŘA. For the optimal lower bound −γ̌ ∗ ≤

f (x) (as defined in (11)) and c∗ = ln(|v0 + γ̌
∗ |), we have

−γ̌ ∗ =

{
v0 − ec

∗
if 0 ∈ A+

v0 + e
c∗ if 0 ∈ A−

.
(13)

Proof. If 0 ∈ A+, we have v0 + γ̌
∗ ≥ 0 implying |v0 + γ̌

∗ | =

v0+γ̌
∗. If 0 ∈ A−, we havev0+γ̌

∗
< 0 implying |v0+γ̌

∗ | = −v0−γ̌
∗.

This yields the statement. □

From now on, for A = A+ ∪ A− defined as in (5) and a fixed

exponential function

f =
∑

α ∈A+\{0}

vα e
⟨x,α ⟩

+

∑

β ∈A−\{0}

vβe
⟨x,β ⟩

+v0,

where for all α ∈ Vert (conv(A)) we have vα ≥ 0 (i.e., f satisfies

(4)), with lower bound −γ̌ ∗, we consider the following two linear

programs in #A−
+ 1 variables (τ (β))β ∈A− and c = ln(|v0 + γ̌ |).

min c (LPA+)

s. t.

(1) ∀ β ∈ A−
,∀α ∈ A+ \ {0} :

ln
(
|vβ |

vα

)
≤ (α − β)T τ (β),

(2) ln
(
|vβ |

)
− c ≤ (−β)T τ (β) ∀ β ∈ A−

if 0 ∈ A+ and

min c (LPA−)

s. t.

(1) ∀ β ∈ A− \ {0},∀α ∈ A+ :

ln
(
|vβ |

vα

)
≤ (α − β)T τ (β),

(2) c − ln (vα) ≤ αT τ (0) ∀ α ∈ A+

if 0 ∈ A−.

Lemma 4.4. Let

f =
∑

α ∈A+\{0}

vα e
⟨x,α ⟩

+

∑

β ∈A−\{0}

vβe
⟨x,β ⟩

+v0e
⟨x,0⟩
,

with v0 , −γ̌ ∗ and A = A+ ∪A− defined as in (5). At least on of the

linear programs (LPA+) and (LPA−) has a solution for its corresponding

assumption

(1) 0 ∈ A+ or

(2) 0 ∈ A−,

if and only if there exists some γ̌ ∈ R such that f + γ̌ ∈ Š+
A+,A− .

For either assumption, the corresponding LP is infeasible if and

only if for all γ̌ ∈ R we have f + γ̌ < Š+
A+,A− .

Proof. Consider f + γ̌ ∗. As v0 , −γ̌ ∗ we have that 0 ∈ A.

Hence, the inequalities are exactly the inequalities in Theorem 3.2,

except for the fact that we use c instead of ln(v0) due to the former

substitution. □

We need to omit v0 = −γ̌ ∗, because in this case the programs (1)

and (2) in Lemma 4.4 are infeasible and unbounded, respectively.

To still obtain a lower bound on the function f , one can verify

containment in the dual SONC cone by testing feasibility via (10).

If f is indeed an element in the dual SONC cone, then 0 is always a

lower bound, but not necessarily the optimal bound on Š+
A+,A− .

From the considerations above and Proposition 4.1 we can draw

the following result.

Theorem 4.5. Let

f =
∑

α ∈A+\{0}

vα e
⟨x,α ⟩

+

∑

β ∈A−\{0}

vβe
⟨x,β ⟩

+v0e
⟨x,0⟩
,

with v0 , −γ̌ ∗ and A = A+ ∪A− defined as in (5) and let −γ̌ ∗ , v0
be the optimal value with f ≥ −γ∗ as defined in (11). The linear

programs (LPA+) and (LPA−) solve the optimization problem (12).

Proof. We setA := A∪ {0}. First, note that we do not know the

value ofv0+γ̌
∗ before computing the optimal value, and particularly

we do not know the sign of v0 + γ̌
∗. Thus, we cannot determine

whether 0 ∈ A+ or 0 ∈ A− before computing the optimal value.

As we made the assumption v0 , −γ̌ ∗, according to Lemma 4.4,

at least one of the problems (LPA+) and (LPA−) is feasible if and only

if f ∈ Š+
A+,A− . In the case that only one linear program is feasible,

0 is contained in the corresponding set and hence, this program

yields the optimal value. If both programs are feasible, there exist γ̌1
and γ̌2 such thatv0 + γ̌1 is nonnegative and f + γ̌1 ·e

⟨x,0⟩ ∈ Š+
A+,A−

for 0 ∈ A+, and v0 + γ̌2 is negative and f + γ̌2 · e
⟨x,0⟩ ∈ Š+

A+,A− for

0 ∈ A−.

Thus, we select the linear programwhich yields the better bound.

According to Lemma 4.3, the lower bound on the dual SONC

cone is

−γ̌ ∗ =

{
v0 − ec

∗
if 0 ∈ A+

v0 + e
c∗ if 0 ∈ A−

. (14)

□

Note that optimizing over the dual cone does not yield the actual

optimal value in every case. Consider for example the Motzkin

polynomial

f (x ,y) = x2y4 + x4y2 − 3x2y2 + 1. (15)

This is a nonnegative polynomial onR2 with inf (x,y)∈R2 f (x ,y) = 0.

Since in the polynomial case we always need 0 ∈ A+, the linear

program (LPA+) for f is the following:

min c

such that ln (3) ≤ 2τ2

ln (3) ≤ 2τ1

ln (3) + 2τ1 + 2τ2 ≤ c,

returning the lower bound f ≥ −26 on R2.

4.2 Numerical results

In what follows we present the results of numerical experiments of

several examples.

Any LP solver can be used to solve the optimization problem

in Theorem 4.5. Here, we used cvxpy [2, 7]; see also [1], in the

software POEM [30] available at

http://www.iaa.tu-bs.de/AppliedAlgebra/POEM/

on a Intel(R) Core(TM) i7-8700 CPU with 3.20 GHz and 15 GB

of RAM.

To compare our approach with existing results, we restrict our

computations to the polynomial case, i.e., the case A ⊆ Nn . Note

143

http://www.iaa.tu-bs.de/AppliedAlgebra/POEM/

Global Optimization via the Dual SONC Cone and LP ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

that in this setting the convex hull conv(supp(p)) of exponents of a

polynomial p ∈ RA is commonly referred to as the Newton polytope

of p. We use selected examples, mainly from [29], to demonstrate

our findings. Those polynomials that are not explicitly stated in the

examples can be found online via

https://www3.math.tu-

berlin.de/combi/RAAGConOpt/comparison_paper/.

The value opt computed here corresponds to γ̌ ∗ as described in

(13) in the dual case and to a γ ∗ with p(x) ≥ −γ ∗ in the SOS, SAGE

and SONC case. Hence, a smaller value for optmeans a better lower

bound to the polynomial. To compute this lower bound we need to

make a sign change.

In the examples that follow, we denote by łSAGEž the bound

computed via solving the REP introduced by Chandrasekaran and

Shah [6], which provides the optimal primal SONC/SAGE bound.

With łSONCžwe denote the covering algorithm for SONC described

in [29, Algorithm 3.4]. This algorithm solves a GP providing a lower

bound for the (optimal) primal SONC/SAGE bound, but (experimen-

tally) with better runtimes and numerical behavior. Thus, it is in

particular possible that the bound łSONCž is worse than the bound

łDual SONCž. The bound łDual SONCž, however, is always at most

as good as łSAGEž, the optimal primal SONC/SAGE bound (if both

bounds can be computed successfully).

The examples are chosen in a way to display that it depends on

the particular instance, which approach yields the best bound or

has the best runtime respectively.

Example 4.6 ([29], Example 4.1). Consider the following polyno-

mial of degree 8 in two variables with three interior points.

p = 1 + 3 · x20x
6
1 + 2 · x

6
0x

2
1 + 6 · x

2
0x

2
1 − 1 · x10x

2
1 − 2 · x20x

1
1−

3 · x30x
3
1

As expected, the bound returned by our dual approach is worse

than the one computed via SONC and SAGE, but it is computed

faster; see Table 1. The sum of squares (SOS) approach does not

yield a result.

strategy time opt

SONC 0.02254 0.72732

SAGE 0.03820 −0.69316

SOS 0.30280 inf

Dual SONC 0.02706 4.51135

Table 1: Example 4.6: A polynomial in two variables of de-

gree 8 with three inner terms.

Example 4.7.

p = −3 + 1.5 · x61 + 11.5 · x
6
0 − 0.5 · x21 + 0.5 · x

4
0

In this example all tested approaches yield similar results; see Ta-

ble 2.

Since the SONC approach does, in general, not compute the op-

timal bound of a polynomial on the primal SONC cone, it is also

possible that our approach yields better results. This is demon-

strated in the following example.

strategy time opt

SONC 0.01458 3.11111

SAGE 0.01658 3.11111

SOS 0.12911 3.11111

Dual SONC 0.01391 3.28868

Table 2: Example 4.7: A polynomial in two variables of de-

gree 6.

Example 4.8 ([29], Example 4.2). Consider a polynomial whose

Newton polytope is a standard simplex with n = 10, d = 30, and

200 terms. The bound computed with the dual approach is much

better than the one found via SONC. The SAGE approach yields no

result, the computations for the SOS approach were aborted after

60 minutes; see Table 3.

strategy time opt

SONC 0.90452 1109.45

SAGE 72.90220 inf

SOS > 3600 ś1

Dual SONC 4.21717 −35.25153

Table 3: Example 4.8: A polynomial in 10 variables of degree

30, where conv(A) is the standard simplex.

Example 4.9 ([29], Example 4.5). Consider a polynomial with the

computationally challenging dwarfed cube; see [3], in dimension

7 as its Newton polytope. For this polynomial, Equation (LPA+) is

infeasible. The SAGE approach also fails; see Table 4.

strategy time opt

SONC 0.34685 −28.2779

SAGE 3.19388 inf

SOS 629.07700 −28.3181

Dual SONC ś inf

Table 4: Example 4.9: A polynomial supported on the 7-

dimensional dwarfed cube, scaled by a factor 4, with 63 inner

terms.

To further illustrate the case of infeasibility in our linear program,

consider the following example.

Example 4.10. Consider a polynomial supported on the dwarfed

cube in dimension 2 with two additional interior points.

p = 0.5 · x20x
4
1 + 2 · x

4
0 + 1 · x

4
0x

2
1 + 2 + 2 · x

4
1 − 1.0 · x10x

1
1−

c · x30x
1
1 .

If we choose c = 3, Equation (LPA+) will be infeasible. For c = 1,

however, we get the results presented in Table 5.

1Aborted after 60 minutes.

144

https://www3.math.tu-berlin.de/combi/RAAGConOpt/comparison_paper/
https://www3.math.tu-berlin.de/combi/RAAGConOpt/comparison_paper/

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Dressler, Heuer, Naumann, and de Wolff

strategy time opt

SONC 0.02835 −1.58558

SAGE 0.02907 −1.92193

SOS 0.08322 −1.92193

Dual SONC 0.02486 0.37055

Table 5: Example 4.10: A polynomial supported on the

dwarfed cube in dimension 2.

Example 4.11. Consider a polynomial supported on Kirkman’s

Icosahedron; see [13], with three additional interior points. While

SOS approach was aborted after exceeding a runtime of 60minutes,

the dual and primal SONC approach and the SAGE approach all

yield results very quickly; see Table 6.

p = 0.5924068000899325x420 x361 x362 + 0.9040680744391449x
6
0x

36
1 x362

+ 0.6286297557636527x420 x121 x362 + 0.22136661817072706x
42
0 x361 x122

+ 1.9921397074037133x60x
12
1 x362 + 2.4444012612478447x

42
0 x121 x122

+ 0.7745809478318744x60x
36
1 x122 + 0.4168575879720979x

6
0x

12
1 x122

+ 2.131772858737973x480 x321 x242 + 0.5582642102257477x
32
1 x242

+ 0.39948625235355123x480 x161 x242 + 1.055352501861479x
16
1 x242

+ 0.5862781645697882x240 x481 x402 + 0.8297411574785997x
24
0 x402

+ 1.5885016970170502x240 x481 x82 + 0.5937153134426314x
24
0 x82

+ 0.7427966893909136x360 x241 x482 + 0.9341646224001856x
12
0 x241 x482

+ 0.48065798662872594x360 x241 + 0.6729615719188968x
12
0 x241

− 1.477600441785058x90x
6
1x

1
2 − 0.1791748172699452x30x

4
1x

5
2

− 0.27468070265719946x90x
3
1x

7
2 .

strategy time opt

SONC 4.22899 1.00391

SAGE 0.155045 0.50104

SOS > 3600 ś2

Dual SONC 0.15034 2.00542

Table 6: Example 4.11: A polynomial supported on Kirk-

man’s Icosahedron.

We conclude that, as expected (compare (15)), the linear program

optimizing over the dual of the SONC cone yields, in general, worse

results than the SOS, and the primal SONC/SAGE approach. Since it

only relies on solving LPs it is, however, less vulnerable to numerical

issues than the primal SONC/SAGE approach (which is relying on

GP/REP) and of course, than the SOS approach (relying on SDP). It

yields promising runtimes, and it gives a result whenever a solution

in the dual cone exists.

In particular, we obtain an algorithm which yields a bound inde-

pendent of the existing primal SONC and SAGE bounds.

2Aborted after 60 minutes.

REFERENCES
[1] Agrawal, A., Diamond, S., and Boyd, S. Disciplined geometric programming.

Optimization Letters 13 (2019), 961ś976.
[2] Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S. A rewriting system

for convex optimization problems. Journal of Control and Decision 5, 1 (2018),
42ś60.

[3] Avis, D., Bremner, D., and Seidel, R. How good are convex hull algorithms?
Computational Geometry 7, 5-6 (1997), 265ś301.

[4] Blekherman, G., Parrilo, P., and Thomas, R. Semidefinite Optimization and
Convex Algebraic Geometry, vol. 13 of MOS-SIAM Series on Optimization. SIAM
and the Mathematical Optimization Society, Philadelphia, 2013.

[5] Boyd, S., Kim, S.-J., Vandenberghe, L., and Hassibi, A. A tutorial on geometric
programming. Optim. Eng. 8, 1 (2007), 67ś127.

[6] Chandrasekaran, V., and Shah, P. Relative entropy relaxations for signomial
optimization. SIAM J. Optim. 26, 2 (2016), 1147ś1173.

[7] Diamond, S., and Boyd, S. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research 17, 83 (2016), 1ś5.

[8] Dressler, M., Iliman, S., and de Wolff, T. A Positivstellensatz for Sums of
Nonnegative Circuit Polynomials. SIAM J. Appl. Algebra Geom. 1, 1 (2017), 536ś
555.

[9] Dressler, M., Iliman, S., and de Wolff, T. An approach to constrained polyno-
mial optimization via nonnegative circuit polynomials and geometric program-
ming. J. Symb. Comput. 91 (2019), 149ś172.

[10] Dressler, M., Naumann, H., and Theobald, T. The dual cone of sums of
non-negative circuit polynomials, 2018. Preprint, arXiv:1809.07648.

[11] Duffin, R., and Peterson, E. Geometric programming with signomials. J.
Optim. Theory Appl. 11 (1973), 3ś35.

[12] Feliu, E., Kaihnsa, N., Yürük, O., and de Wolff, T. The kinetic space of
multistationarity in dual phosphorylation, 2020. Preprint, arXiv:2001.08285.

[13] Fetter, H. L. A polyhedron full of surprises. Mathematics Magazine 85, 5 (2012),
334ś342.

[14] Forsgård, J., and de Wolff, T. The algebraic boundary of the sonc cone, 2019.
Preprint, arXiv:1905.04776.

[15] Gelfand, I. M., Kapranov,M.M., and Zelevinsky, A. V. Discriminants, resultants
and multidimensional determinants. Modern Birkhäuser Classics. Birkhäuser
Boston Inc., Boston, MA, 1994.

[16] Iliman, S., and de Wolff, T. Amoebas, nonnegative polynomials and sums of
squares supported on circuits. Res. Math. Sci. 3 (2016), 3:9.

[17] Iliman, S., and de Wolff, T. Lower bounds for polynomials with simplex
newton polytopes based on geometric programming. SIAM J. Optim. 26, 2 (2016),
1128ś1146.

[18] Katthän, L., Naumann, H., and Theobald, T. A unified framework of SAGE
and SONC polynomials and its duality theory, 2019. Preprint, arXiv:1903.08966.

[19] Lasserre, J. Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11, 3 (2000/01), 796ś817.

[20] Lasserre, J. Moments, positive polynomials and their applications. London:
Imperial College Press, 2010.

[21] Lasserre, J. An Introduction to Polynomial and Semi-Algebraic Optimization,
vol. 1 of Cambridge Texts in Applied Mathematics. Cambridge University Press,
2015.

[22] Laurent, M. Sums of squares, moment matrices and optimization over polyno-
mials. In Emerging Applications of Algebraic Geometry, vol. 149 of IMA Vol. Math.
Appl. Springer, New York, 2009, pp. 157ś270.

[23] Loera, J. D., Rambau, J., and Santos, F. Triangulations, vol. 25 of Algorithms
and Computation in Mathematics. Springer-Verlag, Berlin, 2010. Structures for
algorithms and applications.

[24] Murray, R., Chandrasekaran, V., and Wierman, A. Newton Polytopes and
Relative Entropy Optimization, 2018. Preprint, arXiv:1810.01614.

[25] Murray, R., Chandrasekaran, V., and Wierman, A. Signomial and Polyno-
mial Optimization via Relative Entropy and Partial Dualization, 2019. Preprint,
arXiv:1907.00814.

[26] Parrilo, P. Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization, 2000. PhD Thesis, California Institute of
Technology.

[27] Reznick, B. Forms Derived from the Arithmetic-Geometric Inequality. Math.
Ann. 283 (1989), 431ś464.

[28] Schneider, R. Convex Bodies: the BrunnśMinkowski Theory. Cambridge Univer-
sity Press, 2014.

[29] Seidler, H., and de Wolff, T. An experimental comparison of SONC and SOS
certificates for unconstrained optimization, 2018. Preprint, arXiv:1808.08431.

[30] Seidler, H., and de Wolff, T. POEM: Effective methods in polynomial opti-
mization, version 0.2.1.0. http://www.iaa.tu-bs.de/AppliedAlgebra/POEM/, jul
2019.

[31] Wang, J. Nonnegative polynomials and circuit polynomials, 2018. preprint,
arXiv:1804.09455.

145

http://www.iaa.tu-bs.de/AppliedAlgebra/POEM/

An Additive Decomposition in Logarithmic Towers and Beyond

Hao Du1, Jing Guo2, Ziming Li2, Elaine Wong1
1Johann Radon Institute (RICAM), Austrian Academy of Sciences, Altenberger Straße 69, 4040, Linz, Austria

2Key Laboratory of Mathematics and Mechanization, AMSS, Chinese Academy of Sciences
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
hao.du@ricam.oeaw.ac.at, JingG@amss.ac.cn, zmli@mmrc.iss.ac.cn, elaine.wong@ricam.oeaw.ac.at

ABSTRACT

We consider the additive decomposition problem in primitive tow-

ers and present an algorithm to decompose a function in a certain

kind of primitive tower which we call S-primitive, as a sum of a

derivative in the tower and a remainder which is minimal in some

sense. Special instances of S-primitive towers include differential

fields generated by finitely many logarithmic functions and loga-

rithmic integrals. A function in an S-primitive tower is integrable

in the tower if and only if the remainder is equal to zero. The ad-

ditive decomposition is achieved by viewing our towers not as a

traditional chain of extension fields, but rather as a direct sum of

certain subrings. Furthermore, we can determine whether or not a

function in an S-primitive tower has an elementary integral with-

out the need to deal with differential equations explicitly. We also

show that any logarithmic tower can be embedded into a particular

extension where we can further decompose the given function. The

extension is constructed using only differential field operations

without introducing any new constants.

KEYWORDS

Additive decomposition, Primitive tower, Logarithmic tower, Sym-

bolic integration, Elementary integral

ACM Reference Format:

Hao Du1, Jing Guo2, Ziming Li2, Elaine Wong1. 2020. An Additive

Decomposition in Logarithmic Towers and Beyond. In International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020,
Kalamata, Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

1145/3373207.3404025

1 INTRODUCTION

Given a differential ring (R, ′) and an element 𝑓 ∈ R, we ask if the

indefinite integral of 𝑓 belongs to R and compute one if it does. In

order to do this, we start with a decision problem stated as:

Given 𝑓 ∈ R, decide if 𝑓 ∈ R ′, whereR ′ := {𝑔′ | 𝑔 ∈ R}. (1)

One can see that a positive answer to (1) tells us that a 𝑔 ∈ R exists

where 𝑓 = 𝑔′ and then we proceed to compute such a 𝑔. The deci-

sion together with the computation is known as the integrability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404025

problem. If (1) produces a negative answer, then we say that 𝑓 is

not integrable in R.
In the latter case, we would still like to be able to say something

about the given function. Is there any information to help us un-

derstand how far off we are from being successful? The answer lies

in the additive decomposition problem:

Compute 𝑔, 𝑟 ∈ R such that 𝑓 = 𝑔′ + 𝑟,

where

(i) 𝑟 is minimal in some sense;

(ii) 𝑓 ∈ R ′ if and only if 𝑟 = 0.

We call such an 𝑟 a remainder of 𝑓 in R and write

𝑓 ≡ 𝑟 mod R ′.

So, it is clear that an algorithm for solving the problem of additive

decomposition also provides a solution to the integrability problem.

Remainders may help us find łclosed formž expressions for integrals

of elements in R, in the sense that the integrals belong to some

extensions of R. They also play an important role in reduction-

based methods for creative telescoping.

The first additive decomposition due to Ostrogradsky [13] and

Hermite [12] is for the differential field F = (C(𝑥), 𝑑/𝑑𝑥). Given a

rational function 𝑓 ∈ F , they proposed an algorithm to compute

the remainder 𝑟 ∈ F of 𝑓 such that 𝑟 is proper and has a squarefree

denominator, and 𝑟 is minimal in the sense that if 𝑓 ≡ 𝑟 mod F ′

for some 𝑟 ∈ F , then the denominator of 𝑟 divides that of 𝑟 .

There has been a rapid development of additive decompositions

in both symbolic integration and summation [1, 3, 4, 6ś9, 11, 16].

Most of the articles were motivated by computing telescopers based

on reduction [2]. In the cited literature, some classes of functions

that were studied include hyperexponential [3], algebraic [9], Fuch-

sian D-finite [7], and D-finite [16]. Additive decomposition prob-

lems in these classes have been fully solved. We observe that the

ring of D-finite functions is not closed under composition or tak-

ing reciprocals. For example, log𝑥 is D-finite, but log(log(𝑥)) and

1/log(𝑥) are not. In this paper, we consider a class of functions that

is closed under these two operations.

Singer et al. in 1985 and then Raab in 2012 gave some decision

procedures for finding elementary integrals in some Liouvillian

extensions [14, 15] and in extensions which contain some nonlinear

generators [14]. They recursively solve Risch differential equations

until one of them has no solution, or else the integral can be found.

In the implementation of Raab’s algorithm, the former case outputs

an integrable part and collects all nonzero terms that prevent the

differential equations from having a solution. Recently, Chen, Du

and Li [6] were able to construct remainders in some primitive

extensions (they termed them łstraight towersž and łflat towersž)

without the need to deal with differential equations explicitly.

146

https://doi.org/10.1145/3373207.3404025
https://doi.org/10.1145/3373207.3404025
https://doi.org/10.1145/3373207.3404025

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Du, Guo, Li, Wong

In this article, we expand their work [6] by developing a new

algorithm to construct remainders for functions in łS-primitive

towersž (see Definition 4.3), which may not be straight or flat. In-

stances for S-primitive towers include differential field extensions

generated by finitely many logarithmic functions and logarithmic

integrals.

Primitive Towers
𝐾0(𝑡1, . . . , 𝑡𝑛)

S-Primitive Towers

Log
Straight Flat

Well-Generated
Log Towers
𝐾0(𝑢1, . . . , 𝑢𝑤)

Embedding
Theorem 5.6

Figure 1: The gray ellipses on the left indicate the fields of

functions for which we can construct a remainder. The em-

bedding gives us a field extension (𝑛 ≤ 𝑤) where we can de-

compose functions further.

The organization of this article is as follows. In Sections 2 and 3,

we give some relevant definitions associated to primitive towers,

and then present a different way to view the towers. In Section 4,

we give an algorithm for additive decompositions in S-primitive

towers, and present a criterion for elementary integrability for the

functions in such a field. In Section 5, we show how to construct

a well-generated logarithmic tower to which a logarithmic tower

can be embedded. Concluding remarks are given in Section 6.

2 PRELIMINARIES

Let𝐾 be a field of characteristic zero and𝐾 (𝑡) be the field of rational

functions in 𝑡 over𝐾 . An element of𝐾 (𝑡) is said to be 𝑡-proper if the
degree of its denominator in 𝑡 is higher than that of its numerator.

In particular, zero is 𝑡-proper. For each 𝑓 ∈ 𝐾 (𝑡), there is a unique

𝑡-proper element 𝑔 ∈ 𝐾 (𝑡) and a unique polynomial 𝑝 ∈ 𝐾 [𝑡] with

𝑓 = 𝑔 + 𝑝. (2)

Let ′ be a derivation on 𝐾 . The pair (𝐾, ′) is called a differential
field. An element 𝑐 of 𝐾 is called a constant if 𝑐 ′ = 0. The set of

constants in 𝐾 , denoted by 𝐶𝐾 , is a subfield of 𝐾 . Set

𝐾 ′ := {𝑓 ′ | 𝑓 ∈ 𝐾},

which is a linear subspace over 𝐶𝐾 .We call 𝐾 ′ the integrable sub-
space of 𝐾 .

Let (𝐸, 𝛿) be a differential field containing 𝐾 . We say that 𝐸 is

a differential field extension of 𝐾 if 𝛿 |𝐾 =
′. The derivation 𝛿 is

also denoted by ′ when there is no confusion. For an element 𝑓

of 𝐾 , we call 𝑓 a logarithmic derivative in 𝐾 if 𝑓 = 𝑔′/𝑔 for some

𝑔 ∈ 𝐾\{0}. Let 𝑡 be transcendental over 𝐾 and 𝑡 ′ ∈ 𝐾 [𝑡], so that

𝑝 ′ ∈ 𝐾 [𝑡] for all 𝑝 ∈ 𝐾 [𝑡]. A polynomial 𝑝 in 𝐾 [𝑡] is said to be 𝑡-
normal if gcd(𝑝, 𝑝 ′) = 1. By Theorem 3.2.2 in [5], ′ can be uniquely

extended to𝐾 (𝑡) such that𝐾 (𝑡) is a differential field extension of𝐾 .

For 𝑓 ∈ 𝐾 (𝑡), we say that 𝑓 is 𝑡-simple if it is 𝑡-proper and has a

𝑡-normal denominator.

We next define primitive and logarithmic generators, which are

based on Definitions 5.1.1 and 5.1.2 in [5], respectively.

Definition 2.1. Let (𝐾, ′) be a differential field, and 𝐸 be a dif-
ferential field extension of 𝐾 . An element 𝑡 of 𝐸 is said to be primitive

over 𝐾 if 𝑡 ′ ∈ 𝐾 . A primitive element 𝑡 is called a primitive generator

over 𝐾 if it is transcendental over 𝐾 and 𝐶𝐾 (𝑡) = 𝐶𝐾 . Furthermore, a
primitive generator 𝑡 is called a logarithmic generator over 𝐾 if 𝑡 ′ is
a 𝐶𝐾 -linear combination of logarithmic derivatives in 𝐾 .

An immediate consequence of Theorem 5.1.1 in [5] is:

Proposition 2.2. Let 𝑡 be primitive over 𝐾 . Then 𝑡 is a primitive
generator over 𝐾 if and only if 𝑡 ′ ∉ 𝐾 ′. Assume that 𝑡 is a primitive
generator over 𝐾 . Then 𝑝 ∈ 𝐾 [𝑡] is 𝑡-normal if and only if 𝑝 is
squarefree.

For the rest of the section, assume that (𝐾, ′) is a differential

field, and that 𝑡 is a primitive generator over 𝐾 .

Remark 2.3. Let 𝑝 be a polynomial in𝐾 [𝑡]. By Lemma 5.1.2 in [5],
the degree of 𝑝 ′ is equal to one less than the degree of 𝑝 if the leading
coefficient of 𝑝 is a constant, otherwise their degrees are equal.

By Theorem 5.3.1 in [5] and Lemma 2.1 in [6], for each 𝑓 ∈ 𝐾 (𝑡),

there exists a unique 𝑡-simple element ℎ such that

𝑓 ≡ ℎ mod
(
𝐾 (𝑡)′ + 𝐾 [𝑡]

)
. (3)

In the literature [6], ℎ is referred to as the Hermitian part of 𝑓 with
respect to 𝑡 . Thus, wewill use the notation hp𝑡 (𝑓). It is easy to check

that hp𝑡 is a 𝐶𝐾 -linear map on 𝐾 (𝑡). Because of the uniqueness of

Hermitian parts and Lemma 2.1 in [6], we have the following:

Lemma 2.4. Let 𝑓 , 𝑔 ∈ 𝐾 (𝑡). Then

(i) 𝑓 ∈ 𝐾 (𝑡)′ + 𝐾 [𝑡] ⇐⇒ hp𝑡 (𝑓) = 0,
(ii) 𝑓 is 𝑡-simple⇐⇒ 𝑓 = hp𝑡 (𝑓), and
(iii) 𝑓 ≡ 𝑔 mod (𝐾 (𝑡)′ + 𝐾 [𝑡]) ⇐⇒ hp𝑡 (𝑓) = hp𝑡 (𝑔).

The next two lemmas give some nice properties of proper ele-

ments and logarithmic derivatives.

Lemma 2.5. If 𝑓 ∈ 𝐾 (𝑡) is 𝑡-proper, then 𝑓 − hp𝑡 (𝑓) ∈ 𝐾 (𝑡)
′.

Proof. Since 𝑡 is a primitive generator over𝐾 , the derivative of a

𝑡-proper element of 𝐾 (𝑡) is also 𝑡-proper. By (3), 𝑓 = hp𝑡 (𝑓) +𝑔
′+𝑝

for some 𝑔 ∈ 𝐾 (𝑡) and 𝑝 ∈ 𝐾 [𝑡]. Let 𝑟 be the 𝑡-proper part of 𝑔.

Thus, 𝑓 −hp𝑡 (𝑓) −𝑟
′
= 𝑝 + (𝑔−𝑟)′ whose left-hand side is 𝑡-proper

and whose right-hand side is a polynomial in 𝑡 . Thus, both sides

must be zero. Consequently, 𝑓 − hp𝑡 (𝑓) = 𝑟
′ ∈ 𝐾 (𝑡)′. □

Lemma 2.6. Let 𝑓 ∈ 𝐾 (𝑡) be a logarithmic derivative.

(i) 𝑓 is 𝑡-proper⇐⇒ 𝑓 is 𝑡-simple.
(ii) There exists a 𝑡-simple logarithmic derivative 𝑔 ∈ 𝐾 (𝑡) and a

logarithmic derivative ℎ ∈ 𝐾 such that 𝑓 = 𝑔 + ℎ.

Proof. (i) The only thing we need to show is that the denom-

inator of 𝑓 is 𝑡-normal. By the logarithmic derivative identity [5,

Theorem 3.1.1 (v)], the denominator of 𝑓 is squarefree, which is

also 𝑡-normal by Proposition 2.2.

(ii) By irreducible factorization and the logarithmic derivative

identity, 𝑓 =
(∑
𝑖𝑚𝑖𝑝

′
𝑖 /𝑝𝑖

)
+ 𝛼 ′/𝛼, where 𝛼 ∈ 𝐾 , 𝑚𝑖 ∈ Z, and

𝑝𝑖 ∈ 𝐾 [𝑡] are monic irreducible and pairwise coprime. Then

each 𝑝 ′𝑖 /𝑝𝑖 is 𝑡-simple by Remark 2.3 and (i). We get (ii) by setting

𝑔 =
∑
𝑖𝑚𝑖𝑝

′
𝑖 /𝑝𝑖 and ℎ = 𝛼 ′/𝛼 . □

147

An Additive Decomposition in Logarithmic Towers and Beyond ISSAC ’20, July 20–23, 2020, Kalamata, Greece

The following lemma will be useful when we construct our

remainders. This is the same as Lemma 2.3 in [6] and can also be

found in [5].

Lemma 2.7. Let 𝑝 ∈ 𝐾 [𝑡] . If 𝑝 ∈ 𝐾 (𝑡)′, then the leading coefficient
of 𝑝 is equal to 𝑐𝑡 ′ + 𝑏 ′ for some 𝑐 ∈ 𝐶𝐾 and 𝑏 ∈ 𝐾 . As a special case,
if 𝑝 ∈ 𝐾 ∩ 𝐾 (𝑡)′, then 𝑝 ≡ 𝑐𝑡 ′ mod 𝐾 ′.

3 MATRYOSHKA DECOMPOSITIONS

We denote {1, 2, . . . , 𝑛} and {0, 1, 2, . . . , 𝑛} by [𝑛] and [𝑛]0, resp.

Let 𝐾0 be a field. For each 𝑖 ∈ [𝑛], let 𝐾𝑖 = 𝐾𝑖−1 (𝑡𝑖), where 𝑡𝑖 is

transcendental over 𝐾𝑖−1. Then we have a tower of field extensions:

𝐾0 ⊂ 𝐾1 ⊂ · · · ⊂ 𝐾𝑛
q q

𝐾0 (𝑡1) ⊂ · · · ⊂ 𝐾𝑛−1 (𝑡𝑛) .

(4)

We use 𝐾0 (𝑡) to denote the tower (4) generated by 𝑡 := (𝑡1, . . . , 𝑡𝑛).

For each 𝑖 ∈ [𝑛], an element of 𝐾𝑛 from (4) is said to be 𝑡𝑖 -proper
if it is free of 𝑡𝑖+1, . . . , 𝑡𝑛 and the degree of its numerator in 𝑡𝑖 is

lower than that of its denominator. Let 𝑇𝑖 denote the multiplicative

monoid generated by 𝑡𝑖+1, . . . , 𝑡𝑛 for all 𝑖 with 0 ≤ 𝑖 < 𝑛, and

set 𝑇𝑛 = {1}. For each 𝑖 ∈ [𝑛], let 𝑃𝑖 be a non-unital subring

of 𝐾𝑖 [𝑡𝑖+1, . . . , 𝑡𝑛] consisting of all the linear combinations of the

elements of 𝑇𝑖 whose coefficients are 𝑡𝑖 -proper. Furthermore, let

𝑃0 = 𝐾0 [𝑡1, . . . , 𝑡𝑛]. A routine induction based on (2) shows

𝐾𝑛 =

𝑛⊕
𝑖=0

𝑃𝑖 . (5)

Accordingly, we can not only view the tower as a chain of field

extensions as described in (4), but also as a direct sum of rings as

given in (5). The former enables us to describe a function recursively,

and the latter helps us to decompose it additively.

Let 𝜋𝑖 be the projection from 𝐾𝑛 onto 𝑃𝑖 with respect to (5). For

every 𝑓 ∈ 𝐾𝑛 , we say 𝜋𝑖 (𝑓) is the 𝑖-th projection of 𝑓 , and write

𝑓 =

𝑛∑
𝑖=0

𝜋𝑖 (𝑓),

which we call thematryoshka decomposition of 𝑓 . Figure 2 illustrates
this namesake. The property 𝑃𝑖 ∩

⊕
𝑖≠𝑗 𝑃 𝑗 = {0} indicates zero

as the (only) point of intersection, and is represented by a single

dot in Figure 2. Viewing our towers in this way not only affords us

a nice pictorial representation, but also allows us to describe the

following ordering (which will later be used to define a remainder).

𝜋0(𝑓) +

𝑃0
⊕

𝜋1(𝑓) +

𝑃1 ⊕
𝜋2(𝑓)

𝑃2

+

⊕
· · ·

· · · +

⊕
𝜋𝑛 (𝑓) =

𝑃𝑛

=

𝑃𝑛
...

𝑃2
𝑃1
𝑃0

𝑓 ∈ 𝐾𝑛 .

Figure 2: Matryoshka Decomposition

Example 3.1. Let 𝑓 = (𝑡2 + 𝑥) (𝑡
2
3 − 𝑡1𝑡3 + 𝑥𝑡2)/(𝑥𝑡2𝑡3) be in 𝐾3

with 𝐾0 = Q(𝑥). Then the matryoshka decomposition of 𝑓 is

𝜋0 (𝑓) + 𝜋1 (𝑓) + 𝜋2 (𝑓) + 𝜋3 (𝑓) =
𝑡3 − 𝑡1

𝑥
+ 0 +

𝑡3 − 𝑡1

𝑡2
+
𝑡2 + 𝑥

𝑡3
.

Suppose that ≺ is the purely lexicographic order on𝑇0, in which

𝑡1 ≺ 𝑡2 ≺ · · · ≺ 𝑡𝑛 . Then ≺ is also a monomial order on each 𝑇𝑖 ,

because 𝑇𝑖 ⊆ 𝑇0 . For 𝑓 ∈ 𝐾𝑛 and 𝑖 ∈ [𝑛]0, the 𝑖-th projection of 𝑓

can be viewed as a polynomial in 𝐾𝑖 [𝑡𝑖+1, . . . , 𝑡𝑛], which allows us

to define the 𝑖-th head monomial of 𝑓 , denoted by hm𝑖 (𝑓), to be the
highest monomial in 𝑇𝑖 that appears in 𝜋𝑖 (𝑓) if 𝜋𝑖 (𝑓) is non-zero,

and zero if 𝜋𝑖 (𝑓) is zero.

We define the 𝑖-th head coefficient of 𝑓 , denoted by hc𝑖 (𝑓), to be

the coefficient of hm𝑖 (𝑓) in 𝜋𝑖 (𝑓) if 𝜋𝑖 (𝑓) is non-zero, and zero if

𝜋𝑖 (𝑓) is zero. By the matryoshka decomposition, hc𝑖 (𝑓) is 𝑡𝑖 -proper

for all 𝑖 ∈ [𝑛] .

The head monomial of 𝑓 , denoted by hm(𝑓), is defined to be the

highest monomial among hm0 (𝑓), hm1 (𝑓), . . . , hm𝑛 (𝑓), in which

zero is regarded as the lowest łmonomialž. Let

𝐼𝑓 = {𝑖 ∈ [𝑛]0 | hm𝑖 (𝑓) = hm(𝑓)}.

The head coefficient of 𝑓 , hc(𝑓), is defined to be
∑
𝑖∈𝐼𝑓 hc𝑖 (𝑓).

Definition 3.2. For 𝑓 , 𝑔 ∈ 𝐾𝑛 , let 𝑑𝑓 and 𝑑𝑔 be the degrees of
the denominators of 𝑓 and 𝑔 in 𝑡𝑛 , respectively. We say that 𝑓 is
lower than 𝑔, denoted by 𝑓 ≺ 𝑔, if either 𝑑𝑓 < 𝑑𝑔 , or 𝑑𝑓 = 𝑑𝑔 and
hm(𝑓) ≺ hm(𝑔) . We say that 𝑓 is not higher than 𝑔, denoted by
𝑓 ⪯ 𝑔, if either 𝑓 ≺ 𝑔, or 𝑑𝑓 = 𝑑𝑔 and hm(𝑓) = hm(𝑔) .

For the rest of this article, we assume that (𝐾0,
′) = (𝐶 (𝑥), 𝑑/𝑑𝑥)

and each 𝑡𝑖 in (4) is a primitive generator over 𝐾𝑖−1 for all 𝑖 ∈ [𝑛].

Then we call 𝐾𝑛 a primitive extension over 𝐾0 and 𝐾0 (𝑡) a primitive
tower. By Definition 2.1,𝐶𝐾𝑛

= 𝐶𝐾0
, which is equal to𝐶 . A primitive

tower is said to be logarithmic if each 𝑡𝑖 is a logarithmic generator

over 𝐾𝑖−1.

Since ≺ on𝑇0 is a Noetherian total order, the partial order on 𝐾𝑛
given by Definition 3.2 is also Noetherian, that is, every nonempty

set in 𝐾𝑛 has a minimal element with respect to ≺. We can use

this order to define a desired remainder of the given function. Let

𝑓 ∈ 𝐾𝑛 and

𝑅𝑓 := {𝑔 ∈ 𝐾𝑛 | 𝑔 ≡ 𝑓 mod 𝐾 ′𝑛}. (6)

Thus, there exists a minimal element 𝑟 ∈ 𝑅𝑓 . We note that such a

minimal element may not be unique. Furthermore, ⪯ is not a partial

order, but rather a total preorder. Therefore, a minimal element of

𝑅𝑓 with respect to ≺ is in fact a least element w.r.t. ⪯.

Definition 3.3. Given 𝑓 ∈ 𝐾𝑛 , a minimal element of 𝑅𝑓 is said
to be a remainder of 𝑓 . Moreover, let 𝑟 ∈ 𝐾𝑛 . Then we say that 𝑟 is a
remainder if 𝑟 is a remainder of itself.

As usual, 𝑡𝑖 -simple elements play an important role when we

construct remainders. Before we move on to the next section, we

give a definition using the matryoshka decomposition.

Definition 3.4. An element 𝑓 ∈ 𝐾𝑛 is said to be simple if 𝜋𝑖 (𝑓)
is 𝑡𝑖 -simple for all 𝑖 ∈ [𝑛]0, where 𝑡0 = 𝑥 .

Proposition 3.5. Every logarithmic derivative in 𝐾𝑛 is simple.

Proof. We proceed by induction on 𝑛. Since every logarith-

mic derivative in 𝐾0 is 𝑡0-proper, the assertion holds for 𝑛 = 0 by

Lemma 2.6 (i). Assume that 𝑛 > 0 and the assertion holds for 𝑛 − 1.

Let 𝑓 ∈ 𝐾𝑛 be a logarithmic derivative. By Lemma 2.6 (ii), there

exists a 𝑡𝑛-simple logarithmic derivative 𝑔 and a logarithmic deriva-

tive ℎ ∈ 𝐾𝑛−1 such that 𝑓 = 𝑔 +ℎ. Then 𝜋𝑛 (𝑓) = 𝑔 by (2). Applying

the induction hypothesis to ℎ completes the induction. □

148

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Du, Guo, Li, Wong

4 AN ADDITIVE DECOMPOSITION

Remainders in a tower are described in terms of minimality, which

is not constructive. In this section, we will present an algorithm for

constructing a remainder in an S-primitive tower based on Hermite

reduction and integration by parts. To know when to terminate the

algorithm, we need to be able to identify the first generator present

in a given monomial (this is the same notion as scale in [6]).

Definition 4.1. For a monomial𝑀 = 𝑡
𝑑1
1 · · · 𝑡

𝑑𝑛
𝑛 ∈ 𝑇0, the indica-

tor of𝑀 , denoted by ind𝑛 (𝑀), is defined to be 𝑛 if𝑀 = 1, or defined
to be min{𝑖 ∈ [𝑛] | 𝑑𝑖 ≠ 0}.

For𝑀 ∈ 𝑇0, we set 𝐾
(≺𝑀)
𝑛 := {𝑓 ∈ 𝐾𝑛 | hm(𝑓) ≺ 𝑀} . Note that

𝐾
(≺𝑀)
𝑛 is a𝐶-linear subspace of 𝐾𝑛 . The following lemma describes

sufficient conditions for reducing a given term in a primitive tower

with respect to ≺ via integration by parts.

Lemma 4.2. Let 𝐾0 (𝑡) be a primitive tower, and 𝑀 ∈ 𝑇0 with

indicator𝑚. Then (𝑓 +𝑐𝑡𝑚)′𝑀 belongs to𝐾 ′𝑛+𝐾
(≺𝑀)
𝑛 for all 𝑓 ∈ 𝐾𝑚−1

and 𝑐 ∈ 𝐶 .

Proof. Let 𝑀 = 𝑡
𝑑𝑚
𝑚 · · · 𝑡

𝑑𝑛
𝑛 for 𝑑𝑚, . . . , 𝑑𝑛 ∈ N. Since 𝐾𝑛 is a

primitive extension over 𝐾0, we see that 𝑡
′
𝑗 ∈ 𝐾𝑗−1 for each 𝑗 with

𝑚 ≤ 𝑗 ≤ 𝑛. Then𝑀 ′ =
∑𝑛
𝑗=𝑚 ℎ 𝑗𝑁 𝑗 , where ℎ 𝑗 ∈ 𝐾𝑗−1, and

𝑁 𝑗 =

{
𝑡
𝑑 𝑗−1
𝑗 𝑡

𝑑 𝑗+1
𝑗+1 · · · 𝑡

𝑑𝑛
𝑛 𝑑 𝑗 > 0,

0 𝑑 𝑗 = 0.

So 𝑓 ℎ 𝑗 ∈ 𝐾𝑗−1 and 𝑁 𝑗 ≺ 𝑀 . Consequently, 𝑓 ℎ 𝑗𝑁 𝑗 ≺ 𝑀 for all 𝑗

with𝑚 ≤ 𝑗 ≤ 𝑛. We see that 𝑓 𝑀 ′ ≺ 𝑀 , which, together with

𝑓 ′𝑀 = (𝑓 𝑀)′ − 𝑓 𝑀 ′, implies that

𝑓 ′𝑀 ∈ 𝐾 ′𝑛 + 𝐾
(≺𝑀)
𝑛 . (7)

It remains to show 𝑡 ′𝑚𝑀 ∈ 𝐾
′
𝑛 +𝐾

(≺𝑀)
𝑛 . Let𝑀 = 𝑡𝑑𝑚𝑁 , where 𝑑 ∈ N

and 𝑁 ∈ 𝑇𝑚 . Then ind𝑛 (𝑁) ≥ 𝑚 and

𝑡 ′𝑚𝑀 = 𝑔′𝑁, (8)

where 𝑔 = 𝑡𝑑+1𝑚 /(𝑑 + 1). If ind𝑛 (𝑁) = 𝑚, then 𝑛 = 𝑚 and 𝑁 = 1.

Thus, 𝑡 ′𝑚𝑀 ∈ 𝐾
′
𝑛 by (8). Otherwise, 𝑔′𝑁 ∈ 𝐾 ′𝑛 + 𝐾

(≺𝑁)
𝑛 by (7), in

which 𝑓 and𝑀 are replaced with 𝑔 and 𝑁 , respectively. Moreover,

ind𝑛 (𝑁) > 𝑚 implies 𝑁 ≺ 𝑀 . Thus, 𝑡 ′𝑚𝑀 ∈ 𝐾
′
𝑛 +𝐾

(≺𝑀)
𝑛 by (8). □

In order to obtain sufficient and necessary conditions, we impose

an extra condition on the generators:

hm(𝑡 ′𝑖) = 1 for all 𝑖 ∈ [𝑛] .

By Lemma 2.5 and the additive decomposition for rational functions

in 𝐶 (𝑥), for each 𝑖 ∈ [𝑛], there exists a simple element ℎ𝑖 in 𝐾𝑖−1
and an element 𝑔𝑖 ∈ 𝐾𝑖−1 such that 𝑡 ′𝑖 = 𝑔′𝑖 + ℎ𝑖 . Let 𝑢𝑖 = 𝑡𝑖 − 𝑔𝑖 .

Then 𝑢𝑖 is a primitive generator over 𝐾𝑖−1 and 𝐾𝑖−1 (𝑡𝑖) = 𝐾𝑖−1 (𝑢𝑖).

Moreover, 𝐾0 (𝑡) = 𝐾0 (𝑢). Therefore, without loss of generality, we

can further assume that each 𝑡 ′𝑖 is simple for all 𝑖 ∈ [𝑛].

Definition 4.3. A tower 𝐾0 (𝑡) is said to be S-primitive if it is a
primitive tower and 𝑡 ′𝑖 is simple for all 𝑖 ∈ [𝑛].

Logarithmic towers are S-primitive by Proposition 3.5. Our next

goal is to construct remainders in S-primitive towers based on a

special property of simple elements.

Lemma 4.4. Let 𝐾0 (𝑡) be an S-primitive tower. If 𝑓 ∈ 𝐾 ′𝑛 is simple,
then 𝑓 ∈ span𝐶 {𝑡

′
1, . . . , 𝑡

′
𝑛}.

Proof. Since 𝑓 is simple,𝜋𝑛 (𝑓) is 𝑡𝑛-simple, So𝜋𝑛 (𝑓) = hp𝑡𝑛 (𝑓)

by the uniqueness of Hermitian parts. Since 𝑓 ∈ 𝐾 ′𝑛 , we see that

hp𝑡𝑛 (𝑓) = 0 by Lemma 2.4 (i). Thus, 𝜋𝑛 (𝑓) = 0, and 𝑓 ∈ 𝐾𝑛−1.

We proceed by induction on 𝑛. If 𝑛 = 1, then 𝑓 ∈ 𝐾0 ∩ 𝐾
′
1 is

𝑥-simple by Definition 3.4. By Lemma 2.7, there exists a 𝑐 ∈ 𝐶 such

that 𝑓 ≡ 𝑐𝑡 ′1 mod 𝐾 ′0. Since both 𝑓 and 𝑡 ′1 are 𝑥-simple, we have

that 𝑓 = 𝑐𝑡 ′1 by Lemma 2.4 (ii) and (iii). Assume that 𝑛 > 1 and the

lemma holds for 𝑛 − 1. For 𝑓 in 𝐾𝑛−1 ∩ 𝐾
′
𝑛 , there is a 𝑐 ∈ 𝐶 such

that 𝑓 ≡ 𝑐𝑡 ′𝑛 mod 𝐾 ′𝑛−1 by Lemma 2.7. Then 𝑓 − 𝑐𝑡 ′𝑛 ∈ 𝐾
′
𝑛−1. Since

both 𝑓 and 𝑡 ′𝑛 are simple, 𝑓 − 𝑐𝑡 ′𝑛 is also simple. By the induction

hypothesis, we have that 𝑓 − 𝑐𝑡 ′𝑛 ∈ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑛−1}, which

implies that 𝑓 ∈ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑛}. □

The previous lemma gives us a direct way to determine whether

or not a tower is S-primitive.

Corollary 4.5. The tower 𝐾0 (𝑡) is S-primitive if and only if
𝑡 ′1, . . . , 𝑡

′
𝑛 are 𝐶-linearly independent and each 𝑡 ′𝑖 ∈ 𝐾𝑖−1 is simple.

Proof. If 𝐾0 (𝑡) is an S-primitive tower, then it is primitive. By

Proposition 2.2, 𝑡 ′𝑖 ∉ 𝐾
′
𝑖−1 for all 𝑖 ∈ [𝑛]. So 𝑡

′
1, . . . , 𝑡

′
𝑛 are 𝐶-linearly

independent. By Definition 4.3, 𝑡 ′𝑖 is simple for all 𝑖 ∈ [𝑛].

We prove the converse by induction on 𝑛. If 𝑛 = 1, then 𝑡 ′1 is non-

zero because it is 𝐶-linearly independent, which implies 𝑡 ′1 ∉ 𝐾 ′0,

because it is 𝑥-simple. By Proposition 2.2, 𝑡1 is a primitive generator

over 𝐾0. Hence, 𝐾0 (𝑡1) is S-primitive. Suppose that 𝐾0 (𝑡1, . . . , 𝑡𝑛−1)

is S-primitive. Let us consider the tower 𝐾0 (𝑡1, . . . , 𝑡𝑛−1, 𝑡𝑛). By

Lemma 4.4, 𝑡 ′𝑛 ∉ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑛−1} implies that 𝑡 ′𝑛 ∉ 𝐾 ′𝑛−1. Thus,

𝑡𝑛 is a primitive generator over 𝐾𝑛−1 by Proposition 2.2. The tower

under consideration is S-primitive. □

The following lemma gives a sufficient and necessary condition

in S-primitive towers for lowering an element with respect to ≺

modulo the integrable space 𝐾 ′𝑛 .

Lemma 4.6. Suppose that𝐾0 (𝑡) is an S-primitive tower. Let𝑀 ∈ 𝑇0
with ind𝑛 (𝑀) =𝑚 and 𝑎 ∈ 𝐾𝑚−1 be simple. Then 𝑎𝑀 ∈ 𝐾 ′𝑛 +𝐾

(≺𝑀)
𝑛

if and only if 𝑎 ∈ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑚}.

Proof. The sufficiency follows from Lemma 4.2. Conversely,

assume that 𝑎𝑀 ∈ 𝐾 ′𝑛 +𝐾
(≺𝑀)
𝑛 . If𝑀 = 1, then𝑚 = 𝑛 and 𝑎 ∈ 𝐾 ′𝑛 . By

Lemma 4.4, 𝑎 ∈ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑛}. Otherwise, since ind𝑛 (𝑀) =𝑚,

assume that𝑀 = 𝑡
𝑑𝑚
𝑚 · · · 𝑡

𝑑𝑛
𝑛 with 𝑑𝑚 > 0.

We proceed by induction on 𝑛. For 𝑛 = 1, 𝑎𝑀 ∈ 𝐾 ′1 + 𝐾
(≺𝑀)
1

implies that there exists a 𝑡1-proper element 𝑏 ∈ 𝐾1 and 𝑝 ∈ 𝐾0 [𝑡1]

with deg𝑡1 (𝑝) < 𝑑1 such that 𝑎𝑀 + 𝑏 + 𝑝 ∈ 𝐾 ′1. We further assume

that 𝑏 is 𝑡1-simple, because 𝑏 − hp𝑡1 (𝑏) ∈ 𝐾
′
1 by Lemma 2.5. So,

𝑏 = 0 by Lemma 2.4 (i). We see that 𝑎𝑀 + 𝑝 ∈ 𝐾 ′1. By Lemma 2.7,

𝑎 − 𝑐𝑡 ′1 ∈ 𝐾
′
0 for some 𝑐 ∈ 𝐶 . Hence, 𝑎 = 𝑐𝑡 ′1, because 𝑎 and 𝑡

′
1 are

both 𝑥-simple.

Assume that 𝑛 > 1 and that the conclusion holds for 𝑛 − 1.

Let 𝑁 = 𝑀/𝑡
𝑑𝑛
𝑛 , which is a power product of 𝑡𝑚, . . . , 𝑡𝑛−1. Since

𝑎𝑀 belongs to 𝐾 ′𝑛 + 𝐾
(≺𝑀)
𝑛 , there is a 𝑡𝑛-proper element 𝑏 and

𝑝 ∈ 𝐾𝑛−1 [𝑡𝑛] with hm(𝑝) ≺ 𝑀 such that 𝑎𝑁𝑡𝑑𝑛𝑛 + 𝑏 + 𝑝 ∈ 𝐾
′
𝑛 .

Similar to the base case, one can show that 𝑎𝑁𝑡𝑑𝑛𝑛 + 𝑝 ∈ 𝐾
′
𝑛 . Let

149

An Additive Decomposition in Logarithmic Towers and Beyond ISSAC ’20, July 20–23, 2020, Kalamata, Greece

𝑝 = 𝑞𝑡
𝑑𝑛
𝑛 + 𝑟 such that 𝑞 ∈ 𝐾𝑛−1 with hm(𝑞) ≺ 𝑁 and 𝑟 ∈ 𝐾𝑛−1 [𝑡𝑛]

with deg𝑡𝑛 (𝑟) < 𝑑𝑛 . Then we have (𝑎𝑁 + 𝑞)𝑡𝑑𝑛𝑛 + 𝑟 ∈ 𝐾 ′𝑛 . By

Lemma 2.7, there exists 𝑐 ∈ 𝐶 such that 𝑎𝑁 + 𝑞 − 𝑐𝑡 ′𝑛 ∈ 𝐾
′
𝑛−1. So,

𝑎𝑁 ≡ 𝑐𝑡 ′𝑛 mod
(
𝐾 ′𝑛−1 + 𝐾

(≺𝑁)
𝑛−1

)
. (9)

If 𝑁 = 1, then 𝑚 = 𝑛 and 𝑎 ∈ 𝐾 ′𝑛 . So 𝑎 ∈ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑛} by

Lemma 4.4 and we are done. If 𝑁 ≻ 1, then ind𝑛−1 (𝑁) = 𝑚 < 𝑛.

By (9), 𝑎𝑁 ∈ 𝐾 ′𝑛−1 + 𝐾
(≺𝑁)
𝑛−1 , because hm(𝑐𝑡 ′𝑛) = 1. It follows from

the induction hypothesis that 𝑎 ∈ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑚}. □

We can now specify a remainder in S-primitive towers and prove

that the algorithm to construct it will terminate.

Proposition 4.7. Let 𝐾0 (𝑡) be an S-primitive tower, and 𝑟 ∈ 𝐾𝑛
be nonzero with𝑚 = ind𝑛 (hm(𝑟)). Then 𝑟 is a remainder if 𝜋𝑛 (𝑟) is
𝑡𝑛-simple, and hc(𝑟 − 𝜋𝑛 (𝑟)) is simple and is not a nonzero element
of span𝐶 {𝑡

′
1, . . . , 𝑡

′
𝑚}.

Proof. Let 𝑓 ∈ 𝑅𝑟 as defined in (6). Since 𝜋𝑛 (𝑟) is 𝑡𝑛-simple,

hp𝑡𝑛 (𝑓) = 𝜋𝑛 (𝑟) by Lemma 2.4 (ii) and (iii). Then the denominator

of 𝑟 , which is associated to the denominator of 𝜋𝑛 (𝑟) over 𝐾𝑛−1,

divides the denominator of 𝑓 by Theorem 5.3.1 in [5].

We further need to show that hm(𝑟) ⪯ hm(𝑓). Suppose the

contrary. Let𝑀 = hm(𝑟) and 𝑎 = hc(𝑟 − 𝜋𝑛 (𝑟)).

If 𝑀 = 1, then𝑚 = 𝑛, 𝑎 = 𝑟 − 𝜋𝑛 (𝑟), and 𝑓 = 0, which implies

that 𝑟 ∈ 𝐾 ′𝑛 . Then 𝜋𝑛 (𝑟) = 0 by Lemma 2.4 (i). So, 𝑎 ∈ 𝐾𝑛−1 ∩ 𝐾
′
𝑛 .

By Lemma 4.4, we have that 𝑎 belongs to span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑛}. Thus,

𝑎 = 0 and, consequently, 𝑟 = 0, a contradiction.

Assume that𝑀 ≻ 1. Then hm(𝑟 − 𝑓) = 𝑀 and hc(𝑟 − 𝑓) = hc(𝑟)

since 𝑀 ≻ hm(𝑓). Hence, hc(𝑟 − 𝑓) = 𝑎 because 𝑀 ≻ 1 and

hm(𝜋𝑛 (𝑟)) ⪯ 1. From 𝑟 − 𝑓 ∈ 𝐾 ′𝑛 , we see that 𝑎𝑀 ∈ 𝐾
′
𝑛 + 𝐾

(≺𝑀)
𝑛 .

By Lemma 4.6, 𝑎 belongs to span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑚}, which implies that

𝑎 = 0. Then 𝑟 = 𝜋𝑛 (𝑟) and𝑀 = 1, a contradiction. □

Theorem 4.8. Let 𝐾0 (𝑡) be an S-primitive tower and let 𝑓 ∈ 𝐾𝑛 .
Then one can construct a remainder of 𝑓 with the properties described
in Proposition 4.7 in a finite number of steps.

Proof. By Lemma 2.5, 𝜋𝑛 (𝑓) ≡ hp𝑡𝑛 (𝑓) mod 𝐾 ′𝑛 . Then

𝑓 ≡ hp𝑡𝑛 (𝑓) + (𝑓 − 𝜋𝑛 (𝑓)) mod 𝐾 ′𝑛 . (10)

The 𝑛-th projection of the right-hand side of the congruence is

equal to hp𝑡𝑛 (𝑓), which is 𝑡𝑛-simple.

Let𝑀 = hm(𝑓 − 𝜋𝑛 (𝑓)). We proceed by a Noetherian induction

on 𝑀 with respect to ≺. If 𝑀 = 0, then 𝑓 = 𝜋𝑛 (𝑓). By (10) and

Proposition 4.7, hp𝑡𝑛 (𝑓) ∈ 𝑃𝑛 is a remainder of 𝑓 .

Assume that𝑀 ≠ 0, and for any 𝑔 ∈ 𝐾𝑛 with hm(𝑔) ≺ 𝑀 , there

is a remainder 𝑟 of 𝑔 as described in Proposition 4.7.

Let 𝑎 = hc(𝑓 −𝜋𝑛 (𝑓)) and𝑚 = ind𝑛 (𝑀). Since 𝑎 ∈ 𝐾𝑚−1, its 𝑗-th

projection is equal to zero for each 𝑗 ∈ {𝑚, . . . , 𝑛}. By Lemma 2.5,

𝜋𝑖 (𝑎) ≡ ℎ𝑖 mod 𝐾 ′𝑖 for some 𝑡𝑖 -simple elements ℎ𝑖 ∈ 𝐾𝑖 for all

𝑖 ∈ [𝑚 − 1]0 with 𝑡0 = 𝑥 . By Lemma 4.2,

𝑓 − 𝜋𝑛 (𝑓) ≡ 𝑏𝑀 mod (𝐾 ′𝑛 + 𝐾
(≺𝑀)
𝑛), (11)

where 𝑏 =
∑𝑚−1
𝑖=0 ℎ𝑖 . Note that 𝑏 is simple by Definition 3.4.

If 𝑏 ∈ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑚}, then 𝑏𝑀 ∈ 𝐾

′
𝑛 + 𝐾

(≺𝑀)
𝑛 by Lemma 4.2.

So 𝑓 −𝜋𝑛 (𝑓) ≡ 𝑔 mod 𝐾 ′𝑛 for some𝑔 in𝐾
(≺𝑀)
𝑛 by (11). Accordingly,

𝑔 has a remainder 𝑟 as described in Proposition 4.7 by the induction

hypothesis. Thus, hp𝑡𝑛 (𝑓) + 𝑟 is a remainder of 𝑓 .

Assume that 𝑏 ∉ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑚}. It follows from (10) and (11)

that 𝑓 ≡ hp𝑡𝑛 (𝑓) + 𝑏𝑀 + 𝑔 mod 𝐾 ′𝑛 for some 𝑔 in 𝐾
(≺𝑀)
𝑛 . We may

further assume that 𝜋𝑛 (𝑔) is 𝑡𝑛-simple by Lemma 2.5. The right-

hand side of the above congruence is a remainder as described in

Proposition 4.7, because 𝑏 is the head coefficient of 𝑏𝑀 + (𝑔−𝜋𝑛 (𝑔)).

Consequently, we construct a remainder of 𝑓 in a finite number

of steps because the ordering ≺ is Noetherian. □

We now present an algorithm to decompose an element in an

S-primitive tower into a sum of a derivative and a remainder. The

algorithm is a slight refinement of the proof of the above theorem.

We refer the reader to the online supplementary material 1 for the

implementation.

AddDecompInField
(
𝑓 , 𝐾0 (𝑡)

)
Input: An S-primitive tower 𝐾0 (𝑡), described as a list

[𝑥, [𝑡1, . . . , 𝑡𝑛], [𝑡
′
1, . . . , 𝑡

′
𝑛]],

s.t. 𝑡 ′𝑖 ∈ 𝐾𝑖−1 is simple for all 𝑖 ∈ [𝑛], and 𝑓 ∈ 𝐾𝑛 .

Output: Two elements 𝑔, 𝑟 ∈ 𝐾𝑛 such that 𝑓 = 𝑔′ + 𝑟 and 𝑟

satisfies the conditions in Proposition 4.7.

(1) If 𝑓 = 0, then return (0, 0).

(2) Initialize:𝑀 ← hm(𝑓), 𝑎 ← hc(𝑓),𝑚 ← ind𝑛 (𝑀),

𝑑 ← deg𝑡𝑚 (𝑀), 𝐵 ← 0, 𝐻 ← 0, 𝑐 ← 0.

(3) Let 𝑎 =
∑𝑚
𝑖=0 𝑎𝑖 be the matryoshka decomposition.

(4) Reduction: For each 𝑖 from 0 to𝑚, compute 𝑏𝑖 , ℎ𝑖 ∈ 𝐾𝑖 s.t.

𝑎𝑖 = 𝑏
′
𝑖 + ℎ𝑖 , where ℎ𝑖 is 𝑡𝑖 -simple, and decide whether

∃ 𝑐1, . . . , 𝑐𝑚 ∈ 𝐶 s.t. ℎ𝑖 =
∑𝑚
𝑗=1 𝑐 𝑗 𝑡

′
𝑗 .

Yes: Update 𝐵 ← 𝐵 + 𝑏𝑖 +
∑𝑚−1
𝑗=1 𝑐 𝑗 𝑡 𝑗 and 𝑐 ← 𝑐 + 𝑐𝑚 .

No: Update 𝐵 ← 𝐵 + 𝑏𝑖 and 𝐻 ← 𝐻 + ℎ𝑖 .

(5) Lower term: ℓ ← 𝑓 − 𝑎𝑀 − 𝐵𝑀 ′ − 𝑐
𝑑+1
· 𝑡𝑑+1𝑚 ·

(
𝑀/𝑡𝑑𝑚

) ′
.

Recursion: {𝑔, 𝑟 } ←AddDecompInField
(
ℓ, 𝐾0 (𝑡)

)
.

(6) Return 𝑔 = 𝐵𝑀 + 𝑐
𝑑+1
· 𝑡𝑚 ·𝑀 + 𝑔 and 𝑟 = 𝐻 ·𝑀 + 𝑟 .

Example 4.9. Find an additive decomposition for

𝑓 =
1

log(𝑥)Li(𝑥)
+
Li(𝑥) − 2𝑥 log(𝑥)

(log(𝑥))2
+ log(log(𝑥)),

viewed as an element of the S-primitive tower

𝐾3 = 𝐶 (𝑥) (log(𝑥)︸ ︷︷ ︸
𝑡1

, Li(𝑥)︸︷︷︸
𝑡2

, log(log(𝑥))︸ ︷︷ ︸
𝑡3

),

and we can write 𝑓 = 1/(𝑡1𝑡2) + (𝑡2 − 2𝑥𝑡1)/𝑡
2
1 + 𝑡3 ∈ 𝐾3. By the

above algorithm, we have that

𝑓 =

(
𝑥𝑡3 +

𝑡22
2
− 𝑡2 −

𝑥𝑡2 + 𝑥
2

𝑡1

) ′
+

1

𝑡1𝑡2
. (12)

The nonzero remainder 𝑟 = 1/(𝑡1𝑡2) implies 𝑓 has no integral in 𝐾3.

An element 𝑓 ∈ 𝐾 is said to have an elementary integral over 𝐾 if

there exists an elementary extension 𝐸 of 𝐾 and an element 𝑔 of 𝐸

such that 𝑓 = 𝑔′ (see [5, Definition 5.1.4]). We can use the remainder

from Theorem 4.8 to determine whether or not a function has an

elementary integral over an S-primitive tower.

1https://wongey.github.io/add-decomp-sprimitive/

150

https://wongey.github.io/add-decomp-sprimitive/

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Du, Guo, Li, Wong

Theorem 4.10. Let 𝐾0 (𝑡) be an S-primitive tower and 𝐶 be al-
gebraically closed. Let 𝑓 ∈ 𝐾𝑛 have a remainder 𝑟 as described in
Proposition 4.7. Then 𝑓 has an elementary integral over 𝐾𝑛 if and
only if 𝑟 ∈ span𝐶 {𝑡

′
1, . . . , 𝑡

′
𝑛} + 𝐿𝑛, where 𝐿𝑛 stands for the C-linear

subspace spanned by all logarithmic derivatives in 𝐾𝑛 .

Proof. The sufficiency is obvious. Conversely, there exists an

ℎ ∈ 𝐿𝑛 such that 𝑓 ≡ ℎ mod 𝐾 ′𝑛 by Liouville’s Theorem [5, Theo-

rem 5.5.2]. Then it suffices to show that 𝑟 − ℎ ∈ span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑛}.

Since 𝑟 is a remainder of 𝑓 , we have that ℎ ≡ 𝑟 mod 𝐾 ′𝑛 and

hm(𝑟) ⪯ hm(ℎ). By Proposition 3.5, ℎ is simple, which implies that

hm(ℎ) ⪯ 1. So hm(𝑟) ⪯ 1. If hm(𝑟) = 0, then 𝑟 = 0. Otherwise,

hm(𝑟) = 1. Then 𝑟 is simple by Proposition 4.7. Thus, 𝑟 −ℎ is simple

and integrable in 𝐾𝑛 . It is in span𝐶 {𝑡
′
1, . . . , 𝑡

′
𝑛} by Lemma 4.4. □

The proof of Theorem 4.10 gives us an alternate necessary condi-

tion, namely hm(𝑟) ⪯ 1, to enable a quick check for the elementary

integrability of 𝑓 .

Example 4.11. Let us reconsider the function 𝑓 and the tower 𝐾3
in Example 4.9 under the assumption that 𝐶 is algebraically closed.
The remainder is 𝑟 = 𝑡 ′2/𝑡2. By Theorem 4.10, 𝑓 has an elementary
integral over 𝐾3. It follows from (12) that∫

𝑓 𝑑𝑥 = 𝑥 log(log(𝑥)) +
Li(𝑥)2

2
− Li(𝑥) −

𝑥Li(𝑥) + 𝑥2

log(𝑥)

+ log(Li(𝑥)) .

The Mathematica implementation by Raab based on work in [14]
computes the same result. But the łint()ž command in Maple and
the łIntegrate[]ž command in Mathematica both leave the integral
unevaluated.

As illustrated in Example 4.9, the function 𝑓 therein has a nonzero

remainder in 𝐾0 (𝑡1, 𝑡2, 𝑡3). By Example 4.11, we see that zero is the

remainder of 𝑓 in 𝐾0 (𝑡1, 𝑡2, 𝑡3) (𝑡4), where 𝑡4 = log(𝑡2). However, to

determine whether an element belongs to 𝐿𝑛 given in Theorem 4.10,

one needs the Rothstein-Trager resultant and algebraic numbers

over 𝐶 in general (see [5, Theorem 4.4.3] and [6, ğ6]), which may

be complicated. We seek an easier way to find new generators.

5 LOGARITHMIC TOWERS

Let 𝐾0 (𝑡) and 𝐾0 (𝑢) be two primitive towers over 𝐾0, and 𝜙 be a

differential homomorphism from 𝐾0 (𝑡) to 𝐾0 (𝑢), which means 𝜙 is

a field homomorphism and 𝜙 (𝑓 ′) = 𝜙 (𝑓)′ for all 𝑓 ∈ 𝐾0 (𝑡). For an

element 𝑓 of 𝐾0 (𝑡) with a remainder 𝑟 , any remainder of 𝜙 (𝑓) in

𝐾0 (𝑢) is always not higher than 𝜙 (𝑟) with respect to ≺, because 𝜙

embeds the integrable subspace of 𝐾0 (𝑡) into that of 𝐾0 (𝑢).

In practice, determining generators for our towers depends heav-

ily on the given function. In other words, the choice of generators

can be done via a clever inspection of the function itself, as the

following example shows.
Example 5.1. Consider the following function in 𝑥 :

𝑓 =
log((𝑥 + 1) log(𝑥))

𝑥 log(𝑥)
.

For this function, there are at least two ways to construct the tower
over Q(𝑥) containing 𝑓 :

(i) 𝑡1 = log(𝑥), 𝑡2 = log((𝑥 + 1) 𝑡1);
(ii) 𝑢1 = log(𝑥), 𝑢2 = log(𝑥 + 1), 𝑢3 = log(𝑢1).

The tower𝐾0 (𝑡1, 𝑡2) can be differentially embedded into𝐾0 (𝑢1, 𝑢2, 𝑢3)
via 𝑡1 ↦→ 𝑢1 and 𝑡2 ↦→ 𝑢2 + 𝑢3 . In the first tower, 𝑓 = 𝑡2/(𝑥𝑡1) is
already a remainder by Proposition 4.7. In the second tower, AddDe-
compInField computes a remainder 𝑢2/(𝑥𝑢1) that is lower than 𝑓
because span𝐶 {𝑡

′
1, 𝑡
′
2} is properly contained in span𝐶 {𝑢

′
1, 𝑢
′
2, 𝑢
′
3}.

With the aid of the logarithmic derivative identity and the ma-

tryoshka decomposition, we are going to show in Theorem 5.6

that, given a logarithmic tower 𝐾0 (𝑡1, . . . , 𝑡𝑛), one can construct

another logarithmic tower 𝐾0 (𝑢1, . . . , 𝑢𝑤) and a differential homo-

morphism 𝜙 such that, for all 𝑖 ∈ [𝑛 − 1]0, 𝑗 ∈ [𝑛], the image of

𝜋𝑖 (𝑡
′
𝑗) under 𝜙 belongs to span𝐶 {𝑢

′
1, . . . , 𝑢

′
𝑤}, which provides us

with more possibilities to reduce a given function by Lemma 4.6.

This motivates the following representation of our towers in terms

of the generators.

Definition 5.2. Let 𝐾0 (𝑡) be a primitive tower. The 𝑛 × 𝑛 matrix

𝐴 =

(
𝜋𝑖 (𝑡

′
𝑗)
)
0≤𝑖≤𝑛−1,1≤ 𝑗≤𝑛

is called the matrix associated to 𝐾0 (𝑡).

𝑡 ′1 𝑡 ′2 · · · 𝑡 ′𝑛

↓ ↓ ↓

©«

ª®®®®®®¬

𝑃0 → ★ ★ · · · ★

𝑃1 → ★ · · · ★

...
. . .

...

𝑃𝑛−1 → ★

Figure 3: A labeled associated matrix of a primitive tower.

The ★ represents a possibly nonzero element.

The associated matrix records all information about the deriva-

tion on 𝐾0 (𝑡), because 𝜋𝑛 (𝑡
′
1) = · · · = 𝜋𝑛 (𝑡

′
𝑛) = 0. Since 𝑡 ′𝑗 ∈ 𝐾𝑗−1

for all 𝑗 ∈ [𝑛], the associated matrix 𝐴 is in upper triangular form

as in Figure 3. Furthermore, if 𝐾0 (𝑡) is a logarithmic tower, then the

entries of𝐴 are all𝐶-linear combinations of logarithmic derivatives

by Lemma 2.6 (ii).

In the following discussion, a tower with a different set of gen-

erators 𝑣 = (𝑣1, . . . , 𝑣𝑛) will appear. We say that 𝐾0 (𝑡) is equal to
𝐾0 (𝑣) if they are equal as a field, and that 𝐾0 (𝑡) is equal to 𝐾0 (𝑣)

as a tower if 𝐾0 (𝑡1, . . . , 𝑡𝑖) = 𝐾0 (𝑣1, . . . , 𝑣𝑖) for all 𝑖 ∈ [𝑛]. We will

invoke the superscript notation to distinguish between different

sets of generators (for example, 𝜋𝑡𝑖 for projections in 𝐾0 (𝑡)).

Definition 5.3. Let 𝐾0 (𝑡) be a primitive tower and 𝑓 ∈ 𝐾𝑛 \ {0}.
The significant index of 𝑓 is

si𝑡 (𝑓) := max{𝑖 ∈ [𝑛]0 | 𝜋𝑖 (𝑓) ≠ 0}.

The vector
sv(𝑡) :=

(
si𝑡 (𝑡 ′1), . . . , si

𝑡 (𝑡 ′𝑛)
)

is called the significant vector of 𝐾0 (𝑡). Suppose sv(𝑡) is equal to
(𝑘1, . . . , 𝑘𝑛). The sequence

sc(𝑡) :=
(
𝜋𝑡
𝑘1
(𝑡 ′1), . . . , 𝜋

𝑡
𝑘𝑛
(𝑡 ′𝑛)

)
is called the significant component sequence of 𝐾0 (𝑡).

151

An Additive Decomposition in Logarithmic Towers and Beyond ISSAC ’20, July 20–23, 2020, Kalamata, Greece

The significant vector and significant component sequence are

unique with respect to the generators by the matryoshka decompo-

sition.

Example 5.4. Consider the field

𝐶 (𝑥) (log(𝑥), log(log(𝑥)), log((𝑥 + 1) log(𝑥))) .

We set 𝑡1 = log(𝑥), 𝑡2 = log(𝑡1), and 𝑡3 = log((𝑥 + 1) 𝑡1) . Then
𝐶 (𝑥) (𝑡1, 𝑡2, 𝑡3) is a logarithmic tower whose significant vector is equal
to (0, 1, 1) and whose significant component sequence is

(1/𝑥, 1/(𝑥𝑡1), 1/(𝑥𝑡1)) .

Definition 5.5. A logarithmic tower 𝐾0 (𝑡) is said to be well-
generated if

(CLI) sc(𝑡) is 𝐶-linearly independent,
(MI) sv(𝑡) is (weakly) monotonically increasing, and

(ONE) each column of its associated matrix contains exactly one non-
zero element.

©«

• · · · •

• · · · •

. . .

• · · · •

ª®®®®®®¬
Figure 4: The associated matrix of a well-generated tower

is in the form of a łstaircasež where the •’s are 𝐶-linearly

independent and other entries are zero.

We will show that any logarithmic tower 𝐾0 (𝑡) can be embed-

ded into a well-generated one. To this end, we impose the usual

lexicographical order on two significant vectors [10, Ch. 2, Def. 3].

Theorem 5.6. Let 𝐾0 (𝑡) be a logarithmic tower. Then there exists
a well-generated logarithmic tower 𝐾0 (𝑢), where 𝑢 = (𝑢1, . . . , 𝑢𝑤)

and 𝑛 ≤ 𝑤 ≤ 𝑛(𝑛 + 1)/2, and a differential monomorphism 𝜙 from
𝐾0 (𝑡) into 𝐾0 (𝑢) with 𝜙 |𝐾0

= id𝐾0
.

Proof. This proof will be separated into two parts. The first part

will show that each primitive (specifically, logarithmic) tower is

equal (as a field) to one where properties (CLI) and (MI) are satisfied.

This will enable us to embed the resulting logarithmic tower into a

well-generated one, which makes up the second part of the proof.

If 𝐾0 (𝑡) does not satisfy (CLI) and (MI), then ∃ 𝑣1, . . . , 𝑣𝑛 ∈ 𝐾0 (𝑡)

such that 𝐾0 (𝑣) is primitive and equals to 𝐾0 (𝑡), and sv(𝑣) is lower

than sv(𝑡). Since the order of the significant vectors is Noetherian,

we can eventually reach a primitive tower that satisfies both (CLI)

and (MI).

We start by supposing that sc(𝑡) is 𝐶-linearly dependent. Since

all components of sc(𝑡) are different from 0 by definition, there

exists an 𝑖 ∈ {2, . . . , 𝑛} and constants 𝑐1, . . . , 𝑐𝑖−1 such that

sc𝑖 =

𝑖−1∑
𝑗=1

𝑐 𝑗 sc𝑗 ,

where sc𝑗 is the 𝑗-th element in sc(𝑡). Moreover, si𝑡 (𝑐 𝑗 𝑡
′
𝑗) = si𝑡 (𝑡 ′𝑖)

for all 𝑗 with nonzero 𝑐 𝑗 . We remove the last non-zero projection

of 𝑡 ′𝑖 by setting 𝑣𝑘 := 𝑡𝑘 for all 𝑘 ∈ [𝑛] \ {𝑖} and 𝑣𝑖 := 𝑡𝑖 −
∑𝑖−1
𝑗=1 𝑐 𝑗 𝑡 𝑗 .

Thus, 𝐾0 (𝑣) = 𝐾0 (𝑡). Also, si
𝑣 (𝑣 ′

𝑘
) = si𝑡 (𝑡 ′

𝑘
) for all 𝑘 in [𝑛] \ {𝑖}

and si𝑣 (𝑣 ′𝑖) < si𝑡 (𝑡 ′𝑖) .We conclude that 𝐾0 (𝑣) is a primitive tower

with a lower significant vector than 𝐾0 (𝑡).

Next, we assume that sv(𝑡) is not monotonically increasing.

Then there exists an 𝑖 ∈ [𝑛] such that si𝑡 (𝑡 ′1) ≤ · · · ≤ si𝑡 (𝑡 ′𝑖)

and si𝑡 (𝑡 ′𝑖+1) < si𝑡 (𝑡 ′𝑖).We switch the 𝑖-th and (𝑖 + 1)-st generators

by setting 𝑣𝑘 := 𝑡𝑘 for all 𝑘 ∈ [𝑛] \ {𝑖, 𝑖 + 1} and

𝑣𝑖 := 𝑡𝑖+1; 𝑣𝑖+1 := 𝑡𝑖 .

Thus, 𝐾0 (𝑣) is equal to 𝐾0 (𝑡). Also, si
𝑣 (𝑣 ′𝑗) = si𝑡 (𝑡 ′𝑗) for 𝑗 ∈ [𝑖 − 1]

and si𝑣 (𝑣 ′𝑖) < si𝑡 (𝑡 ′𝑖). Thus, 𝐾0 (𝑣) is a primitive tower with a lower

significant vector than 𝐾0 (𝑡).

If the original primitive tower from the argument is logarithmic,

then the new generators from the above process are also logarith-

mic generators. This implies the new tower must be logarithmic

satisfying (CLI) and (MI), and this is what we assume about 𝐾0 (𝑡)

from this point forward.

For the second part of the proof, we show that 𝐾0 (𝑡) can be

embedded into a well-generated tower. We find the 𝐶-basis of the

associated matrix
(
𝜋𝑖 (𝑡

′
𝑗)
)
by letting 𝑏1 = 𝜋0 (𝑡

′
1) and identifying all

𝐶-linearly independent elements 𝑏2, . . . , 𝑏𝑤 , ordered by searching

the matrix from left to right and top to bottom. Since 𝐾0 (𝑡) is

primitive, 𝑛 ≤ 𝑤 ≤ 𝑛(𝑛 + 1)/2. Since 𝐾0 (𝑡) satisfies (CLI) and (MI),

there exist ℓ1, . . . , ℓ𝑛 ∈ [𝑤] such that ℓ1 = 1, ℓ𝑛 = 𝑤 ,

ℓ1 < ℓ2 < · · · < ℓ𝑛 and
(
𝑏ℓ1 , . . . , 𝑏ℓ𝑛

)
= sc(𝑡) . (13)

By the definition of the associated matrix and the ordering of

{𝑏1, . . . , 𝑏𝑤}, for all 𝑗 ∈ [𝑛] there exist 𝑐 𝑗,𝑘 ∈ 𝐶 such that

𝑡 ′𝑗 = 𝑏ℓ𝑗 +

ℓ𝑗−1∑
𝑘=1

𝑐 𝑗,𝑘𝑏𝑘 . (14)

Let𝑢1, . . . , 𝑢𝑤 be algebraically independent indeterminates over 𝐾0,

and 𝑢 := (𝑢1, . . . , 𝑢𝑤). Let 𝑣 𝑗 := 𝑢ℓ𝑗 +
∑ℓ𝑗−1
𝑘=1

𝑐 𝑗,𝑘𝑢𝑘 for all 𝑗 ∈ [𝑛].

Then 𝑣1, . . . , 𝑣𝑛 are algebraically independent over 𝐾0, because 𝑢ℓ𝑗
does not appear in the expressions defining 𝑣1, . . . , 𝑣 𝑗−1. It follows

that 𝜙 : 𝐾0 (𝑡) → 𝐾0 (𝑢) defined by 𝑓 (𝑡1, . . . , 𝑡𝑛) ↦→ 𝑓 (𝑣1, . . . , 𝑣𝑛) is

a monomorphism and 𝜙 |𝐾0
= id𝐾0

. For every 𝑘 ∈ [𝑤], we define

𝑢 ′
𝑘
= 𝜙 (𝑏𝑘) . (15)

Since 𝑢1, . . . , 𝑢𝑤 are algebraically independent over 𝐾0, by Corol-

lary 1′ in [17, page 124], the field 𝐾0 (𝑢1, . . . , 𝑢𝑤) can be uniquely

turned into a differential field such that its derivation agrees with

the one on 𝐾0 and also satisfies (15). By (14), 𝜙 (𝑡 ′𝑗) = 𝑣 ′𝑗 for all

𝑗 ∈ [𝑛]. Thus, 𝜙 is a differential monomorphism.

Lastly, we show that 𝐾0 (𝑢) is a well-generated tower over 𝐾0.

Set ℓ0 = 0. For each 𝑘 ∈ [𝑤], there exists a 𝑗 ∈ [𝑛] such that ℓ𝑗−1 <

𝑘 ≤ ℓ𝑗 . Then 𝑠 := si𝑡 (𝑏𝑘) ≤ si𝑡 (𝑡 ′𝑗) < 𝑗 and 𝑏𝑘 is 𝑡𝑠 -proper. Since 𝜙

is a monomorphism, it preserves degrees. By (15), 𝑢 ′
𝑘
is 𝑢ℓ𝑠 -proper,

where ℓ𝑠 ≤ ℓ𝑗−1 < 𝑘 since 𝑠 < 𝑗 . Hence, 𝑢 ′
𝑘
∈ 𝐾0 (𝑢1, . . . , 𝑢𝑘−1).

Since 𝜙 is differential and 𝑏𝑘 is a 𝐶-linear combination of loga-

rithmic derivatives, so is 𝑢 ′
𝑘
by (15). In particular, 𝑢 ′

𝑘
is 𝑢ℓ𝑠 -simple

by Lemma 2.6 (i). Moreover, 𝑏1, . . . , 𝑏𝑤 are 𝐶-linearly independent,

and so are 𝜙 (𝑏1), . . . , 𝜙 (𝑏𝑤) because 𝜙 is a monomorphism. It fol-

lows from (15) that 𝑢 ′1, . . . , 𝑢
′
𝑤 are 𝐶-linearly independent, which

152

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Du, Guo, Li, Wong

implies that 𝐾0 (𝑢) is a logarithmic tower by Corollary 4.5. In ad-

dition, 𝜋𝑖 (𝑢
′
𝑘
) = 0 for all 𝑘 ∈ [𝑤] and 𝑖 ∈ [𝑤] \ {ℓ𝑠 }, because 𝑢

′
𝑘
is

𝑢ℓ𝑠 -proper. Consequently, 𝐾0 (𝑢) is well-generated. □

The next example illustrates the results of the embedding algo-

rithm and AddDecompInField in both towers.

Example 5.7. Consider the logarithmic tower

F = 𝐶 (𝑥)
(
log(𝑥)︸ ︷︷ ︸
𝑡1

, log(𝑥𝑡1)︸ ︷︷ ︸
𝑡2

, log
(
(𝑥 + 1) (𝑡1 + 1) log(𝑥𝑡1)

)
︸ ︷︷ ︸

𝑡3

)
.

By Theorem 5.6, there exists a well-generated tower

E = 𝐶 (𝑥)
(
log(𝑥)︸ ︷︷ ︸
𝑢1

, log(𝑥+1)︸ ︷︷ ︸
𝑢2

, log(𝑢1)︸ ︷︷ ︸
𝑢3

, log(𝑢1+1)︸ ︷︷ ︸
𝑢4

, log(𝑢1+𝑢3)︸ ︷︷ ︸
𝑢5

)

and a differential homomorphism 𝜙 from F to E given by 𝜙 (𝑡1) = 𝑢1,
𝜙 (𝑡2) = 𝑢1 + 𝑢3 and 𝜙 (𝑡3) = 𝑢2 + 𝑢4 + 𝑢5. The associated matrices of
F and E are, respectively,

©«

1
𝑥

1
𝑥

1
𝑥+1

0
𝑡 ′1
𝑡1

𝑡 ′1
𝑡1+1

0 0 1+𝑡1
𝑥𝑡1𝑡2

ª®®®®¬
and

©«

1
𝑥

1
𝑥+1 0 0 0

0 0
𝑢′1
𝑢1

𝑢′1
𝑢1+1

0

0 0 0 0 0

0 0 0 0
(𝑢1+𝑢3)

′

𝑢1+𝑢3
0 0 0 0 0

ª®®®®®®¬
.

Let

𝑓1 =
(𝑡1 + 1)

2 + 𝑡1𝑡2

𝑥𝑡1 (𝑡1 + 1)𝑡2
and 𝑓2 =

𝑡3

𝑥

be two elements of F . Then 𝜙 (𝑓1) and 𝜙 (𝑓2) are

(𝑢1 + 1)
2 + 𝑢1 (𝑢1 + 𝑢3)

𝑥𝑢1 (𝑢1 + 1) (𝑢1 + 𝑢3)
and

𝑢2 + 𝑢4 + 𝑢5

𝑥
,

respectively. Using AddDecompInField, we compute the respective
remainders of 𝑓1 and 𝑓2 to obtain

𝑟1 = 𝑓1 and 𝑟2 =
𝑡1

−(𝑥 + 1)
+

1

𝑥 (𝑡1 + 1)
+
−(𝑡1 + 1)

𝑥𝑡2
.

In the same vein, we get the remainders of 𝜙 (𝑓1) and 𝜙 (𝑓2),

𝑟1 = 0 and 𝑟2 =
𝑢1

−(𝑥 + 1)
+
−(𝑢1 + 1)

𝑥 (𝑢1 + 𝑢3)
,

respectively. Note that 𝜙 (𝑟1) ≠ 0 but 𝑟1 = 0, which implies that
𝑟1 ≺ 𝜙 (𝑟1). While hm(𝑟2) = hm(𝜙 (𝑟2)), we observe that 𝑟2 has
fewer nonzero projections than 𝜙 (𝑟2).

6 CONCLUSIONS

In this article, we have developed an additive decomposition in

S-primitive towers. The decomposition algorithm is based on the

matryoshka decomposition of functions, Hermite reduction and

integration by parts. It provides an alternative method to Risch’s

algorithm for determining in-field (resp. elementary) integrability

in (resp. over) an S-primitive tower. Moreover, we embed a loga-

rithmic tower into a well-generated one, where functions can be

decomposed further.

We observe that the notion of remainders is defined according

to a partial order among multivariate rational functions. It would

be possible to refine this notion so that all remainders of a given

function share more common properties. Moreover, we plan to

investigate whether our additive decomposition is applicable to

compute telescopers for elements in an S-primitive tower, as carried

out in [6]. We also hope to develop an additive decomposition in

exponential extensions.

ACKNOWLEDGMENTS

We are grateful to Shaoshi Chen, Christoph Koutschan and Clemens

Raab for their valuable comments and suggestions. The authors

would also like to thank the anonymous reviewers for their remarks,

which helped us to greatly improve the manuscript. H. Du and E.

Wong were supported by the Austrian Science Fund (FWF): F5011-

N15. J. Guo and Z. Li were supported by two NSFC Grants 11871067

and 11771433.

REFERENCES
[1] S.A. Abramov. Indefinite sums of rational functions. Proceedings of the 1995

International Symposium on Symbolic and Algebraic Computation. New York, NY,
USA: ACM, 1995: 303-308.

[2] A. Bostan, S. Chen, F. Chyzak and Z. Li. Complexity of creative telescoping for
bivariate rational functions. Proceedings of the 2010 International Symposium on
Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2010: 203-210.

[3] A. Bostan, S. Chen, F. Chyzak, Z. Li and G. Xin. Hermite reduction and creative
telescoping for hyperexponential functions. Proceedings of the 2013 International
Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM,
2013: 77-84.

[4] A. Bostan, F. Chyzak, P. Lairez and B. Salvy. Generalized Hermite reduction,
creative telescoping and definite integration of D-finite functions. Proceedings of
the 2018 International Symposium on Symbolic and Algebraic Computation. New
York, NY, USA: ACM, 2018: 95-102.

[5] M. Bronstein. Symbolic Integration I : transcendental functions. Berlin: Springer-
Verlag, 2005.

[6] S. Chen, H. Du and Z. Li. Additive decompositions in primitive extensions.
Proceedings of the 2018 International Symposium on Symbolic and Algebraic Com-
putation. New York, USA: ACM, 135-142.

[7] S. Chen, M. van Hoeij, M. Kauers and C. Koutschan. Reduction-based creative
telescoping for Fuchsian D-finite functions. Journal of Symbolic Computation,
2018, 85:108 - 127.

[8] S. Chen, H. Huang, M. Kauers and Z. Li. A modified Abramov-Petkovšek reduc-
tion and creative telescoping for hypergeometric terms. Proceedings of the 2015
International Symposium on Symbolic and Algebraic Computation. New York, NY,
USA: ACM, 2015: 117-124.

[9] S. Chen, M. Kauers and C. Koutschan. Reduction-based creative telescoping for
algebraic functions. Proceedings of the 2016 International Symposium on Symbolic
and Algebraic Computation. New York, NY, USA: ACM, 2016: 175-182.

[10] D. Cox, J. Little, D. O’Shea. Ideals, Varieties and Algorithms. Fourth Edition,
Springer, 2015.

[11] H. Du, H. Huang and Z. Li. A 𝑞-analogue of the modified Abramov-Petkovšek
reduction. Advances in Computer Algebra. S. Schneider and C. Zima (eds.) Springer
International Publishing, 2018: 105-129.

[12] C. Hermite. Sur l’intégration des fractions rationnelles. Ann. Sci. École Norm.
Sup.(2), 1872(1): 215-218.

[13] M. V. Ostrogradsky. De l’intégration des fractions rationnelles. Bull. de la classe
physico-mathématique de l’Acad. Impériale des Sciences de Saint-Pétersbourg, 1845,
4: 145-167, 286-300.

[14] C. Raab. Definite Integration in Differential Fields. PhD thesis, RISC, Johannes
Kepler University, Linz, Austria, 2012.

[15] M. Singer, S. David and B. Caviness. An extension of Liouville’s theorem on
integration in finite terms. SIAM J. Comput. 1985, 14: 966-990

[16] J. van der Hoeven. Constructing reductions for creative telescoping. Applicable
Algebra in Engineering, Communication and Computing. 2020 https://doi.org/10.
1007/s00200-020-00413-3.

[17] O. Zariski and P. Samuel. Commutative Algebra I. Graduate Texts in Mathematics,
Springer, 1975.

153

https://doi.org/10.1007/s00200-020-00413-3
https://doi.org/10.1007/s00200-020-00413-3

Numerical Equality Tests for Rational
Maps and Signatures of Curves

Timothy Duff
tduff3@gatech.edu

School of Mathematics, Georgia Tech
Atlanta, Georgia, USA

Michael Ruddy
michael.ruddy@mis.mpg.de

Max Planck Institute for Mathematics in the Sciences
Leipzig, Germany

�
Φ−→

Figure 1: Two curves and their signature in red. A line and its pullback in blue.

ABSTRACT

We apply numerical algebraic geometry to the invariant-theoretic

problem of detecting symmetries between two plane algebraic

curves. We describe an efficient equality test which determines,

with łprobability-onež, whether or not two rational maps have

the same image up to Zariski closure. The application to invariant

theory is based on the construction of suitable signature maps as-

sociated to a group acting linearly on the respective curves. We

consider two versions of this construction: differential and joint sig-

nature maps. In our examples and computational experiments, we

focus on the complex Euclidean group, and introduce an algebraic

joint signature that we prove determines equivalence of curves

under this action. We demonstrate that the test is efficient and use

it to empirically compare the sensitivity of differential and joint

signatures to noise.

KEYWORDS

differential invariants, invariant theory, numerical algebraic ge-

ometry, polynomial systems, Euclidean group, computer algebra,

homotopy continuation

ACM Reference Format:

Timothy Duff and Michael Ruddy. 2020. Numerical Equality Tests for Ratio-

nal Maps and Signatures of Curves. In International Symposium on Symbolic

and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404050

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404050

1 INTRODUCTION

This paper studies two related problems.

Problem 1. Given two irreducible algebraic varieties, 𝑋0 ⊂ C𝑛0

and 𝑋1 ⊂ C𝑛1 , and two rational maps, Φ0 : 𝑋0 d C
𝑚 and Φ1 :

𝑋1 d C
𝑚, decide if imΦ0 = imΦ1 .

Problem 2. Given a positive dimensional algebraic group 𝐺 ⊂
PGL3 (C) acting linearly on C2 and two plane algebraic curves

𝐶0,𝐶1 ⊂ C2, decide if there exists 𝑔 ∈ 𝐺 such that 𝐶0 = 𝑔 ·𝐶1.

In the context of differential invariant theory, we can reduce

Problem 2 to Problem 1 by constructing a suitable signature map

for the action of 𝐺 on the curves 𝐶1,𝐶2 . For Problem 1, the field of

numerical algebraic geometry furnishes a suite of łprobability-onež

tests. In this article, we explain the aforementioned approaches to

these problems in detail and demonstrate that they yield practical

equality tests for both problems.

In Problem 1, imΦ𝑖 denotes the Zariski closure of the image

of Φ𝑖 . We do not address the more delicate problem of deciding

equality of the constructible sets imΦ𝑖 .

A formally correct algorithmic solution to Problem 1 clearly de-

pends on how the input is łgivenž to us and what type of guarantee

we seek. A natural route via symbolic computation is to compute

the ideal of implicit equations for each map and check if these ideals

are equal. This is a standard application of Gröbner bases; resultants

and more specialized techniques may provide useful alternatives.

Our approach to Problem 1 via numerical algebraic geometry is

in the same spirit as previous works [8, 17, 18], where the cost of

implicitization is replaced by the cost of computing certain witness

sets.A key feature of our approach is that it requires a pre-computed

witness set for only one of the maps, say Φ1 . This feature is mo-

tivated mainly by our interest in Problem 2. We view computing

a witness set for Φ1 as an offline cost. The online cost of testing

equality via Algorithm 1 is typically negligible by comparison. This

154

https://doi.org/10.1145/3373207.3404050
https://doi.org/10.1145/3373207.3404050

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece T. Duff, M. Ruddy

is advantageous in a scenario where we wish to test Φ1 against

many different choices of Φ0 .

To reduce Problem 2 to Problem 1, one may use the maps ob-

tained by restricting a pair of independent, rational differential in-

variants for𝐺 to𝐶0 and𝐶1 [22], which can be explicitly constructed

via the Fels-Olver moving frame method [11] or its algebraic for-

mulation [20]. The image of an algebraic curve𝐶 under this map is

the curve’s differential signature. In greater generality, differential

signatures may be constructed for smooth submanifolds of some

ambient space equipped with a Lie group action. The differential

signature locally characterizes the manifold’s equivalence class un-

der the action, meaning that manifolds with the same signature are

locally equivalent under the Lie group [11]. For an algebraic group

acting on C2 and a plane curve 𝐶 ⊂ C2, such a construction yields

a rational map Φ : C2 d C2 . In this special case, local equivalence

implies global equivalence.

Example 1.1. In Figure 1, the red curve on left depicts real points

(𝑥,𝑦) such that 8𝑥3−20𝑥𝑦+2𝑦2+5𝑥−10 = 0.Applying a real rotation

and translation yields the curve in the middle. Thus these curves are

equivalent under the linear action of the complex Euclidean group

E2 (C) . The closed image of their respective differential signature

maps is the red curve of degree 48 depicted on the right.

Differential signatures of curves have been successfully applied

to object recognition under noise, with applications ranging from

jigsaw puzzle reconstruction [19] to medical imaging [13]. Differ-

ential signatures have also been used to solve classical invariant

theory problems such as determining equivalence of binary and

ternary forms [4, 21, 29]. The setting of algebraic curves is a useful

testing ground for algorithms in this subject. In [7] the notion of

a signature polynomial was introduced to determine equivalence

of plane algebraic curves via implicitization methods. In [22] it is

shown that this reduction to implicitization can always be done for

any group acting as in Problem 2.

In this paper we show that the numerical algorithm for Problem 1

yields an effective way for solving Problem 2 using differential

signatures, even when implicitization is not practically feasible. We

also consider joint signatures, which are obtained by constructing

rational maps using joint invariants of the induced action of𝐺 on

the product C2 × . . . × C2 [30]. While we focus on plane curves,

in principle the numerical equality test can be used to determine

equivalence of higher dimensional varieties through differential

or joint signatures, provided one can find a suitable set of rational

differential or joint invariants.

In Section 2, we review notions from numerical algebraic geom-

etry and describe a general solution to Problem 1 (Algorithm 1.)

Section 3 considers the signature approach to Problem 2. In 3.1 we

follow the construction in [7, 22] to describe a differential signature

for plane algebraic curves using a classifying pair of differential

invariants. In 3.2 we describe how joint signatures can be used to

determine equivalence of plane curves using lower order differ-

ential invariant functions, with a detailed analysis in the case of

the complex Euclidean group E2 (C). In Section 4, we describe an

implementation in Macaulay2 [12], which has been successful for

studying both classes of maps on curves of degree up to 10. Our

(reproducible) experiments show that offline witness computation

for plane curves of various degrees is feasible, that the online equal-

ity test gives a fast alternative to symbolic methods, and that the

numerical approach is robust in a certain regime of noise.1

2 NUMERICAL EQUALITY

2.1 Background

In this subsection we fix notation and terminology related to alge-

braic varieties and witness sets. A more comprehensive overview of

numerical algebraic geometry may be found in the survey [32] or

books [3, 33]. A general system of polynomial equations is denoted

by a 𝑐-tuple 𝑓 = (𝑓1, . . . , 𝑓𝑐) for 𝑓1, . . . , 𝑓𝑐 ∈ C[𝑥1, . . . , 𝑥𝑛] . Where

convenient, we may identify 𝑓 with a map C𝑛 → C𝑐 . The vanish-
ing locus 𝑉 (𝑓) := {𝑥 ∈ C𝑛 | 𝑓1 (𝑥) = · · · = 𝑓𝑐 (𝑥) = 0} is a closed
subvariety of C𝑛 . If 𝑐 is the codimension of 𝑉 (𝑓), then 𝑓 is said to

be a regular sequence and the variety𝑉 (𝑓) is a complete intersection.

For polynomial systems 𝑓 = (𝑓1, . . . , 𝑓𝑘) and 𝑔 = (𝑔1, . . . , 𝑔𝑘′) we
write (𝑓 | 𝑔) := (𝑓1, . . . , 𝑓𝑘 , 𝑔1, . . . , 𝑔𝑘′), yielding a polynomial sys-

tem whose vanishing locus is 𝑉 (𝑓) ∩𝑉 (𝑔). A property is said to

hold generically on an irreducible variety 𝑋 if it holds on some

nonempty Zariski-open𝑈 ⊂ 𝑋 .We say that 𝑓 is generically reduced

along 𝑋 if there exists a point 𝑥 ∈ 𝑋 such that the tangent space

𝑇𝑥 (𝑓) = ker
(
𝑑 𝑓𝑖/𝑑𝑥 𝑗

)
has dimension 𝑛 − 𝑐.

The main data structures in numerical algebraic geometry are

variations on the notion of a witness set. The overarching idea is to

represent an irreducible variety 𝑋 ⊂ C𝑛 by its intersection with a

generic affine linear subspace of complementary dimension. The

number of points in such an intersection is the degree, deg𝑋 .

We define a 𝑐-slice in C𝑛 to be a polynomial system consisting

of 𝑐 affine hyperplanes, 𝐿 = (𝑙1, . . . , 𝑙𝑐) with 𝑙𝑖 ∈ C[𝑥1, . . . , 𝑥𝑛]≤1 .
For convenience we write 𝐿 in place of 𝑉 (𝐿(𝑥)) and also use the

notation 𝐿𝑐 . For 𝑋 an irreducible variety of codimension 𝑐 and a

generic slice 𝐿𝑐 , the intersection 𝑋 ∩ 𝐿𝑐 is transverse, consisting of

deg𝑋 isolated, nonsingular points.

The standard definition of a witness set for a variety assumes that

defining equations for the variety of interest are known. A more

flexible notion is that of a pseudo-witness set for a rational map. This

was first studied for linear projections in [17]. Our Definition 2.1

differs from that used in [3, 17, 18]; to distinguish our setup, we

provisionally use the term weak pseudowitness set.

Definition 2.1. Let 𝑉 (𝑓) ⊂ C𝑛 be Zariski-closed, 𝑋 ⊂ 𝑉 (𝑓) be
one of its irreducible components, and Φ : 𝑋 d C𝑚 be a rational

map. Set 𝑐 = codim𝑉 (𝑓), 𝑑 = dim imΦ. A weak pseudowitness

set for Φ is a quadruple (𝑓 ,Φ, (𝐿 |𝐿′), {𝑤1, . . . ,𝑤𝑒 }) , where 𝐿 is a

generic affine (𝑚−𝑑)-slice of imΦ, 𝐿′ is a generic affine (𝑐 −𝑚+𝑑)-
slice of 𝑋, and such that𝑤1, . . . ,𝑤𝑒 are points in 𝑋 ∩ 𝐿′ where Φ is

defined such that imΦ∩𝐿 = {Φ(𝑤1), . . . ,Φ(𝑤𝑒)} and 𝑒 = deg imΦ.

The data in Definition 2.1 are already sufficient for testing queries

of the form 𝑦 ∈ imΦ, as noted in [17, Remark 2]. For testing, 𝑦 ∈
imΦ and other applications, the stronger notion is required [18].

Further applications of pseudowitness sets are in [6, 8].

In our context, equations defining imΦ are seldom known, so in

what follows wemay informally refer to the objects of Definition 2.1

and their multiprojective counterparts in Definition 2.2 as łwitness

setsž without ambiguity.

1Obtain the code at https://github.com/timduff35/NumericalSignatures.

155

https://github.com/timduff35/NumericalSignatures

Numerical signatures ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Following [15, 16, 25], we give a multiprojective generalization

of Definition 2.1. For irreducible 𝑋 ⊂ C𝑛, we fix (𝑛1, . . . , 𝑛𝑘), an
integer partition of 𝑛, and consider 𝑋 in the affine space C𝑛1 × · · · ×
C
𝑛𝑘 .We consider slices 𝐿𝒆 = 𝐿𝑒1 | · · · |𝐿𝑒𝑘 , where 𝒆 = (𝑒1, . . . , 𝑒𝑘) ∈
N
𝑘 is an integral vector such that 𝑒1 + · · · 𝑒𝑘 = dim𝑋, and 𝐿𝑒 𝑗 is

a 𝑒 𝑗 -slice consisting of 𝑒 𝑗 affine hyperplanes in the coordinates of

C
𝑛 𝑗 . We say that 𝒆 is a multidimension of 𝑋 if for generic 𝐿𝒆 the

intersection 𝑋 ∩𝐿𝒆 is a finite set of nonsingular points; the number

of points for such 𝐿𝒆 is a constant called the 𝒆-multidegree deg
𝒆
𝑋 .

Definition 2.2. Let 𝑓 , 𝑋, 𝑐, 𝐿′,Φ be as in 2.1, and 𝒆 be a multi-

dimension of imΦ corresponding to some partition of 𝑛. An 𝒆-weak

pseudowitness set for Φ consists of
(
𝑓 ,Φ, (𝐿𝒆 |𝐿′), {𝑤1, . . . ,𝑤𝑒 }

)
,

such that imΦ ∩ 𝐿𝒆 = {Φ(𝑤1), . . . ,Φ(𝑤𝑒)} and 𝑒 = deg
𝒆
imΦ.

The general membership test for multiprojective varieties pro-

posed in [16] uses the stronger notion of a witness collection. This

is required since for an arbitrary point 𝑥 ∈ 𝑋 there may not exist

transverse slices 𝐿𝒆 ∋ 𝑥 for 𝒆 ranging over all multidimensions

of 𝑋Ðsee [16, Example 3.1]. This subtlety is not encountered for

generic 𝑥 ∈ 𝑋 ; we record this basic fact in Proposition 2.3.

Proposition 2.3. Fix irreducible𝑋 ⊂ C𝑛1 × · · · ×C𝑛𝑘 and 𝒆 some

multi-dimension of 𝑋 . For 𝑥 = (𝑥1, · · · , 𝑥𝑘) ∈ 𝑋 generic, there exists

an 𝒆-slice 𝐿𝒆 ∋ 𝑥 such that dim(𝑋 ∩𝐿𝒆) = 0.Moreover, for 𝑥 ∉ 𝑋𝑠𝑖𝑛𝑔,

we also have that 𝑥 ∉ (𝑋 ∩ 𝐿𝒆)𝑠𝑖𝑛𝑔 for generic 𝐿𝒆 .

Proof. For generic 𝑥1 in the image of 𝜋1 : 𝑋 → C𝑛1 we have

that the fiber 𝜋−11 (𝑥1) has dimension dim𝑋 − dim𝜋1 (𝑋) . Choose
such an 𝑥1 and let 𝐿𝑒1 ∋ 𝑥1 be generic so that 𝜋1 (𝑋) ∩ 𝐿𝑒1 has

dimension dim𝜋1 (𝑋) − 𝑒1 . It follows that (𝑋 ∩ 𝐿𝑒1 has dimension

dim𝑋 − 𝑒1 . This construction holds for all 𝑥1 on some Zariski

open 𝑈1 ⊂ 𝜋1 (𝑋). Repeating this construction for the remaining

factors yields 𝑈2, . . . ,𝑈𝑘 such that the first part holds for all 𝑥 ∈
𝑈1 × · · · ×𝑈𝑘 . The second part follows from the appropriate Bertini

theorem, cf. [14, Thm 17.16]. □

2.2 A general equality test

Now let Φ0 : 𝑋0 d C
𝑚 and Φ1 : 𝑋1 d C

𝑚 denote two rational

maps with each 𝑋𝑖 ⊂ C𝑛𝑖 of codimension 𝑐𝑖 . Problem 1 from the

introduction asks us to decide whether or not their images are equal

up to Zariski closure. A probabilistic procedure is given in Algo-

rithm 1. This equality test refines general membership and equality

tests from numerical algebraic geometry, which are summarized

in [33, Ch. 13, 15] and [3, Ch. 8,16]. Our setup is motivated by an

efficient solution to Problem 2. Following the standard terminol-

ogy, our test correctly decides equality with łprobability-onež in an

idealized model of computation. This is the content of Theorem 2.4.

Standard disclaimers apply, since any implementation must rely on

numerical approximations in floating-point [3, Ch. 3, pp. 43-45].

Algorithm 1 assumes different representations for the two maps.

The map Φ1 is represented by a witness set in the sense of Defi-

nition 2.1, say (𝑓1,Φ1, (𝐿1 |𝐿′1), {𝑤1, . . . ,𝑤𝑒 }) . In fact, the only data

needed by Algorithm 1 are the map itself Φ1, the slice 𝐿1, and the

points𝑤1, . . . ,𝑤𝑒 . For the map Φ0, we need only a sampling oracle

that produces generic points on 𝑋0 and codim(𝑋0)-many reduced

equations vanishing on 𝑋0 .

Suppose dim imΦ0 = dim imΦ1 = 𝑑. There is a probabilistic

membership test for queries of the form Φ0 (𝑥0) ∈ imΦ1 based on

homotopy continuation. The relevant homotopy depends paramet-

rically on 𝐿1, a (𝑚−𝑑)-slice 𝐿0 ∋ Φ0 (𝑥0), a (𝑐0−𝑚+𝑑)-slice 𝐿′0 ∋ 𝑥0,
and a regular sequence 𝑓0 = (𝑓0,1, . . . , 𝑓0,𝑐0) which is generically

reduced with respect to 𝑋0 . The homotopy 𝐻 is defined as

𝐻 (𝑥 ; 𝑡) =
(
𝑓0
��𝐿′0

�� 𝑡 𝐿1 ◦ Φ0 + (1 − 𝑡) 𝐿0 ◦ Φ0

)
(𝑥) . (1)

In simple terms, 𝐻 moves a slice through Φ0 (𝑥0) to the slice wit-

nessing imΦ1 as 𝑡 goes from 0 to 1. A solution curve associated

to (1) is a smooth map 𝑥 : [0, 1] → C𝑛 such that 𝐻 (𝑥 (𝑡), 𝑡) = 0

for all 𝑡 . For generic parameters 𝐿0, 𝐿1, 𝐿
′
0 the Jacobian 𝐻𝑥 (𝑥, 𝑡) is

invertible for all 𝑡 ∈ [0, 1], solution curves satisfy the ODE

𝑥 ′(𝑡) = −𝐻𝑥 (𝑥, 𝑡)−1𝐻𝑡 (𝑥, 𝑡),

and each of the points𝑤1, . . . ,𝑤𝑒 is the endpoint of some solution

curve 𝑥 with 𝑥 (0) ∈ 𝑋 ∩ 𝐿′0 . These statements follow from more

general results on coefficient-parameter homotopy, as presented

in [27] or [33, Thm 7.1.1]. We assume a subroutine TRACK(𝐻, 𝑥0)
which returns 𝑥 (1) for the solution curve based at 𝑥0 . In practice,

the curve 𝑥 (𝑡) is approximated by numerical predictor/corrector

methods [1, 26]. We allow our TRACK routine to fail; this will occur,

for instance, when Φ0 (𝑥0) is a singular point on imΦ0 . However, it

will succeed for generic (and hence almost all) choices of parameters

and 𝑥0 ∈ C𝑛0 . Algorithm 1 exploits this fact.

Algorithm 1. Probability-1 equality test

Input: Let 𝑋0 ⊂ C𝑛0 , 𝑋1 ⊂ C𝑛1 be irreducible algebraic varieties,

and Φ0 : 𝑋0 → C𝑚, Φ1 : 𝑋1 → C𝑚 be rational maps, repre-

sented via the following ingredients:

1) (𝐿1, {𝑤1, . . . ,𝑤𝑒 }) with imΦ1 ∩ 𝐿1 = {Φ1 (𝑤1), . . . ,Φ𝑒 (𝑤𝑒)}
and 𝑒 = deg imΦ1 (cf. Definition 2.1),

2) 𝑓0,1, . . . , 𝑓0,𝑐0 ∈ C[𝑥1, . . . , 𝑥𝑛0]: a generically reduced regular

sequence such that codim(𝑋0) = 𝑐0 and 𝑋0 ⊂ 𝑉 (𝑓1, . . . , 𝑓𝑐0),
3) an oracle for sampling a point 𝑥0 ∈ 𝑋0, and
4) explicit rational functions representing each map Φ𝑖 .

Output: YES if imΦ0 = imΦ1 and NO if imΦ0 ≠ imΦ1 .

1: sample 𝑥0 ∈ 𝑋0
2: 𝑇𝑥0 (𝑓) ← ker (𝐷 𝑓)𝑥0
3: 𝑑 ← rank (𝐷 Φ0)𝑥0

��
𝑇𝑥0 (𝑓)

4: if 𝑑 ≠ dim imΦ1 then return NO

5: 𝐻 (𝑥 ; 𝑡) ← the homotopy from equation 1

6: 𝑥1 ← TRACK (𝐻, 𝑥0)
7: if Φ0 (𝑥1) ∈ {Φ1 (𝑤1), . . . ,Φ1 (𝑤𝑒)} return YES

else return NO

Theorem 2.4. For generic 𝑥0, 𝐿0, 𝐿
′
0, 𝐿1, Algorithm 1 correctly de-

cides if imΦ0 = imΦ1 .

Remark 2.5. The set of łnon-genericž 𝐿1 depends on Φ0 and Φ1 .

In practice, an oracle for sampling generic points could be provided

by either a parametrization or by homotopy continuation with

known equations for 𝑋0 . The dimension dim imΦ1 is implicit in

the description of the witness set.

Proof. Since 𝑥0 is generic and 𝑓0 is generically reduced, we may

assume that that 𝑑 = dim imΦ0 . Noting line 4, we are done unless

156

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece T. Duff, M. Ruddy

𝑑 = dim imΦ1 . In this case, since the imΦ𝑖 are irreducible,

dim
(
imΦ0 ∩ imΦ1

)
= 𝑑 ⇔ imΦ0 = imΦ1 . (2)

As previously mentioned, generic slices give that the solution curve

𝑥 (𝑡) associated to 1 with initial value 𝑥0 exists and satisfies 𝑥 (𝑡) ∈
𝑉 (𝑓) \ 𝑉 (𝑓)sing for all 𝑡 ∈ [0, 1] . The endpoint 𝑥1 is, a priori, a

point of 𝑉 (𝑓). Since 𝑋0 \ (𝑋0)sing is a connected component of

𝑉 (𝑓) \𝑉 (𝑓)sing in the complex topology and 𝑥0 ∈ 𝑋0, so also must

𝑥1 ∈ 𝑋0 . Hence Φ0 (𝑥1) ∈ imΦ0 ∩ 𝐿1 . Now if imΦ0 = imΦ1, then

clearly we must have

Φ0 (𝑥1) ∈ imΦ1 ∩ 𝐿1 = {Φ1 (𝑤1), . . . ,Φ1 (𝑤𝑒)}, (3)

as is tested on line 7. Conversely, if (3) holds, then

dim(imΦ0 ∩ imΦ1 ∩ 𝐿1) ≥ 0,

which by (2) and the genericity of 𝐿1 implies imΦ0 = imΦ1 . □

In the multiprojective setting, we may give a similar argument,

noting that Proposition 2.3 and genericity of Φ0 (𝑥0) are needed so

that 𝐻𝑥 (𝑥0, 0) is invertible.

3 SIGNATURES OF CURVES

3.1 Differential signatures

In what follows, all plane curves are complex algebraic, irreducible,

and of degree greater than one. Let 𝐺 ⊂ PGL3 (C) be a positive
dimensional algebraic group acting linearly on C2 with action 𝑔 ·
(𝑥,𝑦) = (𝑥,𝑦).
Definition 3.1. Two curves 𝐶0,𝐶1 are said to be 𝐺-equivalent,

denoted 𝐶0 �𝐺 𝐶1, if there exists a 𝑔 ∈ 𝐺 such that 𝐶0 = 𝑔 ·𝐶1.
A differential signature that determines𝐺-equivalence of curves can

be constructed from a set of classifying invariants (Definition 3.6).

We let 𝐽𝑛 denote the 𝑛th order jet space, a complex vector space

of dimension (𝑛 + 2) with coordinates (𝑥,𝑦,𝑦 (1) , . . . , 𝑦 (𝑛)) . Letting
Ω(𝐽𝑛) denote the set of complex-differentiable functions from 𝐽𝑛

to C, the total derivative operator 𝑑
𝑑𝑥

: Ω(𝐽𝑛) → Ω(𝐽𝑛+1) is the
unique C-linear map satisfying the product rule and the relations
𝑑
𝑑𝑥
(𝑥) = 1, 𝑑

𝑑𝑥
(𝑦 (𝑘)) = 𝑦 (𝑘+1) for 𝑘 ≥ 0, cf. [28, Ch. 7].

The prolonged action of 𝐺 on 𝐽𝑛 is given by

𝑔 · (𝑥,𝑦,𝑦 (1) , . . . , 𝑦 (𝑛)) = (𝑥,𝑦,𝑦 (1) , . . . , 𝑦 (𝑛))
where

𝑦 (1) =
𝑑
𝑑𝑥
[𝑦 (𝑔, 𝑥,𝑦)]

𝑑
𝑑𝑥
[𝑥 (𝑔, 𝑥,𝑦)]

,

𝑦 (𝑘+1) =
𝑑
𝑑𝑥

[
𝑦 (𝑘) (𝑔, 𝑥,𝑦,𝑦 (1) , . . . , 𝑦 (𝑘))

]

𝑑
𝑑𝑥
[𝑥 (𝑔, 𝑥,𝑦)]

for 𝑘 = 1, . . . , 𝑛 − 1.

Definition 3.2. A differential invariant for the action of 𝐺 is a

function on 𝐽𝑛 that is invariant under the prolonged action of 𝐺

on 𝐽𝑛 . The order of a differential invariant is the maximum 𝑘 such

that the function depends explicitly on 𝑦 (𝑘) .

Definition 3.3. The 𝑛-th jet of an algebraic curve 𝐶 is the image

of the map 𝑗𝑛
𝐶
: 𝐶 d 𝐽𝑛 given (where defined) by

(𝑥,𝑦) ↦→ (𝑥,𝑦,𝑦 (1)
𝐶
(𝑥,𝑦), 𝑦 (2)

𝐶
(𝑥,𝑦), . . . , 𝑦 (𝑛)

𝐶
(𝑥,𝑦)),

where 𝑦
(𝑘)
𝐶
(𝑥,𝑦) is the 𝑘-th derivative of 𝑦 with respect to 𝑥 at the

point (𝑥,𝑦) ∈ 𝐶 .
The prolonged action of 𝐺 is defined such that

𝑔 · 𝑗𝑛𝐶 (𝐶) = 𝑗𝑛𝑔 ·𝐶 (𝑔 ·𝐶).

Definition 3.4. The restriction of a differential invariant𝐾 of order

𝑛 to a curve 𝐶 is the map 𝐾 |𝐶 : 𝐶 d C2 given by 𝐾 |𝐶 = 𝐾 ◦ 𝑗𝑛
𝐶
.

The coordinates of the 𝑛-th jet map 𝑗𝑛
𝐶
are rational functions of 𝑥

and 𝑦 that can be computed via implicit differentiation:

𝑦
(1)
𝐶

=
−𝜕𝑥 𝐹
𝜕𝑦 𝐹

and 𝑦
(𝑘+1)
𝐶

= 𝜕𝑥 𝑦
(𝑘)
𝐶
+ 𝜕𝑦 𝑦 (𝑘)𝐶

𝑦
(1)
𝐶
. (4)

where I𝐶 = ⟨𝐹 ⟩. Thus, if 𝐾 is a rational differential invariant of

order 𝑛, meaning it is a rational function in the coordinates of 𝐽𝑛 ,

then 𝐾 |𝐶 is a rational function in 𝑥 and 𝑦.

Definition 3.5. We say that a set of differential invariants I sepa-

rates orbits for the prolonged action on a nonempty Zariski-open

𝑊 ⊂ 𝐽𝑛 if, for all 𝑝, 𝑞 ∈𝑊 ,

𝐾 (𝑝) = 𝐾 (𝑞) ∀𝐾 ∈ I ⇔ ∃𝑔 ∈ 𝐺 such that 𝑝 = 𝑔 · 𝑞.
Definition 3.6. Let an 𝑟 -dimensional algebraic group𝐺 act on C2.

A pair of rational differential invariants I = {𝐾1, 𝐾2} is said to be

classifying if 𝐾1 separates orbits on𝑈𝑘 ⊂ 𝐽𝑘 for some 𝑘 < 𝑟 and I
separates orbits on𝑈𝑟 ⊂ 𝐽 𝑟 .
For a particular action of 𝐺 , such a pair of classifying invariants

always exists, and one can explicitly construct a pair by computing

generators for the field of rational invariants for the prolonged

action of𝐺 [22, Thm 2.20], using algorithms such as those found in

[9] and [20]. It should be noted that I is not unique, and different

choices can lead to different differential signatures.

Definition 3.7. For a pair of classifying invariants I = {𝐾1, 𝐾2},
an algebraic curve 𝐶 is said to be non-exceptional if all but finitely

many points on 𝑝 ∈ 𝐶 satisfy

𝑗𝑘𝐶 (𝑝) ∈ 𝑈𝑘 , 𝑗
𝑟
𝐶 (𝑝) ∈ 𝑈𝑟 , and

𝜕𝐾1

𝜕𝑦 (𝑘)
,
𝜕𝐾2

𝜕𝑦 (𝑟)
≠ 0 at 𝑗𝑟𝐶 (𝑝).

A generic curve of degree 𝑑 where
(𝑑+2
2

)
− 2 ≥ 𝑟 is non-exceptional

with respect to a given classifying set [22, Thm 2.27].

Definition 3.8. Let I = {𝐾1, 𝐾2} be a pair of classifying invariants
for the action of 𝐺 on C2 and 𝐶 a non-exceptional algebraic curve

with respect to I. Then the image of 𝐶 under the map

(𝐾1 |𝐶 , 𝐾2 |𝐶) : 𝐶 d C2

is the differential signature of 𝐶 and is denoted S𝐶 .
The following appears as Theorem 2.37 in [22].

Theorem 3.9. If algebraic curves 𝐶0,𝐶1 are non-exceptional with

respect to a classifying set of rational differential invariants I =

{𝐾1, 𝐾2} under an action of 𝐺 on C2 then

𝐶0 �𝐺 𝐶1 ⇔ S𝐶0
= S𝐶1

.

Example 3.10. Consider the action of the Euclidean group E2 of
complex translations, rotations, and reflections on C2 where the
action of 𝑔 ∈ E2 (C) is given by

157

Numerical signatures ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

𝑔 · (𝑥, 𝑦) = (𝑐𝑥 + 𝑠𝑦 +𝑎,−𝑠𝑥 + 𝑐𝑦 +𝑏) or 𝑔 · (𝑥, 𝑦) = (−𝑐𝑥 + 𝑠𝑦 +𝑎, 𝑠𝑥 + 𝑐𝑦 +𝑏),

where 𝑐2 + 𝑠2 = 1 and 𝑐, 𝑠, 𝑎, 𝑏 ∈ C. The pair I = {𝐾1, 𝐾2}
defined below is derived from classical Euclidean curvature and

is classifying for the action of E2 . Here 𝑦 (1) = 𝑦𝑥 , 𝑦 (2) = 𝑦𝑥𝑥 , and
𝑦 (3) = 𝑦𝑥𝑥𝑥 :

𝐾1 =
𝑦2𝑥𝑥(

1 + 𝑦2𝑥
)3 , 𝐾2 =

(
𝑦𝑥𝑥𝑥

(
1 + 𝑦2𝑥

)
− 3𝑦𝑥𝑦2𝑥𝑥

)2
(
1 + 𝑦2𝑥

)6 (5)

Moreover, there are no I-exceptional algebraic curvesÐfor de-
tails see [31]. By Theorem 3.9, the equivalence class of an algebraic

curve 𝐶 under E2 (C) is determined by S𝐶 .

3.2 Joint signatures

In [30], the author considers the use of joint differential signatures

to determine equivalence. As an example, for the action of 𝐺 on

C
2 given by 𝑔 · (𝑥,𝑦) = (𝑥,𝑦), consider the induced action on the

Cartesian product space (C2)𝑛 = C
2 × C2 × . . . × C2 given by

𝑔 · (𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛, 𝑦𝑛) = (𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛, 𝑦𝑛)
where 𝑥𝑖 = 𝑥 |𝑥=𝑥𝑖 ,𝑦=𝑦𝑖 and 𝑦𝑖 = 𝑦 |𝑥=𝑥𝑖 ,𝑦=𝑦𝑖 . For a curve 𝐶 ⊂ C2
denote the Cartesian product by 𝐶𝑛 = 𝐶 × 𝐶 × . . . × 𝐶 ⊂ (C2)𝑛 .
Then we can see that two curves𝐶0 and𝐶1 are𝐺-equivalent if and

only if their Cartesian products 𝐶𝑛
0
,𝐶𝑛

1
are 𝐺-equivalent under the

induced action on (C2)𝑛 .
The advantage of considering 𝐺-equivalence of products of the

curve 𝐶 is that the order of the differential invariants needed to

define a differential signature on this space can be reduced. Though

the number of invariants required may increase, the lower order

of the differential invariants can result in a more noise-resistant

differential signature. In fact, for a large enough product space, it is

often possible to construct a differential signature from ‘0-th order’

differential invariants, or joint invariants, which we refer to as a

joint signature.

Consider the action of E2 (C) on C2 as defined in Example 3.10.

This induces an action on the product space (C2)𝑛 whose joint

invariants for this action are the squared inter-point distance func-

tions

𝑑 𝑗𝑘 (𝑥 𝑗 , 𝑦 𝑗 , 𝑥𝑘 , 𝑦𝑘) = (𝑥 𝑗 − 𝑥𝑘)2 + (𝑦 𝑗 − 𝑦𝑘)2,
where 𝑗 < 𝑘 and 𝑗, 𝑘 ∈ {1, . . . , 𝑛}. Let the map𝑑𝑛 : 𝐶𝑛 → C𝑛 (𝑛−1)/2
be the map which takes an 𝑛-tuple of points on 𝐶 and outputs all

the inter-point distances, i.e.

(𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛) ↦→ (𝑑12, 𝑑13, . . . , 𝑑1𝑛, . . . , 𝑑 (𝑛−1)𝑛) . (6)

Additionally let𝑊𝑛 be the Zariski-open subset of (C2)𝑛 where all

the inter-point distances do not vanish:

𝑊𝑛 = {𝑝 ∈ (C2)𝑛 | 𝑑 𝑗𝑘 (𝑝) ≠ 0 for 𝑗 < 𝑘 and 𝑗, 𝑘 ∈ {1, . . . , 𝑛}},
with the convention that𝑊1 = C

2 . To define a joint signature for

curves under E2 (C), we take𝑛 = 4 and follow a similar construction

as the joint signature of smooth curves in R2 under the action of

E2 (R) (see [30, Ex. 8.2]).
Definition 3.11. The Euclidean joint signature of an algebraic

curve 𝐶 ⊂ C2 under the action of E2 (C), which we denote J𝐶 ,
is the image of the polynomial map 𝑑4 : 𝐶

4 → C6 defined as in (6).

We first show that these invariant functions characterize almost all

orbits of the action of E2 (C) on (C2)3 and (C2)4.

Proposition 3.12. The polynomial invariantsI3 = {𝑑12, 𝑑13, 𝑑23}
separates orbits on𝑊3 for the induced action of E2 on (C2)3 and the
set

I4 = {𝑑12, 𝑑13, 𝑑23, 𝑑14, 𝑑24, 𝑑34}
separates orbits in𝑊4 for the induced action of E2 (C) on (C2)4.

Proof. Consider two triples of points 𝑝 = (𝑝𝑖)3𝑖=1 and 𝑞 =

(𝑞𝑖)3𝑖=1 ∈ (C2)3, where 𝑝𝑖 = (𝑥𝑝𝑖 , 𝑦
𝑝
𝑖) and 𝑞𝑖 is denoted similarly,

that take the same values on I3 and lie in𝑊3. Note that𝑊3 excludes

isotropic triples such as (0, 0), (1, 𝑖), (1,−𝑖) .We will show that both

triples of points necessarily lie in the same orbit. Since 𝑑12 ≠ 0

we can choose a representative from the orbit of 𝑝 under E2 such
that 𝑝1 = (0, 0) and 𝑝2 = (0, 𝑦𝑝2) by applying the transformation in

E2 (C) given by

𝑐 =
𝑦
𝑝
2
− 𝑦𝑝

1√
𝑑12

, 𝑠 =
𝑥
𝑝
2
− 𝑥𝑝

1√
𝑑12

, 𝑎 = −𝑥𝑝
1
, 𝑏 = −𝑦𝑝

1
, (7)

and similarly we can assume for 𝑞 that 𝑞1 = (0, 0) and 𝑞2 = (0, 𝑦𝑞2).
Since 𝑝, 𝑞 ∈𝑊3,𝑦

𝑝
2
, 𝑦

𝑞
2
≠ 0. Thus𝑑12 (𝑝) = 𝑑12 (𝑞) gives that (𝑦𝑝2)2 =

(𝑦𝑞
2
)2 meaning 𝑦

𝑝
2
= ±𝑦𝑞

2
. Therefore, by reflecting about 𝑥-axis if

necessary, we can assume 𝑦
𝑝
2
= 𝑦

𝑞
2
. The equations 𝑑13 (𝑝) = 𝑑13 (𝑞)

and 𝑑23 (𝑝) = 𝑑23 (𝑞) give
(𝑥𝑝

3
)2 + (𝑦𝑝

3
)2 = (𝑥𝑞

3
)2 + (𝑦𝑞

3
)2

(𝑥𝑝
3
)2 + (𝑦𝑝

2
− 𝑦𝑝

3
)2 = (𝑥𝑞

3
)2 + (𝑦𝑞

2
− 𝑦𝑞

3
)2 .

Subtracting these yields (𝑦𝑝
2
)2 − 2𝑦𝑝

2
𝑦
𝑝
3
= (𝑦𝑞

2
)2 − 2𝑦𝑞

2
𝑦
𝑞
3
which im-

plies 𝑦
𝑝
3
= 𝑦

𝑞
3
. Thus, from 𝑑13 (𝑝) = 𝑑13 (𝑞), we have (𝑥𝑝3)2 = (𝑥

𝑞
3
)2.

From this we conclude, reflecting about the 𝑦-axis if necessary, that

𝑥
𝑝
3
= 𝑥

𝑞
3
. We have now shown that 𝑝 and 𝑞 are in the same orbit.

Suppose we have two 4-tuples of points 𝑝 = (𝑝𝑖)4𝑖=1 and 𝑞 =

(𝑞𝑖)4𝑖=1 ∈ (C2)3 that take the same values on I4 and lie in𝑊4. By

the previous argument we can assume that 𝑝1, 𝑝2 have the same

form as above and that 𝑝𝑖 = 𝑞𝑖 for 𝑖 = 1, 2, 3. As before the equations

𝑑14 (𝑝) = 𝑑14 (𝑞) and 𝑑24 (𝑝) = 𝑑24 (𝑞) imply that and 𝑦
𝑞
4
= 𝑦

𝑝
4
and

𝑥
𝑝
4
= ±𝑥𝑞

4
. If 𝑥

𝑝
4
= −𝑥𝑞

4
and 𝑥

𝑝
3
, 𝑥

𝑞
3
= 0, then a reflection about the 𝑦-

axis preserves the other values in 𝑞 and sends 𝑥
𝑞
4
to −𝑥𝑞

4
. Otherwise

subtracting the equations 𝑑14 (𝑝) = 𝑑14 (𝑞) and 𝑑34 (𝑝) = 𝑑34 (𝑞)
yields −2𝑥𝑝

3
𝑥
𝑝
4
= −2𝑥𝑞

3
𝑥
𝑞
4
, which implies that 𝑥

𝑝
4
= 𝑥

𝑞
4
. Thus 𝑝 and

𝑞 must lie in the same orbit. □

Lemma 3.13. For an algebraic curve 𝐶 ⊂ C2 and 𝑛 > 1, a generic

𝑛-tuple of points on 𝐶𝑛 lies inside𝑊𝑛 . Additionally for any fixed

(𝑛−1)-tuple of points in (𝑝1, . . . , 𝑝𝑛−1) ∈𝑊𝑛−1∩𝐶𝑛−1 and a generic
point 𝑝𝑛 ∈ 𝐶 , the 𝑛-tuple (𝑝1, . . . , 𝑝𝑛) lies in𝑊𝑛 .

Proof. For 𝑛 = 2, fix any 𝑝1 = (𝑥1, 𝑦1) ∈ 𝐶. If 𝑑1,2 = 0 for all

(𝑥2, 𝑦2) ∈ 𝐶, then 𝐶 must lie in a union of lines defined by

{(𝑥2, 𝑦2) ∈ C2 | (𝑥1 − 𝑥2 + 𝑖𝑦1 − 𝑖𝑦2) (𝑥1 − 𝑥2 − 𝑖𝑦1 + 𝑖𝑦2) = 0}.
Since 𝐶 is irreducible, this contradicts deg(𝐶) > 1. Thus the set

𝑈2,𝑝1 = {𝑝2 ∈ 𝐶 | 𝑑1,2 ≠ 0}, which is Zariski-open in 𝐶, is also

nonempty. Thus, for any particular 𝑝1 ∈ 𝐶, there exists 𝑝2 with

158

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece T. Duff, M. Ruddy

(𝑝1, 𝑝2) ∈𝑊2 ∩𝐶2, from which both claims follow. Inductively, we

fix any (𝑝1, . . . , 𝑝𝑛−1) ∈𝑊𝑛−1 ∩𝐶𝑛−1 . As before, the sets
𝑈𝑖,𝑝1,...𝑝𝑛−1 = {𝑝𝑛 ∈ 𝐶 | 𝑑𝑖𝑛 ≠ 0}

are open and nonempty. Thus a generic 𝑝𝑛 ∈ 𝐶 lies in their inter-

section, and hence (𝑝1, . . . , 𝑝𝑛) ∈𝑊𝑛 . □

Proposition 3.14. The stabilizer of 𝑝 ∈𝑊2 or 𝑝 ∈𝑊3 under the

action of E2 (C) is a finite subgroup.

Proof. The stabilizer of a point 𝑝 ∈ (C2)2 is the subgroup of

E2 (C) given by

E2 (C)𝑝 = {𝑔 ∈ E2 (C) | 𝑔 · 𝑝 = 𝑝}.
The size of the stabilizer of a point is preserved by the action of the

group. Since 𝑑12 (𝑝) ≠ 0, by applying the transformation in (7), we

can assume 𝑝 has the form 𝑝 = (𝑝1, 𝑝2) = (0, 0, 0, 𝑦2) where 𝑦2 ≠ 0.

Given the parameterization of E2 (C) in Example 3.10, 𝑔 · 𝑝 = 𝑝

immediately implies that 𝑎 = 𝑏 = 0 and that 𝑠𝑦2 = 0 Thus E2 (C)𝑝
consists of either the identity transformation or a reflection about

the 𝑦-axis. The same result immediately follows for 𝑝 ∈𝑊3, since

(𝑝1, 𝑝2, 𝑝3) ∈𝑊3 implies that (𝑝1, 𝑝2) ∈𝑊2. □

Lemma 3.15. For plane curves 𝐶0,𝐶1, suppose that there exists

𝑝 = (𝑝1, 𝑝2) ∈ 𝐶2
0,𝐶

2
1 such that 𝑝 ∈𝑊2 and

𝑑3 (𝑝1 × 𝑝2 ×𝐶0) = 𝑑3 (𝑝1 × 𝑝2 ×𝐶1) .
Then there exists 𝑔 ∈ E2 (C) such that 𝑔 ·𝐶0 = 𝐶1.

Proof. By Lemma 3.13, for a generic point 𝑞 ∈ 𝐶0, the 3-tuple
(𝑝1, 𝑝2, 𝑞) ∈ 𝑊3. Since both curves have the same image under

𝑑3, there exists a point 𝑟 ∈ 𝐶1 such that 𝑟 ∈ 𝑑−13 (𝑝1, 𝑝2, 𝑞). By
Proposition 3.12, both triples (𝑝1, 𝑝2, 𝑞) and (𝑝1, 𝑝2, 𝑟) lie in the same

orbit under E2 (C), and hence there exists 𝑔 ∈ E2 (C) such that 𝑔 ·
(𝑝1, 𝑝2, 𝑞) = (𝑝1, 𝑝2, 𝑟). However, this implies that 𝑔 ∈ E2 (C)(𝑝1,𝑝2) .
By Proposition 3.14, E2 (C)(𝑝1,𝑝2) = {𝑒, ℎ} where ℎ ∈ E2 (C) is a
reflection about the line containing 𝑝1 and 𝑝2. Therefore 𝑞 = 𝑟 or

ℎ · 𝑞 = 𝑟 , implying that 𝐶1 shares infinitely many points with 𝐶0 or

ℎ ·𝐶0, proving the lemma. □

Lemma 3.16. For plane curves 𝐶0,𝐶1, suppose that there exists a

3-tuple 𝑝 = (𝑝1, 𝑝2, 𝑝3) ∈ 𝐶3
0,𝐶

3
1 such that 𝑝 ∈𝑊3 and

𝑑4 (𝑝1 × 𝑝2 × 𝑝3 ×𝐶0) = 𝑑4 (𝑝1 × 𝑝2 × 𝑝3 ×𝐶1).
Then there exists 𝑔 ∈ E2 (C) such that 𝑔 ·𝐶0 = 𝐶1.

Proof. The proof follows similarly as in Lemma 3.15 by applying

Propositions 3.12 and 3.14. □

Proposition 3.17. Two plane curves 𝐶0,𝐶1 ⊂ C2 of degree 𝑑 > 2

are E2 (C)-equivalent if and only if J𝐶0
= J𝐶1

.

Proof. Since the map 𝑑4 : 𝐶4
𝑖 → C6 for 𝑖 = 0, 1 is defined by

E2 (C)-invariants the forward direction is clear. For the remainder

of the proof assume that J𝐶0
= J𝐶1

:= J . We deal with two cases.

Either the image of the map 𝑑3 : 𝐶
3
0 → C3 lies in a Zariski-closed

subset of dimension ≤ 2 or is Zariski-dense in C3.

First suppose that 𝑑3 (𝐶3
0) (and hence 𝑑3 (𝐶3

1)) is Zariski-dense
in C3 . This implies dim(J) equals 3 or 4. Consider the projection
𝜋12 : J → C ofJ onto the first coordinate𝑑12 . LetH12 = 𝜋

(−1)
12 (𝑟)

be the pullback of a generic point so that dim(H12 ∩J) equals 2 or

3. Appealing to Bertini’s Theorem as in Proposition 2.3, the singular

points ofH12∩J are also singular points ofJ . For similarly defined

H13 andH23 let Y = H12 ∩H13 ∩H23 ∩ J . Then dim(Y) equals
0 or 1, and the singular points of Y are singular points of J .

Consider a generic 4-tuple of points 𝑝 = (𝑝1, 𝑝2, 𝑝3, 𝑝4) ∈ 𝐶4
0 .

Since the 𝑑4 (𝐶𝑖) agree on a dense set, we may assume 𝑑4 (𝑝) ∈
𝑑4 (𝐶0) ∩ 𝑑4 (𝐶1). Taking genericH12 ∩H13 ∩H23 through 𝑑3 (𝑝)
and Y as in the previous paragraph, we have that 𝑑4 (𝑝) is a non-
singular point of Y. Let 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) be a point on 𝐶4

1 in the

inverse image 𝑑−14 (𝑑4 (𝑝)). By Proposition 3.12 and Lemma 3.13,

there exists some 𝑔 ∈ E2 (C) such that 𝑔 · 𝑞 = 𝑝 . Let 𝐶2 = 𝑔 ·𝐶1.
Note that dim(𝑑4 (𝑝1×𝑝2×𝑝3×𝐶0)) = 0 implies that the function

𝑑14 (𝑥) = 𝑑14 (𝑝1, 𝑝2, 𝑝3, 𝑥) is constant on 𝐶0, and similarly so are

𝑑24 (𝑥) and 𝑑34 (𝑥). By Proposition 3.12, for a generic point 𝑥 ∈ 𝐶0,
the 4-tuples (𝑝1, 𝑝2, 𝑝3, 𝑥) are all related by an element of E2 (C).
However this is a contradiction, since by Proposition 3.14 there are

finitely many such elements. Thus both sets 𝑑4 (𝑝1 × 𝑝2 × 𝑝3 ×𝐶0)
and (by a similar argument) 𝑑4 (𝑝1 × 𝑝2 × 𝑝3 ×𝐶1) are of dimension

1 lying in Y. Since dim(Y) = 1, both sets are also dense in some

irreducible component of Y. Since 𝑑4 (𝑝) is a non-singular point of
Y, it is necessarily contained in exactly one irreducible component

of Y. Therefore
𝑑4 (𝑝1 × 𝑝2 × 𝑝3 ×𝐶0) = 𝑑4 (𝑝1 × 𝑝2 × 𝑝3 ×𝐶2).

By Lemma 3.16,𝐶0 = 𝐶2 = 𝑔 ·𝐶1, completing the proof for the case

where 𝑑3 (𝐶3
0) ⊂ C3 is Zariski dense. The remaining case follows

analogously (take Y = H12 ∩ 𝑑3 (𝐶3
0) and apply Lemma 3.15.) □

4 IMPLEMENTATION, EXAMPLES, AND
EXPERIMENTS

Our implementation of Algorithm 1 treats only the special case

where the domain of each rational map is some Cartesian product

of irreducible plane curves, say 𝑋𝑖 = 𝐶
𝑘
𝑖 for some integer 𝑘. Our

results showcase features of the NumericalAlgebraicGeometry

ecosystem in Macaulay2 (aka NAG4M2, see [23, 24] for an overview.)

We rely extensively on the core path-tracker and the packages

SLPexpressions and MonodromySolver. All of our examples and

experiments deal with differential and joint signatures for the Eu-

clidean group.2 However, the current functionality should make it

easy to study other group actions and variations on the signature

construction in the future.

For the purpose of our implementation, the various ingredients

for the input to Algorithm 1 are easily provided. Suppose I𝐶𝑖
= ⟨𝑓𝑖 ⟩

for 𝑖 = 0, 1. Then the reduced regular sequence we need is given

by (𝑓0 (𝑥1, 𝑦1), . . . , 𝑓0 (𝑥𝑘 , 𝑦𝑘)) . Sampling from 𝑋0 amounts to sam-

pling 𝑘 times from 𝐶0; we sample the curve 𝐶0 using homotopy

continuation from a linear-product start system [33, 8.4.3]. Finally,

a witness set for the image of the signature map Φ1 can be com-

puted using methods of numerical algebraic geometry. Heuristics

based on monodromy allow us to make this offline computation

relatively efficient; MonodromySolver implements a general frame-

work described in [5, 10]. We also observe that a witness set for the

signature of a particular curve may be computed if we have already

computed a witness set for the corresponding signature of some

generic curve of the same degree. This is yet another application of

2For details we refer to the code: https://github.com/timduff35/NumericalSignatures.

159

https://github.com/timduff35/NumericalSignatures.

Numerical signatures ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

𝑑 degS time (s) deg(1,0) S time (s)

2 6 0.3 3 0.1

3 72 2 36 0.5

4 144 9 72 2

5 240 21 120 4

6 360 55 180 7

Figure 2: Degrees and monodromy timings for differential

signatures.

coefficient parameter homotopy. [27] The efficiency of these two

methods is compared in Example 4.1.

We explain some aspects of our implementation that appear to

give reasonable numerical stability. A key feature is that polyno-

mials and rational maps are given by straight-line programs as

opposed to their coefficient representations. This is especially cru-

cial in the case of differential signatures, where we can do efficient

evaluation using the formulas in equation 4; we note that expanding

these rational functions in the monomial basis involves many terms

and does not suggest a natural evaluation scheme. We also homoge-

nize the equations of our plane curves and work in a random affine

chart. Finally, in our sampling procedure we discard samples which

map too close to the origin in the codomain of our maps, as these

tend to produce nearly-singular points on the image.

Example 4.1. The code below computes a witness set for the

differential signature of a łgenericž quartic (whose coefficients are

random complex numbers of modulus 1.)

(d, k) = (4, 1);

dom = domain(d, k);

Map = diffEuclideanSigMap dom;

H = witnessHomotopy(dom, Map);

W = runMonodromy H;

To compute a witness set for the differential signature of the Fermat

quartic 𝑉 (𝑥4 +𝑦4 + 𝑧4) ⊂ P(C3), we use the previous computation.

R = QQ[x,y,z];

f=x^4+y^4+z^4;

Wf = witnessCollect(f, W)

The output resulting from the last line reads

witness data w/ 18 image points (144 preimage points)

indicating that the differential signature map is generically 8 to 1,

which is equivalent to the Fermat curve having eight Euclidean

symmetries [22, Thm 2.38]. We timed these witness set computa-

tions at 5 and 0.5 seconds, respectively. For joint signatures, the

analagous computations were timed at 95 and 17 seconds.

Figures 2 and 3 give degrees and single-run timings for mon-

odromy computations on curves up to degree 6.We also considered

multiprojective witness sets forS ⊂ C1×C1 and J ⊂ (C1)6,where
fewer witness points are needed. For the differential signatures, we

considered (1, 0)-slices which fix the value of 𝐾1 in (5). For joint

signatures, there are two combinatorially distinct classes of (C1)6
witness sets determined by which 𝑑𝑖, 𝑗 are fixed; the undirected

graph of fixed distances must either be the 3-pan (a 3-cycle with

pendant edge) or the 4-cycle.We fix correspondingmultidimensions

𝒆1 = (1, 1, 1, 1, 0, 0) and 𝒆2 = (0, 1, 1, 1, 1, 0).

𝑑 degJ time (s) deg
𝒆1
J time (s) deg

𝒆2
J time (s)

2 42 4 24 2 26 2

3 936 33 576 17 696 16

4 3024 139 1920 57 2448 87

5 7440 463 4800 206 6320 276

6 15480 1315 10080 748 13560 791

Figure 3: Degrees and monodromy timings for joint signa-

tures (see Conjecture 4.2.)

𝑑 track time (ms) lookup time (ms) track 𝐾1 lookup 𝐾1
2 191 0.35 127 0.25

3 177 0.37 121 0.31

4 276 0.42 145 0.36

5 472 0.39 203 0.43

6 597 0.40 284 0.37

Figure 4: Equality test timings for differential signatures 𝑺𝑑 .

𝑑 track time (ms) lookup time (ms) track 𝒆1 lookup 𝒆1

2 230 0.36 208 0.34

3 283 0.38 213 0.35

4 335 0.39 288 0.40

5 409 0.32 357 0.32

6 507 0.32 462 0.33

Figure 5: Equality test timings for joint signatures J𝑑 .

The timings in figures 2 and 3 are not optimal for a number of

reasons. For instance, some multiprojective witness sets have an im-

primitive monodromy action, meaning that additional symmetries

can be exploited [2]. We successfully ran monodromy (with less

conservative settings) for both signature maps on curves of degree

up to 10. These computations suggested formulas for the degrees.

For the joint signature, we state these formulas in the form of a

conjecture. For the case of differential signatures, see [22]; degrees

for 𝑑 = 2 are corrected by a factor of 4.

Conjecture 4.2. Let J𝑑 denote the joint signature for a generic

plane curve of degree 𝑑. For 𝑑 ≥ 3:

degJ𝑑 = 12𝑑 (𝑑3 − 1)
deg

𝒆1
J𝑑 = 8𝑑2 (𝑑2 − 1)

deg
𝒆2
J𝑑 = 4𝑑 (𝑑 − 1) (3𝑑2 + 𝑑 − 1) .

To assess the speed and robustness of the online equality test,

we conducted an experiment where, for degrees 𝑑 = 2, . . . , 6, curves

𝐶1, . . . ,𝐶10 were generated with coefficients drawn uniformly from

the unit sphere in R(𝑑+2) (𝑑+1)/2 . For each 𝐶𝑖 , we computed a wit-

ness set via parameter homotopy from a generic degree 𝑑 curve. We

then applied 20 random transformations from E2 (R) to the 𝐶𝑖 and

perturbed the resulting coefficients by random real ®𝜖 with ∥®𝜖 ∥2 ∈
{0, 10−7, 10−6, . . . , 10−3}, thus obtaining curves �𝐶𝑖,1,𝜖 , . . . ,�𝐶𝑖,20,𝜖 .
With all numerical tolerances fixed, we ran the equality test for

each �𝐶𝑖, 𝑗,𝜖 against each 𝐶𝑖 .

Figures 4 and 5 summarize the timings for the equality tests in

this experiment. Overall, these tests run on the order of sub-seconds.

160

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece T. Duff, M. Ruddy

Figure 6: Sensitivity of the equality test to noise.

Most of the time is spent on path-tracking. The tracking times re-

ported give the total time spent on lines 1 and 5 of Algorithm 1.

The only other possible bottleneck is the lookup on line 7. This is

negligible, even for large witness set sizes, if an appropriate data

structure is used. The runtimes for all cases considered seem com-

parable, although using differential signatures and multiprojective

slices appear to give a slight edge over the respective alternatives.

The plots in Figure 6 illustrate the results of our sensitivity

analysis. The respective axes are the magnitude of the noise 𝜖 and

the percentage of𝐶𝑖, 𝑗,𝜖 deemed to be not equivalent to𝐶𝑖 . Note that

the horizontal axis is given on a log scale, and excludes the noiseless

case 𝜖 = 0; for this case, among all tests in the experiment, only

one false negative was reported for the differential signatures with

𝑑 = 6.We include a trend line to make the plots more readable. In

general, we observe a threshold phenomenon, where most tests are

positive for sufficiently low noise and are negative for sufficiently

high noise.

The thresholds displayed in Figure 6 clearly depend on the nu-

merical tolerances used (for this experiment, defaults provided by

NAG4M2), the type of map, and the type of witness set. Besides the

multiprojective differential signature (depicted in the bottom-left),

we observe a similar stability profile for this type of random per-

turbation. We speculate that similar analyses, based on a more

meaningful model of noise, may highlight further differences be-

tween the joint and differential signatures.

ACKNOWLEDGMENTS

Research of T. Duff is supported in part by NSF DMS-1719968, a fellowship

from the Algorithms and Randomness Center at Georgia Tech, and by the

Max Planck Institute for Mathematics in the Sciences in Leipzig.

REFERENCES
[1] E. L. Allgower and K. Georg. 2012. Numerical continuation methods: an introduc-

tion. Vol. 13. Springer Science & Business Media.
[2] C. Améndola and J. I. Rodriguez. 2016. Solving parameterized polynomial systems

with decomposable projections. arXiv preprint arXiv:1612.08807 (2016).
[3] D. J. Bates, , A. J. Hauenstein, Jonathan D Sommese, and C. W. Wampler. 2013.

Numerically solving polynomial systems with Bertini. SIAM.
[4] I. A. Berchenko (Kogan) and P. J. Olver. 2000. Symmetries of Polynomials. Journal

of Symbolic Computations 29 (2000), 485ś514.
[5] N. Bliss, T. Duff, A. Leykin, and J. Sommars. 2018. Monodromy solver: sequential

and parallel. In Proceedings of the 2018 ACM International Symposium on Symbolic
and Algebraic Computation. 87ś94.

[6] T. Brysiewicz. 2018. Numerical Software to Compute Newton Polytopes. In
International Congress on Mathematical Software. Springer, 80ś88.

[7] J. M. Burdis, I. A. Kogan, and H. Hong. 2013. Object-image correspondence
for algebraic curves under projections. SIGMA Symmetry Integrability Geom.
Methods Appl. 9 (2013), Paper 023, 31.

[8] J. Chen and J. Kileel. 2019. Numerical implicitization for Macaulay2. Journal of
Software for Algebra and Geometry 9 (2019), 55ś65.

[9] H. Derksen and G. Kemper. 2015. Computational invariant theory (enlarged ed.).
Encyclopaedia of Mathematical Sciences, Vol. 130. Springer, Heidelberg. xxii+366
pages.

[10] T. Duff, C. Hill, A. Jensen, K. Lee, A. Leykin, and J. Sommars. 2019. Solving
polynomial systems via homotopy continuation and monodromy. IMA J. Numer.
Anal. 39, 3 (2019), 1421ś1446.

[11] M. Fels and P. J. Olver. 1999. Moving Coframes. II. Regularization and Theoretical
Foundations. Acta Appl. Math. 55 (1999), 127ś208.

[12] D. Grayson and M. Stillman. 1997. Macaulay 2śa system for computation in
algebraic geometry and commutative algebra.

[13] A. Grim and C. Shakiban. 2017. Applications of signature curves to characterize
melanomas and moles. In Applications of computer algebra. Springer Proc. Math.
Stat., Vol. 198. Springer, Cham, 171ś189.

[14] J. Harris. 2013. Algebraic geometry: a first course. Vol. 133. Springer Science &
Business Media.

[15] J. D. Hauenstein, A. Leykin, J. I. Rodriguez, and F. Sottile. 2019. A numerical
toolkit for multiprojective varieties. To appear in Mathematics of Computation
(2019).

[16] J. D. Hauenstein and J. I. Rodriguez. 2019. Multiprojective witness sets and a
trace test. To appear in Advances in Geometry. arXiv preprint arXiv:1507.07069
(2019).

[17] J. D. Hauenstein and A. J. Sommese. 2010. Witness sets of projections. Appl.
Math. Comput. 217, 7 (2010), 3349ś3354.

[18] J. D. Hauenstein and A. J. Sommese. 2013. Membership tests for images of
algebraic sets by linear projections. Appl. Math. Comput. 219, 12 (2013), 6809ś
6818.

[19] D. J. Hoff and P. J. Olver. 2014. Automatic solution of jigsaw puzzles. J. Math.
Imaging Vision 49, 1 (2014), 234ś250.

[20] E. Hubert and I. A. Kogan. 2007. Smooth and algebraic invariants of a group
action: local and global construction. Foundation of Computational Math. J. 7:4
(2007), 345ś383.

[21] I. A. Kogan and M. Moreno Maza. 2002. Computation of canonical forms for
ternary cubics. In Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation. ACM, New York, 151ś160.

[22] I. A. Kogan, M. Ruddy, and C. Vinzant. 2020. Differential Signatures of Algebraic
Curves. SIAM J. Appl. Algebra Geom. 4, 1 (2020), 185ś226.

[23] A. Leykin. 2011. Numerical algebraic geometry. Journal of Software for Algebra
and Geometry 3, 1 (2011), 5ś10.

[24] A. Leykin. 2018. Homotopy Continuation in Macaulay2. In International Congress
on Mathematical Software. Springer, 328ś334.

[25] A. Leykin, J. I. Rodriguez, and F. Sottile. 2018. Trace test. Arnold Mathematical
Journal 4, 1 (2018), 113ś125.

[26] A. Morgan. 2009. Solving polynomial systems using continuation for engineering
and scientific problems. Vol. 57. SIAM.

[27] A. P. Morgan and A. J. Sommese. 1989. Coefficient-parameter polynomial contin-
uation. Appl. Math. Comput. 29, 2 (1989), 123ś160.

[28] P. J. Olver. 1995. Equivalence, invariants and symmetry. Cambridge University
Press.

[29] P. J. Olver. 1999. Classical invariant theory. London Mathematical Society Student
Texts, Vol. 44. Cambridge University Press, Cambridge. xxii+280 pages.

[30] P. J. Olver. 2001. Joint invariant signatures. Found. Comput. Math. 1, 1 (2001),
3ś67.

[31] M. Ruddy. 2019. The Equivalence Problem and Signatures of Algebraic Curves.
Ph.D. Dissertation. North Carolina State University.

[32] A. J. Sommese, J. Verschelde, and C. W. Wampler. 2005. Introduction to numerical
algebraic geometry. In Solving polynomial equations. Springer, 301ś337.

[33] I. C. W. Wampler et al. 2005. The Numerical solution of systems of polynomials
arising in engineering and science. World Scientific.

161

On Fast Multiplication of a Matrix by its Transpose

Jean-Guillaume Dumas
Université Grenoble Alpes

Laboratoire Jean Kuntzmann, CNRS

UMR 5224, 38058 Grenoble, France

Clément Pernet
Université Grenoble Alpes

Laboratoire Jean Kuntzmann, CNRS

UMR 5224, 38058 Grenoble, France

Alexandre Sedoglavic
Université de Lille

UMR CNRS 9189 CRISTAL

59650 Villeneuve d’Ascq, France

ABSTRACT

We present a non-commutative algorithm for the multiplication

of a 2 × 2-block-matrix by its transpose using 5 block products (3

recursive calls and 2 general products) over C or any field of prime

characteristic. We use geometric considerations on the space of

bilinear forms describing 2 × 2 matrix products to obtain this algo-

rithm and we show how to reduce the number of involved additions.

The resulting algorithm for arbitrary dimensions is a reduction of

multiplication of a matrix by its transpose to general matrix prod-

uct, improving by a constant factor previously known reductions.

Finally we propose schedules with low memory footprint that sup-

port a fast and memory efficient practical implementation over a

prime field. To conclude, we show how to use our result in 𝐿 · 𝐷 · 𝐿⊺
factorization.

CCS CONCEPTS

·Computingmethodologies→Exact arithmetic algorithms;

Linear algebra algorithms.

KEYWORDS

algebraic complexity, fast matrix multiplication, SYRK, rank-k

update, Symmetric matrix, Gram matrix, Wishart matrix

ACM Reference Format:

Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic. 2020.

On Fast Multiplication of a Matrix by its Transpose. In International Sympo-

sium on Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020,

Kalamata, Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

1145/3373207.3404021

1 INTRODUCTION

Strassen’s algorithm [20], with 7 recursive multiplications and 18

additions, was the first sub-cubic time algorithm for matrix prod-

uct, with a cost of 𝑂
(
𝑛2.81

)
. Summarizing the many improvements

which have happened since then, the cost of multiplying two arbi-

trary 𝑛 × 𝑛 matrices 𝑂 (𝑛𝜔) will be denoted by MM𝜔 (𝑛) (see [17]
for the best theoretical value of 𝜔 known to date).

We propose a new algorithm for the computation of the prod-

uct 𝐴 · 𝐴⊺ of a 2 × 2-block-matrix by its transpose using only 5

block multiplications over some base field, instead of 6 for the natu-

ral divide & conquer algorithm. For this product, the best previously

known complexity bound was dominated by 2
2𝜔−4MM𝜔 (𝑛) over

any field (see [11, ğ 6.3.1]). Here, we establish the following result:

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404021

Theorem 1.1. The product of an 𝑛 × 𝑛 matrix by its transpose can

be computed in 2
2𝜔−3MM𝜔 (𝑛) field operations over a base field for

which there exists a skew-orthogonal matrix.

Our algorithm is derived from the class of Strassen-like algo-

rithms multiplying 2 × 2 matrices in 7 multiplications. Yet it is a

reduction of multiplying a matrix by its transpose to general matrix

multiplication, thus supporting any admissible value for 𝜔 . By ex-

ploiting the symmetry of the problem, it requires about half of the

arithmetic cost of general matrix multiplication when 𝜔 is log2 7.

We focus on the computation of the product of an 𝑛 × 𝑘 matrix

by its transpose and possibly accumulating the result to another

matrix. Following the terminology of the blas3 standard [10], this

operation is a symmetric rank 𝑘 update (syrk for short).

2 MATRIX PRODUCT ALGORITHMS

ENCODED BY TENSORS

Considered as 2 × 2 matrices, the matrix product 𝐶 = 𝐴 · 𝐵 could

be computed using Strassen algorithm by performing the following

computations (see [20]):

𝜌1 ← 𝑎11 (𝑏12 − 𝑏22),
𝜌2 ← (𝑎11 + 𝑎12)𝑏22, 𝜌4 ← (𝑎12 − 𝑎22) (𝑏21 + 𝑏22),
𝜌3 ← (𝑎21 + 𝑎22)𝑏11, 𝜌5 ← (𝑎11 + 𝑎22) (𝑏11 + 𝑏22),
𝜌6 ← 𝑎22 (𝑏21 − 𝑏11), 𝜌7 ← (𝑎21 − 𝑎11) (𝑏11 + 𝑏12),

(𝑐11 𝑐12
𝑐21 𝑐22

)
=

(
𝜌5+𝜌4−𝜌2+𝜌6 𝜌6+𝜌3

𝜌2+𝜌1 𝜌5+𝜌7+𝜌1−𝜌3
)
.

(1)

In order to consider this algorithm under a geometric standpoint,

we present it as a tensor. Matrix multiplication is a bilinear map:

K𝑚×𝑛 × K𝑛×𝑝 → K𝑚×𝑝 ,
(𝑋,𝑌) → 𝑋 · 𝑌, (2)

where the spacesK𝑎×𝑏 are finite vector spaces that can be endowed

with the Frobenius inner product ⟨𝑀, 𝑁 ⟩ = Trace(𝑀⊺ · 𝑁). Hence,
this inner product establishes an isomorphism between K𝑎×𝑏 and

its dual space
(
K𝑎×𝑏

)
★
allowing for example to associate matrix

multiplication and the trilinear form Trace(𝑍⊺ · 𝑋 · 𝑌):

K𝑚×𝑛 × K𝑛×𝑝 × (K𝑚×𝑝)★ → K,

(𝑋,𝑌, 𝑍⊺) → ⟨𝑍,𝑋 · 𝑌 ⟩. (3)

As by construction, the space of trilinear forms is the canonical

dual space of order three tensor product, we could associate the

Strassen multiplication algorithm (1) with the tensor S defined by:
∑7
𝑖=1 𝑆𝑖1⊗𝑆𝑖2⊗𝑆𝑖3 =

(
1 0
0 0

)
⊗

(
0 1
0 −1

)
⊗

(
0 0
1 1

)
+

(
1 1
0 0

)
⊗

(
0 0
0 1

)
⊗

(−1 0
1 0

)
+
(
0 0
1 1

)
⊗

(
1 0
0 0

)
⊗

(
0 1
0 −1

)
+

(
0 1
0 −1

)
⊗

(
0 0
1 1

)
⊗

(
1 0
0 0

)
+
(
1 0
0 1

)
⊗

(
1 0
0 1

)
⊗

(
1 0
0 1

)
+

(
0 0
0 1

)
⊗

(−1 0
1 0

)
⊗

(
1 1
0 0

)
+
(−1 0
1 0

)
⊗

(
1 1
0 0

)
⊗

(
0 0
0 1

)

(4)

162

https://doi.org/10.1145/3373207.3404021
https://doi.org/10.1145/3373207.3404021
https://doi.org/10.1145/3373207.3404021

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

in (K𝑚×𝑛)★ ⊗ (K𝑛×𝑝)★ ⊗ K𝑚×𝑝 with 𝑚 = 𝑛 = 𝑝 = 2. Given any

couple (𝐴, 𝐵) of 2 × 2-matrices, one can explicitly retrieve from ten-

sor S the Strassen matrix multiplication algorithm computing𝐴 · 𝐵
by the partial contraction {S, 𝐴 ⊗ 𝐵}:

(
(K𝑚×𝑛)★⊗(K𝑛×𝑝)★⊗K𝑚×𝑝

)
⊗

(
K𝑚×𝑛⊗K𝑛×𝑝

)
→K𝑚×𝑝 ,

S ⊗ (𝐴 ⊗ 𝐵) → ∑7
𝑖=1⟨𝑆𝑖1, 𝐴⟩⟨𝑆𝑖2, 𝐵⟩𝑆𝑖3,

(5)

while the complete contraction {S, 𝐴 ⊗ 𝐵 ⊗ 𝐶⊺} is Trace(𝐴 · 𝐵 ·𝐶).
The tensor formulation of matrix multiplication algorithm gives

explicitly its symmetries (a.k.a. isotropies). As this formulation is

associated to the trilinear form Trace(𝐴 · 𝐵 ·𝐶), given three invert-

ible matrices 𝑈 ,𝑉 ,𝑊 of suitable sizes and the classical properties

of the trace, one can remark that Trace(𝐴 · 𝐵 ·𝐶) is equal to:
Trace

(
(𝐴 · 𝐵 ·𝐶)⊺

)
= Trace(𝐶 · 𝐴 · 𝐵) = Trace(𝐵 ·𝐶 · 𝐴),

and Trace
(
𝑈 −1 · 𝐴 ·𝑉 ·𝑉 −1 · 𝐵 ·𝑊 ·𝑊 −1 ·𝐶 ·𝑈

)
.

(6)

These relations illustrate the following theorem:

Theorem 2.1 ([8, ğ 2.8]). The isotropy group of the 𝑛 × 𝑛 matrix

multiplication tensor is psl± (K𝑛)×3⋊𝔖3, where psl stands for the

group of matrices of determinant ±1 and𝔖3 for the symmetric group

on 3 elements.

The following definition recalls the sandwiching isotropy on

matrix multiplication tensor:

Definition 2.1. Given g = (𝑈 ×𝑉 ×𝑊) in psl± (K𝑛)×3, its ac-
tion g ⋄ S on a tensor S is given by

∑7
𝑖=1 g ⋄ (𝑆𝑖1 ⊗ 𝑆𝑖2 ⊗ 𝑆𝑖3) where

the term g ⋄ (𝑆𝑖1 ⊗ 𝑆𝑖2 ⊗ 𝑆𝑖3) is equal to:
(𝑈 −⊺ · 𝑆𝑖1 ·𝑉 ⊺) ⊗ (𝑉 −⊺ · 𝑆𝑖2 ·𝑊 ⊺) ⊗ (𝑊 −⊺ · 𝑆𝑖3 ·𝑈 ⊺). (7)

Remark 2.1. In psl± (K𝑛)×3, the product ◦ of two isotropies 𝑔1
defined by𝑢1 × 𝑣1 ×𝑤1 and𝑔2 by𝑢2 × 𝑣2 ×𝑤2 is the isotropy𝑔1 ◦ 𝑔2
equal to𝑢1 · 𝑢2 × 𝑣1 · 𝑣2 ×𝑤1 ·𝑤2. Furthermore,the complete contrac-

tion {𝑔1 ◦ 𝑔2, 𝐴 ⊗ 𝐵 ⊗ 𝐶} is equal to {𝑔2, 𝑔1⊺ ⋄𝐴 ⊗ 𝐵 ⊗ 𝐶}.
The following theorem shows that all 2 × 2-matrix product algo-

rithms with 7 coefficient multiplications could be obtained by the

action of an isotropy on Strassen tensor:

Theorem 2.2 ([9, ğ 0.1]). The group psl± (K𝑛)×3 acts transitively
on the variety of optimal algorithms for the computation of 2 × 2-
matrix multiplication.

Thus, isotropy action on Strassen tensor may define other matrix

product algorithm with interesting computational properties.

2.1 Design of a specific 2 × 2-matrix product

This observation inspires our general strategy to design specific

algorithms suited for particular matrix product.

Strategy 2.1. By applying an undetermined isotropy:

g = 𝑈 ×𝑉 ×𝑊 =
(𝑢11 𝑢12
𝑢21 𝑢22

)
×

(𝑣11 𝑣12
𝑣21 𝑣22

)
×

(𝑤11 𝑤12
𝑤21 𝑤22

)
(8)

on Strassen tensor S, we obtain a parameterization T = g ⋄ S of all

matrix product algorithms requiring 7 coefficient multiplications:

T =

7∑

𝑖=1

𝑇𝑖1 ⊗ 𝑇𝑖2 ⊗ 𝑇𝑖3, 𝑇𝑖1 ⊗ 𝑇𝑖2 ⊗ 𝑇𝑖3 = g ⋄ 𝑆𝑖1 ⊗ 𝑆𝑖2 ⊗ 𝑆𝑖3 . (9)

Then, we could impose further conditions on these algorithms and

check by a Gröbner basis computation if such an algorithm exists. If so,

there is subsequent work to do for choosing a point on this variety; this

choice can be motivated by the additive cost bound and the scheduling

property of the evaluation scheme given by this point.

Let us first illustrate this strategy with the well-knownWinograd

variant of Strassen algorithm presented in [22].

Example 1. Apart from the number of multiplications, it is also in-

teresting in practice to reduce the number of additions in an algorithm.

Matrices 𝑆11 and 𝑆61 in tensor (4) do not increase the additive cost

bound of this algorithm. Hence, in order to reduce this complexity in

an algorithm, we could try to maximize the number of such matrices

involved in the associated tensor. To do so, we recall Bshouty’s results

on additive complexity of matrix product algorithms.

Theorem 2.3 ([6]). Let 𝑒 (𝑖, 𝑗) = (𝛿𝑖,𝑘𝛿 𝑗,𝑙) (𝑘,𝑙) be the single entry
elementary matrix. A 2 × 2 matrix product tensor could not have 4

such matrices as first (resp. second, third) component ([6, Lemma 8]).

The additive complexity bound of first and second components are

equal ([6, eq. (11)]) and at least 4 = 7 − 3. The total additive complex-

ity of 2 × 2-matrix product is at least 15 ([6, Theorem 1]).

Following our strategy, we impose on tensor T (9) the constraints

𝑇11 = 𝑒1,1 =
(
1 0
0 0

)
, 𝑇12 = 𝑒1,2, 𝑇13 = 𝑒2,2 (10)

and obtain by a Gröbner basis computation [13] that such tensors are

the images of Strassen tensor by the action of the following isotropies:

w =
(
1 0
0 1

)
×

(
1 −1
0 −1

)
×

(𝑤11 𝑤12
𝑤21 𝑤22

)
. (11)

The variant of the Winograd tensor [22] presented with a renumbering

as Algorithm 1 is obtained by the action of w with the specializa-

tion𝑤12 = 𝑤21 = 1 = −𝑤11,𝑤22 = 0 on the Strassen tensor S. While

the original Strassen algorithm requires 18 additions, only 15 additions

are necessary in the Winograd Algorithm 1.

Algorithm 1 : 𝐶 = W(𝐴, 𝐵)

Input: 𝐴 =
(𝑎11 𝑎12
𝑎21 𝑎22

)
and 𝐵 =

(
𝑏11 𝑏12
𝑏21 𝑏22

)
;

Output: 𝐶 = 𝐴 · 𝐵
𝑠1 ← 𝑎11−𝑎21, 𝑠2 ← 𝑎21 +𝑎22, 𝑠3 ← 𝑠2 − 𝑎11, 𝑠4 ← 𝑎12 − 𝑠3,
𝑡1 ← 𝑏22 −𝑏12, 𝑡2 ← 𝑏12 −𝑏11, 𝑡3 ← 𝑏11 + 𝑡1, 𝑡4 ← 𝑏21 − 𝑡3 .
𝑝1 ← 𝑎11·𝑏11, 𝑝2 ← 𝑎12·𝑏21, 𝑝3 ← 𝑎22·𝑡4, 𝑝4 ← 𝑠1·𝑡1,

𝑝5 ← 𝑠3·𝑡3, 𝑝6 ← 𝑠4·𝑏22, 𝑝7 ← 𝑠2·𝑡2 .
𝑐1 ← 𝑝1 + 𝑝5, 𝑐2 ← 𝑐1 + 𝑝4, 𝑐3 ← 𝑝1 + 𝑝2, 𝑐4 ← 𝑐2 + 𝑝3,
𝑐5 ← 𝑐2 + 𝑝7, 𝑐6 ← 𝑐1 + 𝑝7, 𝑐7 ← 𝑐6 + 𝑝6 .
return 𝐶 =

(𝑐3 𝑐7
𝑐4 𝑐5

)
.

As a second example illustrating our strategy, we consider now

the matrix squaring that was already explored by Bodrato in [3].

Example 2. When computing 𝐴2, the contraction (5) of the ten-

sor T (9) with𝐴 ⊗ 𝐴 shows that choosing a subset 𝐽 of {1, . . . , 7} and
imposing𝑇𝑖1 = 𝑇𝑖2 as constraints with 𝑖 in 𝐽 (see [3, eq 4]) can save |𝐽 |
operations and thus reduce the computational complexity.

The definition (9) of T , these constraints, and the fact that 𝑈 ,𝑉
and𝑊 ’s determinant are 1, form a system with 3 + 4 |𝐽 | equations
and 12 unknowns whose solutions define matrix squaring algorithms.

The algorithm [3, ğ 2.2, eq 2] is given by the action of the isotropy:

g =
(
0 1
−1 0

)
×

(
1 1
0 1

)
×

(
1 0
1 1

)
(12)

163

On Fast Multiplication of a Matrix by its Transpose ISSAC ’20, July 20–23, 2020, Kalamata, Greece

on Strassen’s tensor and is just Chatelin’s algorithm [7, Appendix A],

with 𝜆 = 1 (published 25 years before [3], but not applied to squaring).

Remark 2.2. Using symmetries in our strategy reduces the com-

putational cost compared to the resolution of Brent’s equations [4, ğ 5,

eq 5.03] with an undetermined tensor T . In the previous example by

doing so, we should have constructed a system of at most 64 algebraic

equations with 4(3 (7 − |𝐽 |) + 2 |𝐽 |) unknowns, resulting from the

constraints on T and the relation T = S, expressed using Kronecker
product as a single zero matrix in K8×8.

We apply now our strategy on the 2 × 2 matrix product 𝐴 · 𝐴⊺ .

2.2 2 × 2-matrix product by its transpose

Applying our Strategy 2.1, we consider (9) a generic matrix multi-

plication tensor T and our goal is to reduce the computational com-

plexity of the partial contraction (5) with𝐴 ⊗ 𝐴⊺ computing𝐴 · 𝐴⊺ .
By the properties of the transpose operator and the trace, the

following relations hold:
〈
𝑇𝑖2, 𝐴

⊺
〉
= Trace

(
𝑇𝑖2
⊺ · 𝐴⊺

)
= Trace

(
(𝐴 ·𝑇𝑖2)⊺

)
,

= Trace
(
𝐴 ·𝑇𝑖2

)
= Trace

(
𝑇𝑖2 · 𝐴

)
=

〈
𝑇𝑖2
⊺, 𝐴

〉
.

(13)

Thus, the partial contraction (5) satisfies here the following relation:

7∑

𝑖=1

〈
𝑇𝑖1, 𝐴

〉〈
𝑇𝑖2, 𝐴

⊺
〉
𝑇𝑖3 =

7∑

𝑖=1

〈
𝑇𝑖1, 𝐴

〉
⟨𝑇𝑖2⊺, 𝐴⟩𝑇𝑖3 . (14)

2.2.1 Supplementary symmetry constraints. Our goal is to save

computations in the evaluation of (14). To do so, we consider the sub-

sets 𝐽 of {1, . . . , 7} and 𝐻 of
{
(𝑖, 𝑗) ∈ {2, . . . , 7}2 |𝑖 ≠ 𝑗, 𝑖 ∉ 𝐽 , 𝑗 ∉ 𝐽

}

in order to express the following constraints:

𝑇𝑖1 = 𝑇𝑖2
⊺, 𝑖 ∈ 𝐽 , 𝑇𝑗1 = 𝑇𝑘2

⊺, 𝑇𝑘1 = 𝑇𝑗2
⊺, (𝑗, 𝑘) ∈ 𝐻. (15)

The constraints of type 𝐽 allow one to save preliminary additions

when applying the method to matrices 𝐵 = 𝐴⊺ : since then opera-

tions on𝐴 and𝐴⊺ will be the same. The constraints of type𝐻 allow

to save multiplications especially when dealing with a block-matrix

product: in fact, if some matrix products are transpose of another,

only one of the pair needs to be computed as shown in Section 3.

We are thus looking for the largest possible sets 𝐽 and 𝐻 . By

exhaustive search, we conclude that the cardinality of𝐻 is at most 2

and then the cardinality of 𝐽 is at most 3. For example, choosing

the sets 𝐽 = {1, 2, 5} and 𝐻 = {(3, 6), (4, 7)} we obtain for these so-

lutions the following parameterization expressed with a primitive

element 𝑧 = 𝑣11 − 𝑣21:
𝑣11 = 𝑧 + 𝑣21,
𝑣22 =

(
2 𝑣21 (𝑣21 + 𝑧) − 1

)
𝑣21 + 𝑧3,

𝑣12 = −
(
𝑣21

2 + (𝑣21 + 𝑧2)2 + 1
)
𝑣21 − 𝑧,

𝑢11 = −
(
(𝑧 + 𝑣21)2 + 𝑣212

)
(𝑤21 +𝑤22),

𝑢21 = −
(
(𝑧 + 𝑣21)2 + 𝑣212

)
(𝑤11 +𝑤12),

𝑢12 = −
(
(𝑧 + 𝑣21)2 + 𝑣212

)
𝑤22,

𝑢22 =
(
(𝑧 + 𝑣21)2 + 𝑣212

)
𝑤12,

(
(𝑧 + 𝑣21)2 + 𝑣212

)2 + 1 = 0, 𝑤11𝑤22 −𝑤12𝑤21 = 1.

(16)

Remark 2.3. As
(
(𝑧 + 𝑣21)2 + 𝑣212

)2 + 1 = 0 occurs in this param-

eterization, field extension could not be avoided in these algorithms if

the field does not haveÐat leastÐa square root of −1. We show in Sec-

tion 3 that we can avoid these extensions with block-matrix products

and use our algorithm directly in any field of prime characteristic.

2.2.2 Supplementary constraint on the number of additions. As

done in Example 1, we could also try to reduce the additive com-

plexity and use 4 pre-additions on 𝐴 (resp. 𝐵) [6, Lemma 9] and 7

post-additions on the products to form 𝐶 [6, Lemma 2]. In the cur-

rent situation, if the operations on 𝐵 are exactly the transpose of

that of 𝐴, then we have the following lower bound:

Lemma 2.1. Over a non-commutative domain, 11 additive opera-

tions are necessary to multiply a 2 × 2 matrix by its transpose with a

bilinear algorithm that uses 7 multiplications.

Indeed, over a commutative domain, the lower left and upper

right parts of the product are transpose of one another and one

can save also multiplications. Differently, over non-commutative

domains,𝐴 · 𝐴⊺ is not symmetric in general (say 𝑎𝑐 + 𝑏𝑑 ≠ 𝑐𝑎 + 𝑑𝑏)
and all four coefficients need to be computed. But one can still save 4

additions, since there are algorithms where pre-additions are the

same on𝐴 and𝐴⊺ . Now, to reach that minimum, the constraints (15)

must be combinedwith theminimal number 4 of pre-additions for𝐴.

Those can be attained only if 3 of the 𝑇𝑖1 factors do not require any

addition [6, Lemma 8]. Hence, those factors involve only one of the

four elements of 𝐴 and they are just permutations of 𝑒11. We thus

add these constraints to the system for a subset 𝐾 of {1, . . . , 7}:

|𝐾 | = 3 and𝑇𝑖1 is in
{(

1 0
0 0

)
,
(
0 1
0 0

)
,
(
0 0
1 0

)
,
(
0 0
0 1

)}
and 𝑖 in 𝐾. (17)

2.2.3 Selected solution. We choose 𝐾 = {1, 2, 3} similar to (10) and

obtain the following isotropy that sends Strassen tensor to an algo-

rithm computing the symmetric product more efficiently:

a =

(
𝑧2 0
0 𝑧2

)
×

(𝑧 −𝑧
0 𝑧3

)
×

(−1 1
1 0

)
, 𝑧4 = −1. (18)

We remark that a is equal to d ◦ w with w the isotropy (11) that

sends Strassen tensor to Winograd tensor and with:

d = 𝐷1 ⊗ 𝐷2 ⊗ 𝐷3 =

(
𝑧2 0
0 𝑧2

)
×

(
𝑧 0
0 −𝑧3

)
×

(
1 0
0 1

)
, 𝑧4 = −1. (19)

Hence, the induced algorithm can benefit from the scheduling and

additive complexity of the classical Winograd algorithm. In fact,

our choice a ⋄ S is equal to (d ◦ w) ⋄ S and thus, according to re-

mark (2.1) the resulting algorithm expressed as the total contraction

{(d ◦ w) ⋄ S, (𝐴 ⊗ 𝐴⊺ ⊗ 𝐶)} = {w ⋄ S, 𝑑⊺ ⋄ (𝐴 ⊗ 𝐴⊺ ⊗ 𝐶)} (20)

could be written as a slight modification of Algorithm 1 inputs.

Precisely, as d’s components are diagonal, the relation d⊺ = d

holds; hence, we could express input modification as:
(
𝐷1
−1 · 𝐴 · 𝐷2

)
⊗

(
𝐷2
−1 · 𝐴⊺ · 𝐷3

)
⊗

(
𝐷3
−1 ·𝐶 · 𝐷1

)
. (21)

The above expression is trilinear and the matrices 𝐷𝑖 are scalings

of the identity for 𝑖 in {1, 3}, hence our modifications are just:
(
1

𝑧2
𝐴 · 𝐷2

)
⊗

(
𝐷2
−1 · 𝐴⊺

)
⊗ 𝑧2𝐶. (22)

Using notations of Algorithm 1, this is 𝐶 = W
(
𝐴 · 𝐷2, 𝐷2

−1 · 𝐴⊺
)
.

Allowing our isotropies to have determinant different from 1,

we rescale 𝐷2 by a factor 1/𝑧 to avoid useless 4th root as follows:

𝑄 =
𝐷2

𝑧
=

(
1 0
0 −𝑧2

)
=

(
1 0
0 −𝑦

)
, 𝑧4 = −1 (23)

164

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

where 𝑦 designates the expression 𝑧2 that is a root of −1. Hence,
our algorithm to compute the symmetric product is:

𝐶 = W

(
𝐴 · 𝐷2

𝑧
,

(
𝐷2

𝑧

)−1
· 𝐴⊺

)
= W

(
𝐴 ·𝑄,

(
𝐴 · (𝑄−1)⊺

)⊺)
. (24)

In the next sections, we describe and extend this algorithm to higher-

dimensional symmetric products𝐴 · 𝐴⊺ with a 2ℓ𝑚 × 2ℓ𝑚 matrix𝐴.

3 FAST 2 × 2-BLOCK RECURSIVE SYRK

The algorithm presented in the previous section is non-commutative

and thus we can extend it to higher-dimensional matrix product

by a divide and conquer approach. To do so, we use in the sequel

upper case letters for coefficients in our algorithms instead of lower

case previously (since these coefficients now represent matrices).

Thus, new properties and results are induced by this shift of per-

spective. For example, the coefficient 𝑌 introduced in (23) could

now be transposed in (24); that leads to the following definition:

Definition 3.1. An invertible matrix is skew-orthogonal if the

following relation 𝑌 ⊺ = −𝑌−1 holds.

If 𝑌 is skew-orthogonal, then of the 7 recursive matrix products

involved in expression (24): 1 can be avoided (𝑃6) since we do not

need the upper right coefficient anymore, 1 can be avoided since it is

the transposition of another product (𝑃7 = 𝑃4
⊺) and 3 are recursive

calls to syrk. This results in Algorithm 2.

Algorithm 2 syrk: symmetric matrix product

Input: 𝐴 =

(
𝐴11 𝐴12
𝐴21 𝐴22

)
; a skew-orthogonal matrix 𝑌 .

Output: The lower left triangular part of𝐶 = 𝐴 · 𝐴⊺ =

(
𝐶11 𝐶21

⊺

𝐶21 𝐶22

)
.

⊲ 4 additions and 2 multiplications by 𝑌 :

𝑆1 ← (𝐴21 −𝐴11) · 𝑌, 𝑆2 ← 𝐴22 −𝐴21 · 𝑌 ,
𝑆3 ← 𝑆1 −𝐴22, 𝑆4 ← 𝑆3 +𝐴12.

⊲ 3 recursive syrk (𝑃1, 𝑃2, 𝑃5) and 2 generic (𝑃3, 𝑃4) products:

𝑃1 ← 𝐴11 · 𝐴11
⊺, 𝑃2 ← 𝐴12 · 𝐴12

⊺ ,

𝑃3 ← 𝐴22 · 𝑆4⊺, 𝑃4 ← 𝑆1 · 𝑆2⊺, 𝑃5 ← 𝑆3 · 𝑆3⊺ .
⊲ 2 symmetric additions (half additions):

Low(𝑈1)←Low(𝑃1)+Low(𝑃5), ⊲ 𝑈1, 𝑃1, 𝑃5 are symm.

Low(𝑈3)←Low(𝑃1)+Low(𝑃2), ⊲ 𝑈3, 𝑃1, 𝑃2 are symm.

⊲ 2 complete additions (𝑃4 and 𝑃3 are not symmetric):

Up(𝑈1) ← Low(𝑈1)⊺, 𝑈2 ← 𝑈1 + 𝑃4, 𝑈4 ← 𝑈2 + 𝑃3,
⊲ 1 half addition (𝑈5 = 𝑈1 + 𝑃4 + 𝑃4⊺ is symmetric):

Low(𝑈5) ← Low(𝑈2) + Low(𝑃4⊺).
return

(
Low(𝑈3)

𝑈4 Low(𝑈5)

)
.

3.1 Skew orthogonal matrices

Algorithm 2 requires a skew-orthogonal matrix. Unfortunately

there are no skew-orthogonal matrices over R, nor Q. Hence, we re-

port no improvement in these cases. In other domains, the simplest

skew-orthogonal matrices just use a square root of −1.

3.1.1 Over the complex field. Therefore Algorithm 2 is directly

usable over C𝑛×𝑛 with 𝑌 = 𝑖 I𝑛 ∈ C𝑛×𝑛 . Further, usually, complex

numbers are emulated by a pair of floats so then the multiplications

by 𝑌 = 𝑖 I𝑛 are essentially free since they just exchange the real

and imaginary parts, with one sign flipping. Even though over the

complex the product zherk of a matrix by its conjugate transpose is

more widely used, zsyrk has some applications, see for instance [1].

3.1.2 Negative one is a square. Over some fields with prime char-

acteristic, square roots of −1 can be elements of the base field,

denoted 𝑖 in F again. There, Algorithm 2 only requires some pre-

multiplications by this square root (with also 𝑌 = 𝑖 I𝑛 ∈ F𝑛×𝑛), but
within the field. Proposition 3.1 thereafter characterizes these fields.

Proposition 3.1. Fields with characteristic two, or with an odd

characteristic 𝑝 ≡ 1 mod 4, or finite fields that are an even extension,

contain a square root of −1.

Proof. If 𝑝 = 2, then 1 = 12 = −1. If 𝑝 ≡ 1 mod 4, then half of

the non-zero elements 𝑥 in the base field of size 𝑝 satisfy 𝑥
𝑝−1
4 ≠ ±1

and then the square of the latter must be −1. If the finite field F is

of cardinality 𝑝2𝑘 , then, similarly, there exists elements 𝑥
𝑝𝑘−1

2
𝑝𝑘 +1
2

different from ±1 and then the square of the latter must be −1. □

3.1.3 Any field with prime characteristic. Finally, we show that Al-

gorithm 2 can also be runwithout any field extension, evenwhen−1
is not a square: form the skew-orthogonal matrices constructed

in Proposition 3.2, thereafter, and use them directly as long as the

dimension of𝑌 is even.Whenever this dimension is odd, it is always

possible to pad with zeroes so that 𝐴 · 𝐴⊺ = (𝐴 0) ·
(
𝐴⊺

0

)
.

Proposition 3.2. Let F be a field of characteristic 𝑝 , there ex-

ists (𝑎, 𝑏) in F2 such that the matrix:
(
𝑎 𝑏
−𝑏 𝑎

)
⊗ I𝑛 =

(
𝑎 I𝑛 𝑏 I𝑛
−𝑏 I𝑛 𝑎 I𝑛

)
in F2𝑛×2𝑛 (25)

is skew-orthogonal.

Proof. Using the relation
(
𝑎 I𝑛 𝑏 I𝑛
−𝑏 I𝑛 𝑎 I𝑛

) (
𝑎 I𝑛 𝑏 I𝑛
−𝑏 I𝑛 𝑎 I𝑛

)⊺
= (𝑎2 + 𝑏2) I2𝑛, (26)

it suffices to prove that there exist 𝑎, 𝑏 such that 𝑎2 + 𝑏2 = −1. In
characteristic 2, 𝑎 = 1, 𝑏 = 0 is a solution as 12 + 02 = −1. In odd

characteristic, there are
𝑝+1
2 distinct square elements 𝑥𝑖

2 in the base

prime field. Therefore, there are
𝑝+1
2 distinct elements −1 − 𝑥𝑖2. But

there are only 𝑝 distinct elements in the base field, thus there exists

a couple (𝑖, 𝑗) such that −1 − 𝑥𝑖2 = 𝑥 𝑗 2 [19, Lemma 6]. □

Proposition 3.2 shows that skew-orthogonal matrices do exist

for any field with prime characteristic. For Algorithm 2, we need to

build them mostly for 𝑝 ≡ 3 mod 4 (otherwise use Proposition 3.1).

For this, without the extended Riemann hypothesis (erh), it is

possible to use the decomposition of primes into squares:

(1) Compute first a prime 𝑟 = 4𝑝𝑘 + (3 − 1)𝑝 − 1, then the rela-

tions 𝑟 ≡ 1 mod 4 and 𝑟 ≡ −1 mod 𝑝 hold;

(2) Thus, results of [5] allow one to decompose primes into

squares and give a couple (𝑎, 𝑏) in Z2 such that 𝑎2 + 𝑏2 = 𝑟 .
Finally, we get 𝑎2 + 𝑏2 ≡ −1 mod 𝑝 .

By the prime number theorem the first step is polynomial in log(𝑝),
as is the second step (square root modulo a prime, denoted sqrt,

has a cost close to exponentiation and then the rest of Brillhart’s

165

On Fast Multiplication of a Matrix by its Transpose ISSAC ’20, July 20–23, 2020, Kalamata, Greece

algorithm is gcd-like). In practice, though, it is faster to use the fol-

lowing Algorithm 3, even though the latter has a better asymptotic

complexity bound only if the erh is true.

Algorithm 3 SoS: Sum of squares decomposition over a finite field

Input: 𝑝 ∈ P\{2}, 𝑘 ∈ Z.
Output: (𝑎, 𝑏) ∈ Z2, s.t. 𝑎2 + 𝑏2 ≡ 𝑘 mod 𝑝 .

1: if
(
𝑘
𝑝

)
= 1 then ⊲ 𝑘 is a square mod 𝑝

2: return (sqrt(𝑘), 0).
3: else ⊲ Find smallest quadratic non-residue

4: 𝑠 ← 2; while
(
𝑠
𝑝

)
== 1 do 𝑠 ← 𝑠 + 1

5: 𝑐 ← sqrt(𝑠 − 1) ⊲ 𝑠 − 1 must be a square

6: 𝑟 ← 𝑘𝑠−1 mod 𝑝

7: 𝑎 ← sqrt(𝑟) ⊲ Now 𝑘 ≡ 𝑎2𝑠 ≡ 𝑎2 (1 + 𝑐2) mod 𝑝

8: return (𝑎, 𝑎𝑐 mod 𝑝)

Proposition 3.3. Algorithm 3 is correct and, under the erh, runs

in expected time 𝑂
(
log3 (𝑝)

)
.

Proof. If 𝑘 is square then the square of one of its square roots

added to the square of zero is a solution. Otherwise, the lowest qua-

dratic non-residue (lqnr) modulo 𝑝 is one plus a square 𝑏2 (1 is al-

ways a square so the lqnr is larger than 2). For any generator of Z𝑝 ,

quadratic non-residues, as well as their inverses (𝑠 is invertible as it

is non-zero and 𝑝 is prime), have an odd discrete logarithm. There-

fore the multiplication of 𝑘 and the inverse of the lqnr must be a

square 𝑎2. This means that the relation 𝑘 = 𝑎2
(
1 + 𝑏2

)
= 𝑎2 + (𝑎𝑏)2

holds. Now for the running time, under erh, the lqnr should be

lower than 3 log2 (𝑝)/2 − 44 log(𝑝)/5 + 13 [21, Theorem 6.35]. The

expected number of Legendre symbol computations is 𝑂
(
log2 (𝑝)

)

and this dominates the modular square root computations. □

Remark 3.1. Another possibility is to use randomization: instead

of using the lowest quadratic non-residue (lqnr), randomly select a

non-residue 𝑠 , and then decrement it until 𝑠 − 1 is a quadratic residue
(1 is a square so this will terminate)1. Also, when computing 𝑡 sum

of squares modulo the same prime, one can compute the lqnr only

once to get all the sum of squares with an expected cost bounded

by 𝑂
(
log3 (𝑝) + 𝑡 log2 (𝑝)

)
.

Remark 3.2. Except in characteristic 2 or in algebraic closures,

where every element is a square anyway, Algorithm 3 is easily ex-

tended over any finite field: compute the lqnr in the base prime field,

then use Tonelli-Shanks or Cipolla-Lehmer algorithm to compute

square roots in the extension field.

Denote by SoS(𝑞, 𝑘) this algorithm decomposing 𝑘 as a sum of

squares within any finite field F𝑞 . This is not always possible over

infinite fields, but there Algorithm 3 still works anyway for the special

case 𝑘 = −1: just run it in the prime subfield.

1In practice, the running time seems very close to that of Algorithm 3 anyway, see, e.g.
the implementation in Givaro rev. 7bdefe6, https://github.com/linbox-team/givaro.

3.2 Conjugate transpose

Note that Algorithm 2 remains valid if transposition is replaced

by conjugate transposition, provided that there exists a matrix 𝑌

such that 𝑌 · 𝑌 ⊺ = −I. This is not possible anymore over the com-

plex field, but works for any even extension field, thanks to Al-

gorithm 3: if −1 is a square in F𝑞 , then 𝑌 =
√
−1 · I𝑛 still works;

otherwise there exists a square root 𝑖 of −1 in F𝑞2 , from Propo-

sition 3.1. In the latter case, thus build (𝑎, 𝑏), both in F𝑞 , such

that 𝑎2 + 𝑏2 = −1. Now 𝑌 = (𝑎 + 𝑖𝑏) · I𝑛 in F𝑞2
𝑛×𝑛 is appropriate:

indeed, since 𝑞 ≡ 3 mod 4, we have that 𝑎 + 𝑖𝑏 = (𝑎 + 𝑖𝑏)𝑞 = 𝑎 − 𝑖𝑏.

4 ANALYSIS AND IMPLEMENTATION

4.1 Complexity bounds

Theorem 4.1. Algorithm 2 requires 2
2𝜔−3𝐶𝜔𝑛

𝜔 + 𝑜 (𝑛𝜔) field op-
erations, over C or over any field with prime characteristic.

Proof. Algorithm 2 is applied recursively to compute three prod-

ucts 𝑃1, 𝑃2 and 𝑃7, while 𝑃4 and 𝑃5 are computed in MM𝜔 (𝑛) =
𝐶𝜔𝑛

𝜔 + 𝑜 (𝑛𝜔) using a general matrix multiplication algorithm. We

will show that applying the skew-orthogonal matrix 𝑌 to a 𝑛 × 𝑛
matrix costs 𝑦𝑛2 for some constant 𝑦 depending on the base field.

Then applying Remark 4.1 thereafter, the cost 𝑇 (𝑛) of Algorithm 2

satisfies:

𝑇 (𝑛) ≤ 3𝑇 (𝑛/2) + 2𝐶𝜔 (𝑛/2)𝜔 + (7.5 + 2𝑦) (𝑛/2)2 + 𝑜
(
𝑛2

)
(27)

and 𝑇 (4) is a constant. Thus, by the master Theorem:

𝑇 (𝑛) ≤ 2𝐶𝜔

2𝜔 − 3𝑛
𝜔 + 𝑜

(
𝑛𝜔

)
=

2

2𝜔 − 3MM𝜔 (𝑛) + 𝑜
(
𝑛𝜔

)
. (28)

If the field is C or satisfies the conditions of Proposition 3.1,

there is a square root 𝑖 of −1. Setting 𝑌 = 𝑖 I𝑛/2 yields 𝑦 = 1. Oth-

erwise, in characteristic 𝑝 ≡ 3 mod 4, Proposition 3.2 produces 𝑌

equal to
(
𝑎 𝑏
−𝑏 𝑎

)
⊗ I𝑛/2 for which 𝑦 = 3. As a subcase, the latter

can be improved when 𝑝 ≡ 3 mod 8: then −2 is a square (indeed,(
−2
𝑝

)
=

(
−1
𝑝

) (
2
𝑝

)
= (−1)

𝑝−1
2 (−1)

𝑝2−1
8 = (−1) (−1) = 1). There-

fore, in this case set 𝑎 = 1 and 𝑏 ≡
√
−2 mod 𝑝 such that the re-

lation 𝑎2 + 𝑏2 = −1 yields 𝑌 =

(
1
√
−2

−
√
−2 1

)
⊗ I𝑛/2 for which 𝑦 = 2.

□

To our knowledge, the best previously known result was with

a 2
2𝜔−4 factor instead, see e.g. [11, ğ 6.3.1]. Table 1 summarizes the

arithmetic complexity bound improvements.

Problem Alg. 𝑂
(
𝑛3

)
𝑂

(
𝑛log2 (7)

)
𝑂 (𝑛𝜔)

𝐴 ·𝐴⊺ ∈ F𝑛×𝑛 [11] 𝑛3 2
3 MMlog2 (7) (𝑛)

2
2𝜔−4 MM𝜔 (𝑛)

Alg. 2 0.8𝑛3 1
2 MMlog2 (7) (𝑛)

2
2𝜔−3 MM𝜔 (𝑛)

Table 1: Arithmetic complexity bounds leading terms.

Alternatively, overC, the 3𝑀 method (Karatsuba) for non-symmetric

matrix multiplication reduces the number of multiplications of

real matrices from 4 to 3 [15]: if 𝑅𝑅𝜔 (𝑛) is the cost of multiply-

ing 𝑛 × 𝑛 matrices over R, then the 3𝑀 method costs 3𝑅𝑅𝜔 (𝑛) +
𝑜 (𝑛𝜔) operations over R. Adapting this approach to the symmet-

ric case yields a 2𝑀 method to compute the product of a complex

166

https://github.com/linbox-team/givaro

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

matrix by its transpose, using only 2 real products: 𝐻 = 𝐴 · 𝐵⊺
and𝐺 = (𝐴 + 𝐵) · (𝐴⊺ − 𝐵⊺). Combining those into (𝐺−𝐻⊺ +𝐻) +
𝑖 (𝐻 +𝐻⊺), yields the product (𝐴 + 𝑖𝐵) · (𝐴⊺ + 𝑖𝐵⊺). This approach
costs 2𝑅𝑅𝜔 + 𝑜 (𝑛𝜔) operations in R.

Classical algorithm [11, ğ 6.3.1] applies a divide and conquer

approach directly on the complex field. This would use only the

equivalent of 2
2𝜔−4 complex floating point 𝑛 × 𝑛 products. Using

the 3𝑀 method for the complex products, this algorithm uses over-

all 6
2𝜔−4𝑅𝑅𝜔 + 𝑜 (𝑛𝜔) operations in R. Finally, Algorithm 2 only

costs 2
2𝜔−3 complex multiplications for a leading term bounded

by 6
2𝜔−3RR𝜔 , better than 2RR𝜔 for 𝜔 > log2 (6) ≈ 2.585. This is

summarized in Table 2, replacing 𝜔 by 3 or log2 (7).

Problem Alg. MM3 (𝑛) MMlog2 7
(𝑛) MM𝜔 (𝑛)

𝐴 · 𝐵 ∈ C𝑛×𝑛 naive 8𝑛3 4 RRlog2 (7) (𝑛) 4 RR𝜔 (𝑛)
3M 6𝑛3 3 RRlog2 (7) (𝑛) 3 RR𝜔 (𝑛)

𝐴 ·𝐴⊺ ∈ C𝑛×𝑛
2M 4𝑛3 2 RRlog2 (7) (𝑛) 2 RR𝜔 (𝑛)
[11] 3𝑛3 2 RRlog2 (7) (𝑛)

6
2𝜔−4 RR𝜔 (𝑛)

Alg. 2 2.4𝑛3 3
2 RRlog2 (7) (𝑛)

6
2𝜔−3 RR𝜔 (𝑛)

Table 2: Symmetric multiplication over C: leading term of

the cost in number of operations over R.

Remark 4.1. Each recursive level of Algorithm 2 is composed of 9

block additions. An exhaustive search on all symmetric algorithms

derived from Strassen’s showed that this number is minimal in this

class of algorithms. Note also that 3 out of these 9 additions in Algo-

rithm 2 involve symmetric matrices and are therefore only performed

on the lower triangular part of the matrix. Overall, the number of

scalar additions is 6𝑛2 + 3/2𝑛(𝑛 + 1) = 15/2𝑛2 + 1.5𝑛, nearly half of

the optimal in the non-symmetric case [6, Theorem 1].

To further reduce the number of additions, a promising approach

is that undertaken in [2, 16]. This is however not clear to us how

to adapt our strategy to their recursive transformation of basis.

4.2 Implementation and scheduling

This section reports on an implementation of Algorithm 2 over

prime fields. We propose in Table 3 and Figure 1 a schedule for the

operation𝐶 ← 𝐴 · 𝐴⊺ using no more extra storage than the unused

upper triangular part of the result 𝐶 .

operation loc. # operation loc.

1 𝑆1 = (𝐴21 −𝐴11) · 𝑌 𝐶21 9 𝑈1 = 𝑃1 + 𝑃5 𝐶12

2 𝑆2 = 𝐴22 −𝐴21 · 𝑌 𝐶12 Up(𝑈1) = Low(𝑈1)⊺ 𝐶12

3 𝑃4
⊺ = 𝑆2 · 𝑆1⊺ 𝐶22 10 𝑈2 = 𝑈1 + 𝑃4 𝐶12

4 𝑆3 = 𝑆1 −𝐴22 𝐶21 11 𝑈4 = 𝑈2 + 𝑃3 𝐶21

5 𝑃5 = 𝑆3 · 𝑆3⊺ 𝐶12 12 𝑈5 = 𝑈2 + 𝑃4⊺ 𝐶22

6 𝑆4 = 𝑆3 +𝐴12 𝐶11 13 𝑃2 = 𝐴12 ·𝐴12
⊺ 𝐶12

7 𝑃3 = 𝐴22 · 𝑆4⊺ 𝐶21 14 𝑈3 = 𝑃1 + 𝑃2 𝐶11

8 𝑃1 = 𝐴11 ·𝐴11
⊺ 𝐶11

Table 3: Memory placement and schedule of tasks to com-

pute the lower triangular part of𝐶 ← 𝐴 · 𝐴⊺ when 𝑘 ≤ 𝑛. The
block 𝐶12 of the output matrix is the only temporary used.

𝐶22 𝐶12 𝐶21 𝐶11

𝑆2 𝑆1

𝑃4
⊺ 𝑆3

𝑃5 𝑆4

𝑃3

𝑃1

𝑈1

𝑈2

𝑈5 𝑈4

𝑃2

𝑈3

Figure 1: dag of the tasks and their memory location for the

computation of 𝐶 ← 𝐴 · 𝐴⊺ presented in Table 3.

operation loc. operation loc.

𝑆1 = (𝐴21 −𝐴11) · 𝑌 tmp 𝑃1 = 𝛼𝐴11 ·𝐴11
⊺ tmp

𝑆2 = 𝐴22 −𝐴21 · 𝑌 𝐶12 𝑈1 = 𝑃1 + 𝑃5 𝐶12

Up(𝐶11) = Low(𝐶22)⊺ 𝐶11 Up(𝑈1) = Low(𝑈1)⊺ 𝐶12

𝑃4
⊺ = 𝛼𝑆2 · 𝑆1⊺ 𝐶22 𝑈2 = 𝑈1 + 𝑃4 𝐶12

𝑆3 = 𝑆1 −𝐴22 tmp 𝑈4 = 𝑈2 + 𝑃3 𝐶21

𝑃5 = 𝛼𝑆3 · 𝑆3⊺ 𝐶12 𝑈5 = 𝑈2 + 𝑃4⊺ + 𝛽Up(𝐶11)⊺ 𝐶22

𝑆4 = 𝑆3 +𝐴12 tmp 𝑃2 = 𝛼𝐴12 ·𝐴12
⊺ + 𝛽𝐶11 𝐶11

𝑃3 = 𝛼𝐴22 · 𝑆4⊺ + 𝛽𝐶21 𝐶21 𝑈3 = 𝑃1 + 𝑃2 𝐶11

Table 4: Memory placement and schedule of tasks to

compute the lower triangular part of 𝐶 ← 𝛼𝐴 · 𝐴⊺ + 𝛽𝐶
when 𝑘 ≤ 𝑛. The block 𝐶12 of the output matrix as well as

an 𝑛/2 × 𝑛/2 block tmp are used as temporary storages.

𝐶11 𝐶22 𝐶12 tmp 𝐶21

Up(𝐶11) 𝑆2 𝑆1

𝑃4
⊺ 𝑆3

𝑃5 𝑆4

𝑃1 𝑃3

𝑈1

𝑈2

𝑈5 𝑈4

𝑃2

𝑈3

Figure 2: dag of the tasks and their memory location for the

computation of 𝐶 ← 𝛼𝐴 · 𝐴⊺ + 𝛽𝐶 presented in Table 4.

For the more general operation 𝐶 ← 𝛼𝐴 · 𝐴⊺ + 𝛽𝐶 , Table 4 and
Figure 2 propose a schedule requiring only an additional 𝑛/2 × 𝑛/2
temporary storage. These algorithms have been implemented as the

fsyrk routine in the fflas-ffpack library for dense linear algebra

over a finite field [14, from commit 0a91d61e].

Figure 3 compares the computation speed in effective Gfops (de-

fined as 𝑛3/(109 × time)) of this implementation over Z/131071Z
with that of the double precision blas routines dsyrk, the classical

167

https://github.com/linbox-team/fflas-ffpack/commit/0a91d61e6518568b006873076df925fcd6fcc112

On Fast Multiplication of a Matrix by its Transpose ISSAC ’20, July 20–23, 2020, Kalamata, Greece

cubic-time routine over a finite field (calling dsyrk and performing

modular reductions on the result), and the classical divide and con-

quer algorithm [11, ğ 6.3.1]. The fflas-ffpack library is linked

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

E
ffe

c
ti

v
e
 G

fo
p
s
:

n
3
/(

1
0

9
 x

 t
im

e
)

n

Fast FSYRK on an i7-6700 (skylake)

Classic OpenBLAS DSYRK
Classic FSYRK modulo 131071

Divide & Conquer FSYRK modulo 131071
Fast FSYRK modulo 131071
Fast FSYRK modulo 131041

Figure 3: Speed of an implementation of Algorithm 2

with Openblas [23, v0.3.6] and compiled with gcc-9.2 on an Intel

skylake i7-6700 running a Debian gnu/Linux system (v5.2.17).

The slight overhead of performing the modular reductions is

quickly compensated by the speed-up of the sub-cubic algorithm

(the threshold for a first recursive call is near 𝑛 = 2000). The classi-

cal divide and conquer approach also speeds up the classical algo-

rithm, but starting from a larger threshold, and hence at a slower

pace. Lastly, the speed is merely identical modulo 131041, where

square roots of −1 exist, thus showing the limited overhead of the

preconditioning by the matrix 𝑌 .

5 SYRKWITH BLOCK DIAGONAL SCALING

Symmetric rank k updates are a key building block for symmetric

triangular factorization algorithms, for their efficiency is one of the

bottlenecks. In the most general setting (indefinite factorization),

a block diagonal scaling by a matrix 𝐷 , with 1 or 2 dimensional

diagonal blocks, has to be inserted within the product, leading to

the operation: 𝐶 ← 𝐶 −𝐴 · 𝐷 · 𝐴⊺ .
Handling the block diagonal structure over the course of the

recursive algorithm may become tedious and quite expensive. For

instance, a 2 × 2 diagonal block might have to be cut by a recur-

sive split. We will see also in the following that non-squares in the

diagonal need to be dealt with in pairs. In both cases it might be

necessary to add a column to deal with these cases: this is poten-

tially 𝑂
(
log2 (𝑛)

)
extra columns in a recursive setting.

Over a finite field, though, we will show in this section, how to

factor the block-diagonal matrix 𝐷 into 𝐷 = Δ · Δ⊺ , without need-
ing any field extension, and then compute instead (𝐴 · Δ) · (𝐴 · Δ)⊺ .
Algorithm 6, deals with non-squares and 2 × 2 blocks only once

beforehand, introducing no more than 2 extra-columns overall. Sec-

tion 5.1 shows how to factor a diagonal matrix, without resorting to

field extensions for non-squares. Then Sections 5.2.1 and 5.2.2 show

how to deal with the 2 × 2 blocks depending on the characteristic.

5.1 Factoring non-squares within a finite field

First we give an algorithm handling pairs of non-quadratic residues.

Proposition 5.1. Algorithm 4 is correct.

Algorithm 4 : nrsyf: Sym. factorization. of a pair of non-residues

Input: (𝛼, 𝛽) ∈ F𝑞2, both being quadratic non-residues.

Output: 𝑌 ∈ F𝑞2×2, s.t. 𝑌 · 𝑌 ⊺ =

(
𝛼 0
0 𝛽

)
.

1: (𝑎, 𝑏) ← SoS(𝑞, 𝛼); ⊲ 𝛼 = 𝑎2 + 𝑏2
2: 𝑑 ← 𝑎 sqrt(𝛽𝛼−1); ⊲ 𝑑2 = 𝑎2𝛽𝛼−1

3: 𝑐 ← −𝑏𝑑𝑎−1; ⊲ 𝑎𝑐 + 𝑏𝑑 = 0

4: return 𝑌 ←
(
𝑎 𝑏
𝑐 𝑑

)
.

Proof. Given 𝛼 and 𝛽 quadratic non-residues, the couple (𝑎, 𝑏),
such that 𝛼 = 𝑎2 + 𝑏2, is found by the algorithm of Remark 3.2.

Second, as 𝛼 and 𝛽 are quadratic non-residues, over a finite field

their quotient is a residue since:
(
𝛽𝛼−1

) 𝑞−1
2 = −1−1 = 1. Third, if 𝑐

denotes −𝑏𝑑𝑎−1 then 𝑐2 + 𝑑2 is equal to (−𝑏𝑑/𝑎)2 + 𝑑2 and thus

to (𝑏2/𝑎2 + 1)𝑑2; this last quantity is equal to (𝛼)𝑑2/𝑎2 and then

to 𝛼 (𝑎
√
𝛽/𝛼)2/𝑎2 = 𝛼 (𝑎2𝛽/𝛼)/𝑎2 = 𝛽 . Fourth, 𝑎 (or w.l.o.g. 𝑏) is

invertible. Indeed, 𝛼 is not a square, therefore it is non-zero and

thus one of 𝑎 or 𝑏 must be non-zero. Finally, we obtain the can-

cellation 𝑎𝑐 + 𝑏𝑑 = 𝑎(−𝑑𝑏𝑎−1) + 𝑏𝑑 = −𝑑𝑏 + 𝑏𝑑 = 0 and the matrix

product 𝑌 · 𝑌 ⊺ is
(
𝑎 𝑏
𝑐 𝑑

) (𝑎 𝑐
𝑏 𝑑

)
=

(
𝑎2+𝑏2 𝑎𝑐+𝑏𝑑
𝑎𝑐+𝑏𝑑 𝑐2+𝑑2

)
=

(
𝛼 0
0 𝛽

)
. □

Using Algorithm 4, one can then factor any diagonal matrix

within a finite field as a symmetric product with a tridiagonal matrix.

This can then be used to compute efficiently 𝐴 · 𝐷 · 𝐴⊺ with 𝐷 a

diagonal matrix: factor𝐷 with a tridiagonal matrix𝐷 = Δ · Δ⊺ , then
pre-multiply 𝐴 by this tridiagonal matrix and run a fast symmetric

product on the resulting matrix. This is shown in Algorithm 5,

where the overhead, compared to simple matrix multiplication, is

only 𝑂
(
𝑛2

)
(that is 𝑂 (𝑛) square roots and 𝑂 (𝑛) column scalings).

Algorithm 5 syrkd: sym. matrix product with diagonal scaling

Input: 𝐴 ∈ F𝑞𝑚×𝑛 and 𝐷 = Diag(𝑑1, . . . , 𝑑𝑛) ∈ F𝑞𝑛×𝑛
Output: 𝐴 · 𝐷 · 𝐴⊺ in F𝑞

𝑚×𝑚

1: if number of quadratic non-residues in {𝑑1, . . . , 𝑑𝑛} is odd then
Let 𝑑ℓ be one of the quadratic non-residues

2: �̄� ← Diag(𝑑1, . . . , 𝑑𝑛, 𝑑ℓ) ∈ F𝑞(𝑛+1)×(𝑛+1)
3: 𝐴← (𝐴 0) ∈ F𝑞𝑚×(𝑛+1) ⊲ Augment 𝐴 with a zero column

4: else

5: �̄� ← Diag(𝑑1, . . . , 𝑑𝑛) ∈ F𝑞𝑛×𝑛
6: 𝐴← 𝐴 ∈ F𝑞𝑚×𝑛

7: for all quadratic residues 𝑑 𝑗 in �̄� do

8: 𝐴∗, 𝑗 ← sqrt(𝑑 𝑗) · 𝐴∗, 𝑗 ⊲ Scale col. 𝑗 of 𝐴 by a sq. root of 𝑑 𝑗

9: for all distinct pairs of quadratic non-residues (𝑑𝑖 , 𝑑 𝑗) in �̄� do

10: Δ← nrsyf(𝑑𝑖 , 𝑑 𝑗) ⊲ Δ · Δ⊺ =

(
𝑑𝑖 0
0 𝑑 𝑗

)
using Algorithm 4

11: (𝐴∗,𝑖 𝐴∗, 𝑗) ← (𝐴∗,𝑖 𝐴∗, 𝑗) · Δ;
12: return syrk(𝐴) ⊲ 𝐴 ·𝐴⊺ using Algorithm 2

5.2 Antidiagonal and antitriangular blocks

In general, an 𝐿 · 𝐷 · 𝐿⊺ factorization may have antitriangular or

antidiagonal blocks in𝐷 [12]. In order to reduce to a routine for fast

symmetric multiplication with diagonal scaling, these blocks need

to be processed once for all, which is what this section is about.

168

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

5.2.1 Antidiagonal blocks in odd characteristic. In odd characteris-

tic, the 2-dimensional blocks in an 𝐿 · 𝐷 · 𝐿⊺ factorization are only

of the form
(
0 𝛽
𝛽 0

)
, and always have the symmetric factorization:

(
1 1
1 −1

) (
1
2 𝛽 0

0 − 1
2 𝛽

) (
1 1
1 −1

)⊺
=

(
0 𝛽
𝛽 0

)
. (29)

This shows the reduction to the diagonal case (note the requirement

that 2 is invertible).

5.2.2 Antitriangular blocks in characteristic 2. In characteristic 2,

some 2 × 2 blocks might not be reduced further than an antitrian-

gular form:
(
0 𝛽
𝛽 𝛾

)
, with 𝛾 ≠ 0.

In characteristic 2 every element is a square, therefore those

antitriangular blocks can be factored as shown in Eq. (30):
(
0 𝛽
𝛽 𝛾

)
=

((
𝛽𝛾−1/2 0

0 𝛾1/2

) (
1 1
1 0

)) ((
𝛽𝛾−1/2 0

0 𝛾1/2

) (
1 1
1 0

))⊺
. (30)

Therefore the antitriangular blocks also reduce to the diagonal case.

5.2.3 Antidiagonal blocks in characteristic 2. The symmetric factor-

ization in this case might require an extra row or column [18] as

shown in Eq. (31):
(
1 0
0 𝛽

) (
1 0 1
0 1 1

) ((
1 0
0 𝛽

) (
1 0 1
0 1 1

))⊺
=

(
0 𝛽
𝛽 0

)
mod 2. (31)

A first option is to augment 𝐴 by one column for each antidiagonal

block, by applying the 2×3 factor in Eq. (31). However one can

instead combine a diagonal element, say 𝑥 , and an antidiagonal

block as shown in Eq. (32).
(√

𝑥
√
𝑥
√
𝑥

1 0 1
0 𝛽 𝛽

) (√
𝑥
√
𝑥
√
𝑥

1 0 1
0 𝛽 𝛽

)⊺
=

(
𝑥 0 0
0 0 𝛽
0 𝛽 0

)
mod 2. (32)

Hence, any antidiagonal block can be combined with any 1×1 block
to form a symmetric factorization.

There remains the case when there are no 1×1 blocks. Then,

one can use Eq. (31) once, on the first antidiagonal block, and add

column to 𝐴. This indeed extracts the antidiagonal elements and

creates a 3×3 identity block in the middle. Any one of its three

ones can then be used as 𝑥 in a further combination with the next

antidiagonal blocks. Algorithm 6 sums up the use of Eqs. (29) to (32).

REFERENCES
[1] M. Baboulin, L. Giraud, and S. Gratton. A parallel distributed solver for large dense

symmetric systems: Applications to geodesy and electromagnetism problems. Int.
J. of HPC Applications, 19(4):353ś363, 2005. doi:10.1177/1094342005056134.

[2] G. Beniamini and O. Schwartz. Faster matrix multiplication via sparse decompo-
sition. In Proc. SPAA’19, pages 11ś22, 2019. doi:10.1145/3323165.3323188.

[3] M. Bodrato. A Strassen-like matrix multiplication suited for squaring and higher
power computation. In Proc. ISSAC’10, pages 273ś280. ACM, 2010. doi:10.1145/
1837934.1837987.

[4] R. P. Brent. Algorithms for matrix multiplication. Technical Report STAN-CS-70-
157, C.S. Dpt. Standford University, Mar. 1970.

[5] J. Brillhart. Note on representing a prime as a sum of two squares.Math. of Compu-
tation, 26(120):1011ś1013, 1972. doi:10.1090/S0025-5718-1972-0314745-6.

[6] N. H. Bshouty. On the additive complexity of 2 × 2matrix multiplication. Inf. Pro-
cessing Letters, 56(6):329ś335, Dec. 1995. doi:10.1016/0020-0190(95)00176-X.

[7] Ph. Chatelin. On transformations of algorithms to multiply 2 × 2 matrices. Inf.
processing letters, 22(1):1ś5, Jan. 1986. doi:10.1016/0020-0190(86)90033-5.

[8] H. F. de Groot. On varieties of optimal algorithms for the computation of bilinear
mappings I. The isotropy group of a bilinear mapping. Theoretical Computer
Science, 7(2):1ś24, 1978. doi:10.1016/0304-3975(78)90038-5.

[9] H. F. de Groot. On varieties of optimal algorithms for the computation of bilinear
mappings II. Optimal algorithms for 2 × 2-matrix multiplication. Theoretical
Computer Science, 7(2):127ś148, 1978. doi:10.1016/0304-3975(78)90045-2.

Algorithm6 : syrkbd: sym.matrix product with block diag. scaling

Input: 𝐴 ∈ F𝑞𝑚×𝑛 ; 𝐵 ∈ F𝑞𝑛×𝑛 , block diagonal with scalar or

2-dimensional blocks of the form
(
0 𝛽
𝛽 𝛾

)
with 𝛽 ≠ 0

Output: 𝐴 · 𝐵 · 𝐴⊺ ∈ F𝑞𝑚×𝑚
1: 𝐴← 𝐴 ∈ F𝑞𝑚×𝑛 ; �̄� ← I𝑛
2: for all scalar blocks in 𝐵 at position 𝑗 do �̄� 𝑗 ← 𝐵 𝑗, 𝑗
3: if 𝑞 is odd then ⊲ Use Eq. (29)

4: for all symmetric antidiagonal blocks in 𝐵 at (𝑗, 𝑗 + 1) do
5: 𝛽 ← 𝐵 𝑗, 𝑗+1 (= 𝐵 𝑗+1, 𝑗)
6: �̄� 𝑗 ← 1

2 𝛽 ; �̄� 𝑗+1 ← − 1
2 𝛽

7: (𝐴∗,𝑖 𝐴∗, 𝑗) ← (𝐴∗,𝑖 𝐴∗, 𝑗)
(
1 1
1 −1

)

8: else

9: for all antitriangular blocks in 𝐵 at position (𝑗, 𝑗 + 1) do
10: 𝛽 ← 𝐵 𝑗, 𝑗+1 (= 𝐵 𝑗+1, 𝑗) ; 𝛿 ← sqrt(𝐵 𝑗+1, 𝑗+1);
11: 𝐴∗, 𝑗 ← 𝛽𝛿−1 · 𝐴∗, 𝑗 ⊲ Scale column 𝑗 of 𝐴

12: 𝐴∗, 𝑗+1 ← 𝛿 · 𝐴∗, 𝑗+1 ⊲ Scale column 𝑗 + 1 of 𝐴
13: 𝐴∗, 𝑗+1 ← 𝐴∗, 𝑗+1 +𝐴∗, 𝑗 ⊲ Use Eq. (30)

14: Swap columns 𝑗 and 𝑗 + 1 of 𝐴
15: if there are 𝑛/2 antidiagonal blocks in 𝐵 then ⊲ Use Eq. (31)

16: 𝛽 ← 𝐵1,2 (= 𝐵2,1)
17: 𝐴∗,2 ← 𝛽 · 𝐴∗,2 ; 𝐴← (𝐴 𝐴∗,1+𝐴∗,2) ∈ F𝑞𝑚×(𝑛+1)
18: ℓ ← 1 ; 𝛿 ← 1

19: else

20: 𝛿 ← sqrt(�̄�ℓ,ℓ) where ℓ is s.t. �̄�ℓ,ℓ is a scalar block

21: for all remaining antidiagonal blocks in 𝐵 at (𝑗, 𝑗 + 1) do
22: 𝛽 ← 𝐵 𝑗, 𝑗+1 (= 𝐵 𝑗+1, 𝑗) ⊲ Use Eq. (32)

23: 𝐴∗,ℓ ← 𝛿 · 𝐴∗,ℓ ; 𝐴∗, 𝑗+1 ← 𝛽 · 𝐴∗, 𝑗+1
24: (𝐴∗,ℓ 𝐴∗, 𝑗 𝐴∗, 𝑗+1) ← (𝐴∗,ℓ 𝐴∗, 𝑗 𝐴∗, 𝑗+1) ·

(
1 1 1
1 0 1
0 1 1

)

25: 𝛿 ← 1

26: return syrkd(𝐴, �̄�) ⊲ 𝐴 · �̄� ·𝐴⊺ using Algorithm 5

[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A Set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. on Math. Soft., 16(1):1ś17, Mar. 1990.
doi:10.1145/77626.79170.

[11] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over prime fields. ACM
Trans. on Math. Soft., 35(3):1ś42, Nov. 2008. doi:10.1145/1391989.1391992.

[12] J.-G. Dumas and C. Pernet. Symmetric indefinite elimination revealing the rank
profile matrix. In Proc. ISSAC’18, pages 151ś158. ACM, 2018. doi:10.1145/

3208976.3209019.
[13] J.-C. Faugère. FGb: A Library for Computing Gröbner Bases. In Proc ICMS’10,

LNCS, 6327, pages 84ś87, 2010. doi:10.1007/978-3-642-15582-6_17.
[14] The FFLAS-FFPACK group. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines

/ Package, 2019. v2.4.1. URL: http://github.com/linbox-team/fflas-ffpack.
[15] N. J. Higham. Stability of a method for multiplying complex matrices with three

real matrix multiplications. SIMAX, 13(3):681ś687, 1992. doi:10.1137/0613043.
[16] E. Karstadt and O. Schwartz. Matrix multiplication, a little faster. In Proc. SPAA’17,

pages 101ś110. ACM, 2017. doi:10.1145/3087556.3087579.
[17] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proc ISSAC’14,

pages 296ś303. ACM, 2014. doi:10.1145/2608628.2608664.
[18] A. Lempel. Matrix factorization over 𝐺𝐹 (2) and trace-orthogonal bases

of𝐺𝐹 (2𝑛) . SIAM J. on Computing, 4(2):175ś186, 1975. doi:10.1137/0204014.
[19] G. Seroussi and A. Lempel. Factorization of symmetric matrices and trace-

orthogonal bases in finite fields. SIAM J. on Computing, 9(4):758ś767, 1980.
doi:10.1137/0209059.

[20] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354ś
356, 1969. doi:10.1007/BF02165411.

[21] S. Wedeniwski. Primality tests on commutator curves. PhD U. Tübingen, 2001.
[22] S. Winograd. La complexité des calculs numériques. La Recherche, 8:956ś963,

1977.
[23] Z. Xianyi, M. Kroeker, et al. OpenBLAS, an Optimized BLAS library, 2019. http:

//www.openblas.net/.

169

https://doi.org/10.1177/1094342005056134
https://doi.org/10.1145/3323165.3323188
https://doi.org/10.1145/1837934.1837987
https://doi.org/10.1145/1837934.1837987
http://i.stanford.edu/pub/cstr/reports/cs/tr/70/157/CS-TR-70-157.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/70/157/CS-TR-70-157.pdf
https://doi.org/10.1090/S0025-5718-1972-0314745-6
https://doi.org/10.1016/0020-0190(95)00176-X
https://doi.org/10.1016/0020-0190(86)90033-5
https://doi.org/10.1016/0304-3975(78)90038-5
https://doi.org/10.1016/0304-3975(78)90045-2
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/1391989.1391992
https://doi.org/10.1145/3208976.3209019
https://doi.org/10.1145/3208976.3209019
https://doi.org/10.1007/978-3-642-15582-6_17
http://github.com/linbox-team/fflas-ffpack
https://doi.org/10.1137/0613043
https://doi.org/10.1145/3087556.3087579
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/0204014
https://doi.org/10.1137/0209059
https://doi.org/10.1007/BF02165411
http://www.openblas.net/
http://www.openblas.net/

On the Bit Complexity of Finding Points in Connected
Components of a Smooth Real Hypersurface

Jesse Elliott
Cheriton School of Computer Science

University of Waterloo
jakellio@uwaterloo.ca

Mark Giesbrecht
Cheriton School of Computer Science

University of Waterloo
mwg@uwaterloo.ca

Éric Schost
Cheriton School of Computer Science

University of Waterloo
eschost@uwaterloo.ca

Abstract

We present a full analysis of the bit complexity of an efficient algo-
rithm for the computation of at least one point in each connected
component of a smooth real hypersurface. This is a basic and impor-
tant operation in semi-algebraic geometry: it gives an upper bound
on the number of connected components of a real hypersurface,
and is also used in many higher level algorithms.

Our starting point is an algorithm by Safey El Din and Schost
(Polar varieties and computation of one point in each connected com-
ponent of a smooth real algebraic set, ISSAC’03). This algorithm uses
random changes of variables that are proved to generically ensure
certain desirable geometric properties. The cost of the algorithm
was given in an algebraic complexity model; the analysis of the bit
complexity and the error probability were left for future work.

Our paper answers these questions. Our main contribution is
a quantitative analysis of several genericity statements, such as
Thom’s weak transversality theorem or Noether normalization
properties for polar varieties.

CCS Concepts

· Computing methodologies→ Algebraic algorithms.

Keywords

Real algebraic geometry; weak transversality; Noether position;
complexity

ACM Reference Format:

Jesse Elliott, Mark Giesbrecht, and Éric Schost. 2020. On the Bit Complexity
of Finding Points in Connected Components of a Smooth Real Hypersurface.
In International Symposium on Symbolic and Algebraic Computation (ISSAC
’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3373207.3404058

1 Introduction

Background and problem statement. Computing one point
in each connected component of a real algebraic set 𝑆 is a basic
subroutine in real algebraic and semi-algebraic geometry; it is also
useful in its own right, since it allows one to decide if 𝑆 is empty or
not.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404058

In this paper, we consider the case where 𝑆 is given as 𝑆 = 𝑉 ∩R𝑛 ,
where 𝑉 = 𝑉 (𝑓) ⊂ C𝑛 is a complex hypersurface defined by a
squarefree polynomial 𝑓 ∈ Z[𝑋1, . . . , 𝑋𝑛]. Algorithms for this task
have been known for decades, and their complexity is to some extent
well understood. Suppose that 𝑓 has degree 𝑑 , and coefficients of
bit-size ℎ. Without making any assumption on 𝑓 , the algorithm
given in [7, Section 13.1] solves our problem using𝑑𝑂 (𝑛) operations
in Q; in addition, the output of the algorithm is represented by
polynomials of degree 𝑑𝑂 (𝑛) , with coefficients of bit-size ℎ𝑑𝑂 (𝑛) .
The key idea behind this algorithm goes back to [18]: sample points
are found through the computation of critical points of well-chosen
functions on 𝑉 (𝑓).

The number of connected components of𝑉 (𝑓) admits the lower
bound 𝑑Ω (𝑛) , so up to polynomial factors this result is optimal.
However, due to the generality of the algorithm, the constant hidden
in the exponent𝑂 (𝑛) in its runtime turns out to be rather large: the
algorithm relies on infinitesimal deformations, that affect runtime
non-trivially.

In this paper, we will work under the additional assumption that
𝑉 = 𝑉 (𝑓) is a smooth complex hypersurface. We place ourselves in
the continuation of the line of work initiated by [4]: that reference
deals with cases where𝑉 is smooth and𝑉 ∩R𝑛 is compact, pointing
out how polar varieties (that were introduced in the 1930’s in order
to define characteristic classes [25, 34]) can play a role in effective
real geometry. This paper was extended in several directions: to 𝑉
being a smooth complete intersection, still with𝑉 ∩R𝑛 compact [5],
then without the compactness assumption [6, 28]; the smoothness
assumption was then partly dropped in [2, 3].

Our starting point is the algorithm in [28]. In the hypersurface
case, its runtime is 𝑑 (4+𝑜 (1))𝑛 operations inQ. As with many results
in this vein, the algorithm is randomized: we need to assume that
we are in generic coordinates; this is done by applying a random
change of coordinates prior to all computations. In addition, the
algorithm relies on procedures for solving systems of polynomial
equations that are themselves randomized. Altogether, we choose
𝑛𝑂 (1) random vectors, each of them in an affine space of dimension
𝑛𝑂 (1) ; every time a choice is made, there exists a hypersurface of
the parameter space that one has to avoid in order to guarantee
success. In this paper, we revisit this algorithm and give a complete
analysis of its probability of success and its bit complexity.

Data structures. The output of the algorithm is a finite set inQ𝑛 .
To represent it, we rely on a widely used data structure based on
univariate polynomials [1, 13ś16, 22, 23, 26]. For a zero-dimensional
algebraic set 𝑆 ⊂ C𝑛 defined over Q, a zero-dimensional param-
eterization Q = ((𝑞, 𝑣1, . . . , 𝑣𝑛), 𝜆) of 𝑆 consists in polynomials
(𝑞, 𝑣1, . . . , 𝑣𝑛), such that 𝑞 ∈ Q[𝑇] is monic and squarefree, all 𝑣𝑖 ’s

170

https://doi.org/10.1145/3373207.3404058
https://doi.org/10.1145/3373207.3404058

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Elliott, Giesbrecht, and Schost.

are in Q[𝑇] and satisfy deg(𝑣𝑖) < deg(𝑞), and in a Q-linear form 𝜆

in variables 𝑋1, . . . , 𝑋𝑛 , such that

• 𝜆(𝑣1, . . . , 𝑣𝑛) = 𝑇𝑞′ mod 𝑞;

• we have the equality 𝑆 =
{(

𝑣1 (𝜏)
𝑞′ (𝜏)

, . . . ,
𝑣𝑛 (𝜏)
𝑞′ (𝜏)

)
| 𝑞(𝜏) = 0

}
.

The constraint on 𝜆 says that the roots of 𝑞 are the values taken by 𝜆
on 𝑆 . The parameterization of the coordinates by rational functions
having 𝑞′ as a denominator goes back to [22, 23]: as pointed out
in [1], it allows one to control precisely the size of the coefficients
of 𝑣1, . . . , 𝑣𝑛 .

Main result. To state our main result, we need to define the
height of a rational number, and of a polynomial with rational
coefficients.

The height of a non-zero 𝑎 = 𝑢/𝑣 ∈ Q is the maximum of ln(|𝑢 |)
and ln(𝑣), where 𝑢 ∈ Z and 𝑣 ∈ N are coprime. For a polynomial 𝑓
with rational coefficients, if 𝑣 ∈ N is the minimal common denomi-
nator of all non-zero coefficients of 𝑓 , then the height ht(𝑓) of 𝑓 is
defined as the maximum of the logarithms of 𝑣 and of the absolute
values of the coefficients of 𝑣 𝑓 .

Theorem 1.1. Suppose that 𝑓 ∈ Z[𝑋1 . . . , 𝑋𝑛] is squarefree, satis-
fies deg(𝑓) ≤ 𝑑 and ht(𝑓) ≤ 𝑏, and that 𝑉 (𝑓) ⊂ C𝑛 is smooth. Also
suppose that 0 < 𝜖 < 1.

There exists a randomized algorithm that takes 𝑓 and 𝜖 as input
and produces 𝑛 zero-dimensional parameterizations, the union of
whose zeros includes at least one point in each connected component
of𝑉 (𝑓) ∩R𝑛 , with probability at least 1−𝜖 . Otherwise, the algorithm
either returns a proper subset of the points, or FAIL. In any case, the
algorithm uses

𝑂∼ (𝑑3𝑛+1 (log 1/𝜖) (𝑏 + log 1/𝜖))

bit operations. The polynomials in the output have degree at most 𝑑𝑛,
and height

𝑂∼ (𝑑𝑛+1 (𝑏 + log 1/𝜖)) .

Here we assume that 𝑓 is given as a dense polynomial. Following
references such as [4, 14ś16, 28], it would be possible to refine
the runtime estimate by assuming that 𝑓 is given by a straight-
line program (that is, a sequence of operations +,−,× that takes
as input 𝑋1, . . . , 𝑋𝑛 and evaluates 𝑓). Any polynomial of degree
𝑑 in 𝑛 variables can be computed by a straight-line program that
does 𝑂 (𝑑𝑛) operations: evaluate all monomials of degree up to 𝑑
in 𝑛 variables, multiply them by their respective coefficients and
sum the results. However, some inputs may be given by shorter
straight-line program, and the algorithm would actually be able to
benefit from this.

The algorithm itself is rather simple. To describe it, we need to
define polar varieties, which will play a crucial role in this paper.
Let𝑉 = 𝑉 (𝑓), for 𝑓 as in the theorem. For 𝑖 ∈ {1, . . . , 𝑛 − 1}, denote
by 𝜋𝑖 : C𝑛 → C𝑖 the projection (𝑥1, . . . , 𝑥𝑛) ↦→ (𝑥1, . . . , 𝑥𝑖). The
𝑖-th polar variety

𝑊 (𝜋𝑖 ,𝑉) := {x ∈ 𝑉 | dim𝜋𝑖 (𝑇x𝑉) < 𝑖}

is the set of critical points of 𝜋𝑖 on 𝑉 . It is thus defined by the
vanishing of

𝑓 ,
𝜕𝑓

𝜕𝑋𝑖+1
, . . . ,

𝜕𝑓

𝜕𝑋𝑛
.

In general, we cannot say much about the geometry of𝑊 (𝜋𝑖 ,𝑉),
but if we apply a generic change of coordinates𝑨 to 𝑓 , then𝑊 (𝜋𝑖 ,𝑉)
is known to be equidimensional of dimension (𝑖 − 1) or empty [4],
and to be in so-called Noether position [28] (background notions in
algebraic geometry are in [12, 24, 33]; we will recall key definitions).
If this is the case, it suffices to choose arbitrary 𝜎1, . . . , 𝜎𝑛−1 in Q,
and solve the systems defined by

𝑋1 − 𝜎1, . . . , 𝑋𝑖−1 − 𝜎𝑖−1, 𝑓 ,
𝜕𝑓

𝜕𝑋𝑖+1
, . . . ,

𝜕𝑓

𝜕𝑋𝑛
, (1)

for 𝑖 = 1, . . . , 𝑛. They all admit finitely many solutions, and Theo-
rem 2 in [28] proves that the union of their solution sets contains
one point on each connected component of 𝑉 ∩ R𝑛 .

Our main contribution is to analyze precisely what conditions
on our change of coordinates 𝑨 guarantee success. This is done by
revisiting the key ingredients in the proofs given in [4] and [28], and
giving quantitative versions of these results, bounding the degree
of the hypersurfaces we have to avoid. To solve the equations (1),
we use the algorithm in [31], for which a complete bit complexity
analysis is available.

This work should be seen as a first step toward the analysis of
further randomized algorithms in real algebraic geometry. An im-
mediate follow-up question would be to handle the case of algebraic
sets defined by regular sequences: the algorithm in [28] still applies,
but the modifications needed are beyond the scope of this publica-
tion. Further still, randomized algorithms for deciding connectivity
queries on smooth, compact algebraic sets have been developed in a
series of papers [29, 32], and could be revisited using the techniques
introduced here.

2 Genericity properties

Consider 𝑓 ∈ Z[𝑋1, . . . , 𝑋𝑛] with total degree 𝑑 , and assume that 𝑓
is squarefree and that 𝑉 (𝑓) ⊂ C𝑛 is smooth. The key to the proof
of Theorem 1.1 is the following quantitative version of facts we
stated above, namely that in generic coordinates, polar varieties
are smooth, equidimensional, and in Noether position (or empty).

We recall that an equidimensional algebraic set 𝑋 ⊂ C𝑛 of di-
mension 𝑑 is in Noether position for the projection 𝜋𝑑 when the
extension C[𝑋1, . . . , 𝑋𝑑] → C[𝑋1, . . . , 𝑋𝑛]/𝐼 (𝑋) is integral; here,
𝐼 (𝑋) ⊂ C[𝑋1, . . . , 𝑋𝑛] is the defining ideal of 𝑋 . In this case, for
any x ∈ C𝑑 , the fiber 𝑋 ∩ 𝜋−1

𝑑
(x) has dimension zero (so it is finite

and not empty).
For 𝑖 in {1, . . . , 𝑛} and 𝑓 as above, we will let ℑ(𝑖, 𝑓) denote

the sequence of 𝑛 − (𝑖 − 1) polynomials (𝑓 , 𝜕𝑓 /𝜕𝑋𝑖+1, . . . , 𝜕𝑓 /𝜕𝑋𝑛).
As pointed out in the introduction, their zero-set is the 𝑖-th polar
variety𝑊 (𝜋𝑖 ,𝑉 (𝑓)). Then, we say that 𝑓 satisfies H𝑖 if

(1) For any x in𝑊 (𝜋𝑖 ,𝑉 (𝑓)), the Jacobian matrix jacx (ℑ(𝑖, 𝑓))
has full rank 𝑛 − (𝑖 − 1) at x.
By the Jacobian Criterion [12, Corollary 16.20], this implies
that𝑊 (𝜋𝑖 ,𝑉 (𝑓)) is either empty or (𝑖 − 1)-equidimensional,
and that ℑ(𝑖, 𝑓) defines a radical ideal.

(2) 𝑊 (𝜋𝑖 ,𝑉 (𝑓)) is either empty or in Noether position for 𝜋𝑖−1.

Given𝝈 = (𝜎1, . . . , 𝜎𝑖−1) inC𝑖−1, we further say that 𝑓 and𝝈 satisfy
H′𝑖 if

(1) For any root x of

(𝑋1 − 𝜎1, . . . , 𝑋𝑖−1 − 𝜎𝑖−1, 𝑓 , 𝜕𝑓 /𝜕𝑋𝑖+1, . . . , 𝜕𝑓 /𝜕𝑋𝑛),

171

On the Bit Complexity of Finding Points in Connected Components of a Smooth Real Hypersurface ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

the Jacobian matrix of these equations at x has full rank 𝑛.
By the Jacobian Criterion [12, Corollary 16.20], this implies
that there are finitly many solutions to these equations.

Even if 𝑓 does not initially satisfy H𝑖 , it does after applying a
generic change of variables. The precise statement is as follows, for
which we use the following notation. For a matrix 𝑨 in C𝑛×𝑛 and 𝑔
in C[𝑋1, . . . , 𝑋𝑛] we write 𝑔𝑨 := 𝑔(𝑨X) ∈ C[𝑋1, . . . , 𝑋𝑛], where X
is the column vector with entries 𝑋1, . . . , 𝑋𝑛 .

Note that for a variety 𝑌 ⊂ C𝑛, we can define 𝑌𝑨 as the image
of 𝑌 by the map 𝜙𝑨 : x ↦→ 𝑨−1x. Note that𝑊 (𝜋𝑖 ,𝑉 (𝑓 𝑨)) may not
equal𝑊 (𝜋𝑖 ,𝑉 (𝑓))𝑨, as, for instance, their dimensions may vary.

We will also have to consider matrices with generic entries.
For this, we introduce 𝑛2 new indeterminates (𝔄𝑗,𝑘)1≤ 𝑗,𝑘≤𝑛 . Then,
𝔄 will denote the matrix with entries (𝔄𝑗,𝑘)1≤ 𝑗,𝑘≤𝑛 , C(𝔄) will
denote the rational function field C((𝔄𝑗,𝑘)1≤ 𝑗,𝑘≤𝑛) and C[𝔄] the
polynomial ring C[(𝔄𝑗,𝑘)1≤ 𝑗,𝑘≤𝑛]. For 𝑓 as above, we will then

define the polynomial 𝑓 𝔄 := 𝑓 (𝔄X), which we may consider in
either C(𝔄) [𝑋1, . . . , 𝑋𝑛] or C[𝔄, 𝑋1, . . . , 𝑋𝑛].

This being said, our two key results are the following.

Theorem 2.1. For 𝑖 = 1, . . . , 𝑛, there exists a non-zero polynomial
Δ𝑖 ∈ C[𝔄] of degree at most 5𝑛2 (2𝑑)2𝑛 such that if 𝑨 ∈ C𝑛×𝑛 does
not cancel Δ𝑖 , then 𝑨 is invertible and 𝑓 𝑨 satisfies H𝑖 .

Theorem 2.2. For 𝑖 = 1, . . . , 𝑛, suppose that 𝑓 satisfies H𝑖 , then
there exists a non-zero polynomial Ξ𝑖 ∈ C[𝑆1, . . . , 𝑆𝑖−1] of degree
at most 𝑑2𝑛 such that if 𝝈 ∈ C𝑖−1 does not cancel Ξ𝑖 , then 𝑓 and 𝝈
satisfy H

′
𝑖 .

The proof of these theorems occupies the next two sections. Some
related results appear in the literature; for instance, Lemma 5 in [20]
or Proposition 4.5 in [21] are quantitative Noether position state-
ments. However, Theorem 2.1 does not follow from these previous
results. Indeed, those references would allow us to quantify when
𝑊 (𝜋𝑖 ,𝑉 (𝑓))

𝑨 is in Noether position, whereas we need to under-
stand when𝑊 (𝜋𝑖 ,𝑉 (𝑓 𝑨)) is. As we pointed out before, these two
sets are in general different.

3 Weak transversality and applications

Sard’s lemma states that the set of critical values of a smooth func-
tion R𝑛 → R𝑚 has measure zero. One can give łalgebraicž versions
of it, for semi-algebraic mappings R𝑛 → R𝑚 as in [9, Chapter 9],
or polynomial mappings C𝑛 → C𝑚 as in [24, Chapter 3], for which
the sets of critical values are contained in strict semi-algebraic, resp.
algebraic sets in the codomain. Thom’s weak transversality lemma,
as given for instance in [11], generalizes Sard’s lemma. In this sec-
tion, we consider a particular case of this result (transversality to a
point), and establish a quantitative version of it; this will allow us
to establish the first item in property H𝑖 , as well as property H

′
𝑖 .

3.1 Weak transversality

Transversality to a point can be rephrased entirely in terms of
critical and regular values. Recall that if 𝚿 is a mapping from a
smooth algebraic set 𝑌 to C𝑡 , with 𝑡 ≤ dim(𝑌), a critical point of 𝚿
is a point 𝒚 ∈ 𝑌 such that the image of the tangent space 𝑇𝒚𝑌 by
the differential 𝑑𝒀𝚿 has dimension less than 𝑡 . When for instance
𝑌 = C𝑣 , we have 𝑇𝒚𝑌 = C𝑣 and this condition is equivalent to the

Jacobian of 𝚿 having rank less than 𝑡 at 𝒚. Critical values are the
images by Ψ of critical points; the complement of this set are the
regular values (so a regular value is not necessarily in the image
of 𝚿).

Let then 𝑛, 𝑠, and𝑚 be positive integers, with𝑚 ≤ 𝑛, and denote
by 𝚽 : C𝑛 × C𝑠 → C𝑚 a mapping defined by polynomials in
C[X,𝚯], where X, resp. 𝚯, is a set of 𝑛, resp. 𝑠 , indeterminates. For
𝝑 in C𝑠 , let 𝚽𝝑 : C𝑛 → C𝑚 be the induced mapping x ↦→ 𝚽(x, 𝝑).
The transversality result we will need is the following.

Proposition 3.1 (Weak transversality). Suppose that 0 is a
regular value of𝚽. Then there exists a non-zero polynomial Γ ∈ C[𝚯]
of degree at most 𝑑𝑚+𝑛 such that for 𝝑 in C𝑠 , if Γ(𝝑) ≠ 0, then 0 is a
regular value of 𝚽𝝑 .

The following simple example shows this result at work. Con-
sider a squarefree 𝑓 in C[𝑋1, 𝑋2], such that𝑉 (𝑓) is a smooth curve
in C2, and let the mapping 𝚽 : C2 × C → C2 be defined by
𝚽(𝑋1, 𝑋2,Θ) = (𝑓 (𝑋1, 𝑋2), 𝑋1−Θ). One checks that the Jacobian of
𝚽 with respect to (𝑋1, 𝑋2,Θ) has rank two at any point in 𝚽

−1 (0),
so the assumptions of the proposition apply. We deduce that for a
generic 𝜗 in C, that is, for all 𝜗 in C except a finite number, the ideal
(𝑓 (𝑋1, 𝑋2), 𝑋1 −𝜗) is radical in C[𝑋1, 𝑋2]; equivalently, 𝑓 (𝜗,𝑋2) is
squarefree. We will revisit this example in Section 3.3.

The rest of the subsection is devoted to the proof of the proposi-
tion. The proof of [30, Theorem B.3] already shows the existence
of Γ; it is essentially the classical proof for smooth mappings [11,
Section 3.7], written in an algebraic context. In what follows, we
revisit this proof, establishing a bound on the degree of Γ.

Put 𝑉 := 𝚽
−1 (0). If 𝑉 is empty, there is nothing to do, since all

values 𝝑 in C𝑠 satisfy the conclusion of the proposition. Thus, we
assume that𝑉 is not empty. Then, the Jacobian criterion shows that
𝑉 is smooth and (𝑛 + 𝑠 −𝑚)-equidimensional.

We will reuse the following fact, proved in [30]. Consider the
projection 𝜋 : (x, 𝝑) ∈ C𝑛 × C𝑠 ↦→ 𝝑 ∈ C𝑠 . Let 𝑍 be the set of
critical points of 𝜋 |𝑉 , and consider its projection 𝜋 (𝑍) in C𝑠 . This
is the set of critical values of 𝜋 |𝑉 ; hence, by the algebraic form
of Sard’s lemma (see [24, Theorem 3.7] for irreducible 𝑉 and [30,
Proposition B.2] for general 𝑉), its Zariski closure 𝜋 (𝑍) is a strict

closed subset of C𝑠 . As we will see below, if 𝝑 ∈ C𝑠 is not in 𝜋 (𝑍),
then 0 is a regular value of 𝚽𝝑 .

To describe the set 𝑍 of critical points of 𝜋 |𝑉 , let 𝑴 denote the
(𝑠 +𝑚) × (𝑠 + 𝑛) Jacobian matrix with entries in C[X,𝚯] given by
𝑴 := jacX,𝚯 (𝜋,𝚽), that is,

𝑴 =

[
jacX,𝚯 (𝜋)

jacX,𝚯 (𝚽)

]
=

[
0𝑠×𝑛 I𝑠
jacX,𝚯 (𝚽)

]
.

Lemma 3.2. For (x, 𝝑) in𝑉 , (x, 𝝑) is in 𝑍 if and only if the matrix
𝑴 has rank less than 𝑠 +𝑚 at (x, 𝝑).

Proof. Take (x, 𝝑) on𝑉 , and let 𝑲 (x, 𝝑) be the Jacobian matrix
jacX,𝚯 (𝚽) taken at (x, 𝝑). Then, the rank of𝑴 (x, 𝝑) can be written
as rank(𝑲 (x, 𝝑)) + rank([0𝑠×𝑛 I𝑠] | ker𝑲 (x, 𝝑)), where the latter
is the rank of the restriction of [0𝑠×𝑛 I𝑠] to the nullspace of 𝑲 (x, 𝝑).

Since 𝑉 is smooth, 𝑲 (x, 𝝑) has full rank codim(𝑉) =𝑚. On the
other hand, the nullspace of 𝑲 (x, 𝝑) is the tangent space 𝑇x,𝝑𝑉 ,
and rank([0𝑠×𝑛 I𝑠] | ker𝑲 (x, 𝝑)) is the dimension of 𝜋 (𝑇x,𝝑𝑉). In

172

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Elliott, Giesbrecht, and Schost.

other words, the rank of 𝑴 (x, 𝝑) is equal to𝑚 + dim(𝜋 (𝑇x,𝝑𝑉));
this implies the claim in the lemma. □

Therefore, we can characterize the set 𝑍 of critical points of 𝜋 |𝑉
as those points satisfying 𝚽(x, 𝝑) = 0 and where all minors of𝑴 of
order 𝑠 +𝑚 vanish. We can actually describe this set using a smaller
matrix, by discarding certain minors that are identically zero. Let
indeed 𝑱 denote the𝑚×𝑛 submatrix of the Jacobian of 𝚽 consisting
of the first 𝑛 columns. This is the Jacobian matrix of 𝚽 with respect
to X.

Lemma 3.3. For (x, 𝝑) in 𝑉 , (x, 𝝑) is in 𝑍 if and only if 𝑱 (x, 𝝑)
has rank less than𝑚.

Proof. Notice

𝑀 (x, 𝝑) =

[
0𝑠×𝑛 I𝑠
𝑱 (x, 𝝑) 𝑱 ′(x, 𝝑)

]
,

where 𝑱 ′ consists of the remaining columns of the Jacobian matrix
of 𝚽. Then, the rank of the former matrix is equal to the rank of

𝑀 (x, 𝝑) =

[
0𝑠×𝑛 I𝑠
𝑱 (x, 𝝑) 0𝑚×𝑠

]
,

and the conclusion follows. □

In particular, take 𝝑 in C𝑠 −𝜋 (𝑍). Then for all x in𝚽−1
𝝑
(0), (x, 𝝑)

is in 𝑉 , so it is not in 𝑍 . The previous lemma then implies that the
Jacobian matrix 𝑱 of 𝚽𝝑 has full rank𝑚 at (x, 𝝑). In other words, 0
is a regular value of 𝚽𝝑 , as claimed.

Our next step is to bound the degree of 𝑍 . In that, we use the
definition of degree given in [19]: the degree of an irreducible
algebraic set is the number of intersection points it has with a
generic hyperplane of complementary dimension, and the degree of
an arbitrary algebraic set is the sum of the degrees of its irreducible
components. To obtain an estimate on the degree of 𝑍 , rather than
considering minors of 𝑱 , we will rewrite the condition that 𝑱 (x, 𝝑)
has rank less than𝑚 as the existence of a non-trivial left kernel
element.

For this, we let L = [𝐿1, . . . , 𝐿𝑚] be new variables, thought of
as Lagrange multipliers, and consider the łLagrange polynomialsž
L1, . . . ,L𝑛 , with

[L1 · · ·L𝑛] := L · 𝑱 (x, 𝝑).

Denote by ℨ ⊂ C𝑛+𝑠+𝑚 the algebraic set defined by the vanishing
of L1, . . . ,L𝑛, and 𝚽, and by ℨ′ the algebraic set

ℨ′ := ℨ − {(x, 𝝑, 0, . . . , 0) ∈ C𝑛+𝑠+𝑚 | (x, 𝝑, 0 . . . , 0) ∈ ℨ},

where the bar denotes Zariski closure (we have to remove such
points, since 𝐿1 = · · · = 𝐿𝑚 = 0 is always a trivial solution to the
Lagrange equations). Finally, consider the projection

𝜇 : C𝑛+𝑠+𝑚 → C𝑛+𝑠

(x, 𝝑, ℓ) ↦→ (x, 𝝑).

Lemma 3.4. The algebraic set 𝑍 is equal to the projection 𝜇 (ℨ′).

Proof. Take (x, 𝝑) in 𝑍 . Then, (x, 𝝑) cancels all polynomials
𝚽, and there exists ℓ = (ℓ1, . . . , ℓ𝑚), not identically zero, such
that (x, 𝝑, ℓ) cancels the Lagrange polynomials. This implies that
(x, 𝝑, ℓ) is inℨ−{(x′, 𝝑 ′, 0, . . . , 0) ∈ C𝑛+𝑠+𝑚 | (x′, 𝝑 ′, 0 . . . , 0) ∈ ℨ},
and thus in ℨ′. This proves the inclusion 𝑍 ⊂ 𝜇 (ℨ′).

Conversely, take an irreducible component 𝑌 of ℨ′. We prove
that 𝜇 (𝑌) is contained in 𝑍 . By construction, there exists an open
dense subset 𝑌𝑜 ⊂ 𝑌 such that for any (x, 𝝑, ℓ) in 𝑌𝑜 , ℓ is not
identically zero. As a result, (x, 𝝑) is in 𝑍 , that is, 𝜇 (𝑌𝑜) is in 𝑍 .

This implies that its Zariski closure 𝜇 (𝑌𝑜) is in 𝑍 . Since 𝜇 (𝑌) is

contained in 𝜇 (𝑌𝑜), we deduce 𝜇 (𝑌) ⊂ 𝑍 . Taking the union over
all 𝑌 , we get 𝜇 (ℨ′) ⊂ 𝑍 , as claimed. □

Corollary 3.5. The degree of 𝑍 is at most 𝑑𝑚+𝑛 .

Proof. The algebraic set ℨ is defined by 𝑚 + 𝑛 equations, all
of them having degree at most 𝑑 . It follows from Bézout’s Theo-
rem [19] that deg(ℨ) ≤ 𝑑𝑚+𝑛 , and the same upper bound holds
for deg(ℨ′), since it consists of certain irreducible components of
ℨ. Applying the projection 𝜇 yields the result, since degree cannot
increase through projection. □

In particular, we obtain the same degree bound for 𝜋 (𝑍). It then
suffices to take for Γ any non-zero polynomial of degree at most

𝑑𝑚+𝑛 that vanishes on 𝜋 (𝑍); this proves Proposition 3.1.

3.2 Application: property H𝑖 (1)
Let 𝑓 ∈ Z[𝑋1, . . . , 𝑋𝑛] have total degree 𝑑 , with𝑉 (𝑓) ⊂ C𝑛 smooth.
In what follows, we fix 𝑖 in 1, . . . , 𝑛, and we prove the following:
there exists a non-zero polynomial Δ𝑖,1 ∈ C[𝔄] of degree at most
2𝑛𝑑2𝑛 such that if 𝑨 ∈ C𝑛×𝑛 does not cancel Δ𝑖,1, then 𝑨 is invertible
and 𝑓 𝑨 satisfies H𝑖 (1).

The following construction is already in [4]; our contribution
is the degree estimate. We let 𝚽 : C𝑛 × C𝑛×𝑛 → C𝑛−𝑖+1 be the
mapping defined by the polynomials

(
𝑓 , grad(𝑓) · 𝔄𝑖+1, . . . , grad(𝑓) · 𝔄𝑛

)
,

where 𝔄1, . . . ,𝔄𝑛 denote the columns of 𝔄 and · is the dot-product.

Lemma 3.6. 0 is a regular value of 𝚽.

Proof. Let (x,𝑨) ∈ C𝑛 ×C𝑛×𝑛 be a zero of 𝚽. We have to show
that the Jacobian matrix of the equations defining 𝚽, taken with
respect to X and 𝔄, has full rank 𝑛 − 𝑖 + 1 at (x,𝑨). If we set

𝐹 𝑗 =
𝜕𝑓

𝜕𝑋1
𝐴𝑖+𝑗,1 + . . . +

𝜕𝑓

𝜕𝑋𝑛
𝐴𝑖+𝑗,𝑛, 1 ≤ 𝑗 ≤ 𝑛 − 𝑖,

this Jacobian matrix is equal to

𝜕𝑓
𝜕𝑋1

. . .
𝜕𝑓
𝜕𝑋𝑛

. . . 0 . . . 0 . . . 0 . . . 0
𝜕𝐹1
𝜕𝑋1

. . .
𝜕𝐹1
𝜕𝑋𝑛

. . .
𝜕𝑓
𝜕𝑋1

. . .
𝜕𝑓
𝜕𝑋𝑛

. . . 0 . . . 0

. . .
. . .

. . .
. . .

. . .
𝜕𝐹𝑛−𝑖
𝜕𝑋1

. . .
𝜕𝐹𝑛−𝑖
𝜕𝑋𝑛

. . . 0 . . . 0 . . .
𝜕𝑓
𝜕𝑋1

. . .
𝜕𝑓
𝜕𝑋𝑛

,

where the first columns are indexed by 𝑋1, . . . , 𝑋𝑛 and the further
ones by 𝔄1,𝑖+1, . . . ,𝔄𝑛,𝑖+1, . . . ,𝔄1,𝑛, . . . ,𝔄𝑛,𝑛 . Since 𝑓 (x) = 0, our
assumption on 𝑓 implies that at least one of its partial derivatives
is non-zero at x, and the conclusion follows. □

Since all equations defining𝚽 have degree at most𝑑, it follows by
Proposition 3.1 that there exists a non-zero polynomial Γ𝑖 ∈ C[𝔄] of
degree at most 𝑑2𝑛−𝑖+1 ≤ 𝑑2𝑛, with the property that, if 𝑨 ∈ C𝑛×𝑛

does not cancel Γ𝑖 , then the Jacobian matrix of

𝚽𝑨 =
(
𝑓 , grad(𝑓) · 𝑨𝑖+1, . . . , grad(𝑓) · 𝑨𝑛

)
,

173

On the Bit Complexity of Finding Points in Connected Components of a Smooth Real Hypersurface ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

taken with respect to X, has full rank 𝑛 − 𝑖 + 1 at all x that cancels
equations. We then define Δ𝑖,1 := Γ𝑖 det(𝔄); this is a non-zero
polynomial of degree at most 𝑑2𝑛 + 𝑛 ≤ 2𝑛𝑑2𝑛 .

Let us verify that Δ𝑖,1 satisfies the claim in the preamble. Take
𝑨 in C𝑛×𝑛 , such that Δ𝑖,1 (𝑨) is non-zero. Clearly, 𝑨 is invertible;
it remains to check that 𝑓 𝑨 satisfies H𝑖 (1). Thus, we take x that
cancels (𝑓 𝑨, 𝜕𝑓 𝑨/𝜕𝑋𝑖+1, . . . , 𝜕𝑓 𝑨/𝜕𝑋𝑛), and we prove that the Ja-
cobian matrix of these equations, taken with respect to X, has full
rank 𝑛 − 𝑖 + 1 at x. Using the chain rule, the equations above can
be rewritten as 𝚽𝑨(𝑨x), so their Jacobian matrix at x has the same
rank as that of 𝚽𝑨 at 𝑨x, that is, 𝑛 − 𝑖 + 1. Our claim is proved.

In Section 4, we will need the following by-product of this result:
if we consider 𝑓 𝔄 ∈ C(𝔄𝑗,𝑘) [𝑋1, . . . , 𝑋𝑛] as defined in Section 2,
this polynomial satisfies the rank property H𝑖 (1).

3.3 Application: property H′𝑖
Let 𝑓 ∈ Z[𝑋1, . . . , 𝑋𝑛] and 𝑖 be as before. We now assume that 𝑓
satisfies H𝑖 (1), and we prove the following: there exists a non-zero
polynomial Ξ𝑖 ∈ C[𝑆1, . . . , 𝑆𝑖−1] of degree at most 𝑑2𝑛 such that if
𝝈 = (𝜎1, . . . , 𝜎𝑖−1) ∈ C

𝑖−1 does not cancel Ξ𝑖 , then for any root x of

(𝑋1 − 𝜎1, . . . , 𝑋𝑖−1 − 𝜎𝑖−1, 𝑓 , 𝜕𝑓 /𝜕𝑋𝑖+1, . . . , 𝜕𝑓 /𝜕𝑋𝑛),

the Jacobian matrix of these equations at x has full rank 𝑛.

Let 𝚿 : C𝑛 × C𝑖−1 → C𝑛 be the mapping defined by the polyno-
mials

(𝑋1 − 𝑆1, . . . , 𝑋𝑖−1 − 𝑆𝑖−1, 𝑓 , 𝜕𝑓 /𝜕𝑋𝑖+1, . . . , 𝜕𝑓 /𝜕𝑋𝑛) .

Lemma 3.7. 0 is a regular value of 𝚿.

Proof. At all zeros (x,𝝈) of 𝚿, the Jacobian matrix of 𝚿 has full
rank 𝑛. Indeed, indexing columns by 𝑋1, . . . , 𝑋𝑛, 𝑆1, . . . , 𝑆𝑖−1, this
matrix is equal to

[
I𝑖−1 0(𝑖−1)×(𝑛−𝑖+1) −I𝑖−1

jacx

(
𝑓 ,

𝜕𝑓
𝜕𝑋𝑖+1

, . . . ,
𝜕𝑓
𝜕𝑋𝑛

)
0(𝑛−𝑖+1)×(𝑖−1)

]

.

Since the Jacobian of 𝑓 , 𝜕𝑓 /𝜕𝑋𝑖+1, . . . , 𝜕𝑓 /𝜕𝑋𝑛 at x is non-zero (by
H𝑖), the entire matrix must have full rank 𝑛. Thus, 0 is a regular
value of 𝚿. □

Since all polynomials defining𝚿 have degree at most𝑑 , it follows
by Proposition 3.1 that there exists a non-zero polynomial Ξ𝑖 in
C[𝑆1, . . . , 𝑆𝑖−1] of degree at most 𝑑2𝑛, with the following property:
if Ξ𝑖 (𝝈) ≠ 0 then at any root x of

(𝑋1 − 𝜎1, . . . , 𝑋𝑖−1 − 𝜎𝑖−1, 𝑓 , 𝜕𝑓 /𝜕𝑋𝑖+1, . . . , 𝜕𝑓 /𝜕𝑋𝑛),

the Jacobian matrix of these equations has full rank 𝑛. Theorem 2.2
is proved.

4 Property H𝑖 (2): Noether position
Throughout this section, 𝑓 and 𝑖 ∈ {1, . . . , 𝑛} are fixed. We prove
that there exists a non-zero polynomial Δ𝑖 in 𝑛2 variables and of
degree at most 5𝑛2 (2𝑑)2𝑛 such that if 𝑨 does not cancel Δ𝑖 , then 𝑨

is invertible and satisfies both conditions in H𝑖 .
Consider again the matrix of indeterminates 𝔄 = (𝔄𝑗,𝑘)1≤ 𝑗,𝑘≤𝑛

and the field C(𝔄), and define 𝑓 𝔄 ∈ C(𝔄) [𝑋1, . . . , 𝑋𝑛]. Since 𝑖 is

fixed, to simplify notation, let ℑ𝔄 denote the following polynomials
in C(𝔄) [𝑋1, . . . , 𝑋𝑛]:

ℑ(𝑖, 𝑓 𝔄) =
(
𝑓 𝔄, 𝜕𝑓 𝔄/𝜕𝑋𝑖+1, . . . , 𝜕𝑓

𝔄/𝜕𝑋𝑛
)
,

and let𝑊 𝔄 denote their zero-set, that is,𝑊 (𝜋𝑖 ,𝑉 (𝑓 𝔄)). In Sec-
tion 3.2, we saw that 𝑓 𝔄 satisfiesH𝑖 (1), so that ℑ𝔄 defines a radical
ideal, and𝑊 𝔄 is equidimensional of dimension 𝑖 − 1. We now point
out that 𝑓 𝔄 also satisfies H𝑖 (2).

Lemma 4.1. The extension

C(𝔄) [𝑋1, . . . , 𝑋𝑖−1] → C(𝔄) [𝑋1, . . . , 𝑋𝑛]/ℑ
𝔄

is integral.

Proof. Let (𝔓ℓ)1≤ℓ≤𝐿 be the prime components of the radical
ideal ℑ𝔄 . By [28, Proposition 1], for all ℓ ,

C(𝔄) [𝑋1, . . . , 𝑋𝑖−1] → C(𝔄) [𝑋1, . . . , 𝑋𝑛]/𝔓ℓ

is integral. Therefore polynomials 𝑞ℓ, 𝑗 ∈ C(𝔄) [𝑋1, . . . , 𝑋𝑖−1, 𝑋 𝑗]

exist, all monic in 𝑋 𝑗 , with 𝑞ℓ, 𝑗 (𝑋 𝑗) ∈ 𝔓ℓ for each 𝑗 in {𝑖, . . . , 𝑛}.

Thence, 𝑄 𝑗 :=
∏

1≤ℓ≤𝐿 𝑞ℓ, 𝑗 is monic in 𝑋 𝑗 and satisfies 𝑄 𝑗 ∈ ℑ𝔄 ,
for each 𝑗 ∈ {𝑖, . . . , 𝑛}. This proves our claim. □

If 𝑃 is any polynomial in C(𝔄) [𝑋1, . . . , 𝑋𝑛], we will let 𝐷 ∈ C[𝔄]
be the minimal common denominator of all its coefficients, and we
will write 𝑃 := 𝐷𝑃 , so that 𝑃 is in C[𝔄, 𝑋1, . . . , 𝑋𝑛].

Lemma 4.2. For 𝑗 = 𝑖, . . . , 𝑛, there exists a polynomial 𝑃 𝑗 in

C(𝔄) [𝑋1, . . . , 𝑋𝑖−1, 𝑋 𝑗], monic in 𝑋 𝑗 , with 𝑃 𝑗 in ℑ𝔄 , and such that

deg(𝑃 𝑗) ≤ (2𝑑)𝑛 .

Proof. We let 𝔏𝔄 denote the extension of ℑ𝔄 given by 𝔏𝔄 :=
ℑ𝔄 · C(𝔄, 𝑋1, . . . , 𝑋𝑖−1) [𝑋𝑖 , . . . , 𝑋𝑛]. Then,

C(𝔄, 𝑋1, . . . , 𝑋𝑖−1) → C(𝔄, 𝑋1, . . . , 𝑋𝑖−1) [𝑋𝑖 , . . . , 𝑋𝑛]/𝔏
𝔄 (2)

is an algebraic extension. On the other hand, the previous lemma
states that

C(𝔄) [𝑋1, . . . , 𝑋𝑖−1] → C(𝔄) [𝑋1, . . . , 𝑋𝑛]/ℑ
𝔄 (3)

is integral; from this, Proposition 3.3.1 in [17] implies that it is actu-
ally a free module. Any basis of the latter is also a basis of (2); as a
consequence, for 𝑗 in 𝑖, . . . , 𝑛, the characteristic polynomials of 𝑋 𝑗

in (2) or (3) are the same. Let 𝑃 𝑗 be the minimal polynomial of 𝑋 𝑗

in (2). The previous discussion implies that the characteristic poly-
nomial 𝜒 𝑗 of𝑋 𝑗 in (2), and thus also 𝑃 𝑗 , are inC(𝔄) [𝑋1, . . . , 𝑋𝑖−1, 𝑋 𝑗]

and monic in 𝑋 𝑗 .

By definition, 𝜒 𝑗 is in ℑ𝔄 and since there exists an integer 𝑘 such

that 𝜒 𝑗 divides 𝑃 𝑗 𝑘 in C(𝔄) [𝑋1, . . . , 𝑋𝑖−1] [𝑋 𝑗], 𝑃 𝑗 𝑘 is in ℑ𝔄 . Since

the latter ideal is radical, we conclude that 𝑃 𝑗 is in ℑ𝔄 . This implies

that 𝑃 𝑗 is in ℑ𝔄 as well.

Now, consider the polynomials 𝑓 𝔄, 𝜕𝑓 𝔄/𝜕𝑋𝑖+1, . . . , 𝜕𝑓 𝔄/𝜕𝑋𝑛 in
C[𝔄, 𝑋1, . . . , 𝑋𝑛], let 𝔚 be their zero-set, and let deg(𝔚) be its
degree, in the sense of [19]. Proposition 1 in [27] implies that 𝑃 𝑗
has degree at most deg(𝔚). Since all polynomials defining𝔚, seen
in C[𝔄, 𝑋1, . . . , 𝑋𝑛], have degree at most 2𝑑 , the Bézout inequality
of [19] gives deg(𝑃 𝑗) ≤ (2𝑑)𝑛−𝑖+1 ≤ (2𝑑)𝑛 . □

174

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Elliott, Giesbrecht, and Schost.

Our next step is to give degree bounds on the coefficients appear-
ing in the membership equality 𝑃 𝑗 ∈ ℑ

𝔄 . This is done using Rabi-
novicz’s trick. Let𝑇 be a new variable; applying the Nullstellensatz
in C(𝔄) [𝑋1, . . . , 𝑋𝑛,𝑇], and clearing denominators, we obtain the
existence of 𝛼 𝑗 in C[𝔄] − {0} and𝐶 𝑗,ℓ , 𝐵 𝑗 in C[𝔄] [𝑋1, . . . , 𝑋𝑛] [𝑇],
such that

𝛼 𝑗 =

𝑛−𝑖+1∑

ℓ=1

𝐶 𝑗,ℓ𝐺ℓ + 𝐵 𝑗 (1 − 𝑃 𝑗𝑇), 𝐺ℓ ∈

{

𝑓 𝔄,
𝜕𝑓 𝔄

𝜕𝑋𝑖+1
, . . . ,

𝜕𝑓 𝔄

𝜕𝑋𝑛

}

.

(4)

Let us then define

Δ𝑖 := Δ𝑖,1𝛼𝑖 · · ·𝛼𝑛𝐷𝑖 · · ·𝐷𝑛,

where Δ𝑖,1 was defined in Section 3.2 and for all 𝑗 , 𝛼 𝑗 is as above

and 𝐷 𝑗 is the leading coefficient of 𝑃 𝑗 with respect to 𝑋 𝑗 . Thus,
Δ𝑖 is a non-zero polynomial in C[𝔄]; we will estimate its degree
below.

Lemma 4.3. Suppose that 𝑨 ∈ C𝑛×𝑛 does not cancel Δ𝑖 . Then 𝑓 𝑨

satisfies H𝑖 .

Proof. By assumption, Δ𝑖,1 (𝑨) is non-zero, so that 𝑨 is in-
vertible and 𝑓 𝑨 satisfies H𝑖 (1). In particular, the ideal ℑ(𝑖, 𝑓 𝑨)
is radical, and its zero-set𝑊 (𝜋𝑖 ,𝑉 (𝑓 𝑨)) is either empty or (𝑖 − 1)-
equidimensional. If it is empty, we are done.

Otherwise, for 𝑗 = 𝑖, . . . , 𝑛, evaluate all indeterminates in 𝔄 at
the corresponding entries of 𝑨 in (4). This gives us an equality in
C[𝑋1, . . . , 𝑋𝑛,𝑇] of the form

𝑎 𝑗 =

𝑛−𝑖+1∑

ℓ=1

𝑐 𝑗,ℓ𝑔ℓ + 𝑏 𝑗 (1 − 𝑝 𝑗𝑇), 𝑔ℓ ∈

{
𝑓 𝑨,

𝜕𝑓 𝑨

𝜕𝑋𝑖+1
, . . . ,

𝜕𝑓 𝑨

𝜕𝑋𝑛

}
,

for 𝑎 𝑗 in C, polynomials 𝑐 𝑗,ℓ and 𝑏 𝑗 in C[𝑋1, . . . , 𝑋𝑛,𝑇] and 𝑝 𝑗 in
C[𝑋1, . . . , 𝑋𝑖−1, 𝑋 𝑗]. Since neither 𝛼 𝑗 nor 𝐷 𝑗 vanish at 𝑨, 𝑎 𝑗 is non-
zero and the leading coefficient of 𝑝 𝑗 in 𝑋 𝑗 is a non-zero constant.

The conclusion is now routine. Replace𝑇 by 1/𝑝 𝑗 in the previous
equality; after clearing denominators, this gives a membership
equality of the form 𝑝 𝑗

𝑘 ∈ ℑ(𝑖, 𝑓 𝑨), for some integer 𝑘 ≥ 1 (we
cannot have 𝑘 = 0, since we assumed that𝑊 (𝜋𝑖 ,𝑉 (𝑓 𝑨)) is not
empty). Since ℑ(𝑖, 𝑓 𝑨) is radical, 𝑝 𝑗 is in ℑ(𝑖, 𝑓 𝑨). Repeating this
for all 𝑗 proves that C[𝑋1, . . . , 𝑋𝑖−1] → C[𝑋1, . . . , 𝑋𝑛]/ℑ(𝑖, 𝑓

𝑨) is
integral. □

To estimate the degree of Δ𝑖 , what remains is to give an upper
bound on the degree of 𝛼𝑖 , . . . , 𝛼𝑛 . This will come as an application
of the effective Nullstellensatz given in [10], for which we first
need to determine degree bounds, separately in X,𝑇 and 𝔄, of the
polynomials in the membership relationship:

degX,𝑇

{

𝑓 𝔄,
𝜕𝑓 𝔄

𝜕𝑋𝑖+1
, . . . ,

𝜕𝑓 𝔄

𝜕𝑋𝑛

}

≤ 𝑑 ;

deg𝔄

{

𝑓 𝔄,
𝜕𝑓 𝔄

𝜕𝑋𝑖+1
, . . . ,

𝜕𝑓 𝔄

𝜕𝑋𝑛

}

≤ 𝑑 ;

degX,𝑇 (1 −𝑇𝑃 𝑗) ≤ (2𝑑)
𝑛 + 1;

deg𝔄 (1 −𝑇𝑃 𝑗) ≤ (2𝑑)
𝑛 .

For each 𝑗 ∈ {𝑖, . . . , 𝑛}, a direct application of [10, Theorem 0.5],
gives deg(𝛼 𝑗) ≤ (𝑛 + 1)𝑑𝑛 ((2𝑑)𝑛 + 1); we will use the slightly less
precise bound deg(𝛼 𝑗) ≤ 2𝑛(2𝑑)2𝑛 .

We saw in Section 3.2 that Δ𝑖,1 has degree at most 2𝑛𝑑2𝑛 , and all
𝐷 𝑗 ’s have degree at most (2𝑑)𝑛 . This gives the upper bound

deg(Δ𝑖) ≤ 2𝑛𝑑2𝑛 + 2𝑛2 (2𝑑)2𝑛 + 𝑛(2𝑑)𝑛 ≤ 5𝑛2 (2𝑑)2𝑛 .

This completes the proof of Theorem 2.1.

5 Proof of the main result

The following is our main algorithm; it expands on the sketch given
in the introduction, by quantifying the various random choices.

In step 4, we use [31, Algorithm 2] to solve a square system. This
subroutine is randomized; in order to guarantee a higher probability
of success, we repeat the calculation 𝑘 times, for a well-chosen
parameter 𝑘 .

This subroutine also requires that the input system be given by a
straight-line program. We build it (at Step 3) in the straightforward
manner already suggested in the introduction: given 𝑓 , we can build
a straight-line program that evaluates 𝑓 in 𝑂 (𝑑𝑛) operations, by
computing all monomials of degree up to 𝑑 , multiplying them by
the corresponding coefficients in 𝑓 , and adding results. To obtain a
straight-line program for 𝑓 𝑨, we add𝑂 (𝑛2) steps corresponding to
the application of the change of variables𝑨. From this, we can com-
pute the required partial derivatives of 𝑓 𝑨 for the same asymptotic
cost [8]. Finally, we add the linear equations𝑋1−𝜎1, . . . , 𝑋𝑖−1−𝜎𝑖−1;
this gives Γ𝑖 .

Algorithm 1:Main Algorithm

Input: 𝑓 ∈ Z[𝑋1, . . . , 𝑋𝑛] of degree at most 𝑑 and height at
most 𝑏, and 0 < 𝜖 < 1

Output: 𝑛 zero-dimensional parameterizations, the union of
whose zeros includes at least one point in each
connected component of 𝑉 (𝑓) ∩ R𝑛 , with
probability of success at least 1 − 𝜖 .

1 Construct 𝑆 := {1, 2, . . . , ⌈3𝜖−15𝑛3 (2𝑑)2𝑛⌉} and

𝑇 := {1, 2, . . . , ⌈3𝜖−1𝑛𝑑2𝑛⌉}, and randomly choose 𝑨 ∈ 𝑆𝑛
2
,

and 𝝈 ∈ 𝑇𝑛−1;

2 for 𝑖 ← 1 to 𝑛 do

3 Build a straight-line program Γ𝑖 that computes the
equations{
𝑋1 − 𝜎1, . . . , 𝑋𝑖−1 − 𝜎𝑖−1, 𝑓

𝑨,
𝜕𝑓 𝑨

𝜕𝑋𝑖+1
, . . . ,

𝜕𝑓 𝑨

𝜕𝑋𝑛

}
;

4 Run [31, Algorithm 2] 𝑘 ≥ lg(3𝑛/𝜖) times with input Γ𝑖 ;

5 Let Q𝑖 be the highest cardinality zero-dimensional

parameterization returned in step 4 ;

6 return [Q1, . . . ,Q𝑛].

If 𝑓 𝑨 satisfies H𝑖 , and 𝑓 𝑨 and (𝜎1, . . . , 𝜎𝑖−1) satisfy H
′
𝑖 for all 𝑖 ,

then Theorem 2 in [28] establishes correctness.

Bit operation cost. The following lists the costs for each step of
Algorithm 1:

(1) We defined 𝑆 := {1, 2, . . . , ⌈3𝜖−15𝑛3 (2𝑑)2𝑛⌉} and therefore
the height of any 𝑎𝑖, 𝑗 ∈ 𝑆 is at most

log 3/𝜖 + log(5𝑛3 (2𝑑)2𝑛) ∈ 𝑂∼ (log 1/𝜖 + 𝑛 log𝑑).

175

On the Bit Complexity of Finding Points in Connected Components of a Smooth Real Hypersurface ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Since |𝑇 | < |𝑆 |, the height of any 𝜎 𝑗 ∈ 𝑇 is at most the same.
(3) After computing the partial derivatives, the height grows by

at most another factor of log𝑑 . Thus, all polynomials in the
system considered at Step 3 have height 𝑂∼ (𝑏 + 𝑑 log 1/𝜖 +
𝑑𝑛). All integer coefficients appearing in Γ𝑖 satisfy the same
bound.

(4) As a result, after applying [31, Algorithm 2] 𝑘 times for each
index 𝑖 , with 𝑘 = 𝑂 (log𝑛 + log 1/𝜖), the total boolean cost
of the algorithm is

𝑂∼ (𝑑3𝑛+1 (log 1/𝜖) (𝑏 + log 1/𝜖))

where the polynomials in the output have degree at most
𝑑𝑛, and height at most

𝑂∼ (𝑑𝑛+1 (𝑏 + log 1/𝜖)) .

This proves the runtime estimate, as well as our bounds on the
height of the output.

Probability of success. Let Δ𝑖 ∈ C[𝔄] be the polynomials from
Theorem 2.1. Denote by Δ :=

∏𝑛
𝑖=1 Δ𝑖 , and note that

degΔ ≤
𝑛∑

𝑖=1

degΔ𝑖 ≤ 5𝑛3 (2𝑑)2𝑛 . (5)

If 𝑨 ∈ C𝑛×𝑛 does not cancel Δ, then 𝑨 is invertible and 𝑓 𝑨 satisfies
H𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}. Now, assuming that 𝑨 is such a matrix, let
Ξ𝑖 ∈ C[𝑆1, . . . , 𝑆𝑖−1] be the polynomials from Theorem 2.2 applied
to 𝑓 𝑨. Denote by Ξ :=

∏𝑛
𝑖=1 Ξ𝑖 , and note that

degΞ ≤
𝑛∑

𝑖=1

degΞ𝑖 ≤ 𝑛𝑑2𝑛 . (6)

If 𝝈 ∈ C𝑖−1 does not cancel Ξ, then 𝑓 𝑨 and 𝝈 satisfy H
′

𝑖 for all
𝑖 ∈ {1, . . . , 𝑛}. As we argued above, the algorithm is guaranteed to
succeed, as long as our call to Algorithm 2 in [31] succeeds. That
latter reference establishes that by repeating the calculation 𝑘 times,
and keeping the output of highest degree among those 𝑘 results,
we succeed with probability at least 1 − (1/2)𝑘 . When Algorithm 2
does not succeed, it either returns a proper subset of the solutions,
or FAIL. Note that Algorithm 2 is shown to succeed in a single run
with probability at least 1 − 11/32, and we bound the probability of
success with 1 − 1/2 for simplicity. Now, by construction of

𝑆 := {1, 2, . . . , ⌈3𝜖−15𝑛3 (2𝑑)2𝑛⌉}

and

𝑇 := {1, 2, . . . , ⌈3𝜖−1𝑛𝑑2𝑛⌉},

where 𝑨 ∈ 𝑆𝑛
2
and 𝝈 ∈ 𝑇𝑛−1 are randomly chosen, we have

P[Δ(𝑨) = 0] ≤
degΔ

|𝑆 |
= 𝜖/3

and

P[Ξ(𝝈) = 0] ≤
degΞ

|𝑇 |
= 𝜖/3.

Let E be the event that the parameterizations [Q1, . . . ,Q𝑛] re-
turned in step 6 of Algorithm 1 are correct. Then, the probability
of success is equal to

P[Δ(𝑨) ≠ 0] × P[Ξ(𝝈) ≠ 0 | Δ(𝑨) ≠ 0] × P[E | Δ(𝑨)Ξ(𝝈) ≠ 0] .

Set 𝑘 = lg(3𝑛/𝜖) so that

(1 − 2−𝑘)𝑛 = (1 − 𝜖/(3𝑛))𝑛 ≥ 1 − 𝜖/3,

by Bernoulli’s inequality. Therefore,

P[success] ≥ (1 − 𝜖/3) (1 − 𝜖/3)P[E | Δ(𝑨)Ξ(𝝈) ≠ 0]

≥ (1 − 𝜖/3) (1 − 𝜖/3) (1 − 2−𝑘)𝑛

≥ (1 − 𝜖/3) (1 − 𝜖/3) (1 − 𝜖/3)

≥ 1 − 𝜖.

This finishes the proof of our main theorem.

References
[1] M. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. 1996. Zeroes, multiplicities and

idempotents for zerodimensional systems. In Algorithms in algebraic geometry
and applications. Proceedings of MEGA’94 (Progress in Mathematics), Vol. 142.
Birkhaüser, 1ś15.

[2] B. Bank, M. Giusti, and J. Heintz. 2014. Point searching in real singular complete
intersection varieties: Algorithms of intrinsic complexity. Math. Comp. 83 (2014),
873ś897.

[3] B. Bank, M. Giusti, J. Heintz, L. Lehmann, and L.-M. Pardo. 2012. Algorithms of
Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces.
Foundations of Computational Mathematics 12 (2012), 75ś122.

[4] B. Bank, M. Giusti, J. Heintz, and G. Mbakop. 1997. Polar Varieties and Efficient
Real Equation Solving: The Hypersurface Case. Journal of Complexity 13, 1 (1997),
5ś27.

[5] B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. 2001. Polar varieties and efficient
real elimination. Mathematische Zeitschrift 238, 1 (2001), 115ś144.

[6] B. Bank, M. Giusti, J. Heintz, and L.-M. Pardo. 2005. Generalized polar varieties:
geometry and algorithms. Journal of Complexity 21, 4 (2005), 377ś412.

[7] S. Basu, R. Pollack, and M.-F. Roy. 2003. Algorithms in Real Algebraic Geometry.
Algorithms and computation in mathematics, Vol. 10. Springer-Verlag.

[8] W. Baur and V. Strassen. 1983. The complexity of partial derivatives. Theoret.
Comput. Sci. 22, 3 (1983), 317ś330.

[9] J. Bochnak, M. Coste, and M.-F. Roy. 1998. Real algebraic geometry. Springer-
Verlag.

[10] C. D’Andrea, T. Krick, and M. Sombra. 2013. Heights of varieties in muliprojective
spaces and arithmetic Nullstellensatz. Annales scientifiques de l’École Normale
Supérieure 46, 4 (Aug 2013), 549ś627.

[11] M. Demazure. 2000. Bifurcations and catastrophes: geometry of solutions to nonlin-
ear problems. Springer.

[12] D. Eisenbud. 1995. Commutative Algebra with a View Toward Algebraic Geometry
(1st. ed.). Graduate Texts in Mathematics, Vol. 150. Springer-Verlag, New York.

[13] P. Gianni and T. Mora. 1989. Algebraic solution of systems of polynomial equa-
tions using Groebner bases. In AAECC (LNCS), Vol. 356. Springer, 247ś257.

[14] M. Giusti, K. Hägele, J. Heintz, J.-E. Morais, J.-L. Montaña, and L.-M. Pardo. 1997.
Lower bounds for diophantine approximation. J. of Pure and Applied Algebra
117/118 (1997), 277ś317.

[15] M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. 1998. Straight-
line programs in geometric elimination theory. Journal of Pure and Applied
Algebra 124 (1998), 101ś146.

[16] M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. 1995. When polynomial
equation systems can be solved fast?. In AAECC-11 (LNCS), Vol. 948. Springer,
205ś231.

[17] M. Giusti, J. Heintz, and J. Sabia. 1993. On the efficiency of effective Nullstellen-
sätze. Computational Complexity 3 (1993), 56ś95.

[18] D. Grigoriev and N. Vorobjov. 1988. Solving Systems of Polynomial Inequalities
in Subexponential Time. J. Symbolic Comput. 5 (1988), 37ś64.

[19] J. Heintz. 1983. Definability and fast quantifier elimination in algebraically closed
fields. Theoretical Computer Science 24, 3 (May 1983), 239ś277.

[20] G. Jeronimo and J. Sabia. 2002. Effective equidimensional decomposition of affine
varieties. Journal of Pure and Applied Algebra 169 (2002), 229ś248.

[21] T. Krick, L.-M. Pardo, and M. Sombra. 2001. Sharp estimates for the arithmetic
Nullstellensatz. Duke Mathematical Journal 109, 3 (2001), 521ś598.

[22] L. Kronecker. 1882. Grundzüge einer arithmetischen Theorie der algebraischen
Grössen. Journal für die reine und angewandte Mathematik 92 (1882), 1ś122.

[23] F. Macaulay. 1916. The Algebraic Theory of Modular Systems. Cambridge Univer-
sity Press.

[24] D. Mumford. 1976. Algebraic Geometry 1 : complex algebraic varieties. Springer.
[25] R. Piene. 1978. Polar classes of singular varieties. Annales Scientifiques de l’École

Normale Supérieure 11, 2 (1978), 247ś276.

176

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Elliott, Giesbrecht, and Schost.

[26] F. Rouillier. 1999. Solving zero-dimensional systems through the Rational Uni-
variate Representation. Applicable Algebra in Engineering, Communication and
Computing 9, 5 (1999), 433ś461.

[27] É. Schost. 2003. Computing Parametric Geometric Resolutions. Applicable Algebra
in Engineering, Communication and Computing 5 (2003), 349ś393.

[28] É. Schost and M. Safey El Din. 2003. Polar Varieties and Computation of one
Point in each Connected Component of a Smooth Real Algebraic Set. In ISSAC’03.
ACM, 224ś231.

[29] É. Schost and M. Safey El Din. 2011. A baby steps/giant steps probabilistic
algorithm for computing roadmaps in smooth bounded real hypersurface. Discrete
and Computational Geometry 5 (2011), 181ś220.

[30] É. Schost and M. Safey El Din. 2017. A nearly optimal algorithm for deciding
connectivity queries in smooth and bounded real algebraic sets. J. ACM 63, 6
(Feb. 2017), 1ś48.

[31] É. Schost and M. Safey El Din. 2018. Bit complexity for multi-homogeneous
system solving. Application to polynomial minimization. Journal of Symbolic
Computation 87 (May 2018), 176ś206.

[32] É. Schost, B. Saugata, M-F Roy, and M. Safey El Din. 2014. A baby step-giant
step roadmap algorithm for general algebraic sets,. Foundations of Computational
Mathematics 14 (2014), 1117ś1172.

[33] I. Shafarevich. 1977. Basic Algebraic Geometry 1. Springer Verlag.
[34] B. Teissier. 1988. Quelques points de l’histoire des variétés polaires, de Poncelet

à nos jours. In Sém. Annales Univ. Blaise Pascal, Vol. 4.

177

The Fundamental Theorem of Tropical Partial Differential
Algebraic Geometry

Sebastian Falkensteiner
Johannes Kepler University (RISC

Hagenberg)

Linz, Austria

Cristhian Garay-López
Centro de Investigación en

Matemáticas, A.C. (CIMAT)

Guanajuato, México

Mercedes Haiech
Université de Rennes 1, UMR 6625

(IRMAR)

Rennes, France

Marc Paul Noordman
Bernoulli Institute, University of

Groningen

Groningen, The Netherlands

Zeinab Toghani
School of Mathematical Sciences,

Queen Mary University of London

London, United Kingdom

François Boulier
Univ. Lille, CNRS, Centrale Lille, Inria,

UMR 9189 - CRIStAL

Lille, France

ABSTRACT

Tropical Differential Algebraic Geometry considers difficult or even

intractable problems in Differential Equations and tries to extract

information on their solutions from a restricted structure of the

input. The Fundamental Theorem of Tropical Differential Algebraic

Geometry states that the support of solutions of systems of ordinary

differential equations with formal power series coefficients over

an uncountable algebraically closed field of characteristic zero can

be obtained by solving a so-called tropicalized differential system.

Tropicalized differential equations work on a completely different

algebraic structure which may help in theoretical and computational

questions. We show that the Fundamental Theorem can be extended

to the case of systems of partial differential equations by introducing

vertex sets of Newton polytopes.

CCS CONCEPTS

· Computing methodologies→ Symbolic and algebraic manipu-

lation.

KEYWORDS

Differential Algebra, Tropical Differential Algebraic Geometry, Power

Series Solutions, Newton Polytope, Arc Spaces

1 INTRODUCTION

Given an algebraically closed field of characteristic zero K , we con-

sider the partial differential ring (Rm,n,D), where
Rm,n = K[[t1, . . . , tm]]{x1, . . . , xn }

and D = (∂
∂tk

: k = 1, . . . ,m) for n,m ≥ 1 (see Section 2 for defini-

tions). Up to now, tropical differential algebra has been limited to the

study of the relation between the set of solutions Sol(G) ⊆ K[[t]]n
of differential ideals G in R1,n and their corresponding tropicaliza-

tions, which are certain polynomials p with coefficients in a tropical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404040

semiring T1 = (Z≥0 ∪ {∞},+,min) and with a set of solutions

Sol(p) ⊆ P(Z≥0)n , see [7] and [1]. These elements S ∈ Sol(p) can be

found by looking at evaluations p(S) ∈ T1 where the usual tropical
vanishing condition holds.

In this paper, we consider the casem > 1. On this account, we

work with elements in Zm≥0, which requires new techniques. We

show that considering the Newton polytopes and their vertex sets is

the appropriate method for formulating and proving our generaliza-

tion of the Fundamental Theorem of Tropical Differential Algebraic

Geometry. We remark that in the case of m = 1 the definitions

and properties presented here coincide with the corresponding ones

in [1] and therefore, this work can indeed be seen as a generalization.

The problem of finding power series solutions of systems of partial

differential equations has been extensively studied in the literature,

but is very limited in the general case. In fact, we know from [5, The-

orem 4.11] that there is already no algorithm for deciding whether

a given linear partial differential equation with polynomial coef-

ficients has a solution or not. The Fundamental Theorem, as it is

stated in here, helps to find necessary conditions for the support of

possible solutions.

The structure of the paper is as follows. In Section 2 we cover the

necessary material from partial differential algebra. In Section 3 we

introduce the semiring of supports P(Zm≥0), the semiring of vertex

sets Tm and the vertex homomorphism Vert : P(Zm≥0) −→ Tm . In

Section 4 we introduce the support and the tropicalization maps. In

Section 5 we define the set of tropical differential polynomials Tm,n ,

the notion of tropical solutions for them, and the tropicalization

morphism trop : Rm,n → Tm,n . The main result is Theorem 6.1,

which is proven in Section 6. The proof we give here differs essen-

tially from the one in [1] for the case ofm = 1. In Section 7 we give

some examples to illustrate our results.

In the following we will use the conventions that for a set S we

denote by P(S) its power set, and by K we denote an algebraically

closed field of characteristic zero.

2 PARTIAL DIFFERENTIAL ALGEBRA

Here we recall the preliminaries for partial differential algebraic

geometry. The reference book for differential algebra is [8].

A partial differential ring is a pair (R,D) consisting of a com-

mutative ring R with unit and a set D = {δ1, . . . , δm } of m > 1

derivations which act on R and are pairwise commutative. We

178

https://doi.org/10.1145/3373207.3404040

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece S. Falkensteiner, C. Garay-López, M. Haiech, M.P. Noordman, Z. Toghani, F. Boulier

denote by Θ the free commutative monoid generated by D. If J =

(j1, . . . , jm) is an element of the monoid Zm≥0 = (Zm≥0,+, 0), we de-
note Θ(J) = δ

j1
1 · · · δ jmm the derivative operator defined by J . If

φ is any element of R, then Θ(J)φ is the element of R obtained by

application of the derivative operator Θ(J) on φ.

Let (R,D) be a partial differential ring with R ⊇ Q and x1, . . . , xn
be n differential indeterminates. The monoid Θ acts on the dif-

ferential indeterminates, giving the infinite set of the derivatives

which are denoted by xi , J with 1 ≤ i ≤ n and J ∈ Zm≥0. Given
any 1 ≤ k ≤ m and any derivative xi , J , the action of δk on xi , J is

defined by δk (xi , J) = xi , J+ek where ek is them-dimensional vector

whose k-th coordinate is 1 and all other coordinates are zero. One

denotes R{x1, . . . , xn } the ring of the polynomials, with coefficients

in R, the indeterminates of which are the derivatives. More formally,

R{x1, . . . , xn } consists of all R-linear combinations of differential

monomials, where a differential monomial in n independent vari-

ables of order less than or equal to r is an expression of the form

EM :=
∏

1≤i≤n
| | J | |∞≤r

x
Mi , J

i , J
(1)

where J = (j1, . . . , jm) ∈ Zm≥0, | |J | |∞ := maxi {ji } = max(J) and
M = (Mi , J) ∈ (Z≥0)n×(r+1)

m
.

The pair (R{x1, . . . , xn },D) then constitutes a differential poly-

nomial ring. A differential polynomial P ∈ R{x1, . . . , xn } induces
an evaluation map from Rn to R given by

P : Rn → R, (φ1, . . . ,φn) 7→ P |xi , J =Θ(J)φi ,

where P |xi , J =Θ(J)φi is the element of R obtained by substituting

Θ(J)φi for xi , J .

A zero or solution of P ∈ R{x1, . . . , xn } is an n-tuple φ =

(φ1, . . . ,φn) ∈ Rn such that P(φ) = 0. An n-tuple φ ∈ Rn is a

solution of a system of differential polynomials Σ ⊆ R{x1, . . . , xn }
if it is a solution of every element of Σ. We denote by Sol(Σ) the
solution set of the system Σ.

A differential ideal of R{x1, . . . , xn } is an ideal of that ring

which is stable under the action of Θ. A differential ideal is said

to be perfect if it is equal to its radical. If Σ ⊆ R{x1, . . . , xn }, one
denotes by [Σ] the differential ideal generated by Σ and by {Σ}
the perfect differential ideal generated by Σ, which is defined

as the intersection of all perfect differential ideals containing Σ.

Form,n ≥ 1, we will denote by Rm the partial differential ring

(K[[t1, . . . , tm]],D)

where D = { ∂
∂t1
, . . . , ∂

∂tm
}, and by Rm,n the partial differential ring

(Rm {x1, . . . , xn },D). The proof of the following proposition can be

found in [3].

Proposition 2.1. For any Σ ⊆ Rm,n , there exists a finite subset Φ

of Σ such that Sol(Σ) = Sol(Φ).

3 THE SEMIRINGS OF SUPPORTS AND

VERTEX SETS

In this part we introduce and give some properties on our main

idempotent semirings, namely the semiring of supports P(Zm≥0), the

semiring of vertex sets Tm and the map Vert : P(Zm≥0) → Tm which

is a homomorphism of semirings.

Recall that a commutative semiring S is a tuple (S,+,×, 0, 1) such
that (S,+, 0) and (S,×, 1) are commutative monoids and additionally,

for all a,b, c ∈ S it holds that

(1) a × (b + c) = a × b + a × c;
(2) 0 × a = 0.

A semiring is called idempotent if a + a = a for all a ∈ S . A

map f : S1 −→ S2 between semirings is a morphism if it induces

morphisms at the level of monoids.

Form ≥ 1, we denote by P(Zm≥0) the idempotent semiring whose

elements are the subsets ofZm≥0 equippedwith the unionX∪Y as sum

and the Minkowski sum X +Y = {x +y : x ∈ X ,y ∈ Y } as product.
We call it the semiring of supports. For n ∈ Z≥1 and X ∈ P(Zm≥0),
the notation nX will indicate X + · · · + X

︸ ︷︷ ︸

n times

. By convention we set

0X = {(0, . . . , 0)}.

We define theNewton polytopeN(X) ⊆ Rm≥0 ofX ∈ P(Zm≥0) as
the convex hull ofX +Zm≥0. We call x ∈ X a vertex if x < N(X \{x}),
and we denote by VertX the set of vertices of X .

Lemma 3.1. Let S,T ∈ P(Zm≥0) such that N(S) = N(T). Then
Vert S = VertT .

Proof. Let s ∈ Vert S and we assume that s ∈ N(T \ {s}). Then
there are ti ∈ T \ {s},wi ∈ Zm≥0 and positive λi ∈ R adding up to 1

such that

s =
∑

i

λi (ti +wi).

Since ti ∈ N(S), we can write the ti as

ti =
∑

j

µi , j (si , j + zi , j),

where si , j ∈ S , zi , j ∈ Zm≥0 and µi , j ∈ R are positive and adding up

to 1. Thus,

s =
∑

i , j

λi µi , j (si , j + zi , j +wi) =
∑

i , j

λi µi , jsi , j +v,

where v is a vector with non-negative coordinates. By excluding in

the sum those summands si , j which are equal to s , we obtain

s = cs +
∑

i , j
si , j,s

λi µi , jsi , j +v

where c =
∑

i , j :si , j=s λi µi , j ∈ [0, 1]. If c < 1 we can solve the

equation above for s to get

s =
∑

i , j
si , j,s

λi µi , j

1 − c si , j +
v

1 − c .

The coefficients for the si , j are positive and sum to 1, so the sum-

mation in the right hand side gives an element of N(S \ {s}). Since
N(S \ {s}) is closed under adding elements of Rm≥0, and the coordi-

nates of v/(1− c) are non-negative, we then find that s ∈ N(S \ {s})
in contradicting to the assumption that s is a vertex of S . If c = 1,

then all si , j are equal to s and we get s = s + v . Therefore, v = 0

179

The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

and ti = s for each i , and in particular s ∈ T \ {s}, which is a con-

tradiction. So we conclude that s < N(T \ {s}) and s is a vertex of
T . □

Lemma 3.2. Let X ∈ P(Zm≥0). Then N(VertX) = N(X).

Proof. By Dickson’s lemma [4, chap. 2, Thm 5], there is a finite

subset S ⊆ X with X ⊆ S + Zm≥0. For such S , it holds that N(X) =
N(S) and by Lemma 3.1, we get VertX = Vert S . Therefore, replacing

X by S , we may assume that X is finite.

We proceed by induction on #X . Indeed, if X = ∅, the statement

is obvious. Let X be an arbitrary finite set. If every element of X is

a vertex of X , then N(X) = N(VertX) is trivially true. Else, take

x ∈ X \VertX and letY = X \{x}. ThenN(X) = N(Y) by definition,
so applying Lemma 3.1 again we obtain VertX = VertY . Since

#Y < #X , we may apply the induction hypothesis to Y , and get that

N(X) = N(Y) = N(VertY) = N(VertX). □

Corollary 3.3. For X ,Y ∈ P(Zm≥0) we have VertX = VertY if and

only if N(X) = N(Y).

Lemma 3.4. For X ,Y ∈ P(Zm≥0), we have

Vert(Vert(X) ∪ Vert(Y)) = Vert(Vert(X) ∪ Y)
= Vert(X ∪ Vert(Y))
= Vert(X ∪ Y)

and

Vert(Vert(X) + Vert(Y)) = Vert(Vert(X) + Y)
= Vert(X + Vert(Y))
= Vert(X + Y).

Proof. Let ∗ be either ∪ or +. We have the following diagram of

inclusions

Vert(X) ∗ Y

%%
Vert(X) ∗ Vert(Y)

((

66

// X ∗ Y

X ∗ Vert(Y)

99

We show that these four sets generate the same Newton polytope.

For this, it is enough to show that X ∗ Y ⊆ N(Vert(X) ∗ Vert(Y)).
For ∗ = ∪, we have X ⊆ N(VertX) ⊆ N(Vert(X) ∪ Vert(Y)) and

similarly Y ⊆ N(Vert(X) ∪ Vert(Y)). Hence, X ∪ Y ⊆ N(Vert(X) ∪
Vert(Y))

Now suppose that ∗ = +. Let t ∈ X + Y , and write t = x + y

with x ∈ X and y ∈ Y . Using the inclusions X ⊆ N(VertX) and
Y ⊆ N(VertY), there are xi ∈ Vert(X), yj ∈ Vert(Y), ui ,vj ∈ Zm≥0
and αi , βj ∈ R≥0 satisfying

∑

i αi = 1 and
∑

j βj = 1 such that

t =
∑

i

αi (xi + ui) +
∑

j

βj (yj +vj).

Rewriting this gives

t =
∑

i , j

αiβj (xi + yj + ui +vj).

For each pair i, j , the expression between parentheses is an element

of Vert(X)+Vert(Y)+Z≥0 and the coefficients are non-negative and

sum up to 1. This shows that t ∈ N(Vert(X) + Vert(Y)), which ends

the proof of the inclusions. □

Example 3.5. An elementX ∈ P(Zm≥0) generates a monomial ideal

which contains a unique minimal basis B(X) (see e.g. [4]). In general,

Vert(X) ⊂ B(X) and this inclusion may be strict. Consider the set

X = {A1 = (1, 4),A2 = (2, 3),A3 = (3, 3),A4 = (4, 1)} ⊆ Z2≥0.
The Newton polytope N(X) can be visualized as in Figure 1 and

Vert(X) = {A1,A4} which is a strict subset of B(X) = {A1,A2,A4}.

A

t

A A

A

X

t1

2

1

2 3

4

Figure 1: The Newton polytope of X . The vertex set of X is

{A1,A4}.

We deduce from Corollary 3.3 that the map Vert : P(Zm≥0) −→
P(Zm≥0) is a projection operator in the sense that Vert2 = Vert.

Definition 3.6. We denote by Tm the image of the operator Vert,

and call its elements vertex sets. For S,T ∈ Tm , we define

S ⊕ T = Vert(S ∪T) and S ⊙ T = Vert(S +T).

Corollary 3.7. The set (Tm, ⊕, ⊙) is a commutative idempotent

semiring, with the zero element ∅ and the unit element {(0, . . . , 0)}.

Proof. The only things to check are associativity of ⊕, associa-
tivity of ⊙ and the distributive property. The associativity of ⊕ and

⊙ follows from the equalities

S ⊕ (T ⊕ U) = Vert(S ∪T ∪U) = (S ⊕ T) ⊕ U

and

S ⊙ (T ⊙ U) = Vert(S +T +U) = (S ⊙ T) ⊙ U
which are consequences of Lemma 3.4. The distributivity follows

from

S⊙(T⊕U) = Vert((S+T)∪U) = Vert((S+T)∪(S+U)) = (S⊙T)⊕(S⊙U).
□

Corollary 3.8. The map Vert is a homomorphism of semirings.

Proof. Follows directly from Lemma 3.4 and Corollary 3.7. □

4 THE SUPPORT MAP AND THE

TROPICALIZATION MAP

We consider the differential ring Rm from Section 2, and the semir-

ings P(Zm≥0), Tm from Section 3. In this part we introduce the sup-

port and the tropicalization maps, which are related by the following

180

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece S. Falkensteiner, C. Garay-López, M. Haiech, M.P. Noordman, Z. Toghani, F. Boulier

commutative diagram

Rm
Supp

//

trop
##

P(Zm≥0)

Vert

��
Tm

If J = (j1, . . . , jm) is an element of Zm≥0, we will denote by t J

the monomial t
j1
1 · · · t jmm . An element of Rm is of the form φ =

∑

J ∈Zm≥0 a J t
J with a J ∈ K .

Definition 4.1. The support of φ =
∑

a J t
J ∈ Rm is defined as

Supp(φ) = {J ∈ Zm≥0 | a J , 0}.

For a fixed integer n, the map which sends φ = (φ1, . . . ,φn) ∈ Rnm
to Supp(φ) = (Supp(φ1), . . . , Supp(φn)) ∈ P(Zm≥0)

n will also be

denoted by Supp. The set of supports of a subset T ⊆ Rnm is its

image under the map Supp:

Supp(T) = {Supp(φ) | φ ∈ T } ⊆ P(Zm≥0)
n

Definition 4.2. The map that sends each series in Rm to the vertex

set of its support is called the tropicalization map

trop : Rm → Tm
φ 7→ Vert(Supp(φ))

Lemma 4.3. The tropicalization map is a non-degenerate valuation

in the sense of [6, Definition 2.5.1]. This is, it satisfies

(1) trop(0) = ∅, trop(±1) = {(0, . . . , 0)},
(2) trop(φ ·ψ) = trop(φ) ⊙ trop(ψ),
(3) trop(φ +ψ) ⊕ trop(φ) ⊕ trop(ψ) = trop(φ) ⊕ trop(ψ),
(4) trop(φ) = ∅ implies that φ = 0.

Proof. The first point is clear. For the second point, note that the

Newton polytope has thewell-known homomorphism-type property

(see [9, Lemma 2.2])

N(Supp(φ·ψ)) = N(Supp(φ))+N(Supp(ψ)) = N(Supp(φ)+Supp(ψ)).

Hence, the vertices of the left hand side coincide with the vertices

of the right hand side. This gives trop(φ ·ψ) = Vert(N(Supp(φ) +
Supp(ψ))). That this is equal to trop(φ) ⊙ trop(ψ) follows from

Lemma 3.4. The third point follows from the observation that Supp(φ+
ψ) ⊆ Supp(φ) ∪ Supp(ψ) and Corollary 3.8. The last point follows

from the fact that the empty set is the only set with empty Newton

polytope. □

Definition 4.4. For J = (j1, . . . , jm) ∈ Zm≥0, we define the tropical
derivative operator Θtrop(J) : P(Zm≥0) → P(Zm≥0) as

Θtrop(J)T :=

{

(t1 − j1, . . . , tm − jm)
�
�
�
�

(t1, . . . , tm) ∈ T ,
ti − ji ≥ 0 for all i

}

.

For example, if T is the grey part in Figure 2 left and J = (1, 2),
then informally Θtrop(J)T is a translation of T by the vector −J and
then keeping only the non-negative part. It is represented by the

grey part in Figure 2 right.

Since K is of characteristic zero, for all φ ∈ Rm and J ∈ Zm≥0, we
have

Supp(Θ(J)φ) = Θtrop(J)Supp(φ). (2)

t

T

J

1

t2

t

2

t1

trop
(J)T

Figure 2: The operator Θtrop(J) for J = (1, 2) applied to T .

Consider a differential monomialEM as in (1) and S = (S1, . . . , Sn) ∈
P(Zm≥0)

n . We can now define the evaluation of EM at S as

EM (S) =
∑

1≤i≤n
| | J | |∞≤r

Mi , JΘtrop(J)Si ∈ P(Zm≥0). (3)

Lemma 4.5. Given φ = (φ1, . . . ,φn) ∈ Rnm and a differential mono-

mial EM , we have trop(EM (φ)) = Vert(EM (Supp(φ)))

Proof. By applying Vert to equation (2), we have

trop(Θ(J)φi) = Vert(Θtrop(J)Supp(φi)). (4)

Using the multiplicativity of trop, equation (4) and Corollary 3.8, we

obtain

trop(EM (φ)) =
⊙

i , J

trop(Θ(J)φi)⊙Mi , J

=

⊙

i , J

Vert(Θtrop(J)Supp(φi))⊙Mi , J

= Vert(EM (Supp(φ))). □

Remark 4.6. If P =
∑

M αMEM ∈ Rm,n and φ = (φ1, . . . ,φn) ∈
Rnm , then we can consider the upper supportUS(P,φ) of P at φ as

US(P,φ) =
⋃

M

(Supp(αM) + Supp(EM (φ))) ∈ P(Zm≥0).

We now compute the vertex set ofUS(P,φ) by applying the oper-

ation Vert and Corollary 3.8 to the above expression to find

Vert
(

US(P,φ)
)

=

⊕

M

trop(αM) ⊙ trop(EM (φ))

=

⊕

M

trop(αM) ⊙ Vert(EM (Supp(φ))),

since trop(EM (φ)) = Vert(EM (Supp(φ))) by Lemma 4.5. This moti-

vates the definition of tropical differential polynomials in the next

section.

5 TROPICAL DIFFERENTIAL POLYNOMIALS

In this section we define the set of tropical differential polynomials

Tm,n and the corresponding tropicalizationmorphism trop : Rm,n →
Tm,n . Let us remark that in the case ofm = 1 the definitions and

properties presented here coincide with the corresponding ones

in [1]. Moreover, later in Section 7 we illustrate in Example 7.2 the

reason for the particular definitions given here.

181

The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Definition 5.1. For a set S ∈ P(Zm≥0) and a multi-index J ∈ Zm≥0
we define

ValJ (S) = Vert(Θtrop(J)S).
Note that for φ ∈ Rm and any multi-index J this means that

ValJ (Supp(φ)) = trop(Θ(J)φ).
In particular, ValJ (Supp(φ)) = ∅ if and only if Θ(J)φ = 0. It follows

from Corollary 3.8 that

Vert(EM (S)) =
⊙

1≤i≤n
| | J | |∞≤r

ValJ (Si)⊙Mi , J .

Definition 5.2. A tropical differential monomial in the vari-

ables x1, . . . , xn of order less or equal to r is an expression of the

form

ϵM =
⊙

1≤i≤n
| | J | |∞≤r

x
⊙Mi , J

i , J

whereM = (Mi , J) ∈ (Z≥0)n×(r+1)
m
.

A tropical differential monomial ϵM induces an evaluation map

from P(Zm≥0)
n to Tm by

ϵM (S1, . . . , Sn) = Vert(EM (S)) =
⊙

i , J

ValJ (Si)⊙Mi , J

where ValJ (Si) is given in Definition 5.1 and EM (S) as in (3). Let us

recall that, by Corollary 3.7, we can also write

ϵM (S1, . . . , Sn) = Vert

(
∑

i , J

ValJ (Si)⊙Mi , J

)

.

Definition 5.3. A tropical differential polynomial in the vari-

ables x1, . . . , xn of order less or equal to r is an expression of the

form

p = p(x1, . . . , xn) =
⊕

M ∈∆
aM ⊙ ϵM

where aM ∈ Tm,aM , ∅ and ∆ is a finite subset of (Z≥0)n×(r+1)
m
.

We denote by Tm,n = Tm {x1, . . . , xn } the set of tropical differential
polynomials.

A tropical differential polynomial p as in Definition 5.3 induces a

map from P(Zm≥0)
n to Tm by

p(S) =
⊕

M ∈∆
aM ⊙ ϵM (S) = Vert

(⋃

M ∈∆
(aM + ϵM (S))

)

The second equality follows again from Corollary 3.8. A differential

polynomial P ∈ Rm,n of order at most r is of the form

P =
∑

M ∈∆
αMEM

where ∆ is a finite subset of (Z≥0)n×(r+1)
m
, αM ∈ K[[t1, . . . , tm]]

and EM is a differential monomial as in (1). Then the tropicaliza-

tion of P is defined as

trop(P) =
⊕

M ∈∆
trop(αM) ⊙ ϵM ∈ Tm,n

where ϵM is the tropical differential monomial corresponding to

EM .

Definition 5.4. Let G ⊆ Rm,n be a differential ideal. Its tropi-

calization trop(G) is the set of tropical differential polynomials

{trop(P) | P ∈ G} ⊆ Tm,n .

Lemma5.5. Given a differential monomialEM andφ = (φ1, . . . ,φn) ∈
K[[t1, . . . , tm]]n , we have that

trop(EM (φ)) = ϵM (Supp(φ)).

Proof. Follows from notations and Lemma 4.5. □

The following tropical vanishing condition is a natural general-

ization of the casem = 1, but now the evaluation p(S) consists of a
vertex set instead of a single minimum.

Definition 5.6. Let p =
⊕

M ∈∆ aM ⊙ ϵM be a tropical differential

polynomial. An n-tuple S ∈ P(Zm≥0)
n is said to be a solution of p if

for every J ∈ p(S) there existsM1,M2 ∈ ∆ withM1 , M2 such that

J ∈ aM1
⊙ ϵM1

(S) and J ∈ aM2
⊙ ϵM2

(S). Note that in the particular

case of p(S) = ∅, S is a solution of p.

For a family of differential polynomialsH ⊆ Tm,n , S is called a so-

lution ofH if and only if S is a solution of every tropical polynomial

in H . The set of solutions of H will be denoted by Sol(H).

Proposition 5.7. LetG be a differential ideal in the ring of differential

polynomials Rm,n . If φ ∈ Sol(G), then Supp(φ) ∈ Sol(trop(G)).

Proof. Let φ be a solution of G and S = Supp(φ). Let P =
∑

M ∈∆ αMEM ∈ G and p = trop(P) =
⊕

M ∈∆ aM ⊙ ϵM , where

aM = trop(αM). We need to show that S is a solution of p. Let

J ∈ p(S) be arbitrary. By the definition of ⊕, there is an index M1

such that

J ∈ aM1
⊙ ϵM1

(S).
Hence, by Lemma 5.5, and multiplicative property of trop Lemma 4.3

J ∈ Vert(Supp(αM1
EM1

(φ))).
Since P(φ) = 0, there is another indexM2 , M1 such that

J ∈ Supp(αM2
EM2

(φ)),
because otherwise there would not be cancellation. Since J is a

vertex of p(S), it follows that J is a vertex of every subset ofN(p(S))
containing J and in particular of N(Supp(αM2

EM2
(φ))). Therefore,

J ∈ aM2
⊙ ϵM2

(S)
and because J and P were chosen arbitrary, S is a solution of G . □

6 THE FUNDAMENTAL THEOREM

Let G ⊂ Rm,n be a differential ideal. Then Proposition 5.7 implies

that Supp(Sol(G)) ⊆ Sol(trop(G)). The main result of this paper is

to show that the reverse inclusion holds as well if the base field K is

uncountable.

Theorem 6.1 (Fundamental Theorem). Let K be an uncountable,

algebraically closed field of characteristic zero. Let G be a differential

ideal in the ring Rm,n . Then

Supp(Sol(G)) = Sol(trop(G)).

The proof of the Fundamental Theorem will take the rest of the

section and is split into several parts. First let us introduce some

notations. If J = (j1, . . . , jm) is an element of Zm≥0, we define by J !

the component-wise product j1! · · · jm !. The bijection between KZ
m
≥0

and Rm given by

ψ : KZ
m
≥0 → Rm

a = (a J)J ∈Zm≥0 7→
∑

J ∈Zm≥0

1

J !
a J t

J

182

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece S. Falkensteiner, C. Garay-López, M. Haiech, M.P. Noordman, Z. Toghani, F. Boulier

allows us to identify points of Rm with points of KZ
m
≥0 . Moreover, if

I ∈ Zm≥0, the mappingψ has the following property:

Θ(I)ψ (a) =
∑

J ∈Zm≥0

1

J !
aI+J t

J

which implies

a = (Θ(I)ψ (a)|t=0)I ∈Zm≥0 .
Fix for the rest of the section a finite set of differential polynomials

Σ = {P1, . . . , Ps } ⊆ G such that Σ has the same solution set asG (this

is possible by Proposition 2.1). For all ℓ ∈ {1, . . . , s} and I ∈ Zm≥0 we
define

Fℓ,I = (Θ(I)Pℓ)|t1=· · ·=tm=0 ∈ K
[

xi , J : 1 ≤ i ≤ n, J ∈ Zm≥0
]

and

A∞ = {(ai , J) ∈ Kn×(Zm≥0) : Fℓ,I (ai , J) = 0 for all 1 ≤ ℓ ≤ s, I ∈ Zm≥0}.
The set A∞ corresponds to the formal power series solutions of the

differential system Σ = 0 as the following lemma shows.

Lemma 6.2. Let φ ∈ K[[t1, . . . , tm]]n with φ = (φ1, . . . ,φn), where

φi =
∑

J ∈Zm≥0

ai , J

J !
t J .

Then φ is a solution of Σ = 0 if and only if (ai , J) ∈ A∞.

Proof. This statement follows from formula

Pℓ(φ1, . . . ,φn) =
∑

I ∈Zm≥0

Fℓ,I ((ai , J)i , J)
I !

t I ,

which is commonly known as Taylor formula for multivariate formal

power series. To prove this formula, first notice that for arbitrary

P ∈ Rm,n we have P(φ)|t=0 = (P |t=0)((ai , J)i , J). Applying this to

P = Θ(I)(Pℓ) for fixed I and ℓ, we find that

Θ(I)(Pℓ(φ))
�
�
t=0
= (Θ(I)(Pℓ)

�
�
t=0

)((ai , J)i , J) = Fℓ,I ((ai , J)i , J).

Therefore the coefficient of t I in Pℓ(φ) is Fℓ,I ((ai , J)i , J)/I !, and this

gives the formula above.

□

For any S = (S1, . . . , Sn) ∈ P(Zm≥0)
n we define

A∞,S = {(ai , J) ∈ A∞ : ai , J = 0 if and only if J < Si }.
This set corresponds to power series solutions of the system Σ = 0

which have support exactly S . In particular, S ∈ Supp(Sol(G)) if and
only if A∞,S , ∅.

The sets A∞ and A∞,S refer to infinitely many coefficients. We

want to work with a finite approximation of these sets. For this

purpose, we make the following definitions. For each integer k ≥ 0,

choose Nk ≥ 0 minimal such that for every ℓ ∈ {1, . . . , s} and

| |I | |∞ ≤ k it holds that

Fℓ,I ∈ K[xi , J : 1 ≤ i ≤ n, | |J | |∞ ≤ Nk].
Note that for k1 ≤ k2 it follows that Nk1 ≤ Nk2 . Then we define

Ak = {(ai , J) ∈Kn×{1, ...,Nk }m : Fℓ,I (ai , J) = 0

for all 1 ≤ ℓ ≤ s, | |I | |∞ ≤ k}
and

Ak ,S = {(ai , J) ∈ Ak : ai , J = 0 if and only if J < Si }.

Proposition 6.3. Let S ∈ P(Zm≥0)
nand K be an uncountable alge-

braically closed field of characteristic zero. If A∞,S = ∅, then there

exists k ≥ 0 such that Ak ,S = ∅.

Proof. Assume thatAk ,S , ∅ for every k ≥ 0; we show that this

impliesA∞,S , ∅. We follow the strategy of the proof of [5, Theorem

2.10]: first we use the ultrapower construction to construct a larger

fieldK over which a power series solution with support S exists, and

then we show that this implies the existence of a solution with the

same support and with coefficients in K . For more information on

ultrafilters and ultraproducts, the reader may consult [2]. For each

integer k ≥ 0, choose an element (a(k)
i , J

)1≤i≤n, | | J | |∞≤Nk
∈ Ak ,S . Fix

a non-principal ultrafilterU on the natural numbers N and consider

the ultrapower K of K alongU. In other words, K = (∏r ∈N K)/∼
where x ∼ y for x = (xr)r ∈N and y = (yr)r ∈N if and only if the set

{r ∈ N : xr = yr } is in U. We will denote the equivalence class

of a sequence (xr) by [(xr)]. We consider K as a K-algebra via the

diagonal map K → K. Now for each i and J , we may define ai , J ∈ K
as

ai , J = [(a(k)
i , J

: k ∈ N)]

where we set a
(k)
i , J
= 0 for the finitely many values of k with | |J | |∞ >

Nk . For all ℓ and I , we have that Fℓ,I ((a(k)i , J
)i , J) = 0 for k large

enough, and so Fℓ,I ((ai , J)i , J) = 0 in K, because the set of k such

that Fℓ,I ((a(k)i , J
)i , J) , 0 is finite. Moreover, for J ∈ Si we have, by

hypothesis, a
(k)
i , J
, 0 for all sufficiently large k , so ai , J , 0 in K. On

the other hand, for J < Si we have a
(k)
i , J
= 0 for all k , so also ai , J = 0.

Now we will use that K is uncountable. Consider the ring

R = K

[
xi , J : 1 ≤ i ≤ n, J ∈ Zm≥0
x−1
i , J

: 1 ≤ i ≤ n, J ∈ Si

]

/
(

Fℓ,I : 1 ≤ ℓ ≤ s, I ∈ Zm≥0
xi , J : 1 ≤ i ≤ n, J < Si

)

The paragraph above shows that the map R → K defined by sending

xi , J to ai , J is a well-defined ring map. In particular, R is not the

zero ring. Let m be a maximal ideal of R. We claim that K = R/m
in the sense that the map K → R/m induced by the composition of

the inclusion and the projection K → R → R/m is an isomorphism.

Indeed, R/m is a field, and as a K-algebra it is countably generated,

since R is. Therefore, it is of countable dimension as K-vector space

(it is generated as K-vector space by the products of some set of

generators as a K-algebra). If t ∈ R/m were transcendental over K ,

then by the theory of partial fraction decomposition, the elements

1/(t − α) for α ∈ K would form an uncountable, K-linearly indepen-

dent subset of R/m. This is not possible, so R/m is algebraic over K .

Since K is algebraically closed, we conclude that K = R/m.
Now let bi , J ∈ K be the image of xi , J in R/m = K . Then by

construction, the set (bi , J) satisfies the conditions Fℓ,I ((bi , J)) = 0

for all ℓ and I , and bi , J = 0 if and only if J < Si . So (bi , J) is an
element of A∞,S , and in particular A∞,S , ∅. □

Proof of Theorem 6.1. We now prove the remaining direction

of the Fundamental Theorem by contraposition. Let S = (S1, . . . , Sn)
in P(Zm≥0)

n be such that A∞,S = ∅, i.e. there is no power series

solution of Σ = 0 in K[[t1, . . . , tm]]n with S as the support. Then by

Proposition 6.3 there exists k ≥ 0 such that Ak ,S = ∅. Equivalently,

183

The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

the relation

V

(

Fℓ,I : 1 ≤ ℓ ≤ s, | |I | |∞ ≤ k

xi , J : 1 ≤ i ≤ n, J < Si , | |J | |∞ ≤ Nk

)

⊆ V

(
∏

1≤i≤n
J ∈Si

| | J | |∞≤Nk

xi , J

)

holds, where V denotes the implicitly defined algebraic set. By

Hilbert’s Nullstellensatz, there is an integerM ≥ 1 such that

E :=

(
∏

1≤i≤n
J ∈Si

| | J | |∞≤Nk

xi , J

)M

∈
〈

Fℓ,I : 1 ≤ ℓ ≤ s, | |I | |∞ ≤ k

xi , J : 1 ≤ i ≤ n, J < Si , | |J | |∞ ≤ Nk

〉

.

Therefore, there exist Gℓ,I and Hi , J in K[xi , J : 1 ≤ i ≤ n, | |J | |∞ ≤
Nk] such that

E =
∑

1≤ℓ≤s
| |I | |∞≤k

Gℓ,I Fℓ,I +
∑

1≤i≤n
J<Si

| | J | |∞≤Nk

Hi , J xi , J .

Define the differential polynomial P by

P =
∑

1≤ℓ≤s
| |I | |∞≤k

Gℓ,IΘ(I)(Pℓ).

Then P is an element of the differential ideal generated by P1, . . . , Ps ,

so in particular P ∈ G. Since Fℓ,I = Θ(I)(Pℓ)|t=0, there exist hi ∈
Rm,n such that

P = E −
∑

1≤i≤n
J<Si

| | J | |∞≤Nk

Hi , J xi , J + t1h1 + . . . + tmhm .

Notice that the monomial E occurs effectively in P , since it can-

not cancel with other terms in the sum above. By construction

we have trop(E)(S) = {(0, . . . , 0)}. However, we have (0, . . . , 0) <
trop(Hi , J xi , J)(S) because J < Si , andwe have (0, . . . , 0) < trop(tihi)(S)
because the factor ti forces the ith coefficient of each element of

trop(tihi)(S) to be at least 1. Hence, the vertex (0, . . . , 0) in trop(P)(S)
is attained exactly once, in the monomial E, and therefore, S is not

a solution of trop(P). Since P ∈ G, it follows that S < Sol(trop(G)),
which proves the statement. □

7 EXAMPLES AND REMARKS ON THE

FUNDAMENTAL THEOREM

In this section we give an example to illustrate the results obtained

in the previous sections. Moreover, we show that some straight-

forward generalizations of the Fundamental Theorem from [1] and

our version, Theorem 6.1, do not hold. Also we give more directions

for further developments.

Example 7.1. Let us consider in R2,2 the system

Σ = {P1 = x21,(1,0) − 4x1,(0,0) , P2 = x1,(1,1) x2,(0,1) − x1,(0,0) + 1 ,
P3 = x2,(2,0) − x1,(1,0)}.

By means of elimination methods in differential algebra such as the

ones implemented in the MAPLE DifferentialAlgebra package,

it can be proven that

Sol(Σ) = {φ1(t1, t2) = 2 c0 t1 + c
2
0 +

√
2 c0 t2 + t

2
1 +

√
2 t1 t2 +

1

2
t22 ,

φ2(t1, t2) = c2 t1 + c1 +
1

2

√
2 (c20 − 1) t2 + c0 t21

+

√
2 c0 t1 t2 +

1

2
c0 t

2
2

+

1

3
t31 +

1

2

√
2 t21 t2 +

1

2
t1 t

2
2 +

1

12

√
2 t32 },

where c0, c1, c2 ∈ K are arbitrary constants. By setting c0 = c2 =

0, c1 , 0, we obtain for example that

({(2, 0), (1, 1), (0, 2)}, {(0, 0), (0, 1), (3, 0), (2, 1), (1, 1), (0, 3)})
is in Supp(Sol(Σ)).

Now we illustrate that by our results necessary conditions and

relations on the support can be found. Let (S1, S2) ∈ P(Z2≥0)
2 be a

solution of trop([Σ]). Let us first consider
trop(P1)(S1, S2) = Vert(2 · Θtrop(1, 0)S1 ∪ S1).

If we assume that (0, 0) ∈ S1, then (0, 0) is a vertex of S1. By the

definition of a solution of a tropical differential polynomial, (0, 0)
must be a vertex of the term 2 ·Θtrop(1, 0)S1 as well, so we then know
that (1, 0) ∈ S1. Conversely, if (1, 0) ∈ S1, then (0, 0) ∈ S1 follows.

This is what we expect since the corresponding monomials in φ1
vanish if and only if c0 = 0.

Now consider

trop(Θ(1, 0)P1)(S1, S2) =
Vert(Θtrop(1, 0)S1 + Θtrop(2, 0)S1 ∪ Θtrop(1, 0)S1).

If we assume that (0, 0) is not a vertex of this expression, which

implies that (1, 0) < S1, and (k, 0) is a vertex inΘtrop(1, 0)S1 for some

k ≥ 1, then we obtain from the two tropical differential monomials

that necessarily (k, 0) = (2k − 1, 0). This is fulfilled only for k = 1

and hence, (2, 0) ∈ S1.

Another natural way for defining ⊙ and ⊕ in Section 3 would be

to simply take the minimal basis of the monomial ideal generated

by the support of the series rather than the (possibly smaller) vertex

set, as we do. If we do this, then some intermediate results (and in

particular Proposition 5.7) do not hold anymore as the following

example shows.

Example 7.2. Let {e1, . . . , e4} be the standard basis for Z4≥0. We

consider the differential ideal in R4,1 = K[[t1, . . . , t4]]{x} generated
by

P = xe3xe4 + (−t21 + t
2
2)xe1+e3 =

∂x

∂t3
· ∂x
∂t4
+ (−t21 + t

2
2)
∂2x

∂t1∂t3

and the solution φ = (t1 + t2)t3 + (t1 − t2)t4. Then
Supp(φ) = {e1 + e3, e2 + e3, e1 + e4, e2 + e4}.

On the other hand, for S ∈ P(Z4≥0) we obtain
trop(P)(S) = Vert(Vert(Θtrop(e3)S + Θtrop(e4)S)

∪ Vert(2e1 + Θtrop(e1 + e3)S)
∪ Vert(2e2 + Θtrop(e1 + e3)S).

If we set S = Supp(φ), we obtain
trop(P)(S) = Vert(Vert({2e1, e1 + e2, 2e2}) ∪ {2e1} ∪ {2e2}).

184

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece S. Falkensteiner, C. Garay-López, M. Haiech, M.P. Noordman, Z. Toghani, F. Boulier

Since

Vert({2e1, e1 + e2, 2e2}) = {2e1, 2e2},
every J ∈ trop(P)(S), namely 2e1 and 2e2, occurs in three monomials

in trop(P)(S) and S is indeed in Sol(trop(P)). Note that in the Newton
polytope the point e1 + e2, which is not a vertex, comes from only

one monomial in trop(P)(S). Therefore, it is necessary to consider

the vertices instead of the whole Newton polytope such that for

instance Proposition 5.7 holds.

Remark 7.3. The Fundamental Theorem for systems of partial

differential equations over a countable field such as Q does in gen-

eral not hold anymore by the following reasoning. According to [5,

Corollary 4.7], there is a system of partial differential equations

G over Q having a solution in C[[t1, . . . , tm]] but no solution in

Q[[t1, . . . , tm]]. Taking K = Q as base field, we have Sol(trop(G)) ,
∅ because Sol(trop(G)) = Supp(Sol(G)) is non-empty in C, but

Supp(Sol(G)) = ∅.
In this paper we focus on formal power series solutions. A natural

extension would be to consider formal Puiseux series instead. The

following example shows that with the natural extension of our

definitions to Puiseux series, the fundamental theorem does not

hold, even form = n = 1.

Example 7.4. Let us consider R1,1 = K[t]{x} and the differential

ideal generated by the differential polynomial

P = 2tx(1) − x(0) = 2t · ∂x
∂t

− x .

There is no non-zero formal power series solution φ of P = 0, but

φ = ct1/2 is for any c ∈ K a solution. In fact, {φ} is the set of all
formal Puiseux series solutions.

On the other hand, let S ∈ P(Z≥0). Then every point J in

trop(P)(S) = Vert(Vert({1} + (Θtrop(1)S) ∪ Vert(S))
occurs in both monomials except if 0 ∈ S . Hence, for every S ∈
Sol(trop(P)) we know that 0 < S . For every I ≥ 0 we have that

Θ(I)P = 2tx(I+1) + (2I − 1)x(I) ∈ [P]
and

trop(Θ(I)P)(S) = Vert(Vert({(1)} + (Θtrop((I + 1)S) ∪ Vert(Θtrop(I)S)).
Similarly to above, every J ∈ trop(Θ(I)P)(S) occurs in both mono-

mials except if I ∈ S . Therefore, I < S and so the only S ∈ P(Z≥0)
with S ∈ Sol(trop([P])) is S = ∅. Hence, Sol(trop([P])) = {∅} =
Supp(Sol([P])).

Now we want to consider formal Puiseux series solutions instead

of formal power series solutions. Now let us set for S ∈ Qm and

J = (j1, . . . , jm) ∈ Zm≥0, the set Θtrop(J)S defined as
{

(s1 − j1, . . . , sm − jm)
�
�
�
�

(s1, . . . , sm) ∈ S,
∀1 ≤ i ≤ m, si < 0 or si − ji < Z<0

}

This is the natural definition, since only in the case when the ex-

ponent of a monomial is a non-negative integer, the derivative can

be equal to zero. We have that Θtrop(J)(Supp(ψ)) = Supp(Θ(J)ψ)
for all Puiseux series ψ . For ValJ and the operations ⊙ and ⊕ the

definitions remain unchanged.

Let Q ∈ [P]. Then
Q =

∑

k ∈I
Qk · Θ(Ik)P

for some index-set I and Qk ∈ Rm,n . For every Ik we know that

Supp(φ) = {(1/2)} ∈ Sol(trop(Θ(Ik)P)). Let α ∈ Q ∩ (0, 1). Then
for every J ∈ trop(Θ(Ik)P) ∈ Z≥0 we have that Θtrop(J){(1/2)} =
Θtrop(J){(α)} + {(1/2 − α)}. Thus, {α } ∈ Sol(trop(Θ(Ik)P)). Since

trop(Qk · Θ(Ik)P) = trop(Qk) ⊙ trop(Θ(Ik)P),
the solvability remains by multiplication with Qk . Therefore, {α } ∈
Sol(trop(Qk ·Θ(Ik)P)) and consequently, {α } ∈ Sol(trop([P])). How-
ever, {α } < Supp(Sol([P])) = {∅, {1/2}} for α , 1/2.

We remark that P is an ordinary differential polynomial and by

similar computations as here, the straight-forward generalization

from formal power series to formal Puiseux series fails for the Fun-

damental Theorem in [1] as well.

We conclude this section by emphasizing that the Fundamental

Theorem may help to find necessary conditions on the support of

solutions of systems of partial differential equations, but in general it

cannot be completely algorithmic. In fact, according to [5, Theorem

4.11], already determining the existence of a formal power series

solution of a linear system with formal power series coefficients is

in general undecidable.

Acknowledgements

This research project and the fifth author was supported by the

European Commission, having received funding from the European

Union’s Horizon 2020 research and innovation programme under

grant agreement number 792432. The first author was supported by

the Austrian Science Fund (FWF): P 31327-N32. The second author

was supported by CONACYT Project 299261. The sixth author would

like to thank the bilateral project ANR-17-CE40-0036 and DFG-

391322026 SYMBIONT for its support. Partially supported by PAPIIT

IN108320.

This work was started during the Tropical Differential Algebra

workshop, which took place on December 2019 at Queen Mary

University of London. We thank the organizers and participants for

valuable discussions and initiating this collaboration. In particular,

we want to thank Fuensanta Aroca, Alex Fink, Jeffrey Giansiracusa

and Dima Grigoriev for their helpful comments during this week.

We thank the anonymous referees for their suggestions, which

helped us to improve the exposition of this work.

REFERENCES
[1] Fuensanta Aroca, Cristhian Garay, and Zeinab Toghani. The Fundamental Theorem

of Tropical Differential Algebraic Geometry. Pacific J. Math., 283(2):257ś270, 2016.
arXiv:1510.01000v3.

[2] Joseph Becker, Jan Denef, Leonard Lipshitz, and Lou van den Dries. Ultraproducts
and Approximation in Local Rings I. Inventiones mathematicae, 51:189ś203, 1979.

[3] François Boulier and Mercedes Haiech. The Ritt-Raudenbush Theorem and Tropical
Differential Geometry. Available at https://hal.archives-ouvertes.fr/hal-02403365,
2019.

[4] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and Algorithms. An
introduction to computational algebraic geometry and commutative algebra. Under-
graduate Texts in Mathematics. Springer Verlag, New York, 3rd edition, 2007.

[5] J. Denef and L. Lipshitz. Power series solutions of algebraic differential equations.
Math. Ann., 267(2):213ś238, 1984.

[6] Jeffrey Giansiracusa and Noah Giansiracusa. Equations of tropical varieties. Duke
Math. J., 165(18):3379ś3433, 2016.

[7] Dima Grigoriev. Tropical differential equations. Advances in Applied Mathematics,
82:120ś128, 2017.

[8] Ellis Robert Kolchin. Differential Algebra and Algebraic Groups. Academic Press,
New York, 1973.

[9] Bernd Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lecture
Series. American Mathematical Society, Providence, RI, 1996.

185

arXiv:1510.01000v3
https://hal.archives-ouvertes.fr/hal-02403365

Special-case Algorithms for Blackbox Radical Membership,
Nullstellensatz and Transcendence Degree

Abhibhav Garg
CSE, IIT Kanpur

abhibhav@cse.iitk.ac.in

Nitin Saxena
CSE, IIT Kanpur

nitin@cse.iitk.ac.in

ABSTRACT

Radical membership testing, resp. its special case of Hilbert’s Null-
stellensatz (HN), is a fundamental computational algebra problem.
It is NP-hard; and has a famous PSPACE algorithm due to effective

Nullstellensatz bounds. We identify a useful case of these problems
where practical algorithms, & improved bounds, could be givenÐ
When transcendence degree (tr.deg) r of the input polynomials is
smaller than the number of variables n. If d is the degree bound on
the input polynomials, then we solve radical membership (even if
input polynomials are blackboxes) in around dr time. The prior best
was > dn time (always, dn ≥ dr). Also, we significantly improve
effective Nullstellensatz degree-bound, when r ≪ n.

Structurally, our proof shows that these problems reduce to
the case of r + 1 polynomials of tr.deg ≥ r . This input instance
(corresponding to none or a unique annihilator) is at the core of HN’s
hardness. Our proof methods invoke basic algebraic-geometry.

CCS CONCEPTS

· Theory of computation → Algebraic complexity theory;
Circuit complexity; Problems, reductions and completeness.

ACM Reference Format:

Abhibhav Garg and Nitin Saxena. 2020. Special-case Algorithms for Black-
box Radical Membership, Nullstellensatz and Transcendence Degree. In
International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20ś23, 2020, Kalamata, Greece. , 8 pages. https://doi.org/10.1145/
3373207.3404030

1 INTRODUCTION

Given a set of polynomials f1, . . . , fn , there is a natural certifi-
cate for the existence of a common root, namely the root itself.
Hilbert’s Nullstellensatz [Rab30, Zar47, Kru50] states that there is
also a natural certificate for the nonexistence of a common root,
when the underlying field is algebraically closed. Formally, the the-
orem states that the polynomials have no common root if and
only if there exist polynomials д1, . . . ,дn such that 1 =

∑

fiдi .
We refer to the latter type of certificate as a Nullstellensatz certifi-
cate. These certificates are not polynomial sized: every common
root can have exponential bit complexity, and every set of wit-
ness polynomials дi can have exponential degrees. This problem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404030

is naturally of computational interest, since the generality of the
statement affords reductions from many problems of interest. Effec-
tive versions of the Nullstellensatz have been extensively studied
[Jel05, KPS+01, KPS99, Som99, Som97, BS91, Kol88, Bro87], and
they allow the decision problem of existence of common roots
(called HN) to be solved in polynomial space. Koiran [Koi96] proved
that under generalized Riemann Hypothesis, HN can be solved in
AM [AB09, Ch.8], for fields of characteristic zero.

In this work, we relate the complexity of HN to the transcendence
degree of the input polynomials. The transcendence degree (tr.deg)
of polynomials f1, . . . , fm is defined as the size of any maximal
subset of the polynomials that are algebraically independent. This
notion is well defined since algebraic independence satisfiesmatroid
properties [Oxl06]. We show that HN can be solved in time single-
exponential in tr.deg. This can be seen as a generalization of the
fact that HN can be solved in time exponential in the number of
polynomials (or variables) in the system.We state our result in terms
of the question of radical membership: f0 ∈?

√

⟨f1, . . . , fm⟩. Note
that the standard algorithms for both ideal membership [Her26]
and radical computation [Lap06] are far slower than ours.

Given a set of polynomials f1, . . . , fm with tr.deg at most r , as

blackboxes, we can perform radical membership tests for the ideal

generated by f1, . . . , fm in time polynomial in dr ,m,n, where d is the

degree-bound on the polynomials and n is the number of variables.

We also relate the tr.deg of the input polynomials to the de-
grees of the Nullstellensatz certificates, that is the degrees of дi in
∑

fiдi = 1; improving the best bounds by [Jel05].
Given a set of polynomials f1, . . . , fm with tr.deg r and without

any common roots, there exist polynomials дi of degree at most dr+1

such that
∑

fiдi = 1.
We also give an output-sensitive algorithm to compute the tr.deg

of polynomials. Slightly more formally, we show:
Given a set of polynomials f1, . . . , fm , we can compute their tr.deg

in time polynomial in dr andm,n.

1.1 Previously known results

All three of the problems stated above have been extensively studied.
We therefore only list some of the previously known results, and
direct readers to the surveys [May97, BS91].

Nullstellensatz. The decidability of the ideal membership prob-
lemwas established byHermann [Her26]when she proved a doubly-
exponential bound on witnesses to ideal membership. A lower
bound of the same complexity by Mayr and Meyer [May89, MM82]
showed that this problem is EXPSPACE complete. A number of
different algorithms were developed for operations on ideals, most
prominently the method of Gröbner basis [Buc65]. The proof of
single-exponential bounds for the Nullstellensatz (discussed be-
low) allowed special cases of the ideal membership problem, such

186

https://doi.org/10.1145/3373207.3404030
https://doi.org/10.1145/3373207.3404030
https://doi.org/10.1145/3373207.3404030

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Abhibhav Garg and Nitin Saxena

as the case of unmixed and zero dimensional ideals to be solved
in single-exponential time [DFGS91]. It also allowed the general
Nullstellensatz problem to be solved in PSPACE. Giusti and Heintz
[GH94] proved that the dimension of a variety can be computed
by a randomized algorithm in single-exponential time, with the
exponent being linear in n, which gives an algorithm of the same
complexity for HN (by testing if the dimension is −1). All of the
above results are independent of the underlying field characteris-
tic. In 1996, Koiran [Koi96] gave an AM protocol (conditioned on
GRH) for the Nullstellensatz problem, when the underlying field
is C and the polynomials have integer coefficients. His method
is completely different from the previous methods (of using the
effective Nullstellensatz to reduce the system to a linear one). The
positive characteristic case is an open problem, and the best known
complexity remains PSPACE.

Effective Nullstellensatz. The projective version of the effec-
tive Nullstellensatz follows from the fundamental theorem of elimi-
nation theory [Laz77]. An affine version was first proved by Brow-
nawell [Bro87] in characteristic 0 using analytic methods. It was
later improved by Kollár [Kol88] who used local cohomology to
improve the bounds and remove the condition on the character-
istic. A more elementary proof that used bounds on the Hilbert
function was given by Sombra [Som97], who also gave improved
bounds based on some geometric properties of related varieties
[Som99]. An even more elementary and significantly shorter proof
was given by Jelonek [Jel05], who obtained improved bounds when
the number of polynomials is lesser than the number of variables.

Transcendence degree.Algebraic independencewas studied in
computer science by [DGW07] in their study of explicit extractors.
They proved that the rank of the Jacobian matrix is the same as
the tr.deg for fields of characteristic zero (or large enough) which
gives an efficient randomized method for computing the tr.deg.
The problem was studied further in [Kay09], where the condition
on the characteristic for the above algorithm was relaxed, and
some hardness results were established. [GSS18] showed that the
problem is in coAM ∩ AM, making it unlikely to be NP-hard, and
conjecturing that the problem is in coRP for all characteristics.
Algorithmically, the best known method for computing the tr.deg
in fields of positive characteristic still has PSPACE complexity, by
using the bounds of Perron [Per51, Pł05] to reduce the problem to
solving an exponential sized linear system. This method takes time

polynomial indr
2
using the methods of [Csa75]. We refer the reader

to the thesis [Sin19] for an exhaustive survey of related results; and
applications in [ASSS12, PSS16].

Certain radical membership methods were developed by Gupta
[Gup14] in his work on deterministic polynomial identity testing
algorithms for heavily restricted depth-four circuits. The focus there
however was on a deterministic algorithm for the above problem.
Further, he restricts his attention to systems where the underlying
field is C.

1.2 Our results

Our algorithms will be Monte Carlo algorithms. We assume that
our base field k is algebraically closed, but our algorithms only
use operations in the field in which the coefficients of the inputs
lie, which we denote by ki . For example, ki might be Fp , and k

would then be Fp . By time complexity we mean operations in ki ,
where operations include arithmetic operations, finding roots, and
computing GCD of polynomials. Our results are valid for any field
where the above procedures are efficient, for example finite fields.

We relate the complexity of radical membership, and the degree
bounds in effective Nullstellensatz, to the tr.deg of the input set of
polynomials. We do this by showing that given a system of polyno-
mials, we can reduce both the number of variables and the number
of polynomials to one more than the tr.deg, while preserving the ex-
istence (resp. non-existence) of common roots. In particular, when
the tr.deg of the input polynomials is constant, we get efficient
algorithms for these problems.

Theorem 1.1 (Radical membership). Suppose f1, . . . , fm and д

are polynomials, in variables x1, . . . ,xn , of degreesd1, . . . ,dm anddд
respectively, given as blackboxes. Suppose that tr .deд(f1, . . . , fm) ≤

r . Define d := max(maxi di ,dд).
Then, testing if д belongs to the radical of the ideal generated

by f1, . . . , fm can be done in time polynomial in n,m and dr , with

randomness.

Remarks:

(1) The tr.deg r can be much smaller than n, and this improves
the complexity significantly to dr from the prior dn [LL91]. On the
other hand, the usual reduction from SAT to HN results in a set of
polynomials with transcendence degree n, due to the presence of
polynomials x2i − xi (that enforce the binary 0/1 values).

(2)We also show that the tr.deg itself can be computed in time
dr , independent of the characteristic (Theorem 1.3). In the above
statement therefore, we can always pick r = tr.deg(f), and we can
assume that r is not part of the input.

(3) The tr.deg is upper bounded by the number of polynomials,
and therefore we generalize the case of few polynomials. It is sur-
prising if one contrasts this case with that of ideal membershipÐ
where the instance with three polynomials (i.e. tr.deg=3) is as hard
as the general instance making it EXPSPACE-complete. 1

Next, we show that taking constant-free random linear combi-
nations preserves the zeroset of the polynomials, if the number of
linear combinations is at least one more than the tr.deg. This allows
us to get bounds on the Nullstellensatz certificates that depend on
the tr.deg.

Theorem 1.2 (EffectiveNullstellensatz). Suppose f1, . . . , fm
are polynomials in x1, . . . ,xn , of degrees d1 ≥ · · · ≥ dm respectively,

with an empty zeroset. Suppose further that tr .deд(f1, . . . , fm) = r .

Then, there exist polynomials hi such that deg fihi ≤
∏r+1

i=1 di
that satisfy

∑

fihi = 1.

Remark: The prior best degree-bound for the case of ‘small’ tr.deg
is
∏m

i=1 di [Jel05]. Our bound is significantly better when the tr.deg
r is ‘smaller’ than the number of polynomialsm.

Finally, as stated before, we show that the tr.deg of a given system
of polynomials can be computed in time polynomial indr (andm,n),
where d is the maximum degree of the input polynomials, and r is

1 Suppose д ∈ ⟨f1, . . . , fm ⟩ is an instance of ideal membership. This is equivalent
to zm1 zm2 д ∈

〈

zm+11 , zm+12 ,
∑

i fiz
i

i
zm−i
2

〉

. Here, z1, z2 are fresh variables. This
reduces the general instance of ideal membership to an instance where the ideal is
generated by 3 elements. This transformation is from [Sap19].

187

Improved Nullstellensatz etc. ISSAC ’20, July 20–23, 2020, Kalamata, Greece

their tr.deg. The algorithm is output-sensitive in the sense that the
time-complexity depends on the output number r .

Theorem 1.3 (tr.deg). Given as input polynomials f1, . . . , fm , in

variables x1, . . . ,xn , of degrees at most d , we can compute the tr.deg

r of the polynomials in time polynomial in dr ,n,m.

Remark: In the case when the characteristic of the field is greater
than dr , there is a much more efficient (namely, randomized poly-
nomial time) algorithm using the Jacobian criterion [BMS13]. The
algorithm presented here is useful when the characteristic is ‘small’;

whereas the previous best known time-complexity was > dr
2
if one

directly implements the PSPACE algorithm. Eg. for d = O(1) and
r = O(logn) our complexity is polynomial-time unlike the prior
known algorithms.
A motivating example where our results are better than the
known results is when the input blackboxes are implicitly of the
form fi (h1, . . . ,hr), i ∈ [m], for r ≪ n, where eachhi is ann-variate
polynomial, andm = n + 1. Here, fi ’s have transcendence degree r .
Thus, our algorithms take time dr ; significantly less than dn .

1.3 Proof ideas

Pf. idea Theorem 1.1: We first use the Rabinowitsch trick to reduce
to HN: the case д = 1. Next, we perform a random linear variable-
reduction.We show that replacing eachxi with a linear combination
of r new variables zj preserves the existence of roots. This is done by
using the fact that a general linear hyperplane intersects a variety
properly (Lemma 3.1). Once we are able to reduce the variables,
we can interpolate to get dense representation of our polynomials,
and invoke existing results about testing nonemptiness of varieties
(Theorem 2.6).

Pf. idea Theorem 1.2: For the second theorem, we show that
random linear combinations of the input polynomials, as long as
we take at least r+1 many of them, preserve the zeroset. For this, we
study the image of the polynomial map defined by the polynomials.
We again use the theorem regarding the hyperplane intersection
(Lemma 3.1). In order to get the degree bounds, we must allow
these hyperplanes to depend on fewer variables, and allow their
equations to be constant free. Once this is proved, we can use a
bound (Theorem 2.5) on the Nullstellensatz certificates for the new
polynomials (which is better since the polynomials are fewer in
number) to obtain a bound for the original polynomials.

Pf. idea Theorem 1.3: The image of the polynomial map defined
by the polynomials is such that the general fibre has codimen-
sion equal to the tr.deg. We first show that a random point, with
coordinates from a subset which is not ‘too large’, satisfies this
property. In order to efficiently compute the dimension of this fibre,
we take intersections with hyperplanes; and apply Lemma 3.1 and
Theorem 2.6.

2 NOTATION AND PRELIMINARIES

2.1 Notation

We reserve n for the number of variables (x1, . . . ,xn), m for the
number of polynomials (f1, . . . , fm) in our inputs. The polynomials
have total degrees d1, . . . ,dm . We assume that the polynomials are
labeled such that d1 ≥ d2 ≥ · · · ≥ dm .

We use boldface to denote sequence of objects, when the index-
ing set is clear; for example, x denotes x1, . . . ,xn and f denotes
f1, . . . , fm . The point (0, . . . , 0) will be represented by 0. We use
k to denote the underlying field which we assume is algebraically
closed, and ki to denote the field in which the coefficients of the
inputs lie. We use An to denote the n dimensional affine space over
k . Given a varietyX , we use k [X] to denote its coordinate ring, and
when X is irreducible we use k(X) to denote its function field. We
use An and Pn to denote the n dimensional affine and projective
spaces respectively, and Pn∞ to denote the hyperplane at infinity.

2.2 Algebraic-geometry facts

Weuse elementary facts from algebraic-geometry, forwhich [CLO07,
SR13] are good references. We do not assume that our varieties
(or zerosets) are irreducible. We will use the Noether normalization

lemma. The following statement is useful, as it characterizes the
linear maps which are Noether normalizing.

Theorem 2.1. [SR13, Thm.1.15] If X ⊆ PN is a closed subvariety

disjoint from an ℓ-dimensional linear subspace E ⊆ PN then the

projection π : X → P
N−ℓ−1 with centre E defines a finite map

X → π (X).

Here, by projection with center E we mean that the coordinate
functions of the map are the same as a set of defining linear equa-
tions for E. By the above theorem, proving that a given map is
Noether normalizing for a particular variety reduces to proving
that the variety is disjoint from a linear subspace.

We will also use the following two statements from dimension
theory, namely the theorem on the dimension of intersections with
hypersurfaces, and the theorem on the dimension of fibres.

Theorem 2.2. [SR13, Thm.1.22] If a form F is not zero on an

irreducible projective variety X then dim(X ∩V (F)) = dimX − 1.

Theorem 2.3 (Fibre dimension). [SR13, Thm.1.25] Let f : X →

Y be a surjective regular map between irreducible varieties. Then

dimY ≤ dimX , and for every y ∈ Y , the fibre f −1(y) satisfies

dim f −1(y) ≥ dimX − dimY (equiv. codim f −1(y) ≤ dimY).

Further, there is a nonempty open subsetU ⊂ Y : for every y ∈ U ,

dim f −1(y) = dimX − dimY (equiv. codim f −1(y) = dimY).

The above theorem also holds if we replace surjective by domi-

nant. Every fibre either is empty (if the point is not in the image)
or has the above bound on the dimension. We sketch a proof of
a special case of the above in Appendix A since we require an
intermediate statement in the proof of Theorem 1.3.

We will also require the Bézout inequality. The definition of
degree we use is the version more common in computational com-
plexity. The degree of a variety is the sum of the degrees of all
its irreducible components, as opposed to just the components of
highest dimension. For irreducible varieties, the degree is the num-
ber of points when intersected with a general linear subspace of
complementary dimension. This definition affords the following
version of the Bézout inequality [Hei83], which holds without any
conditions on the type of intersection.

Theorem 2.4 (Bézout [Hei83]). Let X ,Y be subvarieties of An .

Then deg(X ∩ Y) ≤ degX · degY .

Following is a recent version of effective Nullstellensatz [Jel05].

188

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Abhibhav Garg and Nitin Saxena

Theorem 2.5. [Jel05, Thm.1.1] Let f1, . . . , fm be nonconstant

polynomials, from the ring k [x1, . . . ,xn] with k algebraically closed,

that have no common zeros. Assume deg fi = di with d1 ≥ · · · ≥ dm ,

and alsom ≤ n. Then, there exist polynomialshi such that deg fihi ≤
∏m

i=1 di satisfying
∑

fihi = 1.

Wewill need the following algorithm for checking if a variety has
dimension 0 (dim is an integer in the range [−1,n]). The statement
assumes that the polynomials are given in the monomial (also called
dense) representation. We only state the part of the theorem that
we require. A discussion is provided in Appendix B. We note that
the below theorem itself invokes results from [Laz81], section 8
of which proves that the operations occur in a field extension of
degree at most dn of the field ki .

Theorem 2.6. [LL91, Part of Thm.1] Let f1, . . . , fm be polyno-

mials of degree at most d in n variables. There exists a randomized

algorithm that checks if the dimension of the zeroset of f1, . . . , fm is

0 or not, in time polynomial in dn ,m. The error-probability is 2−d
n

.

We will also require a bound on the degrees of annihilators of
algebraically dependent polynomials. We refer to this bound as
the Perron bound. It also plays a crucial role in the new proofs of
effective Nullstellensatz (Theorem 2.5).

Theorem 2.7 (Perron bound). [BMS13, Cor.5] Let f1, . . . , fm
be algebraically dependent polynomials of degrees d1, . . . ,dm . Then

there exists a nonzero polynomial A(y1, . . . ,ym) of degree at most
∏m

i=1 di such that A(f1, . . . , fm) is identically zero.

We note that the theorem statement in [BMS13] has the bound as
(maxdi)m , however their method of constructing a linear faithful
homomorphism and then applying the bound from [Pł05] actually
gives the above mentioned bound (even for the weighted-degree of
A).

In the course of our proof, we will study the image of the polyno-
mial map whose coordinate functions are f1, . . . , fm . We list some
properties of this image.

Lemma 2.8 (Polynomial map). Let f1, . . . , fm be polynomials of

degrees at most d , in variables x1, . . . ,xn . Set r := tr.deg(f1, . . . , fm).

Let F : An → Am be a polynomial map defined as

F (a1, . . . ,an) = (f1(a1, . . . ,an), . . . , fm (a1, . . . ,an)).

Let Y be the (Zariski) closure of the image of An under F , that is

Y := F (An). Then,

(1) Y is irreducible.

(2) dimY = r .

(3) degY ≤ dr .

Proof of Lemma 2.8. The first statement is a consequence of
the fact that Y is the image of an irreducible set (namely An)
under a continuous map. Since k [Y] = k [f1, . . . , fm], we have
tr.deg(k (Y)) = r , whence dimY = r by definition. Here we used
the fact that the dimension of an irreducible variety is the transcen-
dence degree of its function field over the ground field. A proof of
the third part can be found in [BCS97, 8.48]. □

3 MAIN RESULTS

We require a bound on the probability that a random linear hyper-
plane intersects a variety of a given dimension properly, that is

such that the dimension of the variety decreases by exactly one. It
is well known that the set of such hyperplanes form a Zariski open
set in the space of all hyperplanes. We use an explicit bound on
the probability of such an intersection based on the degree of the
variety, both for the projective and the affine case. We will require
that our intersecting hyperplanes have some structure: that their
defining equations depend only on a few variables, depending on
the dimension of the variety to be intersected. We establish all these
facts in the next subsection. In the three subsections following that,
we use this lemma to prove our three main resultsś Theorem 1.1,
Theorem 1.2, and Theorem 1.3.

3.1 Intersection by a hyperplane

Lemma 3.1. Let V ⊆ Pn be a projective variety of dimension r

and degree D. Let S be a finite subset, of the underlying field k , not

containing 0. Let ℓ be a linear form in x0,x1, . . . ,xn−r with each

coefficient picked uniformly and independently from S . Let H be the

hyperplane defined by ℓ. Then, with probability at least 1 − D/|S | we

have dimV ∩ H = dimV − 1.
Analogously, if V ⊆ An is affine, ℓ is a linear polynomial in

x1, . . . ,xn−r+1 and H its hyperplane; then dimV ∩ H = dimV − 1
with probability at least 1 − 2D/|S |.

Proof of Lemma 3.1. First we prove the projective case. Let ℓ :=
c0x0 + · · · + cn−rxn−r , where the ci are the coefficients picked
uniformly at random from S . Let ∪dj=1Vj be the decomposition of

the dimension-r part of V into irreducible components. Then by
definition, degV ≥

∑

degVj , and hence d ≤ D. Pick a point pj inVj ,
for each j . We can always pick pj so that not all of its first n − r + 1
coordinates are zero: if this was not possible thenVj would have to
be contained in the variety defined by x0 = x1 = · · · = xn−r = 0,
which has dimension only r − 1. By Theorem 2.2, dimH ∩ dimVj =

dimVj if and only if Vj ⊆ H (since Vj and H are irreducible), and
otherwise dimH∩Vj = dimVj−1. The probability that this happens
is upper bounded by the probability that pj ∈ H . For a fixed j , this is
equivalent to ℓ(pj) = 0. Since not all of the first n−r +1 coordinates
of pj are zero, the above is bounded by 1/|S |, by fixing all but one of
the coordinates. By a union bound, with probability at most d/|S |,
there exists some j where dimH ∩ Vj = dimVj . Therefore, with
probability at least 1 − D/|S |, we get dimVj ∩ H = dimVj − 1 for
every j, whence dimV ∩ H = dimV − 1.

Now supposeV is affine. The difference from the projective case
is that the intersectionV ∩H might be empty, and we need to bound
the probability of this event. Let V p be its projective closure. Then
dimV p

= dimV and degV p
= degV . By the previous part, we have

dimV p ∩Hp
= dimV p −1 with probability 1−D/|S |. Then, the case

V ∩H = ∅ only happens if dimV p ∩Hp ∩Pn∞ = dimV p − 1, where
P
n
∞ is the hyperplane x0 = 0 in Pn . The irreducible components of

V are in bijection with those ofV p , and henceV p has no irreducible
component contained in Pn∞. Therefore, dimV p ∩Pn∞ = dimV p − 1.
Further, by Bézout’s theorem we have degV p ∩ Pn∞ ≤ degV p .

Now Hp ∩Pn∞ is a hyperplane in Pn∞ defined by the nonconstant
part of ℓ. In particular, it is a hyperplane whose defining equation
has coefficients picked uniformly and independently and we can
apply the projective version of this lemma on Pn∞. Therefore the
probability that its intersection with V p ∩ Pn∞ does not result in a
reduction in the dimension is at mostD/|S |. By a union bound, with

189

Improved Nullstellensatz etc. ISSAC ’20, July 20–23, 2020, Kalamata, Greece

probability at least 1−2D/|S | it holds that dimV p ∩Hp
= dimV −1

and dimV p ∩Hp ∩Pn∞ = dimV −2, whence dimV ∩H = dimV −1
as required. □

An important fact to note is that our choice of variables for the
linear form is arbitrary. The lemma works for any choice of n−r +1
variables, and this will be important when we use the lemma. Also,
note that the above lemma works when our linear form involves
more that n − r + 1 variables.

Repeated applications of the above allow us: (1) to reduce a
variety to dimension 0 by taking hyperplane sections, and (2) to
find a linear subspace that avoids the variety.

3.2 Radical membership: Proof of Thm.1.1

Using the above lemma, we complete the proof of the main theorem:

Proof of Theorem 1.1. We first assume д = 1, which is the
Nullstellensatz problem HN. Define D :=

∏m
i=1 di , and V := V (⟨f⟩).

The set of common zeroes of these polynomials is the fibre of the
point 0 under the map F defined in Lemma 2.8. The problem HN is
thus equivalent to testing if a particular fibre of a polynomial map
is nonempty. By the fibre dimension theorem (Theorem 2.3), the
codimension of the zerosetÐif it is nonemptyÐis bounded above
by the dimension of the image of the map, which by Lemma 2.8
is r . The zeroset V is therefore either empty, or has dimension at
least n − r . Assume thatV is nonempty. By repeated applications of
Bézout’s theorem (Theorem 2.4), degV ≤ D. Let S be a subset of the
underlying field ki (or an extension) of size at least 6(n − r)D that
does not contain 0. We can sample from S in time polynomial in
d,n,m, since S has size exponential in these parameters. Further, if
we were required to go to an extension to form S , the degree of the
extension would be polynomial in d,n,m. Pick n − r random linear
polynomials ℓ1, . . . , ℓn−r with coefficients from S , and call their
zero setsH1, . . . ,Hn−r respectively. By Lemma 3.1, the intersection
V ∩H1 has dimension r − 1 with probability at least 1− 1/(3(n− r)).
Further, by Bézout’s theorem we get degV ∩ H1 ≤ degV ≤ D,
since each Hi has degree one. Again by Lemma 3.1, the intersection
(V ∩ H1) ∩ H2 has dimension r − 2 with probability at least 1 −
1/(3(n − r)), and degV ∩ H1 ∩ H2 ≤ D. Repeating this for all Hi

and using the union bound, we get dimV ∩ H1 ∩ · · · ∩ Hn−r ≥ 0
with probability at least 2/3.

Therefore, when the polynomials f have nonempty zeroset and
are restricted to the r dimensional affine subspace ∩Hi , the new
zeroset has dimension at least 0, and in particular is nonempty. If
the zeroset of the polynomials was empty to begin with, then the
restriction to the linear subspace also results in an empty zeroset.

This restriction can be performed by a variable reduction, as
follows. Treating An as a vector space of dimension n over k , let
H0 be the linear subspace corresponding to the affine subspace
H := ∩Hi . H0 has dimension r , and hence has basis a1, . . . ,ar .
Further, let vector b be such that H = H0 + b. Define linear forms
c1, . . . , cn in new variables z1, . . . , zr as ci :=

∑r
j=1 ajizj+bi , where

aji is the ith component of aj . Define f ′i := fi (c1, . . . , cn). Then
by construction, the zeroset of f ′1 , . . . , f

′
m is equal to V ∩ (∩Hi).

Further, deg f ′i = deg fi , and these polynomials are in r variables.
Also, the construction of these f ′i can be done in a blackbox manner,

given blackboxes for fi . This construction takes time polynomial
inm, r ,n.

We now repeatedly invoke Theorem 2.6 to check if f ′i s have a
common root. First we must convert them to a sparse represen-

tation. The polynomial f ′i has at most
(r+di

r

)

many monomials,
and therefore we can find every coefficient in time polynomial in
(r+di

r

)

by simply solving a linear system. Applying Theorem 2.6,
we can test whether the dimension of the zeroset of f ′1 , . . . , f

′
m is 0

or not. However, we want to check if the dimension is at least 0. For
this, we randomly sample r more hyperplanes H ′

1, . . . ,H
′
r as in the

previous part of the proof, this time in the new variables z1, . . . , zr .
Let V ′ be the zeroset of f ′1 , . . . , f

′
m . We first use Theorem 2.6 to

check if V ′ has dimension 0. If not, then we check if V ′ ∩ H ′
1 has

dimension 0. If not, then we check V ′ ∩ H ′
1 ∩ H ′

2, and so on. We
return success if any one of the above iterations returns success
(implying that the corresponding variety has dimension 0). Per-
forming calculations similar to the ones earlier in the proof, we see
that with high probability each intersection reduces the dimension
by 1. If V ′ originally had dimension r ′, then after intersecting with
r ′ hyperplanes, the algorithm of Theorem 2.6 returns success. If V ′

was empty, then the algorithm does not return success in any of
the above iterations. This allows us to decide if V ′ has dimension
at least 0. Finally, using the fact that the dimension of the zeroset of
f ′1 , . . . , f

′
m is at least 0 if and only if dimV ≥ 0, we get the required

algorithm for HN.
We now estimate the time taken. Computing the dense repre-

sentation takes time polynomial in dr andm. Each of the at most r
applications of Theorem 2.6 also take the same amount of time. The
sampling steps take time polynomial in lognD (in turn polynomial
in d,m) and only requires an extension of degree polynomial in n

and logd . The total time taken is therefore polynomial inm,dr .
Now assume that д is an arbitrary polynomial. We reduce the

problem to the case of д = 1 using Rabinowitsch trick [Rab30].
The polynomial д belongs to the radical of the ideal ⟨f⟩ if and
only if the polynomials f , 1 − yд have no common root (here y is a
new variable). Further, if f have transcendence degree r , then the
set f , 1 − yд has transcendence degree r + 1. We therefore reduce
the radical membership problem to HN problem, with a constant
increase in the transcendence degree, number of polynomials and
the number of variables. By the result in the previous paragraph,
we can solve this in time polynomial in n,m and dr . □

3.3 Effective Nullstellensatz: Proof of Thm.1.2

We now prove that by taking random linear combinations of the
input polynomials, we can reduce the number of polynomials to
be one more than the transcendence degree while preserving the
existence of roots. This reduction gives degree bounds for the Null-
stellensatz certificates. Note that this reduction does not help in
Section 3.2’s root-testing procedure, since we will only be saving a
factor inm if we reduce the number of polynomials.

Theorem 3.2 (Generator reduction). Let f1, . . . , fm be poly-

nomials, in x1, . . . ,xn , of degrees atmost d and of tr.deg= r . Let

д1, . . . ,дr+1 be polynomials defined as дi :=
∑m
j=i ci j fj , where each

ci j is randomly picked from a finite subset S of k . Then with proba-

bility at least 1 − d(r+1)m/|S |, we have V (⟨f⟩) = V (⟨g⟩).

190

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Abhibhav Garg and Nitin Saxena

That we pick the linear combinations so that the first involves all
polynomials, the second involves all except f1, the third involves all
except f1, f2 and so on is crucial for the improvement in the degree
bounds.

Proof of Theorem 3.2. We prove this by studying the set Y
defined in Lemma 2.8. Let F : An → Am be themapwith coordinate

functions fi . Let Y := F (An), the closure of the image of F in Am .
We use y1, . . . ,ym to denote the coordinate functions of Am . By
Lemma 2.8, Y has dimension r , and degree at most D := dr . Let
Yp be the projective closure of Y . Then Yp also has dimension r

and degree at most D. Let ℓ1, . . . , ℓr+1 be the linear polynomials
ℓi :=

∑

i≤j≤m ci jyj .
Consider the subspace defined by y0, ℓ1, . . . , ℓr in Pm . The vari-

ety Yp ∩Pm∞ , which is the intersection of Yp with the hyperplane at
infinity defined by y0 = 0, has dimension r − 1. Since ℓ1, . . . , ℓr are
random linear polynomials and Yp ∩ Pm∞ is a variety of, degree at
most D and, dimension r −1, we can repeatedly apply Lemma 3.1 to
get a bound on the probability of proper intersections. LetHi be the
hyperplane defined by ℓi . We apply Lemma 3.1 starting from Hr .
The equation ℓr hasm − r + 1 coefficients, and therefore satisfies
the conditions required for the lemma. By Bézout’s theorem, the
intersection has degree bounded by D, and dimension decreased
by one. We then apply the theorem with Hr−1 and so on, as in
the proof of Theorem 1.1. In each iteration the variety considered
has one less dimension than the previous iteration, but our linear
polynomial has one more variable, and therefore we will always
satisfy the conditions of Lemma 3.1.

We can now invoke Theorem 2.1 to say that the map Pm → Pr

with coordinate functions (y0, ℓ1, . . . , ℓr) is Noether normalizing for
Yp . We call this map L′. We use z0, . . . , zr to denote the coordinate
functions of Pr . The map L′ sends the affine chart y0 , 0 to the
affine chart z0 , 0. Let L be the restriction of L′ to this affine chart.
Then L defines a map fromAm toAr , which is Noether normalizing
for the variety Y ; we also call this restricted map L. More explicitly,
the map L has coordinate functions (ℓ1, . . . , ℓr). Also, let the map
A
m → Ar+1 with coordinate functions (ℓ1, . . . , ℓr+1) be labelled

M .
Since the map L is Noether normalizing, it has finite fibres. Let

Q be the fibre of 0 in Y . We bound the size of this set. The map L is
Noether normalizing, and hence it is surjective. The image Ar is
normal, and hence the cardinality |Q | of the fibre is bounded by the
degree of the map [SR13, Theorem 2.28]. Here, by the degree of the
map we mean the degree of k (Y) over the pullback L∗(k (Ar)). Note
that k (Y) = k(f1, . . . , fm), and L∗(k (Ar)) = k(ℓ1(f), . . . , ℓr (f))

after applying the same isomorphism. By Perron’s bound, for each
i there exists an annihilator of fi , l1(f), . . . , lr (f) of degree at most
dr+1. The degree of the extension, and hence |Q |, is bounded by
dm(r+1).

Further, no point of Q , other than 0, has all of the last m − r

coordinates as zero. This follows from the fact that L−1(0) is a
linear space of dimensionm − r , and its intersection with yr+1 =
yr+2 = · · · = ym = 0 has dimension 0. Consider now the linear
form ℓr+1. For every 0 , q ∈ Q , the probability that ℓr+1(q) = 0 is
at most 1/|S |. Therefore, with probability at least 1 − dm(r+1)/|S |,
the polynomial ℓr+1 is nonzero on every nonzero point of Q .

Consider the polynomials д1, . . . ,дr+1, and let G be the polyno-
mial mapAn → Ar+1 with coordinate functionsдi . By the choice of
ℓi in the previous paragraph, the map G is exactly the composition
of the map F : An → Am with M : Am → Ar+1. Let Q be as de-
fined earlier, the fibre of 0 under L. By construction, the setM−1(0)

is a subset of Q . But since the polynomial ℓr+1 is nonzero on every
nonzero point of Q , the set M−1(0) consists only of 0. Therefore,
F−1(M−1(0)) = F−1(0). Since G = M ◦ F we get G−1(0) = F−1(0);
which is the same as V (⟨f⟩) = V (⟨g⟩). □

We use the above to prove our 2nd main result:

Proof of Theorem 1.2. Using Theorem 3.2, there exists poly-
nomials д1, . . . ,дr+1 of degrees d1, . . . ,dr+1 that do not have a
common root. By Theorem 2.5, there exist h′1, . . . ,h

′
r+1 such that

degдih′i ≤
∏r+1

i=1 di such that
∑

дih
′
i = 1. In this equation, substi-

tute back the linear-combination of f1, . . . , fm for each дi ; whence
we get the required hi ’s. □

3.4 Computing tr.deg: Proof of Thm.1.3

We give a method of ‘efficiently’ computing the tr.deg of input
polynomials f1, . . . , fm . By Lemma 2.8 and the second part of The-
orem 2.3, the tr.deg can be computed if we know the dimension of
a general fibre. We need to get a bound on the points that violate
the equality in Theorem 2.3. For this we follow the classical proof
of the theorem and give effective bounds wherever required. For
convenience we have provided a proof sketch in Appendix A, for
the special case we need.

Lemma 3.3. Let h1, . . . ,hm be polynomials of degree at most d in

n variables, and letW be the Zariski closure of the image of the map

h with coordinates hi . Let S ⊂ k be of size 6ndn . If a1, . . . ,an are

randomly picked from S , then with probability at least 5/6, the fibre
of (h1(a), · · · ,hm (a)) has codimension exactly dimW .

Proof. First assume that the hi are algebraically independent.
ThenW = Am . Let the input variables be labelled such that x1, . . . ,
xn−m ,h1, . . . ,hm are algebraically independent, and letAj (z0, z1, . . . ,
zn−m ,w1, . . . ,wm) be the (minimal) annihilator of x j over this set
of variables, that is Aj (x j ,x1, . . . ,xn−m ,h1, . . . ,hm) = 0. By the
proof of Theorem 2.3 (Appendix A), a sufficient condition for point
a1, . . . ,an to be such that h(a) has fibre of dimension exactly n −m
is that Aj (x j ,x1, . . . ,xn−m ,h1(a), . . . ,hm (a)) is a nonzero polyno-
mial. The polynomial Aj , when treated as polynomials in variables
z0, . . . , zn−m with coefficients in k [w1, . . . ,wm] are such that the
leading monomial has coefficient a polynomial in w1, . . . ,wm of
weighted-degree at most

∏m
i=1 di (by Perron bound). By the poly-

nomial identity lemma [Ore22, DL78, Sch80, Zip79], if we pick
each ai randomly from a set of size 6

∏m
i=1 di then, with proba-

bility at least 5/6, none of the polynomials Aj (x j ,x1, . . . ,xn−m ,
h1(a), . . . ,hm (a)) is zero. In this case, the codimension of the fibre
of h(a) is exactlym as claimed.

In the general case, the hi may be algebraically dependent, and
W is a subvariety of Am . Suppose dimW = tr.deg(h) =: s . Then
we take s many random linear combinations дi of the hi , as in the
proof of Theorem 1.2. The map defined by the дi is dense in As

and therefore the дi (i ∈ [s]) are algebraically independent. By
the previous paragraph, point a picked coordinatewise from S is
such that the fibre of g(a) has codimension s . The fibre of h(a) is

191

Improved Nullstellensatz etc. ISSAC ’20, July 20–23, 2020, Kalamata, Greece

a subset of the fibre of g(a), and therefore it has codimension at
least s . Finally, by Theorem 2.3, the fibre has codimension at most
s , whence the fibre of h(a) has codim = s as required. □

Proof of Theorem 1.3. For each i , upwards from 1 to n, we
do the following steps. We iterate till i reaches tr.deg r of them
polynomials. In the i-th iteration, we intersectAn with n−i random
hyperplanes ℓ1, . . . , ℓn−i , as in the proof of Theorem 1.1 (Sec.3.2).
Here, the coefficients are picked from a set S of size at least n ·

18
∏m

i=1 di . We therefore reduce the problem to i variables.
Randomly pick point a where each coordinate (of the n many)

is picked randomly from S . By Lemma 3.3 (& 3.1), with error-
probability ≤ 1/6n, the point f(a) has intersected fibre of dimension
(n − r) − (n − i) = (i − r). We need to check this algorithmically;
which is done by interpolating the polynomials f after hyperplane
intersections, and then using Theorem 2.6 (as detailed in Sec.3.2).
If the intersected fibre dimension is zero, we have certified tr.deg
= i = r ; so we halt and return i as output. Else, we move to the next
i 7→ i + 1. The interpolation step above is performed by solving a
linear system which has size polynomial in di which is the count
of the monomials of degree at most d in i variables.

Note that for i < r , with error-probability ≤ 1/6n, the fibre of
f(a) has an empty intersection with ℓ1, . . . , ℓn−i ; which is dim= −1

and hence gets verified by Theorem 2.6.
By a union bound therefore, with error-probability ≤ 1/6, the

above algorithm gives the correct answer. For each i , the time
complexity of the above steps is polynomial in di ,m, which is the
time taken for the interpolation step and to verify zero-dimension of
the fibre. Therefore the algorithm as a whole takes time polynomial
in dr ,n,m as claimed. □

4 CONCLUSION

We give algorithms for radical membership and tr.deg of systems
of polynomials, in time that depends on the tr.deg. In both cases,
our algorithms generalize the cases of ‘few’ input polynomials. We
further give bounds on the degree of the Nullstellensatz certificates
that depend on the tr.deg of the input polynomials. In all three cases,
our bounds are significantly better than the previously known
results in the regime when the tr.deg is much smaller than the
number of variables and the number of polynomials.

Our work leaves the natural open problem of designing efficient
algorithms when the tr.deg is ‘larger’.

• For the blackbox radical membership problem, given the
NP-hardness of HN, it is unlikely that a significantly better
algorithm exists (unless other restrictions are put on the
input polynomials).

• Could our methods, and the core hard instance thus iden-
tified, help in proving that HN is in AM? Currently, this is
known only partially [Koi96].

• For the tr.deg problem however, we know that the problem
is in coAM ∩ AM, making it unlikely to be NP hard. It is
therefore likely that there is an efficient randomized algo-
rithm whose time complexity is polynomial in n andm. This
is already known in the case when the field has large/zero
characteristic, and it is an open problem to extend this to
other fields. A first step might be to give a subexponential

time algorithm for the problem that works without any as-
sumptions.

Acknowledgements. We thank Ramprasad Saptharishi for in-
troducing us to the universality of 3-generators ideal member-
ship problem. Nitin Saxena thanks the funding support from DST
(DST/SJF/MSA-01/2013-14).

REFERENCES
[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.

Cambridge University Press, 2009.
[ASSS12] M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits:

Hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 tran-
scendence degree-k circuits. In Proceedings of the 44th ACM Symposium on
Theory of Computing (STOC), pages 599ś614, 2012. (SICOMP spl.issue, 45(4),
1533ś1562, 2016).

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Al-
gebraic complexity theory, volume 315 of Grundlehren der mathematischen
Wissenschaften. Springer, 1997.

[BMS13] M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and black-
box identity testing. Information and Computation, 222:2 ś 19, 2013. (Also,
38th International Colloquium on Automata, Languages and Programming,
ICALP 2011).

[Bro87] W. Dale Brownawell. Bounds for the degrees in the Nullstellensatz. Annals
of Mathematics, 126(3):577ś591, 1987.

[BS91] Carlos A. Berenstein and Daniele C. Struppa. Recent improvements in the
complexity of the effective Nullstellensatz. Linear Algebra and its Applications,
157:203 ś 215, 1991.

[Buc65] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Univer-
sity of Innsbruck, 1965.

[CLO07] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative Al-
gebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag, Berlin,
Heidelberg, 2007.

[Csa75] L. Csanky. Fast parallel matrix inversion algorithms. 16th Annual Symposium
on Foundations of Computer Science (SFCS 1975), pages 11ś12, 1975.

[DFGS91] Alicia Dickenstein, Noaï Fitchas, Marc Giusti, and Carmen Sessa. The
membership problem for unmixed polynomial ideals is solvable in single
exponential time. Discrete Applied Mathematics, 33(1-3):73ś94, 1991.

[DGW07] Z. Dvir, A. Gabizon, and A. Wigderson. Extractors and rank extractors
for polynomial sources. In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 52ś62, Oct 2007.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic
program testing. Information Processing Letters, 7(4):193 ś 195, 1978.

[GH94] Marc Giusti and Joos Heintz. La détermination des points isolés et de la
dimension d’une variété algébrique peut se faire en temps polynomial. Com-
putational Algebraic Geometry and Commutative Algebra, 34, 02 1994.

[GSS18] Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic dependencies and
pspace algorithms in approximative complexity. In Proceedings of the 33rd
Computational Complexity Conference, CCC ’18, 2018.

[Gup14] Ankit Gupta. Algebraic geometric techniques for depth-4 PIT & Sylvester-
Gallai conjectures for varieties. Electronic Colloquium on Computational
Complexity (ECCC), 21:130, 2014.

[Hei83] Joos Heintz. Definability and fast quantifier elimination in algebraically
closed fields. Theoretical Computer Science, 24(3):239 ś 277, 1983.

[Her26] Grete Hermann. Die Frage der endlich vielen Schritte in der Theorie der
Polynomideale. Mathematische Annalen, 95(1):736ś788, Dec 1926.

[Jel05] Zbigniew Jelonek. On the effective Nullstellensatz. Inventiones mathematicae,
162(1):1ś17, Oct 2005.

[Kay09] N. Kayal. The complexity of the annihilating polynomial. In 24th Annual
IEEE Conference on Computational Complexity, pages 184ś193, July 2009.

[Koi96] Pascal Koiran. Hilbert’s Nullstellensatz is in the polynomial hierarchy. J.
Complexity, 12(4):273ś286, 1996.

[Kol88] János Kollár. Sharp effective Nullstellensatz. Journal of the American Mathe-
matical Society, 1(4):963ś975, 1988.

[KPS99] Teresa Krick, Luis Miguel Pardo, and Martín Sombra. Arithmetic Nullstellen-
sätze. ACM SIGSAM Bulletin, 33(3):17, 1999.

[KPS+01] Teresa Krick, Luis Miguel Pardo, Martín Sombra, et al. Sharp estimates for
the arithmetic Nullstellensatz. Duke Mathematical Journal, 109(3):521ś598,
2001.

[Kru50] Wolfgang Krull. Jacobsonsches Radikal und Hilbertscher Nullstellensatz. In
Proceedings of the International Congress of Mathematicians, Cambridge, Mass,
volume 2, pages 56ś64, 1950.

192

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Abhibhav Garg and Nitin Saxena

[Lap06] Santiago Laplagne. An algorithm for the computation of the radical of an
ideal. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, pages 191ś195, 2006.

[Laz77] Daniel Lazard. Algèbre linéaire sur k [x1, . . . , xn] et élimination. Bulletin
de la Société Mathématique de France, 105:165ś190, 1977.

[Laz81] Daniel Lazard. Résolution des Systèmes d’Équations algébriques. Theoretical
Computer Science, 15(1):77 ś 110, 1981.

[LL91] Y. N. Lakshman and Daniel Lazard. On the Complexity of Zero-dimensional
Algebraic Systems, pages 217ś225. Birkhäuser Boston, 1991.

[May89] Ernst Mayr. Membership in polynomial ideals over Q is exponential space
complete. In B. Monien and R. Cori, editors, STACS 89, pages 400ś406, Berlin,
Heidelberg, 1989. Springer Berlin Heidelberg.

[May97] Ernst W. Mayr. Some complexity results for polynomial ideals. J. Complexity,
13(3):303ś325, 1997.

[MM82] Ernst W Mayr and Albert R Meyer. The complexity of the word problems for
commutative semigroups and polynomial ideals. Advances in Mathematics,
46(3):305 ś 329, 1982.

[Ore22] Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15,
1922.

[Oxl06] James G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics).
Oxford University Press, Inc., USA, 2006.

[Per51] O. Perron. Algebra: Die Grundlagen. Number v. 1 in Göschens Lehrbücherei :
1. Gruppe, Reine u. angewandte Mathematik. Walter de Gruyter & Company,
1951.

[PSS16] Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence
over positive characteristic: New criterion and applications to locally low

algebraic rank circuits. In 41st International Symposium on Mathematical
Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków,
Poland, pages 74:1ś74:15, 2016. (Comput.Compl., 27(4), 617ś670, 2018).

[Pł05] Arkadiusz Płoski. Algebraic dependence of polynomials after O.Perron
and some applications. Computational Commutative and Non-Commutative
Algebraic Geometry, pages 167ś173, 2005.

[Rab30] JL Rabinowitsch. Zum Hilbertschen Nullstellensatz. Mathematische Annalen,
102(1):520ś520, 1930.

[Sap19] Ramprasad Saptharishi. Private Communication, 2019.
[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial

identities. J. ACM, 27(4):701ś717, October 1980.
[Sin19] Amit Kumar Sinhababu. Power series in complexity: Algebraic Dependence,

Factor Conjecture and Hitting Set for Closure of VP. PhD thesis, Indian Institute
of Technology Kanpur, 2019.

[Som97] Martín Sombra. Bounds for the Hilbert function of polynomial ideals and
for the degrees in the Nullstellensatz. Journal of Pure and Applied Algebra,
117-118:565 ś 599, 1997.

[Som99] Martín Sombra. A sparse effective Nullstellensatz. Advances in Applied
Mathematics, 22(2):271 ś 295, 1999.

[SR13] I.R. Shafarevich andM. Reid. Basic Algebraic Geometry 1: Varieties in Projective
Space. SpringerLink : Bücher. Springer Berlin Heidelberg, 2013.

[Zar47] Oscar Zariski. A new proof of Hilbert’s Nullstellensatz. Bulletin of the
American Mathematical Society, 53(4):362ś368, 1947.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceed-
ings of the International Symposiumon on Symbolic and Algebraic Computation,
EUROSAM ’79, page 216ś226, Berlin, Heidelberg, 1979. Springer-Verlag.

193

Sparse Multiplication for Skew Polynomials

Mark Giesbrecht
Cheriton School of Computer Science

University of Waterloo
mwg@uwaterloo.ca

Qiao-Long Huang
Research Center for Mathematics and
Interdisciplinary Sciences Shandong

University
huangqiaolong@sdu.edu.cn

Éric Schost
Cheriton School of Computer Science

University of Waterloo
eschost@uwaterloo.ca

Abstract

Consider the skew polynomial ring L[x ;σ], where L is a field and
σ is an automorphism of L of order r . We present two randomized
algorithms for the multiplication of sparse skew polynomials in
L[x ;σ].

The first algorithm is Las Vegas; it relies on evaluation and
interpolation on a normal basis, at successive powers of a nor-
mal element. For inputs A,B ∈ L[x ;σ] of degrees at most d , its
expected runtime is O∼ (max(d,r)rRω−2) operations in K , where
K = Lσ is the fixed field of σ in L and R ≤ r is the size of the
Minkowski sum supp(A) + supp(B) taken modulo r ; here, the sup-
ports supp(A),supp(B) are the exponents of non-zero terms in A

and B.
The second algorithm is Monte Carlo; it is łsuper-sparsež, in

the sense that its expected runtime is O∼ (log(d)Srω), where S is
the size of supp(A) + supp(B). Using a suitable form of Kronecker
substitution, we extend this second algorithm to handlemultivariate
polynomials, for certain families of extensions.

Keywords

Sparse polynomials; skew polynomials; multiplication

ACM Reference Format:

Mark Giesbrecht, Qiao-Long Huang, and Éric Schost. 2020. Sparse Multi-
plication for Skew Polynomials. In International Symposium on Symbolic

and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404058

1 Introduction

Skew polynomial rings were introduced by Ore [24] as a non-
commutative generalization of usual commutative polynomial rings.
They have found numerous applications, as they allow one to work
with linear differential equations, shift equations, or operators over
finite fields, in an algebraic manner.

A very common construction is the following: let K ⊂ L be finite
fields and let σ : L → L be a K-automorphism of L, that is, a power
of the qth power Frobenius automorphism, with q = #K . For an
indeterminate x over L, the ring L[x ;σ] of skew polynomials over L
is the L-vector space of finite sums A =

∑
0≤i≤d aix

i , with all ai ’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404058

in L, endowed with the usual addition, and where multiplication
is determined by the commutation relation xc = σ (c)x for any c

in L. The degree deg(A) of A is the largest index i for which ai is
non-zero.

In particular, if σ is the qth power Frobenius automorphism itself,
L[x ;σ] is isomorphic to the ring of linearized polynomials over K
(endowed with addition and composition). Fundamental algorithms
for such rings are presented in [14]. These polynomials can be
used to construct algebraic codes [4, 5, 9, 27], have applications in
cryptography [3, 32], underlie the construction of finite Drinfeld
modules [17], etc.

In this paper, our framework is slightly more general: we assume
that L is any field endowed with an automorphism σ , we letK = Lσ ,
and we assume that σ has finite order r ; the rest of the definition is
then as above. In particular, L is a separable extension of K , with
[L : K] = r . For a list of examples that goes beyond finite fields, see
Section 1 in [6].

We are interested in the cost of multiplying such skew polyno-
mials. Given A and B in L[x ;σ] of degree at most d , the standard
łschoolbookž multiplication algorithm usesO (d2) arithmetic opera-
tions +,× in L, and O (d2) applications of powers of σ . In [25, 26],
Puchinger and Wachter-Zeh improved this to O∼ (d (ω+1)/2) arith-
metic operations in L and applications of powers of σ ; here ω is
such that over any ring, square matrix multiplication in size s can
be done in O (sω) ring operations. The best known value to date
is ω ≤ 2.373 [7, 10], giving (ω + 1)/2 ≤ 1.69, hence resulting in a
subquadratic bound in d .

However, this analysis overlooks the (non-trivial) question of
how operations in L are actually implemented. In this paper, we will
measure runtimes in terms of operations in K , using the structure
of L as a K-vector space; this will be our main cost measure, but we
will also count bit operations when warranted (when non-trivial
operations on exponents take place, for instance).

As in [6], we will use two K-bases for L. The first one, written
W = (ω0, . . . ,ωr−1), is taken such that addition, multiplication
and inversions in L use O∼ (r) operations (+,×,÷) in K ; here, the
łsoft-Oh" notation indicates that we omit polylogarithmic factors
in r . For instance, if L is given as L = K[z]/f (z), for some f ∈ K[z]
of degree r , then we can take ωi to be the residue class of zi for
all i . This will be called the working basis; our convention is that
the inputs and outputs of all algorithms will be given on this basis.

The second basis will be a normal basis N = (ν0, . . . ,νr−1),
such that σ (νi) = νi+1 mod r for all i . In such a basis, addition and
application of any power of σ take linear time O (r). In our algo-
rithms, we make the following assumption about the availability of
representational data for a normal basis of L/K :

194

https://doi.org/10.1145/3373207.3404058
https://doi.org/10.1145/3373207.3404058

(H): the bases W and N , as well as the matricesMN →W and
MW→N of change of basis between W and N , are given.

In this context, Caruso and Le Borgne [6] give a Las Vegas algorithm
for multiplication in L[x ,σ] of expected costO∼ (drω−1) operations
in K when d ≥ r ; for d ≤ r , they propose another algorithm, whose
cost isO (dω−2r2) operations inK . Note that this paper also assumes
that in the basis W , the application of σ takes quasi-linear time,
that is, O∼ (r) operations in K . This is a reasonable assumption
when K and L are finite fields, as [8] 1 show that any finite field
extension of a finite field admits a basis in which the operations
addition, multiplication, division and application of σ cost O∼ (r)
operations in K .

However, in our context, we show that this assumption can be
dropped. This gives the advantage of more flexibility in choosing
the working basis, so we will not make such an assumption.

Note that we will not address the problem of finding a normal
basis; this has been widely studied, and we refer the reader to [11,
15, 16, 19] and references therein.

The previous discussion assumes that the input A and B are
łdense polynomialsž, that is, given by the array of all their coeffi-
cients; in this case, in degree d , input and output size are Θ(dr)

elements in K , so Caruso and Le Borgne’s result of O∼ (drω−1) op-
erations in K is close to optimal (and would be optimal if we could
take ω = 2). In this current paper, we revisit this question, taking
into account the łsparsityž of A and B. Following [2], we define
the following, for a polynomial A =

∑t
i=1 aix

ei , in L[x ;σ] with
0 ≤ e1 < · · · < et and all ai non-zero:

• the sparsity #A is the number t in the expression above;

• the support supp(A) is the set of exponents {e1, . . . ,et } ⊂ N.

For two polynomials A and B, we have the inequalities

#(AB) ≤ #S(A,B) ≤ #A · #B,

where S(A,B) is the Minkowski sum

S(A,B) := {eA + eB | eA ∈ supp(A),eB ∈ supp(B)}. (1.1)

A strict inequality #(AB) < #S(A,B) occurs only in the presence of
coefficient cancellations. We will often write S := #S(A,B). Recall-
ing that r is the order of σ , we will also define

Sr (A,B) := {(eA+eB) mod r | eA ∈ supp(A),eB ∈ supp(B)}. (1.2)

After we discuss reductionmodulo central elements, wewill see that
Sr (A,B) contains the support of the polynomialAB mod (xr −1). If
we write R := #Sr (A,B), this means that we have #(AB mod (xr −

1)) ≤ R; note also the inequalities R ≤ r and R ≤ S .
In this paper, we give two randomized algorithms for multiplying

skew polynomials in L[x ;σ]. The first one is Las Vegas; for inputs
of degree at most d , it uses an expected O∼ (max(d,r)rRω−2) oper-
ations in K , where R is as above. This algorithm is based on Caruso
and Le Borgne’s [6]; as in that reference, the whole multiplication
procedure reduces to several instances of multiplication modulo
xr −1. Whereas the original algorithm usesO∼ (rω) operations inK
for this task, ours takes O∼ (r2Rω−2) operations. Altogether, since
R ≤ r , our runtime is asymptotically never worse than that in [6],
and can be better in many cases. Apart from this, Puchinger and

1We thank the anonymous referee for pointing this out.

Wachter-Zeh’s algorithm performs the same computation with com-
plexityO∼ (d (ω+1)/2r) operations. As stated in [6], the algorithm in
[25, 26] is faster than the one in [6] for polynomials of small degree
d ≤ r2/(5−ω) . As d ≤ r2/(5−ω) ≤ r , in this case, our complexity is
O∼ (r2Rω−2). So unless d ≤ min(r2/(5−ω) ,r2/(ω+1)R (2ω−4)/(ω+1)),
our new algorithm is faster. The precise statement is as follows.

Theorem 1.1. Let L be a field with automorphism σ of finite or-

der r and K = Lσ , and assume we have representational data (H)

for L/K as above. Given A,B ∈ L[x ;σ] of degrees at most d , there

is a Las Vegas algorithm to compute AB with an expected cost of

O∼ (max(d,r)rRω−2) operations in K and O∼ (max(d,r)) bit oper-
ations, where R ≤ r is the cardinality of the set Sr (A,B) defined

in (1.2).

The second algorithm comes in two stages, one of which isMonte
Carlo and the other Las Vegas. Overall, for a given probability of
failure, its expected runtime is now polynomial in log(d), r and S ,
where S is the cardinality of the set S(A,B) defined in (1.1). Due
to this logarithmic dependence in the degree d , we will call this
algorithm supersparse.

The algorithm is inspired by the work of Arnold and Roche [2]
on the multiplication of sparse commutative polynomials. We first
compute S(A,B); once it is known, we compute at least half the
coefficients of the productAB throughmultiplication modulo a well-
chosen central polynomial of the form xpr − 1. After a logarithmic
number of iterations, this gives us the whole product AB.

Theorem 1.2. Let L be a field with automorphism σ of finite

order r and K = Lσ , and assume we have representational data (H)

for L/K as above. Given A,B ∈ L[x ;σ] of degrees at most d , and

µ ∈ (0,1), there is an algorithm to compute AB with probability at

least 1 − µ, using an expected O∼ (log(d)Srω) operations in K and

O∼ (log(d)S (r + log(1/µ))) bit operations, where S is the cardinality

of the set S(A,B) defined in (1.1).

We also present a multivariate version of this algorithm whose
cost is summarized as follows. Let L[x1, . . . ,xn ;σ1, . . . ,σn] be a
multivariate skew polynomial ring, with the relations xia = σi (a)xi
and xix j = x jxi , where each σi is an automorphism of L.

Theorem 1.3. Let L be a field with automorphism σ of finite

order r , K = Lσ and σi = σei for 0 ≤ e1, . . . ,en < r , and as-

sume we have the representation data (H) for L/K . Given A,B ∈

L[x1, . . . ,xn ;σ1, . . . ,σn] of total degree at most D, and µ ∈ (0,1),
there is an algorithm to computeAB with probability at least 1−µ, us-
ing an expectedO∼ (nrωS logD) operations inK plusO∼ (n2S logD+
nSr logD+nS logD log(1/µ)+S log r log(1/µ)) bit operations, where
S = #S(A,B).

For historical perspective and comparison, algorithms to com-
pute sparse multiplication of usual commutative polynomials has
seen considerable research recently, both in theory and in practice.
New algorithms for polynomials with at most t terms have been
developed to keep the time proportional to the worst-case output
size,O (t2), and low space complexity, both in theory and in practice
[18, 22, 23]. This is particularly important for multivariate polyno-
mials [30]. The aforementioned work of Arnold & Roche [2] adapts
to the potential even smaller output size, and when the support is
know [31] demonstrate greater improvements. See the excellent

195

recent survey of [28] on the state of the art in sparse polynomial
computation.

2 Sparse multiplication

In this section, we give a Las Vegas algorithm for the multiplication
of sparse skew polynomials, proving Theorem 1.1. Our algorithm
is based on Caruso and Le Borgne’s [6]. As in that reference, the
key operation is an evaluation-interpolation based multiplication
algorithm modulo xr − 1; the main difference is that the number
of evaluations in our algorithm depends on the sparsity of the
product. To build the main algorithm upon this special case, we
will follow [6] with few modifications.

2.1 Preliminaries

2.1.1. Division modulo central elements. For a non-zero Z
in the center of L[x ;σ], and forA in L[x ;σ], there are uniqueQ ,F ∈
L[x ;σ] such thatA = QZ+F = ZQ+F , with F = 0 or deg F < degZ ;
we write F = A mod Z . This makes the canonical morphism

ε : L[x ;σ] → L[x ;σ]/⟨Z ⟩,
A 7→ A mod Z ,

an endomorphism of K-algebras.
Since σ has order r , the equality xr c = σ r (c)xr = cxr holds for

all c in L. As a result, any polynomial of the form Z = B (xr), where
B ∈ K[x], is in the center of L[x ;σ] (actually, all central elements
are of this form, but we won’t need this). We will only use the very
particular casesZ = xr −a andZ = xr −1, for which we have simple
explicit formulas for the remainders. In particular, for the latter, if
we consider a skew polynomial C = c1xe1 + · · · + cSx

eS ∈ L[x ;σ],
with all ci in L, then we have

C mod (xr − 1) = c1x
e1 mod r

+ · · · + cSx
eS mod r , (2.1)

with ei mod r in {0,1, . . . ,r − 1} for all i .

2.1.2. Scalar extension. Given A,B ∈ L[x ;σ], to compute the
productAB, we first compute different reductionsAB mod xr −ai ,
where ai ∈ K , then recover AB from these reductions by Chinese
remainder algorithm. The number of reductions we need depends
on the degree of the productAB. If it is large, as in [6], there may not
be enough elements in ground field K , so we may have to replace
K by an extension K ′/K of sufficiently large cardinality. We write
s := [K ′ : K], and we assume that K ′ is given as K[ξ]/д(ξ), for
some degree-s irreducible д ∈ K[ξ]; in particular, all operations
+,×,÷ in K ′ take O∼ (s) operations in K .

We will then define L′ := L ⊗K K ′; L′ still has dimension r over
K ′, but it does not have to be a field; it is in general a product of
fields. The extension of σ to L′ is the automorphism σ ′ := σ ⊗K id;
it still has order r and admits K ′ as its fixed set.

The K-bases W = (ω0, . . . ,ωr−1) and N = (ν0, . . . ,νr−1) of L
extend to K ′-bases W ′

= (ω ′0, . . . ,ω
′
r−1) and N ′

= (ν ′0, . . . ,ν
′
r−1)

of L′, withω ′i = ωi⊗K 1 andν
′
i = νi⊗K 1 for all i . In the newworking

basis W ′, addition, multiplication, and the inversion of invertible
elements still take O∼ (r) operations (+,×,÷) in K ′, that is, O∼ (rs)
operations in K ; besides, N ′ is still a normal basis. Finally, the
change-of-basis matrices between W and N still describe change-
of-basis between W ′ and N ′ (but now seen as matrices over K ′).

To summarize, changing the ground field from K to K ′ affects
almost nothing in our setup; the only point that will require our
attention is that L′ may not be a field, so non-zero elements may
not be invertible.

2.2 Multiplication modulo xr − 1
We start with a multiplication algorithm modulo xr − 1. As ex-
plained above, we suppose that we are given a field extension
K ′/K of degree s , and we give an algorithm for multiplication in
L′[x ;σ ′]/⟨xr − 1⟩.

A skew polynomial A ∈ L′[x ;σ ′] defines a K ′-linear mapping
A∗ : L′ → L′ obtained by evaluating A at σ ′. For a in L′, we will
write A(a) instead of A∗ (a); since σ ′ has order r , A(a) is actually
well-defined for A in L′[x ;σ ′]/⟨xr − 1⟩.

This suggests an evaluation / interpolation strategy for multipli-
cation L′[x ;σ ′]/⟨xr −1⟩. This idea is already in [6], but does not take
sparsity into account there; the following algorithm achieves this,
by using evaluation and interpolation at a geometric progression.

We first give the overview of the algorithm, then discuss sub-
routines and establish their cost bounds. Below, remember that
elements of L′ are always represented on the working basis W ′.

Algorithm 1: Sparse multiplication modulo xr − 1.

Input: Two polynomials A,B ∈ L′[x ;σ ′]/⟨xr − 1⟩.

Output: The product AB ∈ L′[x ;σ ′]/⟨xr − 1⟩.

Step 1: Compute Sr (A,B) as in (1.2) and let R = #Sr (A,B).
Step 2: Compute bi = B (ν ′0

i), for i = 0,1, . . . ,R−1 and let B be
the r × R matrix over K ′ whose ith column is the coefficient
vector of bi for all i .

Step 3: Compute ei = A(ν ′i), for i = 0, . . . ,r − 1 and let E be
the r × r matrix over K ′ whose ith column is the coefficient
vector of ei for all i .

Step 4: Compute F = E MW→N B and let f0, . . . , fR−1 be the
elements of L′ whose coefficient vectors are the columns
of F .

Step 5: Return the unique polynomial C =
∑
α ∈Sr (A,B) cαx

α

such that C (ν ′0
i) = fi for all i .

Proposition 2.1. Under assumption H, Algorithm 1 computes

the product AB using O∼ (Rω−2r2s) operations in K and O∼ (r) bit

operations.

Proof. Write C = AB ∈ L′[x ;σ ′]/⟨xr − 1⟩. Since C∗ = A∗ ◦ B∗,
we get C (ν ′0

i) = A(B (ν ′0
i)), for i = 0, . . . ,R − 1.

The product E MW→N is by construction the matrix of A∗ :
L′ → L′ (in the working basis), and the columns of B are the
coefficient vectors of B (ν ′0

i), for i = 0, . . . ,R − 1, also written in the

working basis. As a result, C (ν ′0
i) = fi holds for i = 0, . . . ,R − 1.

In view of formula (2.1), we know that the support supp(C) is
contained in Sr (A,B); then, we prove in ğ2.2.2 that Step 5 correctly
recovers C .

In terms of runtime, Step 1 takes O∼ (r) bit operations (by ğ2.2.1
below) and Step 2 takesO∼ (r2s) operations inK (ğ2.2.2). Step 3 takes
O∼ (r2) operations in K ′ by [6, Prop. 1.6], which is also O∼ (r2s)

operations in K . The cost of Step 4 is O∼ (Rω−2r2s) operations in
K , using block matrix multiplication. Finally, Step 5 takes another
O∼ (r2s) operations in K (ğ2.2.2). □

196

2.2.1. Computing the sumset. Given A and B as above, we
show here how to compute the sumset Sr (A,B). Assume the sup-
ports of A,B are SA,SB , respectively, and let

Ã =
∑

d ∈SA

yd ∈ Z[y], B̃ =
∑

d ∈SB

yd ∈ Z[y]

be the commutative polynomials whose supports are SA,SB and
coefficients are all 1. To compute Sr (A,B) = {(eA+eB) mod r | eA ∈
SA,eB ∈ SB }, it is enough to compute the support of ÃB̃ mod (yr −

1). Using fast multiplication in Z[y], this takesO∼ (r) bit operations,
as claimed.

2.2.2. Evaluation-interpolation at a geometric progression.

Let C = c1xe1 + · · · + ctxet be in L′[x ,σ ′]/⟨xr − 1⟩, with 0 ≤ e1 <

· · · < et < r . Here we show how to evaluate C at the points ν ′0
i ,

for i = 0,1, . . . ,R − 1, for some integer R, with t ≤ R ≤ r ; we also
show how to recover C from these values, assuming e1, . . . ,et are
known.

For i ≥ 0, the value C (ν ′0
i) is by definition C∗ (ν ′0

i), that is,

C (ν ′0
i) = c1σ

e1 (ν ′0)
i
+ · · · + ctσ

et (ν ′0)
i

= c1ν
′
e1
i
+ · · · + ctν

′
et
i .

Taken all together for i = 0, . . . ,R − 1, these equalities give

C (ν ′0
0)

C (ν ′0
1)
...

C (ν ′0
R−1)

=

1 1 · · · 1
ν ′e1 ν ′e2 · · · ν ′et
...

...
...

ν ′e1
R−1 ν ′e2

R−1 · · · ν ′et
R−1

c1
c2
...

ct

.

Proposition 2.2. GivenC and R as above, with t ≤ R ≤ r , we can

compute C (ν ′0
i), for i = 0,1, . . . ,R − 1, using O∼ (r2s) operations in

K . Given e1, . . . ,et , we can recover c1, . . . ,ct from these values using

O∼ (r2s) operations in K as well.

Proof. The matrix giving the values C (ν ′0
i) is transposed Van-

dermonde, built on the conjugates ν ′ei . A matrix-vector product by
such a matrix takes O∼ (max(R,t)) ∈ O∼ (r) operations +,× in L′;
this is O∼ (r2) operations in K ′, and thus O∼ (r2s) operations in K .

Conversely, to recoverC , we need to solve such a system (keeping
only the first t rows). This takes O∼ (r) operations +,× in L′ and
O (r) inversions - the former add up to O∼ (r2s) operations in K , as
above. The terms we have to invert are products of the differences
ν ′ei − ν

′
ek
, so they are all of the form α ⊗K 1, for various non-zero

α ∈ L, so they are all units in L′. As a result, these inversions cost a
total O∼ (r2) operations in K . □

2.3 Multiplication modulo xr − a

This section follows closely [6, Sec. 2.1], with only a few minor
differences; in particular, correctness of the procedure below is
established in that reference.

Let K ′ and L′ be as above, with [K ′ : K] = s , and let λ be a unit
in L′. We define the norm

a := λσ ′(λ) · · ·σ ′r−1 (λ),

Note that we know a ∈ K ′ since a = σ (a), which is why we need to
extendK toK ′. We now consider multiplication in L′[x ;σ ′]/⟨xr −a⟩.
Themain idea is to reducemultiplicationmoduloxr−a tomultiplica-
tion modulo xr −1. For this, define the L′-linear map δ : L′[x ;σ ′]→

L′[x ;σ ′] by setting δ (x i) = λσ ′(λ) · · ·σ ′i−1 (λ)x i . As proved in [6],
it induces an L′-algebra isomorphism δ : L′[x ;σ ′]/⟨xr − a⟩ →

L′[x ;σ ′]/⟨xr − 1⟩.

Algorithm 2: Multiplication modulo xr − a.

Input:

• An element λ ∈ L′×.
• A,B in L′[x ;σ ′]/⟨xr − a⟩, where a = λσ ′(λ) · · ·σ ′r−1 (λ).

Output: The product AB ∈ L′[x ;σ ′]/⟨xr − a⟩.

Step 1: Compute si = σ ′i (λ) for i = 0, . . . ,r − 1.
Step 2: Compute λi = s0 · · · si−1 for i = 1, . . . ,r .
Step 3: Compute A′ = δ (A) and B′ = δ (B).
Step 4: Compute C ′ = A′B′ ∈ L′[x ;σ ′]/⟨xr − 1⟩ by Algo-

rithm 1.
Step 5: Return δ−1 (C ′).

Before analyzing the whole procedure, we discuss the first step,
computing all conjugates of λ. Reference [6] assumes that the ap-
plication of σ in the working basis W of L takes quasi-linear time,
that is, O∼ (r) operations in K ; from this, we would deduce that
applying σ ′ to an element of L′ takes O∼ (rs) operations in K ′.
However, as noted in the introduction, we would rather not make
such a strong assumption. If L is given as L = K[z]/f (z), and thus
L′ = K[z,ξ]/⟨f (z),д(ξ)⟩, given σ (z mod f), von zur Gathen and
Shoup’s iterated Frobenius algorithm [12] allows us to compute all
conjugates of λ in O∼ (r2) operations in K ′, that is, O∼ (r2s) opera-
tions in K ; this is optimal, up to logarithmic factors. We now show
that this is still possible, working under the assumptions of this
paper.

Proposition 2.3. Under assumption H, given λ in L′, one can

compute the sequence λ,σ ′(λ), . . . ,σ ′r−1 (λ) using O∼ (r2s) opera-

tions in K .

Proof. Suppose that λ has coefficients (β0, . . . ,βr−1) on the
working basis W ′ of L′. Under assumption (H), we can compute
its coefficients (γ0, . . . ,γr−1) on the normal basis N ′ in O (r2) op-
erations in K ′, that is, O∼ (r2s) operations in K , by a matrix-vector
product withMW→N .

Let L ∈ K ′r×r be the matrix whose ith column contains the
coefficients of σ ′i (λ) on the working basis W ′, and let MN →W

be the change-of-basis matrix from N ′ to W ′. Then, we have the
equality

L = MN →W

γ0 γr−1 · · · γ1
γ1 γ0 · · · γ2
...

...
. . .

...

γr−1 γr−2 · · · γ0

.

Since the right-hand is a Hankel matrix, we can left-multiply it by
a vector inO∼ (r) operations in K ′. Hence the total cost to compute
L is O∼ (r2) operations in K ′, that is, O∼ (r2s) operations in K . □

Corollary 2.4. Under assumption H, Algorithm 2 computes the

product AB using O∼ (Rω−2r2s) operations in K and O∼ (r) bit oper-

ations.

Proof. The previous proposition gives the cost of computing
s0, . . . ,sr−1; the products λ1, . . . ,λr can be deduced for another
O∼ (r2) operations in K ′, which is O∼ (r2s) operations in K ; this

197

gives us A′ and B′. To compute their product C ′, Proposition 2.1
takes O∼ (Rω−2r2s) operations in K and O∼ (r) bit operations. Fi-
nally, to recover δ−1 (C ′), we have to invert all λi s (they are units,
by assumption); this takes O∼ (r2s) operations in K again. □

2.4 Main algorithm

The description of the main algorithm is essentially taken from [6],
but we replace the procedure for multiplication modulo xr − a

given in that reference by ours. A more minor difference is that
we simplify the algorithm by not fully exploiting some properties
given in [6], that would allow us to save a factorO∼ (s); since s will
be logarithmic in the input size, this is harmless. Finally, we show
how fast multipoint evaluation is actually required to obtain the
claimed runtime.

To compute the product AB in L[x ;σ], we compute its image
modulo central moduli of the form xr − ai , for a0,a1, . . . as in the
previous subsection. If K is a small finite field, we may have to
extend it in order to guarantee the existence of sufficiently many
such moduli. Suppose that A and B have degree at most d , so that
C = AB has degree at most 2d , and let e = ⌈2d/r⌉ + 1; this will be
the number of moduli we need.

Lemma 2.5. Let K ′ be an extension of K , let Γ be a subset of K ′ of

cardinality at least e (e + 1)r , and let L′ = L ⊗K K ′. Fix a basis of L′

overK ′. Then for λ1, . . . ,λe in L
′, with coefficients taken uniformly at

random in Γ, the probability that their norms a1, . . . ,ae be non-zero

and pairwise distinct is at least 1/2.

Proof. For λ in L′, its norm a = λσ ′(λ) · · ·σ ′r−1 (λ) is the de-
terminant of the multiplication endomorphism by λ (seen as a
K ′-linear map L′ → L′). Hence, it is a non-constant homogeneous
polynomial of degree r in the coefficients of λ (on an arbitrary
K ′-basis of L′); we write it ∆(λ). Then, the conclusion we want is
the non-vanishing of the product of all ∆(λi) and ∆(λi) − ∆(λj),
for 1 ≤ i < j ≤ e . This is an expression of degree e (e + 1)r/2
in the coefficients of the λi ’s, so the conclusion follows from the
DeMillo-Lipton-Schwartz-Zippel lemma. □

Algorithm 3: Multiplication.

Input: Two polynomials A,B ∈ L[x ;σ] of degree at most d .
Output: AB with probability at least 1/2, or error

Step 1: Let e = ⌈2d/r⌉ + 1.
Step 2: Build an extension K ′ of K , such that |K ′ | ≥ e (e + 1)r

and let s = [K ′ : K].
Step 3: Pick a subset Γ of K ′ of cardinality at least e (e + 1)r .
Step 4: Pick λ1, · · · ,λe in L′ = L ⊗K K ′. by choosing their

coefficients uniformly at random in Γ.
Step 5: Compute the norms a1, . . . ,ae of λ1, · · · ,λe . If any of

them vanishes, raise an error.
Step 6: Compute all Ai = A mod (xr − ai) and Bi = B mod

(xr − ai).
Step 7: Compute all Ci = AiBi mod (xr − ai).
Step 8: Recover C = AB from C1, . . . ,Ce .

Proposition 2.6. Under assumption H, Algorithm 3 computes the

product AB using an expected O∼ (max(d,r)rRω−2) operations in K

and O∼ (max(d,r)) bit operations, with probability of success at least

1/2; otherwise, it raises an error.

Proof. For K finite, s is O (log(dr)), and K ′ can be built in an
expected O (log(dr)2) operations in K [29]; if K is infinite, we take
K ′ = K and s = 1. Given the λi ’s, the cost of computing all ai ’s
will be subsumed in that of the further steps. If the conclusions
of Lemma 2.5 hold, then all λi ’s are invertible (so we can apply
the algorithm of the previous section), and their norms ai ’s are
pairwise distinct.

Write A =
∑
j<r α j (x

r)x j , B =
∑
j<r βj (x

r)x j and C = AB =∑
j<r γj (x

r)x j , where all α j ,βj ,γj have degree at most ⌈2d/r⌉ =

e−1. Then, for i ≤ e ,A mod (xr −ai) =
∑
j<r α j (ai)x

j . Thus, Step 6
amounts to evaluating α0, . . . ,αr−1 at a1, . . . ,ae (and similarly for
B). This takes O∼ (max(d ,r)) operations in K ′ by fast evaluation,
which is also O∼ (max(d,r)) operations in K . Step 7 involves O (e)

calls to Algorithm 2; this costs O∼ (Rω−2er2s) operations in K and
O∼ (er) bit operations. The former number is O∼ (max(d,r)rRω−2),
and the latter O∼ (max(d,r)). Since Sr (A,B) is the sumset for all
reductions Ci , the computation of Sr (A,B) needs to be done only
once, reducing the overall computing time. Finally, given Ci =

C mod (xr − ai), as the xr − ai are central elements in L′[x ;σ],
the reductions Ci have the same form as in the commutative ring
L′[x], and we can regard C,Ci all of them as in the ring L′[x].
For e pairwise distinct ai , we can recover C by r interpolations in
degree e − 1 in K ′ for anotherO∼ (max(d,r)) operations in K . If the
ai ’s are not pairwise distinct, the interpolation algorithm raises an
error. □

Our main algorithm now repeats the procedure above until it
succeeds; this will happen after an expectedO (1) attempts, thereby
establishing Theorem 1.1.

3 A supersparse algorithm

Let again A and B be in L[x ;σ], both of degree at most d . We now
give a multiplication algorithm whose complexity is polynomial
in r , log(d) and S , where S is the size of the sumset S(A,B) =
supp(A) + supp(B) (recall that the support of AB is contained in
S(A,B)). The first part of the algorithm is Monte Carlo, and costs
O∼ (log(d)S log(1/µ)) bit operations, for a probability of failure at
most µ; the rest of the algorithm is Las Vegas.

3.0.1. Outlook of the algorithm. The first step in our algo-
rithm computes S(A,B) as defined above. For any given error tol-
erance µ, the algorithm in [2] achieves this with bit complexity
O∼ (log(d)S log(1/µ)) and with probability at least 1 − µ. Here, and
in what follows, we write S = #S(A,B).

Let us write S(A,B) = {e1, . . . ,eS } andAB = c1x
e1+· · ·+cSx

eS ∈

L[x ;σ], with all ci in L. For a non-zero multiple q of r , xq − 1 is
central, and we have

(AB) mod (xq − 1) = c1x
e1 mod q

+ · · · + cSx
eS mod q ,

with ei mod q in {0,1, . . . ,q − 1} for all i . If all ei mod q are pair-
wise distinct, and if we assume that S(A,B) is known, computing
(AB) mod (xq − 1) allows us to recover AB.

However, even through randomization, we are not able to find a
q satisfying such a condition and of growth rate less than quadratic
in S . Instead, we use an approach coming from [1]: we allow for
a certain number of ei mod q to coincide. We will then take q of
the form q = pr , with p a prime whose size is well controlled. For p
satisfying certain luckiness conditions, we will be able to recover at

198

least half the terms in AB; then, we compute the remaining terms
recursively.

3.0.2. Finding a prime. Let n be a non-zero integer, and let T
be a subset of {0, . . . ,2d }. An element e in T is called a collision

modulo n if there exists e ′ , e in T such that e ≡ e ′ mod n.

Lemma 3.1. One can find using an expected O∼ (log(d)T) bit op-
erations a prime p such that p ∈ O (log(d)T) and T has at most T /2
collisions modulo p, with T = #T.

Proof. Let λ = max(21, ⌈20(T − 1) ln(2d)/3⌉). Then, Lemma 8
in [1] shows that ifp is a random prime in {λ, . . . ,2λ}, with probabil-
ity at least 1/2, T has less thanT /2 collisions modulo p. In particular,
trying an expected O (1) such primes is sufficient to find a suitable
one. By sieving, we can compute all primes up to 2λ inO∼ (log(d)T)
bit operations. Given a prime p in {λ, . . . ,2λ}, we can compute
T mod p in the same asymptotic cost. Counting collisions can be
done by (for instance) sorting all ei mod p, in O∼ (T log log(d)) bit
operations. □

3.0.3. Finding half the terms. Our main procedure is the fol-
lowing. In addition toA and B, we take as input an łapproximationž
P of the product AB; as output, we return a better approximation
of AB, as specified below.

Algorithm 4: Half multiplication.

Input:

• A,B ∈ L[x ;σ] of degrees at most d
• P ∈ L[x ;σ], such that all terms of P are terms of AB
• a set T ⊂ {0, . . . ,2d } containing the support of AB − P

Output:

• P∗ in L[x ;σ] such that all terms of P∗ are terms of AB.
• a set T∗ ⊂ {0, . . . ,2d } containing the support of AB − P∗,
such that #T∗ ≤ #T/2.

Step 1: find a prime p ∈ O (log(d)T) such that T has at most
T /2 collisions modulo p, with T = #T.

Step 2: compute u = (AB − P) mod (xpr − 1).
Step 3: compute f1 = e1 mod pr , . . . , fT = eT mod pr .
Step 4: let T∗ ⊂ T be the set of collisions in T modulo pr .
Step 5: Let P∗ = P . For i = 1, . . . ,T , if ei is not in T∗, find the

coefficient ci of x fi in u and let P∗ = P∗ + cix
ei .

Step 6: Return P∗ and T∗.

Proposition 3.2. Algorithm 4 is correct. Under assumption H, it

uses an expected O∼ (log(d)Trω) operations in K and O∼ (log(d)Tr)
bit operations, with T = #T.

Proof. By construction, all terms in P∗ are either terms in P (in
which case they are terms in AB), or terms in AB − P (and thus in
AB as well); they are thus always terms in AB, which shows that
the first item holds.

Next, take a term in AB but not in P∗; then, it belongs to T, but
not to T − T∗; this proves that the support of AB − P∗ is in T∗, as
claimed. Finally, since T has at most T /2 collisions modulo p, it
has at most T /2 collisions modulo pr ; hence, we have #T∗ ≤ #T/2.
Correctness is proved.

Next, we analyze the cost of this procedure. By Lemma 3.1, Step
1 takes an expected O∼ (log(d)T) bit operations. At Step 2, we com-
puteu by reducingA and B modulo xpr −1, multiplying the remain-
ders and reducing the product, and subtracting P mod (xpr − 1).

Sincep isO∼ (log(d)T), using Theorem 1.1, the cost of computing
the product modulo xpr − 1 is an expected O∼ (log(d)Trω) opera-
tions in K and O (log(d)Tr) bit operations. This dominates the cost
of the other steps. □

3.0.4. Main algorithm. The main procedure calls Algorithm 4
on rapidly decreasing supportsT; it finishes afterO (log S) iterations,
where S is the cardinality of S(A,B) = supp(A) + supp(B).

Algorithm 5: Multiplication.

Input:

• A,B in L[x ;σ] of degrees at most d
• error tolerance µ.

Output: with probability at least 1 − µ, the product AB.

Step 1: compute S(A,B) = supp(A) + supp(B).
Step 2: let P = 0 and T = S(A,B).
Step 3: while T is not empty do
a: let P ,T = Half multiplication(A,B,P ,T).

Step 4: return P .

The following proposition results directly from Proposition 3.2,
using the algorithm of Arnold and Roche [2] for computing S(A,B)
with a cost of O∼ (S log(d) log 1

µ) bit operations. It establishes The-
orem 1.2.

Proposition 3.3. Algorithm 5 succeeds with probability at least

1− µ. Under assumption H, it uses an expectedO∼ (log(d)Srω) opera-
tions in K and an expectedO∼ (log(d)S (r + log(1/µ))) bit operations,
with S = #S(A,B).

4 Multivariate skew polynomials

Finally, we extend our second univariate multiplication algorithm
to certain multivariate cases, using Kronecker substitution. One
may also use the algorithm of Section 2, but the result would be
exponential in the number n of variables: the runtime of the algo-
rithm of Section 2 is polynomial in the input degree, and Kronecker
substitution produces univariate polynomials of degree exponential
in n.

Multivariate skew polynomials have not been as intensively stud-
ied; refer to [13, 20, 21] for recent work. Let L[x1, . . . ,xn ;σ1, . . . ,σn]
be a multivariate skew polynomial ring, where L is a field, with the
relations xia = σi (a)xi and xix j = x jxi for all i, j, and where each
σi is an automorphism of L.

In [21], using a matrix of endomorphisms, the authors define
more general multivariate skew polynomials. Our definition seems
to correspond to a diagonal matrix containing automorphisms,
which is only a special case of the definition in [21]. However, in
[21], xi ,x j do not commute for i , j, which is used to make sure
the uniqueness of evaluation, defined as the remainder of a right
division. In our definition, we assume xix j = x jxi for all i, j, and
the evaluation at a point is defined as the value of function which
replaces xi in the skew polynomial with σi .

We assume that there exists an automorphism σ of L, having
order r , and integers e1, . . . ,en such that for all i , σi = σei , and

199

as before we let K be the fixed field of σ . This assumption is for
instance valid when L is a finite field.

Consider integers N = (N1, . . . ,Nn) and the L-linear mapping
ΨN defined by

ΨN : L[x1, . . . ,xn ;σ1, . . . ,σn] → L[x ;σ]

x
d1
1 · · · x

dn
n 7→ xd1N1+· · ·+dnNn

This is simply a Kronecker substitution, in a non-commutative
setting.

Lemma 4.1. If Ni ≡ ei mod r for all i , then ΨN is a K-algebra

morphism.

Proof. Since ΨN acts multiplicatively on monomials, the only
property we have to verify is that for integers (d1, . . . ,dn) and b in

L, ΨN (x
d1
1 · · · x

dn
n)ΨN (b) = ΨN (x

d1
1 · · · x

dn
n b). The former equals

σ
∑
n

i=1 diNi (b)x
∑
n

i=1 diNi , while the latter is σ
∑
n

i=1 di ei (b)x
∑
n

i=1 diNi .

Our assumption implies that the exponents
∑n
i=1 diNi and

∑n
i=1 diei

are the same modulo r , and the conclusion follows. □

For D ≥ 0, let L[x1, . . . ,xn ;σ1, . . . ,σn]D be the L-vector space
of skew polynomials of total degree less than D. We now dis-
cuss conditions on N that ensures that the restriction of ΨN to
L[x1, . . . ,xn ;σ1, . . . ,σn]D is injective.

Lemma 4.2. Let D be a positive integer. Assume Ni ∈ N>0 satisfy

D ≤ N1 and NiD ≤ Ni+1 for 1 ≤ i < n. Then the restriction of ΨN
to L[x1, . . . ,xn ;σ1, . . . ,σn]D is injective.

Proof. Supposem ∈ N>0 can be represented asm =
∑n
i=1 diNi

with
∑n
i=1 di < D, and in particular 0 ≤ di < D. It suffices to show

that this relation defines dn uniquely; once this is known, we set
m′ =m − dnNn and the claim follows by induction. Precisely, we
prove that dn = ⌊

m
Nn
⌋. Since

dnNn ≤ m =

n∑

i=1

diNi ≤ (D − 1) (1 +
n−1∑

i=1

Ni) + dnNn

= D (1 +
n−1∑

i=1

Ni) − (1 +
n−1∑

i=1

Ni) + dnNn

≤ (D +

n∑

i=2

Ni) − (1 +
n−1∑

i=1

Ni) + dnNn

= D − 1 − N1 + Nn + dnNn

< Nn + dnNn = (dn + 1)Nn .

Dividing by Nn on both sides, we get dn ≤
m
Nn
< (dn + 1). Since

dn is an integer, we get dn = ⌊
m
Nn
⌋, and we are done. □

The following algorithm describes how to compute the di ’s.

Algorithm 6: Index.

Input:

• Positive integers N1, . . . ,Nn , where D ≤ N1 and NiD ≤

Ni+1 for i = 1, . . . ,n − 1.
• A positive integerm = d1N1+ · · ·+dnNn , where 0 ≤ di < D

for i = 1, . . . ,n.

Output: The indices d1, . . . ,dn .

Step 1: For i = n, . . . ,1 do
a: Let di = ⌊

m
Ni
⌋.

b: Letm =m − diNi .
Step 2: Return d1, . . . ,dn .

Lemma 4.3. Algorithm 6 is correct and requires O∼ (n log(D) +
n log(Nn)) bit operations.

Proof. Correctness comes from the expression dn = ⌊
m
Nn
⌋,

which was established in the proof of Lemma 4.2. As to complexity,
each iteration of Step 1 costs a constant number of arithmetic
operations. Since m ≤ DNn and N1 < N2 < · · · < Nn , the
height of m is O (log(D) + log(Nn)), and the total cost of Step 1
is O∼ (n log(D) + n log(Nn)) bit operations. □

Taking into account the constraints in the two previous lemmas,
we obtain the following construction of integers N1, . . . ,Nn .

Lemma 4.4. Given a positive integer D, set N0 = 1 and define

N = (N1, . . . ,Nn) recursively by

Ni+1 = ei+1 + ki+1r , where ki+1 = max{⌈
DNi − ei+1

r
⌉,0}.

Then N satisfies the conditions of Lemmas 4.1 and 4.2, and Ni ≤

rDn+1 holds for all i .

Proof. The congruence conditions clearly hold. For i ≥ 0, we
claim that NiD ≤ Ni+1 ≤ NiD + r ; the left-hand side then proves
the inequalities needed in Lemma 4.2.

If ki+1 = 0, then NiD ≤ ei+1, so Ni+1 = ei+1, which means
NiD ≤ Ni+1. On the other hand, since 0 ≤ ei+1 < r , we have
Ni+1 ≤ NiD + r . If ki+1 > 0, then ki+1 = ⌈

DNi−ei+1
r ⌉, so we have

DNi−ei+1
r ≤ ki+1 <

DNi−ei+1
r + 1. This gives DNi − ei+1 ≤ ki+1r <

DNi − ei+1 + r , and thus DNi ≤ Ni+1 < DNi + r . In either case, we
proved the claim. This inequalities also imply (by induction) that all
Ni ’s satisfy Ni ≤ Di

+r (Di − 1)/(D − 1), and thus Ni ≤ rDn+1. □

Corollary 4.5. Let D and N as in the previous lemma, and let C

be in L[x1, . . . ,xn ;σ1, . . . ,σn]D , with #C ≤ S . Given ΨN (C) we can

recover C in O∼ (Sn2 log(D) + Sn log(r)) bit operations.

Proof. Apply Algorithm 6 to all terms of ΨN (C). Each instance
takes O∼ (n log(D) + n log(Nn)) bit operations, and the previous
lemma proved that log(Nn) is O (n log(D) + log(r)). □

We can now present our sparse multivariate multiplication algo-
rithm.

Algorithm 7: Multivariate Multiplication.

Input:

• A,B in L[x1, . . . ,xn ;σ1, . . . ,σn]
• error tolerance µ

Output: with probability at least 1 − µ, the product AB

Step 1: let D = degA + degB + 1.
Step 2: let N be as in Lemma 4.4.
Step 3: compute Ã = ΨN (A) and B̃ = ΨN (B)

Step 4: compute C̃ = ÃB̃ by calling Algorithm 5 with inputs Ã,
B̃ and µ

Step 5: return Ψ−1
N

(C̃)

200

Proposition 4.6. Algorithm 7 computes AB with probability at

least 1 − µ and costs O∼ (nrωS logD) field operations in K plus

O∼ (n2S logD + nSr logD + nS logDlog(1/µ) + S log r log(1/µ)) bit
operations, where S = #S(A,B).

Proof. Correctness comes from Lemma 4.4: if the product ÃB̃
computed in Step 4 is correct, then the output is the product AB.
By Proposition 3.3, Algorithm 5 returns the correct product with
probability at least 1 − µ, so we are done.

Step 2 needs n operations. Since the bit-lengths are O (n logD +
log r), the bit cost isO∼ (n2 logD+n log r). At Step 3, since #A,#B ≤
S , we use at mostO∼ (n2S logD +nS log r) bit operations. At Step 4,

the degree of f̃ · д̃ is d̃ , so by Proposition 3.3 we useO∼ (rωS log(d̃))

operations inK andO∼ (log(d̃)S (r + log(1/µ))) bit operations. Since

d̃ ≤ DNn andNn is inO (rDn), this isO∼ (nrωS logD) operations in
K andO∼ (nSr logD +S log r log(1/µ) +nS logD log(1/µ)) bit oper-
ations. In Step 5, by Lemma 4.3, we useO∼ (nS logD +nS logNn) =

O∼ (n2S logD + nS log r) bit operations. □

5 Conclusions

In this paper, we present new multiplication algorithms for skew
polynomials. Our first new algorithm is a Las Vegas algorithm for
multiplication in L[x ;σ]; the second algorithm is for multiplication
of łsupersparsež polynomials in L[x ;σ]. Its cost is sensitive to the
number of non-zero terms, and is significantly faster than previous
algorithms when the product has large degree but few terms.

Finally, we consider multiplying sparse multivariate skew poly-
nomials in L[x1, . . . ,xn ;σ1, . . . ,σn].We introduced a non-commuta-
tive Kronecker substitution scheme, and present an algorithm with
polynomial runtime in the input and output size. This is a particular
improvement over standard dense algorithms, which could be of
exponential complexity in the number of non-zero input terms.

Acknowledgement

The authors would like to acknowledge the careful anonymous
review of this paper.

References
[1] A. Arnold, M. Giesbrecht, and D. Roche. 2013. Faster sparse interpolation of

straight-line programs. In International Workshop on Computer Algebra in Scien-
tific Computing. Springer, 61ś74.

[2] A. Arnold and D. Roche. 2015. Output-sensitive algorithms for sumset and sparse
polynomial multiplication. In ISSAC’15. ACM Press, 29ś36.

[3] D. Boucher, P. Gaborit, W. Geiselmann, O. Ruatta, and F. Ulmer. 2010. Key
exchange and encryption schemes based on non-commutative skew polynomials.
In International Workshop on Post-Quantum Cryptography. Springer, 126ś141.

[4] D. Boucher, W. Geiselmann, and F. Ulmer. 2007. Skew-cyclic codes. Applicable
Algebra in Engineering, Communication and Computing 18, 4 (2007), 379ś389.

[5] D. Boucher and F. Ulmer. 2009. Coding with skew polynomial rings. Journal of
Symbolic Computation 44, 12 (2009), 1644ś1656.

[6] X. Caruso and J. Le Borgne. 2017. Fast multiplication for skew polynomials. In
ISSAC’17. ACM, 77ś84.

[7] D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic
progressions. J. Symb. Comput. 9, 3 (1990), 251ś280.

[8] J.-M. Couveignes and R. Lercier. 2009. Elliptic periods for finite fields. Finite
Fields Their Appl. 15, 1 (2009), 1ś22.

[9] E. Gabidulin. 1985. Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii 21, 1 (1985), 3ś16.

[10] F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In ISSAC’14.
ACM Press, 296ś303.

[11] J. von zur Gathen and M. Giesbrecht. 1990. Constructing normal bases in finite
fields. J. Symb. Comput 10 (1990), 547ś570.

[12] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring
polynomials. Computational Complexity 2, 3 (1992), 187ś224.

[13] W. Geiselmann and F. Ulmer. 2019. Skew Reed-Muller codes. Contemporary
mathematics (2019), 107ś116.

[14] M. Giesbrecht. 1998. Factoring in skew-polynomial rings over finite fields. Journal
of Symbolic Computation 26, 4 (1998), 463ś486.

[15] M. Giesbrecht, A. Jamshidpey, and É Schost. 2019. Quadratic-Time Algorithms
for Normal Elements. In ISSAC’19. ACM Press, 179ś186.

[16] K. Girstmair. 1999. An algorithm for the construction of a normal basis. Journal
of Number Theory 78, 1 (1999), 36ś45.

[17] D. Goss. 1996. Basic Structures of Function Field Arithmetic. Springer Berlin
Heidelberg.

[18] S. Johnson. 1974. Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8, 3 (1974),
63ś71.

[19] E. Kaltofen and V. Shoup. 1998. Subquadratic-time factoring of polynomials over
finite fields. Math. Comp. 67, 223 (1998), 1179ś1197.

[20] U. Martínez-Penas. 2019. Classification of multivariate skew polynomial rings
over finite fields via affine transformations of variables. arXiv: 1908.06833 (2019).

[21] U. Martínez-Penas and F. R. Kschischang. 2019. Evaluation and interpolation
over multivariate skew polynomial rings. Journal of Algebra 525 (2019), 111ś139.

[22] M. Monagan and R. Pearce. 2009. Parallel Sparse Polynomial Multiplication Using
Heaps. In ISSAC’09. 263ś269.

[23] M. Monagan and R. Pearce. 2011. Sparse Polynomial Pseudo Division Using a
Heap. J. Symb. Comp. 46, 7 (2011), 807ś822.

[24] O. Ore. 1933. Theory of non-commutative polynomials. Annals of Mathematics
(1933), 480ś508.

[25] S. Puchinger and A. Wachter-Zeh. 2016. Sub-quadratic decoding of Gabidulin
codes. In 2016 IEEE International Symposium on Information Theory (ISIT). IEEE,
2554ś2558.

[26] S. Puchinger and A.Wachter-Zeh. 2018. Fast operations on linearized polynomials
and their applications in coding theory. Journal of Symbolic Computation 89
(2018), 194ś215.

[27] F. Kschischang R. Koetter. 2008. Coding for errors and erasures in randomnetwork
coding. IEEE Transactions on Information Theory 54, 8 (2008), 3579ś3591.

[28] D. Roche. 2018. What can (and can’t) we do with sparse polynomials?. In ISSAC’18.
25ś30.

[29] V. Shoup. 1994. Fast construction of irreducible polynomials over finite fields.
Journal of Symbolic Computation 17, 5 (1994), 371ś391.

[30] J. van der Hoeven and G. Lecerf. 2012. On the Complexity of Multivariate
Blockwise Polynomial Multiplication. In ISSAC’12. 211ś218.

[31] J. van der Hoeven and G. Lecerf. 2013. On the bit-complexity of sparse polynomial
and series multiplication. J. Symbolic Computation 50 (2013), 227ś254.

[32] Y. Zhang. 2010. A secret sharing scheme via skew polynomials. In 2010 Interna-
tional Conference on Computational Science and Its Applications. IEEE, 33ś38.

201

Essentially Optimal Sparse Polynomial Multiplication

Pascal Giorgi
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
pascal.giorgi@lirmm.fr

Bruno Grenet
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
bruno.grenet@lirmm.fr

Armelle Perret du Cray
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
armelle.perret-du-cray@lirmm.fr

ABSTRACT

We present a probabilistic algorithm to compute the product of
two univariate sparse polynomials over a field with a number of
bit operations that is quasi-linear in the size of the input and the
output. Our algorithm works for any field of characteristic zero
or larger than the degree. We mainly rely on sparse interpolation
and on a new algorithm for verifying a sparse product that has
also a quasi-linear time complexity. Using Kronecker substitution
techniques we extend our result to the multivariate case.

CCS CONCEPTS

· Computing methodologies→ Algebraic algorithms; · The-
ory of computation → Design and analysis of algorithms; ·
Mathematics of computing→ Probabilistic algorithms.

KEYWORDS

arithmetic, sparse polynomial multiplication, sparse interpolation,
probabilistic verification

ACM Reference Format:

Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray. 2020. Essentially
Optimal Sparse Polynomial Multiplication. In International Symposium on
Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,
Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.
3404026

1 INTRODUCTION

Polynomials are one of the most basic objects in computer algebra
and the study of fast polynomial operations remains a very chal-
lenging task. Polynomials can be represented using either the dense
representation, that stores all the coefficients in a vector, or themore
compact sparse representation, that only stores nonzero monomials.
In the dense representation, we know quasi-optimal algorithms for
decades. Yet, this is not the case for sparse polynomials.

In the sparse representation, a polynomial F =
∑D
i=0 fiX

i ∈ R[X]

is expressed as a list of pairs (ei , fei) such that all the fei are
nonzero. We denote by #F its sparsity, i.e. the number of nonzero
coefficients. Let F be a polynomial of degree D, and B a bound
on the size of its coefficients. Then, the size of the sparse rep-
resentation of F is O(#F (B + logD)) bits. It is common to use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404026

B = 1+maxi (⌊log2(| fei |)⌋) if R = Z and B = 1+ ⌊log2 q⌋ if R = Fq .
The sparse representation naturally extends to polynomials in n

variables: Each exponent is replaced by a vector of exponents which
gives a total size of O(#F (B + n logD).

Several problems on sparse polynomials have been investigated
to design fast algorithms, including arithmetic operations, inter-
polation and factorization. We refer the interested readers to the
excellent survey by Roche and the references therein [21]. Contrary
to the dense case, note that fast algorithms for sparse polynomials
have a (poly-)logarithmic dependency on the degree. Unfortunately,
as shown by severalNP-hardness results, such fast algorithmsmight
not even exist unless P = NP. This is for instance the case for gcd
computations [18].

In this paper, we are interested in the problem of sparse polyno-
mial multiplication. In particular, we provide the first quasi-optimal
algorithm whose complexity is quasi-linear in both the input and
the output sizes.

1.1 Previous work

The main difficulty and the most interesting aspect of sparse poly-
nomial multiplication is the fact that the size of the output does not
exclusively depend on the size of the inputs, contrary to the dense
case. Indeed, the product of two polynomials F and G has at most
#F#G nonzero coefficients. But it may have as few as 2 nonzero
coefficients.

Example 1. Let F = X 14
+ 2X 7

+ 2, G = 3X 13
+ 5X 8

+ 3 and
H = X 14 − 2X 7

+ 2. Then FG = 3X 27
+ 5X 22

+ 6X 20
+ 10X 15

+

3X 14
+ 6X 13

+ 10X 8
+ 6X 7

+ 6 has nine terms, while FH = X 28
+ 4

has only two.

The product of two polynomials of sparsityT can be computed by
generating the T 2 possible monomials, sorting them by increasing
degree and merging those with the same degree. Using radix sort,
this algorithm takes O(T 2(MR + logD)) bit operations, where MR

denotes the cost of one operation in R. A major drawback of this
approach is its space complexity that exhibits a T 2 factor, even if
the result has less than T 2 terms. Many improvements have been
proposed to reduce this space complexity, to extend the approach
to multivariate polynomials, and to provide fast implementations
in practice [14ś16]. Yet, none of these results reduces the T 2 factor
in the time complexity.

In general, no complexity improvement is expected as the output
polynomial may have as many asT 2 nonzero coefficients. However,
this number of nonzero coefficients can be overestimated, giving
the opportunity for output-sensitive algorithms. Such algorithms
have first been proposed for special cases. Notably, when the output
size is known to be small due to sufficiently structured inputs [20],
especially in the multivariate case [9, 10], or when the support of
the output is known in advance [11]. It is possible to go one step

202

https://doi.org/10.1145/3373207.3404026
https://doi.org/10.1145/3373207.3404026
https://doi.org/10.1145/3373207.3404026

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray

further by studying the conditions for small outputs. A first reason
is exponent collisions. Let F =

∑T
i=1 fiX

αi and G =
∑T
j=1 дjX

βj . A
collision occurs when there exist distinct pairs of indices (i1, j1)
and (i2, j2) such that αi1 + βj1 = αi2 + βj2 . Such collisions decrease
the number of terms of the result. The second reason is coefficient
cancellations. In the previous example, the resulting coefficient is
(fi1дj1 + fi2дj2), which could vanish depending on the coefficient
values. Taking into account the exponent collisions amounts to
computing the sumset of the exponents of F and G, that is {αi +
βj : 1 ≤ i, j ≤ T }. Arnold and Roche call this set the structural
support of the product FG and its size the structural sparsity [2]. If
H = FG, then the structural sparsity S of the product FG satisfies
2 ≤ #H ≤ S ≤ T 2. Observe that although #H and S can be close,
their difference can reach O(T 2) as shown by the next example.

Example 2. Let F =
∑T−1
i=0 X i ,G =

∑T−1
i=0 (X

T i+1−XT i) andH = FG .
We have #F = T , #G = 2T and the structural sparsity of FG isT 2

+1

while H = XT 2
− 1 has sparsity 2.

For polynomials with nonnegative integer coefficients, the sup-
port ofH is exactly the sumset of the exponents of F andG , the struc-
tural support of H = FG. In this case, Cole and Hariharan describe
a multiplication algorithm requiring Õ(S log2 D)1 operations in the
RAM model with O(log(CD)) word size [5], where log(C) bounds
the bitsize of the coefficients. Arnold and Roche improve this com-
plexity to Õ(S logD+#H logC) bit operations for polynomials with
both positive and negative integer coefficients [2]. Note that they
also extend their result to finite fields and to the multivariate case. A
recent algorithm of Nakos avoids the dependency on the structural
sparsity for the case of integer polynomials [17], using the same
word RAMmodel as Cole andHariharan. Unfortunately, the bit com-
plexity of this algorithm (Õ((T logD+#H log2 D) log(CD)+log3 D))
is not quasi-linear.

In the dense case, quasi-optimal multiplication algorithms rely
on the well-known evaluation-interpolation scheme. In the sparse
settings, this approach is not efficient. The fastest multiplication al-
gorithms mentioned above [2, 17] mainly rely on a different method
called sparse interpolation2, that has received considerable attention.
See e.g. the early results of Prony [19] and Ben-Or and Tiwari [4]
or the recent results by Huang [12]. Despite extensive analysis of
this problem, no quasi-optimal algorithm exists yet. We remark
that it is not the only difficulty. Simply using a quasi-optimal sparse
interpolation algorithm would not be enough to get a quasi-optimal
sparse multiplication algorithm [1].

1.2 Our contributions

Our main result is summarized in Theorem 1.1. We extend the
complexity notations to Oϵ and Õϵ for hiding some polynomial
factors in log(1ϵ). Let F =

∑T
i=1 fiX

ei . We use ∥F ∥∞ = maxi | fi | to
denote its height, #F for its number of nonzero terms and supp(F) =
{e1, . . . , eT } its support.

Theorem 1.1. Given two sparse polynomials F and G over Z,
Algorithm SparseProduct computesH = FG in Õϵ (T (logD+logC))

1Here, and throughout the article, Õ(f (n)) denotes O(f (n) logk (f (n))) for some
constant k > 0.
2Despite their similar names, dense and sparse polynomial interpolation are actually
two quite different problems.

bit operations with probability at least 1 − ϵ , where D = deg(H),C =
max(∥F ∥∞, ∥G∥∞, ∥H ∥∞) and T = max(#F , #G, #H). The algorithm
extends naturally to finite fields with characteristic larger than D

with the same complexity where C denotes the cardinality.

This result is based on two main ingredients. We adapt Huang’s
algorithm [12] to interpolate FG in quasi-linear time. Note that the
original algorithm does not reach quasi-linear complexity.

Sparse interpolation algorithms, including Huang’s, require a
bound on the sparsity of the result. We replaced this bound by a
guess on the sparsity and an a posteriori verification of the prod-
uct, as in [17]. However, using the classical polynomial evaluation
approach for the verification does not yield a quasi-linear bit com-
plexity (see Section 3). Therefore, we introduce a novel verification
method that is essentially optimal.

Theorem 1.2. Given three sparse polynomials F ,G and H over Fq
or Z, Algorithm VerifySP tests whether FG = H in Õϵ (T (logD + B))
bit operations, where D = deg(H), B is a bound on the bitsize of the
coefficients of F , G and H , and T = max(#F , #G, #H). The answer is
always correct if FG = H , and the probability of error is at most ϵ
otherwise.

Finally, using Kronecker substitution, we show that our sparse
polynomial multiplication algorithm extends to the multivariate
case with a quasi-linear bit complexity Õϵ (T (n logd + B)) where
n is the number of variables and d the maximal partial degree on
each variable. Nevertheless, over finite fields this approach requires
an exponentially large characteristic. Using the randomized Kro-
necker substitution [3] we derive a fast algorithm for finite fields
of characteristic polynomial in the input size. Its bit complexity is
Õϵ (nT (logd + B)). Even though it is not quasi-optimal, it achieves
the best known complexity for this case.

2 PRELIMINARIES

We denote by I(n) = O(n logn) the bit complexity of the multipli-
cation of two integers of at most n bits [8]. Similarly, we denote
by Mq (D) = O(D log(q) log(D logq)4log

∗ D) the bit complexity of
the multiplication of two dense polynomials of degree at most D
over Fq where q is prime [7]. The cost of multiplying two ele-
ments of Fqs is O(Mq (s)). The cost of multiplying two dense poly-
nomials over Z of heights at most C and degrees at most D is
MZ(D,C) = I(D(logC + logD)) [24, Chapter 8].

Since our algorithms use reductions modulo Xp − 1 for some
prime number p, we first review useful related results.

Theorem 2.1 (Rosser and Schoenfeld [22]). If λ ≥ 21, there
are at least 3

5λ/ln λ prime numbers in [λ, 2λ].

Proposition 2.2 ([23, Chapter 10]). There exists an algorithm
RandomPrime(λ, ϵ) that returns an integer p in [λ, 2λ], such that p is
prime with probability at least 1 − ϵ . Its bit complexity is Õϵ (log

3 λ).

We need two distinct properties on the reductions modulo Xp −

1. The first one is classical in sparse interpolation to bound the
probability of exponent collision in the residue (see [2, Lemma 3.3]).

Proposition 2.3. Let H be a polynomial of degree at most D and
sparsity at most T , 0 < ϵ < 1 and λ = max(21, 103ϵT

2 lnD). Then

203

Essentially Optimal Sparse Polynomial Multiplication ISSAC ’20, July 20–23, 2020, Kalamata, Greece

with probability at least 1 − ϵ , RandomPrime(λ, ϵ2) returns a prime
number p such that H mod Xp − 1 has the same number of terms as
H , that is no collision of exponents occurs.

The second property allows to bound the probability that a poly-
nomial vanishes modulo Xp − 1.

Proposition 2.4. LetH be a nonzero polynomial of degree at most
D and sparsity at most T , 0 < ϵ < 1 and λ = max(21, 103ϵT lnD).
Then with probability at least 1 − ϵ , RandomPrime(λ, ϵ2) returns a
prime number p such that H mod Xp − 1 , 0.

Proof. For H mod Xp − 1 to be nonzero, it is sufficient that
there exists one exponent e of H that is not congruent to any other
exponent ej modulo p. In other words, it is sufficient that p does
not divide any of the T − 1 differences δj = ej − e . Noting that
δj ≤ D, the number of primes in [λ, 2λ] that divide at least one δj is

at most (T−1) lnDln λ . Since there exist 3
5λ/ln λ primes in this interval,

the probability that a prime randomly chosen from it divides at
least one δj is at most ϵ/2. RandomPrime(λ, ϵ/2) returns a prime
in [λ, 2λ] with probability at least 1 − ϵ/2, whence the result. □

The next two propositions are used to reduce integer coefficients
modulo some prime number and to construct an extension field.

Proposition 2.5. Let H ∈ Z[X] be a nonzero polynomial, 0 <
ϵ < 1 and λ ≥ max(21, 103ϵ ln ∥H ∥∞). Then with probability at least
1 − ϵ , RandomPrime(λ, ϵ2) returns a prime q such that H mod q , 0.

Proof. Let hi be a nonzero coefficient of H . A random prime
from [λ, 2λ] divides hi with probability at most 5

3 ln ∥H ∥∞/λ ≤
ϵ/2. Since RandomPrime(λ, ϵ/2) returns a prime in [λ, 2λ] with
probability at least 1 − ϵ/2 the result follows. □

Proposition 2.6 ([23, Chapter 20]). There exists an algorithm
that, given a finite field Fq , an integer s and 0 < ϵ < 1, computes a
degree-s polynomial in Fq [X] that is irreducible with probability at

least 1 − ϵ . Its bit complexity is Õϵ (s3 logq).

3 SPARSE POLYNOMIAL PRODUCT

VERIFICATION

Verifying a product FG = H of dense polynomials over an integral
domain R simply falls down to testing F (α)G(α) = H (α) for some
random point α ∈ R. This approach exhibits an optimal linear
number of operations in R but it is not deterministic. (No optimal
deterministic algorithm exists yet.) When R = Z or Fq , a divide
and conquer approach provides a quasi-linear complexity, namely
Õ(DB) bit operations where B bounds the bitsize of the coefficients.

For sparse polynomials withT nonzero coefficients, evaluation is
not quasi-linear since the input size is only O(T (logD+B)). Indeed,
computing αD requires O(logD) operations in R which implies
a bit complexity of Õ(log(D) log(q)) when R = Fq . Applying this
computation to the T nonzero monomials gives a bit complexity
of Õ(T log(D) log(q)). We mention that the latter approach can be
improved to Õ((1 +T /log log(D)) log(D) log(q)) using Yao’s result
[25] on simultaneous exponentiation. When R = Z, the best known
approach to avoid expression swell is to pick a random prime p and
to perform the evaluations modulo p. One needs to choose p > D

in order to have a nonzero probability of success. Therefore, the bit
complexity contains a T log2 D factor.

Our approach to obtain a quasi-linear complexity is to perform
the evaluation modulo Xp − 1 for some random prime p. This re-
quires to evaluate the polynomial [(FG) mod Xp − 1] on α without
computing it.

3.1 Modular product evaluation

Lemma 3.1. Let F and G be two sparse polynomials in R[X] with
deg F , degG ≤ p − 1 and α ∈ R. Then (FG) mod Xp − 1 can be
evaluated on α using O((#F + #G) logp) operations in R.

Proof. Let H = (FG) mod Xp − 1. The computation of H corre-
sponds to the linear map

©«

h0
h1
.
.
.

hp−1

ª®®®®¬︸ ︷︷ ︸
®h

=

©«

f0 fp−1 · · · f1
f1 f0 · · · f2
.
.
.

.

.

.
.
.
.

fp−1 fp−2 · · · f0

ª®®®®¬︸ ︷︷ ︸
TF

©«

д0
д1
.
.
.

дp−1

ª®®®®¬︸ ︷︷ ︸
®д

where fi (resp. дi , hi) is the coefficient of degree i of F (resp. G , H).

Computing H (α) corresponds to the inner product ®αp ®h = ®αpTF ®д
where ®αp = (1,α , . . . ,αp−1). This evaluation can be computed in
O(p) operations in R [6]. Here we reuse similar techniques in the
context of sparse polynomials.

To computeH (α), we first compute ®c = ®αpTF , and then the inner
product ®c ®д. If supp(G) = {j1, . . . , j#G } with j1 < · · · < j#G < p,
we only need the corresponding entries of ®c , that is all c jk ’s for

1 ≤ k ≤ #G. Since c j =
∑p−1

ℓ=0 α
ℓ f(ℓ−j) mod p , we can write c j =

fp−j + α
∑p−2

ℓ=0 α
ℓ f(ℓ−j+1) mod p , that is c j = αc j−1 + (1 − αp)fp−j .

Applying this relation as many times as necessary, we obtain a
relation to compute c jk+1 from c jk :

c jk+1 = α jk+1−jk c jk + (1 − α
p)

jk+1∑
ℓ=jk+1

α ℓ fp−ℓ .

Each nonzero coefficient ft of F appears in the definition of c jk+1
if and only if p − jk+1 ≤ t < p − jk . Thus, each ft is used exactly
once to compute all the c jk ’s. Since for each summand, one needs

to compute α ℓ for some ℓ < p, the total cost for computing all the
sums is O(#F logp) operations in R. Similarly, the computation of
α jk+1−jk c jk for all k costs O(#G logp). The last remaining step is
the final inner product which costs O(#G) operations in R, whence
the result. □

The complexity is improved toO(logp+(#F+#G) logp/log logp)
using again Yao’s algorithm [25] for simultaneous exponentiation.

3.2 A quasi-linear time algorithm

Given three sparse polynomials F , G and H in R[X], we want to
assert that H = FG. Our approach is to take a random prime p and
to verify this assertion modulo Xp − 1 through modular product
evaluation. This method is explicitly described in the algorithm
VerifySP that works over any large enough integral domain R. We
further extend the description and the analysis of this algorithm
for the specific cases R = Z and R = Fq in the next sections.

204

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray

Algorithm 1 VerifySP

Input: H , F ,G ∈ R[X]; 0 < ϵ < 1.

Output: True if FG = H , False with probability ≥ 1 − ϵ otherwise.
1: Define c1 >

10
3 and c2 > 1 such that 10

3c1
+ (1 − 10

3c1
) 1c2 ≤ ϵ

2: D ← deg(H)
3: if #H > #F#G or D , deg(F) + deg(G) then return False

4: λ← max(21, c1(#F#G + #H) lnD)
5: p ← RandomPrime(λ, 5

3c1
)

6: (Fp ,Gp ,Hp) ← (F mod Xp −1, G mod Xp −1, H mod Xp −1)
7: Define E ⊂ R of size > c2p and choose α ∈ E randomly.
8: β ← [(FpGp) mod Xp − 1](α) ▷ using Lemma 3.1
9: return β = Hp (α)

Theorem 3.2. If R is an integral domain of size ≥ 2c1c2#F#G lnD
VerifySP works as specified and it requires Oϵ (T log(T logD)) oper-
ations in R plus Oϵ (T I(logD)) bit operations where D = deg(H) and
T = max(#F , #G, #H).

Proof. Step 3 dismisses two trivial mistakes and ensures that
D is a bound on the degree of each polynomial. If FG = H , the
algorithm returns True for any choice of p and α . Otherwise, there
are two sources of failure. Either Xp − 1 divides FG − H , whence
(FG)p (α) = Hp (α) for any α . Or α is a root of the nonzero polyno-
mial (FG−H) mod Xp−1. Since FG−H has at most #F#G+#H terms,
the first failure occurs with probability at most 10

3c1
by Prop. 2.4.

And since (FG −H) mod Xp − 1 has degree at most p − 1 and E has
c2p points, the second failure occurs with probability at most 1

c2
.

Altogether, the failure probability is at most 10
3c1
+ (1 − 10

3c1
) 1c2 .

Let us remark that c1, c2 = O(
1
ϵ) and p = O(

1
ϵT

2 logD). Step 5

requires only Õ(log3(1ϵT logD)) bit operations by Proposition 2.2.
The operations in Step 6 are T divisions by p on integers bounded
by D which cost Oϵ (T I(logD)) bit operations, plus T additions in
R. The evaluation of FpGp mod Xp − 1 on α at Step 8 requires

O(T log(1ϵT logD)) operations in R by Lemma 3.1. The evaluation
of Hp on α costs O(T log(T logD)) operations in R. Other steps
have negligible costs. □

3.3 Analysis over finite fields

The first easy case is the case of large finite fields: If there are
enough points for the evaluation, the generic algorithm has the
same guarantee of success and a quasi-linear time complexity.

Corollary 3.3. Let F , G and H be three polynomials of degree at
most D and sparsity at most T in Fq [X] where q > 2c1c2#F#G ln(D).

Then Algorithm VerifySP has bit complexity Oϵ (n log
2(n)4log

∗ n)

where n = T (logD + logq) is the input size.

Proof. By definition of n, the cost of Step 6 is Oϵ (n logn) bit op-

erations. Each ring operation in Fq costs O(log(q) log log(q)4log
∗ q)

bit operations which implies that the bit complexity of Step 8 is
Oϵ (T log(T logD) log(q) log log(q)4log

∗ q). SinceT logq andT logD
are bounded by n and log logq ≤ logn, the result follows. □

We shall note that even if q < 2c1c2#F#G ln(D) we can make our
algorithm to work by using an extension field and this approach
achieves the same complexity.

Theorem 3.4. One can adapt algorithm VerifySP to work over
finite fields Fq such that q < 2c1c2#F#G ln(D). The bit complexity

is Oϵ (n log(n) log log(n) 4log
∗ n), where n = T (logD + logq) is the

input size.

Proof. To have enough elements in the set E, we need to work
over Fqs where qs > c2p ≥ qs−1. An irreducible degree-s poly-

nomial can be computed in Õ(s3 logq) = Õ(log(T logD)/logq)
by Proposition 2.6. Since α is taken in Fqs , the complexity be-
comes Oϵ (T I(logD)+T log(T logD)Mq (s)) bit operations. Remark-
ing that T ≤ D we have T log(T logD) ≤ T log(D logD) = O(n).
Since s logq = O(log(T logD)) = O(logn) we can obtain Mq (s) =

O(log(n) log log(n)4log
∗ n) which implies that the second term of

the complexity is O(n log(n) log log(n)4log
∗ n). The first term is neg-

ligible since it is O(n logn).
In order to achieve the same probability of success, we fix an

error probability 1/c3 < 1 for Proposition 2.6 and we take constants
c1 and c2 in VerifySP such that 1−(1− 10

3c1
)(1− 1

c2
)(1− 1

c3
) ≤ ϵ . □

We note that for very sparse polynomials over some fields, the
complexity is only dominated by the operations on the exponents.

Corollary 3.5. VerifySP has bit complexity Oϵ (n logn) in the
following cases:

(i) s = 1 and logq = O(log1−α D) for some constant 0 < α < 1,
(ii) s > 1 and T = Θ(logk D) for some constant k .

Proof. In both cases the cost of reducing the exponents modulo
p is Oϵ (n logn) bit operations. In the first case, each multiplication

in Fq costs O(log(q) log log(q)4log
∗ q) = O(logD) bit operations as

log log(q)4log
∗ q
= O(logα D). In the second case, n = O(logk+1 D)

and s logq = Oϵ (log(T 2 logD)) = Oϵ (log logD) which implies

Mq (s) = Oϵ (s log(q) log(s logq)4log
∗ s) = Oϵ (logD). In both cases,

the algorithm performs Oϵ (T log(T logD)) = Oϵ (T logn) opera-
tions in Fq (or in Fqs). Therefore the bit complexity is Oϵ (n logn).

□

The following generalization is used in our quasi-linear multi-
plication algorithm given in Section 4.

Corollary 3.6. Let (Fi ,Gi)0≤i<m and H be sparse polynomials
over Fq of degree at most D and sparsity at most T . We can verify

if
∑m−1
i=0 FiGi = H , with error probability at most ϵ when they are

different, in Oϵ (m(T I(logD)+T log(mT logD)Mq (s))) bit operations.

3.4 Analysis over the integers

In order to keep a quasi-linear time complexity over the integers,
we must work over a prime finite field Fq to avoid the computation
of too large integers. Indeed, Hp (α) could have size p log(α) =
Oϵ (T

2 log(D) log(α)) which is not quasi-linear in the input size.

Theorem 3.7. One can adapt algorithm VerifySP to work over
the integers. The bit complexity is Oϵ (n logn log logn), where n =
T (logD+ logC) is the input size withC = max(∥F ∥∞, ∥G∥∞, ∥H ∥∞).

Proof. Before Step 6, we choose a random prime number q =
RandomPrime(µ, 5

3c2
) with µ = c2max(p, ln(C2T +C)) and we per-

form all the remaining steps modulo q. Let us assume that the poly-
nomial ∆ = FG −H ∈ Z[X] is nonzero. Our algorithm only fails in

205

Essentially Optimal Sparse Polynomial Multiplication ISSAC ’20, July 20–23, 2020, Kalamata, Greece

the following three cases: p is such that ∆p = ∆ mod Xp − 1 = 0; q
is such that ∆p ≡ 0 mod q; α is a root of ∆p in Fq .

Using Proposition 2.4, ∆p is nonzero with probability at least 1−
10
3c1

. Actually, with the same probability, the proof of the proposition
shows that at least one coefficient of ∆ is preserved in ∆p . Since
∥∆∥∞ ≤ C2T +C , Proposition 2.5 ensures that ∆p . 0 mod q with

probability at least 1 − 10
3c2

. Finally, q has been chosen so that Fq
has at least c2p elements whence α is not a root of ∆p mod q with

probability at least 1 − 1
c2
. Altogether, taking c1, c2 ≥

10
3 such that

1 − (1 − 10
3c1
)(1 − 10

3c2
)(1 − 1

c2
) ≤ ϵ , our adaptation of VerifySP has

an error probability at most ϵ .
The reductions of F , G and H modulo q add a term O(T I(logC))

to the complexity. Since operations in Fq have cost I(logq), the
complexity becomesO(T I(logD)+T I(logC)+T log(T logD)I(logq))
bit operations. The first two terms are in O(n logn). Moreover, q =
Oϵ (log(C2T)+p) andp = Oϵ (T 2 logD), thus logq = Oϵ (log(logC+
T logD)) = Oϵ (logn). Since T ≤ D, T log(T logD) = O(n) and the
third term in the complexity is Oϵ (n logn log logn). □

As over small finite fields, the complexity is actually better for
very sparse polynomials.

Corollary 3.8. If T = Θ(logk D) for some k , VerifySP has bit
complexity Oϵ (n logn).

Proof. If T = Θ(logk D), T log(T logD) = Õ(logk D) = o(n),
thus the last term of the complexity in the proof of Theorem 3.7
becomes negligible with respect to the first two terms. □

For the same reason as for finite fields, we extend the verification
algorithm to a sum of products.

Corollary 3.9. Let (Fi ,Gi)0≤i<m and H be sparse polynomi-
als of degree at most D, sparsity at most T , and height at most
C . We can verify if

∑m−1
i=0 FiGi = H , with probability of error at

most ϵ when they are different, in Oϵ (mT I(logD) +mT I(logC) +
mT log(mT logD)I(log(m logC +mT logD))) bit operations.

We shall only use this algorithm withm = 2 and thus refer to it
as VerifySumSP(H , F0,G0, F1,G1, ϵ).

4 SPARSE POLYNOMIAL MULTIPLICATION

Given two sparse polynomials F and G, our algorithm aims at
computing the product H = FG through sparse polynomial inter-
polation. We avoid the difficulty of computing an a priori bound
on the sparsity of H needed for sparse interpolation by using our
verification algorithm of Section 3. Indeed, one can start with an
arbitrary small sparsity and double it until the interpolated polyno-
mial matches the product according to VerifySP.

The remaining difficulty is to interpolateH in quasi-optimal time
given a sparsity bound, which is not yet achieved in the general
case. In our case, we first analyze the complexity of Huang’s sparse
interpolation algorithm [12] when the input is a sum of sparse
products. In order to obtain the desired complexity we develop a
novel approach that interleaves two levels of Huang’s algorithm.

4.1 Analysis of Huang’s sparse interpolation

In [12] Huang proposes an algorithm that interpolates a sparse
polynomialH from its SLP representation, achieving the best known

complexity for this problem, though it is not optimal. Its main
idea is to use the dense polynomials Hp = H mod Xp − 1 and
H ′p = H ′ mod Xp − 1 where H ′ is the derivative of H and p a small
random prime. Indeed, if cX e is a term of H that does not collide
during the reduction modulo Xp − 1, Hp contains the monomial

cX e mod p and H ′p contains ceX e−1 mod p , hence c and e can be
recovered by a mere division. Of course, the choice of p is crucial
for the method to work. It must be small enough to get a low
complexity, but large enough for collisions to be sufficiently rare.

Lemma 4.1. There exists an algorithm FindTerms that takes as
inputs a prime p, two polynomials Hp = H mod Xp − 1, H ′p =

H ′ mod Xp − 1, and bounds D ≥ deg(H) and C ≥ ∥H ∥∞ and it
outputs an approximationH∗ ofH that contains at least all the mono-
mials of H that do not collide modulo Xp − 1. Its bit complexity is
O(T I(logCD)), where T = #H .

Proof. It is a straightforward adaptation of [12, Algorithm 3.4
(UTerms)]. Here, taking C as input allows us to only recover coeffi-
cients that are at mostC in absolute value and therefore to perform
divisions with integers of bitsize at most log(CD). □

Corollary 4.2. Let H be a sparse polynomial such that #H ≤ T ,
degH ≤ D and ∥H ∥∞ ≤ C , and 0 < ϵ < 1. If λ = max(21, 103ϵT

2 lnD)
and p = RandomPrime(λ, ϵ2), then with probability at least 1 − ϵ ,
FindTerms (p,H mod Xp − 1,H ′ mod Xp − 1,D,C) returns H .

Proof. With probability at least 1 − ϵ , no collision occurs in
H mod Xp − 1, and consequently neither in H ′ mod Xp − 1, by
Proposition 2.3. In this case FindTerms correctly computes H , ac-
cording to Lemma 4.1. □

Theorem 4.3. There exists an algorithm InterpSumSP that takes
as inputs 2m sparse polynomials (Fi ,Gi)0≤i<m , three boundsT ≥ #H ,
D > deg(H) and C ≥ ∥H ∥∞ where H =

∑m−1
i=0 FiGi , a constant 0 <

µ < 1 and the list P of the first 2N primes for N = max(1, ⌊ 325 (T −
1) logD⌋), and outputs H with probability at least 1 − µ.

Its bit complexity is Õµ (mT1 log(D1) log(C1D1)) whereT1, D1 and
C1 are bounds on the sparsity, the degree and the height of H and
each Fi and Gi .

Proof. It is identical to the proof of [12, Algorithm 3.9 (UIPoly)]
taking into account that H is not given as an SLP anymore but as∑m−1
i=0 FiGi where the polynomials Fi and Gi are given as sparse

polynomials. □

Remark 4.4. A finer analysis of algorithm InterpSumSP leads to a
bit complexity Oµ (m logT1MZ(T1 log(D1) log(T1 logD1),T1C1D1).

Remark 4.5. Even when InterpSumSP returns an incorrect poly-
nomial, it has sparsity at most 2T , degree less than D and coefficients
bounded by C .

4.2 Multiplication

Our idea is to compute different candidates to FG with a growing
sparsity bound and to verify the result with VerifySP. Unfortu-
nately, a direct call to InterpSumSP with the correct sparsity T =
max(#F , #G, #(FG)) yields a bit complexity Õ(T log(D) log(CD)) if
the coefficients are bounded by C and the degree by D. We shall

206

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray

remark that it is not nearly optimal since the input and output size
are bounded by T logD +T logC .

To circumvent this difficulty, we first compute the reductions
Fp = F mod Xp − 1 and Gp = G mod Xp − 1 of the input poly-
nomials, as well as the reductions F ′p = F ′ mod Xp − 1 and G ′p =

G ′ mod Xp − 1 of their derivatives, for a random prime p as in
Corollary 4.2. The polynomials Hp = FG mod Xp − 1 and H ′p =

(FG)′ mod Xp − 1 can be computed using InterpSumSP and Ver-

ifySP. Indeed, we first compute FpGp by interpolation and then
reduce it modulo Xp − 1 to get Hp . Similarly for H ′p we first inter-
polate F ′pGp + FpG

′
p before its reduction. Finally we can compute

the polynomial FG from Hp and H ′p using FindTerms according
to Corollary 4.2. Our choice of p, which is polynomial in the input
size, ensures that each call to InterpSumSP remains quasi-linear.

Algorithm 2 SparseProduct

Input: F ,G ∈ Z[X]. 0 < µ1, µ2 < 1 with
µ1
2 ≤ µ2.

Output: H ∈ Z[X] s.t. H = FG with probability at least 1 − µ1.
1: t ← max(#F , #G), D ← deg(F) + deg(G), C ← t ∥F ∥∞∥G∥∞
2: λ← max(21, 20

3µ1
(#F#G)2 lnD), µ∗ ← µ2 −

µ1
2

3: p ← RandomPrime(λ,
µ1
4)

4: Fp ← F mod Xp − 1, Gp ← G mod Xp − 1
5: F ′p ← F ′ mod Xp − 1, G ′p ← G ′ mod Xp − 1
6: repeat

7: N ← max(1, ⌊ 325 (t − 1) logp⌋)
8: P ← {the first 2N primes in increasing order}

9: H1 ← InterpSumSP([(Fp ,Gp)], t , 2p,C,
µ∗

2 ,P)

10: H2 ← InterpSumSP([(Fp ,G
′
p), (F

′
p ,Gp)], t , 2p,CD,

µ∗

2 ,P)

11: t ← 2t
12: until

VerifySP(H1, Fp ,Gp ,
µ1
2) and ▷ H1 = FpGp

VerifySumSP(H2, Fp ,G
′
p , F
′
p ,Gp ,

µ1
2) ▷ H2 = F ′pGp + FpG

′
p

13: Hp ← H1 mod Xp − 1, H ′p ← H2 mod Xp − 1.
14: return FindTerms (p,Hp ,H

′
p ,D,C).

Lemmas 4.6 and 4.7 respectively provide the correctness and
complexity bound of algorithm SparseProduct. Together, they
consequently form a proof of Theorem 1.1 by taking ϵ = µ1 + µ2.
Note that this approach translates mutatis mutandis to the multipli-
cation of sparse polynomials over Fq where the characteristic of
Fq is larger than D.

Lemma 4.6. Let F and G be two sparse polynomials over Z. Then
algorithm SparseProduct returns FG with probability at least 1− µ1.

Proof. Since FG has sparsity atmost #F#G , Corollary 4.2 implies
that if Hp = FG mod Xp − 1 and H ′p = (FG)

′ mod Xp − 1, the prob-

ability that FindTerms does not return FG is at most
µ1
2 . The other

reason for the result to be incorrect is that one of these equalities
does not hold, which means that one of the two verifications fails.
Since this happens with probability at most

µ1
2 , SparseProduct

returns FG with probability at least 1 − µ1. □

Lemma 4.7. Let F and G be two sparse polynomials over Z, T =
max(#F , #G, #(FG)), D = deg(FG), C = max(∥F ∥∞, ∥G∥∞, ∥FG∥∞)

and ϵ = µ1 + µ2. Then algorithm SparseProduct has bit complexity
Õϵ (T (logD + logC)) with probability at least 1 − µ2. Writing n =
T (logD + logC), the bit complexity is Oϵ (n log

2 n log2T (logT +
log logn)).

Proof. In order to obtain the given complexity, we first need
to prove that with high probability InterpSumSP never computes
polynomials with a sparsity larger than 4#(FG).

Let Tp = max(#(FpGp), #(FpG ′p + F ′pGp)). If t ≤ 2Tp then the
polynomials H1 and H2 satisfy #H1, #H2 ≤ 4Tp by Remark 4.5.
Unfortunately, Tp could be as large as T 2 and t might reach values
larger than Tp . We now prove that: (i) with probability at least
1 − µ∗ the maximal value of t during the algorithm is less than
2Tp ; (ii) with probability at least 1 −

µ1
2 , Tp ≤ #(FG). Together,

this will prove that #H1, #H2 ≤ 4#(FG) with probability at least
1 − µ∗ −

µ1
2 = 1 − µ2.

(i) As soon as t ≥ Tp , Steps 9 and 10 compute both FpGp and
FpG

′
p + F

′
pGp with probability at least 1− µ∗ by Theorem 4.3. Since

VerifySP never fails when the product is correct, the algorithm
ends when Tp ≤ t < 2Tp with probability at least 1 − µ∗.

(ii) Let us define the polynomials F̂p and Ĝp obtained from Fp
and Gp by replacing each nonzero coefficient by 1. The choice of p

in Step 3 ensures that with probability at least 1−
µ1
2 there is no col-

lision in (F̂pĜp) mod Xp−1 by applying Proposition 2.3 to the prod-

uct F̂pĜp . In that case, there is also no collision in FpGp mod Xp −1

and in FpG
′
p + F

′
pGp mod Xp − 1 since supp(FpGp) ⊂ supp(F̂pĜp).

Therefore, there are as many nonzero coefficients in FpGp as in
FpGp mod Xp − 1, which is equal to FG mod Xp − 1. Thus with

probability at least 1 −
µ1
2 we have #(FpGp) = #(FG) ≤ T and

similarly #(F ′pGp + FpG
′
p) = #((FG)′) ≤ T .

In the rest of the proof, we assume that the loop stops with t ≤

2Tp and that Tp ≤ T . In particular, the number of iterations of the

loop is O(logT). Since 2p = O(1ϵT
4 logD), Steps 9 and 10 have a bit

complexity Õϵ (T log(p) log(pCD)) = Õϵ (T logCD) by Theorem 4.3.
Using Remark 4.5, VerifySP and VerifySumSP have polynomials
of height at most tCD as inputs. By Corollary 3.9, Step 12 has bit
complexity Oϵ (T log(T logp)I(logCD)) = Õϵ (T logCD). The list P
can be computed incrementally, adding new primes when necessary.
At the end of the loop, P contains O(T log 2p) primes, which means
that it is computed in Oϵ (T log(p) log2(T logp) log log(T logp)) bit
operations [24, Chapter 18], that is Õϵ (T log logD) since logp =
O(log(T logD)).

The total cost for the O(logT) iterations of the loop is still
Õϵ (T log(CD)). Step 14 runs in time Oϵ (T I(logCD)) by Lemma 4.1
as the coefficients of H ′p are bounded by 2TC2D with T ≤ D and
#Hp , #H ′p ≤ #H . Since other steps have negligible costs this yields a

complexity of Õϵ (T (logC + logD)) with probability at least 1 − µ2.
Using Remark 4.4, we can provide a more precise complexity for

Steps 9 and 10 which is Oϵ (logTMZ(T log(p) log(T logp),pDTC))
bit operations. It is easy to observe that the logT repetitions of
these steps provide the dominant term in the complexity. A careful
simplification yields a bit complexity Oϵ (n log

2 n log2T (logT +
log logn) for SparseProduct where n = T (logD + logC) bounds
both input and output sizes. □

207

Essentially Optimal Sparse Polynomial Multiplication ISSAC ’20, July 20–23, 2020, Kalamata, Greece

4.3 Multivariate case

Using classical Kronecker substitution [24, Chapter 8] one can
extend straightforwardly SparseProduct to multivariate poly-
nomials. Let F ,G ∈ Z[X1, . . . ,Xn] with ∥F ∥∞, ∥G∥∞ ≤ C and

degXi
(F) + degXi

(G) < d . Writing Fu (X) = F (X ,Xd , . . . ,Xdn−1)

andGu (X) = G(X ,X
d , . . . ,Xdn−1), one can easily retrieve FG from

the univariate product FuGu . It is easy to remark that the Kro-
necker substitution preserve the sparsity and the height, and it
increases the degree to deg Fu , degGu < dn . If F and G are sparse
polynomials with at most T nonzero terms, their sizes are at most
T (n logd + logC) which is exactly the sizes of Fu andGu . Since the
Kronecker and inverse Kronecker substitutions cost Õ(Tn logd) bit
operations, one can compute FuGu using SparseProduct within
the following bit complexity.

Corollary 4.8. There exists an algorithm that takes as inputs
F ,G ∈ Z[X1, . . . ,Xn] and 0 < ϵ < 1, and computes FG with
probability at least 1 − ϵ , using Õϵ (T (n logd + logC)) bit oper-
ations where T = max(#F , #G, #(FG)), d = maxi (degXi

FG) and
C = max(∥F ∥∞, ∥G∥∞).

Over a finite field Fqs for some primeq, the previous technique re-
quires thatq > dn since SparseProduct requiresq to be larger than
the degree. The randomized Kronecker substitution method intro-
duced by Arnold and Roche [3] allows to apply SparseProduct to
fields of smaller characteristic. The idea is to define univariate poly-
nomials Fs (X) = F (X s1 , . . . ,X sn) and Gs (X) = G(X s1 , . . . ,X sn)

for some random vector ®s = (s1, . . . , sn) such that these polynomi-
als have much smaller degrees than those obtained with classical
Kronecker substitution. As a result, we obtain an algorithm that
works for much smaller q of order Õ(nd#F#G).

Our approach is to first use some randomized Kronecker substi-
tutions to estimate the sparsity of FG by computing the sparsity of
Hs = FsGs for several distinct random vectors ®s . With high proba-
bility, the maximal sparsity is close to the one of FG. Then, we use
this information to provide a bound to some (multivariate) sparse in-
terpolation algorithm. Note that our approach is inspired from [13]
that slightly improves randomized Kronecker substitution.

Lemma 4.9. Let H ∈ Fqs [X1, . . . ,Xn] of sparsity T , and ®s be a
vector chosen uniformly at random in Sn where S ⊂ N is finite. The
expected sparsity of Hs (X) = H (X s1 , . . . ,X sn) is at leastT (1− T−1

#S).

Proof. If we fix two distinct exponent vectors ®eu and ®ev of H ,
they collide in Hs if and only if ®eu · ®s = ®ev · ®s . Since ®eu , ®ev , they
differ at least on one component, say eu, j0 , ev, j0 . The equality
®eu · ®s = ®ev · ®s is then equivalent to

sj0 =
∑
j,j0

ev, j − eu, j

eu, j0 − ev, j0
sj .

Writing Y for the right-hand side of this equation we have

Pr[®eu · ®s = ®ev · ®s] = Pr[sj0 = Y] =
∑
y

Pr[sj0 = Y |Y = y] Pr[Y = y]

where the (finite) sum ranges over all possible values y of Y . Since
sj0 is chosen uniformly at random in S , Pr[sj0 = Y |Y = y] = Pr[sj0 =
y] ≤ 1/#S and the probability that ®eu and ®ev collide is at most 1/#S .
This implies that the expected number of vectors that collide is at
most T (T − 1)/#S . □

Corollary 4.10. Let H be as in Lemma 4.9 and ®v1, . . . , ®vℓ ∈ S
n

be some vectors chosen uniformly and independently at random. Then
Pr[maxi #Hvi ≤ T (1 − 2

T−1
#S)] ≤ 1/2ℓ .

Proof. For each ®vi , the expected number of terms that collide
in Hvi (X) is at most T (T − 1)/#S by Lemma 4.9. Using Markov’s
inequality, we have Pr[#Hvi ≤ T − 2T (T − 1)/#S] ≤ 1/2. Since the
vectors ®vi are independent, the result follows. □

Algorithm 3 SparsityEstimate

Input: F ,G ∈ Fqs [X1, . . . ,Xn], 0 < ϵ < 1, λ > 1.
Output: An integer t such that t ≤ λ#(FG).
1: N ← ⌈2 #F #G−11−1/λ ⌉, ℓ ← ⌈log

2
ϵ ⌉.

2: t ′ ← 0, µ ← ϵ
4ℓ .

3: repeat ℓ times
4: ®s ← random element of {0, . . . ,N − 1}n .
5: Fs ← F (X s1 , . . . ,X sn), Gs ← G(X s1 , . . . ,X sn)

6: Hs ← SparseProduct(Fs ,Gs , µ, µ)

7: t ′ ← max(t ′, #Hs)

8: return λt ′.

Lemma 4.11. Algorithm SparsityEstimate is correct when q ≥
4D#F #G
1−1/λ where D = max(deg F , degG). With probability at least

1−ϵ , it returns an integer t ≥ #(FG) using Õϵ (T (n logd+s logq)) bit
operations where T = max(#(FG), #F , #G) and d = maxi (degXi

FG).

Proof. Since each polynomial Hs has sparsity at most #(FG),
SparsityEstimate returns an integer bounded by λ#(FG). Sparse-
Product can be used in step 5 since degHs = deg Fs + degGs ≤

2ND ≤ q by the definition of N . Assuming that SparseProduct
returns no incorrect answer during the loop, Corollary 4.10 applied
to the product FG implies that t ′ ≥ #(FG)(1 − 2(#(FG) − 1)/N)
with probability ≥ 1 − ϵ/2 at the end of the loop. By definition
of N and since #F#G ≥ #(FG), t ′ ≥ #(FG)/λ. Taking into account
the probability of failure of SparseProduct, the probability that
λt ′ ≥ #(FG) is at least 1 − 3ϵ

4 .
The computation of Fs and Gs requires O(TnI(logmax(d,N)) +

Ts logq) bit operations in Step 5. Since max(#Fs , #Gs , #Hs) ≤ T

and degHs = O(ndT
2) in Step 6, the bit complexity of each call

to SparseProduct is Õµ (T (log(nd) + s logq)) with probability at
least 1− µ using Lemma 4.7. Therefore, SparsityEstimate requires
Õϵ (T (n logd+s logq)) bit operationswith probability at least 1−ϵ/4.
Together with the probability of failure this concludes the proof. □

Theorem 4.12. There exists an algorithm that takes as inputs
two sparse polynomials F and G in Fqs [X1, . . . ,Xn] and 0 < ϵ < 1

that returns the product FG in Õϵ (nT (logd + s logq)) bit operations
with probability at least 1 − ϵ , where T = max(#F , #G, #(FG)), d =
maxi (degXi

FG), D = deg FG and assuming that q = Ω(D#F#G +
DT log(D) log(T logD)).

Proof. The algorithm computes an estimate t on the sparsity of
FG using SparsityEstimate(F ,G, ϵ2 , λ) for some constant λ. The
second step interpolates FG using Huang and Gao’s algorithm [13,
Algorithm 5 (MulPolySI)] which is parameterized by a univariate

208

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray

sparse interpolation algorithm. Originally, its inputs are a polyno-
mial given as a blackbox and bounds on its degree and sparsity. In
our case, the blackbox is replaced by F andG , the sparsity bound is
t and the univariate interpolation algorithm is SparseProduct.

The algorithmMulPolySI requires Oϵ (n log t + log
2 t) interpo-

lation of univariate polynomials with degree Õ(tD) and sparsity at
most t . Each interpolation with SparseProduct is done with µ1, µ2
such that µ1 + µ2 = ϵ/4(n + 1) log t , so that MulPolySI returns the
correct answer in Õϵ (nT (logd + s logq)) bit operations with prob-
ability at least 1 − ϵ

2 [13, Theorem 6]. Altogether, our two-step

algorithm returns the correct answer using Õϵ (nT (logd + s logq))
bit operations with probability at least 1 − ϵ . The value of q is such
that it bounds the degrees of the univariate polynomials returned
by SparseProduct during the algorithm. □

4.4 Small characteristic

Wenow consider the case of sparse polynomial multiplication over a
field Fqs with characteristic smaller than the degree of the product
FG (or, in the multivariate case, smaller than the degree of the
product after randomized Kronecker substitution). We can no more
use Huang’s interpolation algorithm since it uses the derivative to
encode the exponents into the coefficients and thus it only keeps
the value of the exponents modulo q. Our idea to circumvent this
problem is similar to the one in [2] that is to rather consider the
polynomials over Z before calling our algorithm SparseProduct.

The following proposition is only given for the multivariate case
as it encompasses univariate’s one. It matches exactly with the
complexity result given by Arnold and Roche [2].

Proposition 4.13. There exists an algorithm that takes as inputs
two sparse polynomials F and G in Fqs [X1, . . . ,Xn] and 0 < ϵ < 1

that returns the product FG in Õϵ (S(n logd + s logq)) bit operations
with probability at least 1 − ϵ , where S is the structural sparsity of
FG and d = maxi (degXi

FG).

Proof. If s = 1, the coefficients of F and G map easily to the
integers in {0, . . . ,q − 1}. Therefore, the product FG can be ob-
tained by using an integer sparse polynomial multiplication, as
the one in Corollary 4.8, followed by some reductions modulo q.
Unfortunately, mapping the multiplication over the integers implies
that the cancellations that could have occurred in Fq do not hold
anymore. Consequently, the support of the product in Z before
modular reduction is exactly the structural support of FG.

If s > 1, the coefficients of F and G are polynomials over Fq of
degree s − 1. As previously, mapping Fq to integers, F and G can
be seen as FY ,GY ∈ Z[Y][X1, . . . ,Xn] where the coefficients are
polynomials in Z[Y] of degree at most s −1 and height at most q−1.

If T = max(#F , #G), the coefficients of FYGY are polynomials
of degree at most 2s − 2 and height at most Tsq2. Therefore, the
product FG ∈ Fqs can be computed by: (i) computing FB ,GB ∈

Z[X1, . . . ,Xn] by evaluating the coefficients of FY and GY at B =
Tsq2 (Kronecker substitution); (ii) computing the product HB =

FBGB ; (iii) writing the coefficients of HB in base B to obtain HY =

FYGY (Kronecker segmentation); (iv) and finally mapping back the
coefficients of HY from Z[Y] to Fqs .

Similarly as the case s = 1, HB and then HY have at most S
nonzero coefficients. The Kronecker substitutions in (i) require

Õ(Ts logq) bit operations, while the Kronecker segmentations in
(iii) need Õ(Ss logq) bit operations. In (iv) we first compute Ss

reductions modulo q on integers smaller than B, and then S polyno-
mial divisions in Fq [Y]with polynomial of degree O(s). Thus, it can

be done in Õ(Ss logq) bit operations. Finally the computation in (ii)
is dominant and it requires Õϵ (S(n logd + s logq)) bit operations
with probability at least 1 − ϵ using Corollary 4.8. □

REFERENCES
[1] A. Arnold. 2016. Sparse polynomial interpolation and testing. Ph.D. Dissertation.

University of Waterloo.
[2] A. Arnold and D. S. Roche. 2015. Output-sensitive algorithms for sumset and

sparse polynomial multiplication. In ISSAC’15. ACM, 29ś36. https://doi.org/10.
1145/2755996.2756653 arXiv:1501.05296

[3] A. Arnold and D. S. Roche. 2014. Multivariate sparse interpolation using random-
ized Kronecker substitutions. In ISSAC’14. ACM, 35ś42. https://doi.org/10.1145/
2608628.2608674 arXiv:1401.6694

[4] M. Ben-Or and P. Tiwari. 1988. A Deterministic Algorithm for Sparse Multivariate
Polynomial Interpolation. In STOC’88. ACM, 301ś309. https://doi.org/10.1145/
62212.62241

[5] R. Cole and R. Hariharan. 2002. Verifying candidate matches in sparse and
wildcard matching. In STOC’02. ACM, 592ś601. https://doi.org/10.1145/509907.
509992

[6] P. Giorgi. 2018. A probabilistic algorithm for verifying polynomial middle product
in linear time. Inform. Process. Lett. 139 (2018), 30ś34. https://doi.org/10.1016/j.
ipl.2018.06.014

[7] D. Harvey and J. van der Hoeven. 2019. Faster polynomial multiplication over
finite fields using cyclotomic coefficient rings. J. Complexity 54 (2019). https:
//doi.org/10.1016/j.jco.2019.03.004

[8] D. Harvey and J. van der Hoeven. 2019. Integer multiplication in time O(n log n).
https://hal.archives-ouvertes.fr/hal-02070778

[9] J. van der Hoeven, R. Lebreton, and É. Schost. 2013. Structured FFT and TFT:
Symmetric and Lattice Polynomials. In ISSAC’13. ACM, 355ś362. https://doi.org/
10.1145/2465506.2465526

[10] J. van der Hoeven and G. Lecerf. 2012. On the Complexity of Multivariate
Blockwise Polynomial Multiplication. In ISSAC’12. ACM, 211ś218. https://doi.
org/10.1145/2442829.2442861

[11] J. van der Hoeven and G. Lecerf. 2013. On the bit-complexity of sparse polynomial
and series multiplication. J. Symb. Comput. 50 (2013), 227ś254. https://doi.org/
10.1016/j.jsc.2012.06.004

[12] Q. Huang. 2019. Sparse Polynomial Interpolation over Fields with Large or Zero
Characteristic. In ISSAC’19. ACM, 219ś226. https://doi.org/10.1145/3326229.
3326250

[13] Q. Huang and X. Gao. 2019. Revisit Sparse Polynomial Interpolation Based
on Randomized Kronecker Substitution. In CASC’19. Springer, 215ś235. https:
//doi.org/10.1007/978-3-030-26831-2_15

[14] S. C. Johnson. 1974. Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8, 3
(1974), 63ś71. https://doi.org/10.1145/1086837.1086847

[15] M. Monagan and R. Pearce. 2009. Parallel sparse polynomial multiplication using
heaps. In ISSAC’09. ACM, 263. https://doi.org/10.1145/1576702.1576739

[16] M. Monagan and R. Pearce. 2011. Sparse polynomial division using a heap. J.
Symb. Comput. 46, 7 (2011). https://doi.org/10.1016/j.jsc.2010.08.014

[17] V. Nakos. 2019. Nearly Optimal Sparse Polynomial Multiplication.
arXiv:1901.09355

[18] D. A. Plaisted. 1984. New NP-hard and NP-complete polynomial and integer
divisibility problems. Theor. Comput. Sci. 31, 1 (1984), 125ś138. https://doi.org/
10.1016/0304-3975(84)90130-0

[19] R. Prony. 1795. Essai expérimental et analytique sur les lois de la Dilatabilité de
fluides élastique et sur celles de la Force expansive de la vapeur de l’eau et de la
vapeur de l’alkool, à différentes températures. J. École Polytechnique 1, Floréal et
Prairial III (1795), 24ś76. https://gallica.bnf.fr/ark:/12148/bpt6k433661n/f32.item

[20] D. S. Roche. 2011. Chunky and equal-spaced polynomial multiplication. J. Symb.
Comput. 46, 7 (2011), 791ś806. https://doi.org/10.1016/j.jsc.2010.08.013

[21] D. S. Roche. 2018. What Can (and Can’t) we Do with Sparse Polynomials?. In
ISSAC’18. ACM, 25ś30. https://doi.org/10.1145/3208976.3209027 arXiv:1807.08289

[22] J. B. Rosser and L. Schoenfeld. 1962. Approximate formulas for some functions
of prime numbers. Illinois J. Math. 6, 1 (1962), 64ś94. https://doi.org/10.1215/
ijm/1255631807

[23] V. Shoup. 2008. A Computational Introduction to Number Theory and Algebra
(second ed.). Cambridge University Press.

[24] J. von zur Gathen and J. Gerhard. 2013. Modern Computer Algebra (3rd ed.).
Cambridge University Press.

[25] A. C. Yao. 1976. On the Evaluation of Powers. SIAM J. Comput. 5, 1 (1976),
100ś103. https://doi.org/10.1137/0205008

209

https://doi.org/10.1145/2755996.2756653
https://doi.org/10.1145/2755996.2756653
http://arxiv.org/abs/1501.05296
https://doi.org/10.1145/2608628.2608674
https://doi.org/10.1145/2608628.2608674
http://arxiv.org/abs/1401.6694
https://doi.org/10.1145/62212.62241
https://doi.org/10.1145/62212.62241
https://doi.org/10.1145/509907.509992
https://doi.org/10.1145/509907.509992
https://doi.org/10.1016/j.ipl.2018.06.014
https://doi.org/10.1016/j.ipl.2018.06.014
https://doi.org/10.1016/j.jco.2019.03.004
https://doi.org/10.1016/j.jco.2019.03.004
https://hal.archives-ouvertes.fr/hal-02070778
https://doi.org/10.1145/2465506.2465526
https://doi.org/10.1145/2465506.2465526
https://doi.org/10.1145/2442829.2442861
https://doi.org/10.1145/2442829.2442861
https://doi.org/10.1016/j.jsc.2012.06.004
https://doi.org/10.1016/j.jsc.2012.06.004
https://doi.org/10.1145/3326229.3326250
https://doi.org/10.1145/3326229.3326250
https://doi.org/10.1007/978-3-030-26831-2_15
https://doi.org/10.1007/978-3-030-26831-2_15
https://doi.org/10.1145/1086837.1086847
https://doi.org/10.1145/1576702.1576739
https://doi.org/10.1016/j.jsc.2010.08.014
http://arxiv.org/abs/1901.09355
https://doi.org/10.1016/0304-3975(84)90130-0
https://doi.org/10.1016/0304-3975(84)90130-0
https://gallica.bnf.fr/ark:/12148/bpt6k433661n/f32.item
https://doi.org/10.1016/j.jsc.2010.08.013
https://doi.org/10.1145/3208976.3209027
http://arxiv.org/abs/1807.08289
https://doi.org/10.1215/ijm/1255631807
https://doi.org/10.1215/ijm/1255631807
https://doi.org/10.1137/0205008

Fast In-place Algorithms for Polynomial Operations:
Division, Evaluation, Interpolation

Pascal Giorgi
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
pascal.giorgi@lirmm.fr

Bruno Grenet
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
bruno.grenet@lirmm.fr

Daniel S. Roche
United States Naval Academy
Annapolis, Maryland, U.S.A.

roche@usna.edu

ABSTRACT

We consider space-saving versions of several important operations
on univariate polynomials, namely power series inversion and divi-
sion, division with remainder, multi-point evaluation, and interpo-
lation. Now-classical results show that such problems can be solved
in (nearly) the same asymptotic time as fast polynomial multiplica-
tion. However, these reductions, even when applied to an in-place
variant of fast polynomial multiplication, yield algorithms which re-
quire at least a linear amount of extra space for intermediate results.
We demonstrate new in-place algorithms for the aforementioned
polynomial computations which require only constant extra space
and achieve the same asymptotic running time as their out-of-place
counterparts. We also provide a precise complexity analysis so that
all constants are made explicit, parameterized by the space usage
of the underlying multiplication algorithms.

CCS CONCEPTS

· Computing methodologies→ Algebraic algorithms; · The-
ory of computation→ Design and analysis of algorithms.

KEYWORDS

polynomials, power series, algorithms, space complexity, division,
inversion, multipoint evaluation, interpolation

ACM Reference Format:

Pascal Giorgi, Bruno Grenet, and Daniel S. Roche. 2020. Fast In-place Al-
gorithms for Polynomial Operations: Division, Evaluation, Interpolation.
In International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3373207.3404061

1 INTRODUCTION

Computations with dense univariate polynomials or truncated
power series over a finite ring are of central importance in com-
puter algebra and symbolic computation. Since the discovery of
sub-quadratic (łfastž) multiplication algorithms [3, 4, 10, 12, 19], a
major research task was to reduce many other polynomial compu-
tations to the cost of polynomial multiplication.

This project has been largely successful, starting with symbolic
Newton iteration for fast inversion and division with remainder

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404061

[14], product tree algorithms for multi-point evaluation and inter-
polation [15], the łhalf-GCDž fast Euclidean algorithm [18], and
many more related important problems [2, 6]. Not only are these
problems important in their own right, but they also form the ba-
sis for many more, such as polynomial factorization, multivariate
and/or sparse polynomial arithmetic, structured matrix computa-
tions, and further applications in areas such as coding theory and
public-key cryptography.

But the use of fast arithmetic frequently comes at the expense
of requiring extra temporary space to perform the computation.
This can make a difference in practice, from the small scale where
embedded systems engineers seek to minimize hardware circuitry,
to the medium scale where a space-inefficient algorithm can exceed
the boundaries of (some level of) cache and cause expensive cache
misses, to the large scale where main memory may simply not be
sufficient to hold the intermediate values. In a streaming model,
where the output must be written only once, in order, explicit time-
space tradeoffs prove that fast multiplication algorithms will always
require up to linear extra space. And indeed, all sub-quadratic
polynomial multiplication algorithms we are aware of Ð in their
original formulation Ð require linear extra space [3, 4, 10, 12, 19].

However, if we treat the output space as pre-allocated random-
access memory, allowing values in output registers to be both read
and written multiple times, then improvements are possible. In-
place quadratic-time algorithms for polynomial arithmetic are de-
scribed in [16]. A series of recent results provide explicit algorithms
and reductions from arbitrary fast multiplication routines which
have the same asymptotic running time, but use only constant extra
space [8, 11, 17]. That is, these algorithms trade a constant increase
in the running time for a linear reduction in the amount of extra
space. So far, these results are limited to multiplication routines and
related computations such as middle and short product. Applying
in-place multiplication algorithms directly to other problems, such
as those considered in this paper, does not immediately yield an
in-place algorithm for the desired application problem.

1.1 Our work

In this paper, we present new in-place algorithms for power se-
ries inversion and division, polynomial division with remainder,
multi-point evaluation, and interpolation. These algorithms are fast
because their running time is only a constant time larger than the
fastest known out-of-place algorithms, parameterized by the cost
of dense polynomial multiplication.

Our space complexity model is the one of [8, 11, 17] where input
space is read only while output space is pre-allocated and can be
used to store intermediate results. In that model, the space com-
plexity is measured by only counting the auxiliary space required

210

https://doi.org/10.1145/3373207.3404061
https://doi.org/10.1145/3373207.3404061

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Pascal Giorgi, Bruno Grenet, and Daniel S. Roche

Time Space Reference

Power series inversion (λm + λs)M(n)
1
2 max(cm , cs + 1)n [9, Alg. MP-inv]

at precision n λmM(n) log cm+2
cm+1
(n) O(1) Theorem 2.3

(λm +
3
2λs)M(n)

cm+1
2 n [9, Alg. MP-div-KM]

Power series division λmM(n) log cm+3
cm+2
(n) O(1) Theorem 2.5

at precision n O(M(n)) αn, for any α > 0 Remark 2.7
(

λm (
c+1
2 +

1
c) + λs (1 +

1
c)

)

M(n) O(1)‡ Corollary 2.6

Euclidean division (λm +
3
2λs)M(m) + λsM(n) max(cm+12 m − n, csn) standard algorithm

of polynomials 2λsM(m) + (λm + λs)M(n) (1 +max(cm2 ,
cs+1
2 , cs))n

⌈

m
n

⌉

balanced div. (precomp)

in sizes (m + n − 1,n)
(

λm (
c+1
2 +

1
c) + λs (2 +

1
c)

)

M(m) O(1) Theorem 2.8

multipoint evaluation 3/2M(n) log(n) n log(n) [2]
size-n polynomial on n points 7/2M(n) log(n) n [7], Lemma 3.1

(4 + 2λs/log(
cs+3
cs+2
))M(n) log(n) O(1) Theorem 3.4

interpolation 5/2M(n) log(n) n log(n) [2]
size-n polynomial on n points 5M(n) log(n) 2n [6, 7], Lemma 3.3

≃ 105M(n) log(n) O(1) Theorem 3.6

Table 1: Summary of complexity analyses, omitting non-dominant terms and assuming cf ≤ cs ≤ cm . We use c = cm + 3. For O(1)‡

space, the memory model is changed such that the input dividend can be overwritten. Here, and throughout the paper, the base of the
logarithms is 2 if not otherwise stated.

during the computation, excluding input and output spaces. We
shall mention that a single memory location or register may contain
either an element of the coefficient ring, or a pointer to the input
or output space. It follows that in-place algorithms are those that
require only a constant number of extra memory locations.

For all five problems, we present in-place variants which have
nearly the same asymptotic running time as their fastest out-of-
place counterparts. The power series inversion and division algo-
rithms incur an extra log(n) overhead when quasi-linear multi-
plication is used, while the polynomial division, evaluation, and
interpolation algorithms keep the same asymptotic runtime as the
fastest known algorithm. Our reductions essentially trade a small
amount of extra runtime for a significant decrease in space usage.

Our motivation in this work is mainly theoretical. We address
the existence of such fast in-place algorithms as we already did
for polynomial multiplications [8]. To further extend our result,
we compare precisely the number of arithmetic operations in our
algorithms with the best known theoretical bounds. These results
are summarized in Table 1.

Of course further work is needed to determine the practicability
of our approach. In particular cache misses play a predominant
role when dealing with memory management. Studying the cache
complexity of all these algorithms, for instance in the idealized
cache model [5], would give more precise insights. However, the
practicability will heavily depend on the underlying multiplica-
tion algorithms. Due to their diversity and the need for fine-tuned
implementations, we leave this task to future work.

1.2 Notation

By a size-n polynomial, we mean a polynomial of degree ≤ n−1. As
usual, we denote by M(n) a bound on the number of operations in
K to multiply two size-n polynomials, and we assume that αM(n) ≤
M(αn) for any constant α ≥ 1. All known multiplication algorithms
have at most a linear space complexity. Nevertheless, several results

reduce this space complexity at the expense of a slight increase in
the time complexity [8, 11, 17, 20]. To provide tight analyses, we
consider multiplication algorithms with time complexity λf M(n)

and space complexity cf n for some constants λf ≥ 1 and cf ≥ 0.
Let us recall that the middle product of a size-(m +n − 1) polyno-

mial F ∈ K[X] and a size-n polynomialG ∈ K[X] is the size-m poly-
nomial defined as MP(F ,G) = (FG div Xn−1) mod Xm . We denote
by λmM(n) and cmn the time and space complexities of the middle
product of size (2n−1,n). Then, a middle product in size (m+n−1,n)
wherem < n can be computed with

⌈

n
m

⌉

λmM(m) operations in K
and (cm +1)m extra space. Similarly, the short product of two size-n
polynomials F ,G ∈ K[X] is defined as SP(F ,G) = FG mod Xn and
we denote by λsM(n) and csn its time and space complexities.

On the one hand, the most time-efficient algorithms achieve
λf = λm = λs = 1 while 2 ≤ cf , cm , cs ≤ 4, using the Transposition
principle [2, 9] for λm = λf . On the other hand, the authors recently
proposed new space-efficient algorithms reaching cf = 0, cm = 1
and cs = 0 while λf , λm and λs remain constants [8].

Writing F =
∑d
i=0 fiX

i ∈ K[X], we will use rev(F) ∈ K[X] to

denote the reverse polynomial of F , that is, rev(F) = XdF (1/X),
whose computation does not involve any operations inK. Note that
we will use abusively the notation F[a ..b[to refer to the chunk of

F that is the polynomial
∑b−1
i=a fiX

i , and the notation F[a] for the
coefficient fa . Considering our storage, the notation F[a ..b[will
also serve to refer to some specific registers associated to F . When
necessary, our algorithms indicate with WS the output registers
used as work space.

2 INVERSION AND DIVISIONS

In this section, we present in-place algorithms for the inversion
and the division of power series as well as the Euclidean division
of polynomials. As a first step, we investigate the space complexity
from the literature for these computations.

211

Fast In-place algorithms for Polynomial Operations: Division, Evaluation, Interpolation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

2.1 Space complexity of classical algorithms

Power series inversion. Power series inversion is usually com-
puted through Newton iteration: IfG is the inverse of F at precision
k thenH = G + (1−GF)G mod X 2k is the inverse of F at precision
2k . This allows one to compute F−1 at precision n using O(M(n))
operations in K, see [6, Chapter 9]. As noticed in [9, Alg. MP-inv]
only the coefficients of degree k to 2k − 1 of H are needed. Thus,
assuming thatG[0..k [= F−1 mod Xk , one step of Newton iteration

computes k new coefficients of F−1 into G[k ..2k] as

G[k ..2k [= −SP(MP(F[1..2k [,G[0..k [),G[0..k[). (1)

The time complexity is then (λm + λs)M(n) for an inversion at
precision n. For space complexity, the most consuming part is the
last iteration of size n

2 . It needs max(cm , cs + 1)
n
2 extra registers:

One can compute the middle product in G[n2 ..n[using cm
n
2 extra

registers, then move it to n
2 extra registers and compute the short

product using cs
n
2 registers.

Power series division. Let F ,G ∈ K[[X]], the fast approach to
compute F/G mod Xn is to first invertG at precision n and then to
multiply the result by F . The complexity is given by one inversion
and one short product at precision n. Actually, Karp and Markstein
remarked in [13] that F/G can be directly computed during the
last iteration. Applying this trick, the complexity becomes (λm +
3
2λs)M(n) [9], see also [1]. The main difference with inversion is the
storage of the short product of size n

2 , yielding a space complexity
of max(cm + 1, cs + 1)

n
2 .

Euclidean division of polynomials. Given two polynomialsA,B of
respective sizem+n−1 and n, the fast Euclidean division computes
the quotient Adiv B as rev(rev(A)/rev(B)) viewed as power series
at precisionm [6, Chapter 9]. The remainder R is retrieved with
a size-n short product, yielding a total time complexity of (λm +
3
2λs)M(m) + λsM(n). Since the remainder size is not determined
by the input size we assume that we are given a maximal output
space of size n − 1. As this space remains free when computing the
quotient, this step requires 1

2 max(cm + 1, cs + 1)m − n + 1 extra
space, while computing the remainder needs csn.

As a first result, whenm ≤ n, using space-efficient multiplication
is enough to obtain an in-placeO(M(n)) Euclidean division. Indeed,
the output space is enough to compute the small quotient, while
the remainder can be computed in-place [8].

Whenm > n, the space complexity becomes O(m − n). In that
case, the Euclidean division of A by B can also be computed by
⌈

m
n

⌉

balanced Euclidean divisions of polynomials of size 2n − 1
by B. It actually corresponds to a variation of the long division

algorithm, in which each step computes n new coefficients of the
quotient. To save some time, one can precompute the inverse of
rev(B) at precisionn, which gives a time complexity (λm+λs)M(n)+
m
n 2λsM(n) ≤ 2λsM(m) + (λm + λs)M(n) and space complexity

(1 +max(cm2 ,
cs+1
2 , cs))n.

Finally, one may consider to only compute the quotient or the
remainder. Computing quotient only is equivalent to power series
division. For the computation of the remainder, it is not yet known
how to compute it without the quotient. In that case, we shall
consider space usage for the computation and the storage of the
quotient. When m is large compared to n, one may notice that

relying on balanced divisions does not require one to retain the
whole quotient, but only its n latest computed coefficients. In that
case the space complexity only increases by n. Since we can always
perform a middle product via two short products, we obtain the
following result.

Lemma 2.1. GivenA ∈ K[X] of sizem and B ∈ K[X], monic of size

n, and provided n registers for the output, the remainder A mod B

can be computed using 2λsM(m) + 3λsM(n) +O(m + n) operations
in K and (cs + 2)n extra registers.

2.2 In-place power series inversion

We notice that during the first Newton iterations, only a few coeffi-
cients of the inverse have been already written. The output space
thus contains lots of free registers, and the standard algorithm can
use them as working space. In the last iterations, the number of
free registers becomes too small to perform a standard iteration.
Our idea is then to slow down the computation. Instead of still dou-
bling the number of coefficients computed at each iteration, the
algorithm computes less and less coefficients, in order to be able to
use the free output space as working space. We denote these two
phases as acceleration and deceleration phases.

The following easy lemma generalizes Newton iteration to com-
pute only ℓ ≤ k new coefficients from an inverse at precision k .

Lemma 2.2. Let F be a power series and G[0..k [contain its inverse

at precision k . Then for 0 < ℓ ≤ k , if we compute

G[k ..k+ℓ[= −SP
(

MP
(

F[1..k+ℓ[,G[0..k [

)

,G[0..ℓ[

)

(2)

then G[0..k+ℓ[contains the inverse of F at precision k + ℓ.

Algorithm 1 is an in-place fast inversion algorithm. Accelerating
and decelerating phases correspond to ℓ = k and ℓ < k .

Algorithm 1 In-Place Fast Power Series Inversion (InPlaceInv)

Input: F ∈ K[X] of size n, such that F[0] is invertible;
Output: G ∈ K[X] of size n, such that FG = 1 mod Xn .
Required: MP and SP alg. using extra space ≤ cmn and ≤ csn.
1: G[0] ← F−1

[0]
2: k ← 1, ℓ ← 1
3: while ℓ > 0 do
4: G[n−ℓ..n[← MP(F[1..k+ℓ[,G[0..k [) ▷ WS: G[k ..n−ℓ[
5: G[k ..k+ℓ[← SP(G[0..ℓ[,−G[n−ℓ..n[) ▷ WS: G[k+ℓ..n−ℓ[
6: k ← k + ℓ

7: ℓ ← min
(

k,
⌊

n−k
c

⌋)

where c = 2 +max(cm , cs)

8: G[k ..n[← SP(G[0..n−k[,−MP(F[1..n[,G[0..k [)) ▷ O(1) space

Theorem 2.3. Algorithm 1 is correct. It usesO(1) space, and either
λmM(n) log cm+2

cm+1
(n) +O(M(n)) operations in K when M(n) is quasi-

linear, or O(M(n)) operations in K whenM(n) = n1+γ , 0 < γ ≤ 1.

Proof. Steps 4 and 5, and Step 8, correspond to Equation (2).
They compute ℓ new coefficients of G when k of them are already
written in the output, whence Lemma 2.2 implies the correctness.

212

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Pascal Giorgi, Bruno Grenet, and Daniel S. Roche

Step 4 needs (cm + 2)ℓ free registers for its computation and
its storage. Then (cs + 2)ℓ free registers are needed to compute
SP(G[0..ℓ[,G[n−ℓ..n[) using ℓ registers for G[n−ℓ..n[and (cs + 1)ℓ
registers for the short product computation and its result. For this
computation to be done in-place, we need cℓ ≤ n −k . Since at most
k new coefficients can be computed, the maximal number of new

coefficients in each step is ℓ = min
(

k,
⌊

n−k
c

⌋)

.

Each iteration uses O(M(k)) operations in K: O(⌈k/ℓ⌉M(ℓ)) for
the middle product at Step 4 and O(M(ℓ)) for the short product at
Step 5. The accelerating phase stops when k > n−k

c+1 , that is, k >

n
c+2 . It costs

∑⌊log n
c+2 ⌋

i=0 M(2i) = O(M(n)). During the decelerating
phase, each iteration computes a constant fraction of the remaining
coefficients. Hence, this phase lasts for δ = log c

c−1
n steps.

Let ℓi and ki denote the values of ℓ and k at the i-th iteration of
the deceleration phase and ti = n − ki . Then one iteration of the
deceleration phase costs one middle product in sizes (n−ti +

⌊ ti
c

⌋

−

1,n − ti) and one short product in size
⌊ ti
c

⌋

. The total cost of all the
short products amounts to

∑

i M(ti) = O(M(n)) since
∑

i ti ≤ cn.
The cost of the middle product at the i-th step is

λm
⌈

(n − ti)/
⌊ ti
c

⌋⌉

M
(

⌊ ti
c

⌋

)

= λmM(n) +O(n).

Therefore, the total cost of all the middle products is at most
λmM(n) log c

c−1
(n) + O(M(n)) and is dominant in the complexity.

We can choose the in-place short products of [8] and get c = cm + 2.
The complexity is then λmM(n) log cm+2

cm+1
(n) +O(M(n)).

If M(n) = n1+γ with 0 < γ ≤ 1, the cost of each iteration is

O(
⌈

n−ti
ℓi

⌉

ℓ
1+γ
i). Since ℓ0 ≤ n, we have ℓi < n(c−1c)

i
+ c , whence

δ
∑

i=1

⌈

n − ti

ℓi

⌉

ℓ
1+γ
i ≤ n

δ
∑

i=1

ℓ
γ
i ≤ n

δ
∑

i=1

(

n

(

c − 1

c

)i

+ c

)γ

.

Since 0 < γ ≤ 1, we have (α + β)γ ≤ αγ + βγ for any α , β > 0, and

the complexity is n1+γ
∑δ
i=1

(

c−1
c

)iγ
+O(n logn) = O(M(n)). □

2.3 In-place division of power series

Division of power series can be implemented easily as an inversion
followed by a product. Yet, using in-place algorithms for these
two steps is not enough to obtain an in-place division algorithm
since the intermediate result must be stored. Karp and Markstein’s
trick, that includes the dividend in the last iteration of Newton
iteration [13], cannot be used directly in our case since we replace
the very last iteration by several ones. We thus need to build our
in-place algorithm on the following generalization of their method.

Lemma 2.4. Let F and G be two power series, G invertible, and

Q[0..k [contain their quotient at precision k . Then for 0 < ℓ ≤ k , if

we compute

Q[k ..k+ℓ[= SP
(

G−1
[0..ℓ[, F[k ..k+ℓ[−MP(G[1..k+ℓ[,Q[0..k [)

)

then Q[0..k+ℓ[contains their quotient at precision k + ℓ.

Proof. Let us write F/G = Qk + X
kQℓ + O(X

k+ℓ). We prove
that Qℓ = G−1 × ((F − GQk) div Xk) mod X ℓ . By definition, F ≡
G(Qk+X

kQℓ) mod Xk+ℓ . Hence (F−GQk) div Xk
= GQℓ mod X ℓ .

Therefore,Qℓ = (G
−1 ×((F −GQk) div Xk)) mod X ℓ . Finally, since

only the coefficients of degree k to k + ℓ − 1 of GQk are needed,
they can be computed as MP(G[1..k+ℓ[,Q[0..k [). □

Algorithm 2 is an in-place power series division algorithm based
on Lemma 2.4, choosing at each step the appropriate value of ℓ so
that all computations can be performed in place.

Algorithm 2 In-Place Power Series Division (InPlacePSDiv)

Input: F ,G ∈ K[X] of size n, such that G[0] is invertible;
Output: Q ∈ K[X] of size n, such that F/G = Q mod Xn .
Required: MP, SP, Inv alg. using extra space ≤ cmn, csn, cin.
1: k ← ⌊n/max(ci + 1, cs + 2)⌋
2: Q[n−k ..n[← rev(Inv(G[0..k [)) ▷ WS: Q[0..n−k [
3: Q[0..k [← SP(F[0..k [, rev(Q[n−k ..n[)) ▷ WS: Q[k ..n−k [
4: ℓ ← ⌊(n − k)/(3 +max(cm , cs))⌋
5: while ℓ > 0 do
6: Q[n−2ℓ..n−ℓ[← MP(G[1..k+ℓ[,Q[0..k [) ▷ WS: Q[k ..n−2ℓ[
7: Q[n−2ℓ..n−ℓ[← F[k ..k+ℓ[−Q[n−2ℓ..n−ℓ[
8: let us define Q∗

ℓ
= rev(Q[n−ℓ..n[)

Q[k ..k+ℓ[← SP(Q[n−2ℓ..n−ℓ[,Q
∗
ℓ
) ▷ WS: Q[k+ℓ..n−2ℓ[

9: k ← k + ℓ

10: ℓ ← ⌊(n − k)/(3 +max(cm , cs))⌋

11: tmp ← F[k ..n[−MP(G[1..n[,Q[0..k [) ▷ constant space
12: Q[k ..n[← SP(tmp, rev(Q[k ..n[)) ▷ constant space

Theorem 2.5. Algorithm 2 is correct. It usesO(1) space, and either
λmM(n) log cm+3

cm+2
(n) +O(M(n)) operations in K when M(n) is quasi-

linear orO(M(n)) operations in K whenM(n) = O(n1+γ), 0 < γ ≤ 1.

Proof. The correctness follows from Lemma 2.4. The inverse of
G is computed once at Step 2, at precision ⌊n/max(ci + 1, cs + 2)⌋.
Its coefficients are then progressively overwritten during the loop
since Step 8 only requires ℓ coefficients of the inverse, and ℓ is
decreasing. Since ci =

1
2 max(cm , cs + 1), ℓ is always less than the

initial precision. For simplicity of the presentation, we store the
inverse in reversed order in Q[n−k ..n[. Step 2 requires space cik
while the free space has size n −k : Since k ≤ n

ci+1
, the free space is

large enough. Similarly, the next step requires space csk while the
free space has sizen−2k , and k ≤ n

cs+2
. Step 6 needs (cm+1)ℓ space

and the free space has size n − k − 2ℓ, and Step 8 requires cs ℓ space
while the free space has size n − k − 3ℓ. Since ℓ ≤ n−k

3+max(cm,cs)
,

these computations can also be performed in place.
The time complexity analysis is very similar to the one of Algo-

rithm 1 given in Theorem 2.3. The main difference is Step 7 which
adds a negligible term O(n logn) in the complexity. □

Corollary 2.6. If it can erase its dividend, Algorithm 2 can be modi-

fied to improve its complexity to
(

λm (
c+1
2 +

1
c) + λs (1 +

1
c)

)

M(n) +

O(n) operations in K where c = max(cm + 3, cs + 2), still using O(1)
extra space.

Proof. Once k coefficients of Q have been computed, F[0..k[is
not needed anymore. This means that at Step 7, the result can be
directly written in F[k ..k+ℓ[and that F[0..k [can be used as working
space in the other steps of the loop. The free space at Steps 6 and 8

213

Fast In-place algorithms for Polynomial Operations: Division, Evaluation, Interpolation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

becomes n − 2ℓ instead of n − k − 2ℓ and n − k − 3ℓ respectively.
Therefore, ℓ can always be chosen as large as

⌊

n
c

⌋

where c =

max(cm + 3, cs + 2). Since ℓ stays positive, we also modify the
algorithm to stop when all the coefficients ofQ have been computed.

To simplify the complexity analysis, we further assume that k
gets the same value

⌊

n
c

⌋

at Step 1. Step 2 requires (λs +λm)M(
⌊

n
c

⌋

)

operations in K. The sum of the input sizes of all the short products
in the algorithm is n. Their total complexity is thus λsM(n). At
the i-th iteration of the loop, k = (i + 1)ℓ. Therefore Step 6 has
complexity i

⌊

n
c

⌋

. Step 7 requires
⌊

n
c

⌋

operations in K. Altogether,
the complexity of the modified algorithm is

λsM(n) + (λs + λm)M
(⌊ n

c

⌋)

+

c
∑

i=1

(

iλmM
(⌊ n

c

⌋)

+

⌊

n
c

⌋)

which is
(

λm (
c+1
2 +

1
c) + λs (1 +

1
c)

)

M(n) +O(n). □

Using similar techniques, we get the following variant.

Remark 2.7. Algorithm 2 can be easily modified to improve the

complexity toO(M(n)) operations inK when a linear amount of extra

space is available, say αn registers for some α ∈ R+.

2.4 In-place Euclidean division of polynomials

If A is a size-(m +n − 1) polynomial and B a size-n polynomial, one
can compute their size-m quotient Q in place using Algorithm 2, in
O((M(m) logm)) operations in K. WhenQ is known, the remainder
R = A − BQ , can be computed in-place using O(M(n)) operations
in K as it requires a single short product and some subtractions. As
alreadymentioned, the exact size of the remainder is not determined
by the size of the inputs. Given any tighter bound r < n on deg(R),
the same algorithm can compute R in place, in time O(M(r)).

Altogether, we get in-place algorithms to compute the quotient
of two polynomials in time O(M(m) logm), or the quotient and
size-r remainder in time O(M(m) logm +M(r)). As suggested in
Section 2.1 and in Remark 2.7, this complexity becomes O(M(m) +
M(r)) wheneverm = O(r). Indeed, in that case the remainder space
can be used to speed-up the quotient computation.We shall mention
that computing only the remainder remains a harder problem as
we cannot count on the space of the quotient while it is required
for the computation. As of today, only the classical quadratic long
division algorithm allows such an in-place computation.

We now provide a new in-place algorithm for computing both
quotient and remainder that achieves a complexity of O(M(m) +
M(n)) operation in K when m ≥ n. Our algorithm requires an
output space of size n−1 for the remainder since taking any smaller
size r < n − 1 would rebind to power series division.

Theorem 2.8. Algorithm 3 is correct. It uses O(1) extra space

and
(

λm (
c+1
2 +

1
c) + λs (2 +

1
c)

)

M(m) +O(m logn) operations in K

where c = max(cm + 3, cs + 2).

Proof. Algorithm 3 is an adaptation of the classical long division
algorithm, recalled in Section 2.1, where chunks of the quotient are
computed iteratively via Euclidean division of size (2n − 1,n). The
main difficulty is that the update of the dividend cannot be done on
the input. Since we compute only chunks of sizen from the quotient,
the update of the dividend affects only n − 1 coefficients. Therefore,

Algorithm 3 In-Place Euclidean Division (InPlaceEuclDiv)

Input: A,B ∈ K[X] of sizes (m + n,n),m ≥ n, such that B[0] , 0;
Output: Q,R ∈ K[X] of sizes (m + 1,n − 1) such that A = BQ + R;
Required: In-place DivErase(F ,G,n) computing F/G mod Xn

while erasing F ; In-place SP;
For simplicity, H is a size-n polynomial such that H[0..n−1[is R

and H[n−1] is an extra register

1: H ← A[m ..m+n[

2: k ←m + 1
3: while k > n do

4: Q[k−n ..k[← rev(DivErase(rev(H), rev(B),n))
5: H[0..n−1[← SP(Q[k−n ..k−1[,B[0..n−1[)

6: H[1..n[← A[k−n ..k−1[− H[0..n−1[
7: H[0] ← A[k−n−1]
8: k ← k − n

9: Q[0..k [← rev(DivErase(rev(H[n−k ..n[), rev(B[n−k ..n[)))
10: H[0..n−1[← SP(Q[0..n−1[,B[0..n−1[)

11: H[0..n−1[← A[0..n−1[− H[0..n−1[
12: return (Q,H[0..n−1[)

it is possible to use the space of R for storing these new coefficients.
As we need to consider n coefficients from the dividend to get a
new chunk, we add the missing coefficient from A and consider the
polynomial H as our new dividend.

By Corollary 2.6, Step 4 can be done in place while erasing
H , which is not part of the original input. It is thus immediate
that our algorithm is in-place. For the complexity, Steps 4 and 5
dominate the cost. Using the exact complexity for Step 4 given
in Corollary 2.6, one can deduce easily that Algorithm 3 requires
(

λm (
c+1
2 +

1
c) + λs (2 +

1
c)

)

M(m)+O(m logn) operations inK. □

Using time-efficient products with λm = λs = 1, cm = 4 and cs =
3 yields a complexity ≃ 6.29M(m), which is roughly 6.29/4 = 1.57
times slower than the most time-efficient out-of-place algorithm.

3 MULTIPOINT EVALUATION AND

INTERPOLATION

In this section, we present in-place algorithms for the two related
problems ofmultipoint evaluation and interpolation.We first review
both classical algorithms and their space-efficient variants.

3.1 Space complexity of classical algorithms

Multipoint evaluation. Given n elements a1, . . . , an of K and a
size-n polynomial F ∈ K[X], multipoint evaluation aims to compute
F (a1), . . . , F (an). While the naive approach using Horner scheme
leads to a quadratic complexity, the fast approach of [15] reaches a
quasi-linear complexityO(M(n) log(n)) using a divide-and-conquer
approach and the fact that F (ai) = F mod (X − ai). As proposed in
[2] this complexity can be sharpened to (λm +

1
2λf)M(n) log(n) +

O(M(n)) using the transposition principle.
The fast algorithms are based on building the so-called subprod-

uct tree [6, Chapter 10] whose leaves contain the (X − ai)’s and
whose root contains the polynomial

∏n
i=1(X − ai). This tree con-

tains 2i degree-n/2i monic polynomials at level i , and can be stored

214

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Pascal Giorgi, Bruno Grenet, and Daniel S. Roche

in exactly n logn registers if n is a power of two. The fast algo-
rithms then require n log(n) +O(n) registers as work space. Here,
because the space complexity constants cf , cm , cs do not appear in
the leading term n log(n) of space usage, we can always choose the
fastest underlying multiplication routines, so the computational
cost for this approach is simply 3

2M(n) log(n) +O(M(n)).
As remarked in [7], one can easily derive a fast variant that uses

only O(n) extra space. In particular, [7, Lemma 2.1] shows that the
evaluation of a size-n polynomial F on k points a1, . . . , ak with
k ≤ n can be done at a cost O(M(k)(n

k
+ log(k))) with O(k) extra

space.
We provide a tight analysis of this algorithm, starting with the

balanced case k = n, i.e. the number of evaluation points is equal
to the size of F . The idea of the algorithm is to group the points
in ⌈log(n)⌉ groups of ⌊n/log(n)⌋ points each, and to use standard
multipoint evaluation on each group, by first reducing F modulo the
root of the corresponding subproduct tree. The complexity analysis
of this approach is given in the following lemma. Observe that here
too, the constants λs , cs , etc., do not enter in since we can always
use the fastest out-of-place subroutines without affecting the O(n)
term in the space usage.

Lemma 3.1. Given F ∈ K[X] of size n and a1, . . . ,an ∈ K, one can

compute F (a1), . . . , F (an) using
7
2M(n) log(n) +O(M(n)) operations

in K and n +O(n
log(n)) extra registers.

Proof. Computing each subproduct tree on O(n/log(n)) points
can be done in time 1

2M(n/log(n)) log(n) ≤
1
2M(n) and space n +

O(n/log(n)). The root of this tree is a polynomial of degree at most
n/log(n). Each reduction of F modulo such a polynomial takes
time 2M(n) + O(n/log(n)) and space O(n/log(n)) using the bal-
anced Euclidean division algorithm from Section 2.1. Each multi-
point evaluation of the reduced polynomial on n/log(n) points, us-
ing the pre-computed subproduct tree, takesM(n/log(n)) log(n) +
O(M(n/log(n))) operations in K and O(n/log(n)) extra space [2].

All information except the evaluations from the last step Ðwhich
are written directly to the output space Ð may be discarded be-
fore the next iteration begins. Therefore the total time and space
complexity are as stated. □

When the number of evaluation points k is large compared to
the size n of the polynomial F , we can simply repeat the approach
of Lemma 3.1 ⌈k/n⌉ times. The situation is more complicated when
k ≤ n, because the output space is smaller. The idea is to compute
the degree-k polynomialM at the root of the product tree, reduce
F moduloM and perform balanced k-point evaluation of F mod M .

Lemma 3.2. Given F ∈ K[X] of size n and a1, . . . , ak ∈ K, one

can compute F (a1), . . . , F (ak) using 2λsM(n)+ 4M(k) log(k)+O(n+
M(k) loglog(k)) operations in K and (cs + 2)k +O(k/log(k)) extra
registers.

Proof. Computing the rootM of a product tree proceeds in two
phases. For the bottom levels of the tree, we use the fastest out-of-
place full multiplication algorithm that computes the product of
two size-t polynomials in time M(t) and space O(t). Then, only for
the top loglog(n) levels, do we switch to an in-place full product
algorithm from [8], which has time O(M(t)) but only O(1) extra

space. The result is thatM can be computed using 1
2M(k) log(k) +

O(M(k) loglog(k)) operations in K and k +O(k/log(k)) registers.
Then, we reduce F moduloM . By Lemma 2.1, this is accomplished

in time 2λsM(n)+O(n+M(k)) and space (cs + 2)k . Adding the cost
of the k-point evaluation of Lemma 3.1 completes the proof. □

Interpolation. Interpolation is the inverse operation of multi-
point evaluation, that is, to reconstruct a size-n polynomial F from
its evaluations on n distinct points F (a1), . . . , F (an). The classic
approach using Lagrange’s interpolation formula has a quadratic
complexity [6, Chapter 5] while the fast approach of [15] has quasi-
linear time complexity O(M(n) log(n)). We first briefly recall this
fast algorithm.

Let M(X) =
∏n

i=1(X − ai) and M ′ its derivative. Noting that
M

X−ai
(ai) = M ′(ai) for 1 ≤ i ≤ n, we have

F (X) = M(X)

n
∑

i=1

F (ai)/M
′(ai)

X − ai
. (3)

Hence the fast algorithm of [15] consists in computingM ′(X) and
its evaluation on each ai through multipoint evaluation, and then
to sum the n fractions using a divide-and-conquer strategy. The
numerator of the result is then F by Equation (3).

If the subproduct tree over the ai ’s is already computed, this
gives all the denominators in the rational fraction sum. Using the
same subproduct tree for evaluatingM ′ and for the rational fraction
sum gives the fastest interpolation algorithm, combining the text-
book method [6] with the multi-point evaluation of [2]. The total
computational cost is only 5

2M(n) log(n)+O(M(n)), while the space
is dominated by the size of this subproduct tree, n log(n) +O(n).

A more space-efficient approach can be derived using linear-
space multipoint evaluation. Since the subproduct must be essen-
tially recomputed on the first and last steps, the total running time
is (2λf +

7
2)M(n) log(n) +O(M(n)), using (2 +

1
2cf)n +O(n/log(n))

registers. This approach can be improved in two ways: first by
again grouping the interpolation points and re-using the smaller
subproduct trees for each group, and secondly by using an in-place
full multiplication algorithm from [8] to combine the results of each
group in the rational function summation. A detailed description of
the resulting algorithm, along with a proof of the following lemma,
can be found in the preprint version of this paper∗.

Lemma 3.3. Given a1, . . . ,an ∈ K and y1, . . . ,yn ∈ K, one can

compute F ∈ K[X] of size n such that F (ai) = yi for 1 ≤ i ≤ n

using 5M(n) log(n) + O(M(n) loglog(n)) operations in K and 2n +
O(n/log(n)) extra registers.

3.2 In-place multipoint evaluation

In order to derive an in-place algorithm we make repeated use of
the unbalanced multi-point evaluation with linear space to compute
only k evaluations of the polynomial F among the n original points.
The strategy is to set k as a fraction of n to ensure that n − k is
large enough to serve as extra space. Applying this strategy on
smaller and smaller values of k leads to Algorithm 4, which is
an in-place algorithm with the same asymptotic time complexity
O(M(n) log(n)) as out-of-place fast multipoint evaluation.

∗Available under reference arXiv:2002.10304.

215

https://arxiv.org/abs/2002.10304

Fast In-place algorithms for Polynomial Operations: Division, Evaluation, Interpolation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 4 In-Place Multipoint Evaluation (InPlaceEval)

Input: F ∈ K[X] of size n and (a1, . . . ,an) ∈ Kn ;
Output: R = (F (a1), . . . , F (an))

Required: Eval of space complexity ≤ (cs + 2)k as in Lemma 3.2
1: s ← 0, k ← ⌊n/(cs + 3)⌋
2: while k > 0 do
3: R[s ..s+k [← Eval(F ,as , . . . ,as+k) ▷ WS: R[s+k ..n[
4: s ← s + k

5: k ←
⌊

n−s
cs+3

⌋

6: R[s ..n[← Eval(F ,as , . . . ,an) ▷ constant space

Theorem 3.4. Algorithm 4 is correct. It uses O(1) extra space and
(

4 + 2λs/log(
cs+3
cs+2
)
)

M(n) log(n)+O(M(n) loglogn) operations inK.

Proof. The correctness is obvious as soon as Eval is correct.
By the choice of k and from the extra space bound of Eval from
Lemma 3.2, Step 3 has sufficient work space, and therefore the entire

algorithm is in-place. The sequence ki =
(cs+2)i−1

(cs+3)i
n, for i = 1, 2, . . .,

gives the values of k in each iteration. Then
∑

i ki ≤ n and the loop
terminates after at most ℓ log(n) iterations, where ℓ ≤ 1/log(cs+3cs+2

).
Applying Lemma 3.2, the cost of the entire algorithm is therefore
dominated by

∑

1≤i≤ℓ (2λsM(n) + 4M(ki) log(ki)), which is at most
(2λs ℓ + 4)M(n) log(n). □

Using a time-efficient short product with λs = 1 and cs = 3 yields
a complexity ≃ 11.61M(n) logn, which is roughly 11.61/1.5 = 7.74
times slower than the most time-efficient out-of-place algorithm.

3.3 In-place interpolation

Let (a1,y1), . . . , (an ,yn) be n pairs of evaluations, with the ai ’s pair-
wise distinct. Our goal is to compute the unique size-n polynomial
F ∈ K[X] such that F (ai) = yi for 1 ≤ i ≤ n, with an in-place
algorithm. Our first aim is to provide a variant of polynomial inter-
polation that computes F mod Xk usingO(k) extra space. Without
loss of generality, we assume that k divides n. For i = 1 to n/k , let
Ti =

∏ki
j=1+k (i−1)(X −aj) and Si = M/Ti whereM =

∏n
i=1(X −ai).

Note that Si =
∏

j,i Tj . One can rewrite Equation (3) as

F (X) = M(X)

n/k
∑

i=1

ki
∑

j=1+k(i−1)

F (aj)

M ′(aj)

1

(X − aj)

= M(X)

n/k
∑

i=1

Ni (X)

Ti (X)
=

n/k
∑

i=1

Ni (X)Si (X)

(4)

for some size-k polynomials N1, . . . , Nn/k . One may remark that
the latter equality can also be viewed as an instance of the chinese
remainder theoremwhereNi = F/Si mod Ti (see [6, Chapter 5]). To
get the first k terms of the polynomial F , we only need to compute

F mod Xk
=

n/k
∑

i=1

Ni (Si mod Xk) mod Xk
. (5)

One can observe that M ′(aj) = (Si mod Ti)(aj)T ′i (aj) for k(i −
1) < j ≤ ki . Therefore, Equation (4) implies that Ni is the unique
size-k polynomial satisfying Ni (aj) = (F/Si mod Ti)(aj) and can

be computed using interpolation. One first computes Si mod Ti ,
evaluates it at the aj ’s, performs k divisions in K to get each Ni (aj)

and finally interpolates Ni .

Our second aim is to generalize the previous approach when
some initial coefficients of F are known. Writing F = G + X sH

where G is known, we want to compute H mod Xk from some
evaluations of F . Since H has size at most (n − s), only (n − s)

evaluation points are needed. Therefore, using Equation (4) with
M =

∏n−s
i=1 (X − ai), we can write

H (X) = M(X)

(n−s)/k
∑

i=1

ki
∑

j=1+k (i−1)

F (aj) −G(aj)

asjM
′(aj)

1

(X − aj)
. (6)

This implies that H mod Xk can be computed using the same ap-
proach described above by replacing F (aj) with H (aj) = (F (aj) −

G(aj))/a
s
j . We shall remark that the H (aj)’s can be computed using

multipoint evaluation and fast exponentation. Algorithm 5 fully
describes this approach.

Algorithm 5 Partial Interpolation (PartInterpol)

Input: G ∈ K[X] of size s and (y1, . . . ,yn−s), (a1, . . . ,an−s) in
K
n−s ; an integer k ≤ n − s

Output: H mod Xk where F = G + X sH ∈ K[X] is the unique
size-n polynomial s.t. F (ai) = yi for 1 ≤ i ≤ n − s

1: for i = 1 to (n − s)/k do

2: Ski ← 1, STi ← 1

3: Ti ←
∏ki

j=1+k (i−1)(X − aj) ▷ Fast divide-and-conquer

4: for j = 1 to (n − s)/k , j , i do

5: Tj ←
∏k j

t=1+k(j−1)
(X − at) ▷ Fast divide-and-conquer

6: Ski ← Ski ×Tj mod Xk ▷ Ski = Si mod Xk

7: STi ← STi ×Tj mod Ti ▷ STi = Si mod Ti

8: GT ← G mod Ti
9: (b1, . . . ,bk) ← Eval(STi ,a1+k (i−1), . . . ,aki)

(z1, . . . , zk) ← Eval(GT ,a1+k (i−1), . . . ,aki)

10: for j = 1 to k do

11: bj ← (yj+k (i−1) − zj)/(a
s
j+k(i−1)

bj)

12: Ni ← Interpol((z1, . . . , zk), (b1, . . . ,bk))

13: H[0..k [← H[0..k [+ NiS
k
i mod Xk

Lemma 3.5. Algorithm 5 is correct. It requires 6k +O(k/logk) extra

space and it uses
(

1
2 (

n−s
k
)2 + 23

2
n−s
k

)

M(k) log(k) + (n − s) log(s) +

O((n−s
k
)2M(k) loglogk) operations in K.

Proof. The correctness follows from the above discussion. In
particular, note that the polynomials Ski and STi at Steps 6 and 7

equal Si mod Xk and Si mod Ti respectively. Furthermore, zj =
G(aj+k(i−1)) since G(aj+k (i−1)) = (G mod Ti)(aj+k (i−1)). Hence,
Step 12 correctly computes the polynomialNi and the result follows
from Equations (5) and (6).

From the discussion in Section 3.1, we can compute each Ti in
1/2M(k) log(k)+O(M(k) loglogk) operations inK andk extra space.
Step 9 requires some care as we can share some computation among
the two equal-size evaluations. Indeed, the subproduct trees induced

216

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Pascal Giorgi, Bruno Grenet, and Daniel S. Roche

by this computation are identical and thus can be computed only
once. Using Lemma 3.1, this amounts to 13

2 M(k) log(k) +O(M(k))
operations in K using k + O(k/logk) extra space. Step 12 can be
done in 5M(k) log(k) +O(M(k) loglogk) operations in K and 2k +
O(k/logk) extra space using Lemma 3.3. Taking into account the
n − s exponentations asj , and that other steps have a complexity in

O(M(k)), the cost of the algorithm is

(

1

2

(n − s

k

)2
+

23

2

n − s

k

)

M(k) log(k) + (n − s) log(s)

+O

(

(n − s

k

)2
M(k) loglogk

)

.

We show that 6k + O(k/logk) extra registers are enough to
implement this algorithm. At Step 7, the polynomials Ti ,Tj , Ski , S

T
i

must be stored in memory. The computation involved at this step
requires only 2k extra registers as STi ×Tj mod Ti can be computed
with an in-place full product (stored in the extra registers) followed
by an in-place division with remainder using the registers of STi and
Tj for the quotient and remainder storage. Using the same technique
Step 8 requires only k extra space as for Steps 2 to 6. At Step 9,
we need 3k registers to store GT , S

T
i , S

k
i and 2k registers to store

(b1, . . . ,bk) and (z1, . . . , zk), plus k +O(k/logk) extra register for
the computation. At Step 12 we re-use the space of GT , STi for Ni

and the extra space of the computation which implies the claim. □

We can now provide our in-place variant for fast interpolation.

Algorithm 6 In-Place Interpolation (InPlaceInterpol)

Input: (y1, . . . ,yn) and (a1, . . . ,an) of size n such that ai ,yi ∈ K;
Output: F ∈ K[X] of size n, such that F (ai) = yi for 0 ≤ i ≤ n.
Required: PartInterpol with space complexity ≤ cpik

1: s ← 0
2: while s < n do

3: k ←
⌊

n−s
cpi+1

⌋

4: if k = 0 then k ← n − s

5: Y ,A← (y1, . . . ,yn−s), (a1, . . . ,an−s)

6: F[s ..s+k [← PartInterpol(F[0..s[,Y ,A,k)

7: s ← s + k

Theorem 3.6. Algorithm 6 is correct. It uses O(1) extra space and
at most 1

2 (c
2
+ 23c)M(n) logn + O(M(n) loglogn) operations in K,

where c = 1 + cpi .

Proof. The correctness is clear from the correctness of Algo-
rithm PartInterpol. To ensure that the algorithm uses O(1) extra
space we notice that at Step 6, F[s+k ..n[can be used as work space.
Therefore, as soon as cpik ≤ n − s − k , that is, k ≤ n−s

cpi+1
, this

free space is enough to run PartInterpol. Note that when k = 0,
n−s < cpi +1 is a constant, which means that the final computation
can be done with O(1) extra space. Let k1, k2, . . . , kt and s1, s2, . . . ,
st be the values of k and s taken during the course of the algorithm.
Since si =

∑i
j=1 kj ≤ n with s0 = 0, we have ki ≤ λn(1− λ)i−1, and

si ≥ n(1 − (1 − λ)i) where λ = 1
cpi+1

. The time complexity T (n) of

the algorithm satisfies

T (n) ≤

t
∑

i=1

(

c2

2
+

23c

2

)

M(ki) log(ki) +
t

∑

i=1

(n − si−1) log(si−1)

+O(c2M(ki) loglogki)

since n−si−1
ki
≤ c = cpi + 1 by definition of ki . Moreover, we have

∑t
i=1M(ki) log(ki) ≤ M(

∑

i ki) logn ≤ M(n) log(n). By definition

of si , we have n − si ≤ n(1 − λ)i which gives

t
∑

i=1

(n − si−1) log(si−1) ≤ n log(n)
t

∑

i=1

(1 − λ)i ≤ (cpi + 1)n logn.

This concludes the proof. □

Since cpi < 6 + ϵ for any ϵ > 0, the complexity can be approxi-
mated to 105M(n) log(n), which is 42 times slower than the fastest
interpolation algorithm (see Table 1).

ACKNOWLEDGMENTS

We thank Grégoire Lecerf, Alin Bostan and Michael Monagan for
pointing out the references [7, 16].

REFERENCES
[1] D.J. Bernstein. 2008. Fast multiplication and its applications. In Algorithmic

Number Theory. MSRI Pub., Vol. 44. Cambridge University Press, 325ś384.
[2] A. Bostan, G. Lecerf, and É. Schost. 2003. Tellegen’s Principle into Practice. In

ISSAC’03. ACM, 37ś44. https://doi.org/10.1145/860854.860870
[3] D. G. Cantor and E. Kaltofen. 1991. On fast multiplication of polynomials over

arbitrary algebras. Acta Inform. 28, 7 (1991), 693ś701. https://doi.org/10.1007/
BF01178683

[4] S. A. Cook. 1966. On the minimum computation time of functions. Ph.D. Disserta-
tion. Harvard University.

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. 1999. Cache-Oblivious
Algorithms. In FOCS’99. IEEE, 285ś297. https://doi.org/10.1109/SFFCS.1999.
814600

[6] J. von zur Gathen and J. Gerhard. 2013. Modern Computer Algebra (3rd ed.).
Cambridge University Press.

[7] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring
polynomials. Comput. Complex. 2, 3 (1992), 187ś224. https://doi.org/10.1007/
BF01272074

[8] P. Giorgi, B. Grenet, and D. S. Roche. 2019. Generic reductions for in-place
polynomial multiplication. In ISSAC’19. ACM, 187ś194. https://doi.org/10.1145/
3326229.3326249

[9] G. Hanrot, M. Quercia, and P. Zimmermann. 2004. The Middle Product Algorithm
I. Appl. Algebr. Eng. Comm. 14, 6 (2004), 415ś438. https://doi.org/10.1007/s00200-
003-0144-2

[10] D. Harvey and J. van der Hoeven. 2019. Polynomial multiplication over finite
fields in time O(n log n). (2019). https://hal.archives-ouvertes.fr/hal-02070816/

[11] D. Harvey and D. S. Roche. 2010. An in-place truncated Fourier transform and
applications to polynomial multiplication. In ISSAC’10. ACM, 325ś329. https:
//doi.org/10.1145/1837934.1837996

[12] A. Karatsuba and Y. Ofman. 1963. Multiplication of Multidigit Numbers on
Automata. Sov. Phys. - Dok. 7 (1963), 595ś596.

[13] A. H. Karp and P. Markstein. 1997. High-precision division and square root. ACM
Trans. Math. Software 23, 4 (1997), 561ś589. https://doi.org/10.1145/279232.279237

[14] H. T. Kung. 1974. On computing reciprocals of power series. Numer. Math. 22, 5
(1974), 341ś348. https://doi.org/10.1007/BF01436917

[15] R.Moenck andA. Borodin. 1972. Fast modular transforms via division. In SWAT’72.
IEEE, 90ś96. https://doi.org/10.1109/SWAT.1972.5

[16] M. Monagan. 1993. In-place arithmetic for polynomials over Zn. In DISCO’93,
Vol. 721. Springer, 22ś34. https://doi.org/10.1007/3-540-57272-4_21

[17] D. S. Roche. 2009. Space- and Time-efficient Polynomial Multiplication. In IS-
SAC’09. ACM, 295ś302. https://doi.org/10.1145/1576702.1576743

[18] A. Schönhage. 1988. Probabilistic computation of integer polynomial GCDs. J.
Algorithms 9, 3 (1988), 365ś371. https://doi.org/10.1016/0196-6774(88)90027-2

[19] A. Schönhage and V. Strassen. 1971. Schnelle Multiplikation großer Zahlen.
Computing 7, 3 (1971), 281ś292. https://doi.org/10.1007/BF02242355

[20] E. Thomé. 2002. Karatsuba multiplication with temporary space of size ≤ n.
(2002). https://hal.archives-ouvertes.fr/hal-02396734

217

https://doi.org/10.1145/860854.860870
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/BF01178683
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1007/BF01272074
https://doi.org/10.1007/BF01272074
https://doi.org/10.1145/3326229.3326249
https://doi.org/10.1145/3326229.3326249
https://doi.org/10.1007/s00200-003-0144-2
https://doi.org/10.1007/s00200-003-0144-2
https://hal.archives-ouvertes.fr/hal-02070816/
https://doi.org/10.1145/1837934.1837996
https://doi.org/10.1145/1837934.1837996
https://doi.org/10.1145/279232.279237
https://doi.org/10.1007/BF01436917
https://doi.org/10.1109/SWAT.1972.5
https://doi.org/10.1007/3-540-57272-4_21
https://doi.org/10.1145/1576702.1576743
https://doi.org/10.1016/0196-6774(88)90027-2
https://doi.org/10.1007/BF02242355
https://hal.archives-ouvertes.fr/hal-02396734

Subdivisions for Macaulay Formulas of Sparse Systems

Friedemann Groh
Industrielle Steuerungstechnik GmbH

Stuttgart, Germany

ABSTRACT

In a seminal article [7], D’Andrea describes a method for determin-

ing Macaulay-type formulae for the resultants of sparse polynomial

systems. His algorithm works recursive, reducing the dimension

𝑛 of the problem at each step. In doing do, he applies a certain

coherent mixed subdivision of the given Newton polytopes into

cells, each representing a system with smaller dimension. To sim-

plify this procedure, we insert an intermediate step in which these

reduced systems are transferred to the 𝑛-dimensional domain of the

complete cells. As a consequence, the input system of each iteration

step need not contain an additional polytope and only one system

per secondary cell has to be considered. The individual subdivisions

determined in various steps of the algorithm are combined into a

single subdivision of the whole problem. Only then, the matrix for

calculating the resultant is determined. To prove our method, we

generalize a theorem of [22] on the initial form of resultants with

respect to coherent mixed subdivisions.

CCS CONCEPTS

· Mathematics of computing→ Solvers.

KEYWORDS

Macaulay Formula, Resultants, Polynomial Systems, Polyhedral

Subdivisions

ACM Reference Format:

Friedemann Groh. 2020. Subdivisions for Macaulay Formulas of Sparse

Systems. In International Symposium on Symbolic and Algebraic Computation

(ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3373207.3403988

1 INTRODUCTION

Resultants are versatile instruments for solving algebraic problems,

such as implicit representations [17]. For example, the equation of

the intersection curve of two NURB surfaces is a resultant [2]. This

opens up applications in computational geometry: In CAD systems

the definition of edge loops in STEP format can be improved, since

according to the state of the art such intersection curves are only

approximated. [2] describe the implicit equation of the intersection

curve of two surfaces as the determinant of a single Bézout matrix.

Such a simple representation is not always possible. For general

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3403988

sparse systems (1) Macaulay-type formulas provide a sensible ap-

proach, since they allow to calculate resultants as a fraction of two

determinants.

𝑓𝑖 (𝑥1, · · · , 𝑥𝑛) =
∑

𝑎∈A𝑖

𝑐𝑖,𝑎𝑥
𝑎 with 𝑐𝑖,𝑎 ≠ 0 and 𝑖 = 0, . . . , 𝑛. (1)

Further, polynomial systems can be solved via resultants by hiding

one of the unknowns in the field of coefficients [13] and [21]. [6] and

[12] provide an overview of various methods for solving polynomial

systems, and [23] describes numerous applications.

1.1 Previous Work

D’Andrea [7] was the first to prove that resultants of sparse poly-

nomial systems (1) can be calculated via Macaulay style formulas

as a fraction of two determinants [20]. These systems are specified

by their family 𝔉 ≔ {A0, . . . ,A𝑛} of support sets. D’Andrea’s

algorithm stepwise reduces the dimension of the problem. For this,

it is decomposed by a subdivision Δ𝒃 (𝔉), which is generated via

lifting functions 𝜔𝑖 : A𝑖 → Q that vanish except a at single point 𝒃

in one of the support sets. Moreover, he introduced additional auxil-

iary polytopes, which may have vertices with rational coordinates.

It can be interpreted as a twist of the given system and does not

change its resultant. Emiris and Konaxis [16] determine a single lift-

ing function to obtain subdivisions suitable for Macaulay-Formulas

of generalized unmixed problems. Their algorithm introduces ad-

ditional points with rational coordinates. In a very recent article,

D’Andrea, Jeronimo and Sombra [9] also determine a subdivision

suitable for Macaulay formulae, which proves a conjecture of Canny

and Emiris.

In view of their significance, there are different approaches for

calculating resultants efficiently. They can be understood as deter-

minants of a complex 𝑽
• (𝔉) of finite dimensional vector spaces

𝑉𝑟 (𝔉) embedded in the Koszul complex of given polynomials, as

in [18] and [5]. By restricting the differentials of this surrounding

Koszul complex, we obtain mappings 𝐷𝑟 : 𝑉𝑟 (𝔉) → 𝑉𝑟−1 (𝔉) with

Sylvester-like matrices. For systems of homogeneous polynomials

[8] map the terms of this complex via Bézout matrices into suitable

dual spaces. This way, they define new differentials in which Bézout

and Sylvester-like matrices are combined, so that their dimensions

can be reduced, see also [11].

1.2 Main result and open questions

The purpose of the present work is to simplify the algorithm of

[7] so that additional auxiliary polytopes are no longer required.

Moreover, the refined method yields a coherent subdivision ΔM (𝔉)

of the mixed family 𝔉 of support sets A𝑖 ⊂ Z
𝑛 . So the matrix M

and its sub-matrix E, required to calculate the resultant Res(𝔉)

via Macaulay’s formula (2), can be obtained in a single step at the

end of the procedure. As with [7], we decompose the family 𝔉

into cells ℭ𝛼 by a subdivision Δ𝒃 (𝔉), specified by a point 𝒃 in one

218

https://doi.org/10.1145/3373207.3403988
https://doi.org/10.1145/3373207.3403988

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Groh

of the support sets. Each of these cells contains an essential sub-

family ℭ𝛼 |𝜗 representing a polynomial system with a dimension

less than that of the surrounding space. We extend subdivisions

ΔM (ℭ𝛼 |𝜗) of this subfamily to the complete system of the cell ℭ𝛼 .

Our main result is Theorem 2.12, which states, that this mapping of

subdivisions: ΔM (ℭ𝛼 |𝜗) ↦→ ΔM (ℭ𝛼) preserves the suitability for

Macaulay-Formulas.

To prove this theorem, the product formula in Theorem 4.1 of

[22], with which the initial form init𝜔Res(𝔉) of a resultant with

respect to coherent subdivisions Δ𝜔 (𝔉) can be calculated, is gener-

alized for arbitrary families𝔉 of support sets. For this, we apply the

redefined resultant in [10], which may also contain multiplicities.

Theorem 12 allows the subdivision ΔM (𝔉) of the input system to

be assembled step by step, as in [7] with descending dimensions. It

might be more efficient to first determine a globally defined lifting

function instead, as in [16]. The support sets’ Cayley embedding

determine the secondary polytope, which have a face lattice isomor-

phic to the poset of coherent mixed subdivisions of the family𝔉,

[22] and [15] for an example. It would be interesting to investigate

properties of those faces on this secondary polytope, which are

assigned to the subdivisions suitable for Macaulay formulae.

1.3 Summary

This article is divided in two parts: Section 2 describes the calcula-

tion of subdivisions ΔM (𝔉) suitable for Macaulay-style formulas,

and the closing section 3 explains this algorithm using an example.

The central section 2 in turn is organized into five parts: Subsec-

tion 2.1 first addresses coherent mixed subdivisions Δ𝜔 (𝔉), then

deals with affine lattices 𝑳 ⊂ Z𝑛 generated by the support sets A𝑖

formed by the polynomial’s exponents vectors, the definition of

essential families of these support sets and finally introduces the

generalized Sylvester matrix 𝐷 [𝔉]; the greatest common divisor

of all its maximum minors yields the redefined resultant. To prove

the method presented, section 2.2 is concerned with initial resul-

tants init𝜔 (Res(𝔉)), with respect to coherent subdivisions. They

are formed by all terms on faces of the resultant’s Newton polytope

NRes(𝔉) and can be calculated with the product formula of [22],

which we generalize here for arbitrary families𝔉 of support sets.

Therefore we extend the Geometric Lemma of [4] with a result of [7].

The following section 2.3 discusses the transfer ΔM (𝔉𝜗) ↦→ ΔM (𝔉)

of a subdivision of an essential subfamily𝔉𝜗 to the complete prob-

lem. If the first is suitable for Macaulay formulas, then it is also

the second. The fourth subsection 2.4 describes the iteration step

inspired by D’Andrea. In doing so, a particular subdivision Δ𝒃 (𝔉)

decomposes the family of the 𝑛-dimensional system into smaller

problems with reduced dimensions. According to the induction

hypothesis, they have subdivisions suitable for Macaulay formulas.

These are combined to form a subdivision ΔM (𝔉) of the given prob-

lem, whereby we avoid auxiliary polytopes. The concluding section

3 explains the previously described method with an example.

2 SUBDIVISION FOR MACAULAY-FORMULAS

To calculate resultants of algebraic systems (1), defined by the family

𝔉, via Macaulay-style formulas, a mixed subdivision ΔM (𝔉) of the

Minkowski sum 𝑄 has to be specified, with the latter formed by

Newton polytopes 𝑄𝑖 ≔ conv(A𝑖) of the support sets A𝑖 in 𝔉.

Such subdivisions are introduced in [1] and [18] in chapter 7. They

consist of cells ℭ𝛼 = {C𝛼,0, . . . , C𝛼,𝑛}, which in turn are families of

subsets C𝛼,𝑖 ⊂ A𝑖 of the given supports. These cells component’s

Minkowski sums
∑𝑛
𝑖=0 C𝛼,𝑖 are disjoint and their union covers the

sum of all support sets. Coherent mixed subdivisions (CMD) are

determined by lifting functions 𝜔𝑖 : A𝑖 → Q, [18]. They are

called tight (TCMD), if in each cell, the dimensions of its individual

components’ convex hulls 𝐹𝛼,𝑖 ≔ conv(C𝛼,𝑖) add up to that of the

surrounding space. Moreover, the Minkowski sum of these hulls is

designated as the domain 𝑭𝛼 of the cell.

Definition 2.1. Each cell ℭ𝛼 , which contains a single vertex

dimC𝛼,𝑖 = 0 and otherwise only edges dimC𝛼,𝑘 = 1 for 𝑘 ≠ 𝑖 ,

is referred to as mixed. All other cells are called non-mixed.

In a recursive procedure, the resultants of these cells are also

determined. To circumvent restrictions on the family of support

sets in this step, we use the refined version of resultants, defined

by [10]. Generally, it is a multiple of the sparse-resultants, which

is also referred to as the eliminant of the system. For coherent

tight subdivisions (TCMD), [4] define a regular sub-matrixM of the

generalized Sylvester map 𝐷 [𝔉], so that its determinant contains

the resultant as a factor. Moreover, its maps onto the first space 𝑉0,

see also [14]. The non-mixed cells of the TCMD determine in turn

a smaller sub-matrix E. We will show that for each family𝔉 there

is a subdivision ΔM (𝔉), so that the resultant can be calculated by

means of a Macaulay-style formula, as a fraction of determinants:

Res(𝔉) =
det(M)

det(E)
. (2)

If the resultant of the sparse polynomial system (1) can be calcu-

lated with such an equation, the subdivision ΔM (𝔉) is referred to

as suitable for a Macaulay formula. The presented algorithm to

determine it is based on [7]. Accordingly, the given family𝔉 is first

decomposed into a series of cells ℭ𝛼 , using a subdivision Δ𝒃 (𝔉)

formed by lifting functions𝜔𝑖 , which vanish except at a single point

𝒃 ∈ A𝑛 in the last support. Each of these cells ℭ𝛼 contains an essen-

tial sub-family ℭ𝛼 |𝜗 ≔ {C𝛼 |𝑖 }𝑖∈𝜗 , representing a polynomial sys-

tem of reduced dimension. According to the induction hypothesis

they have subdivisions ΔM (ℭ𝛼 |𝜗), which are suitable for Macaulay

formulas. We introduce a mapping ΔM (ℭ𝛼 |𝜗) ↦→ ΔM (ℭ𝛼) that pre-

serves this property. This way, also the cells with 𝑛-dimensional

domains are subdivided, and the union of these parts, yields the

subdivision ΔM (𝔉) of the complete input system.

2.1 Definitions

Coherent mixed subdivisions of Minkowski sums𝑄 with the family

𝔉 of support sets are determined by lifting functions 𝜔𝑖 : A𝑖 → Q;

they are referred to as Δ𝜔 (𝔉). To obtain them, the given support

sets are extended Â𝑖 ≔ {(𝑎,𝜔𝑖 (𝑎)) : 𝑎 ∈ A𝑖 } with the values of

the lifting functions. These points’ convex hulls are accordingly

designated �̂�𝑖 ≔ conv(Â𝑖). Finally, the cells of Δ𝜔 (𝔉) are formed

by the facets on the lower envelope 𝜕− (�̂�) of the Minkowski sum

of all lifted polytopes, �̂� ≔
∑𝑛
𝑖=0 �̂�𝑖 . These facets are determined

by their inward normals 𝑣𝛼 = (𝒗𝛼 , 𝑣𝛼,𝑛+1) ∈ Q𝑛 × Q. The last

coordinates 𝑣𝛼,𝑛+1 are positive, since the lower envelope of the lifted

sum �̂� is considered here, as in [19]. We refer to the face in direction

of the inward normal 𝑣𝛼 as 𝑭𝛼 (�̂�) ≔ face𝑣𝛼 �̂� . Furthermore, the

219

Subdivisions for Macaulay Formulas of Sparse Systems ISSAC ’20, July 20–23, 2020, Kalamata, Greece

canonical projection 𝜋1 : R
𝑛 ×R→ R𝑛 onto the first 𝑛-coordinates

maps facets on 𝜕− (�̂�) to the domains of corresponding cells: 𝑭𝛼 =

𝜋1 (𝑭𝛼 (�̂�)).

Sub-families of supports selected by an index set 𝜗 ⊂ {0, . . . , 𝑛}

will be designated as 𝔉𝜗 . The finest lattice of integers contained

in the affine hull of the Minkowski sum A𝜗 ≔
∑𝑛
𝑖∈𝜗

A𝑖 of their

support sets, is referred to as 𝑳𝜗 ≔ Z
𝑛∩affR (A𝜗). For the complete

family𝔉 this lattice is abbreviated with 𝑳 in the following.

Definition 2.2. A family𝔉𝜗 = {A𝑖 }𝑖∈𝜗 of support sets is essential

if the rank of the affine lattice 𝑳𝜗 equals #𝜗 − 1 and moreover

rank(𝑳𝜃) ≥ #𝜃 for all proper subsets 𝜃 of 𝜗 .

If there is a unique essential 𝔉𝜗 family contained in 𝔉, then

according to Corollary 1.1. in [22], the resultant Res(𝔉) depends

only on coefficients of the polynomials (1) with supports A𝑖 in𝔉𝜗 .

If there is no such family, the resultant is equal to one. In this article,

Res(𝔉) denotes the redefined resultant of [10]. For non-essential

families𝔉 of supports it is a multiple of the sparse resultant, which

in turn is irreducible or constant. As in [10], the latter is referred to

as Elim(𝔉) here. If the family of support sets is essential and the

affine integer lattice affZ (
∑𝑛
𝑖=0 A𝑖) generated by their Minkowski

sum agrees with the generally finer grid 𝑳, then the eliminant and

resultant are identical. To determine resultants, we consider the

Sylvester map, which assigns an element in the ideal ⟨𝑓0, . . . , 𝑓𝑛⟩ to

each 𝑛 + 1 tuple of polynomials. Here, 𝒆𝑖 ∈ C
𝑛 denote unit vectors.

𝐷 [𝔉] : 𝑥𝑝𝒆𝑖 ↦→ 𝑥𝑝 𝑓𝑖 (𝑥) (3)

As in Canny and Emiris [3], [4] its image space 𝑉0 (𝔉) is restricted

to polynomials with exponent vectors 𝑞 ∈ 𝑳 inside the Minkowski

sum 𝑄 of all Newton polytopes shifted by the generically chosen

vector 𝛿 ∈ Q𝑛 . The corresponding range space is denoted by𝑉1 (𝔉),

where the sum 𝑃𝑖 ≔
∑

𝑘∈{0,...,𝑛}\{𝑖 } 𝑄𝑘 is required.

𝑉0 (𝔉) ≔ span{𝑥𝑞 : 𝑞 ∈ 𝑳 ∩ (𝑄 + 𝛿)} (4)

𝑉1 (𝔉) ≔ ⊕𝑛
𝑖=0

(

span{𝑥𝑝𝒆𝑖 : 𝑝 ∈ 𝑳 ∩ (𝑃𝑖 + 𝛿)
)

} (5)

These definitions apply to any family𝔉 of support sets. If𝑞 ∈ 𝑝+A𝑖

applies, the components of 𝐷 [𝔉] are given by (6), otherwise they

are zero.

𝐷
𝑞
𝑝,𝑖 = 𝑐𝑖,𝑞−𝑝 with 𝑞 ∈ 𝑝 + A𝑖 (6)

Since the cells ℭ𝛼 of a subdivision are families of certain support

sets C𝛼,𝑖 ⊂ A𝑖 as well, they determine via Definition (4) subspaces

𝑉𝑟 (ℭ𝛼) ⊂ 𝑉𝑟 (𝔉). All the Minkowski sums
∑𝑛
𝑖=0 C𝛼,𝑖 of the cell

components form a disjoint cover of the complete setA. Therefore,

the image and range of the Sylvester map decomposes into a direct

sum of the subspaces, related to the cells ℭ𝛼 of the subdivision.

𝑉𝑟 (𝔉) = ⊕𝛼𝑉𝑟 (ℭ𝛼) (7)

This subspaces are not invariant under actions of the Sylvester map.

2.2 Initial resultant of a coherent subdivision

D’Andrea [7] realised the importance of initial resultants to spec-

ify a submatrix E, whose determinant is the denominator of the

Macaulay formula (2). To calculate them, we replace the coefficients

of the algebraic system by functions 𝑡 ↦→ 𝑐𝑖,𝑎𝑡
𝜔𝑖 (𝑎) , wherein the

exponents are given by the lifting functions 𝜔𝑖 : A𝑖 → Q, as in

[22] and [4]. The corresponding resultant of the polynomial system

varied by the parameter 𝑡 is denoted as Res(𝔉𝑡) subsequently. As

we consider the lower envelope of the lifted polytope �̂� to obtain

subdivisions, the initial form init𝜔 (Res(𝔉)) of the resultant with

respect to the given lifting functions, is that term of the 𝑡-dependent

resultant 𝑡 ↦→ Res(𝔉𝑡) which has the lowest degree in the parame-

ter 𝑡 of variation. Resultants are polynomials, which in turn depend

on the coefficients 𝑐𝑖,𝑎 of the given system (1). To describe initial

forms also by the respective Newton polytopeNRes it is convenient

to combine the values of each function 𝜔𝑖 on the support sets A𝑖

in a single lifting vector 𝜔 ∈ Q𝑚 with𝑚 ≔
∑𝑛
𝑖=0 #A𝑖 denoting the

total number of terms in the system.

Definition 2.3 (Initial Resultant). The initial form init𝜔 (Res(𝔉))

is the sum of all termswith exponent vectors that lie on face𝜔 (NRes)

in direction of the lifting vector 𝜔 ∈ Q𝑚 , which defines the coher-

ent subdivision Δ𝜔 (𝔉). It agrees with the part of the 𝑡-dependent

resultant Res(𝔉𝑡) that has the smallest power with respect to the

parameter 𝑡 of variation.

The given lift functions define a convex function ℎ which assigns

a point in the shifted Minkowski’s sum 𝑄 + 𝛿 to the height of the

lower envelope of the lifted polytope �̂� + (𝛿, 0).

ℎ(𝑞) ≔min
{

𝑦 ∈ R : (𝑞,𝑦) ∈ �̂� + (𝛿, 0)
}

(8)

ℎ𝑖 (𝑝) ≔min
{

𝑦 ∈ R : (𝑝,𝑦) ∈ 𝑃𝑖 + (𝛿, 0)
}

(9)

The 𝑡-dependent Sylvester maps, obtained when replacing the co-

efficients by 𝑐𝑖,𝑎𝑡
𝜔𝑖 (𝑎) , are referred to as 𝐷 (𝑡) subsequently. To

determine the initial resultant init𝜔 (Res(𝔉)), we further scale the

rows and columns of their matrices and therefore introduce the

mappings 𝑻 0 : 𝑥𝑞 ↦→ 𝑡ℎ (𝑞)𝑥𝑞 and 𝑻 1 : 𝑥𝑝𝒆𝑖 ↦→ 𝑡ℎ𝑖 (𝑝)𝑥𝑝𝒆𝑖 , using

the level functions (8), for the spaces 𝑉𝑘 (𝔉). These automorphisms

have diagonal matrices. Finally, we define the scaled 𝑡-dependent

Sylvester maps �̂� (𝑡) ≔ 𝑻 0
−1𝐷 (𝑡)𝑻 1, which have the components,

with respect to the base vectors 𝑥𝑞 and 𝑥𝑝𝒆𝑖 :

�̂�
𝑞
𝑝,𝑖 (𝑡) = 𝑡−ℎ (𝑞)𝐷

𝑞
𝑝,𝑖 (𝑡) 𝑡

ℎ𝑖 (𝑝) = 𝑡ℎ𝑖 (𝑝)+𝜔𝑖 (𝑞−𝑝)−ℎ (𝑞) 𝐷
𝑞
𝑝,𝑖 . (10)

Their initial parts with respect to the lowest degree of the param-

eter 𝑡 decomposes into a direct sum which is compatible with (7)

and thus corresponds to the cells of the subdivision Δ𝜔 (𝔉) under

consideration. This statement will be proven by the following two

lemmas. First we note, that the fourth point of Lemma 3.11 in [7] is

valid for any coherent mixed subdivision Δ𝜔 (𝔉). In a second step,

we use it to generalize the Geometric Lemma 4.5 given in [4]. By

definition, 𝑃𝑖 +𝑄𝑖 = 𝑄 applies.

Lemma 2.4. Let 𝒗𝛼 and 𝒗𝑏 be directions generating two different

cells of a coherent subdivision, further 𝑭𝛼 (𝑃𝑖) and 𝑭𝑏 (�̂�) denote the

facets they support on the lifted partial sums 𝑃𝑖 and �̂� . Then, for each

point 𝑝 inside the first facet 𝑭𝛼 (𝑃𝑖) the intersection (𝑝 + �̂�𝑖) ∩ 𝑭𝑏 (�̂�)

is empty.

Proof. Let 𝒖 be the projection of the inner normal 𝒗𝑏 of the

facet 𝑭𝑏 (�̂�) to the co-dimension one subspace, which is parallel to

the first facet 𝑭𝛼 (𝑃𝑖). Further, suppose there was a point 𝑞 in the

intersection (𝑝+�̂�𝑖)∩𝑭𝑏 (�̂�). The points𝑞𝜆 ≔ 𝑞+𝜆𝒖 are outside the

sum �̂� for negative parameters 𝜆. Moreover, we consider the parallel

line of points 𝑝𝜆 ≔ 𝑝+𝜆𝒖 on the facet 𝑭𝛼 (𝑃𝑖). It is translated by the

difference 𝑞 − 𝑝 ∈ �̂�𝑖 , so that each point 𝑞𝜆 is contained in the sum

𝑝𝜆 + �̂�𝑖 for any 𝜆 ∈ R . Since 𝑝 is an interior point on its facet, there

220

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Groh

is a neighbourhood of 𝜆 = 0 so that 𝑝𝜆 ∈ 𝑭𝛼 (𝑃𝑖) is also valid. The

convexity of all Newton polytopes implies inclusion 𝑝𝜆 + �̂�𝑖 ⊂ �̂�

for these parameters. However, this contradicts 𝑞𝜆 ∉ �̂� for 𝜆 < 0,

which proves the lemma. □

Lemma 2.5 (Geometric). Let 𝑝 be an interior point of the facet

𝑭𝛼 (𝑃𝑖), then 𝑝 + �̂�𝑖 ⊂ �̂� and its intersection with the lower convex

hull 𝜕− (�̂�) equals the face: 𝑝 + 𝑭𝛼 (�̂�𝑖) = (𝑝 + �̂�𝑖) ∩ 𝜕− (𝑄).

Proof. The first inclusion follows from the convexity of Newton

polytopes and the assumption 𝑃𝑖 +𝑄𝑖 = 𝑄 . The lower hull 𝜕− (�̂�) is

the union of the cells 𝑭𝑏 (�̂�), which in turn determine a subdivision

of (𝑄,𝔉). According to Lemma 2.4, intersections of the polytope

𝑝 +�̂�𝑖 with facets, whose indices 𝑏 differ from 𝛼 , are empty. Thus, it

is sufficient to examine case (𝑝 + �̂�𝑖) ∩ 𝑭𝛼 (�̂�) only. To begin with,

inclusion 𝑝 + 𝑭𝛼 (�̂�𝑖) ⊂ 𝑭𝛼 (�̂�) results from the additivity of the

mapping to faces 𝑭𝛼 (𝑃𝑖) + 𝑭𝛼 (�̂�𝑖) = 𝑭𝛼 (�̂�) and the assumption

𝑝 ∈ 𝑭𝛼 (𝑃𝑖). Let us suppose that there is a point 𝑞 in the polytope

�̂�𝑖 which is not in its face in the direction of 𝒗𝛼 , then there would

be another point 𝑞𝛼 ∈ 𝑭𝛼 (�̂�) so that the product 𝒗𝑇𝛼 · (𝑞 − 𝑞𝛼)

is positive. Hence, 𝑝 cannot lie in this facet, so that the identity

𝑝 + 𝑭𝛼 (�̂�𝑖) = (𝑝 + �̂�𝑖) ∩ 𝑭𝛼 (�̂�) is valid. □

For tight coherent mixed subdivisions (TCMD), the sum of the

dimensions of all surfaces in each cell ℭ𝛼 agrees with that of the

ambient space:
∑𝑛
𝑖=0 dim 𝐹𝛼,𝑖 = 𝑛. Because we assume that both

𝑭𝛼 (𝑃𝑖) and 𝑭𝛼 (�̂�) are facets, 𝑭𝛼 (�̂�𝑖) must be a vertex. Therefore,

in this case, we obtain the Geometric Lemma of [4]. It also shows

that, if the sum 𝑄 is 𝑛-dimensional, regular Newton matrices can

be determined exactly as in [4]. With this algorithm 𝑛 + 1 of such

matrices M𝑘 can be determined, so that according to Theorem 7.4

in [4] the degree of homogeneity of their determinants with the

mixed volume𝑀𝑉 of all Newtonian polytopes except 𝑄𝑘 is given.

deg𝑘 (detM𝑘) = 𝑀𝑉 (𝑄0, . . . , 𝑄𝑘−1, 𝑄𝑘+1, . . . , 𝑄𝑛) (11)

In this more general case, however, their greatest common divi-

sor can be a multiple of the eliminant. In the recursive method

presented, we need the Macaulay formula also for other systems

formed by cells of decompositions. Here, its essentiality cannot

be assumed. Hence, a generalized version of Theorem 3.1 in [22]

suitable for the redefined resultant is required: Proposition 4.17 in

[9] provides the desired statement.

detM𝑘 = 𝑝𝑘 res(𝔉) with deg𝑘 (𝑝𝑘) = 0. (12)

Since this equation applies to all indices 𝑘 = 0, . . . , 𝑛 the resultant

can be specified as in Corollary 4.21, [9], via determinants of the

related Newton-matrices M𝑘 of Canny-Emiris type.

Proposition 2.6. The redefined resultant Res(𝔉) is the greatest

common divisor of detM0, . . . , detM𝑛 with Newton matricesM𝑘 .

Subsequently, the last polynomial 𝑓𝑛 (𝑥) always has the particular

meaning in the Canny Emiris algorithm, so that we only consider

the Newton matrix M = M𝑛 . The degree of homogeneity of the

redefined resultant is given according to Proposition 3.4 in [10] by

the mixed volume as in equation (11).

deg𝑘 (res(𝔉)) = 𝑀𝑉 (𝑄0, . . . , 𝑄𝑘−1, 𝑄𝑘+1, . . . , 𝑄𝑛) (13)

Since the Geometric lemma 2.5 does not presuppose the essentiality

of𝔉, the Theorem 6.4 in [4], which states that the Newton matrices

are regular, can be extended to the general case. In the proof of this

theorem a leading Newton matrix is defined as in Equation (10),

which is diagonal if 𝜔 generates a tight subdivision. For general

lifting functions 𝜔 , this results in a blockwise diagonal matrix as

with Proposition 3.12. in [7].

Inspired by this, we will examine the leading terms of the 𝑡-

dependent Sylvester map �̂� (𝑡), with matrix elements �̂�
𝑞
𝑝,𝑖 (𝑡) given

in (10) where exponent vectors 𝑝 ∈ (𝑃𝑖+𝛿)∩Z
𝑛 and𝑞 ∈ (𝑄+𝛿)∩Z𝑛 .

It is sufficient to regard only pairs with differences 𝑎 ≔ 𝑞 − 𝑝 in

the support setA𝑖 , since the other matrix elements vanish. Further,

we consider the points 𝑝 ≔ (𝑝, ℎ𝑖 (𝑝)) and 𝑞 ≔ (𝑞, ℎ(𝑞)), extended

by the level functions introduced in (8). Due to the displacement

with 𝛿 ∈ Q𝑛 we may assume, the first point 𝑝 is located in the

interior of some facet 𝑭𝛼 (𝑃𝑖) + 𝛿 , which is moved by the vector

𝛿 ≔ (𝛿, 0) here. The second point 𝑞 is on the lower envelope 𝜕− (�̂�)

of the polytope �̂� and the vector 𝑎 ≔ (𝑎,𝜔𝑖 (𝑎)) finally is element

of the corresponding polytope �̂�𝑖 . Consequently, Lemma 2.5 can be

reformulated via the level functions (8), whereby the first inclusion

𝑝 + �̂�𝑖 ⊂ �̂� implies the inequality:

ℎ𝑖 (𝑝) + 𝜔𝑖 (𝑞 − 𝑝) ≥ ℎ(𝑞) (14)

The key statement says, however, that (14) becomes an equation,

if and only if vector 𝑎 lies in the face 𝑭𝛼 (�̂�𝑖); projected down to

the first 𝑛 + 1 coordinates, this condition is equivalent to 𝑎 ∈ 𝑭𝛼,𝑖 .

By definition of subdivisions, the latter polytope 𝑭𝛼,𝑖 is the convex

hull of the point set C𝑖 ⊂ A𝑖 which is included in the cell ℭ𝛼 . This

allows us to decompose the leading part of �̂� (𝑡).

Proposition 2.7. The initial part of �̂� (𝑡) act on the subspaces

formed by the cells ℭ𝛼 of the considered subdivision, init𝜔𝐷 |𝑉1 (ℭ𝛼) :

𝑉1 (ℭ𝛼) → 𝑉0 (ℭ𝛼).

Proof. To verify this statement, we consider the matrix com-

ponents �̂�
𝑞
𝑝,𝑖 (𝑡) of each 𝑡-dependent scaled Sylvester map with

respect to a base element 𝑥𝑝𝒆𝑖 ∈ 𝑉1 (ℭ𝛼) of the subspace deter-

mined the cell ℭ𝛼 and another base vector 𝑥𝑞 in its target space.

Correspondingly, the relation 𝑎 = 𝑞 − 𝑝 ∈ A𝑖 is valid. Because of

inequality (14), none of the 𝑡-exponents of this matrix components

(10) is negative. The extended exponent vector 𝑝 = (𝑝, ℎ𝑖 (𝑝)) of

the argument 𝑥𝑝𝒆𝑖 is located inside the shifted facet 𝑭𝛼 (𝑃𝑖). As a

consequence of Lemma 2.5 an exponent of 𝑡 vanish exactly, when

the difference 𝑎 ∈ C𝛼,𝑖 is contained in the 𝑖-th component of the

cell ℭ𝛼 . Hence, the exponent vector 𝑞 ∈ (𝑄 + 𝛿) ∩ Z𝑛 is element of

the sum
∑𝑛
𝑘=0

C𝛼,𝑘 . Since Δ𝜔 (𝔉) is a subdivision, we conclude that

there is no other cell ℭ𝑏 with a domain 𝑭𝑏 +𝛿 containing this vector.

Therefore, the initial parts init𝜔 (𝐷) map the subspaces 𝑉1 (ℭ𝛼) to

𝑉0 (ℭ𝛼). □

According to Theorem 4.1 of [22], the initial form init𝜔 (Res(𝔉))

is a product of smaller resultants Res(ℭ𝛼) of systemswhose support

sets are just the cells ℭ𝛼 = {C𝛼,0, . . . , C𝛼,𝑛} of the decomposition

Δ𝜔 (𝔉). Because re-defined resultants already include the required

multiplicities, wemay state this theorem in simplified form, without

requirements to the family𝔉 = {A0, . . . ,A𝑛} of support sets.

Theorem 2.8. For any lifting functions 𝜔𝑖 : A𝑖 → Q defined

on the support sets, the initial resultant init𝜔Res(𝔉) is given by the

221

Subdivisions for Macaulay Formulas of Sparse Systems ISSAC ’20, July 20–23, 2020, Kalamata, Greece

product (15) of the cell’s resultants, where the index 𝛼 runs through

all cells ℭ𝛼 of the subdivision defined by the considered lifting 𝜔𝑖 :

init𝜔 (Res(𝔉)) =
∏

𝛼

Res(ℭ𝛼). (15)

Proof. The 𝑡-dependent automorphisms 𝑻𝑟 have diagonal ma-

trices. So, it can be derived that the greatest common divisors of

𝐷 (𝑡) and �̂� (𝑡) = 𝑻 0
−1𝐷 (𝑡)𝑻 1 differ by only a factor 𝑡𝜂 with some

rational exponent. Consequently, their terms coincide with the re-

spective smallest powers in the parameter 𝑡 . Theorem 2.6 and the

decomposition given in Proposition 2.7 finally yields the product

formula of the resultant’s initial form. □

2.3 Extend essential subdivisons

In order to reduce the dimension of mixed sparse polynomial sys-

tems in each iteration step, as with [7], resultants of systems with an

essential subfamily of support sets must be considered. We refer to

the set of indexes of this supports as 𝜗 ⊂ {0, . . . , 𝑛} and accordingly

denote the essential subfamily with 𝔉𝜗 ; further, A𝜗 ≔
∑

𝑖∈𝜗 A𝑖

designates the Minkowski sum of supports selected by the index

set 𝜗 . The aim of this paragraph is to extend a mixed subdivision

ΔM (𝔉𝜗) of the essential system (𝑄𝜗 ,𝔉𝜗) to the complete prob-

lem ΔM (𝔉), in such a way that if the Macaulay formula holds in

ΔM (𝔉𝜗), it can be transferred to ΔM (𝔉). The finest lattice of in-

tegers contained in the affine hull of the Minkowski sum A𝜗 of

all essential support sets, is referred to as 𝑳𝜗 ≔ Z
𝑛 ∩ aff(A𝜗).

Its dimension equals 𝑛𝜗 ≔ #𝜗 − 1. Moreover, 𝜗 ≔ {0, . . . , 𝑛} \ 𝜗

denotes the complement of the index set 𝜗 of the essential family.

The algorithm extending subdivisions of this essential subfamily

to the complete system relies on Theorem 1.1 in [22], of which we

only need the following special case here:

Theorem 2.9 (Sturmfels). The resultant Res(𝔉) of a family𝔉

of support sets is non-constant if and only if for all subsets 𝜗 ⊂

{0, 1, . . . , 𝑛} the maximum of the differences between the cardinality

#𝜗 and the rank of the lattice 𝑳𝜗 fulfills:max𝜗 (#𝜗−𝑟𝑘 (𝑳𝜗)) = 1. □

We now consider a system with the support sets A0, . . . ,A𝑛 in

which the resultant Res(𝔉) is not constant and also the Minkowski

sum 𝑄 of all Newton polytopes 𝑄𝑖 is 𝑛-dimensional. Moreover, we

assume the subfamily 𝔉𝜗 ≔ {A𝑖 : 𝑖 ∈ 𝜗} to be essential. As a

consequence, the sum of these sets generates a 𝑛𝜗 -dimensional

affine subspace. According to Theorem 2.9, the dimension of the

affine hull ofA𝑖 +
∑

𝑘∈𝜗 A𝑘 must increase by one, if we add one of

the support setsA𝑖 which is not included in the essential family 𝑖 ∈

𝜗 . Therefore, there must be an edge 𝐸𝑖 in the face lattice of 𝑄𝑖 that

is not in the subspace parallel to aff(A𝜗). This procedure continues

iteratively to the last support set. In doing so, we obtain edges

𝐸𝑖 ⊂ 𝑄𝑖 for each Newton polytope not included in the essential

family. Their direction vectors are linearly independent. We define

the parallelotope 𝐸𝜗 ≔
∑

𝑖∈𝜗 𝐸𝑖 , which is #𝜗-dimensional.

In the next step, we determine a coherent mixed subdivision

Δ𝜔 (𝔉) of (𝑄,𝔉), which contains the polytope 𝑄𝜗 + 𝐸𝜗 as one of

the cell-domains. For this purpose, the lift functions 𝜔𝑖 : A𝑖 → Q

are chosen so that they vanish for each index 𝑖 ∈ 𝜗 in the essential

family. For the other support sets, they have a constant negative

value at the grid points on each edge 𝐸𝑖 with 𝑖 ∈ 𝜗 and they are

zero at all remaining points:

𝑖 ∈ 𝜗 : 𝜔𝑖 = 0

𝑖 ∈ 𝜗 : 𝜔𝑖 (A𝑖 ∩ 𝐸𝑖) = −1 and 𝜔𝑖 (A𝑖 \ 𝐸𝑖) = 0 .
(16)

To obtain the different cells that produce this lifting function, we

examine the facets which are supported by different direction vec-

tors 𝑣𝛼 = (𝒗𝛼 , 𝑣𝛼,𝑛+1) ∈ Q
𝑛 ×Q on the lower envelope of the lifted

polytope �̂� . The vector 𝑣0 = (0, . . . , 0, 1) in the direction of the

additional coordinate supports the cell: ℭ0 = {C0,0, . . . , C0,𝑛} with

C0,𝑖 = A𝑖 for 𝑖 ∈ 𝜗 and C0,𝑖 = A𝑖 ∩ 𝐸𝑖 for the other indexes 𝑖 ∈ 𝜗 ,

which we will call the primary cell of the subdivision Δ𝜔 (𝔉) in the

following. Its domain is as intended the sum 𝑭 0 = 𝑄𝜗 + 𝐸𝜗 .

For any other direction at least one of the vector’s 𝒗𝛼 coordinates

does not vanish. The cells ℭ𝛼 they determine are referred to as

secondary cells of the subdivision, with 𝛼 > 0. Since the lifted

Newton polytopes �̂�𝑖 of the essential family lie in the plane with

zero extra coordinate, the vector 𝒗𝛼 ∈ Q𝑛 defines their components

C𝛼,𝑖 with 𝑖 ∈ 𝜗 in the cell ℭ𝛼 . Consequently, the sum of their faces

𝐹𝛼,𝑖 = conv(C𝛼,𝑖) is less than 𝑛𝜗 -dimensional.

dim
∑

𝑖∈𝜗

𝐹𝛼,𝑖 < 𝑛𝜗 (17)

Proposition 2.10. The resultant of the complete system is a mul-

tiple of that obtained by the essential system: Res(𝔉) = Res(𝔉𝜗)
𝑑𝐸 .

The exponent 𝑑𝐸 agrees with the number of lattices parallel to 𝑳𝜗 ,

for which the intersection with the domain of the shifted primary cell

𝑭 0 + 𝛿 is not empty.

Proof. Both the resultant of the essential sub-system subsystem

Res(𝔉𝜗) and that of the complete system Res(𝔉) are divisible by

the same eliminant Elim(𝔉), which implies that the Newton poly-

topes NRes(𝔉𝜗) and NRes(𝔉) of either polynomial are proportional

to each other in a rational ratio. Since the lifting vector 𝜔 vanishes

on each support A𝑖 in the essential sub-family 𝑖 ∈ 𝜗 , it is orthogo-

nally on these polytopes, so that the resultants coincide with their

initial terms with respect to the lifting. Consequently, the resultant

Res(𝔉) of the complete polynomial system can be examined with

the product formula in Theorem 2.8 of Sturmfels, as in equation

(18) below.

For secondary cells ℭ𝛼 with 𝛼 > 0 the rank of the affine lattice

generated by the sum C𝛼 |𝜗 is less than the dimension 𝑛𝜗 = #𝜗 − 1

of the affine subspace, which contains the supports of the essential

family A𝜗 . Thus, according to Theorem 2.9 the related resultants

must be constant one: Res(ℭ𝛼) = 1, since the maximum of the

differences #𝜗 − rk(𝜗) > 1 is greater than 1. In this way we obtain

the identity

Res(𝔉) = init𝜔 (Res(𝔉)) =
∏

𝛼

Res(ℭ𝛼) = Res(ℭ0) . (18)

In the remainder we calculate the resultant Res(ℭ0) of the system

associated with the primary cell. To determine the space 𝑉1 (ℭ0)

according to equation (5), we consider the Newton polytopes of the

primary cell’s components: They are 𝑄𝑖 for 𝑖 ∈ 𝜗 and 𝐸𝑘 for 𝑘 ∈ 𝜗 .

The space 𝑉1 (ℭ0) is spanned by 𝑥𝑝𝒆𝑖 , where 𝑖 ∈ 𝜗 , since each edge

𝐸𝑘 is one-dimensional and therefore must be a summand of the

𝑛-dimensional polytope containing the exponent vectors. Hence,

the Sylvester map 𝐷 [ℭ0] associated with the primary cell contains

only polynomials of the essential sub-family. As it turns out, this

222

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Groh

map decomposes into smaller independent parts, all of which are

isomorphic to 𝐷 [𝔉𝜗].

To verify this statement, we move the Minkowski sum 𝑄𝜗 by

vectors 𝜉𝑠 ∈ 𝛿 + 𝐸𝜗 within the shifted parallelotope, so that the

intersections (𝜉𝑠 +𝑄𝜗) ∩ Z
𝑛 are not empty. The number of such

translated polytopes is denoted by 𝑑𝐸 and their index is 𝑠 . Accord-

ingly, the two vector spaces𝑉𝑟 (ℭ0) can be decomposed into a direct

sum of 𝑑𝐸 subspaces.

𝑉𝑠,0 (ℭ0) ≔span
(

𝑥𝑞 : 𝑞 ∈ (𝜉𝑠 +𝑄𝜗) ∩ Z
𝑛) (19)

𝑉𝑠,1 (ℭ0) ≔span
(

𝑥𝑝𝒆𝑖 : 𝑝 ∈ (𝜉𝑠 +𝑄𝜗\{𝑖 }) ∩ Z
𝑛, 𝑖 ∈ 𝜗

)

(20)

Since 𝑄𝜗\{𝑖 } + 𝑄𝑖 = 𝑄𝜗 for each 𝑖 ∈ 𝜗 , the Sylvester map of the

primary cell acts on these subspaces, 𝐷 [ℭ0] : 𝑉𝒔,1 (ℭ0) → 𝑉𝒔,0 (ℭ0).

To link these systems with the polynomial system of the essential

subfamily𝔉𝜗 , we split the shift vector 𝛿 into a part 𝛿𝜗 parallel to

the affine subspace aff(A𝜗) and a vector 𝛿𝐸 within the sub-space

spanned by the direction vectors of the parallelotope 𝐸𝜗 . Each

intersection (𝑄𝜗 + 𝜉𝑠) ∩Z
𝑛 is in bijection to the set (𝑄𝜗 + 𝛿𝜗) ∩ 𝑳𝜗

of points, via the affine mapping

𝜙𝑠 : 𝑞
′ ↦→ 𝑞 = 𝑞′ + 𝜉𝑠 − 𝛿𝜗 . (21)

In addition, the restrictions of 𝐷 [ℭ0] to the subspaces 𝑉𝑠,1 (ℭ0) are

isomorphic to the Sylvester map 𝐷 [𝔉𝜗] of the essential subsystem,

which is a consequence of the identity 𝐷 [ℭ0] ◦ 𝜙𝑠 = 𝜙𝑠 ◦ 𝐷 [𝔉𝜗].

This proves the proposition, since there are 𝑑𝐸 such sub-matrices

and by definition, 𝑑𝐸 is the number of lattices 𝜙𝑠 (𝑳𝜗) for which the

intersection with the shifted domain of the primary cell 𝑭 0 + 𝛿 is

not empty. □

Subsequently, we show how the Macaulay formula is transferred

from the system of the essential subfamily𝔉𝜗 to its completion𝔉.

For this we consider the decomposition of the vector spaces 𝑉𝑟 (𝔉)

regarding the subdivision Δ𝜔 (𝔉) into a primary and secondary

component: 𝑉𝑟 (ℭ0) and �̃�𝑟 (𝔉) ≔ ⊕𝛼>0𝑉𝑟 (ℭ𝛼), respectively. The

first subspace is further split up into parts, which are isomorphic

to 𝑉𝑟 (𝔉𝜗) via mapping (21).

𝑉𝑟 (𝔉) = 𝑉𝑟 (ℭ0) ⊕ �̃�𝑟 (𝔉) =
(

⊕𝑠𝑉𝑠,𝑟 (ℭ0)
)

⊕ �̃�𝑟 (𝔉) (22)

Let ΔM (𝔉𝜗) be a mixed subdivision of the essential family with

cells 𝔠𝑏 , formed by faces 𝐺𝑏,𝑖 , which we numerate with the index

set of the essential supports 𝑖 ∈ 𝜗 . By adding the edges 𝐸𝑖 to these

cells, this subdivision can be extended to the primary cell. This way,

we can define the composite subdivision of the complete system:

Definition 2.11. In the composite subdivision ΔM (𝔉) the primary

cell ℭ0 is replaced by the extended cells ℭ0,𝑏 = {𝐺𝑏,0, . . . ,𝐺𝑏,𝑛}. For

the indexes 𝑖 ∈ 𝜗 its faces agree with those of the smaller cell 𝔠𝑏 , and

for any other index 𝑘 ∉ 𝜗 in the complement, the face 𝐺𝑏,𝑘 = 𝐸𝑘 is

an edge. The secondary cells ℭ𝛼 of the coherent mixed subdivision

Δ𝜔 (𝔉) with 𝛼 > 0 are contained without modification.

Because the additional faces 𝐸𝑘 of the extended cells are one-

dimensional, the classification intomixed and non-mixed cells of the

essential family’s subdivisionΔM (𝔉𝜗) is transferred to the extended

cellsℭ0,𝑏 of the composite subdivision ΔM (𝔉). The latter’s domains

cover the primary cell ℭ0. In secondary cells ℭ𝛼 the dimension of

the sum of faces 𝐹𝛼,𝑖 with indices 𝑖 ∈ 𝜗 is less than that of the affine

hull of the support sets of the essential family (17). Since the sum

of all faces is 𝑛-dimensional, at least one of the faces 𝐹𝛼,𝑗 in the

complement 𝑗 ∈ 𝜗 must be neither vertex nor edge, so that all of

these secondary cells are non-mixed.

Theorem 2.12. The mapping ΔM (𝔉𝜗) ↦→ ΔM (𝔉) of the essential

family’s subdivision ΔM (𝔉𝜗) to a composite subdivision ΔM (𝔉) of

the complete system preserves the suitability for Macaulay formulas.

Proof. The Sylvester map 𝐷 [𝔉] falls into several blocks accord-

ing to the decomposition (23) of its range and image space. As the

proof of Proposition 2.10 shows, it acts on subspace 𝑉1 (ℭ0).

𝐷 [𝔉] |𝑉1 (ℭ0) = 𝐷 [ℭ0] (23)

This block structure is transferred to the regular matrixM, which

is obtained by selecting certain columns [3]. Thereby, the index

sets 𝐼𝑠,0 and 𝐼𝑠,1 indicate the related basis elements in the subspaces

𝑉𝑠,0 (ℭ0) respective 𝑉𝑠,1 (ℭ0). Accordingly, 𝐼0 and 𝐼1 select base vec-

tors in the subspaces �̃�0 (𝔉) and �̃�1 (𝔉) formed by the secondary

cells. Because of (23), the sub-matrices M(𝐼0, 𝐼𝑠,1) vanish as well as

M(𝐼𝑠,0, 𝐼𝑠′,1) for different index vectors 𝑠 ≠ 𝑠 ′. ThusM is block-wise

triangular matrix.

By means of the bijection 𝜙𝑠 , defined in (21), the Sylvester map

𝐷 [𝔉𝜗] of the essential sub-family’s complex is linked to the re-

stricted maps 𝐷 [𝔉] |𝑉𝑠,1 (ℭ0) , the matrices of all these mappings

coinciding. As a consequence, the matrix M|𝜗 of the essential sub-

system coincide with eachM(𝐼𝑠,0, 𝐼𝑠,1) so that the determinant of

M factorizes

detM = detM(𝐼0, 𝐼1)
∏

𝑠

detM(𝐼𝑠,0, 𝐼𝑠,1) (24)

= detM(𝐼0, 𝐼1) det(M|𝜗)
𝑑𝐸 . (25)

The sub-matrix E is formed by the columns and rows of M that

belong to base elements whose exponent vectors are located in

the shifted domains of the unmixed cells of ΔM (𝔉). Further, the

sub-matrix E|𝜗 of M|𝜗 is defined accordingly with respect to the

subdivision ΔM (𝔉𝜗), which we assumed to admit the Macaulay

formula: Their fraction yields the resultant Res(𝔉𝜗) of the essential

sub-system.

By definition 𝜙𝑠 is a bijection between the polytopes𝑄𝜗 +𝛿𝜗 and

𝑄𝜗 + 𝜉𝑠 . It transfers the categorization of base elements into mixed

and non-mixed cells from 𝑉𝑟 (𝔉𝜗) to each subspace 𝑉𝑠,𝑟 (ℭ0). This

defines index sets 𝐽𝑠,0 and 𝐽𝑠,1 which select the rows and columns

of the matrix E according to the subspaces 𝑉𝑠,𝑟 (ℭ0), so that E|𝜗 =

E(𝐽𝑠,0, 𝐽𝑠,1) is valid for each 𝑠 ∈ {1 . . . 𝑑𝐸 }. Furthermore, the union

of the 𝜙𝑠 -images of all lattice points 𝑳𝜗 ∩ (𝑄𝜗 + 𝛿𝜗) in the shifted

Minkowski sum of the essential family’s Newton polytopes gives

the set of all integer points Z𝑛∩(𝑭 0+𝛿) in the shifted domain of the

primary cell ℭ0 of the subdivision Δ𝜔 (𝔉). Since all secondary cells

ℭ𝛼 are non-mixed, the whole sub-block of M selected by 𝐼0 and 𝐼1
agrees with the corresponding E-matrix, so that the fraction of their

determinants is identical to one. Thus, we obtain from equation (24)

and Property 2.10 the resultant of the complete system as a fraction

of two determinants.

det(M)

det(E)
=

𝑑𝐸
∏

𝑠=1

detM(𝐼𝑠,0, 𝐼𝑠,1)

detE(𝐽𝑠,0, 𝐽𝑠,1)
=

(

detM|𝜗

detE|𝜗

)𝑑𝐸

(26)

= Res(𝔉𝜗)
𝑑𝐸 = Res(𝔉) (27)

223

Subdivisions for Macaulay Formulas of Sparse Systems ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Hence, the composite subdivision ΔM (𝔉) admits the Macaulay

formula, as claimed. □

2.4 The Iteration Step of D’Andrea

[7] discovered an recursive procedure in which the dimension of the

problem is reduced at every step. In doing so, he considered lifting

functions 𝜔𝑖 : A𝑖 → Q that vanish except at a single point 𝒃 in one

of the support sets, say the last one A𝑛 . The subdivision of (𝑄,𝔉)

defined in this way will be designated as Δ𝒃 (𝔉). Moreover, the

function value at the particular point 𝒃 ∈ A𝑛 should be negative,

since we look at the lower envelope of the lifted polytope �̂� here,

to obtain a subdivision.

𝑖 < 𝑛 : 𝜔𝑖 = 0

𝑖 = 𝑛 : 𝜔𝑖 (𝒃) = −1 and 𝜔𝑖 (A𝑖 \ {𝒃}) = 0
(28)

To determine the cells of the D’Andrea subdivision Δ𝒃 (𝔉) gener-

ated by these lifting functions, we consider the faces of the lifted

polytope �̂� supported by the pairs 𝑣𝛼 = (𝒗𝛼 , 𝑣𝛼,𝑛+1) ∈ Q𝑛 × Q.

As in section 2.3 the vector 𝑣0 = (0, . . . , 0, 1), in direction of the

additional coordinate, defines a particular facet, which forms the

primary cell:

ℭ0 = {A0, . . . ,A𝑛−1, {𝒃}}. (29)

The remaining secondary cells are generated by the inward normals

𝒗𝛼 on all the facets of the Minkowski sum𝑄 , that do not contain the

particular point 𝒃 of the subdivision, as explained in [7]. For this, we

have to assume essential families𝔉 as input of each iteration step,

which however does not mean any restriction, due to Theorem 2.12.

Further, we refer the subset of the support A𝑖 on the face of its

convex hull 𝑄𝑖 toward the normal 𝒗𝛼 as 𝑭𝛼 (A𝑖) ≔ face𝒗𝛼 (𝑄𝑖) ∩

A𝑖 ; this allows us to specify the secondary cells of the D’Andrea

subdivision:

ℭ𝛼 = {𝑭𝛼 (A0), . . . , 𝑭𝛼 (A𝑛−1), 𝑭𝛼 (A𝑛) ∪ {𝒃}}. (30)

The key point of this decomposition is the following property, as

it allows to reduce the dimension of the problem in each iteration

step of the procedure.

Proposition 2.13. Each cell ℭ𝛼 of D’Andrea’s decomposition

Δ𝒃 (𝔉) contains either an essential subfamily representing a system

whose dimension is smaller than 𝑛 or no such family.

Proof. Since we assume that𝔉 is essential, the family of com-

ponents of the primary cell ℭ0 contains a single vertex, namely the

chosen point 𝒃 ∈ A𝑛 . The faces 𝑭𝛼 (A𝑖) and with it the first the

first 𝑛 components C𝛼,𝑖 of a secondary cell (30) can be moved into

the hyperplane 𝐻𝛼 orthogonal to the direction 𝒗𝛼 which specifies

this cell ℭ𝛼 . Let us assume, there was an essential family ℭ𝛼 |𝜗

containing the last support set: 𝑛 ∈ 𝜗 . Since the selected point 𝒃

does not lie in the face 𝑭𝛼 (A𝑛), the the component C𝛼,𝑛 is never

a vertex, so that the intersection 𝜃 ≔ 𝜗 \ {𝑛} would not be empty

and the rank of the grid of 𝜗 should exceed that of its subset 𝜃 :

rank(𝑳𝜗) > rank(𝑳𝜃). As we supposed the set 𝜗 indexes an es-

sential family, the inequality rank(𝑳𝜃) ≥ #𝜃 is also valid. This,

however, implies rank(𝑳𝜗) > #𝜗 − 1, which is a contradiction.

Therefore, the last component of a secondary cell cannot be part

of the essential family. It thus represents a system with support

sets in the hyperplane 𝐻𝛼 , whose dimension is smaller that of the

surrounding space. □

Hence, if the cell ℭ𝛼 contains an essential subfamily ℭ𝛼 |𝜗 , it

forms a system with a smaller dimension which, according to

the induction hypothesis, has a subdivision ΔM (ℭ𝛼 |𝜗) suitable for

Macaulay formulas. According to Theorem 2.12, we can extend this

subdivision to the complete cell: ΔM (ℭ𝛼 |𝜗) ↦→ ΔM (ℭ𝛼), so that

the Macaulay formula (31) continues to apply.

Res(ℭ𝛼) =
detM𝛼

detE𝛼
(31)

The iterative procedure ends, in the case of one-dimensional sys-

tems consisting of two univariate polynomials, a vertex or alter-

natively, if no unique essential sub-family exists. The first case is

already described in [7]. If the essential family is a vertex 𝒂 ∈ C𝛼,𝑖
in one of the cell components, its resultant is simply a monomial:

Res({𝒂}) = 𝑐𝑖,𝑎 . For such polynomial systems we set the two ma-

trices M = 𝑐𝑖,𝑎 and E = 1, so that the Macaulay formula is ful-

filled, here. Definition 2.11 can be applied in this particular case as

well, resulting in the combined subdivision ΔM (ℭ𝛼), which con-

tains a single mixed cell ℭ′
0 = {𝐸0, . . . , {𝒂}, . . . , 𝐸𝑛} with the ver-

tex at the 𝑖-th place. Thus, Proposition 2.10 implies Res(ℭ𝛼) =

(𝑐𝑖,𝑎)
𝑑𝐸 where the exponent 𝑑𝐸 is the number of lattice points

inside the shifted cell domain of ℭ′
0, here. It is equal to the vol-

ume of the parallelotope 𝐸𝜗 with 𝜗 = {𝑖}, which in agreement

with Theorem 2.4 in [19] corresponds to the mixed volume 𝑑𝐸 =

𝑀𝑉 (𝑄0, . . . , 𝑄𝑖−1, 𝑄𝑖+1, . . . , 𝑄𝑛−1).

If there is no unique essential family contained in the cell ℭ𝛼 , its

resultant is: Res(ℭ𝛼) = 1; in this instance, there are no mixed cells

in the combined decomposition ΔM (ℭ𝛼), so that both matricesM𝛼

and E𝛼 coincide and the Macaulay formula (31) is also valid here.

Equation (12), applied to our order of equations 𝑘 = 𝑛, states that

the quotient of the minor det𝑴 and the resultant Res(𝔉) on the left

side of (32) does not depend on coefficients of the last polynomial. It

corresponds to its initial term in the direction of𝜔 ∈ Q𝑚 . According

to Proposition 3.12 in [7] the initial forms of the determinant of the

matricesM and E factor into the minors detM𝛼 and detE𝛼 assigned

to the cells ℭ𝛼 . This is consistent with Proposition 2.7, since each

of the matricesM𝛼 and E𝛼 are submatrices of the Sylvester maps

𝐷 [ℭ𝛼] resulting from the cells of D’Andreas’s subdivision Δ𝒃 (𝔉).

detM

Res(𝔉)
= init𝜔

(

detM

Res(𝔉)

)

=
∏

𝛼

detM𝛼

Res(ℭ𝛼)
= · · · (32)

As a consequence of Proposition 2.13 and the induction hypothesis

there are subdivisions ΔM (ℭ𝛼) for each of these cells, so that the

Macaulay formula (31) applies. Since the determinant of the sub-

matrix E does not depend on the coefficient 𝑐𝑛,𝒃 , it agrees with its

initial term:

· · · =
∏

𝛼

detE𝛼 = init𝜔 det(E) = detE. (33)

A comparison of equations (32) and (33) shows that the Macaulay

formula (2) is valid for the given 𝑛-dimensional system, if we insert

the combined subdivisions ΔM (ℭ𝛼) into the individual cells ℭ𝛼 and

thus assemble them to form a subdivision ΔM (𝔉) of the complete

family.

3 EXAMPLE

In this section, we present a polynomial system that illustrates

the different cases that can occur when reducing the dimension

224

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Groh

in each iteration step. For this purpose, the system should not be

too small, which means, however, that its resultant contains a large

number of terms. Therefore we consider only the denominator detE

of the Macaulay-style formula here. It can be compared with the

corresponding result of the Cayley formula.

A0 = {(0, 0, 0, 1), (0, 0, 1, 2), (2, 0, 1, 0), (2, 1, 0, 0)}

A1 = {(0, 2, 0, 1), (0, 2, 1, 0), (1, 0, 2, 0), (2, 1, 0, 0)}

A2 = {(0, 0, 0, 0), (0, 1, 1, 0), (1, 0, 1, 0)}

A3 = {(0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1)}

A4 = {(0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0)}

(34)

In the first iteration step, we select the last element of the support

A𝑛 as particular point 𝒃 of D’Andrea’s subdivision Δ𝒃 (𝔉). Thus, in

this example, we obtain 34 normal vectors 𝒗𝛼 defining facets which

do not contain this point. For 19 of these directions the polynomial

system formed by the cells ℭ𝛼 do not contain an essential family, 12

result in a vertex. Only the three secondary cells shown in Table 1

yield a non-trivial polynomial system.

With the vector 𝛿 = (1/8, 1/3, 1/5, 1/7) displacing the Newton

polytopes, we obtain a resultant complex 𝑽
• (𝔉) of four terms,

having the dimensions: dim𝑉𝑟 (𝔉) = {188, 306, 127, 9}. The matrix

M in the numerator of Macaulay’s formula (2) is correspondingly

188-dimensional, while its sub-matrix E in the denominator turns

out to be of order 109. As stated in equation (33), its determinant

is a product of factors determined by the cells ℭ𝛼 of subdivision

Δ𝒃 (𝔉).

detE =

34
∏

𝛼=0

detE𝛼 = 𝒄
𝑝0
0 𝒄

𝑝1
1 𝒄

𝑝2
2 𝒄

𝑝3
3

∑

𝒒∈B

𝜌𝒒 𝒄
𝑞0
0 𝒄

𝑞1
1 𝒄

𝑞2
2 𝒄

𝑞3
3 (35)

The integer vectors 𝑝𝑖 , 𝑞𝑖 ∈ Z
𝑚𝑖 specify the exponents of the coeffi-

cients 𝒄𝑖 ≔ (𝑐𝑖,𝑎)𝑎∈A𝑖
∈ C𝑚𝑖 of the polynomials (1) in the deter-

minant (35) above; for this, we define the cardinalities𝑚𝑖 ≔ #A𝑖 .

𝑝0 = (1, 6, 0, 4), 𝑝1 = (14, 8, 5, 2), 𝑝2 = (18, 9, 5), 𝑝3 = (6, 1, 2) (36)

The minors of the secondary cells yield monomials, only the first

factor detE0 contributes to the sum in equation (35).

The last column of Table 1 contains the indexes 𝜗𝛼 of the respec-

tive essential sub-families. By conception, the last support set never

contributes to the essential sub-family, as it contains the particular

point of the subdivision Δ𝒃 (𝔉). In the two systems determined by

the cells ℭ2 and ℭ3 it even includes less than 4 elements.

REFERENCES
[1] Louis J. Billera and Bernd Sturmfels. 1992. Fiber Polytopes. Annals of Mathematics

135, 3 (1992), 527ś549.
[2] Laurent Buse, Mohamed Elkadi, and André Galligo. 2008. Intersection and

self-intersection of surfaces by means of Bezoutian matrices. Computer Aided
Geometric Design 25, 2 (2008), 53 ś 68.

[3] John Canny and Ioannis Emiris. 1993. An efficient algorithm for the sparse mixed
resultant. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
Gérard Cohen, Teo Mora, and Oscar Moreno (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 89ś104.

[4] John F. Canny and Ioannis Z. Emiris. 2000. A Subdivision-based Algorithm for
the Sparse Resultant. J. ACM 47, 3 (May 2000), 417ś451.

[5] Marc Chardin. 1993. The Resultant via a Koszul Complex. In Computational Al-
gebraic Geometry, Frédéric Eyssette and André Galligo (Eds.). Birkhäuser Boston,
Boston, MA, 29ś39.

[6] David Cox, John Little, and Donal O’Shea. 2005. Using Algebraic Geometry.
Springer New York.

[7] Carlos D’Andrea. 2002. Macaulay style formulas for sparse resultants. Trans. Am.
Math. Soc. 354, 7 (2002), 2595ś2629.

Table 1: These four cells ℭ𝛼 = (C𝛼 |0, · · · , C𝛼 |3) of D’Andrea’s

subdivision Δ𝒃 (𝔉) contain essential families 𝜗𝛼 with more

than one element. Their components are given by the index

sets in columns 2 to 6 : C𝛼 |𝑖 = {𝑎𝑖,𝑘 ∈ A𝑖 : 𝑘 ∈ 𝜃𝛼 |𝑖 }.

𝛼 𝒗𝛼 𝜃𝛼 |0 𝜃𝛼 |1 𝜃𝛼 |2

0 (0,0,0,1) {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3}

1 -(1,1,1,1) {2, 3, 4} {1, 2, 3, 4} {2, 3}

2 -(1,1,1,0) {3, 4} {2, 3, 4} {2, 3}

3 (1,0,0,0) {1, 2} {1, 2} {1, 2}

𝛼 𝜃𝛼 |3 𝜃𝛼 |4 𝜗𝛼
0 {1, 2, 3} {3} {4}

1 {2, 3} {1, 2} {0, 1, 2, 3}

2 {1, 2, 3} {2, 3} {0, 1, 2}

3 {1, 2} {1, 2, 3} {0, 1, 3}

[8] Carlos D’Andrea and Alicia Dickenstein. 2001. Explicit formulas for the mul-
tivariate resultant. Journal of Pure and Applied Algebra 164, 1 (2001), 59 ś 86.
Effective Methods in Algebraic Geometry.

[9] Carlos D’Andrea, Gabriela Jeronimo, andMartín Sombra. 2020. The Canny-Emiris
conjecture for the sparse resultant. arXiv:2004.14622 [math.AC]

[10] Carlos D’Andrea and Martín Sombra. 2015. A Poisson formula for the sparse
resultant. Proc. Lond. Math. Soc. (3) 110, 4 (2015), 932ś964.

[11] Alicia Dickenstein and Ioannis Z. Emiris. 2003. Multihomogeneous resultant
formulae by means of complexes. Journal of Symbolic Computation 36, 3 (2003),
317 ś 342. ISSAC 2002.

[12] Alicia Dickenstein and Ioannis Z. Emiris. 2006. Solving Polynomial Equations:
Foundations, Algorithms, and Applications. Springer Berlin Heidelberg.

[13] Ioannis Z. Emiris. 2012. A General Solver Based on Sparse Resultants. CoRR
abs/1201.5810 (2012). arXiv:1201.5810

[14] Ioannis Z. Emiris and John F. Canny. 1995. Efficient Incremental Algorithms for
the Sparse Resultant and the Mixed Volume. Journal of Symbolic Computation 20,
2 (1995), 117 ś 149.

[15] Ioannis Z. Emiris, Vissarion Fisikopoulos, Christos Konaxis, and Luis Peñaranda.
2013. An Oracle-based, Output-sensitive Algorithm for Projections of Resultant
Polytopes. International Journal of Computational Geometry and Applications 23,
04n05 (2013), 397ś423.

[16] Ioannis Z. Emiris and Christos Konaxis. 2011. Single-lifting Macaulay-type
formulae of generalized unmixed sparse resultants. J. Symb. Comput. 46, 8 (2011),
919ś942.

[17] Ioannis Z. Emiris, Christos Konaxis, Ilias S Kotsireas, and Clément Laroche. 2017.
Matrix Representations by Means of Interpolation. In ISSAC ’17 - International
Symposium on Symbolic and Algebraic Computation. Kaiserslautern, Germany,
149ś156.

[18] Israel M. Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. 1994. Discriminants,
Resultants, and Multidimensional Determinants. Birkhäuser Boston.

[19] Birkett Huber and Bernd Sturmfels. 1995. A Polyhedral Method for Solving
Sparse Polynomial Systems. 64 (10 1995), 1541ś1555.

[20] Francis S. Macaulay. 1902. Some Formulæ in Elimination. Proceedings of the
London Mathematical Society s1-35, 1 (1902), 3ś27.

[21] Dinesh Manocha. 1994. Solving Systems of Polynomial Equations. IEEE Comput.
Graph. Appl. 14, 2 (March 1994), 46ś55.

[22] Bernd Sturmfels. 1994. On the Newton Polytope of the Resultant. Journal of
Algebraic Combinatorics 3, 2 (01 Apr 1994), 207ś236.

[23] Bernd Sturmfels. 2002. Solving Systems of Polynomial Equations. Number no. 97 in
CBMS Regional Conferences Series. American Mathematical Society, Providence
Rhode Island.

225

https://arxiv.org/abs/2004.14622
https://arxiv.org/abs/1201.5810

On the Uniqueness of Simultaneous Rational Function
Reconstruction

Eleonora Guerrini, Romain Lebreton, Ilaria Zappatore
guerrini,lebreton,zappatore@lirmm.fr

LIRMM, Université de Montpellier, CNRS
Montpellier, France

ABSTRACT

This paper focuses on the problem of reconstructing a vector of
rational functions given some evaluations, or more generally given
their remainders modulo different polynomials. The special case
of rational functions sharing the same denominator, a.k.a. Simulta-
neous Rational Function Reconstruction (SRFR), has many appli-
cations from linear system solving to coding theory, provided that
SRFR has a unique solution. The number of unknowns in SRFR is
smaller than for a general vector of rational function. This allows
one to reduce the number of evaluation points needed to guaran-
tee the existence of a solution, possibly losing its uniqueness. In
this work, we prove that uniqueness is guaranteed for a generic
instance.

CCS CONCEPTS

·Mathematics of computing→Coding theory; ·Computing

methodologies → Algebraic algorithms; Linear algebra algo-

rithms.

ACM Reference Format:

Eleonora Guerrini, Romain Lebreton, Ilaria Zappatore. 2020. On the Unique-
ness of Simultaneous Rational Function Reconstruction. In International

Symposium on Symbolic and Algebraic Computation (ISSAC ’20), July 20ś

23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3373207.3404051

1 INTRODUCTION

Vector Rational Function Reconstruction (VRFR) is the problem
of reconstructing a vector 𝒗/𝒅 = (𝑣1/𝑑1, . . . , 𝑣𝑛/𝑑𝑛) of rational
functions given their remainders 𝑢𝑖 = 𝑣𝑖/𝑑𝑖 mod 𝑎𝑖 and bounds
on their degrees. VRFR generalizes interpolation problems by tak-
ing 𝑎1 = · · · = 𝑎𝑛 =

∏
(𝑥 − 𝛼 𝑗) for some distinct 𝛼 𝑗 because the

modular equations become then equations on evaluations 𝑢𝑖 (𝛼 𝑗) =
(𝑣𝑖/𝑑𝑖) (𝛼 𝑗). Simultaneous Rational Function Reconstruction (SRFR)
is the particular case of VRFR where all the rational functions share
the same denominator (see Section 2.1). The common denominator
constraint of SRFR reduces the number of unknowns w.r.t. VRFR,
lowering the number of equations (or the number of evaluations in
the interpolation case) required to ensure existence of a non-trivial

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404051

solution. This consideration has interesting consequences for sev-
eral applications: SRFR appears in polynomial linear system solving
via evaluation-interpolation which may be done with less evalu-
ation points. Also, SRFR is related to the decoding of interleaved
Reed-Solomon codes and previous consideration can improve the
error correction capability of this code (see Section 2.2). However,
having a unique solution is fundamental for these applications and
there are SRFR instances where the number of equations required
to ensure existence does not lead to a unique solution (see Exam-
ple 2.2). This work studies SRFR instances leading to uniqueness.

A uniqueness result for instances of SRFR coming from poly-
nomial linear system solving can be found in [OS07]. However,
this result requires the solution to have a specific degree. We have
reasons to believe that we can generalize this result: we conjecture
that for almost all (𝒗, 𝑑) the SRFR problem admits a unique solution
(see Conjecture 2.5).

We can learn more about conditions of uniqueness by looking
at results coming from error correcting codes. Interleaved Reed
Solomon codes (IRS) can be seen as the evaluation of a vector of
polynomials 𝒗. The problem of decoding IRS codes consists in the
reconstruction of the vector of polynomials 𝒗 given its evaluations,
some possibly erroneous. A classic approach to decode IRS codes is
the application of SRFR (in its interpolation version) for instances
𝒖 = 𝒗 + 𝒆 where 𝒆 are the errors. Results from coding theory show
that for all 𝒗 and almost all errors 𝒆, we get the uniqueness of SRFR
for the corresponding instance 𝒖 (provided that there are not too
many errors) [BKY03, BMS04, SSB09]. There is a natural extension
of SRFR when errors occur (SRFRwE, see Section 2.2), which can
be related to a fractional generalization of IRS [GLZ19, GLZ20]. We
conjecture that we can decode almost all codeword 𝒗/𝑑 and almost
all errors 𝒆 of this fractional code (Conjecture 2.9).

In this paper we present a result which is a step towards Con-
jectures 2.5 and 2.9. We prove that uniqueness is guaranteed for a
generic instance 𝒖 of SRFR (Theorem 2.4). Our result is valid not
only given evaluations, but also in the general context of any mod-
uli 𝑎. Our approach to prove Theorem 2.4 is to study the degrees of
a relation module. Solutions of SRFR are related to generators of a
particular basis of this K[𝑥]-module which have a negative shifted-
row degree. Shifts are necessary to integrate degree constraints. We
show that for generic instances, there is only one generator with
negative row degree, hence uniqueness of SRFR solutions.

Previous works studied generic degrees of different but related
modules: e.g. for the module of generating polynomials of a scalar
matrix sequence [Vil97], for the kernel of a polynomial matrix of
specific dimensions [JV05]. Both cases do not consider any shift.
The generic degrees also appear as dimensions of blocks of a shifted
Hessenberg form [PS07]. However, the link with the degrees of a

226

https://doi.org/10.1145/3373207.3404051
https://doi.org/10.1145/3373207.3404051
https://doi.org/10.1145/3373207.3404051

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Eleonora Guerrini, Romain Lebreton, Ilaria Zappatore

module is unclear and no shift is discussed (shifted Hessenberg
is not related to our shift). We prove our result for any shift and
any matrix dimension by adapting some of their techniques to the
specific relation module related to SRFR.

In Section 2 we introduce the motivations of our work, starting
from the classic SRFR to the extended version with errors. We also
show their respective applications in polynomial linear system
solving and in error correcting algorithms. In Section 3, we define
the algebraic tools that we will use to prove our technical results of
the Section 4. In Section 5 we explain how these results are linked
to the uniqueness of the solution of SRFR and we finally prove
Theorem 2.4 about the generic uniqueness.

2 MOTIVATIONS

2.1 Rational Function Reconstruction

In this section we recall standard definitions and we state our
problem, starting from rational function reconstruction and its
application to linear algebra. Let K be a field, 𝑎,𝑢 ∈ K[𝑥] with
deg(𝑢) < deg(𝑎). The Rational Function Reconstruction (RFR) is the
problem of reconstructing rational functions 𝑣/𝑑 ∈ K(𝑥) verifying

gcd(𝑑, 𝑎) = 1,
𝑣

𝑑
= 𝑢 mod 𝑎, deg(𝑣) < 𝑁, deg(𝑑) < 𝐷. (1)

Since the 𝑔𝑐𝑑 equation is not linear, it is customary to focus on the
weaker homogeneous linear equation in the polynomial pair (𝑣, 𝑑)

𝑣 = 𝑑𝑢 mod 𝑎, deg(𝑣) < 𝑁, deg(𝑑) < 𝐷. (2)

RFR generalizes many problems including the Padé approximation if

𝑎 = 𝑥 𝑓 and the Cauchy interpolation if 𝑎 =
∏𝑓

𝑖=1 (𝑥 −𝛼𝑖), where the
𝛼𝑖 are pairwise distinct elements of the field K. The homogeneous
linear system related to (2) has deg(𝑎) equations and 𝑁 + 𝐷 un-
knowns. If deg(𝑎) = 𝑁 +𝐷 − 1, the dimension of the solution space
of (2) is at least 1 and it always admits a non-trivial solution. More-
over, such a solution is unique in the sense that all solutions are
polynomial multiples of a unique one, (𝑣min, 𝑑min) (see e.g. [GG13,
Theorem 5.16]). On the other hand, (1) does not always have a solu-
tion, but when a solution exists, it is unique and must be 𝑣min/𝑑min,
which can be computed using the Extended Euclidean Algorithm.
Throughout this paper, we will focus on (2).

RFR can be naturally extended to the vector case as follows. Let
𝑎1, . . . , 𝑎𝑛 ∈ K[𝑥] with degrees 𝑓𝑖 = deg(𝑎𝑖) and 𝒖 = (𝑢1, . . . , 𝑢𝑛) ∈

K[𝑥]𝑛 where deg(𝑢𝑖) < 𝑓𝑖 . Given 0 < 𝑁𝑖 , 𝐷𝑖 ≤ 𝑓𝑖 , the Vector Ratio-
nal Function Reconstruction (VRFR) is the problem of reconstruct-
ing (𝑣𝑖 , 𝑑𝑖) for 1 ≤ 𝑖 ≤ 𝑛 such that 𝑣𝑖 = 𝑑𝑖𝑢𝑖 mod 𝑎𝑖 , deg(𝑣𝑖) <

𝑁𝑖 , deg(𝑑𝑖) < 𝐷𝑖 . We can apply RFR componentwise and so, if
𝑓𝑖 = 𝑁𝑖 + 𝐷𝑖 − 1, we can uniquely reconstruct the solution.

SRFR is then the problem of reconstructing a vector of rational
functions with the same denominator.

Definition 2.1 (SRFR). Given 𝒖 = (𝑢1, . . . , 𝑢𝑛) ∈ K[𝑥]𝑛 where
deg(𝑢𝑖) < 𝑓𝑖 , and degree bounds 0 < 𝑁𝑖 < 𝑓𝑖 and 0 < 𝐷 < min 𝑓𝑖 ,
we want to reconstruct the tuple (𝒗, 𝑑) = (𝑣1, . . . , 𝑣𝑛, 𝑑) such that

𝑣𝑖 = 𝑑𝑢𝑖 mod 𝑎𝑖 , deg(𝑣𝑖) < 𝑁𝑖 , deg(𝑑) < 𝐷. (3)

We denote S𝒖 the set of solutions.

Since solutions of SRFR are solutions of VRFR, SRFR has a unique
solution (if it exists) whenever 𝑓𝑖 = 𝑁𝑖 +𝐷 − 1 for all 𝑖 . On the other

hand, if the number of equations of (3) is equal to the number of
unknowns minus one, that is if

𝑛∑

𝑖=1

𝑓𝑖 =

𝑛∑

𝑖=1

𝑁𝑖 + 𝐷 − 1 (4)

then (3) always admits a non-trivial solution. This number of equa-
tions is always smaller than before, possibly up to a factor 2. How-
ever, the uniqueness is not anymore guaranteed.

Example 2.2. Let K = F11, 𝑛 = 2, 𝑁1 = 𝑁2 = 4, 𝐷 = 5 and
𝑎1 = 𝑎2 =

∏6
𝑖=1 (𝑥 − 2𝑖) = 𝑥6 + 6𝑥5 + 5𝑥4 + 7𝑥3 + 2𝑥2 + 8𝑥 + 2.

Let 𝒖 =
(
5𝑥5 + 5𝑥3 + 𝑥2 + 4𝑥 + 4, 8𝑥5 + 9𝑥4 + 8𝑥3 + 8𝑥2 + 4𝑥 + 6

)
.

Then SRFR has two K[𝑥]-linearly independent solutions (𝒗, 𝑑):(
8𝑥3 + 5𝑥2 + 𝑥 + 6, 7𝑥3 + 9𝑥2 + 8𝑥 + 9, 7𝑥3 + 7𝑥2 + 8𝑥 + 9

)
and(

2𝑥3 + 2𝑥2 + 8𝑥, 10𝑥2 + 10𝑥 + 10, 6𝑥4 + 7𝑥3 + 8𝑥2 + 5𝑥 + 5
)
.

Uniqueness is a central property for the applications of SRFR:
unique decoding algorithms are essential in error correcting codes,
and it is also a widespread condition to use evaluation interpo-
lation techniques in computer algebra. The number of equations
which guarantees uniqueness of SRFR has also repercussion on
the complexity. Indeed, the complexity of decoding algorithms or
evaluation interpolation techniques depends on this number of
equations. Since SRFR decreases this number up to a factor 2, this
implies a constant factor speedup for applications, like in [OS07].

We denote by 𝑠 the rank of the K[𝑥]-module spanned by the
solutions S𝒖 . All solutions can be written as a linear combination∑𝑠
𝑖=1 𝑐𝑖𝑝𝑖 of 𝑠 polynomials 𝑝𝑖 with polynomial coefficients 𝑐𝑖 . The

case 𝑠 = 1 corresponds to what we call uniqueness of the solution.
In [OS07], the authors studied the particular case where 𝑎1 = . . . =
𝑎𝑛 = 𝑎 and 𝑁1 = . . . = 𝑁𝑛 = 𝑁 . They proved the following,

Theorem 2.3 ([OS07, Theorem 4.2]). Let 𝑘 be minimal such that

deg(𝑎) ≥ 𝑁 + (𝐷 − 1)/𝑘 , then the rank 𝑠 of the solution space S𝒖

satisfies 𝑠 ≤ 𝑘 .

Note that if 𝑘 = 1, the solution is always unique (𝑠 = 1). This
matches the uniqueness condition on deg(𝑎) of VRFR. On the other
hand, if 𝑘 = 𝑛 and deg(𝑎) ≥ 𝑁 + (𝐷 − 1)/𝑛 then 𝑠 ≤ 𝑛, which
does not provide any new information about the solution space.
Theorem 2.3 represents a connection between the classic bound
deg(𝑎) ≥ 𝑁 +𝐷 − 1 which guarantees the uniqueness and the ideal
one deg(𝑎) ≥ 𝑁 + (𝐷 − 1)/𝑛 (see (4)), which exploits the common
denominator property.

Our main contribution is the following

Theorem 2.4. If
∑𝑛
𝑖=1 𝑓𝑖 =

∑𝑛
𝑖=1 𝑁𝑖 + 𝐷 − 1 then for almost all

instances 𝒖, SRFR admits a unique solution, i.e. it has rank 𝑠 = 1.
Moreover, if K is a finite field of cardinality 𝑞, the proportion of

instances leading to non-uniqueness is ≤ (𝐷 − 1)/𝑞.

Note that when 𝐷 = 1, rational functions become polynomials
and𝑁𝑖 = 𝑓𝑖 so that SRFR has always a unique solution (𝒗, 𝑑) = (𝒖, 1).
Theorem 2.4 will be proved in Section 5. We say that a certain
property P is verified by a generic instance 𝒖 (or interchangeably
for almost all instances 𝒖) if and only if there exists a nonzero
polynomial 𝐶 such that 𝐶 does not vanish on 𝒖 implies that P
is true. In our case, the property is the uniqueness of SRFR and
the indeterminates of 𝐶 are the polynomial coefficients 𝑢 𝑗,𝑘 of the

components 𝑢 𝑗 =
∑𝑓𝑗−1
𝑘=0

𝑢 𝑗,𝑘𝑥
𝑘 of 𝒖.

227

On the Uniqueness of Simultaneous Rational Function Reconstruction ISSAC ’20, July 20–23, 2020, Kalamata, Greece

In terms of complexity, [OS07] computes a complete basis of the
solution space using O(𝑛𝑘𝜔−1𝐵(deg(𝑎))) operations in K where
2 ≤ 𝜔 ≤ 3 is the exponent of the matrix multiplication and 𝐵(𝑡) :=
𝑀 (𝑡) log 𝑡 where𝑀 is the classic polynomial multiplication arith-
metic complexity (see [GG13] for instance). In [RNS16] the complex-
ity was improved: they compute the solution space (in the general
case of different moduli 𝑎𝑖) in complexity O(𝑛𝜔−1𝐵(𝑓) log(𝑓 /𝑛)2)
where 𝑓 = max𝑖 deg(𝑎𝑖).

Application to polynomial linear system solving. SRFR has a nat-
ural application in linear algebra. Suppose that we want to com-
pute the solution 𝒚 = 𝐴−1𝒃 ∈ K(𝑥) of a full rank polynomial
linear system 𝐴 ∈ K[𝑥]𝑛×𝑛 , 𝒃 ∈ K[𝑥]𝑛×1, from its image mod-
ulo a polynomial 𝑎. We will refer to this problem as Polynomial

Linear System solving (PLS). We remark that, by Cramer’s rule, 𝒚
is vector of rational functions with the same denominator: PLS is
then a special case of SRFR. In [OS07, Theorem 5.1], the authors
proved that the solution space is uniquely generated (𝑠 = 1) when
deg(𝑎) ≥ 𝑁 + (𝐷 −1)/𝑛 in the special case of 𝐷 = 𝑁 = 𝑛 deg(𝐴) +1
and deg(𝐴) = deg(𝑏). For this purpose, they exploited another
bound on the degree of 𝑎 based on [Cab71].

In view of Theorem 2.4 and as our experiments suggest, we could
hope for the following,

Conjecture 2.5. If (4) is satisfied then for almost all (𝒗, 𝑑) with

gcd(𝑑, 𝑎𝑖) = 1, SRFR with 𝒖 =
𝒗

𝑑
as input admits a unique solution.

Since we have proved the uniqueness for generic instances 𝒖, it
would be sufficient to show the existence of an instance 𝒖 of the
form 𝒗/𝑑 for any 𝑁𝑖 , 𝐷, 𝑎𝑖 to prove the conjecture.

2.2 Reconstruction with Errors

In this section we introduce the problem of the Simultaneous Ratio-
nal Function with Errors, i.e. SRFR in a scenario where errors may
occur in some evaluations [BK14, KPSW17, GLZ19, Per14, GLZ20].
Throughout this section we suppose that K is a finite field of cardi-
nality 𝑞, we fix 𝜶 = {𝛼1, . . . , 𝛼 𝑓 } pairwise distinct evaluation points

in K and we consider the polynomial 𝑎 =
∏𝑓

𝑖=1 (𝑥 − 𝛼𝑖).

Definition 2.6 (SRFR with Errors). Fix 0 < 𝑁, 𝐷, 𝜀 < 𝑓 ≤ 𝑞. An
instance of SRFR with errors (SRFRwE) is a matrix 𝝎 ∈ K𝑛×𝑓

whose columns are 𝝎 𝑗 = 𝒗 (𝛼 𝑗)/𝑑 (𝛼 𝑗) + 𝒆 𝑗 for some reduced 𝒗/𝑑 ∈

K(𝑥)𝑛×1 and some error matrix 𝒆. The reduced vector must satisfy
deg(𝒗) < 𝑁 , deg(𝑑) < 𝐷 and 𝑑 (𝛼𝑖) ≠ 0. The error matrix must
have its error support 𝐸 := {1 ≤ 𝑗 ≤ 𝑓 | 𝒆 𝑗 ≠ 0} which satisfies
|𝐸 | ≤ 𝜀. Then SRFRwE is the problem of finding a solution (𝒗, 𝑑)

given an instance 𝝎.

SRFRwE as Reed-Solomon decoding. Observe that if 𝑛 = 1 and
𝐷 = 1, 𝒗/𝑑 becomes a polynomial. Then SRFRwE is the problem
of recovering a polynomial 𝑣 given evaluations, some of which
possibly erroneous; that is decoding an instance of a Reed-Solomon

code. Its vector generalization, that is 𝑛 > 1 and 𝐷 = 1, coincides
with the decoding of an homogeneous Interleaved Reed-Solomon

(IRS) code. Indeed, an IRS codeword can be seen as the evaluation
of a vector of polynomials 𝒗 on 𝜶 . Thus decoding IRS codes is the
problem of recovering 𝒗 from 𝝎 𝑗 = 𝒗 (𝛼 𝑗) + 𝒆 𝑗 .

Let us now detail how we can solve SRFRwE using SRFR. We use
the same technique of decoding RS and IRS codes [BW86, BKY03,

PRN17]. We introduce the Error Locator Polynomial Λ =
∏

𝑗 ∈𝐸 (𝑥 −

𝛼 𝑗). Its roots are the erroneous evaluations so deg(Λ) = |𝐸 | ≤

𝜀. We consider the Lagrangian polynomials 𝑢𝑖 ∈ K[𝑥] such that
𝑢𝑖 (𝛼 𝑗) = 𝜔𝑖 𝑗 for any 1 ≤ 𝑖 ≤ 𝑛. The classic approach is to remark

that (𝝋,𝜓) = (Λ𝒗,Λ𝑑) is a solution of 𝝋 = 𝜓𝒖 mod
∏𝑓

𝑖=1 (𝑥 −

𝛼𝑖) such that deg(𝝋) < 𝑁 + 𝜀 and deg(𝜓) < 𝐷 + 𝜀. In this way
we reduce SRFRwE to SRFR. If the unique (𝝋,𝜓) satisfying latter
conditions is (Λ𝒗,Λ𝑑), then we can reconstruct (𝒗, 𝑑) and solve
SRFRwE. Uniqueness can be obtained by taking VRFR constraints
𝑓 = (𝑁 + 𝜀) + (𝐷 + 𝜀) − 1 = 𝑁 + 𝐷 + 2𝜀 − 1 [BK14, KPSW17].

It is possible to reduce the number of evaluations w.r.t. the maxi-
mal number of errors 𝜀 in the setting of IRS decoding (𝐷 = 1).

Theorem 2.7 ([BKY03, BMS04, SSB09]). Fix 0 < 𝑁, 𝜀 < 𝑓 ≤ 𝑞

and 𝐸 such that |𝐸 | ≤ 𝜀. If 𝑓 = 𝑁 + 𝜀 + 𝜀/𝑛, then for all (𝒗, 1) and
almost all error matrices 𝒆 of support 𝐸, SRFRwE admits a unique

solution on the instance 𝝎 where 𝝎 𝑗 = 𝒗 (𝛼 𝑗)/𝑑 (𝛼 𝑗) + 𝒆 𝑗 .

We proved a similar result in the rational function case,

Theorem 2.8 ([GLZ19, GLZ20]). Fix 0 < 𝑁, 𝐷, 𝜀 < 𝑓 ≤ 𝑞 and 𝐸

such that |𝐸 | ≤ 𝜀. If 𝑓 = 𝑁 + 𝐷 − 1 + 𝜀 + 𝜀/𝑛, then for all (𝒗, 𝑑) and

almost all error matrices 𝒆 of support 𝐸, SRFRwE admits a unique

solution on the instance 𝝎 where 𝝎 𝑗 = 𝒗 (𝛼 𝑗)/𝑑 (𝛼 𝑗) + 𝒆 𝑗 .

Since the problem of SRFRwE reduces to SRFR, there always
exists a non-trivial (𝝋,𝜓) whenever 𝑓 = 𝑁 + 𝜀 + (𝐷 + 𝜀 − 1)/𝑛. Our
ideal result would be to prove a uniqueness result also in this case.
Our experiments suggest the following,

Conjecture 2.9. Fix 0 < 𝑁, 𝐷, 𝜀 < 𝑓 ≤ 𝑞 and 𝐸 such that |𝐸 | ≤ 𝜀.

If 𝑓 = 𝑁 + 𝜀 + (𝐷 + 𝜀 − 1)/𝑛, then for almost all (𝒗, 𝑑) and almost all

error matrices 𝒆 of support 𝐸, SRFRwE admits a unique solution on

the instance 𝝎 where 𝝎 𝑗 = 𝒗 (𝛼 𝑗)/𝑑 (𝛼 𝑗) + 𝒆 𝑗 .

Note that Conjecture 2.9 is for almost all fractions (𝒗, 𝑑) whereas
Theorems 2.7 and 2.8 are for all fractions. This difference is due to
Example 2.2, which shows that we can not have uniqueness for all
instances 𝒖 of the form 𝒖 = 𝒗/𝑑 when 𝑓 = 𝑁 + (𝐷−1)/𝑛. This latter
number of evaluations matches the one of Conjecture 2.9 in the
situation without errors 𝜀 = 0. Remark that this obstruction does
not affect Theorems 2.7 and 2.8 because their number of evaluations
𝑓 becomes 𝑁 + 𝐷 − 1 when 𝜀 = 0.

Our result Theorem 2.4 is a first step towards Conjecture 2.9:
Since uniqueness of SRFR is true for generic instance𝝎, it remains to
prove the existence of an instance of the form𝝎 𝑗 = 𝒗 (𝛼 𝑗)/𝑑 (𝛼 𝑗)+𝒆 𝑗
for any 𝑁, 𝐷, 𝜀, 𝐸 to prove the conjecture.

Polynomial linear system solving with errors. SRFRwE was first
introduced by [BK14] as a special case of Polynomial Linear Sys-
tem Solving with Errors (PLSwE), that we now introduce. Sup-
pose that we want to compute the unique solution 𝒚 = 𝒗/𝑑 =

𝐴−1𝒃 ∈ K[𝑥]𝑛×𝑛 of a PLS in a scenario where some errors occur
[BK14, KPSW17, GLZ19]. Suppose a black box gives us solutions
𝒚𝑖 = 𝐴(𝛼𝑖)

−1𝒃 (𝛼𝑖) of evaluated systems, where 𝛼𝑖 are 𝑓 distinct
evaluations points such that 𝑑 (𝛼𝑖) ≠ 0. This black box could make
some errors in the computations; an evaluation 𝛼 𝑗 is erroneous if
𝒚 𝑗 ≠ 𝒗 (𝛼 𝑗)/𝑑 (𝛼 𝑗) and we denote by 𝐸 := { 𝑗 | 𝒚 𝑗 ≠ 𝒗 (𝛼 𝑗)/𝑑 (𝛼 𝑗)}

the set of erroneous positions. We observe that if 𝑗 ∈ 𝐸, then
there exists a nonzero 𝒆 𝑗 ∈ K

𝑛×𝑓 such that 𝒚 𝑗 = 𝒗 (𝛼 𝑗)/𝑑 (𝛼 𝑗) + 𝒆 𝑗 .

228

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Eleonora Guerrini, Romain Lebreton, Ilaria Zappatore

Hence, this problem is a special case of SRFRwE. Here we want to
reconstruct a vector of rational functions which is a solution of a
polynomial linear system. Therefore, all the results about unique-
ness of the previous sections hold. Finally, we mention that there
exists another bound on 𝑓 which guarantees the uniqueness in
the context of PLSwE; this bound depends on the degree of the
polynomial matrix 𝐴 and the vector 𝒃 [KPSW17].

3 PRELIMINARIES

In this section we will give some definitions and set out the notation
that we will use throughout this paper. We refer to [Nei16] for
proofs of lemmas, examples and historical references.

3.1 Row degrees of a K[𝑥]-module

Let K be a field and K[𝑥] its ring of polynomials. We start by
defining the row degree of a vector, then of a matrix. Let 𝒑 =

(𝑝1, . . . , 𝑝𝜈) ∈ K[𝑥]
𝜈
= K[𝑥]1×𝜈 and 𝒔 = (𝑠1, . . . , 𝑠𝜈) ∈ Z

𝜈 a shift.

Definition 3.1 (Shifted row degree). Let 𝑟𝑖 = deg(𝑝𝑖) + 𝑠𝑖 for 1 ≤

𝑖 ≤ 𝜈 . The 𝒔-row degree of 𝒑 is rdeg𝒔 (𝒑) = max 𝑟𝑖 . We also denote
𝒑 = ([𝑟1]𝑠1 , . . . , [𝑟𝜈]𝑠𝜈) a vector of polynomials with these degrees.

We can extend this definition to polynomial matrices. In fact, let
𝑃 ∈ K[𝑥]𝜌×𝜈 be a polynomial matrix, with 𝜌 ≤ 𝜈 . Let 𝑃𝑖,∗ be the
𝑖-th row of 𝑃 for 1 ≤ 𝑖 ≤ 𝜌 . We can define the 𝒔-row degrees of the
matrix 𝑃 as rdeg𝒔 (𝑃) := (𝑟1, . . . , 𝑟𝜌) where 𝑟𝑖 := rdeg𝒔 (𝑃𝑖,∗).

Let N be a K[𝑥]-submodule of K[𝑥]𝜈 = K[𝑥]1×𝜈 . Since K[𝑥]
is a principal ideal domain, N is free of rank 𝜌 := rank(N) less
than 𝜈 [DF03, Section 12.1, Theorem 4]. Hence, we can consider
a basis 𝑃 ∈ K[𝑥]𝜌×𝜈 , i.e. a full rank polynomial matrix, such that
N = K[𝑥]1×𝜌𝑃 = {𝝀𝑃 | 𝝀 ∈ K[𝑥]1×𝜌 }.

Our goal is to define a notion of row degrees of N in order to
study later the K-vector space N<𝑟 :=

{
𝒑 ∈ N

�� rdeg𝒔 (𝒑) < 𝑟
}
for

some 𝑟 ∈ Z. Different bases 𝑃 of N have different 𝒔-row degrees so
we need more definitions. We start with row reduced bases.

Let 𝒕 = (𝑡1, . . . , 𝑡𝜈) ∈ Z
𝜈 . We denote by 𝑋 𝒕 the diagonal matrix

whose entries are 𝑥𝑡1 , . . . , 𝑥𝑡𝜈 . The 𝒔-leading matrix 𝐿𝑀𝒔 (𝑃) of 𝑃 is
a matrix inK𝜌×𝜈 , whose entries are the coefficient of degree zero of
𝑋−rdeg

𝒔
(𝑃)𝑃𝑋 𝒔 . A basis 𝑃 ∈ K[𝑥]𝜌×𝜈 ofN is 𝒔-row reduced (shortly

𝒔-reduced) if 𝐿𝑀𝒔 (𝑃) has full rank. This definition is equivalent to
[Nei16, Definition 1.10], which implies that all 𝒔-reduced basis of
N have the same row degrees, up to permutation. We now focus
on the following crucial property.

Lemma 3.2 (Predictable degree property). 𝑃 is 𝒔-reduced if

and only if for all 𝝀 = (𝜆1, . . . , 𝜆𝜌) ∈ K[𝑥]
1×𝜌 ,

rdeg𝒔 (𝝀𝑃) = max
1≤𝑖≤𝜌

(deg(𝜆𝑖) + rdeg𝒔 (𝑃𝑖,∗)) = rdegrdeg
𝒔
(𝑃) (𝝀) .

The proof of this classic proposition can be found for instance
in [Nei16, Theorem 1.11]. This latter proposition is useful because
it implies that dimKN<𝑟 =

∑
{𝑖 |𝑟𝑖<𝑟 } (𝑟 − 𝑟𝑖) where (𝑟1, . . . , 𝑟𝜌) are

the 𝒔-row degrees of any 𝒔-reduced basis of N .
Since we will need to define the 𝒔-row degrees of N uniquely,

not just up to permutation, we need to introduce ordered weak
Popov form, which relies on the notion of pivot. The 𝒔-pivot index
of 𝒑 ∈ K[𝑥]1×𝜈 is max{ 𝑗 | rdeg𝒔 (𝒑) = deg(𝑝 𝑗) + 𝑠 𝑗 }. Moreover
the corresponding 𝑝 𝑗 is the 𝒔-pivot entry and deg(𝑝 𝑗) is the 𝒔-pivot
degree of 𝒑. We naturally extend the notion of pivot to polynomial

matrices. A basis 𝑃 of N is in 𝒔-weak Popov form if the 𝒔-pivot
indices of its rows are pairwise distinct. On the other hand, it is in
𝒔-ordered weak Popov form if the sequence of the 𝒔-pivot indices of
its rows is strictly increasing. A basis in 𝒔-weak Popov form is 𝒔-
reduced. Indeed, 𝐿𝑀𝒔 (𝑃) becomes, up to row permutation, a lower
triangular matrix with non-zero entries on the diagonal. Hence it
is full-rank.

Assume from now on that N is a submodule of K[𝑥]𝜈 of rank 𝜈
and that 𝑃 is a basis of N in 𝒔-ordered weak Popov form. Then its
pivot indices must be {1, . . . , 𝜈}. Weak Popov bases have a strong
degree minimality property, stated in the following lemma.

Lemma 3.3 ([Nei16, Lemma 1.17]). Let 𝒔 ∈ Z𝜈 , 𝑃 be a basis of N

in 𝒔-weak Popov form with 𝒔-pivot degrees (𝑑1, . . . , 𝑑𝜈). Let 𝒑 ∈ N

whose pivot index is 1 ≤ 𝑖 ≤ 𝜈 . Then the 𝒔-pivot degree of 𝒑 is ≥ 𝑑𝑖
or equivalently rdeg𝒔 (𝒑) ≥ rdeg𝒔 (𝑃𝑖,∗).

As it turns out, ordered weak Popov bases are reduced bases
for which the 𝒔-row degrees is unique. The following lemma is a
consequence of Lemma 3.3.

Lemma 3.4 ([Nei16, Lemma 1.25]). Let 𝒔 ∈ Z𝜈 and assume N

is a submodule of K[𝑥]𝜈 of rank 𝜈 . Let 𝑃 and 𝑄 be two bases of N

in 𝒔-ordered weak Popov form. Then 𝑃 and 𝑄 have the same 𝒔-row

degrees and 𝒔-pivot degrees.

3.2 Link between pivot and leading term

In this section, we will focus on the relation between pivots of weak
Popov bases and leading terms w.r.t. a specific monomial order, as
in Gröbner basis theory (see for instance [CLO98]).

Let K[𝒙] := K[𝑥1, . . . , 𝑥𝑛] be the ring of multivariate polynomi-
als. Recall that a monomial in K[𝒙] is a product of powers of the
indeterminates 𝒙 𝒊 := 𝑥𝑖11 · · · 𝑥

𝑖𝑛
𝑛 for some 𝒊 := (𝑖1, . . . , 𝑖𝑛) ∈ N

𝑛 . On

the other hand, a monomial in K[𝒙]𝑛 is 𝒙 𝒊𝜺 𝑗 , where 𝜺1, . . . , 𝜺𝑛 is
the canonical basis of the K[𝒙]-module K[𝒙]𝑛 .

A monomial order on K[𝒙]𝑛 is a total order ≺ on the monomials
of K[𝒙]𝑛 such that, for any monomials 𝜑𝜺𝑖 ,𝜓𝜺 𝑗 ∈ K[𝒙]𝑛 and any
monomial 𝜏 ≠ 1, 𝜏 ∈ K[𝒙], 𝜑𝜺𝑖 ≺ 𝜓𝜺 𝑗 =⇒ 𝜑𝜺𝑖 ≺ 𝜏𝜑𝜺𝑖 ≺ 𝜏𝜓𝜺 𝑗 .

Given a monomial order ≺ on K[𝒙]𝑛 and 𝑓 ∈ K[𝒙]𝑛 , the ≺-initial
term 𝑖𝑛≺ (𝑓) of 𝑓 is the term of 𝑓 whose monomial is the greatest
with respect to the order ≺. We remark that in the case of K[𝑥], the
only monomial order is the natural degree order 𝑥𝑎 < 𝑥𝑏 ⇔ 𝑎 < 𝑏.

We now define the shifted 𝒔-TOP order (Term Over Position)
on K[𝒙]𝑛 related to a monomial order ≺ on K[𝒙] and a choice of
shifting monomials 𝛾1, . . . , 𝛾𝑛 in K[𝒙]:

𝜑𝜺𝑖 ≺𝒔−𝑇𝑂𝑃 𝜓𝜺 𝑗 ⇐⇒ (𝜑𝛾𝑖 ≺ 𝜓𝛾 𝑗) or (𝜑𝛾𝑖 = 𝜓𝛾 𝑗 and 𝑖 < 𝑗)

for any pairs of monomials 𝜑𝜺𝑖 and𝜓𝜺 𝑗 of K[𝒙]𝑛 . In the univariate
case K[𝑥]𝑛 , the only monomial order ≺ on K[𝑥] is the natural one
and the shifting monomials are 𝛾𝑖 = 𝑥𝑠𝑖 for 𝒔 = (𝑠1, . . . , 𝑠𝑛) ∈ N

𝑛 ,
so that the 𝒔-TOP order on K[𝑥]𝑛 is

𝑥𝑎𝜺𝑖 <𝒔-TOP 𝑥
𝑏𝜺 𝑗 ⇐⇒ (𝑎 + 𝑠𝑖 , 𝑖) ≺𝑙𝑒𝑥 (𝑏 + 𝑠 𝑗 , 𝑗) . (5)

We can now state the link between this monomial order and the
pivot’s definition: let 𝒑 ∈ K[𝑥]1×𝑛 and write 𝑖𝑛≺𝒔-TOP (𝒑) = 𝛼𝑥

𝑑 𝜺𝑖 ,
then the 𝒔-pivot index, entry, and degree are respectively 𝑖 , 𝑝𝑖 and
𝑑 . This will be useful later on, in e.g. Proposition 4.3.

229

On the Uniqueness of Simultaneous Rational Function Reconstruction ISSAC ’20, July 20–23, 2020, Kalamata, Greece

4 ROW DEGREE OF THE RELATION MODULE

Fix𝑚 ≥ 𝑛 ≥ 0, and𝑀 ∈ K[𝑥]𝑚×𝑛 . We consider a K[𝑥]-submodule
M of K[𝑥]𝑛 . We define the K[𝑥]−module homomorphism

ˆ𝜑𝑀 : K[𝑥]𝑚 −→ K[𝑥]𝑛/M

𝒑 ↦−→ 𝒑𝑀
.

Set AM,𝑀 := ker(ˆ𝜑𝑀) to get the injection

𝜑𝑀 : K[𝑥]𝑚/AM,𝑀 ↩→ K[𝑥]𝑛/M .

We callAM,𝑀 the relationmodule because 𝑝 ∈ AM,𝑀 ⇔ 𝜑𝑀 (𝒑) =

𝒑𝑀 = 0 mod M, i.e. 𝒑 is a relation between rows of𝑀 .
Let 𝜺1, . . . , 𝜺𝑚 be the canonical basis of K[𝑥]𝑚 , 𝜺 ′1, . . . , 𝜺

′
𝑛 the

canonical basis of K[𝑥]𝑛 and 𝒆𝑖 = 𝜺𝑖 mod K[𝑥]𝑚/𝐴M,𝑀 for 1 ≤

𝑖 ≤ 𝑚.

Remark 4.1. Weobserve that by the Invariant Factor Form ofmodules

over Principal Ideal Domains (cf. [DF03, Theorem 4, Chapter 12]),
K := K[𝑥]𝑛/M ≃ K[𝑥]𝑛/

〈
𝑎𝑖𝜺

′
𝑖

〉
1≤𝑖≤𝑛 for nonzero 𝑎𝑖 ∈ K[𝑥]

such that 𝑎𝑛 |𝑎𝑛−1 | . . . |𝑎1. The polynomials 𝑎𝑖 are the invariants of
the moduleM. We also denote 𝑓𝑖 := deg(𝑎𝑖) and we observe that
𝑓1 ≥ 𝑓2 ≥ . . . ≥ 𝑓𝑛 .

From now on we will assume that M =
〈
𝑎𝑖𝜺

′
𝑖

〉
1≤𝑖≤𝑛 . It means

that any 𝒒 ∈ K can be seen as (𝑞1 mod 𝑎1, . . . , 𝑞𝑛 mod 𝑎𝑛). Using
the result of Lemma 3.4, we can define the row and pivot degrees
of the relation module AM,𝑀 .

Definition 4.2 (Row and pivot degrees of the relation module). Let
𝒔 ∈ Z𝑚 be a shift and 𝑃 be any basis of AM,𝑀 in ordered weak
Popov form. The 𝒔-row degrees of the relation module AM,𝑀 are
𝝆 := rdeg𝒔 (𝑃) = (𝜌1, . . . , 𝜌𝑚) and the 𝒔-pivot degrees are 𝜹 :=
(𝛿1, . . . , 𝛿𝑚) where 𝛿𝑖 = 𝜌𝑖 − 𝑠𝑖 .

Throughout this paper we will also denote 𝝆𝑀 and 𝜹𝑀 when
we want to stress out the matrix dependency.

4.1 Row degrees as row rank profile

In this section, we will see that the row degrees of the relation mod-
ule can be deduced from the row rank profile of a matrix associated
to ˆ𝜑𝑀 . We start by associating the pivot degree of 𝒑 ∈ AM,𝑀 to
linear dependency relation.

Proposition 4.3. There exists 𝒑 ∈ AM,𝑀 with 𝒔-pivot index 𝑖

and 𝒔-pivot degree 𝑑 if and only if 𝑥𝑑 𝒆𝑖 ∈ 𝐵
≺𝑥𝑑 𝜺𝑖
𝑀

where 𝐵
≺𝑥𝑑 𝜺𝑖
𝑀

:=

⟨𝑥𝑛𝒆 𝑗 | 𝑥
𝑛𝜺 𝑗 ≺𝒔−𝑇𝑂𝑃 𝑥

𝑑 𝜺𝑖 ⟩.

Proof. Fix 𝑖, 𝑑 ∈ N and let 𝒑 ∈ K[𝑥]𝑛 with 𝒔-pivot index 𝑖 and 𝒔-
pivot degree 𝑑 , so 𝑟 := rdeg𝒔 (𝒑) = 𝑑 +𝑠𝑖 . Then 𝒑 = ([≤ 𝑟]𝑠1 , . . . , [≤

𝑟]𝑠𝑖−1 , [𝑟]𝑠𝑖 , [< 𝑟]𝑠𝑖+1 , . . . , [< 𝑟]𝑠𝑚) (see Definition 3.1) and we can
write 𝒑 = 𝑐𝑥𝑑 𝜺𝑖 + 𝒑′ where 𝑐 ∈ K∗ and 𝒑′

= ([≤ 𝑟]𝑠1 , . . . , [≤

𝑟]𝑠𝑖−1 , [< 𝑟]𝑠𝑖 , [< 𝑟]𝑠𝑖+1 , . . . , [< 𝑟]𝑠𝑚). So 𝒑 ∈ AM,𝑀 has 𝑠-pivot

index 𝑖 and degree 𝑑 ⇔ 𝑥𝑑 𝜺𝑖 = −1/𝑐 𝒑′ mod AM,𝑀 ⇔

𝑥𝑑 𝒆𝑖 ∈

〈
𝑥𝑛𝒆 𝑗

����
𝑛 + 𝑠 𝑗 ≤ 𝑑 + 𝑠𝑖 , for 1 ≤ 𝑗 ≤ 𝑖 − 1
𝑛 + 𝑠 𝑗 < 𝑑 + 𝑠𝑖 , for 𝑖 ≤ 𝑗 ≤ 𝑚

〉
= 𝐵

≺𝑥𝑑 𝜺𝑖
𝑀

. □

Theorem 4.4. Let 𝜹 be the 𝒔-pivot degrees of the relation module

AM,𝑀 . Then 𝛿 𝑗 =𝑚𝑖𝑛{𝑑 | 𝑥𝑑 𝒆 𝑗 ∈ 𝐵
≺𝑥𝑑 𝜺 𝑗
𝑀

} for any 1 ≤ 𝑗 ≤ 𝑚.

Proof. Fix 1 ≤ 𝑗 ≤ 𝑚. During this proof we denote 𝛿 𝑗 :=

𝑚𝑖𝑛{𝑑 | 𝑥𝑑 𝒆 𝑗 ∈ 𝐵
≺𝑥𝑑 𝜺 𝑗
𝑀

}. We want to prove that 𝛿 𝑗 = 𝛿 𝑗 . Recall that

by Proposition 4.3, 𝑥𝛿 𝑗 𝒆 𝑗 ∈ 𝐵
≺𝑥𝛿𝑗 𝜺 𝑗
𝑀

. Hence, by the minimality of 𝛿 𝑗 ,

𝛿 𝑗 ≥ 𝛿 𝑗 . On the other hand, 𝑥𝛿 𝑗 𝒆 𝑗 ∈ 𝐵
≺𝑥𝛿 𝑗 𝜺 𝑗

𝑀
so by Proposition 4.3

there exists 𝒑 ∈ AM,𝑀 of 𝒔-pivot index 𝑗 and degree 𝛿 𝑗 . Finally,

by Lemma 3.3 we can conclude that 𝛿 𝑗 ≥ 𝛿 𝑗 . □

We now define the ordered matrix 𝑂𝑀 as the matrix of 𝜑𝑀
w.r.t. particular K-vector space bases: the rows of 𝑂𝑀 from top
to bottom are the monomials of K[𝑥]𝑚 sorted increasingly for
the ≺𝒔−𝑇𝑂𝑃 order (see (5)). The columns of 𝑂𝑀 are written w.r.t.

the basis {𝑥𝑖𝜺 ′𝑗 }1≤ 𝑗≤𝑛
0≤𝑖<𝑓𝑗

of K[𝑥]𝑛/M. Therefore, 𝑂𝑀 has finite rank

rank(𝑂𝑀) = rank(𝜑𝑀) = rank(𝜑𝑀), infinite number of rows and
(
∑𝑛
𝑖=1 𝑓𝑖) = dimK (K[𝑥]

𝑛/M) columns.

Monomial row rank profile. Our goal is to relate the row rank
profile of𝑂𝑀 to the row degrees of the relation module. The classic
definition of row rank profile of a rank 𝑟 polynomial matrix is
the lexicographically smallest sequence of 𝑟 indices of linearly
independent rows (cf. [DPS15] for instance). Since the rows of our
ordered matrix 𝑂𝑀 correspond to monomials, we will transpose
the previous definition to monomials instead of indices.

Let Mon𝑟 be the sets of 𝑟 monomials of K[𝑥]𝑚 . We define the
lexicographical ordering onMon𝑟 by comparing lexicographically
the sorted monomials for ≺𝒔−𝑇𝑂𝑃 . In detail, F <𝑙𝑒𝑥 F ′ iff there
exists 1 ≤ 𝑡 ≤ 𝑟 s.t. 𝑥𝑖𝑙 𝜺 𝑗𝑙 = 𝑥𝑢𝑙 𝜺𝑣𝑙 for 𝑙 < 𝑡 and 𝑥𝑖𝑡 𝜺 𝑗𝑡 ≺𝒔−𝑇𝑂𝑃

𝑥𝑢𝑡 𝜺𝑣𝑡 where F = {𝑥𝑖𝑙 𝜺 𝑗𝑙 }1≤𝑙≤𝑟 and F ′
= {𝑥𝑢𝑙 𝜺𝑣𝑙 }1≤𝑙≤𝑟 and both

{𝑥𝑖𝑙 𝜺 𝑗𝑙 } and {𝑥𝑢𝑙 𝜺𝑣𝑙 } are increasing for the ≺𝒔−𝑇𝑂𝑃 order.
We will use this lexicographic order on monomials to define the

row rank profile of 𝑂𝑀 . Let 𝑟 = rank(𝑂𝑀).

Definition 4.5 (Row rank profile). For any matrix𝑀 ∈ K[𝑥]𝑚×𝑛 ,
we define the row rank profile of 𝑂𝑀 (shortly 𝑅𝑅𝑃𝑀) as the family
of monomials of K[𝑥]𝑚 defined by 𝑅𝑅𝑃𝑀 :=𝑚𝑖𝑛<𝑙𝑒𝑥

P𝑀 where

P𝑀 :=
{
F ∈ Mon𝑟

�� {𝑚𝑀}𝑚∈F are linearly independent in K
}
.

We now introduce a particular family of monomials, that we
will frequently use: we will denote F𝒅 := {𝑥𝑖𝜺 𝑗 } 𝑖<𝑑 𝑗

1≤ 𝑗≤𝑚

for any

𝒅 = (𝑑1, . . . , 𝑑𝑚) ∈ N𝑚 .
This family allows us to finally relate the row rank profile of𝑂𝑀

to the row degrees of the relation module.

Proposition 4.6. The row rank profile of the ordered matrix 𝑂𝑀

is given by the pivot degrees 𝜹𝑀 of the relation module AM,𝑀 , i.e.
𝑅𝑅𝑃𝑀 = F𝜹𝑀

.

Proof. We fix the matrix𝑀 in order to simplify notations. We

define 𝛿 ′𝑗 = 𝑚𝑖𝑛
{
𝛿 | 𝑥𝛿 𝜺 𝑗 ∉ 𝑅𝑅𝑃

}
and 𝜹 ′

= (𝛿 ′1, . . . , 𝛿
′
𝑚). By prop-

erties of row rank profile, we have that 𝑥𝛿 𝑗 𝒆 𝑗 ∈ 𝐵
≺𝑥𝛿𝑗 𝜺 𝑗 (otherwise

we could create a smaller family of linearly independent monomial
with 𝑥𝛿 𝑗 𝒆 𝑗). Using Theorem 4.4, we deduce that 𝛿 ′𝑗 ≥ 𝛿 𝑗 . There-

fore F𝜹 ⊂ F𝜹′ ⊂ 𝑅𝑅𝑃 . Since the families of monomials F𝜹 and
𝑅𝑅𝑃 have the same cardinality 𝑟 = rank(𝑂𝑀), they are equal so
F𝜹 = 𝑅𝑅𝑃 . □

230

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Eleonora Guerrini, Romain Lebreton, Ilaria Zappatore

4.2 Constraints on relation’s row degrees

We will now focus on integer tuples 𝜹𝑀 which can be achieved. For
this matter, in the light of Proposition 4.6, we need to understand
which families F𝒅 of monomials can be linearly independent in the
ordered matrix, i.e. belong to P𝑀 (see Definition 4.5).

Recall that K = K[𝑥]𝑛/M = K[𝑥]𝑛/
〈
𝑎𝑖𝜺

′
𝑖

〉
1≤𝑖≤𝑛

and 𝑓𝑖 =

deg(𝑎𝑖) are non-increasing as in Remark 4.1. Recall also from Defi-
nition 4.5 that P𝑀 is the set of families F of 𝑟 monomials in K[𝑥]𝑚

such that {𝑚𝑀}𝑚∈F are linearly independent in K[𝑥]𝑛/M.

Theorem 4.7. Let 𝒅 ∈ N𝑚 be non-increasing. We can extend

𝒇 ∈ N𝑚 by 𝑓𝑛+1 = . . . = 𝑓𝑚 = 0. Then ∃𝑀 ∈ K[𝑥]𝑚×𝑛 such that

F𝒅 ∈ P𝑀 if and only if
∑𝑙
𝑖=1 𝑑𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 for all 1 ≤ 𝑙 ≤ 𝑚.

The non-increasing property of 𝒅 can be lifted: let 𝒅 be non-
increasing and 𝒅 ′ be any permutation of 𝒅. Then ∃𝑀 ∈ K[𝑥]𝑚×𝑛

such that F𝒅 ∈ P𝑀 if and only if ∃𝑀 ′ ∈ K[𝑥]𝑚×𝑛 such that F𝒅′ ∈

P𝑀′ . Indeed, permuting 𝒅 amounts to permuting the components
of 𝒑, i.e. permuting the rows of𝑀 . This does not affect the existence
property.

Theorem 4.7 is an adaptation of [Vil97, Proposition 6.1] and its
derivation [PS07, Theorem 3]. Even if the statements of these two
papers are in a different but related context, their proof can be
applied almost straightforwardly. We will still provide the main
steps of the proof, for the sake of clarity and also because we will
have to adapt it later in the proof of Theorem 2.4. Note also that
we complete the ‘if’ part of the proof because it was not detailed in
earlier references. For this purpose, we introduce the following

Lemma 4.8. Let N be a K[𝑥]-submodule of K of rank 𝑙 . Then the

dimension of N as K-vector space is at most 𝑓1 + · · · + 𝑓𝑙 .

Proof. First, remark that if 𝒒 ∈ N has its first non-zero element
at index 𝑝 then 𝑎𝑝𝒒 = 0. Now since N has rank 𝑙 , we can consider
the matrix 𝐵 whose rows are the 𝑙 elements of a basis of N . We
operate on the rows of 𝐵 to obtain the Hermite normal form 𝐵′

of 𝐵. The rows (𝒃 ′𝑖)1≤𝑖≤𝑙 of 𝐵
′ have first non-zero elements at

distinct indices 𝑘1, . . . , 𝑘𝑙 . Therefore 𝑎𝑘 𝑗
𝒃 ′𝑗 = 0 and {𝑥𝑖𝒃 ′𝑗 }0≤𝑖<𝑓𝑘𝑗

1≤ 𝑗≤𝑙
is a generating set ofN and so dimKN ≤ 𝑓𝑘1 +· · ·+ 𝑓𝑘𝑙 ≤ 𝑓1+· · ·+ 𝑓𝑙
since (𝑓𝑖) are non increasing and (𝑘 𝑗) pairwise distinct. □

Corollary 4.9. Let 𝑟 ≥ 0, 𝒅 ∈ N𝑙 and 𝑣1, . . . , 𝑣𝑙 ∈ K such that

{𝑥 𝑗𝒗𝑖 }0≤ 𝑗<𝑑𝑖
1≤𝑖≤𝑙

are linearly independent then
∑𝑙
𝑖=1 𝑑𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 .

Proof. We considerN theK[𝑥]-module spanned by {𝑣1, . . . , 𝑣𝑙 },
and we observe that 𝑑1 + · · · + 𝑑𝑙 ≤ dimN ≤ 𝑓1 + · · · + 𝑓𝑙 by
Lemma 4.8. □

Proof of Theorem 4.7. We observe that if𝑚 > 𝑛, we can write
K = K[𝑥]𝑛/

〈
𝑎𝑖𝜺

′
𝑖

〉
1≤𝑖≤𝑛 = K[𝑥]𝑚/⟨𝑎𝑖𝜺𝑖 ⟩1≤𝑖≤𝑚 where 𝑎 𝑗 = 1 for

𝑛 + 1 ≤ 𝑗 ≤ 𝑚. Hence, we can suppose w.l.o.g. that𝑚 = 𝑛.
⇒) By the hypotheses, there exists a matrix𝑀 ∈ K[𝑥]𝑚×𝑛 such

that {𝑥𝑖𝜺 𝑗𝑀}𝑥𝑖𝜺 𝑗 ∈F𝒅 = {𝑥𝑖𝒗 𝑗 }0<𝑖<𝑑 𝑗
are linearly independent in

K where 𝒗 𝑗 := 𝜺 𝑗𝑀 . Hence, for all 1 ≤ 𝑙 ≤ 𝑚, 𝒗1, . . . , 𝒗𝑙 satisfy the

conditions of the Corollary 4.9 and so
∑𝑙
𝑖=1 𝑑𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 .

⇐) Set 𝒖𝑖 = 𝜺𝑖 for 1 ≤ 𝑖 ≤ 𝑚 so that {𝑥𝑖𝒖 𝑗 } 𝑖<𝑓𝑗
1≤ 𝑗≤𝑚

are linearly

independent in M. We now consider the matrix 𝐾 := [𝐾1 | . . . |𝐾𝑚]

where 𝐾𝑗 ∈ K[𝑥]
𝑚×𝑓𝑗 is in Krylov form, that is 𝐾𝑗 = 𝐾 (𝒖 𝑗 , 𝑓𝑗) :=

[𝒖 𝑗 |𝑥𝒖 𝑗 | . . . |𝑥
𝑓𝑗−1𝒖 𝑗] by considering 𝒖 𝑗 as a column vector. Note

that𝐾 is full column rank by construction. Our goal is to find vectors
𝒗1, . . . , 𝒗𝑚 such that [𝐾 (𝒗1, 𝑑1) | . . . |𝐾 (𝒗𝑚, 𝑑𝑚)] is full column rank
(see 𝐾 later).

For this purpose, we first need to consider the matrix 𝐾 made
of columns of 𝐾 so that it remains full column rank. It is defined
as 𝐾 := [𝐾1 | . . . |𝐾𝑚] where for 1 ≤ 𝑗 ≤ 𝑚, 𝐾 𝑗 ∈ K[𝑥]𝑚×𝑑 𝑗 are
defined iteratively by

𝐾 𝑗 := [𝐾 (𝒖 𝑗 ,min(𝑓𝑗 , 𝑑 𝑗)) |𝐾 (𝑥
𝑠1𝒖 𝑗1 , 𝑡1) | . . . |𝐾 (𝑥

𝑠𝑘 𝒖 𝑗𝑘 , 𝑡𝑘)]

and 𝐾 (𝑥𝑠𝑙 𝒖 𝑗𝑙 , 𝑡𝑙) derives from previously unused columns in 𝐾 ,
which we add from left to right, i.e. (𝑗𝑙) are increasing. Since∑𝑗

𝑖=1 𝑑𝑖 ≤
∑𝑗
𝑖=1 𝑓𝑖 , wewill only pick from previous blocks, i.e. 𝑗𝑘 < 𝑗 .

Since we must have depleted a block 𝐾𝑖𝑙 before going to another
one, we can observe that 𝑠𝑙 + 𝑡𝑙 = 𝑓𝑙 for 𝑙 < 𝑘 . The last block 𝐾𝑖𝑘 is
the only one that may not be exhausted, i.e. 𝑠𝑘 +𝑡𝑘 ≤ 𝑓𝑘 . Conversely,
𝑠𝑙 = 𝑑𝑙 for 𝑙 > 1 because no columns have been picked yet from the
blocks 𝑗𝑙 , except maybe the first block 𝑗1 where 𝑠1 ≥ 𝑑1.

We want to transform𝐾 𝑗 into a Krylov matrix𝐾𝑗 , working block
by block. First we extend [𝐾 (𝒖 𝑗 ,min(𝑓𝑗 , 𝑑 𝑗)) |0| . . . |0] to the right to
𝐾 (𝒖 𝑗 , 𝑑 𝑗). Then we extend all blocks [0| . . . |0|𝐾 (𝑥𝑠𝑙 𝒖 𝑗𝑙 , 𝑡𝑙) |0| . . . |0]

to the left and the right to𝐾 (𝑥𝑠
′
𝑙 𝒖 𝑗𝑙 , 𝑑𝑙) where 𝑠

′
𝑙
equals 𝑠𝑙 minus the

number of columns of the left extension. In this way, the extension
matches the original matrix on its non-zero columns. Now we
can define 𝐾 := [𝐾1 | . . . |𝐾𝑚], where 𝐾𝑗 := 𝐾 (𝒗 𝑗 , 𝑑 𝑗) with 𝒗 𝑗 :=

𝒖 𝑗 +
∑𝑘
𝑙=1 𝑥

𝑠′
𝑙 𝒖 𝑗𝑙 .

A crucial point of the proof is to show that 𝑠 ′
𝑘
≥ 0. But since 𝑑𝑖

are-non increasing, 𝑗𝑙 are increasing and 𝑗𝑘 < 𝑗 , we get 𝑠𝑙 ≥ 𝑑 𝑗𝑙 ≥
𝑑 𝑗𝑘 ≥ 𝑑 𝑗 . As the number of columns of the left extension is at most
𝑑 𝑗 , we can conclude 𝑠 ′

𝑘
≥ 0.

In [Vil97] and [PS07] it is proved that there exist an upper tri-
angular matrices 𝑇 such that 𝐾 = 𝐾𝑇 . So we can conclude that 𝐾 ,
which is in the desired block Krylov form, is full column rank as is
𝐾 , which concludes the proof. □

Example 4.10. We illustrate the construction of the proof of The-
orem 4.7 with example. Let 𝑚 = 4, 𝑛 = 3, 𝒇 = (8, 4, 4) extended
to 𝑓4 = 0 and 𝒅 = (5, 5, 3, 3). Remark that

∑𝑙
𝑖=1 𝑑𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 for all

1 ≤ 𝑙 ≤ 𝑚. Then 𝐾1 = 𝐾 (𝒖1, 𝑑1), 𝐾2 = [𝐾 (𝒖2, 𝑓2) |𝐾 (𝑥
𝑑1𝒖1, 𝑑2 −

𝑓2)] picks its missing column from the first unused column of 𝐾1,
𝐾3 = 𝐾 (𝒖3, 𝑑3), and 𝐾4 = [𝐾 (𝒖4, 𝑓4) = ∅|𝐾 (𝑥𝑑1+1𝒖1, 𝑓1 − (𝑑1 +

1) |𝐾 (𝑥𝑑3𝒖3, 𝑓3 − 𝑑3)] picks its 3 missing columns first from the 2
unused of 𝐾1, then from the remaining one of 𝐾3. Then the con-
struction extends 𝐾 to 𝐾 = 𝐾 (𝒗𝑖 , 𝑑𝑖) where 𝒗1 = 𝒖1 = [1, 0, 0],
𝒗2 = 𝒖2 + 𝑥

𝑑2−(𝑑1−1)𝒖1 = [𝑥, 1, 0], 𝒗3 = 𝒖3 = [0, 0, 1] and 𝒗4 =

𝑥𝑑1+1𝒖1 +𝑥
𝑑3−(𝑓1−(𝑑1+1))𝒖3 = [𝑥6, 0, 𝑥]. Finally the matrix𝑀 of the

statement of Theorem 4.7 has its 𝑗-th row𝑀𝑗,∗ equal to 𝒗 𝑗 . ^

We now have all the cards in our hand to state the principal con-
straint on the pivot degrees 𝜹𝑀 of the relation moduleAM,𝑀 when
𝑀 varies in the set of matrices K[𝑥]𝑚×𝑛 such that rank(𝑂𝑀) =

rank(𝜑𝑀) is fixed. We will denote by d𝑟 the pivot degrees corre-
sponding to the constraint.

Theorem 4.11. Recall that 𝒇 = (𝑓1, . . . , 𝑓𝑚) are the degrees of the

invariants ofM where 𝑓𝑖 = 0 for𝑛+1 ≤ 𝑖 ≤ 𝑚, and let 𝑟 = rank(𝑂𝑀).

231

On the Uniqueness of Simultaneous Rational Function Reconstruction ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Then F𝜹𝑀
≥𝑙𝑒𝑥 Fd𝑟 where

Fd𝑟 =𝑚𝑖𝑛<𝑙𝑒𝑥

{
F𝒅 ∈ Mon𝑟

����� ∀1 ≤ 𝑙 ≤ 𝑚,

𝑙∑

𝑖=1

𝑑𝑖 ≤

𝑙∑

𝑖=1

𝑓𝑖

}
(6)

Proof. We know from Proposition 4.6 that 𝑅𝑅𝑃𝑀 = F𝜹𝑀
so

{𝑥𝑖𝜺 𝑗𝑀} 𝑖<𝛿 𝑗,𝑀

1≤ 𝑗≤𝑚

are linearly independent and
∑𝑚
𝑖=1 𝛿𝑖,𝑀 = 𝑟 . Using

Theorem 4.7, we get that
∑𝑙
𝑖=1 𝛿𝑖,𝑀 ≤

∑𝑙
𝑖=1 𝑓𝑖 for all 1 ≤ 𝑙 ≤ 𝑚.

This means that F𝜹𝑀
belongs to the set whose minimum is Fd𝑟 ,

which implies our result. □

We observe that 𝑟 = rank(𝑂𝑀) must satisfy 0 ≤ 𝑟 ≤ Σ :=∑𝑚
𝑖=1 𝑓𝑖 = dimK K[𝑥]

𝑛/M and that 𝑟 = Σ is reachable since𝑚 ≥ 𝑛.
Note also that d𝑟 is well-defined in Theorem 4.11 as long as 0 ≤ 𝑟 ≤

Σ :=
∑𝑚
𝑖=1 𝑓𝑖 because it is related to the minimum of a non-empty

set.

4.3 Generic row degrees of relation module

We will now show that this pivot degrees constraint dΣ is attain-
able by 𝜹𝑀 for matrices 𝑀 such that rank(𝑂𝑀) = rank(𝜑𝑀) =

dimK K[𝑥]
𝑛/M in which case𝜑𝑀 becomes a bijection. More specif-

ically, we will show that this is the case for almost all matrices
𝑀 ∈ K[𝑥]𝑚×𝑛 .

Corollary 4.12. For a generic matrix 𝑀 ∈ K[𝑥]𝑚×𝑛 , the pivot

degrees 𝜹𝑀 of the relation module 𝐴M,𝑀 satisfy 𝜹𝑀 = dΣ where

Σ =
∑𝑛
𝑖=1 𝑓𝑖 .

Proof. Our goal is to prove that there exists a non-zero polyno-
mial𝐶 in the coefficients𝑚𝑖, 𝑗,𝑘 of the polynomial entries𝑚𝑖, 𝑗 of𝑀
such that 𝐶 (𝑚𝑖, 𝑗,𝑘) ≠ 0 implies that 𝜹𝑀 = dΣ.

Since
∑𝑙
𝑖=1 dΣ,𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 for all 1 ≤ 𝑙 ≤ 𝑚, we deduce from

Theorem 4.7 that there exists𝑀 ∈ K[𝑥]𝑚×𝑛 such that {𝑚𝑀}𝑚∈FdΣ
are linearly independent. So the Σ-minor of the ordered matrix
𝑂𝑀 of 𝑀 corresponding to those lines is non-zero. We now con-
sider this Σ-minor as a function 𝐶 in the coefficients 𝑚𝑖, 𝑗,𝑘 of
the polynomial entries 𝑚𝑖, 𝑗 of 𝑀 . Note that 𝐶 ∈ K[𝑚𝑖, 𝑗,𝑘] since
the entries of 𝑂𝑀 are linear combinations of 𝑚𝑖, 𝑗,𝑘 . Indeed, we

can write 𝑚𝑖, 𝑗 =
∑𝑓𝑗−1
𝑘=0

𝑚𝑖, 𝑗,𝑘𝑥
𝑘 because 𝑚𝑖, 𝑗 is only considered

modulo 𝑎 𝑗 , and the coefficient of 𝑂𝑀 w.r.t. line 𝑥𝑢𝜺𝑖 and column

𝑥𝑣𝜺 ′𝑗 is
∑𝑓𝑗−1
𝑘=0

𝑚𝑖, 𝑗,𝑘𝑐 𝑗,𝑘,𝑢,𝑣 where 𝑐 𝑗,𝑘,𝑢,𝑣 ∈ K is the coefficient of

(𝑥𝑘+𝑢 mod 𝑎 𝑗) in 𝑥𝑣 . We have seen that 𝐶 admits a nonzero evalu-
ation so is a non-zero polynomial.

Now for any matrix 𝑀 such that 𝐶 (𝑚𝑖, 𝑗,𝑘) ≠ 0, the vectors
{𝑚𝑀}𝑚∈FdΣ

must be linearly independent, so rank(𝑂𝑀) = Σ. We

have 𝑅𝑅𝑃𝑀 ≤𝑙𝑒𝑥 FdΣ
because FdΣ

∈ P𝑀 (see Definition 4.5). The-
orem 4.11 gives the other inequality, so FdΣ

= 𝑅𝑅𝑃𝑀 = F𝜹𝑀
and

𝜹𝑀 = dΣ. □

4.3.1 Special cases. In this section, we will see that our definition
of the generic pivot degrees dΣ in (6) has a simplified expression in
a wide range of settings. Set the notation 𝑠 = max(𝒔). We will see
that under some assumptions the expected row degrees p

Σ
:= dΣ+𝒔

has a nice form. Define 𝑝 and 𝑢 be the quotient and remainder of
the Euclidean division

∑𝑚
𝑖=1 (𝑓𝑖 + 𝑠𝑖) = 𝑝 ·𝑚 + 𝑢. The expected nice

form of the row degrees will be

𝒑 := (𝑝 + 1, . . . , 𝑝 + 1
︸ ︷︷ ︸

𝑢 times

, 𝑝, . . . , 𝑝
︸ ︷︷ ︸
𝑚−𝑢 times

). (7)

This nice form will appear if the following conditions on 𝒇 and 𝒔

hold:
𝑝 ≥ 𝑠 (8)

∀1 ≤ 𝑙 ≤ 𝑚 − 1,
𝑙∑

𝑖=1

𝑝𝑖 ≤

𝑙∑

𝑖=1

(𝑓𝑖 + 𝑠𝑖) (9)

Theorem 4.13. Let 𝒑 as in (7), and let 𝒇 be non-increasing such

that (8) and (9) hold. Then p
Σ
= 𝒑.

This nice form of row degree was already observed in different
but related settings. To the best of our knowledge, it can be found
in [Vil97, Proposition 6.1] for row degrees of minimal generating
matrix polynomial but with no shift, in [PS07, Corollary 1] for
dimensions of blocks in a shifted Hessenberg form but the link to
row degree is unclear and no shift is discussed (shifted Hessenberg
is not related to our shift 𝒔), and in [JV05, after (2)] for kernel basis
were𝑚 = 2𝑛 with no shifts.

Proof. Denote again Σ =
∑𝑛
𝑖=1 𝑓𝑖 . LetF be the first Σmonomials

ofK[𝑥]𝑚 for the ≺𝒔−𝑇𝑂𝑃 ordering. Let𝒑 = (𝑝+1, . . . , 𝑝+1, 𝑝, . . . , 𝑝)
be the candidate row degrees as in the theorem statement and
𝒅 = 𝒑 − 𝒔 be the corresponding pivot degrees. Note that (8) implies
that 𝑝 ≥ 𝑠 so 𝒅 ∈ N𝑚 .

First we show that (8) implies F = F𝒅 . For the first part, in order

to prove F = F𝒅 , we need to show that 𝑑𝑖 = min{𝑑 ∈ N | 𝑥𝑑 𝜺𝑖 ∉

F }. We already know that 𝑑𝑖 ∈ N. We will need to study the
row degrees of the first monomials to conclude. The monomials
of K[𝑥]𝑚 of 𝒔-row degree 𝑟 ordered increasingly for ≺𝒔−𝑇𝑂𝑃 are
[𝑥𝑟−𝑠𝑖 𝜺𝑖] for increasing 1 ≤ 𝑖 ≤ 𝑚 such that 𝑠𝑖 ≤ 𝑟 . There are𝑚
such monomials when 𝑟 ≥ 𝑠 . The monomials of 𝒔-row degree less
than 𝑠 are {𝑥𝑖𝜺 𝑗 }𝑖+𝑠 𝑗<𝑠 and their number is

∑𝑚
𝑖=1 (𝑠 − 𝑠𝑖). From this

we can deduce that the row degree of the 𝑛-th smallest monomial is⌊
(𝑛 − 1 −

∑𝑚
𝑖=1 (𝑠 − 𝑠𝑖))/𝑚

⌋
+ 𝑠 =

⌊
(𝑛 − 1 +

∑𝑚
𝑖=1 𝑠𝑖)/𝑚

⌋
provided

that 𝑛 ≥
∑𝑚
𝑖=1 (𝑠 − 𝑠𝑖) + 1. We can now remark that the (Σ + 1)-th

smallest monomial has 𝒔-row degree 𝑝 . More precisely, the (Σ + 1)-
th smallest monomial is the (𝑢 +1)-th monomial of row-degree 𝑟 , so

F is equal to all monomials of row degree less than 𝑝 and the first
𝑢 monomials of row degree 𝑝 . This proves 𝑑𝑖 = min{𝑑 ∈ N | 𝑥𝑑 𝜺𝑖 ∉

F } and F = F𝒅 .
Second we deduce from (9) that for all 1 ≤ 𝑙 ≤ 𝑚,

∑𝑙
𝑖=1 𝑑𝑖 =∑𝑙

𝑖=1 (𝑝𝑖 − 𝑠𝑖) ≤
∑𝑙
𝑖=1 𝑓𝑖 , so Fd𝑟 ≤𝑙𝑒𝑥 F𝒅 by Theorem 4.11 and

finally Fd𝑟 = F𝒅 because F is the smallest set of Σ monomials. □

Example 4.14. Here we provide 3 examples of generic pivot de-
grees dΣ and row degrees p

Σ
: Corollary 4.12 applies only to the first

situation because the second and third situations are constructed
so that (8) and respectively (9) are not satisfied. Let𝑚 = 𝑛 = 3 and
𝒔 = (0, 2, 4) so that 𝑠 = 4 and

∑
(𝑠 − 𝑠𝑖) = 6.

In the first situation 𝒇 = (6, 1, 0), so
∑
(𝑓𝑖 + 𝑠𝑖) = 4𝑚 + 1 and

using Corollary 4.12 we get p
Σ
= (5, 4, 4) from (7) and dΣ = (5, 2, 0).

In the second situation, 𝒇 = (3, 0, 0) and (8) is not satisfied. We
use Theorem 4.13 to get dΣ = (3, 0, 0) from (6) and p

Σ
= (3, 2, 4).

Finally in the third situation, 𝒇 = (3, 3, 1) and (9) is not satisfied. We

232

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Eleonora Guerrini, Romain Lebreton, Ilaria Zappatore

use Theorem 4.13 to get dΣ = (3, 3, 1) from (6) and p
Σ
= (3, 5, 5).

Let F1, F2, F3 be the respective families of monomial of the three
situations. We picture these families in the following table, where
𝑀𝑜𝑛 are the first monomials for ≺𝒔−𝑇𝑂𝑃

𝑀𝑜𝑛 𝜺1 𝑥𝜺1 𝑥2𝜺1 𝜺2 𝑥3𝜺1 𝑥𝜺2 𝑥4𝜺1 𝑥2𝜺2 𝜺3
rdeg𝒔 0 1 2 3 4

F1 • • • • • • •

F2 • • •

F3 • • • • • • •

5 UNIQUENESS RESULTS ON SRFR

Let’s recall SRFR defined in Section 2.1: let 𝑎1, . . . , 𝑎𝑛 ∈ K[𝑥] with
degrees 𝑓𝑖 := deg(𝑎𝑖) and 𝒖 := (𝑢1, . . . , 𝑢𝑛) ∈ K[𝑥]𝑛 such that
deg(𝑢𝑖) < 𝑓𝑖 and 0 < 𝑁𝑖 ≤ 𝑓𝑖 for 1 ≤ 𝑖 ≤ 𝑛, 0 < 𝐷 ≤ min1≤𝑖≤𝑛{𝑓𝑖 }.
We want to reconstruct (𝒗, 𝑑) = (𝑣1, . . . , 𝑣𝑛, 𝑑) ∈ K[𝑥]

1×(𝑛+1) such
that 𝑣𝑖 = 𝑑𝑢𝑖 mod 𝑎𝑖 , deg(𝑣𝑖) < 𝑁𝑖 , deg(𝑑) < 𝐷.We consider M =

⟨𝑎𝑖𝜺
′
𝑖 ⟩ and we denote by 𝑆𝒖 the set of tuples which verify (3).

Lemma 5.1. For the shift 𝒔 = (−𝑁1, . . . ,−𝑁𝑛,−𝐷) ∈ Z𝑛+1, we

have (𝒗, 𝑑) ∈ 𝑆𝒖 ⇔ (𝒗, 𝑑) ∈ AM,𝑅𝒖
with rdeg𝒔 ((𝒗, 𝑑)) < 0, where

𝑅𝒖 :=

[
Id𝑛
−𝒖

]
∈ K[𝑥] (𝑛+1)×𝑛 (10)

Proof. Observe that (𝒗, 𝑑) ∈ 𝑆𝒖 if and only if it satisfies the
equation 𝒗 − 𝑑𝒖 = (𝒗, 𝑑)𝑅𝒖 = 0 mod M, that is (𝒗, 𝑑) ∈ AM,𝑅𝒖

,
and if it satisfies the degree conditions equivalent to rdeg𝒔 ((𝒗, 𝑑)) =
max{deg(𝑣1) −𝑁1, . . . , deg(𝑣𝑛) −𝑁𝑛, deg(𝑑) −𝐷} < 0 (see Def. 3.1).

□

So in order to study the solutions of SRFR we introduce the 𝒔-row
degrees 𝝆

𝒖
:= 𝝆𝑅𝒖

and the 𝒔-pivot indices 𝜹𝒖 := 𝜹𝑅𝒖
of 𝐴M,𝑅𝒖

(see Definition 4.2). As remarked just after the predictable degree
property (Lemma 3.2),

dimK 𝑆𝒖 = dimK (𝐴M,𝑅𝒖
)<0 = −

∑

𝜌𝒖,𝑖<0

𝜌𝒖,𝑖 . (11)

We can now prove our main Theorem 2.4 about uniqueness in SRFR.
Recall the theorem’s statement: assuming

∑𝑛
𝑖=1 𝑓𝑖 =

∑𝑛
𝑖=1 𝑁𝑖 +𝐷 −1

then the solution space 𝑆𝒖 has dimension 1 as K-vector space for
generic 𝒖 = (𝑢1, . . . , 𝑢𝑛) ∈ K[𝑥]

1×𝑛 .

Proof of Theorem 2.4. By the previous considerations (see (11))
it is sufficient to prove that for generic 𝒖 ∈ K[𝑥]𝑛+1, 𝝆

𝒖
= (0, . . . , 0,−1).

First, we need to show that the generic 𝒔-row degrees p
Σ
have

the expected nice form 𝒑 = (0, . . . , 0,−1) (𝑝 = −1 and𝑢 = 𝑛 =𝑚−1
because

∑
(𝑓𝑗 + 𝑠 𝑗) = −1 ·𝑚 + (𝑚 − 1), see (7)). It remains to check

that we verify the hypotheses of Theorem 4.13. By (8), 𝑠 ≤ −1 = 𝑝 .
By (9),

∑𝑙
𝑖=1 𝑝𝑖 ≤ 0 ≤

∑𝑙
𝑖=1 (𝑓𝑖 + 𝑠𝑖) for all 0 ≤ 𝑙 ≤ 𝑚 − 1 since

𝑓𝑖 + 𝑠𝑖 ≥ 0 ≥ 𝑝𝑖 for all 𝑖 .
We now show that there exists 𝒖 such that 𝑅𝒖 satisfies the gener-

icity condition 𝐶 of Corollary 4.12. This will prove that our new
genericity condition 𝐶 ′(𝑢 𝑗,𝑘) is not the zero polynomial, where
𝐶 ′ is 𝐶 (𝑚𝑖, 𝑗,𝑘) evaluated on matrices 𝑅𝒖 , and 𝑢 𝑗,𝑘 are the poly-
nomial coefficients of 𝑢 𝑗 . Let’s show that the construction of the
proof of Theorem 4.7 provides a matrix of the form 𝑅𝒖 in our case
(𝑑1, . . . , 𝑑𝑛+1) = (𝑁1, . . . , 𝑁𝑛, 𝐷 − 1) and𝑚 = 𝑛 + 1. In particular, by
SRFR assumptions, for any 1 ≤ 𝑖 ≤ 𝑛, 𝑑𝑖 ≤ 𝑓𝑖 and so the matrices

𝐾𝑖 = [𝐾 (𝒖𝑖 , 𝑑𝑖)] are already in Krylov form. On the other hand,
the last matrix is in the form 𝐾𝑛+1 = [𝐾 (𝑥𝑑 𝑗 𝒖 𝑗 , 𝑡 𝑗)]1≤ 𝑗≤𝑛 where

𝑑 𝑗 + 𝑡 𝑗 = 𝑓𝑗 (here 𝑓𝑛+1 = 0). Then 𝐾𝑛+1 = [𝐾 (
∑𝑛

𝑗=1 𝑥
𝑠′𝑗 𝒖 𝑗 , 𝑑 𝑗)] and

we need to prove that 𝑠 ′𝑗 ≥ 0 differently because we don’t have the

assumption about the non-increasing 𝒅. Recall that 𝑠 ′𝑗 is 𝑠 𝑗 minus
the number of columns added to extend the matrix to the left. This
number of columns is at most 𝑑𝑛+1 minus the size 𝑡𝑙 of the current
block. So 𝑠 ′

𝑙
≥ 𝑑𝑙 −(𝑑𝑛+1−𝑡𝑙) = 𝑑𝑙 −(𝑑𝑛+1−(𝑓𝑙 −𝑑𝑙)) = 𝑓𝑙 −𝑑𝑛+1 ≥ 0

because𝑑𝑛+1 = 𝐷−1 ≤ 𝐷 ≤ min(𝑓𝑖) and so the construction works.
When K is a finite field of cardinality 𝑞, we want to bound the

number of 𝒖 such that 𝐶 ′(𝑢 𝑗,𝑘) = 0. Recall that 𝑢 𝑗 =
∑𝑓𝑗−1
𝑘=0

𝑢 𝑗,𝑘𝑥
𝑘

and that 𝐶 ′ ∈ K[𝑢 𝑗,𝑘] is a constructed as a Σ-minor of the ordered
matrix 𝑂𝑅𝒖

where Σ =
∑𝑛
𝑖=1 𝑓𝑖 . The coefficients of 𝑂𝑅𝒖

are in K,
except for the𝐷−1 lines corresponding to (𝑥𝑢𝜺𝑛+1)0≤𝑢<𝐷−1 which
are linear combinations of 𝑢 𝑗,𝑘 as mentioned in the proof of Corol-
lary 4.12. Therefore the total degree of 𝐶 ′ is ≤ 𝐷 − 1 and we can
conclude using Schwartz-Zippel Lemma that the proportion of in-
stances leading to non-uniqueness among all possible instances is
≤ (𝐷 − 1)/𝑞. □

REFERENCES
[BK14] B. Boyer and E. Kaltofen. Numerical linear system solving with parametric

entries by error correction. In Proceedings of SNC’14, 2014.
[BKY03] D. Bleichenbacher, A. Kiayias, and M. Yung. Decoding of interleaved reed

solomon codes over noisy data. In Proceedings of ICALP’03, 2003.
[BMS04] A. Brown, L. Minder, and A. Shokrollahi. Probabilistic decoding of inter-

leaved RS-codes on the q-ary symmetric channel. In Proceedings of ISIT’04,
2004.

[BW86] E. Berlekamp and L. Welch. Error correction of algebraic block codes.,
1986. US Patent 4,633,470.

[Cab71] S. Cabay. Exact solution of linear equations. In Proceedings of SYMSAC’71,
1971.

[CLO98] D. Cox, J. Little, and D. O’Shea. Using algebraic geometry, volume 185 of
Graduate Texts in Mathematics. Springer-Verlag, 1998.

[DF03] D. S. Dummit and R. M. Foote. Abstract Algebra. Wiley, 3rd edition, 2003.
[DPS15] J.-G. Dumas, C. Pernet, and Z. Sultan. Computing the Rank Profile Matrix.

In Proceedings of ISSAC’15, 2015.
[GG13] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

University Press, 3rd edition, 2013.
[GLZ19] E. Guerrini, R. Lebreton, and I. Zappatore. Polynomial linear system solving

with errors by simultaneous polynomial reconstruction of interleaved reed-
solomon codes. In Proceedings of ISIT’19, 2019.

[GLZ20] E. Guerrini, R. Lebreton, and I. Zappatore. Enhancing simultaneous rational
function recovery: adaptive error correction capability and new bounds
for applications, 2020. Arxiv eprint 2003.01793.

[JV05] C.-P. Jeannerod and G. Villard. Essentially optimal computation of the
inverse of generic polynomial matrices. Journal of Complexity, 21(1), 2005.

[KPSW17] E. L. Kaltofen, C. Pernet, A. Storjohann, and C. Waddell. Early termination
in parametric linear system solving and rational function vector recovery
with error correction. In Proceedings of ISSAC’17, 2017.

[Nei16] V. Neiger. Bases of relations in one or several variables: fast algorithms and

applications. Phd thesis, ÉNS Lyon - University of Waterloo, 2016.
[OS07] Z. Olesh and A. Storjohann. The vector rational function reconstruction

problem. In Proceedings of the Waterloo Workshop, 2007.
[Per14] C. Pernet. High Performance and Reliable Algebraic Computing. Habilitation

à diriger des recherches, Université Joseph Fourier, Grenoble 1, 2014.
[PRN17] S. Puchinger and J. Rosenkilde né Nielsen. Decoding of interleaved reed-

solomon codes using improved power decoding. In Proceedings of ISIT’17,
2017.

[PS07] C. Pernet and A. Storjohann. Faster Algorithms for the Characteristic
Polynomial. In Proceedings of ISSAC’07, 2007.

[RNS16] J. Rosenkilde né Nielsen and A. Storjohann. Algorithms for simultaneous
padé approximations. In Proceedings of ISSAC’16, 2016.

[SSB09] G. Schmidt, V. R. Sidorenko, and M. Bossert. Collaborative decoding of
interleaved reedśsolomon codes and concatenated code designs. IEEE
Transactions on Information Theory, 55(7), 2009.

[Vil97] G. Villard. A study of Coppersmith’s block Wiedemann algorithm using
matrix polynomials. IMAG, 1997.

233

Efficient ECM Factorization in Parallel with the Lyness Map

Andrew Hone∗

A.N.W.Hone@kent.ac.uk
University of Kent
Canterbury, UK

ABSTRACT

The Lyness map is a birational map in the plane which provides

one of the simplest discrete analogues of a Hamiltonian system

with one degree of freedom, having a conserved quantity and an

invariant symplectic form. As an example of a symmetric Quispel-

Roberts-Thompson (QRT) map, each generic orbit of the Lyness

map lies on a curve of genus one, and corresponds to a sequence

of points on an elliptic curve which is one of the fibres in a pencil

of biquadratic curves in the plane.

Here we present a version of the elliptic curve method (ECM)

for integer factorization, which is based on iteration of the Lyness

mapwith a particular choice of initial data. More precisely, we give

an algorithm for scalar multiplication of a point on an arbitrary

elliptic curve over Q, which is represented by one of the curves in

the Lyness pencil. In order to avoid field inversion (I), and require

only field multiplication (M), squaring (S) and addition, projective

coordinates in P1×P1 are used. Neglecting multiplication by curve

constants (assumed small), each addition of the chosen point uses

2M, while each doubling step requires 15M. We further show that

the doubling step can be implemented efficiently in parallel with

four processors, dropping the effective cost to 4M.

In contrast, the fastest algorithms in the literature use twisted

Edwards curves (equivalent to Montgomery curves), which cor-

respond to a subset of all elliptic curves. Scalar muliplication on

twisted Edwards curves with suitable small curve constants uses

8M for point addition and 4M+4S for point doubling, both of which
can be run in parallel with four processors to yield effective costs

of 2M and 1M+ 1S, respectively. Thus our scalar multiplication al-

gorithm should require, on average, roughly twice as many multi-

plications per bit as state of the art methods using twisted Edwards

curves. In our conclusions, we discuss applications where the use

of Lyness curves may provide potential advantages.

CCS CONCEPTS

·Mathematics of computing→Nonlinear equations; ·Com-

puting methodologies → Parallel algorithms; · Security and

privacy→ Mathematical foundations of cryptography.

∗Work begun on leave in the School of Mathematics & Statistics, UNSW, Sydney,
Australia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404044

KEYWORDS

Lyness map, elliptic curve method, scalar multiplication

ACM Reference Format:

AndrewHone. 2020. Efficient ECMFactorization in Parallel with the Lyness

Map. In International Symposium on Symbolic and Algebraic Computation

(ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3373207.3404044

1 INTRODUCTION

In 1942 it was observed by Lyness [24] that iterating the recurrence

relation

𝑢𝑛+2𝑢𝑛 = 𝑎𝑢𝑛+1 + 𝑎2 (1)

with an arbitrary pair of initial values𝑢0, 𝑢1 produces the sequence

𝑢0, 𝑢1,
𝑎(𝑢1 + 𝑎)

𝑢0
,
𝑎2 (𝑢0 + 𝑢1 + 𝑎)

𝑢0𝑢1
,
𝑎(𝑢0 + 𝑎)

𝑢1
, 𝑢0, 𝑢1, . . . ,

which is periodic with period five. The Lyness 5-cycle also arises

in a frieze pattern [11], or as a simple example of Zamolodchikov

periodicity in integrable quantum field theories [31], which can be

explained in terms of the associahedron 𝐾4 and the cluster algebra

defined by the𝐴2 Dynkin quiver [16], leading to a connection with

Abel’s pentagon identity for the dilogarithm [26]. Moreover, the

map corresponding to 𝑎 = 1, that is

(𝑥,𝑦) ↦→
(

𝑦,
𝑦 + 1
𝑥

)

, (2)

appears in the theory of the Cremona group: as proved by Blanc

[8], the birational transformations of the plane that preserve the

symplectic form

𝜔 =
1

𝑥𝑦
d𝑥 ∧ d𝑦, (3)

are generated by 𝑆𝐿(2,Z), the torus and transformation (2).

More generally, the name Lyness map is given to the birational

map

𝜑 : (𝑥,𝑦) ↦→
(

𝑦,
𝑎𝑦 + 𝑏
𝑥

)

, (4)

which contains two parameters𝑎, 𝑏 (and there are also higher order

analogues [29]). The parameter 𝑎 ≠ 0 can be removed by rescal-

ing (𝑥,𝑦) → (𝑎𝑥, 𝑎𝑦), so that this is really a one-parameter family,

referred to in [15] as łthe simplest singular map of the plane.ž How-

ever, we will usually retain 𝑎 below for bookkeeping purposes.

Unlike the special case 𝑏 = 𝑎2, corresponding to (1), in general

the orbits of (4) do not all have the same period, and over an infinite

field (e.g. Q,R or C) generic orbits are not periodic. However, the

general map still satisfies 𝜑∗ (𝜔) = 𝜔 , i.e. the symplectic form (3) is

preserved, and there is a conserved quantity 𝐾 = 𝐾 (𝑥,𝑦) given by

𝐾 =
𝑥𝑦 (𝑥 + 𝑦) + 𝑎(𝑥 + 𝑦)2 + (𝑎2 + 𝑏) (𝑥 + 𝑦) + 𝑎𝑏

𝑥𝑦
. (5)

234

https://doi.org/10.1145/3373207.3404044
https://doi.org/10.1145/3373207.3404044

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Hone

Since 𝜑∗ (𝐾) = 𝐾 , each orbit lies on a fixed curve 𝐾 = const. Thus

the Lyness map is a simple discrete analogue of a Hamiltonian sys-

tem with one degree of freedom, and (4) also commutes with the

flows of the Hamiltonian vector field ¤𝑥 = {𝑥, 𝐾}, ¤𝑦 = {𝑦, 𝐾}, where
{, } is the Poisson bracket defined by (3). Moreover, generic level

curves of 𝐾 have genus one, so that (real or complex) iterates of

the Lyness map can be expressed in terms of elliptic functions [7].

Figure 1: A family of rational orbits of (4) in the positive

quadrant, iterated for 𝑎 = 1, 𝑏 = 2 with initial values (𝑥,𝑦) =
(2 + 0.2𝑘, 2 + 0.2𝑘) for 𝑘 = 0, . . . , 9.

The origin of the conserved quantity (5) may seem mysterious,

but becomes less so when one observes that (4) is a particular ex-

ample of a symmetric QRT map [27, 28], and as such it can be

derived by starting from a pencil of biquadratic curves, in this case

𝑥𝑦 (𝑥 + 𝑦) + 𝑎(𝑥 + 𝑦)2 + (𝑎2 + 𝑏) (𝑥 + 𝑦) + 𝑎𝑏 + 𝜆𝑥𝑦 = 0, (6)

which by symmetry admits the involution 𝜄 : (𝑥,𝑦) ↦→ (𝑦, 𝑥). On
each curve 𝜆 = −𝐾 = const there are also the horizontal/vertical

switches, obtained by swapping a point on the curvewith the other

intersection with a horizontal/vertical line. Using the Vieta for-

mula for the product of roots of a quadratic, the horizontal switch

can be written explicitly as the birational involution 𝜄ℎ : (𝑥,𝑦) ↦→
(𝑥−1 (𝑎𝑦 + 𝑏), 𝑦), and then the Lyness map (4) is just the composi-

tion𝜑 = 𝜄◦𝜄ℎ . Standard results about elliptic curves then imply that

applying the map to a point P0 = (𝑥,𝑦) corresponds to a transla-

tion P0 ↦→ P0 + P in the group law of the curve, where the shift

P is independent of P0.
There is an associated elliptic fibration of the plane over P1, de-

fined by (𝑥,𝑦) ↦→ 𝜆 = −𝐾 (𝑥,𝑦), so that each point (𝑥,𝑦) lies in one
of the fibres, apart from the base points where 𝑥𝑦 (𝑥 + 𝑦) + 𝑎(𝑥 +
𝑦)2 + (𝑎2 +𝑏) (𝑥 +𝑦) +𝑎𝑏 and 𝑥𝑦 vanish simultaneously. (For more

details on the geometry of QRT maps see [20, 21, 30], or the book

[13], where the Lyness map is analysed in detail in chapter 11.)

Part of one such fibration can be seen in Figure 1, which for the

case 𝑎 = 1, 𝑏 = 2 shows points on the fibres corresponding to the

values

𝐾 =
2(𝑘3 + 40𝑘2 + 575𝑘 + 2875)

5(10 + 𝑘)2
(7)

for 𝑘 = 0, . . . , 9.

In the next section we describe the group law on the invari-

ant curves of the Lyness map. Section 3 describes an algorithm,

first outlined in [19], for carrying out the elliptic curve method

(ECM) for integer factorization using the Lyness map in projective

coordinates. There is a long history of finding speedups and im-

proved curve choices for the ECM, e.g. using Montgomery curves

[6, 10, 25], Hessian curves [17] and Edwards curves [14] or their

twisted versions (see [1ś5, 18] and references therein). In section 4

we explain how the ECM algorithm with Lyness curves can be im-

plemented more efficiently in parallel, although this is still roughly

twice as slow as the fastest parallel algorithm in [18]. The final sec-

tion contains some conclusions.

2 LYNESS CURVES AS ELLIPTIC CURVES

The affine curve defined by fixing 𝐾 in (5), that is

𝑥𝑦 (𝑥 + 𝑦) + 𝑎(𝑥 + 𝑦)2 + (𝑎2 + 𝑏) (𝑥 + 𝑦) + 𝑎𝑏 = 𝐾𝑥𝑦. (8)

is both cubic (total degree three) and biquadratic in 𝑥,𝑦, and (sub-

ject to a discriminant condition, described below) it extends to a

smooth projective cubic in P2, or a smooth curve of bidegree (2, 2)
in P1 × P1. See Figure 2 for a plot of a smooth Lyness curve in R2.

An example of a singular Lyness curve is given by

𝑥𝑦 (𝑥 + 𝑦) + (𝑥 + 𝑦)2 + 3(𝑥 + 𝑦) + 2 = 23

2
𝑥𝑦,

which is the case 𝑘 = 0 of (7), and contains the fixed point at

(𝑥,𝑦) = (2, 2) in Figure 1.

In order to consider a Lyness curve (8) as an elliptic curve, we

must define the group law, in terms of addition of pairs of points,

with a distinguished point O as the identity element. For what fol-

lows, wewill make use of the fact that a Lyness curve is birationally

equivalent to a Weierstrass cubic, as described by the following

(which paraphrases a result from [19]).

Theorem 1. Given a fixed choice of rational point (𝜈, 𝜉) ∈ Q2 on
a Weierstrass cubic

𝐸 (Q) : (𝑦′)2 = (𝑥 ′)3 +𝐴𝑥 ′ + 𝐵 (9)

over Q, a point (𝑥,𝑦) on a Lyness curve (8) is given in terms of

(𝑥 ′, 𝑦′) ∈ 𝐸 (Q) by 𝑥 = −𝛽 (𝛼𝑢 + 𝛽)/(𝑢𝑣) − 𝑎, 𝑦 = −𝛽𝑢𝑣 − 𝑎, where
𝑢 = 𝜈 −𝑥 ′, 𝑣 = (4𝜉𝑦′ + 𝐽𝑢 −𝛼)/(2𝑢2) and the parameters are related

by

𝑎 = −𝛼2 − 𝛽 𝐽 , 𝑏 = 2𝑎2 + 𝑎𝛽 𝐽 − 𝛽3, 𝐾 = −2𝑎 − 𝛽 𝐽 , (10)

with 𝛼 = 4𝜉2, 𝐽 = 6𝜈2 + 2𝐴, 𝛽 =
1
4 𝐽

2 − 12𝜈𝜉2. Conversely, given

𝑎, 𝑏, 𝐾 ∈ Q, a point (𝑥,𝑦) on (8) corresponds to (𝑥,𝑦) ∈ 𝐸 (Q), a
twist of 𝐸 (Q) with coefficients𝐴 = 𝛼2𝛽4𝐴, 𝐵 = 𝛼3𝛽6𝐵, and the point

P = (∞,−𝑎) on (8) corresponds to (𝜈, 𝜉) =
(1
12 (𝛽 𝐽)2 −

1
3 𝛽

3, 12𝛼
2𝛽3)

on 𝐸 (Q).

235

Efficient ECM Factorization in Parallel with the Lyness Map ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Figure 2: The Lyness curve𝑥𝑦 (𝑥+𝑦)+(𝑥+𝑦)2+3(𝑥+𝑦)+2 = 109
8 𝑥𝑦

in R2.

By rewriting 𝐴, 𝐵 in terms of 𝑎, 𝑏, 𝐾 via the above relations, one

can compute the discriminant Δ = −16(4𝐴3 + 27𝐵2), such that

Δ ≠ 0 gives the condition for the curve (8) to be nonsingular. The

j-invariant of the Lyness curve is

𝑗 =
(𝐾 + 𝑎)−2 (𝐾𝑎 + 𝑏)−3 (𝑔2)3

(𝐾𝑎3 − 8𝑎4 + 𝐾2𝑏 − 10𝐾𝑎𝑏 + 13𝑎2𝑏 − 16𝑏2)
,

where the numerator has the cube of

𝑔2 = 𝐾
4 − 8𝐾3𝑎 + 16𝐾𝑎3 + 16𝑎4 − 16𝐾2𝑏 − 8𝐾𝑎𝑏 − 16𝑎2𝑏 + 16𝑏2 .

With the above equivalence, the group law on the Lyness curve,

with identity element given by the point O = (∞,∞), can be

found by translating the standard Weierstrass addition formulae

for (𝑥 ′, 𝑦′) into the corresponding expressions for the coordinates
(𝑥,𝑦). Alternatively, since the curve (8) is cubic, the usual chord

and tangent method can be applied directly, yielding the formula

for affine addition as

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥3, 𝑦3), (11)

𝑥3 =
(𝑎𝑦1 − 𝑎𝑦2 − 𝑥1𝑦2 + 𝑥2𝑦1) (𝑎𝑥1𝑦2 − 𝑎𝑥2𝑦1 − 𝑏𝑦1 + 𝑏𝑦2)

𝑦1𝑦2 (𝑥1 − 𝑥2) (𝑥1 − 𝑥2 + 𝑦1 − 𝑦2)
,

𝑦3 =
(𝑎𝑥1 − 𝑎𝑥2 + 𝑥1𝑦2 − 𝑥2𝑦1) (𝑎𝑥2𝑦1 − 𝑎𝑥1𝑦2 − 𝑏𝑥1 + 𝑏𝑥2)

𝑥1𝑥2 (𝑦1 − 𝑦2) (𝑥1 − 𝑥2 + 𝑦1 − 𝑦2)
.

The elliptic involution that sends any point P to its inverse −P is

the symmetry 𝜄 : (𝑥,𝑦) ↦→ (𝑦, 𝑥).
The above addition law is not unified, in the sense that it cannot

be applied when the two points to be added are the same; nor does

it make sense if one of the points is O. However, for adding (𝑥1, 𝑦1)
to either of the other two points at infinity, which are P = (∞,−𝑎)

and −P = (−𝑎,∞), this addition formula does make sense: taking

the limit 𝑥2 →∞ with 𝑦2 → −𝑎, we see that

(𝑥1, 𝑦1) + (∞,−𝑎) = 𝜑
(

(𝑥1, 𝑦1)
)

, (12)

so on each level curve 𝐾 = const an iteration of the Lyness map (4)

corresponds to addition of the point P.
In the case (𝑥1, 𝑦1) = (𝑥2, 𝑦2), either by transforming the dou-

bling formula for the Weierstrass curve (9), or by computing the

tangent to (8), the formula for doubling (𝑥,𝑦) to (𝑥,𝑦) + (𝑥,𝑦) =
2(𝑥,𝑦) is found to be

𝜓 : (𝑥,𝑦) ↦→
(

𝑅(𝑥,𝑦), 𝑅(𝑦, 𝑥)
)

, (13)

where

𝑅(𝑥,𝑦) = (𝑥𝑦 − 𝑎𝑦 − 𝑏) (𝑥
2𝑦 − 𝑎2𝑥 − 𝑏𝑦 − 𝑎𝑏)

𝑥 (𝑥 − 𝑦) (𝑦2 − 𝑎𝑥 − 𝑏)
, (14)

and satisfies 𝜓∗ (𝜔) = 2𝜔 , so that the symplectic form is doubled

by this transformation.

Apart from combinations involving exceptional points like O,
the formulae (11) and (13) define the abelian group law on the curve

(8).

3 ECM USING LYNESS

In order to factor a composite integer 𝑁 , for finding small fac-

tors one can use trial division, Pollard’s rho method or the 𝑝 − 1

method, while for the large prime factors of a modulus 𝑁 used in

RSA cryptography the number field sieve (NFS) is most effective

[12]. However, for finding many medium-sized primes, the ECM is

the method of choice, and is commonly used as a first stage in the

NFS.

To implement the original version of the ECM, due to Lenstra

[22], one should pick a random elliptic curve 𝐸, defined overQ by a

Weierstrass cubic (9), and a random point P ∈ 𝐸, then compute the

scalar multiple 𝑠P in the group law of the curve, using arithmetic

in the ring Z/𝑁Z. The method succeeds if, at some stage in the

computation of this scalar multiple 𝑠P, the denominator 𝐷 of the

coordinate 𝑥 ′ has a has a non-trivial common factor with 𝑁 , that

is 𝑔 = gcd(𝐷, 𝑁) with 1 < 𝑔 < 𝑁 .

Typically 𝑠 is chosen as a prime power less than some bound 𝐵1,

or the product of all such prime powers. For composite𝑁 , the curve

is no longer a group, but rather is a group scheme (or pseudocurve

[12]) over Z/𝑁Z, meaning that the addition law P1 + P2 does not
give a point in (Z/𝑁Z)2 for every pair of pointsP1,P2. The success
of the method is an indication that, for some prime factor 𝑝 |𝑁 ,

𝑠P = O in the group law of the genuine elliptic curve 𝐸 (F𝑝), which
happens whenever 𝑠 is a multiple of the order #𝐸 (F𝑝).

The computation of the scalar multiple 𝑠P is usually regarded

as the first stage of the ECM. If it is unsuccessful, then a second

stage can be implemented, which consists of calculating multiples

ℓ𝑠P for small primes ℓ less than some bound 𝐵2 > 𝐵1. If the sec-

ond stage fails, then one can either increase the value of 𝐵1, or

start again with a new curve 𝐸 and point P. Here we are primarily

concerned with calculating the scalar multiple 𝑠P in stage 1. Stage

2 requires an FFT extension [9], and the cost of the elliptic curve

arithmetic involved is negligible in that context.1

1The author is grateful to one of the reviewers for pointing this out.

236

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Hone

The 𝑥-coordinate on a Weierstrass curve can be replaced with

any rational function on the curve with a pole at O. In particular,

the 𝑥-coordinate on the Lyness curve (8) has a pole at O. Since,
from (12), any sequence of iterates (𝑢𝑛, 𝑢𝑛+1) of the Lyness map

(4), satisfying the recurrence

𝑢𝑛+2𝑢𝑛 = 𝑎𝑢𝑛+1 + 𝑏, (15)

corresponds to a sequence of points P𝑛 = P0+𝑛P lying on a curve

(8) with a value of 𝐾 fixed by P0 = (𝑢0, 𝑢1) and P = (∞,−𝑎),
we can implement the ECM by choosing an orbit that starts with

P0 = O = (∞,∞).
The point (∞,∞) is not a suitable initial value for the affinemap

(4), but by using the isomorphism with a Weierstrass curve, as in

Theorem 1, which identifies the point (𝜈, 𝜉) on (9) with P on (8),

or by using elliptic divisibility sequences, as mentioned in [19], we

can compute the first few multiples of P as

P = (∞,−𝑎) = (𝑢1, 𝑢2), 2P = (−𝑎, 0) = (𝑢2, 𝑢3),

3P = (0,−𝑏/𝑎) = (𝑢3, 𝑢4),
and

4P =

(

−𝑏
𝑎
,−𝑎 − 𝑏 (𝐾𝑎 + 𝑏)

𝑎(𝑎2 − 𝑏)

)

= (𝑢4, 𝑢5) (16)

The points O,±P,±2P,±3P are precisely the base points in the

pencil (6), where the Lyness map is undefined, but the point 4P
(which depends on the value of 𝐾) is a suitable starting point for

the iteration.

In terms of the choice of elliptic curve data, there are two ways

to implement the ECMusing the Lynessmap: one can pick aWeier-

strass curve (9) defined over Q (most conveniently, with 𝐴, 𝐵 ∈ Z)
together with a choice of rational point (𝑥 ′, 𝑦′) = (𝜈, 𝜉), and then

use the birational equivalence in Theorem 1 to find the correspond-

ing point P on a Lyness curve with parameters specified by (10);

or instead, one can just pick the parameters 𝑎, 𝑏, 𝐾 at random and

proceed to calculate 𝑠P starting from the point 4P given by (16). In

fact, as already mentioned, it suffices to set 𝑎 → 1 before carrying

out the iteration, since orbits with other values of 𝑎 are equivalent

to the case 𝑎 = 1 by rescaling. In the first case, starting with a point

on a Weierstrass cubic, one can calculate 𝑎, 𝑏, 𝐾 from (10) and then

replace these values by 1, 𝑏/𝑎2, 𝐾/𝑎, respectively; while in the sec-

ond case it is sufficient to set 𝑎 = 1 and just choose 𝑏, 𝐾 at random,

or (even more simply) just pick 𝑏,𝑢5 at random and then iterate

from the point 4P = (−𝑏,𝑢5).
In order to have an efficient implementation of scalar multipli-

cation, one should use an addition chain to calculate 𝑠P from 4P
by a sequence of addition steps 𝑛P ↦→ (𝑛 + 1)P, corresponding
to (4), and doubling steps 𝑛P ↦→ 2𝑛P, corresponding to (13), so

that 𝑠P can be obtained in a time 𝑂 (log 𝑠). One can also subtract

P using the inverse map

𝜑−1 : (𝑥,𝑦) ↦→
(

𝑎𝑥 + 𝑏
𝑦

, 𝑥

)

. (17)

The affine maps 𝜑 and𝜓 are not computationally efficient because

they both involve costly inversions (I), but inversions can be avoided

by working with projective coordinates, as is commonly done with

Montgomery curves using the Montgomery ladder [6, 10], or with

twisted Edwards curves in EECM-MPFQ [3]. In the ECM thismeans

that the only arithmetic needed is multiplication (M), squaring (S),

Table 1: 2-Processor Lyness addition

Cost Step Processor 1 Processor 2

1C 1 𝑅1 ← 𝑎 · 𝑌 𝑅2 ← 𝑏 · 𝑍
2 𝑅1 ← 𝑅1 + 𝑅2 𝑖𝑑𝑙𝑒

3 𝑋 ∗ ← 𝑌 𝑊 ∗ ← 𝑍

1M 4 𝑌 ∗ ←𝑊 · 𝑅1 𝑍 ∗ ← 𝑋 · 𝑍

multiplication by constants (C), and addition in Z/𝑁Z. These op-
erations are listed in order of decreasing cost: S is cheaper thanM,

multiplication by constants is even cheaper and may be neglected

if they are suitably small, while the cost of addition is negligible

compared with the rest.

For an addition chain starting from 4P, we may write

𝑠 = 2𝑘𝑚 (2𝑘𝑚−1 (· · · (2𝑘1 (4 + 𝛿0) + 𝛿1) · · ·) + 𝛿𝑚−1) + 𝛿𝑚, (18)

corresponding to 𝛿0 steps of adding P, followed by 𝑘1 doubling

steps, then |𝛿1 | steps of adding or subtracting P, etc. To avoid the

base points we require 𝛿0 ≥ 0, and typically one might restrict to

𝛿 𝑗 = ±1 for 1 ≤ 𝑗 ≤ 𝑚 − 1, with 𝛿𝑚 = 0 or ±1, if subtraction
of P is used, or only allow addition of P and take 0 ≤ 𝛿0 ≤ 3,

𝛿 𝑗 = 1 for 1 ≤ 𝑗 ≤ 𝑚 − 1 and 𝛿𝑚 = 0 or 1 only. So for instance

we could use 28 = 22 × (2 × 4 − 1) in the former case (𝑚 = 2,

𝛿0 = 𝛿2 = 0, 𝛿1 = −1, 𝑘1 = 1, 𝑘2 = 2), or 22 × (4 + 1 + 1 + 1)
in the latter (𝑚 = 1, 𝛿0 = 3, 𝛿1 = 0, 𝑘1 = 2). As we shall see, the

cost of each projective addition or subtraction step is so low that

using both addition and subtraction as much as possible may lead

to savings in the total number of operations: finding an optimal

addition/subtraction chain for Lyness scalar multiplication is an

interesting open problem for future research.

To work with projective coordinates in P1 × P1, we write the

sequence of points generated by (15) as

𝑛P = (𝑢𝑛, 𝑢𝑛+1) =
(

𝑋𝑛

𝑊𝑛
,
𝑋𝑛+1
𝑊𝑛+1

)

,

and then each addition of P or doubling can be written as a poly-

nomial map for the quadruple

(𝑋,𝑊 ,𝑌, 𝑍) = (𝑋𝑛,𝑊𝑛, 𝑋𝑛+1,𝑊𝑛+1),
where an addition step sends

(𝑋𝑛,𝑊𝑛, 𝑋𝑛+1,𝑊𝑛+1) ↦→ (𝑋𝑛+1,𝑊𝑛+1, 𝑋𝑛+2,𝑊𝑛+2),
and doubling sends

(𝑋𝑛,𝑊𝑛, 𝑋𝑛+1,𝑊𝑛+1) ↦→ (𝑋2𝑛,𝑊2𝑛, 𝑋2𝑛+1,𝑊2𝑛+1).
Taking projective coordinates in P1 × P1, the Lyness map (4)

becomes
(

(𝑋 :𝑊), (𝑌 : 𝑍)
)

↦→
(

(𝑋 ∗ :𝑊 ∗), (𝑌 ∗ : 𝑍 ∗)
)

, (19)

where

𝑋 ∗ = 𝑌, 𝑊 ∗ = 𝑍, (𝑌 ∗ : 𝑍 ∗) = ((𝑎𝑌 + 𝑏𝑍)𝑊 : 𝑋𝑍)
with 𝑎 included for completeness. If we set 𝑎 → 1 for convenience

then each addition step, adding the point P using (19), requires

2M + 1C, that is, two multiplications plus a multiplication by the

constant parameter 𝑏. One can also try to choose 𝑏 to be small

enough, so that the effective cost reduces to 2M. If one wishes to

include subtraction of P, i.e. 𝑛P ↦→ (𝑛− 1)P, then this is achieved

237

Efficient ECM Factorization in Parallel with the Lyness Map ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

using the projective version of the inverse (17), for which the cost

is the same as for 𝜑 .

The doubling map𝜓 for the Lyness case, given by the affinemap

(13) with 𝑅 defined by (14), lifts to the projective version
(

(𝑋 :𝑊), (𝑌 : 𝑍)
)

↦→
(

(𝑋 : �̂�), (𝑌 : 𝑍)
)

, (20)

where

𝑋 = 𝐴1𝐵1, 𝑌 = 𝐴2𝐵2, �̂� = 𝐶1𝐷1, 𝑍 = 𝐶2𝐷2,

with

𝐴1 = 𝐴+ +𝐴−, 𝐴2 = 𝐴+ −𝐴−,
𝐵1 = 𝐵+ + 𝐵−, 𝐵2 = 𝐵+ − 𝐵−,
𝐶1 = 2𝑋𝑇, 𝐶2 = −2𝑌𝑇,
𝐷1 = 𝑍𝐴2 +𝐶2, 𝐷2 =𝑊𝐴1 +𝐶1,
𝐴+ = 2𝐺 − 𝑎𝑆 − 2𝐻 ′, 𝐴− = 𝑎𝑇,

𝐵+ = 𝑆 (𝐺 − 𝑎2𝐻 − 𝐻 ′) − 2𝑎𝐻𝐻 ′, 𝑆 = 𝐸 + 𝐹,
𝐵− = 𝑇 (𝐺 − 𝑎2𝐻 + 𝐻 ′), 𝑇 = 𝐸 − 𝐹,
𝐸 = 𝑋𝑍, 𝐹 = 𝑌𝑊 , 𝐺 = 𝑋𝑌, 𝐻 =𝑊𝑍, 𝐻 ′ = 𝑏𝐻 .

Setting 𝑎 → 1 once again for convenience, and using the above

formulae, we see that doubling can be achieved with 15M + 1C, or
15M if multiplication by 𝑏 is ignored. (Note that multiplication by

2 is equivalent to addition: 2𝑋 = 𝑋 + 𝑋 .)
We can illustrate the application of the ECM via the Lyness map

with a simple example, taking

𝑁 = 3595474639, 𝑠 = 28, 𝑎 = 1, 𝑏 = −𝑢4 = 2, 𝑢5 = 17.

From (16) this means that

𝐾 =

(

1 − 𝑎
2

𝑏

)

(𝑢5 + 𝑎) −
𝑏

𝑎
= 7,

but we shall not need this. Writing 𝑠 as 28 = 22 (2 × 4 − 1), we
compute 28P via the chain 4P ↦→ 8P ↦→ 7P ↦→ 14P ↦→ 28P. As
initial projective coordinates, we start with the quadruple

(𝑋4,𝑊4, 𝑋5,𝑊5) = (−2, 1, 17, 1),
and then after one projective doubling step using (20), the quadru-

ple (𝑋8,𝑊8, 𝑋9,𝑊9) is found to be

(3595467431, 43928, 80648, 3595455259) .
To obtain 7P we use the projective version of the inverse map (17),

which gives

𝑋𝑛−1 = (𝑎𝑋𝑛 + 𝑏𝑊𝑛)𝑊𝑛+1, 𝑊𝑛−1 = 𝑋𝑛+1𝑊𝑛

for any 𝑛, so we get

(𝑋7,𝑊7) = (2032516399, 3542705344) .
Then applying doubling to the quadruple (𝑋7,𝑊7, 𝑋8,𝑊8) we find
that (𝑋14,𝑊14, 𝑋15,𝑊15) is

(160913035, 3261908647, 3049465821, 760206673),
and one final doubling step produces the projective coordinates of

28P, that is (𝑋28,𝑊28, 𝑋29,𝑊29) given by

(558084862, 1754538456, 252369828, 1216214157).
Nowwe compute gcd(𝑊28, 𝑁) = 6645979, and the method has suc-

ceeded in finding a prime factor of 𝑁 . The projective coordinate

𝑊29 has the same common factor with 𝑁 , but here we do not need

the coordinates 𝑋29,𝑊29 at the final step; but if the method had

failed then these would be needed for stage 2 of the ECM (comput-

ing multiples ℓ𝑠P for small primes ℓ).

It is worth comparing Lyness scalarmultiplicationwith themost

efficient state of the artmethod, which uses twisted Edwards curves,

given by

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, (21)

with projective points in P2, or with extended coordinates in P3:

with standard projective points, adding a generic pair of points

uses 10M+1S+2C, while doubling uses only 3M+4S+1C [3]; while

with extended Edwards it is possible to achieve 8M+1C for addition

of two points, or just 8M in the case 𝑎 = −1, and 4M + 4S + 1C for

doubling [18].

Clearly addition using the Lyness map is extremely efficient,

compared with other methods. In contrast, Lyness doubling is ap-

proximately twice as costly as doublingwith Edwards curves.More-

over, using (19) only allows addition ofP to any other point, rather

than adding an arbitrary pair of points, whichwould bemuchmore

costly using a projective version of (11). Since any addition chain

is asymptotically dominated by doubling, with roughly as many

doublings as the number of bits of 𝑠 , this means that, without any

further simplification of the projective formulae, scalar multipli-

cation with Lyness curves should use on average roughly twice as

many multiplications per bit as with twisted Edwards curves.

However, as we shall see, using ideas from [18], it is possible to

make Lyness scalar multiplication much more efficient if parallel

processors are used, as described in the next section.

4 DOUBLING IN PARALLEL

In [18] it was shown that if four processors are used in parallel

in the case 𝑎 = −1 of twisted Edwards curves (21), then with ex-

tended coordinates in P3 each addition step can be achieved with

an algorithm that has an effective cost of only 2M + 1C, reducing
to just 2M if the constant 𝑑 is small - an improvement in speed by

a full factor of 4 better than the sequential case, while doubling

can be achieved with an effective cost of just 1M + 1S. (Similarly,

versions of these algorithms with two processors give an effective

speed increase by a factor of 2.) Practical details of implementing

the ECM in parallel with different types of hardware are discussed

in [4].

Using two parallel processors, based on (19), each projective ad-

dition or subtraction step can be carried out in parallel with an ef-

fective cost of just 1M + 1C. An algorithm with two processors is

presented in Table 1 (where the parameter 𝑎 has been included for

reasons of symmetry, but can be set to 1). Spreading the addition

step over four processors does not lead to any saving in cost.

For Lyness curves, the large amount of symmetry in the dou-

bling formula (13) means that its projective version (20) can nat-

urally be distributed over four processors in parallel, resulting in

the algorithm presented in Table 2. This means that each Lyness

doubling step is achieved with an effective cost of 4M + 1C, or just
4M if 𝑏 is small.

In an addition chain (18) for Lyness, starting from 4P with inter-

mediate 𝛿 𝑗 = ±1, each step of adding or subtracting P is followed

by a doubling. Thus a combined addition-doubling or subtraction-

doubling step can be carried out in parallel with four processors,

238

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Hone

Table 2: 4-Processor Lyness doubling

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1M 1 𝑅1 ← 𝑋 · 𝑍 𝑅2 ← 𝑌 ·𝑊 𝑅3 ← 𝑋 · 𝑌 𝑅4 ←𝑊 · 𝑍
1C 2 𝑅5 ← 𝑅1 + 𝑅2 𝑅6 ← 𝑅1 − 𝑅2 𝑅7 ← 𝑏 · 𝑅4 𝑖𝑑𝑙𝑒

1M 3 𝑅1 ← 𝑋 · 𝑅6 𝑅2 ← 𝑌 · 𝑅6 𝑅8 ← 𝑅4 · 𝑅7 𝑅9 ← 𝑅3 − 𝑅7
4 𝑅1 ← 2𝑅1 𝑅2 ← −2𝑅2 𝑅3 ← 𝑅3 + 𝑅7 𝑅10 ← 2𝑅9
5 𝑅3 ← 𝑅3 − 𝑅4 𝑅7 ← 𝑅10 − 𝑅5 𝑅8 ← 2𝑅8 𝑅11 ← 𝑅9 − 𝑅4
6 𝑅9 ← 𝑅7 + 𝑅6 𝑅10 ← 𝑅7 − 𝑅6 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

1M 7 𝑅3 ← 𝑅3 · 𝑅6 𝑅4 ←𝑊 · 𝑅9 𝑅7 ← 𝑍 · 𝑅10 𝑅11 ← 𝑅11 · 𝑅5
8 𝑅5 ← 𝑅2 + 𝑅7 𝑅6 ← 𝑅1 + 𝑅4 𝑅11 ← 𝑅11 − 𝑅8 𝑖𝑑𝑙𝑒

9 𝑅7 ← 𝑅11 + 𝑅3 𝑅8 ← 𝑅11 − 𝑅3 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

1M 10 𝑋 ← 𝑅7 · 𝑅9 �̂� ← 𝑅1 · 𝑅5 𝑌 ← 𝑅8 · 𝑅10 𝑍 ← 𝑅2 · 𝑅6

resulting in an effective cost of 5M + 2C, but no cost saving is

achieved by combining them.

It is also clear that the algorithm in Table 2 can be adapted to the

case of two processors in parallel. This leads to an effective cost of

8M + 1C per Lyness doubling.

Thus we have seen that implementing scalar multiplication in

the ECM with Lyness curves can be made efficient if implemented

in parallel with two or four processors. In the concluding section

that follows we weigh up the pros and cons of using Lyness curves

for scalar multiplication, and briefly mention other contexts where

they may be useful.

5 CONCLUSIONS

We have presented an algorithm for scalar multiplication using

Lyness curves, which can be applied to any rational point on a

Weierstrass curve defined over Q, and have shown how it can be

implemented more efficiently in parallel with four processors.

Each step of addition (or subtraction) of a special point P, based
on the Lyness map, has a remarkably low cost: only 2M + 1C if

carried out sequentially, or an effective cost of just 1M+1C in par-

allel with two processors. The record for elliptic curve addition in

[18] using twisted Edwards curves (21) with the special parame-

ter choice 𝑎 = −1 requires 8M, or an effective cost of 2M with

four parallel processors; but this is for adding an arbitrary pair of

points, whereas for Lyness we can only achieve such a low cost

by adding/subtracting the special point P. Nevertheless, for the
purposes of scalar multiplication, addition/subtraction of P and

doubling is all that is required.

At 15M + 1C, the cost of sequential Lyness doubling is much

higher, and essentially twice the cost of sequential doubling with

twisted Edwards curves [3]. Since asymptotically scalar multipli-

cation is dominated by doubling steps, it appears that on average

using Lyness curves for scalar multiplication should require about

twice as many multiplications per bit compared with the twisted

Edwards version.

However, if it is performed in parallel with four processors, as

in Table 2, then the effective cost of Lyness doubling is reduced to

4M + 1C, and this becomes only 4M in the case that the parameter

𝑏 is small. This is still higher than the speed record for doubling

with four processors (1M + 1S), which is achieved in [18] with the

𝑎 = −1 case of twisted Edwards curves. Nevertheless, performing

Lyness addition and doubling in parallel is still quite efficient, and

may have other possible advantages, which we now consider.

For the ECM it is desirable to have a curve with large torsion

over Q, since for an unknown prime 𝑝 |𝑁 this increases the proba-

bility of smoothness of the group order #𝐸 (F𝑝) in the Hasse inter-

val [𝑝 + 1− 2√𝑝, 𝑝 + 1+ 2√𝑝], making success more likely. Twisted

Edwards curves, which are birationally equivalent to Montgomery

curves, do not cover all possible elliptic curves over Q. In particu-

lar, it is known from [3] that for twisted Edwards curves with the

special parameter choice 𝑎 = −1 (which gives the fastest addition

step) the torsion subgroups Z/10Z, Z/12Z, Z/2Z × Z/8Z are not

possible, nor is Z/2Z × Z/6Z possible for any choice of 𝑎.

For Lyness curves (8), there is no such restriction on the choice

of torsion subgroups interesting to look for families of Lyness cur-

ves having large torsion and rank at least one, employing a com-

bination of empirical and theoretical approaches similar to [1, 2].

Another potentially useful feature of scalar multiplication with

Lyness curves is that, since there is no loss of generality in set-

ting 𝑎 → 1, it requires only the two parameters 𝑏, 𝐾 (or, perhaps

better, 𝑏,𝑢5) to be carried out, and these at the same time fix an

elliptic curve 𝐸 and a point P ∈ 𝐸. Moreover, both parameters

can be chosen small. This parsimony is aesthetically pleasing be-

cause the moduli space of elliptic curves with a marked point is

two-dimensional.

On the other hand, if one wishes to start from a given Weier-

strass curve (9) with a point on it, then in general the formula in

(10) produces a Lyness curve with a value of 𝑎 ≠ 1, so if the other

parameters are subsequently rescaled to fix 𝑎 → 1 then in general

the requirement of smallness will need to be sacrificed for the new

parameter 𝑏 so obtained.

We have concentrated on scalar multiplication in stage 1 of the

ECM, but for stage 2 one usually computes ℓ1𝑠P, ℓ2ℓ1𝑠P, etc. for a
sequence of primes ℓ1, ℓ2, . . . all smaller than some bound 𝐵2. This

can be carried out effectively using a baby-step-giant-step method

[3], requiring addition of essentially arbitrary multiples of P. For
the latter approach, using addition with the Lyness map has the

disadvantage that one can only add P at each step, so to add some

other multiple of P one would need to redefine the parameters

𝑎, 𝑏, 𝐾 (and then rescale 𝑎 → 1 if desired), leading to extra inter-

mediate computations.

Scalarmultiplication is an essential feature of elliptic curve cryp-

tography: in particular, it is required for Alice and Bob to perform

239

Efficient ECM Factorization in Parallel with the Lyness Map ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

the elliptic curve version of Diffie-Hellman key exchange [23]. In

that context, one requires a curve 𝐸 (F𝑞) with non-smooth order,

to make the discrete logarithm problem as hard as possible. Bitcoin

uses the arithmetic of the curve 𝑦2 = 𝑥3 + 7, known as secp256k1,

which is not isomorpic to a twisted Edwards curve. Also, the se-

quence of scalar multiples of a point on an elliptic curve over a

finite field or a residue ring can be used for pseudorandom num-

ber generation; the fact that the cost of addition of a point is so

low for Lyness curves may make them particularly well suited to

this. It would be interesting to see if Lyness curves can offer any

advantages in these and other cryptographic settings.

ACKNOWLEDGMENTS

The research of the author is funded by fellowship EP/M004333/1

from the EPSRC and grant IEC\R3\193024 from the Royal Society.

Thanks to the School of Mathematics and Statistics, UNSW for

hosting him as a Visiting Professorial Fellow twice during 2017-

2019with funding from the Distinguished Researcher Visitor Sche-

me, to John Roberts and Wolfgang Schief for providing additional

financial support, and to Reinout Quispel, Igor Shparlinski and the

anonymous reviewers for their helpful comments.

REFERENCES
[1] Razvan Barbulescu, Joppe W. Bos, Cyril Bouvier, Thorsten Kleinjung, and Pe-

ter L. Montgomery. 2013. Finding ECM-friendly curves through a study of Ga-
lois properties. The Open Book Series 1, 1 (Nov. 2013), 63ś86. https://doi.org/10.
2140/obs.2013.1.63

[2] Daniel J. Bernstein, Peter Birkner, , and Tanja Lange. 2010. Starfish on Strike. In
Progress in Cryptology ś LATINCRYPT 2010, Michel Abdalla and Paulo S. L. M.
Barreto (Eds.). Springer, Berlin, Heidelberg, 61ś80. https://doi.org/10.1007/978-
3-642-14712-8_4

[3] Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters. 2013. ECM
using Edwards curves. Math. Comput. 82, 282 (Apr. 2013), 1139ś1179. https:
//doi.org/10.1090/S0025-5718-2012-02633-0

[4] Daniel J. Bernstein, Tien-Ren Chen, Chen-Mou Cheng, Tanja Lange, and Bo-Yin
Yang. 2009. ECM on Graphics Cards. In Advances in Cryptology - EUROCRYPT
2009, Antoine Joux (Ed.). Springer, Berlin, Heidelberg, 483ś501. https://doi.org/
10.1007/978-3-642-01001-9_28

[5] Daniel J. Bernstein and Tanja Lange. 2007. Faster Addition and Doubling on
Elliptic Curves. In Advances in Cryptology ś ASIACRYPT 2007, Kaoru Kurosawa
(Ed.). Springer, Berlin, Heidelberg, 29ś50. https://doi.org/10.1007/978-3-540-
76900-2_3

[6] Daniel J. Bernstein and Tanja Lange. 2017. Montgomery Curves and the Mont-
gomery Ladder. Cambridge University Press, 82ś115. https://doi.org/10.1017/
9781316271575.005

[7] Frits Beukers and Richard Cushman. 1998. Zeeman’s monotonicity conjecture.
J. Differ. Equ. 143, 1 (Feb. 1998), 191ś200. https://doi.org/10.1006/jdeq.1997.3359

[8] Jérémy Blanc. 2013. Symplectic birational transformations of the plane. Osaka
J. Math. 50, 2 (June 2013), 573ś590. https://doi.org/10.18910/25084

[9] Richard P. Brent, Alexander Kruppa, and Paul Zimmermann. 2017. FFT Exten-
sion for Algebraic-Group Factorization Algorithms. Cambridge University Press,
189ś205. https://doi.org/10.1017/9781316271575.009

[10] Craig Costello and Benjamin Smith. 2018. Montgomery curves and their arith-
metic. J. Cryptogr. Eng. 8 (Sept. 2018), 227ś240. https://doi.org/10.1007/s13389-
017-0157-6

[11] Harold Coxeter. 1971. Frieze patterns. Acta Arithmetica 18, 1 (1971), 297ś310.
http://eudml.org/doc/204992

[12] Richard Crandall and Carl Pomerance. 2010. Prime Numbers - A Computational
Perspective (2nd ed.). Springer, New York.

[13] Johannes J. Duistermaat. 2005. Discrete Integrable Systems: QRTMaps and Elliptic
Surfaces. Springer-Verlag, New York.

[14] Harold M. Edwards. 2007. A normal form for elliptic curves. Bull. Amer. Math.
Soc. 44, 3 (July 2007), 393ś422. https://doi.org/10.1090/S0273-0979-07-01153-6

[15] J. Esch and Thomas D. Rogers. 2001. The screensaver map: dynamics on elliptic
curves arises from polygonal folding. Discrete Comput. Geom. 25 (Apr. 2001),
477ś502. https://doi.org/10.1007/s004540010075

[16] Sergey Fomin and Andrei Zelevinsky. 2003. 𝑌 -systems and generalized associ-
ahedra. Ann. Math. (2) 158, 3 (Nov. 2003), 977ś1018. https://doi.org/10.4007/
annals.2003.158.977

[17] Henriette Heer, Gary McGuire, and Oisín Robinson. 2016. JKL-ECM: an im-
plementation of ECM using Hessian curves. LMS Journal of Computation and
Mathematics 19, A (2016), 83ś99. https://doi.org/10.1112/S1461157016000231

[18] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. 2008.
Twisted Edwards Curves Revisited. InAdvances in Cryptology - ASIACRYPT 2008,
Josef Pieprzyk (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 326ś343.

[19] Andrew N. W. Hone. 2020. ECM factorization with QRT maps. (2020).
arXiv:2001.09076

[20] Apostolos Iatrou and John A. G. Roberts. 2001. Integrable mappings of the plane
preserving biquadratic invariant curves. Journal of Physics A: Mathematical and
General 34, 34 (Aug. 2001), 6617ś6636. https://doi.org/10.1088/0305-4470/34/34/
308

[21] Apostolos Iatrou and John A. G. Roberts. 2002. Integrable mappings of the plane
preserving biquadratic invariant curves II. Nonlinearity 15, 2 (Feb. 2002), 459ś
489. https://doi.org/10.1088/0951-7715/15/2/313

[22] H. W. jun. Lenstra. 1987. Factoring integers with elliptic curves. Ann. Math. (2)
126 (1987), 649ś673. https://doi.org/10.2307/1971363

[23] Neal Koblitz. 1998. Algebraic Aspects of Cryptography. Springer, Berlin, Heidel-
berg.

[24] Robert C. Lyness. 1961. 2952. Cycles. Math. Gaz. 45, 353 (Oct. 1961), 207ś209.
https://doi.org/10.2307/3612778

[25] Peter L. Montgomery. 1987. Speeding the Pollard and elliptic curve methods of
factorization. Math. Comput. 48, 177 (Jan. 1987), 243ś264. https://doi.org/10.
1090/S0025-5718-1987-0866113-7

[26] Tomoki Nakanishi. 2011. Periodicities in cluster algebras and dilogarithm iden-
tities. In Representations of Algebras and Related Topics (EMS Series of Congress
Reports), Vol. 5. European Mathematical Society, Zurich, 407ś444.

[27] G. Reinout W. Quispel, John A.G. Roberts, and Colin John Thompson. 1989. In-
tegrable mappings and soliton equations II. Physica D 34, 1 (Jan. 1989), 183ś192.
https://doi.org/10.1016/0167-2789(89)90233-9

[28] G. Reinout W. Quispel, John A. G. Roberts, and Colin John Thompson. 1988.
Integrable mappings and soliton equations. Phys. Lett. A 126, 7 (Jan. 1988), 419ś
421. https://doi.org/10.1016/0375-9601(88)90803-1

[29] Dinh T. Tran, Peter H. van der Kamp, and G. ReinoutW. Quispel. 2010. Sufficient
number of integrals for the pth-order Lyness equation. J. Phys. A: Math. Theor.
43, 30 (June 2010), 302001. https://doi.org/10.1088/1751-8113/43/30/302001

[30] Teruhisa Tsuda. 2004. Integrable mappings via rational elliptic surfaces. J. Phys.
A: Math. Gen. 37, 7 (Feb. 2004), 2721ś2730. https://doi.org/10.1088/0305-4470/
37/7/014

[31] Alexei B. Zamolodchikov. 1991. On the thermodynamic Bethe ansatz equations
for reflectionless ADE scattering theories. Physics Letters B 253, 3 (Jan. 1991),
391 ś 394. https://doi.org/10.1016/0370-2693(91)91737-G

240

https://doi.org/10.2140/obs.2013.1.63
https://doi.org/10.2140/obs.2013.1.63
https://doi.org/10.1007/978-3-642-14712-8_4
https://doi.org/10.1007/978-3-642-14712-8_4
https://doi.org/10.1090/S0025-5718-2012-02633-0
https://doi.org/10.1090/S0025-5718-2012-02633-0
https://doi.org/10.1007/978-3-642-01001-9_28
https://doi.org/10.1007/978-3-642-01001-9_28
https://doi.org/10.1007/978-3-540-76900-2_3
https://doi.org/10.1007/978-3-540-76900-2_3
https://doi.org/10.1017/9781316271575.005
https://doi.org/10.1017/9781316271575.005
https://doi.org/10.1006/jdeq.1997.3359
https://doi.org/10.18910/25084
https://doi.org/10.1017/9781316271575.009
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/s13389-017-0157-6
http://eudml.org/doc/204992
https://doi.org/10.1090/S0273-0979-07-01153-6
https://doi.org/10.1007/s004540010075
https://doi.org/10.4007/annals.2003.158.977
https://doi.org/10.4007/annals.2003.158.977
https://doi.org/10.1112/S1461157016000231
http://arxiv.org/abs/2001.09076
https://doi.org/10.1088/0305-4470/34/34/308
https://doi.org/10.1088/0305-4470/34/34/308
https://doi.org/10.1088/0951-7715/15/2/313
https://doi.org/10.2307/1971363
https://doi.org/10.2307/3612778
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1016/0167-2789(89)90233-9
https://doi.org/10.1016/0375-9601(88)90803-1
https://doi.org/10.1088/1751-8113/43/30/302001
https://doi.org/10.1088/0305-4470/37/7/014
https://doi.org/10.1088/0305-4470/37/7/014
https://doi.org/10.1016/0370-2693(91)91737-G

Algorithmic Averaging for Studying Periodic Orbits of Planar

Differential Systems

Bo Huang
LMIB-School of Mathematical Sciences, Beihang University

Beijing, China

Courant Institute of Mathematical Sciences, New York University

New York, USA

bohuang0407@buaa.edu.cn

ABSTRACT

One of the main open problems in the qualitative theory of
real planar differential systems is the study of limit cycles. In
this article, we present an algorithmic approach for detect-
ing how many limit cycles can bifurcate from the periodic
orbits of a given polynomial differential center when it is per-
turbed inside a class of polynomial differential systems via
the averaging method. We propose four symbolic algorithms
to implement the averaging method. The first algorithm is
based on the change of polar coordinates that allows one
to transform a considered differential system to the normal
form of averaging. The second algorithm is used to derive
the solutions of certain differential systems associated to the
unperturbed term of the normal of averaging. The third al-
gorithm exploits the partial Bell polynomials and allows one
to compute the integral formula of the averaged functions
at any order. The last algorithm is based on the aforemen-
tioned algorithms and determines the exact expressions of
the averaged functions for the considered differential systems.
The implementation of our algorithms is discussed and eval-
uated using several examples. The experimental results have
extended the existing relevant results for certain classes of
differential systems.

CCS CONCEPTS

• Computing methodologies → Symbolic and algebraic
manipulation; • Symbolic and algebraic algorithms →

Symbolic calculus algorithms.

KEYWORDS

Algorithmic approach; averaging method; limit cycles; planar
differential systems; periodic orbits

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ISSAC ’20, July 20–23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404064

ACM Reference Format:

Bo Huang. 2020. Algorithmic Averaging for Studying Periodic

Orbits of Planar Differential Systems. In International Symposium

on Symbolic and Algebraic Computation (ISSAC ’20), July 20–23,
2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3373207.3404064

1 INTRODUCTION

We deal with polynomial differential systems in R
2 of the

form

𝑑𝑥

𝑑𝑡
= �̇� = 𝑓𝑛(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
= �̇� = 𝑔𝑛(𝑥, 𝑦), (1.1)

where 𝑛 is the maximum degree of the polynomials 𝑓 and 𝑔.
As we knew, the second part of the 16th Hilbert’s problem
[19, 25] asks for “the maximal number 𝐻(𝑛) and relative
configurations of limit cycles” for the differential system
(1.1). Here 𝐻(𝑛) is called the Hilbert number. The problem
is still open even for 𝑛 = 2. However, there have been many
interesting results on the lower bound of 𝐻(𝑛) for 𝑛 ≥ 2: it is
shown in [5, 49] that 𝐻(2) ≥ 4 and 𝐻(3) ≥ 13 in [29]. In [8],
it is proved that 𝐻(𝑛) grows at least as rapidly as 𝑛2 log 𝑛.
For the latest development about 𝐻(𝑛), we refer the reader
to [6, 16, 30].

We recall that a limit cycle of the differential system (1.1)
is an isolated periodic orbit of the system. One of the best
ways of producing limit cycles is by perturbing a differential
system which has a center. In this case the perturbed system
displays limit cycles that bifurcate, either from the center
(having the so-called Hopf bifurcation), or from some of
the periodic orbits surrounding the center, see the book of
Christopher-Li [6] and the references cited therein.

Usually, a limit cycle which bifurcates from a center equi-
librium point is called a small amplitude limit cycle, and a
medium amplitude limit cycle is one which bifurcates from a
periodic orbit surrounding a center (see [33, 36]). Note that
the notation of “large” limit cycle may occur in several situa-
tions in the literature, see [18, 54]. In the past seven decades,
many researchers have considered the small amplitude limit
cycles and obtained many results (e.g., [1, 28, 41, 50, 53]).
Over the years, a number of algebraic methods and algo-
rithms have been developed (e.g., [13, 17, 46, 51, 52]) based
on the tools of Liapunov constants or Melnikov function.

In our recent work [24], we provide an algorithmic approach
to small amplitude limit cycles of nonlinear differential sys-
tems by the averaging method, and give an upper bound of

241

https://doi.org/10.1145/3373207.3404064
https://doi.org/10.1145/3373207.3404064

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Bo Huang

the number of zeros of the averaged functions for the general
class of perturbed differential systems ([24], Thm. 3.1). The
goal of this paper is to extend our algorithmic approach to
study the maximal number of medium amplitude limit cycles
that bifurcate from some periodic orbits surrounding the
centers of the unperturbed systems. The main technique is
based on the general form of the averaging method for planar
differential systems.

The method of averaging is an important tool to study the
existence of isolated periodic solutions of nonlinear differen-
tial systems in the presence of a small parameter. It can be
used to find a lower bound of the Hilbert number 𝐻(𝑛) for
certain differential systems. The method has a long history
that started with the classical works of Lagrange and Laplace,
who provided an intuitive justification of the method. The
first formalization of this theory was done in 1928 by Fatou.
Important practical and theoretical contributions to the aver-
aging method were made in the 1930’s by Bogoliubov-Krylov,
and in 1945 by Bogoliubov. The ideas of averaging method
have extended in several directions for finite and infinite
dimensional differentiable systems. For a modern exposition
of this subject, see the books of Sanders-Verhulst-Murdock
[48] and Llibre-Moeckel-Simó [37].

The averaging method provides a straightforward calcula-
tion approach to determine the number of limit cycles that
bifurcate from some periodic orbits of the regarded particular
class of differential systems. However, in practice, the evalu-
ation of the averaged functions is a computational problem
that requires powerful computerized resources. Moreover, the
computational complexity grows very fast with the averaging
order. Our objective in this paper is to present an algorith-
mic approach to develop the averaging method at any order
and to further study the number of medium amplitude limit
cycles for nonlinear differential systems.

In general, to obtain analytically periodic solutions of a
differential system is a very difficult problem, many times a
problem impossible to solve. As we shall see when we can
apply the averaging method, this difficult problem is reduced
to finding the zeros of a nonlinear function in an open interval
of R, i.e., now the problem has the same difficulty as the
problem of finding the singular or equilibrium points of a
differential system.

The structure of our paper is as follows. In Section 2, we
introduce the basic results on the averaging method for pla-
nar differential systems. We give our algorithms and briefly
describe their implementation in Maple in Section 3. Its ap-
plication is illustrated in Section 4 using several examples
including a class of generalized Kukles polynomial differen-
tial systems and certain differential systems with uniform
isochronous centers of degrees 3 and 4. Finally, a conclusion is
provided in Section 5. The Maple code of the algorithms can
be download from https://github.com/Bo-Math/limit-cycle.

In view of space limitation, we put the full text of the
paper in the arXiv https://arxiv.org/pdf/2005.03487.pdf.

2 MAIN RESULTS OF THE

AVERAGING METHOD

In this section we introduce the basic theory of the averaging
method. We consider the following polynomial differential
system of degree 𝑛1

�̇� = 𝑃 (𝑥, 𝑦), �̇� = 𝑄(𝑥, 𝑦) (2.1)

having a center at the point �̄� ∈ R
2. Without loss of generality

we can assume that the center �̄� of system (2.1) is the origin
of coordinates. The following definition is due to Poincaré
([4], Sect. 2).

Definition 2.1. We say that an isolated singular point �̄� of
(2.1) is a center if there exists a neighbourhood of �̄�, such
that every orbit in this neighbourhood is a cycle surrounding
�̄�.

Remark 2.2. Determining the conditions on the parameters
under which the origin for system (2.1) is a center is the
well-known center problem, see [42, 47]. There are many par-
tial results for the centers of system (2.1) of degree 𝑛1 ≥ 2.
Unfortunately, at present, we are very far from obtaining the
classification of all the centers of cubic polynomial differen-
tial systems. In general, the huge number of computations
necessary for obtaining complete classification becomes the
central problem which is computationally intractable, see for
instances, [15] and the references cited therein.

Now consider the perturbations of (2.1) of the form

�̇� = 𝑃 (𝑥, 𝑦) + 𝑝(𝑥, 𝑦, 𝜀),

�̇� = 𝑄(𝑥, 𝑦) + 𝑞(𝑥, 𝑦, 𝜀),
(2.2)

where the polynomials 𝑝, 𝑞 are of degree at most 𝑛2 (usually
𝑛2 ≥ 𝑛1) in 𝑥 and 𝑦, and 𝜀 is a small parameter. We are
interested in the maximum number of medium amplitude
limit cycles of (2.2) for |𝜀| > 0 sufficiently small, which
bifurcate from some periodic orbits surrounding the centers
of system (2.1).

Usually, the averaging method deals with planar differential
systems in the following normal form

𝑑𝑟

𝑑𝜃
=

𝑘
∑︁

𝑖=0

𝜀𝑖𝐹𝑖(𝜃, 𝑟) + 𝜀𝑘+1𝑅(𝜃, 𝑟, 𝜀), (2.3)

where 𝐹𝑖 : R × 𝐷 → R for 𝑖 = 0, 1, . . . , 𝑘, and 𝑅 : R ×
𝐷 × (−𝜀0, 𝜀0) → R are 𝒞𝑘 functions, 2𝜋-periodic in the first
variable, being 𝐷 an open and bounded interval of (0,∞),
and 𝜀0 is a small parameter. As one of the main hypotheses,
it is assumed that 𝑟(𝜃, 𝑧) is a 2𝜋-periodic solution of the
unperturbed differential system 𝑑𝑟/𝑑𝜃 = 𝐹0(𝜃, 𝑟), for every
initial condition 𝑟(0, 𝑧) = 𝑧 ∈ 𝐷.

The averaging method consists in defining a collection of
functions 𝑓𝑖 : 𝐷 → R, called the 𝑖-th order averaged functions,
for 𝑖 = 1, 2, . . . , 𝑘, which control (their simple zeros control),
for 𝜀 sufficiently small, the isolated periodic solutions of the
differential system (2.3). In Llibre-Novaes-Teixeira [39] it has
been established that

𝑓𝑖(𝑧) =
𝑦𝑖(2𝜋, 𝑧)

𝑖!
, (2.4)

242

https://github.com/Bo-Math/limit-cycle
https://arxiv.org/pdf/2005.03487.pdf

Algorithmic Averaging for Studying Periodic Orbits ISSAC ’20, July 20–23, 2020, Kalamata, Greece

where 𝑦𝑖 : R×𝐷 → R, for 𝑖 = 1, 2, . . . , 𝑘, is defined recursively
by the following integral equations

𝑦1(𝜃, 𝑧) =

∫︁ 𝜃

0

(︁

𝐹1(𝑠, 𝑟(𝑠, 𝑧)) + 𝜕𝐹0(𝑠, 𝑟(𝑠, 𝑧))𝑦1(𝑠, 𝑧)
)︁

𝑑𝑠,

𝑦𝑖(𝜃, 𝑧) = 𝑖!

∫︁ 𝜃

0

(︃

𝐹𝑖(𝑠, 𝑟(𝑠, 𝑧)) +

𝑖
∑︁

ℓ=1

∑︁

𝑆ℓ

1

𝑏1!𝑏2!2!𝑏2 · · · 𝑏ℓ!ℓ!𝑏ℓ

· 𝜕𝐿𝐹𝑖−ℓ(𝑠, 𝑟(𝑠, 𝑧))

ℓ
∏︁

𝑗=1

𝑦𝑗(𝑠, 𝑧)
𝑏𝑗

)︃

𝑑𝑠,

(2.5)

where 𝑆ℓ is the set of all ℓ-tuples of nonnegative integers
[𝑏1, 𝑏2, . . . , 𝑏ℓ] satisfying 𝑏1 + 2𝑏2 + · · · + ℓ𝑏ℓ = ℓ and 𝐿 =
𝑏1 + 𝑏2 + · · · + 𝑏ℓ. Here, 𝜕𝐿𝐹 (𝜃, 𝑟) denotes the Fréchet’s
derivative of order 𝐿 with respect to the variable 𝑟.

In [14, 39] the averaging method at any order was de-
veloped to study isolated periodic solutions of nonsmooth
but continuous differential systems. Recently, the averaging
method has also been extended to study isolated periodic
solutions of discontinuous differential systems; see [35, 38].
The following 𝑘-th order averaging theorem is proved in
Llibre-Novaes-Teixeira [39].

Theorem 2.3. Assume that the following conditions hold:
(a) for each 𝑖 = 0, 1, . . . , 𝑘 and 𝜃 ∈ R, the function 𝐹𝑖(𝜃, ·)

is of class 𝒞𝑘−𝑖, 𝜕𝑘−𝑖𝐹𝑖 is locally Lipschitz in the second vari-
able, and 𝑅(𝜃, ·, 𝜀) is a continuous function locally Lipschitz
in the second variable;

(b) 𝑓𝑖 ≡ 0 for 𝑖 = 1, 2, . . . , 𝑗 − 1 and 𝑓𝑗 ̸= 0 with 𝑗 ∈
{1, 2, . . . , 𝑘};

(c) for some 𝑧* ∈ 𝐷 with 𝑓𝑗(𝑧
*) = 0, there exists a neigh-

borhood 𝑉 ⊂ 𝐷 of 𝑧* such that 𝑓𝑗(𝑧) ̸= 0 for all 𝑧 ∈ 𝑉 ∖{𝑧*},
and that 𝑑𝐵(𝑓𝑗(𝑧), 𝑉, 0) ̸= 0.

Then, for |𝜀| > 0 sufficiently small, there exists a 2𝜋-
periodic solution 𝑟𝜀(𝜃) of (2.3) such that 𝑟𝜀(0) → 𝑧* when
𝜀 → 0.

Remark 2.4. The above symbol 𝑑𝐵 denotes the Browder
degree; see Browder [2] for a general definition. When 𝑓𝑗 is a
𝒞1 function and the derivative of 𝑓𝑗 at 𝑧 ∈ 𝑉 is distinct from
zero (i.e., 𝑓 ′

𝑗(𝑧) ̸= 0), then in this case, 𝑓 ′
𝑗(𝑧

*) ̸= 0 implies
𝑑𝐵(𝑓𝑗(𝑧), 𝑉, 0) ̸= 0.

Recently in [45] the partial Bell polynomials were used
to provide a relatively simple alternative formula for the
recurrence (2.5). Since the Bell polynomials are implemented
in algebraic manipulators as Maple and Mathematica, this
new formula can make easier the computational implementa-
tion of the averaged functions. In this paper, we will exploit
this new formula in our algorithmic approach for solving the
problem of evaluating the recurrence (2.5) (see Section 3.2).
In the sequel, for ℓ and 𝑚 positive integers, we recall the Bell
polynomials:

𝐵ℓ,𝑚(𝑥1, . . . , 𝑥ℓ−𝑚+1) =
∑︁

𝑆ℓ,𝑚

ℓ!

𝑏1!𝑏2! · · · 𝑏ℓ−𝑚+1!

ℓ−𝑚+1
∏︁

𝑗=1

(︂

𝑥𝑗

𝑗!

)︂𝑏𝑗

,

where 𝑆ℓ,𝑚 is the set of all (ℓ−𝑚+ 1)-tuples of nonnegative
integers [𝑏1, 𝑏2, . . . , 𝑏ℓ−𝑚+1] satisfying 𝑏1 + 2𝑏2 + · · · + (ℓ −
𝑚+ 1)𝑏ℓ−𝑚+1 = ℓ, and 𝑏1 + 𝑏2 + · · ·+ 𝑏ℓ−𝑚+1 = 𝑚.

The following result is an equivalent formulation of the
integral equation (2.5) via above Bell polynomials, its proof
can be found in [45].

Theorem 2.5. For 𝑖 = 1, 2, . . . , 𝑘 the recursive equation
(2.5) reads

𝑦1(𝜃, 𝑧) = 𝑌 (𝜃, 𝑧)

∫︁ 𝜃

0

𝑌 (𝑠, 𝑧)−1𝐹1(𝑠, 𝑟(𝑠, 𝑧))𝑑𝑠,

𝑦𝑖(𝜃, 𝑧) = 𝑌 (𝜃, 𝑧)

∫︁ 𝜃

0

𝑌 (𝑠, 𝑧)−1

(︃

𝑖!𝐹𝑖(𝑠, 𝑟(𝑠, 𝑧))

+

𝑖
∑︁

𝑚=2

𝜕𝑚𝐹0(𝑠, 𝑟(𝑠, 𝑧))𝐵𝑖,𝑚

(︀

𝑦1(𝑠, 𝑧), . . . , 𝑦𝑖−𝑚+1(𝑠, 𝑧)
)︀

+

𝑖−1
∑︁

ℓ=1

ℓ
∑︁

𝑚=1

𝑖!

ℓ!
𝜕𝑚𝐹𝑖−ℓ(𝑠, 𝑟(𝑠, 𝑧))𝐵ℓ,𝑚

(︀

𝑦1(𝑠, 𝑧), . . . , 𝑦ℓ−𝑚+1(𝑠, 𝑧)
)︀

)︃

𝑑𝑠,

(2.6)

where 𝑌 (𝜃, 𝑧) is the fundamental solution of the variational
equation 𝑌 ′ = 𝜕𝐹0(𝜃, 𝑟(𝜃, 𝑧))𝑌 satisfying the initial condition
𝑌 (0, 𝑧) = 1.

The general study of the exact number of simple zeros of
the averaged functions (2.4) up to every order is also very
difficult to be done, since the averaged functions may be
too complicated, such as including square root functions,
logarithmic functions, and the elliptic integrals. In the lit-
erature there is an abundance of papers dealing with zeros
of the averaged functions (see, for instance, [20–23, 32, 40]
and references therein). Note that one can estimate the size
of bifurcated limit cycles by using the expressions of the
averaged functions. In fact we know that if the averaged
functions 𝑓𝑗 = 0 for 𝑗 = 1, . . . , 𝑘 − 1 and 𝑓𝑘 ̸= 0, and
𝑧 ∈ 𝐷 is a simple zero of 𝑓𝑘, then by Theorem 2.3 there
is a limit cycle 𝑟𝜀(𝜃) of differential system (2.3) such that
𝑟𝜀(𝜃) = 𝑟(𝜃, 𝑧)+𝒪(𝜀). Then, going back through the changes
of variables we have for the differential system (2.2) the limit
cycle (𝑥(𝑡, 𝜀), 𝑦(𝑡, 𝜀)) = (𝑟(𝜃, 𝑧) cos 𝜃, 𝑟(𝜃, 𝑧) sin 𝜃) +𝒪(𝜀).

3 ALGORITHMIC AVERAGING FOR

THE STUDY OF LIMIT CYCLES

The process of using the averaging method for studying limit
cycles of differential systems can be divided into three steps
([24], Sect. 4).

STEP 1. Write the perturbed system (2.2) in the normal
form of averaging (2.3) up to 𝑘-th order in 𝜀.

STEP 2. (i) Compute the exact formula for the 𝑘-th order
integral function 𝑦𝑘(𝜃, 𝑧) in (2.6). (ii) Derive the symbolic
expression of the 𝑘-th order averaged function 𝑓𝑘(𝑧) by (2.4).

STEP 3. Determine the exact upper bound of the number
of simple zeros of 𝑓𝑘(𝑧) for 𝑧 ∈ 𝐷.

243

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Bo Huang

In the following subsections we will present algorithms to
implement the first two steps. We use “Maple-like” pseudo-
code, based on our Maple implementation. Using these algo-
rithms we reduce the problem of studying the number of limit
cycles of system (2.2) to the problem of detecting STEP 3.

3.1 Algorithm for transformation into

normal form

In this subsection we will devise an efficient algorithm which
can be used to transform system (2.2) into the form (2.3).

We first describe the underlying equations before present-
ing the algorithm. Doing the change of polar coordinates
𝑥 = 𝑟𝐶, 𝑦 = 𝑟𝑆 with 𝐶 = cos 𝜃 and 𝑆 = sin 𝜃, then we can
transform system (2.2) into the following form

𝑑𝑟

𝑑𝜃
=

𝑑𝑟/𝑑𝑡

𝑑𝜃/𝑑𝑡
=

𝑟(𝑥�̇�+ 𝑦�̇�)

𝑥�̇� − 𝑦�̇�

⃒

⃒

⃒

𝑥=𝑟𝐶,𝑦=𝑟𝑆

= 𝑟
𝐶 (𝑃 (𝑥, 𝑦) + 𝑝(𝑥, 𝑦, 𝜀)) + 𝑆 (𝑄(𝑥, 𝑦) + 𝑞(𝑥, 𝑦, 𝜀))

𝐶 (𝑄(𝑥, 𝑦) + 𝑞(𝑥, 𝑦, 𝜀))− 𝑆 (𝑃 (𝑥, 𝑦) + 𝑝(𝑥, 𝑦, 𝜀))

⃒

⃒

⃒

𝑥=𝑟𝐶,𝑦=𝑟𝑆

= 𝑟

𝐶𝑃 (𝑥,𝑦)+𝑆𝑄(𝑥,𝑦)
𝐶𝑄(𝑥,𝑦)−𝑆𝑃 (𝑥,𝑦)

+ 𝐶𝑝(𝑥,𝑦,𝜀)+𝑆𝑞(𝑥,𝑦,𝜀)
𝐶𝑄(𝑥,𝑦)−𝑆𝑃 (𝑥,𝑦)

1 + 𝐶𝑞(𝑥,𝑦,𝜀)−𝑆𝑝(𝑥,𝑦,𝜀)
𝐶𝑄(𝑥,𝑦)−𝑆𝑃 (𝑥,𝑦)

⃒

⃒

⃒

𝑥=𝑟𝐶,𝑦=𝑟𝑆

= 𝐹0(𝜃, 𝑟) + 𝜀𝐹1(𝜃, 𝑟) + . . .+ 𝜀𝑘𝐹𝑘(𝜃, 𝑟) +𝒪(𝜀𝑘+1).

(3.1)

The last equality is obtained by carrying the order 𝑘+1 Taylor
series expansion of the penultimate equality, with respect to
the variable 𝜀, around the point 𝜀 = 0. The first algorithm
NormalForm, presented below, is a direct implementation
of the formula derivation in (3.1).

Algorithm 1 NormalForm(𝑃,𝑄, 𝑝, 𝑞, 𝑘)

Input: a perturbed system (2.2) with an order k ≥ 0 in (2.3)

Output: an expression of dr/dθ up to k-th order in ε

1: d1 := normal(subs(x = r ·C, y = r ·S, x·(P+p)+y ·(Q+q))/r);

2: d2 := normal(subs(x = r·C, y = r·S, x·(Q+q)−y·(P+p))/r2);

3: T := taylor(d1/d2, ε = 0, k + 1);

4: H := convert (T,polynom);

5: F0 := coeff(ε ·H, ε);
6: for i from 1 to k do

7: c𝑖 := coeff(H, ε𝑖);

8: F𝑖,1 := prem
(︀

numer(c𝑖), C
2 + S2 − 1, S

)︀

;

9: F𝑖,2 := prem
(︀

denom(c𝑖), C
2 + S2 − 1, S

)︀

;

10: F𝑖 := F𝑖,1/F𝑖,2;

11: dr/dθ := subs(C = cos θ, S = sin θ, F0 +
∑︀𝑘

𝑗=1 F𝑗ε
𝑗);

12: return dr/dθ;

In line 8 the function prem(𝑎, 𝑏, 𝑥) is the pseudo-remainder
of 𝑎 with respect to 𝑏 in the variable 𝑥. By the property of
the pseudo-remainder we know that the degree in 𝑆 is at
most 1 of the polynomials 𝐹𝑖,1 and 𝐹𝑖,2.

3.2 Algorithms for computing formulae

and functions of averaging

This subsection is devoted to provide effective algorithms to
compute the formula and exact expression of the 𝑘-th order
averaged function. According to Theorem 2.5, we should take

the following substeps to compute the 𝑘-th order averaged
function of system (2.3).

Substep 1. Determine the open and bounded interval 𝐷,
the 2𝜋-periodic solution 𝑟(𝜃, 𝑧) of the unperturbed system
𝑑𝑟/𝑑𝜃 = 𝐹0(𝜃, 𝑟) with initial condition 𝑟(0, 𝑧) = 𝑧 ∈ 𝐷, and
the fundamental solution 𝑌 (𝜃, 𝑧) of the variational equation
𝑌 ′ = 𝜕𝐹0(𝜃, 𝑟(𝜃, 𝑧))𝑌 with initial condition 𝑌 (0, 𝑧) = 1.

Substep 2. Compute the exact formula for the 𝑘-th order
integral function 𝑦𝑘(𝜃, 𝑧).

Substep 3. Output the symbolic expression for the 𝑘-th
order averaged function 𝑓𝑘(𝑧) (simplified by using the con-
ditions for 𝑓1 ≡ 𝑓2 ≡ · · · ≡ 𝑓𝑘−1 ≡ 0) for a given differential
system (2.2).

We provide each of the substep an algorithm. For the
Substep 1 we first derive the 2𝜋-periodic solution 𝑟(𝜃, 𝑧),
and then use it to further obtain the interval 𝐷 and the
fundamental solution 𝑌 (𝜃, 𝑧).

Algorithm 2 DSolutions(𝐹0)

Input: the unperturbed term 𝐹0 in (2.3)
Output: 𝑟(𝜃, 𝑧), a set of inequalities (𝑆𝐼𝑠) with respect to

𝑧, and 𝑌 (𝜃, 𝑧)

1: de1 := diff(𝑟(𝜃), 𝜃) = subs(𝑟 = 𝑟(𝜃), 𝐹0);
2: ans1 := dsolve({de1, 𝑟(0) = 𝑧}, 𝑟(𝜃));
3: 𝑟(𝜃, 𝑧) := op(2, ans1);
4: minvalue := minimize(𝑟(𝜃, 𝑧), 𝜃 = 0..2𝜋);
5: 𝑚 := nops([op(minvalue)]);
6: 𝑆𝐼𝑠 := {};
7: for 𝑖 from 1 to 𝑚 do
8: 𝑆𝐼𝑠 := 𝑆𝐼𝑠 union {op(𝑖,minvalue) > 0};

9: de2 := diff(𝑌 (𝜃), 𝜃) = subs(𝑟 = 𝑟(𝜃, 𝑧), diff(𝐹0, 𝑟)) · 𝑌 (𝜃);
10: ans2 := dsolve({de2, 𝑌 (0) = 1}, 𝑌 (𝜃));
11: 𝑌 (𝜃, 𝑧) := op(2, 𝑎𝑛𝑠2);
12: return [𝑟(𝜃, 𝑧), 𝑆𝐼𝑠, 𝑌 (𝜃, 𝑧)];

Remark 3.1. The output results of 𝑟(𝜃, 𝑧) and 𝑌 (𝜃, 𝑧) can be
reduced by using the identity sin2 𝜃 + cos2 𝜃 = 1 so that the
degree of what are left in sin 𝜃 is at most 1. We use the rou-
tine dsolve built-in Maple for solving an ordinary differential
equation. We remark that the unperturbed term 𝐹0(𝜃, 𝑟) is
usually a rational trigonometric function in 𝑟, sin 𝜃 and cos 𝜃.
As far as we know, we do not have a systematic approach to
the solution of the differential equation 𝑑𝑟/𝑑𝜃 = 𝐹0(𝜃, 𝑟) in
the general case. In Section 4 we will consider certain classes
of differential systems with uniform isochronous centers to
illustrate the effectiveness of our algorithm. It is important
to emphasize that the interval 𝐷 can be determined by using
the output set 𝑆𝐼𝑠. Since the original system may contain
some parameters, the resulting set 𝑆𝐼𝑠 could be parametric.
In order to derive the interval 𝐷 in this case, we will construct
an equivalent solution set 𝑆𝐼𝑠 of 𝑆𝐼𝑠 that contains only the
rational polynomial inequalities, and then use the SemiAl-
gebraic command in Maple to compute the solutions. Below
we provide a concrete example to show the feasibility this al-
gorithm, one may check the results in [32]. More experiments
can be found in Section 4.

244

Algorithmic Averaging for Studying Periodic Orbits ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Example 1. Consider the following quintic polynomial differ-
ential system

�̇� = −𝑦 + 𝑥2𝑦(𝑥2 + 𝑦2), �̇� = 𝑥+ 𝑥𝑦2(𝑥2 + 𝑦2). (3.2)

Applying our algorithm NormalForm for 𝑝 = 𝑞 = 𝑘 = 0,
we have 𝑑𝑟/𝑑𝜃 = 𝑟5 cos 𝜃 sin 𝜃. Then applying the algorithm
DSolutions we obtain a list [𝑟(𝜃, 𝑧), 𝑆𝐼𝑠, 𝑌 (𝜃, 𝑧)], where

𝑟(𝜃, 𝑧) =
𝑧

(2𝑧4(cos2 𝜃 − 1) + 1)1/4
,

𝑆𝐼𝑠 =

{︂

0 < 𝑧, 0 <
𝑧

(−2𝑧4 + 1)1/4

}︂

,

𝑌 (𝜃, 𝑧) =
1

(2𝑧4(cos2 𝜃 − 1) + 1)5/4
.

To obtain the interval 𝐷 in this case, we construct an e-
quivalent solution set 𝑆𝐼𝑠 of 𝑆𝐼𝑠 that contains only the
rational polynomials: 𝑆𝐼𝑠 := {0 < 𝑧, 0 < 𝑧

−2𝑧4+1
}. Then

using the Maple command SolveTools[SemiAlgebraic],

we compute the solution of the set 𝑆𝐼𝑠, and obtain that
𝐷 = {0 < 𝑧 < 2−1/4}.

We want to say that the expressions of the returned results
on 𝑟(𝜃, 𝑧) and 𝑌 (𝜃, 𝑧) may be complicated, such as including
square root functions, and exponential functions. Below we
give a simple example to show this, one may find the related
results in [31].

Example 2. Consider the following polynomial differential
system

�̇� = −𝑦(3𝑥2 + 𝑦2), �̇� = 𝑥(𝑥2 − 𝑦2). (3.3)

The normal form 𝑑𝑟/𝑑𝜃 = −2𝑟 cos 𝜃 sin 𝜃 can be obtained
by the algorithm NormalForm, and the algorithm DSolu-

tions returns a list
[︀

𝑧𝑒cos
2 𝜃−1,

{︀

0 < 𝑧, 0 < 𝑧𝑒−1
}︀

, 𝑒cos
2 𝜃−1

]︀

.

For the Substep 2, we present our algorithm Averag-
ingFormula. This algorithm can be used to compute the
exact formula of the 𝑘-th order integral function 𝑦𝑘(𝜃, 𝑧).
Correctness of it follows from Theorem 2.5.

Algorithm 3 AveragingFormula(𝑘)

Input: an order 𝑘 ≥ 1 of the normal form (2.3)
Output: the integral function 𝑦𝑘(𝜃, 𝑧)

1: 𝑇1 := 0; 𝑇2 := 0;
2: for 𝑚 from 2 to 𝑘 do
3: 𝑇1 := 𝑇1 + Diff(𝐹0(𝑠, 𝑟(𝑠, 𝑧)), 𝑟$𝑚) ·

IncompleteBellB(𝑘,𝑚, 𝑦1(𝑠, 𝑧), . . . , 𝑦𝑘−𝑚+1(𝑠, 𝑧));

4: for ℓ from 1 to 𝑘 − 1 do
5: for 𝑚 from 1 to ℓ do
6: 𝑇2 := 𝑇2 + 𝑘!

ℓ!
· Diff(𝐹𝑘−ℓ(𝑠, 𝑟(𝑠, 𝑧)), 𝑟$𝑚) ·

IncompleteBellB(ℓ,𝑚, 𝑦1(𝑠, 𝑧), . . . , 𝑦ℓ−𝑚+1(𝑠, 𝑧));

7: y𝑘(θ, z) := Y (θ, z) ·

Int
(︀

Y −1(s, z) · (k! · F𝑘(s, r(s, z)) + T1 + T2) , s = 0..θ
)︀

;

8: return 𝑦𝑘(𝜃, 𝑧);

We deduce explicitly the formulae of 𝑦𝑘’s up to 𝑘 = 5 in
Appendix A. In fact our algorithm can compute arbitrarily

high order formulae of 𝑦𝑘’s. In Section 4, we will study several
differential systems to show the feasibility of our algorithm.

In the last subsection, we provide an algorithm Normal-
Form to transform system (2.2) into the form 𝑑𝑟/𝑑𝜃. The
algorithm DSolutions admits one to obtain the fundamental
solutions 𝑟(𝜃, 𝑧), 𝑌 (𝜃, 𝑧) and the interval 𝐷 (Substep 1). The
algorithm AveragedFunction, presented below, is based
on the algorithms NormalForm, DSolutions and Theorem
2.5, which provides a straightforward calculation method to
derive the exact expression of the 𝑘-th order averaged func-
tion for a given differential system in the form (2.2) (Substep
3).

Algorithm 4 AveragedFunction(𝑑𝑟/𝑑𝜃, 𝑟(𝜃, 𝑧), 𝑌 (𝜃, 𝑧), 𝑘)

Input: a normal formal of averaging (3.1) with an order k ≥ 1

and the fundamental solutions r(θ, z), Y (θ, z)
Output: a list of expressions of the averaged functions

1: F0 := coeff(ε · (dr/dθ), ε);
2: for j from 1 to k do

3: F𝑗 := coeff(dr/dθ, ε𝑗);

4: A𝑗 := AFormula(j);

5: H𝑗 := normal
(︁

1
𝑌 (𝜃,𝑧)

· expand(subs(r = r(θ, z), value(A𝑗)))
)︁

;

6: H𝑗,1 := collect(expand(numer(H𝑗)), {cos θ, sin θ}, distributed);

7: H𝑗,2 := denom(H𝑗);

8: for h from 1 to nops(H𝑗,1) do

9: g𝑗,ℎ := int
(︁

op(ℎ,𝐻𝑗,1)

𝐻𝑗,2
, θ = 0..θ,AllSolutions

)︁

;

10: s𝑗,ℎ := int
(︁

op(ℎ,𝐻𝑗,1)

𝐻𝑗,2
, θ = 0..2π

)︁

;

11: y𝑗 := Y (θ, z) · sum(g𝑗,𝑡, t = 1..nops(H𝑗,1));

12: f𝑗 := 1
𝑗!

· sum(s𝑗,𝑡, t = 1..nops(H𝑗,1));

13: return [y𝑘, f𝑘];

In line 4, the routine AFormula is a subalgorithm we
use for the generation of the expression in the parenthesis
of equation (2.6) without dependence on (𝑠, 𝑧). The detailed
information of this subalgorithm is as follows.
Subalgorithm: AFormula
INPUT: An averaging order 𝑘 ≥ 1;
OUTPUT: The expression in the parenthesis of equation
(2.6) without dependence on (𝑠, 𝑧).
STEP 0. 𝑈 = 0; 𝑉 = 0;
STEP 1. For 𝑚 from 2 to 𝑘 do

𝑈 := 𝑈 +Diff(𝐹0, 𝑟$𝑚) · IncompleteBellB(𝑘,𝑚,
seq(𝑦𝑖, 𝑖 = 1..𝑘 −𝑚+ 1)); end do;

STEP 2. For ℓ from 1 to 𝑘 − 1 do
for 𝑚 from 1 to ℓ do
𝑉 := 𝑉+ 𝑘!

ℓ!
·Diff(𝐹𝑘−ℓ, 𝑟$𝑚)·IncompleteBellB(ℓ,𝑚,

seq(𝑦𝑖, 𝑖 = 1..ℓ−𝑚+ 1)); end do; end do;
STEP 3. Output 𝑘!𝐹𝑘 + 𝑈 + 𝑉 .

Remark 3.2. In order to obtain an exact and simplified ex-
pression of the averaged function, one should make some
assumptions (e.g., the interval 𝐷 on 𝑧, and possible con-
ditions on the parameters that may appear in the original
differential systems) before preforming the algorithm Av-
eragedFunction. For more details see our experiments in
Section 4. We also remark that, throughout the computation,

245

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Bo Huang

an assumption on 𝜃 (i.e., 𝜃 ∈ (2𝜋 − 𝜖, 2𝜋 + 𝜖) with 𝜖 a small
number) was made to identify a valid branch of the possible
returned piecewise functions (in line 9), since the integral
functions 𝑦𝑖(𝜃, 𝑧) for 𝑖 = 1, . . . , 𝑘 evaluate at the point 𝜃 = 2𝜋
in (2.4).

We implemented all the algorithms presented in this section
in Maple. In the next section, we will apply our general
algorithmic approach to analyze the bifurcation of limit cycles
for several concrete differential systems.

4 IMPLEMENTATION AND

EXPERIMENTS

In this section we demonstrate our algorithmic tests using
several examples. We present the bifurcation of limit cycles
for a class of generalized Kukles polynomial differential sys-
tems as an illustration of our approach explained in previous
sections. In addition, we study the number of limit cycles
that bifurcate from some periodic solutions surrounding the
isochronous centers for certain differential systems by the first
and second order averaging method. The obtained results
of our experiments extend the existing relevant results and
show the feasibility of our approach.

4.1 A class of generalized Kukles

differential systems

In this subsection we consider a very particular case of the
16th Hilbert problem; we study the number of limit cycles of
the generalized Kukles polynomial differential system

�̇� = −𝑦, �̇� = 𝑥+𝑄(𝑥, 𝑦), (4.1)

where 𝑄(𝑥, 𝑦) is a polynomial with real coefficients of degree
𝑛. This system was introduced by Kukles in [28], examining
the conditions under which the origin of the system

�̇� = −𝑦,

�̇� = 𝑥+ 𝑎1𝑥
2 + 𝑎2𝑥𝑦 + 𝑎3𝑦

2 + 𝑎4𝑥
3 + 𝑎5𝑥

2𝑦 + 𝑎6𝑥𝑦
2 + 𝑎7𝑦

3

is a center. For long time, it had been thought that the
conditions given by Kukles were necessary and sufficient
conditions, but some new cases have been found, see [7, 27].

Here we are interested in studying the maximum number
of limit cycles that bifurcate from the periodic orbits of the
linear center �̇� = −𝑦, �̇� = 𝑥, perturbed inside the following
class of generalized Kukles polynomial differential systems

�̇� = −𝑦 +
∑︁

𝑘≥1

𝜀𝑘𝑙𝑘𝑚(𝑥),

�̇� = 𝑥−
∑︁

𝑘≥1

𝜀𝑘
(︁

𝑓𝑘
𝑛1

(𝑥) + 𝑔𝑘𝑛2
(𝑥)𝑦 + ℎ𝑘

𝑛3
(𝑥)𝑦2 + 𝑑𝑘0𝑦

3
)︁

,

(4.2)

where for every 𝑘 the polynomials 𝑙𝑘𝑚(𝑥), 𝑓𝑘
𝑛1

(𝑥), 𝑔𝑘𝑛2
(𝑥), and

ℎ𝑘
𝑛3

(𝑥) have degree 𝑚, 𝑛1, 𝑛2, and 𝑛3 respectively, 𝑑𝑘0 ≠ 0 is
a real number and 𝜀 is a small parameter. This question has
been studied in [43] for 𝑘 = 1, 2, and the authors obtained
the following result.

Theorem 4.1. Assume that for 𝑘 = 1, 2 the polynomials
𝑙𝑘𝑚(𝑥), 𝑓𝑘

𝑛1
(𝑥), 𝑔𝑘𝑛2

(𝑥), and ℎ𝑘
𝑛3

(𝑥) have degree 𝑚, 𝑛1, 𝑛2, and

𝑛3 respectively, with 𝑚, 𝑛1, 𝑛2, 𝑛3 ≥ 1, and 𝑑𝑘0 ≠ 0 is a real
number. Then for 𝜀 sufficiently small the maximum number of
limit cycles of the Kukles polynomial system (4.2) bifurcating
from the periodic orbits of the linear center �̇� = −𝑦, �̇� = 𝑥,

(1) is max
{︀[︀

𝑚−1
2

]︀

,
[︀

𝑛2

2

]︀

, 1
}︀

by using the first order aver-
aging method;

(2) is max
{︀ [︀

𝑛1

2

]︀

+
[︀

𝑛2−1
2

]︀

,
[︀

𝑛1

2

]︀

+
[︀

𝑚
2

]︀

−1,
[︀

𝑛1+1
2

]︀

,
[︀

𝑛3+3
2

]︀

,
[︀

𝑛3

2

]︀

+
[︀

𝑚
2

]︀

,
[︀

𝑛2+1
2

]︀

+
[︀

𝑛3

2

]︀

,
[︀

𝑛2

2

]︀

,
[︀

𝑚−1
2

]︀

,
[︀

𝑛1−1
2

]︀

+𝜇,
[︀

𝑛3+1
2

]︀

+ 𝜇, 1
}︀

by using the second order averaging

method, where 𝜇 = min
{︀[︀

𝑚−1
2

]︀

,
[︀

𝑛2

2

]︀}︀

.

Here, [·] denotes the integer part function. Remark that,
many researchers have discussed the bifurcation of limit cycles
for generalized Kukles polynomial differential system in the
form (4.1). We refer the readers to [34, 44] for some interesting
results on this subject. The next result extends Theorem 4.1
to arbitrary order of averaging.

Lemma 4.2. Let max{𝑚,𝑛1, 𝑛2+1, 𝑛3+2} = 𝑁 ≥ 3, then
the Kukles polynomial system (4.2) for 𝜀 sufficiently small
has no more than [𝑘(𝑁 − 1)/2] limit cycles bifurcating from
the periodic orbits of the linear center �̇� = −𝑦, �̇� = 𝑥, using
the averaging method up to order 𝑘.

Proof. This result follows directly from Theorem 6 in
[14]. �

In what follows, using our algorithms we will do some
experimental results by fixing some values of the degrees in
system (4.2). Note that the maximum numbers of limit cycles
in Theorem 4.1 and Lemma 4.2 may not be reached. The
following corollary shows that these maximum numbers can
be reached for some orders of averaging.

Corollary 4.3. (i) When 𝑚 = 3, 𝑛1 = 3, 𝑛2 = 2, and
𝑛3 = 1, the maximum number of limit cycles of the Kukles
polynomial system (4.2) bifurcating from the periodic orbits
of the linear center �̇� = −𝑦, �̇� = 𝑥, using the fifth order
averaging method is five and it is reached.

(ii) When 𝑚 = 5, 𝑛1 = 1, 𝑛2 = 2, and 𝑛3 = 1, the
maximum number of limit cycles of the Kukles polynomial
system (4.2) bifurcating from the periodic orbits of the linear
center �̇� = −𝑦, �̇� = 𝑥, using the fourth order averaging
method is five and it is reached.

The detailed proof of the first statement of Corollary 4.3
can be found in Appendix B. Since the calculations and argu-
ments of the second part are quite similar to those used in the
first one, we omit the proof of statement (ii) in Corollary 4.3.
More concretely, we provide in Table 1 the maximum number
of limit cycles for system (4.2) in each case of Corollary 4.3
up to the 𝑘-th order averaging method for 𝑘 = 1, . . . , 5.

The number of limit cycles in statement (i) can be reached
for each order of averaging. That is to say, the bound given
in Lemma 4.2 is sharp for the case in statement (i). However,
for the statement (ii), the bound given in Lemma 4.2 is only
sharp for the first order of averaging. We note also that

246

Algorithmic Averaging for Studying Periodic Orbits ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Table 1: Number of limit cycles of system (4.2) in
Corollary 4.3

Averaging order Statement (i) Statement (ii)

1 1 2

2 2 2

3 3 4

4 4 5

5 5 -

for each statement in Corollary 4.3, the bound provided in
Theorem 4.1 can be reached up to the second order.

Remark 4.4. The calculation of the high order averaged
function 𝑓𝑘 involves heavy computations with complicated
expressions. It may not work effectively when one of the
degrees (𝑚 and 𝑛𝑖, 𝑖 = 1, 2, 3) is large. It turns out that
we can greatly improve the speed by updating the obtained
𝑑𝑟/𝑑𝜃 using the conditions on the parameters of 𝑓1 ≡ 𝑓2 ≡
· · · ≡ 𝑓𝑘−1 = 0.

4.2 Limit cycles for certain differential

systems with uniform isochronous

centers

Recall that a center �̄� of system (2.1) is an isochronous center
if it has a neighborhood such that in this neighborhood all the
periodic orbits have the same period. An isochronous center is
uniform if in polar coordinates 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, it can
be written as �̇� = 𝐺(𝜃, 𝑟), 𝜃 = 𝜂, 𝜂 ∈ R∖{0}, see Conti [10]
for more details. The next result on the uniform isochronous
center (UIC) is well-known, a proof of it can be found in [26].

Proposition 4.5. Assume that system (2.1) has a center
at the origin �̄�. Then �̄� is a UIC if and only if by doing a
linear change of variables and a rescaling of time the system
can be written as

�̇� = −𝑦 + 𝑥𝑓(𝑥, 𝑦), �̇� = 𝑥+ 𝑦𝑓(𝑥, 𝑦), (4.3)

where 𝑓 is a polynomial in 𝑥 and 𝑦 of degree 𝑛 − 1, and
𝑓(0, 0) = 0.

In what follows, we recall some important results on the
UICs of planar cubic and quartic differential systems. The
following result due to Collins [9] in 1997, also obtained
by Devlin, Lloyd and Pearson [11] in 1998, and by Gasull,
Prohens and Torregrosa [12] in 2005 characterizes the UICs
of cubic polynomial systems.

Theorem 4.6. A planar cubic differential system has a
UIC at the origin if and only if it can be written as system
(4.3) with 𝑓(𝑥, 𝑦) = 𝑎1𝑥+𝑎2𝑦+𝑎3𝑥

2+𝑎4𝑥𝑦−𝑎3𝑦
2 satisfying

that 𝑎2
1𝑎3 − 𝑎2

2𝑎3 + 𝑎1𝑎2𝑎4 = 0. Moreover, this planar cubic
differential system can be reduced to either one of the following
two forms:

�̇� = −𝑦 + 𝑥2𝑦, �̇� = 𝑥+ 𝑥𝑦2, (4.4)

�̇� = −𝑦 + 𝑥2 +𝐴𝑥2𝑦, �̇� = 𝑥+ 𝑥𝑦 +𝐴𝑥𝑦2, (4.5)

where 𝐴 ∈ R.

Systems (4.4) and (4.5) are known as Collins First Form
and Collins Second Form, respectively. See ([33], Thm. 9)
for more details of the global phase portraits of the Collins
forms.

The following characterization of planar quartic polynomial
differential systems with an isolated UIC at the origin is
provided by Chavarriga, Garćıa and Giné [3], in 2001.

Theorem 4.7. A planar quartic differential system has a
UIC at the origin if and only if it can be written as

�̇� = −𝑦 + 𝑥
(︀

𝑎𝑥+ 𝑏𝑥𝑦 + 𝑐𝑥3 + 𝑑𝑥𝑦2)︀ ,

�̇� = 𝑥+ 𝑦
(︀

𝑎𝑥+ 𝑏𝑥𝑦 + 𝑐𝑥3 + 𝑑𝑥𝑦2)︀ ,
(4.6)

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R.

A classification of the global phase portraits of the quartic
differential systems of the form (4.6) is provided in [26].

In order to save space, we put the remaining results in
Appendix C.

5 CONCLUSION

We have presented a systematical approach to analyze how
many limit cycles of differential system (2.2) can bifurcate
from the periodic orbits of an unperturbed one via the aver-
aging method. We designed four algorithms to analyze the
averaging method and shown that the general study of the
number of limit cycles of system (2.2) can be reduced to
the problem of estimating the number of simple zeros of the
obtained averaged functions with the aid of these algorithms.

Our algorithms admit a generalization to the case of study-
ing the bifurcation of limit cycles for discontinuous differential
systems. It would be interesting to employ our approach to
analyze the bifurcation of limit cycles for differential systems
in many different fields, which are of high interest in nature
sciences and engineering. It will be beneficial to generalize our
current approach to the case of higher dimension differential
systems by using the general form of the averaging method.
We leave this as the future research problems.

In addition, we noticed the phenomenon of tremendous
growth of expressions in intermediate calculations while we
done experiments for the linear center �̇� = −𝑦, �̇� = 𝑥 by using
the high order of averaging. For the nonlinear polynomial
differential centers, the evaluation of the high order averaged
functions is highly nontrivial; the main difficulty exists in the
technical and cumbersome computations of some complicated
integral equations. How to simplify and optimize the steps of
the computations of the averaged functions is also a question
that remains for further investigation.

ACKNOWLEDGMENTS

Huang’s work is partially supported by China Scholarship
Council under Grant No.: 201806020128. The author is grate-
ful to Professor Chee Yap and Professor Dongming Wang
for their profound concern and encouragement. The author
thanks the referees for their valuable comments and sugges-
tions to improve the presentation of this paper.

247

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Bo Huang

REFERENCES
[1] Nikolai N. Bautin. 1954. On the number of limit cycles which

appear with the variation of the coefficients from an equilibrium
position of focus or center type. Amer. Math. Soc. Transl. 100
(1954), 397–413.

[2] Felix E. Browder. 1983. Fixed point theory and nonlinear problems.
Bull. Amer. Math. Soc. 9 (1983), 1–39.

[3] Javier Chavarriga, Isaac Garćıa, and Jaume Giné. 2001. On
the integrability of differential equations defined by the sum of
homogeneous vector fields with degenerate infinity. Int. J. Bifur.
Chaos 11 (2001), 711–722.

[4] Javier Chavarriga and Marco Sabatini. 1999. A survey of
isochronous centers. Qual. Theory Dyn. Syst. 1 (1999), 1–70.

[5] Lan S. Chen and Ming S. Wang. 1979. The relative position and
the number of limit cycles of a quadratic diffenertial system. Acta
Math. Sinica 22 (1979), 751–758.

[6] Colin J. Christopher and Cheng Z. Li. 2007. Limit Cycles of
Differential Equations. Birkhäuser, Boston.

[7] Colin J. Christopher and Noel G. Lloyd. 1990. On the paper of
Jin and Wang concerning the conditions for a centre in certain
cubic systems. Bull. London Math. Soc. 22 (1990), 5–12.

[8] Colin J. Christopher and Noel G. Lloyd. 1995. Polynomial systems:
A lower bound for the Hilbert numbers. Proc. R. Soc. Lond. Ser.
A 450 (1995), 218–224.

[9] Christopher B. Collins. 1997. Conditions for a centre in a simple
class of cubic systems. Differential Integral Equations 10 (1997),
333–356.

[10] Roberto Conti. 1994. Uniformly isochronous centers of polynomial

systems in R
2. In Differential equations, dynamical systems, and

control science. Lecture Notes in Pure and Appl. Math. 152, New
York, 21–31.

[11] James Devlin, Noel G. Lloyd, and Jane M. Pearson. 1998. Cubic
systems and Abel equations. J. Differ. Equ. 147 (1998), 435–454.

[12] Armengol Gasull, Rafel Prohens, and Joan Torregrosa. 2005. Limit
cycles for rigid cubic systems. J. Math. Anal. Appl. 303 (2005),
391–404.

[13] Armengol Gasull and Joan Torregrosa. 2001. A new algorithm for
the computation of the Lyapunov constants for some degenerated
critical points. Nonlin. Anal. 47 (2001), 4479–4490.

[14] Jaume Giné, Maite Grau, and Jaume Llibre. 2013. Averaging
theory at any order for computing periodic orbits. Phys. D 250
(2013), 58–65.

[15] Jaume Giné and Xavier Santallusia. 2004. Implementation of a
new algorithm of computation of the Poincaré-Liapunov constants.
J. Comput. Appl. Math. 166 (2004), 465–476.

[16] Mao A. Han and Ji B. Li. 2012. Lower bounds for the Hilbert
number of polynomial systems. J. Differ. Equ. 252 (2012), 3278–
3304.

[17] Mao A. Han, Jun M. Yang, and Pei Yu. 2009. Hopf bifurcation for
near-Hamiltonian. Int. J. Bifur. Chaos 19 (2009), 4117–4130.

[18] Mao A. Han, Tong H. Zhang, and Hong Zang. 2004. On the
number and distribution of limit cycles in a cubic system. Int. J.
Bifur. Chaos 14 (2004), 4285–4292.

[19] David Hilbert. 1902. Mathematical problems. Bull. Am. Math.
Soc. 8 (1902), 437–479.

[20] Bo Huang. 2017. Bifurcation of limit cycles from the center of a
quintic system via the averaging method. Int. J. Bifur. Chaos
27 (2017), 1750072–1–16.

[21] Bo Huang. 2019. Limit cycles for a discontinuous quintic poly-
nomial differential system. Qual. Theory Dyn. Syst. 18 (2019),
769–792.

[22] Bo Huang. 2020. On the limit cycles for a class of discontinuous
piecewise cubic polynomial differential systems. Electron. J. Qual.
Theory Differ. Equ. 25 (2020), 1–24.

[23] Bo Huang and Wei Niu. 2019. Limit cycles for two classes of
planar polynomial differential systems with uniform isochronous
centers. J. Appl. Anal. Comput. 9 (2019), 943–961.

[24] Bo Huang and Chee Yap. 2019. An algorithmic approach to limit
cycles of nonlinear differential systems: the averaging method
revisited. In Proc. ISSAC’19. ACM Press, New York, 211–218.

[25] Yulij S. Ilyashenko. 2002. Centennial history of Hilbert’s 16th
problem. Bull. Am. Math. Soc. 39 (2002), 301–354.

[26] Jackson Itikawa and Jaume Llibre. 2015. Phase portraits of
uniform isochronous quartic centers. J. Comput. Appl. Math.
287 (2015), 98–114.

[27] Xiao F. Jin and Dong M. Wang. 1990. On the conditions of Kukles
for the existence of a centre. Bull. London Math. Soc. 22 (1990),

1–4.
[28] Isaak S. Kukles. 1944. Sur quelques cas de distinction entre un

foyer et un centre. Dokl. Akad. Nauk. SSSR. 42 (1944), 208–211.
[29] Cheng Z. Li, Chang J. Liu, and Jia Z. Yang. 2009. A cubic system

with thirteen limit cycles. J. Differ. Equ. 246 (2009), 3609–3619.
[30] Ji B. Li. 2003. Hilbert’s 16th problem and bifurcations of planar

polynomial vector fields. Int. J. Bifur. Chaos 13 (2003), 47–106.
[31] Shi M. Li, Yu L. Zhao, and Zhao H. Sun. 2015. On the limit

cycles of planar polynomial system with non-rational first integral
via averaging method at any order. Appl. Math. Comput. 256
(2015), 876–880.

[32] Hai H. Liang, Jaume Llibre, and Joan Torregrosa. 2016. Lim-
it cycles coming from some uniform isochronous centers. Adv.
Nonlinear Stud. 16 (2016), 197–220.

[33] Jaume Llibre and Jackson Itikawa. 2015. Limit cycles for continu-
ous and discontinuous perturbations of uniform isochronous cubic
centers. J. Comput. Appl. Math. 277 (2015), 171–191.

[34] Jaume Llibre and Ana C. Mereu. 2011. Limit cycles for generalized
Kukles polynomial differential systems. Nonlin. Anal. 74 (2011),
1261–1271.

[35] Jaume Llibre, Ana C. Mereu, and Douglas D. Novaes. 2015. Av-
eraging theory for discontinuous piecewise differential systems. J.
Differ. Equ. 258 (2015), 4007–4032.

[36] Jaume Llibre, Ana C. Mereu, and Marco A. Teixeira. 2010. Limit
cycles of the generalized polynomial Liénard differential equations.
Math. Proc. Camb. Phil. Soc. 148 (2010), 363–383.

[37] Jaume Llibre, Richard Moeckel, and Carles Simó. 2015. Cen-
tral Configurations, Periodic Orbits, and Hamiltonian Systems.
Birkhäuser, Basel.

[38] Jaume Llibre, Douglas D. Novaes, and Camila A.B. Rodrigues.
2017. Averaging theory at any order for computing limit cycles
of discontinuous piecewise differential systems with many zones.
Phys. D 353-354 (2017), 1–10.

[39] Jaume Llibre, Douglas D. Novaes, and Marco A. Teixeira. 2014.
Higher order averaging theory for finding periodic solutions via
Brouwer degree. Nonlinearity 27 (2014), 563–583.

[40] Jaume Llibre and Grzegorz Świrszcz. 2011. On the Limit cycles
of polynomial vector fields. Dyn. Contin. Discrete Impuls. Syst.
Ser A: Math Anal. 18 (2011), 203–214.

[41] Noel G. Lloyd. 1988. Limit cycles of polynomial systems-some
recent developments. London Math. Soc. Lecture Note Ser. 127
(1988), 192–234.

[42] Adam Mahdi, Claudio Pessoa, and Jonathan D. Hauenstein. 2017.
A hybrid symbolic-numerical approach to the center-focus problem.
J. Symb. Comput. 82 (2017), 57–73.

[43] Nawal Mellahi, Amel Boulfoul, and Amar Makhlouf. 2019. Maxi-
mum number of limit cycles for generalized Kukles polynomial
differential systems. Differ. Equ. Dyn. Syst. 27 (2019), 493–514.

[44] Ana C. Mereu, Regilene Oliveira, and Camila A.B. Rodrigues.
2018. Limit cycles for a class of discontinuous piecewise generalized
Kukles differential systems. Nonlin. Dyn. 93 (2018), 2201–2212.

[45] Douglas D. Novaes. 2017. An Equivalent Formulation of the
Averaged Functions via Bell Polynomials. Springer, New York,
141–145.

[46] Valery G. Romanovski. 1993. Calculation of Lyapunov numbers
in the case of two pure imaginary roots. Differ. Equ. 29 (1993),
782–784.

[47] Valery G. Romanovski and Douglas S. Shafer. 2009. The Center
and Cyclicity Problems: A Computational Algebra Approach.
Birkhäuser, Boston.

[48] Jan A. Sanders, Ferdinand Verhulst, and James Murdock. 2007.
Averaging Methods in Nonlinear Dynamical Systems. Springer,
New York.

[49] Song L. Shi. 1980. A concrete example of the existence of four
limit cycles for quadratic system. Sci. Sinica 23 (1980), 153–158.

[50] Dong M. Wang. 1990. A class of cubic differential systems with
6-tuple focus. J. Differ. Equ. 87 (1990), 305–315.

[51] Dong M. Wang. 1991. Mechanical manipulation for a class of
differential systems. J. Symb. Comput. 12 (1991), 233–254.

[52] Pei Yu and Guan R. Chen. 2008. Computation of focus values
with applications. Nonlin. Dyn. 51 (2008), 409–427.

[53] Pei Yu and Mao A. Han. 2005. Twelve limit cycles in a cubic
case of the 16th Hilbert problem. Int. J. Bifur. Chaos 15 (2005),
2191–2205.

[54] Pei Yu and Mao A. Han. 2012. Four limit cycles from perturbing
quadratic integrable systems by quadratic polynomials. Int. J.
Bifur. Chaos 22 (2012), 1250254–1–28.

248

New Progress in Univariate Polynomial Root Finding

Rémi Imbach∗

remi.imbach@nyu.edu
New York University

Victor Y. Pan2

victor.pan@lehman.cuny.edu
City University of New York

ABSTRACT

The recent advanced sub-division algorithm is nearly optimal for
the approximation of the roots of a dense polynomial given inmono-
mial basis; moreover, it works locally and slightly outperforms the
user’s choice MPSolve when the initial region of interest contains
a small number of roots. Its basic and bottleneck block is counting
the roots in a given disc on the complex plain based on Pellet’s
theorem, which requires the coefficients of the polynomial and ex-
pensive shift of the variable. We implement a novel method for both
root-counting and exclusion test, which is faster, avoids the above
requirements, and remains efficient for sparse input polynomials.
It relies on approximation of the power sums of the roots lying
in the disc rather than on Pellet’s theorem. Such approximation
was used by Schönhage in 1982 for the different task of deflation of
a factor of a polynomial provided that the boundary circle of the
disc is sufficiently well isolated from the roots. We implement a
faster version of root-counting and exclusion test where we do not
verify isolation and significantly improve performance of subdivi-
sion algorithms, particularly strongly in the case of sparse inputs.
We present our implementation as heuristic and cite some relevant
results on its formal support presented elsewhere.

KEYWORDS

Polynomial root finding, Subdivision, Root counting

ACM Reference Format:

Rémi Imbach and Victor Y. Pan. 2020. New Progress in Univariate Polyno-

mial Root Finding. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404063

1 INTRODUCTION

We seek complex roots of a degree d univariate polynomial p with
real or complex coefficients. For a while the user choice for this
problem has been the package MPsolve based on Erhlich-Aberth
(simultaneous Newton-like) iterations. Their empirical global con-
vergence (right from the start) is very fast, but its formal support is

∗Rémi’s work is supported by NSF Grants # CCF-1563942 and # CCF-1564132.
2Victor’s work is supported by NSF Grants # CCF-1116736 and # CCF-1563942 and by
PSC CUNY Award 698130048.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404063

a long-known challenge, and the iterations approximate the roots
in a fixed region of interest (ROI) about as slow as all complex roots.

In contrast, for the known algorithms subdividing a ROI, e.g., box,
the cost of root-finding in a ROI decreases at least proportionally to
the number of roots in it. Some recent subdivision algorithms have
a proved nearly optimal complexity, are robust in the case of root
clusters and multiple roots, and their implementation in [8] a little
outperforms MPsolve for ROI containing only a small number of
roots, which is an important benefit in many computational areas.

The Root Clustering Problem. Z (S,p) or Z (S) is the root subset
of p in a complex set S; #(S,p) or #(S) denotes the number of roots
of p in S. We always count roots with multiplicity.

We consider boxes (that is, squares with horizontal and vertical
edges, parallel to coordinate axis) and discs D(c, r) = {z s.t. |z − c |≤
r } on the complex plane. For such a box (resp. disc) S and a positive
δ we denote by δS the concentric δ -dilation. A disc ∆ is an isolator

if #(∆) > 0; it is a natural isolator if in addition #(∆) = #(3∆). A set
R of roots of p is a natural cluster or just cluster for short if there
exists a natural isolator ∆ with Z (R) = Z (∆). ∆ is an ε-isolator and
the set R is an ε-cluster if ε exceeds the diameter of ∆.

The Local Clustering Problem (LCP) is the problem of computing
natural ε-isolators for natural ε-clusters together with the sum of
multiplicities of roots in the clusters in a fixed ROI:

Local Clustering Problem (LCP):

Given: a polynomial p ∈ C[z], a ROI B0 ⊂ C, ε > 0

Output: a set of pairs {(∆1,m1), . . . , (∆ℓ ,mℓ)} where:
- the ∆j ’s are pairwise disjoint discs of radius ≤ ε ,
-mj = #(∆j ,p) = #(3∆j ,p) andmj > 0 for j = 1, . . . , ℓ

- Z (B0,p) ⊆
⋃ℓ
j=1 Z (∆

j ,p) ⊆ Z (2B0,p).

Root Clustering Problem (RCP) is a global version of LCP:

Root Clustering Problem:

Given: a polynomial p ∈ C[z] of degree d
Output: a set of pairs {(∆1,m1), . . . , (∆ℓ ,mℓ)} where:

- the ∆j ’s are pairwise disjoint discs,
-mj = #(∆j ,p) = #(3∆j ,p) and d > mj > 0 for j = 1, . . . , ℓ

-
⋃ℓ
j=1 Z (∆

j ,p) = Z (C,p).

We can readily transform an algorithm for LCP into that RCP by
using a bound on the norm of the roots ofp, e.g., the Fujiwara bound
(see [5]) for the ROI. Conversely, an algorithm RCP can initialize
an algorithm for the LCP, followed by refining natural isolators to
a fixed size, e.g., by means of solving the RCP itself. We can achieve
quadratic convergence to the clusters by using Newton’s iterations.

A nearly optimal subdivision algorithm of [1] solves the LCP
by means of subdivision. It combines exclusion and counting tests
based on Pellet’s theorem and Newton iterations. [8] describes high-
level improvements of [1] and a C implementation of its algorithm

249

https://doi.org/10.1145/3373207.3404063
https://doi.org/10.1145/3373207.3404063

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Rémi Imbach and Victor Y. Pan

called Ccluster
1. Computational cost of application of Pellet’s

theorem to a disc D(c, r) is dominated by the cost of shifting and
scaling the variable z → c + zr and of Dandelin-Gräffe’s root-
squaring iterations.

Our Contributions. The core tool for solving both LCP and RCP
is a test for counting the number s0 of roots in a disc ∆ = D(c, r).
If the boundary ∂∆ contains no roots, then by virtue of Cauchy’s
theorem

s0 =
1

2π i

∫

∂∆

p′(z)
p(z)

dz, for i =
√
−1, (1)

By following [7, 13, 20], we compute approximation s∗0 to s0 by
means of the evaluation of p′/p on q points of ∂∆. We give an effec-

tive2 (i.e. implementable) description of our test, said to be P∗-test,
for counting the number of roots in any disc ∆. This test involves no
coefficients of p and can be applied to a black box polynomial, that
is, a polynomial p given by a black box for its evaluation (and for
implied evaluation of p′ [10]). Unlike the counting tests based on
Pellet’s theorem, we do not require shifting and scaling the variable
z and, moreover, replace Dandelin-Gräffe’s costly root-squaring it-
erations by recursively doubling the number q of evaluation points.

By restricting our root-counting to decision whether the number
of roots is 0 or not, we arrive at our exclusion test, said to be P0-test;
it decides if a disc contains no roots.

We show how to use our exclusion test in a subdivision algorithm
for solving the RCP. Our algorithm can fail but always terminates.
We provide some heuristic support for its correctness, and in Sec.
6 we point out to the most recent results on the formal support
of the correctness of our approach, which seems to preserve the
nearly optimal Boolean cost bound of the algorithms of [1] and [2].
Our goal, however, is not to compete with but to cooperate with
algorithms of [1] and [2] and possibly to amend them.

We have implemented our algorithm in a procedure called
CclusterF

3 and showed empirically that it allows significant prac-
tical improvements of root clustering compared to Ccluster. For
sparse polynomials and polynomials defined by recursive process
such as Mandelbrot’s polynomials (see [3, Eq. (16)]), the resulting
acceleration of the clustering algorithm of [1] is particularly strong.
In experiments we carried out, CclusterF never failed.

Organization of the Paper. In Sec. 2 we approximate s0 and esti-
mate approximation error. Secs. 3 and 4 present our P∗ and P0-tests,
respectively. In Sec. 5 we present our subdivision algorithm for
solving the RCP using the P0-test. In the rest of the present section,
we recall the related work and the clustering algorithm of [1].

1.1 Previous Works

Univariate polynomial root-finding is a long-standing and still ac-
tual problem; it is intrinsically linked to numerical factorization of
a polynomial into the product of its linear factors. The algorithms
of [12] solved both problems of factorization and root-finding in
record Boolean time, which is nearly optimal, that is, optimal up

1https://github.com/rimbach/Ccluster
2by effective, we refer to the pathway proposed in [21] to describe algorithms in three
levels: abstract, interval, effective
3We have done this before deterministic support for correctness of our exclusion test
appeared in [13] and verified correctness by using a test from [8].

to a polylog factor in the input size and output precision. The al-
gorithms are involved and have never been implemented. User’s
choice has been for a while the package of subroutines MPsolve
(see [3] and [4]), based on simultaneous Newton-like (i.e. Ehrlich-
Aberth) iterations. They converge to all roots simultaneously. As
we said already, empirically they do this very fast right from the
start, albeit with no formal support, and they approximate a small
number of roots in a ROI not much faster than all roots. In contrast
the nearly optimal cost of the algorithms of [12] and [1], already
cited, is roughly proportional to the number of roots in a ROI. [1]
extends the method of [2] to root clustering, i.e. it solves the LCP
and is robust in the case of multiple roots; its implementation [8]
is a little more efficient than MPsolve for ROIs containing a small
number of roots; when all the roots are sought, MPsolve remains
the user’s choice. The algorithms of [1] and [2] follow subdivision
algorithms of [17] and [11], presented there under the name of
Quad-tree algorithms (inherited from [6]). [15, 16, 19] achieve a
nearly optimal complexity in the real case; [9] implements the algo-
rithm of [19]. Much more rudimentary variants of our algorithms
and of their implementation appeared in [14] and [7], respectively.
In Remark 8 we comment on a technical link to [20].

1.2 Solving the RCP

The root clustering algorithm in [1] combines two tests, called
exclusion and counting test, with recursive subdivision of an initial
box.

C0 and C∗ tests. The two tests C0 and C∗ exclude boxes with no
roots of p and count the number of roots in a box, respectively. Both
tests have a failure mode, i.e. return −1 when they cannot make
decision. For a given complex disc ∆,C∗(∆,p) (resp.C0(∆,p)) returns
an integer k ≥ 0 (resp. 0) that indicate that there are precisely k

(resp. no) roots in ∆. In the following, we frequently write C0(∆)
for C0(∆,p) and C∗(∆) for C∗(∆,p).

In [1, 2, 8], bothC0 andC∗ are based on the so called łsoft Pellet
testž denoted T ∗(∆,p) or T ∗(∆) which returns an integer k ≥ −1
such that k ≥ 0 only if p has k roots in ∆:

C0(∆) :=

{

0 if T ∗(∆) = 0
−1 otherwise

C∗(∆) := T ∗(∆).

(2)

Boxes, Quadri-section and Connected Components. The box B

centered in c = a + ib with widthw is defined as [a−w/2,a +w/2] +
i[b −w/2,b +w/2]. w(B) denotes the width of B. The containing

disc of B is the disc ∆(B) := D(c, 34w(B)) The four children of B are
the four boxes centered in (a ± w

4) + i(b ± w
4) and having width w

2 .
Recursive subdivisions of a ROI B0 amounts to the construction

of a tree rooted in B0. Below we refer to boxes that are nodes (and
possibly leafs) of this tree as the boxes of the subdivision tree of B0.

A component C is a set of connected boxes. The component box
BC of a component C is a smallest square box subject to C ⊆ BC ⊆
B0, where B0 is the initial ROI. We write ∆(C) for ∆(BC) andw(C)
forw(BC). Below we consider components made up of boxes of the
same width; such a component is compact ifw(C) is at most 3 times
the width of its boxes. Finally, a component C is separated from a
set S of components if ∀C′ ∈ S, 4∆(C) ∩ C′ = ∅ and 4∆(C) ⊆ 2B0.

250

https://github.com/rimbach/Ccluster

New Progress in Univariate Polynomial Root Finding ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 1 Root Clustering Algorithm

Input: A polynomial p ∈ C[z] of degree d .
Output: Set R of components solving the LCP.
1: w ← upper bound for the norm of the roots of p
2: B0 ← box centered in 0 with widthw
3: R ← ∅, Q ← {B0} // Initialization
4: while Q is not empty do // Main loop

5: C ← Q .pop() //C has the widest component box in Q

// Validation

6: if C is compact and C is separated from Q then

7: k ← C∗(2∆(C),p)
8: if d > k > 0 then

9: R.push((C,k))
10: break

// Bisection

11: S ← empty set of boxes
12: for each box B of C do

13: for each child B′ of B do

14: if C0(∆(B′),p) returns −1 then
15: S .push(B′)

16: Q .push(connected components in S)

17: return R

A Root Clustering Algorithm. We give in Algo. 1 a simple root
clustering algorithm based on subdivision. A ROI containing all the
roots of p is constructed using the so-called Fujiwara bound for the
norm of the roots of p (see [5]). In step 16, an implicit processing
of S groups the boxes in components. The paper [1] proves that
Algo. 1 terminates and outputs a correct solution provided that the
C0 and C∗-tests are as in Eq. (2).

In thewhile loop of Algo. 1, components with widest component
box are processed first; together with the definition of a separated
component, this implies the following remarks:

Remark 1. Let C be a component in Algo. 1 that passes the test in

step 6. Then C satisfies #(∆(C)) = #(4∆(C)).

Remark 2. If #(2
√
2

3 ∆) = #(43∆), then T
∗(∆) ≥ 0 (see [1, Lem. 3])

and ifC∗ is defined as in (2), then k in step 7 of Algo. 1 is non-negative.

2 THE POWER SUMS OF THE ROOTS IN THE
UNIT DISC

Let roots {α1, . . . ,αd∆ } of p lie in ∆, roots {αd∆+1, . . . ,αd } lie out-
side ∆, and no roots lie on the boundary ∂∆.

Definition 3 (The power sums of the roots in a disc). The

h-th power sum of the roots of p in ∆ is the complex number

sh =
d∆
∑

j=1

αhj (3)

Hereafter q is an integer exceeding 1 and ζ denotes a primitive
q-th root of unity. The h-th power sum of the roots in the unit disc
∆ = D(0, 1) can be approximated by

s∗
h
=
1

q

q−1
∑

д=0

ζ д(h+1)
p′(ζ д)
p(ζ д)

(4)

provided that ∆ has no root on its boundary. The following theorem
of [13] explicitly expresses the sums s∗

h
through the roots.

Theorem 4. Let α1, . . . ,αd be all d roots of p(z). Then

s∗
h
=

d
∑

j=1

αhj

1 − αqj
unless α

q
j = 1 for some j . (5)

2.1 Proof of Theorem 4

We begin with recalling some auxiliary properties.

(i) Differentiate the equation p(z) = lcf(p)
∏d

j=1(z−α j) and obtain

p′(z)
p(z)

=
d
∑

j=1

1

z − α j
. (6)

(ii) For a primitive q-th root of unity ζ , it holds that

ζ д ̸= 1 for 0 < д < q,
q−1
∑

д=0

ζ д = 0, and ζ q = 1. (7)

(iii) Newman’s expansion: if |y |< 1 then 1
1−y =

∑∞
s=0 y

s .

Lemma 5. For a complex z with |z |≠ 1, integers h ≥ 0 and q > 1
and a primitive q-th root of unity ζ it holds that

1

q

q−1
∑

д=0

ζ (h+1)д

ζ д − z =
zh

1 − zq . (8)

Proof of Lem. 5: First let |z |< 1 and obtain

ζ (h+1)д

ζ д − z =
ζ hд

1 − z
ζ д

= ζ hд
∞
∑

s=0

(z

ζ д

)s
=
∞
∑

s=0

zs

ζ (s−h)д

where the equation in themiddle follows fromNewman’s expansion
for y = z

ζ д
. We can apply it because |y | = |z | while |z | < 1.

Sum the fractions zs

ζ (s−h)д

in д and deduce from (7) that

1

q

q−1
∑

д=0

zs

ζ (s−h)д
=

{

zs when s = h + ql for an integer l ,
0 otherwise.

Therefore

1

q

q−1
∑

д=0

ζ (h+1)д

ζ д − z = zh
∞
∑

l=0

zql .

Apply Newman’s expansion for y = zq and deduce (8) provided
that |z |< 1. Now let |z |> 1. Then

ζ (h+1)д

ζ д − z = −ζ
(h+1)д

z

1

1 − ζ д

z

= −ζ
(h+1)д

z

∞
∑

s=0

(ζ д

z

)s
= −

∞
∑

s=0

ζ (s+h+1)д

zs+1
.

Sum these expressions in д, write s := ql − h − 1, and apply (7):

1

q

q−1
∑

д=0

ζ (h+1)д

ζ д − z = −
∞
∑

l=1

1

zql−h
= −zh−q

∞
∑

l=0

1

zql
.

Apply Newman’s expansion for y = 1/zq and obtain that

1

q

q−1
∑

д=0

ζ (h+1)д

ζ д − z = − zh−q

1 − 1
zq

=
zh

1 − zq .

Hence (8) holds in the case where |z |> 1 as well. □

251

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Rémi Imbach and Victor Y. Pan

2.2 Error bounds for the approximation of the
power sums

Definition 6 (Isolation ratio). A complex disc ∆ has an isola-
tion ratio ρ ≥ 1 for a polynomial p or equivalently is ρ-isolated if

Z (1ρ ∆) = Z (ρ∆).

Corollary 7. For ρ > 1, θ := 1/ρ, and an integer h such that

0 ≤ h < q let the disc ∆ = D(0, 1) be ρ-isolated and contain d∆ roots

of p. Then

|s∗
h
− sh |≤

d∆θ
q+h + (d − d∆)θq−h

1 − θq . (9)

Remark 8. The corollary does not imply Theorem 4. In [20] Schön-

hage proved the corollary and applied it to deflation of p, ignoring the

case of h = 0 and root-counting problem and bypassing the theorem.

Proof of Corollary 7: Let {α1, . . . ,αd∆ } be the roots of p in ∆ and
{αd∆+1, . . . ,αd } be the roots of p outside ∆. First combine (5) with
(3) to obtain

s∗
h
− sh =

d∆
∑

j=1

α
q+h
j

1 − αqj
+

d
∑

j=d∆+1

αhj

1 − αqj
(10)

Recall that θ = 1/ρ < 1. For 1 ≤ j ≤ d∆, one has
�

�

�

�

�

�

α
q+h
j

1 − αqj

�

�

�

�

�

�

≤ θq+h

1 − θq (11)

For d∆ + 1 ≤ j ≤ d , it holds that 1/α j ≤ θ and
�

�

�

�

�

αhj

1 − αqj

�

�

�

�

�

=

�

�

�

�

�

�

α
h−q
j

1/α
q
j − 1

�

�

�

�

�

�

≤ θq−h

1 − θq (12)

Combining (10), (11) and (12) implies inequality (9). □

3 COUNTING THE NUMBER OF ROOTS IN A
WELL-ISOLATED DISC

Given ρ > 1, a black box polynomial p, and ρ-isolated disc D(0, 1),
Corollary 7 suggests the following recipe for counting the roots of
p in D(0, 1): first choose q such that |s∗0 − s0 | is less than 1/4 and
then compute s∗0 of (4), at the overall cost of the evaluation of p and
p′ at q = O(log(d)) points andO(q) additional arithmetic operations.
Clearly a unique integer in the disc D(s∗0 , 1/4) is the number of
roots in D(0, 1). In this section we extend this recipe to P∗-test for
counting the roots of a black box polynomial p in any ρ-isolated
disc ∆ = D(c, r) for ρ > 1.

When ∆ has isolation ratio 2 and p has degree 500, our test
amounts to evaluating p and p′ on q = 11 points.

If p and p′ can be evaluated at a low computational cost, e.g. if p
is sparse or defined by a recurrence as the Mandelbrot polynomial
(see [3, Eq. (16)]), our P∗-test can be dramatically simplified.

3.1 Approximation of the 0-th Power Sum of
the Roots in any Disc

Let ∆ = D(c, r) and s0 be the 0-th power sum of the roots of p in ∆,
as defined in Def. 3. For a positive integer q, define

s∗0 =
r

q

q−1
∑

д=0

ζ д
p′(c + rζ д)
p(c + rζ д)

(13)

where ζ is a primitive q-th root of unity.

Corollary 9. Let ∆ have isolation ratio ρ, and θ = 1/ρ. Then

|s∗0 − s0 |≤
dθq

1 − θq (14)

Fix e > 0. If q = ⌈logθ (
e

d + e
)⌉ then |s∗0 − s0 |≤ e (15)

Proof of Corollary 9: Let p∆(z) be the polynomial p(c + rz). Then

p′∆(z) = rp′(c + rz) and Eq. (13) rewrites s∗0 = 1
q

q−1
∑

д=0
ζ д

p′∆(ζ
д)

p∆(ζ д)
. In ad-

dition, the unit disc D(0, 1) has isolation ratio ρ for p∆ and contains
s0 roots of p∆. Then apply Thm. 7 to p∆(z) to obtain (14). (15) is a
direct consequence of (14).

□

Remark that in (15), the required number q of evaluation points
increases as the logarithm of ρ: if ∆ has isolation ratio

√
ρ (resp.

ρ2) instead of ρ, then 1
2q (resp. 2q) evaluation points are required.

Thus doubling the number of evaluation points has the same effect
as root squaring operations.

Our test uses the following bound.

Lemma 10. Suppose that ∆ = D(c, r) has isolation ratio ρ > 1,
z ∈ C, |z |= 1, and д is an integer. Then

|p(c + rzд)|≥ lcf(p)
rd (ρ − 1)d

ρd
(16)

Proof of Lem. 10. Suppose that p has d∆ non-necessarily distinct
roots α1, . . . ,αd∆ in ∆ and d − d∆ roots αd∆+1, . . . ,αd outside ∆.
Since ∆ has isolation ratio ρ, it follows that

|c + rzд − αi | ≥ r − r

ρ
=
r (ρ − 1)

ρ
when i ≤ d∆, and (17)

≥ ρr − r = r (ρ − 1) when i ≥ d∆ + 1 (18)

Write

p(c + rzд) = lcf(p)
d∆
∏

i=1

(c + rzд − αi)
d
∏

i=d∆+1

(c + rzд − αi)

and deduce from inequalities (17) and (18) that

|p(c + rzд)|≥ lcf(p)(
r (ρ − 1)

ρ
)d∆ (r (ρ − 1))d−d∆ = lcf(p)

rd (ρ − 1)d

ρd∆
.

Bound (16) follows since ρ > 1. □

3.2 Black Box for Evaluating a Polynomial on
an Oracle Number

Our P∗-test deals with oracle numbers, the black boxes for arbitrary
precision approximation of complex numbers. Such oracle numbers
can be implemented through arbitrary precision interval arithmetic
or ball arithmetic. Let C be the set of complex intervals. If a ∈
C, thenw(a) is the maximum width of real and imaginary parts

of a.
For a number a ∈ C, we call oracle for a a function Oa : N→ C

such that a ∈ Oa (L) andw(Oa (L)) ≤ 2−L for any L. LetOC be the set
of oracle numbers which can be computed with a Turing machine.

For a polynomial p ∈ C[z], we call evaluation oracle for p a
function Ip : (OC,N)→ C, such that if Oa is an oracle for a and

L ∈ N, then p(a) ∈ Ip (Oa ,L) andw(Ip (Oa ,L)) ≤ 2−L .

252

New Progress in Univariate Polynomial Root Finding ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 2 P∗(Ip ,Ip′ ,∆, ρ)
Input: Ip , Ip′ evaluation oracles for p and p′, ∆ = D(c, r), ρ > 1. p

is monic and has degree d .
Output: an integer in {−1, 0, . . . ,d}
1: L← 53,w ← 1, e ← 1/4

2: θ ← 1/ρ, q ← ⌈logθ (e
d+e)⌉

3: ℓ ← rd (ρ − 1)d/ρd
4: whilew ≥ 1/2 do
5: for д = 0, . . . ,q − 1 do
6: Compute intervals Ip (Oc+r ζ д ,L) and Ip′ (Oc+r ζ д ,L)
7: if |Ip (Oc+r ζ д ,L)|< ℓ then
8: return -1

9: Compute interval s∗0 as
r
q

q−1
∑

д=0
Oζ д (L)

Ip′ (Oc+r ζ д ,L)
Ip (Oc+r ζ д ,L)

10: w ← w(s∗0)
11: L← 2L
12: s0 ← s∗0 + [−e, e] + i[−e, e]
13: if s0 contains a unique integer k then

14: return k

15: return −1

Consider evaluation oracles Ip and Ip′ for p and its derivative
p′. If p is given by d + 1 oracles for its coefficients, one can easily
construct Ip and Ip′ by using, for instance, Horner’s rule. However
for some polynomials defined by a procedure, one can construct
fast evaluation oracles Ip and Ip′ from procedural definition.

3.3 The P∗-test
In Algo. 2 we describe our counter of the roots of a monic poly-
nomial p in a disc ∆ = D(c, r). Its input is made up of evaluation
oracles for p and p′, ∆, and a fixed isolation ratio ρ > 1 for ∆. It
may fail and return −1 only if ∆ is not ρ-isolated for ρ > 1. In the
latter case its correctness cannot be guaranteed. The termination
of Algo. 2 amounts to the termination of the while loop in step 4.

First suppose that 0 ≤ д < q for an integerд, a disc ∆ is ρ-isolated

for ρ > 1, and |p(c + rζ д)|≥ ℓ > 0 (cf. (16)). Thus for 2−L < ℓ, none
of the Ip (Oc+r ζ д ,L) can contain 0, and the width of the interval

s∗0 computed in step 9 strictly decreases with L (see, e.g., [18, Sec.
5] and in particular Eq. (5.10) and (5.11) that directly extend to C).

Now suppose that the disc ∆ is not ρ-isolated for a fixed ρ > 1. If
one of the evaluation points c + rζ д is a root of p or if p(c + rζ д) < l

then condition in step 7 is satisfied for 2−L < ℓ, and the test returns
−1. Otherwise p(c + rζ д) ≥ ℓ for all д = 0, . . . ,q − 1, and then the
interval s∗0 computed in step 9 has width that strictly decreases
with L.

This proves the termination of Algo. 2 when p is monic. One can
easily write a terminating algorithm for non-monic polynomials
assuming a lower bound on the leading coefficient of p.

The correctness of Algo. 2 is stated in the following proposition:

Proposition 11. Let ∆ be ρ-isolated. Then p has k roots in ∆ if

and only if P∗(Ip ,Ip′ ,∆, ρ) returns k .

Proof of Prop. 11. Since ∆ is ρ-isolated Lemma 10 implies that
the condition in step 7 is never reached. By virtue of Corollary 9,
the interval s0 computed in step 12 of Algo. 2 has width less than

1 and contains a unique integer s0, the number of roots of p in ∆
counted with multiplicity. □

4 AN ALMOST SURE EXCLUSION TEST

The P∗-test of sec. 3 counts the roots in ∆ using no Taylor’s shift
but just evaluates p at O(log(d)) points on the contour of ∆, which
is a major benefit versus [1]. However, we cannot ensure its success
unless we know that ∆ is ρ-isolated for ρ noticeably exceeding 1,
and this disqualifies its use as an exclusion test within a subdivision
framework of [1]. Our alternative version of the P∗-test in [7] works
in the case where ρ is not known, and we used it as an exclusion
test while confirming its output with the T ∗-test.

Here we define an exclusion test based on the computation of
approximations of the first k power sums (for a small k > 0). For a
disk with a fixed isolation ratio one can compute an interval s0
containing a unique integer s as in Algo. 2. However, if the isolation
ratio is smaller, then s may differ from s0. In the test described
below, we verify further necessary conditions that s = s0. Namely,
we compute the k first power sums of the roots of p∆ in D(0, 1) for
a small k : for h less that k , p contains no root in ∆ only if the h-th
powers of the roots of p in ∆ sum to 0, which in turn happens only
if the h-th powers of the roots of p∆ in D(0, 1) sum to 0.

Subsec. 4.1 extends Corollary 9 to the approximation of the
h-th power sum of the roots of p∆ in D(0, 1). In Subsec. 4.2, we
define our exclusion test and give a sufficient condition in terms
of the distances of the roots to a box B for our test to exclude
B. In Subsec. 4.3 we provide experimental results confirming our
heuristic.

4.1 Approximation of h-th power sum

For a positive integer q and 0 ≤ h < q, define

s∗
h
=
r

q

q−1
∑

д=0

ζ д(h+1)
p′(c + rζ д)
p(c + rζ д)

. (19)

By replacing h by 0, (19) directly extends (13), and likewise bound
(20) below directly extends (9).

Corollary 12 (of Theorem 7). Let ∆ = D(c, r) have isolation
ratio ρ, and θ = 1/ρ. Let p have degree d and d∆ roots in ∆. Then

|s∗
h
− sh | ≤

d∆θ
q+h + (d − d∆)θq−h

1 − θq (20)

|s∗
h
− sh | ≤

dθq−h

1 − θq (21)

Fix e > 0. If q = ⌈logθ (
e

d + e
)⌉ + h, then |s∗

h
− sh |≤ e (22)

Proof of (21) and (22) in Corollary 12: We deduce (21) from

(20) by noticing that θ < 1 and d∆θ
q+h ≤ d∆θ

q−h . (22) is a direct
consequence of (21). □

4.2 The P0-test

We describe our P0-test in Algo. 3 in the case where p is monic. At
the first stage, we rely on eq. (19) and for 0 ≤ h ≤ k , compute the
interval s∗

h
, containing s∗

h
and having width less than 1/2. At the

second stage, for 0 ≤ h ≤ k , we obtain the interval sh from s∗
h

by adding the errors bounded in (21). sh contains sh for all h if ∆

253

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Rémi Imbach and Victor Y. Pan

Algorithm 3 P0(Ip ,Ip′ ,∆, ρ,k)
Input: Ip , Ip′ evaluation oracles for p and p′, ∆ = D(c, r), ρ > 1. p

is monic and has degree d . k ≥ 0 is an integer.
Output: an integer in {−1, 0}
1: L← 53,w ← 1, θ ← 1/ρ

2: e ← 1/4, q ← ⌈logθ (e
d+e)⌉ + k

3: ℓ ← rd (ρ − 1)d/ρd
4: whilew ≥ 1/2 do
5: for д = 0, . . . ,q − 1 do
6: Compute intervals Ip (Oc+r ζ д ,L) and Ip′ (Oc+r ζ д ,L)
7: if |Ip (Oc+r ζ д ,L)|< ℓ then
8: return -1
9: for h = 0, . . . ,k do

10: Compute interval s∗
h
as r

q

q−1
∑

д=0
Oζ д(h+1) (L)

Ip′ (Oc+r ζ д ,L)
Ip (Oc+r ζ д ,L)

11: w ← maxh=0, ...,k w(s∗
k
)

12: L← 2 ∗ L
13: for h = 0, . . . ,k do

14: eh ← (dθq−h)/(1 − θq)
15: sh ← s∗

h
+ [−eh , eh] + i[−eh , eh]

16: if 0 /∈ sh then

17: return -1
18: return 0

has isolation ratio ρ > 1. We have chosen q such that sh contains
at most one integer for all h and we arrive at

Proposition 13. If ∆ has isolation ratio ρ then for k ≥ 0,
P0(Ip ,Ip′ ,∆, ρ,k) returns 0 if and only if ∆ contains no root of p.

One proves the termination of Algo. 3 with the same arguments
as for Algo. 2, and the same remark about the assumption that p
is monic holds. For a box B that contains no root of p, we give a
sufficient condition for our test to return 0:

Proposition 14. Let a disc ∆(B) contain a box B. If 2B contains

no root of p then P0(Ip ,Ip′ ,∆(B), 4/3,k) returns 0 for any k ≥ 0.

Proof of Prop. 14. Let B have center c and width w . Recall that
∆(B) = D(c, 34w), thus 4

3∆(B) = D(c,w). Now, D(c,w) ⊆ 2B and
if 2B contains no roots of p, then so does D(c,w) as well. Thus

∆(B) has isolation ratio ≥ 4
3 . In this case, by virtue of Lemma 10,

p(c + rζ д) ≥ ℓ for all д = 0, . . . ,q − 1. As a consequence, after the
while loop of Algo. 3, each interval s∗

h
has width strictly less than

1/2, and contains s∗
h
. Now, one has the following bounds:

|s∗
h
− sh |≤

dθq−h

1 − θq ≤
dθq−k

1 − θq ≤ 1/4 (23)

The first inequality comes from (21). The inequality in the middle
holds since θ < 1 and h ≤ k < q. The right-hand side inequality is
a consequence of (22) and the choice of e . Thus sh computed in
step 15 of Algo. 3 contains sh , which is 0, and contains a unique
integer since it has width strictly less than 1. □

4.3 On the success of the P0-test

Here we give experimental evidences that for a given disc ∆, if
P0(Ip ,Ip′ ,∆, ρ,k) with ρ = 4/3 and k = 2 returns 0, then ∆ is very
likely to contain no roots of p.

T ∗-tests P 0-tests, k = 0 P 0-tests, k = 1 P 0-tests, k = 2

d n t0/t (%) #TN #FP #TN #FP #TN #FP t 20 /t0
100 monic random dense polynomials per degree

64 116302 87.2 3741 4 5611 0 7260 0 1.14
128 227842 90.5 6417 21 9935 0 12972 0 .599
191 340348 92.0 8850 26 13770 1 18004 0 .455

Bernoulli polynomials
64 1566 87.5 32 0 42 0 60 0 .836
128 2954 88.4 49 0 65 0 87 0 .578
191 4026 88.7 100 0 163 0 212 0 .462

100 monic random sparse (10 monomials) polynomials per degree
64 115850 86.2 3628 10 5430 0 6986 0 .981
128 226266 91.3 6471 11 9660 0 12556 0 .403
191 331966 92.1 8690 11 13425 2 17452 0 .280

Mignotte polynomials
64 1196 85.7 30 0 48 0 63 0 1.00
128 2296 92.9 63 0 93 0 129 0 .298
191 3218 92.4 70 2 109 0 154 0 .264

Table 1: True negatives and false positives when using the

P∗-test with ρ = 4/3 and k = 0, 1, 2.

We run Algo. 1 implemented in Ccluster for dense and sparse
polynomials, random and taken from literature; each time Ccluster
applies exclusion test based on T ∗-test for a box B, we also apply
P0(Ip ,Ip′ ,∆(B), 43 ,k) with values 0, 1, 2 for k .

The false positives are the cases where for a disc ∆(B), the T ∗-
test returns a positive number of roots or cannot decide whether
P0(Ip ,Ip′ ,∆, 2,k) returns 0. For the polynomials we tested, when
k = 2, there was no such false positives.

The true negatives, i.e. cases where a disc contains no root ac-
cording to theT ∗-test but P0(Ip ,Ip′ ,∆, 2,k) returns −1, shows how
less efficacious than the T ∗-test is our test.

4.3.1 Testing suite. For each degree d ∈ {64, 128, 191}, we gen-
erated 100 random monic dense polynomials whose coefficients
are rational numbers c

256 where c is an integer chosen uniformly in
[−256, 256]. We also generated for each degree above 100 random
monic sparse polynomials as follows: choose 8 distinct random
integers d1, . . . ,d8 in the range [1,d − 1], and let the coefficients of
monomials of degrees 0,d1, . . . ,d8 be rational numbers c

256 for a
random integer chosen uniformly in [−256, 256].

We also consider Bernoulli and Mignotte polynomials. The Ber-

noulli polynomial of degree d is Bd (z) =
∑d
k=0

(d
k

)

bd−kz
k where

the bi ’s are the Bernoulli numbers. It has about d/2 non-zero coef-
ficients. The Mignotte polynomial of degree d and parameter a = 8

isMd (z) = zd − 2(2az − 1)2.

4.3.2 Results. For a polynomial in our testing suite, let n be the
number of exclusion tests performed by Ccluster, t be the running
time of Ccluster and t0 be the time spent in exclusionT ∗-test. For
each exclusion test, we also applied three times our P0-test with
isolation ratio ρ = 4/3 and k = 0, 1, 2. We denote by #TN the number
of true negatives, #FP the number of false positives and t20 the total

time spent in the P0-test with k = 2. We report in Table 1 the
values n, t0/t , #TN, #FP and t20/t for each degree and each family
of polynomials. For random dense and sparse polynomials, these
values represented overall count over the 100 polynomials.

As expected, the number of false positives decreased when k

increased, and we had no such false positives when we used k = 2.
As a counterpart, the number of true negatives increased with k .

254

New Progress in Univariate Polynomial Root Finding ISSAC ’20, July 20–23, 2020, Kalamata, Greece

5 A FAST AND ALMOST SURE ROOT
CLUSTERING ALGORITHM

In this section we present a fast root clustering algorithm based on
Algo. 1 and on exclusion and counting tests defined as:

C0(∆) := P0(Ip ,Ip′ ,∆, 4/3, 2)
C∗(∆) := T ∗(∆)

(24)

Notice that the exclusion test is performed while assuming an
isolation ratio 4/3 for ∆, condition that cannot be ensured when ∆ is
the containing disc of the boxes of a subdivision tree constructed by
Algo. 1. As a consequence, exclusion tests defined in (24) may return
wrong results. Although very unlikely, as we show in Subsec. 4.3,
this would compromise correctness of the process (termination is
ensured by Prop. 14).

In Subsec. 5.1, we describe how we modified Algo. 1 to obtain a
root clustering algorithm using C0 and C∗-tests of (24) that always
terminates and has a failure mode.When it succeeds, its result is cor-
rect. This procedure has been implemented in C within Ccluster,
and we call it CclusterF below.

In Subsec. 5.2 we show experimental results on using Ccluster
and CclusterF for clustering the roots of a bunch of polynomials.
CclusterF never failed in the experiments we carried out. More-
over by comparing running times of both procedures, we show that
using C0-tests of (24) can lead to important improvement, which
grow with degree and sparsity of considered polynomials.

5.1 Description of our algorithm

We give an informal description of how we modified Algo. 1 to deal
with uncertainty of the result of the exclusion test P0.

First, in addition to a list of clusters, our algorithm returns a flag
in {fail, success} indicating whether its result is reliable.

Second, we replace steps 6 to 10 in Algo. 1 with steps 6 to 12
below:

6: if C is compact and C is separated from Q then

7: k ← C∗(2∆(C),p)
8: if d > k > 0 then

9: R.push((C,k))
10: break

11: if k == −1 then

12: return fail, R

Third, we replace the return statement in step 17 in Algo. 1 with
the following simple routine:

17: sum the number of roots in the components in R

18: if it is equal to d then

19: return success, R

20: else

21: return fail, R

Notice that step 14 of Algo. 1 also involves the C0-test which
has to be understood here as defined in (24). Recall that for a box B,
C0(∆(B)) returns -1 when 2B contains a root (see Prop. 14); however
when it returns 0, B may contain a root.

To see that our algorithm terminates, consider Prop. 14: it implies
that after a finite number of subdivision steps, boxes in the subdivi-
sion tree form separated and compact connected components, at

most one per root. Then for each of these connected componentsC
our algorithm enters step 6 above and terminates.

When our algorithm returns the flag success, its output is cor-
rect, i.e. the components in R solve the root clustering problem.
This is a direct consequence of the fact that T ∗(∆,p) returns k ≥ 0

only if ∆ contains k roots of p.
Our algorithm returns the flag fail only if an exclusion test

returns a wrong result, i.e. excludes a box of the subdivision tree
that contains a root. Assume the opposite: no exclusion test returns
a wrong result. Then Rem. 1 holds; in particular 2∆(C) has isolation
ratio 2 and from Rem. 2, C∗(2∆(C),p) in step 7 above returns k
positive. Moreover, each root lies in a box in a component in R

before the step 17 above, and our algorithm returns success.

5.2 Experimental results

5.2.1 Test polynomials. In addition to the test polynomials of
Subsec. 4.3, we consider the following ones.

(i) Td (z), the Chebyshev polynomial (of the first kind) of degree
d : T0(z) = 1, T1(z) = z and Td+1(z) = 2zTd (z) −Td−1(z), d = 2, 3, . . .

(ii) Ld (z), the Legendre polynomial of degreed : L0(z) = 1, L1(z) =

z and Ld+1(z) =
2d+1
d+1

zLd (z) − d
d+1

Ld−1(z), d = 2, 3, . . .

(iii) For an integer n > 0, we define polynomials with (2n + 1) ×
(2n + 1) roots on the nodes of a regular grid centered in 0 as

P(2n+1)×(2n+1)(z) =
∏

−n≤a,b≤n
(z − a + ib)

(iv) LettingM1(z) = z andMk (z) = zMk−1(z)
2 + 1, we define the

Mandelbrot’s polynomialMk (z) of degree 2
k − 1.

Bernoulli, Chebyshev and Legendre polynomials of degree d
have about d/2 nonzero coefficients. Polynomials with roots on
a grid of degree d have about d/4 nonzero coefficients. Mignotte
polynomials have 4 nonzero coefficients. Mandelbrot polynomials
have no zero coefficients, but can be evaluated very fast by a straight
line program.

5.2.2 Results. We computed clusters of roots of each polynomial
of our testing set by using both Ccluster and CclusterF. In Table 2
we report for both solvers the size of the subdivision tree (columns
TS) and the sequential running time in seconds on Intel(R) Core(TM)
i7-8700 CPU @ 3.20GHz machine with Linux (columns t and t ′).
In Table 2 we also report the number of failures of CclusterF

(column #Fails) and the ratio t ′/t in percents. Column t ′1/t
′ shows

percents of time spent on evaluating oracle polynomials in the
P0-test. Column t ′2/t

′ shows percents of time spent on applying
T ∗-tests in CclusterF. As in Subsec. 4.3, the Table 2 displays the
average data for random dense and sparse polynomials over the
100 polynomials of the family.

Remarks: (i) There was no occurrence of a failure of CclusterF
for all the polynomials we tested.

(ii) The running time of CclusterF decreased as the degree
and the sparsity of the polynomial increased. For random sparse
polynomials and Mignotte polynomials, of degree 191, this was a
3-fold speed-up. The speed-up was more dramatic for polynomials
evaluated very fast such as Mandelbrot polynomials. Except for
the latter cases, CclusterF spent most of its computational time
on evaluating oracle polynomials and checking correctness of the
results.

255

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Rémi Imbach and Victor Y. Pan

Ccluster CclusterF

d TS t #Fails TS t ′ t ′/t (%) t ′1/t
′ (%) t ′2/t

′ (%)
100 monic random dense polynomials per degree

64 127100 31.5 0 155992 41.2 130 76.8 1.72
128 250928 222 0 300696 149 67.3 83.2 4.52
191 361340 665 0 447628 340 51.1 85.1 5.96

Bernoulli polynomials
64 1884 0.46 0 2148 0.49 106 73.4 2.04
128 3596 3.24 0 3932 1.86 57.4 85.4 2.15
191 4684 9.17 0 5476 4.84 52.7 84.2 5.99

Chebyshev polynomials
64 2532 0.74 0 2980 0.79 106 82.2 1.26
128 4708 5.62 0 5188 3.33 59.2 84.9 .900
191 7268 17.0 0 8108 8.86 51.9 86.9 1.01

Legendre polynomials
64 2676 0.75 0 2940 0.81 108 77.7 0.0
128 4836 5.76 0 5244 3.73 64.7 86.8 1.60
191 6996 16.4 0 7732 9.61 58.3 88.7 1.45

Polynomials with roots on a regular grid
225 3412 8.74 0 3580 2.62 29.9 76.3 15.2
289 4548 17.0 0 5304 5.40 31.6 74.8 15.5
361 6276 30.9 0 7588 8.52 27.5 76.5 17.8

100 monic random sparse (10 monomials) polynomials per degree
64 127220 27.9 0 159972 31.7 113 70.8 1.57
128 251196 216 0 303260 100 46.3 75.5 5.65
191 374872 638 0 457084 209 32.7 76.4 8.80

Mignotte polynomials
64 1572 0.30 0 1856 0.31 103 74.1 0.0
128 2572 2.24 0 3564 0.95 42.4 74.7 4.21
191 3640 5.99 0 4228 1.79 29.8 72.6 10.0

Mandelbrot polynomials
127 2852 3.46 0 3424 0.56 16.1 42.8 10.7
255 4968 18.4 0 5952 1.79 9.70 33.5 41.3
511 9632 118 0 11556 7.61 6.42 19.5 66.3

Table 2: Runs of Ccluster and CclusterF on polynomials of

our testing suite.

In all the examples we tested, the depth of the subdivision tree
constructed by CclusterF was at most one plus the depth of the
tree constructed by Ccluster. Columns TS in Table 2 suggest that
CclusterF tends to construct a slightly wider subdivision tree than
Ccluster, which shows that the P0-test is slightly less efficacious
than the T ∗-test for box exclusion.

6 CONCLUSION

We presented our exclusion test with doubling the number q of eval-
uation points as heuristic, but actually it has already probabilistic
and even deterministic support; moreover even our root-counting
has probabilistic support. Namely, by virtue of [13, Thm. 29 and
Remark 30], based on our Theorem 4, if s∗0 is within a specified dis-
tance from an integer k , then k = s0 with a high probability (whp)
under the random root model and under no assumption about iso-
lation of the disc. Furthermore by virtue of [13, Corollary 4.7] a
disc contains no roots whp under a random coefficient model and
again under no assumption about isolation of the disc as long as

2τ 2d2 < 1 for τ 2 =
∑q−1
h=0
|s∗
h
− sh |2 and q ≥ 2. For q > d under

this bound the disc definitely contains no roots by virtue of [13,
Corollary 4.6]. Notice that we can compute s∗

h
for h = 0, 1, . . . ,q − 1

at the cost of computing just s∗0 and in addition performing discrete
Fourier transform at q points.

Our initial but extensive experiments showed significant accel-
eration of the known subdivision root finders, which is particularly
strong for sparse inputs. Moreover they suggest that the latter re-
sult of [13] is overly pessimistic because exclusion test was always
correct in these experiments already for q much smaller than d .

REFERENCES
[1] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. 2016.

Complexity Analysis of Root Clustering for a Complex Polynomial. In Proceedings
of the ACM on International Symposium on Symbolic and Algebraic Computation
(ISSAC ’16). ACM, New York, NY, USA, 71ś78. https://doi.org/10.1145/2930889.
2930939

[2] Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee Yap. 2018. A Near-
Optimal Subdivision Algorithm for Complex Root Isolation based on Pellet Test
and Newton Iteration. Journal of Symbolic Computation 86 (May-June 2018),
51ś96.

[3] Dario A Bini and Giuseppe Fiorentino. 2000. Design, analysis, and implementation
of a multiprecision polynomial rootfinder. Num. Alg. 23, 2 (2000), 127ś173.

[4] Dario A Bini and Leonardo Robol. 2014. Solving secular and polynomial equations:
A multiprecision algorithm. J. Comput. Appl. Math. 272 (2014), 276ś292.

[5] Matsusaburô Fujiwara. 1916. Über die obere Schranke des absoluten Betrages
der Wurzeln einer algebraischen Gleichung. Tohoku Mathematical Journal, First
Series 10 (1916), 167ś171.

[6] Peter Henrici and Irene Gargantini. 1969. Uniformly convergent algorithms for
the simultaneous approximation of all zeros of a polynomial. In Constructive
Aspects of the Fundamental Theorem of Algebra. Wiley-Interscience New York,
77ś113.

[7] Rémi Imbach and Victor Y Pan. 2019. New practical advances in polynomial root
clustering. arXiv preprint arXiv:1911.06706 (2019).

[8] Rémi Imbach, Victor Y. Pan, and Chee Yap. 2018. Implementation of a Near-
Optimal Complex Root Clustering Algorithm. In Mathematical Software ś ICMS
2018. 235ś244.

[9] Alexander Kobel, Fabrice Rouillier, and Michael Sagraloff. 2016. Computing Real
Roots of Real Polynomials ... And Now For Real!. In Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation (ISSAC ’16).
ACM, New York, NY, USA, 303ś310. https://doi.org/10.1145/2930889.2930937

[10] Seppo Linnainmaa. 1976. Taylor expansion of the accumulated rounding error.
BIT Numerical Mathematics 16, 2 (1976), 146ś160.

[11] Victor Y Pan. 2000. Approximating complex polynomial zeros: modified Weyl’s
quadtree construction and improved Newton’s iteration. J. of Complexity 16, 1
(2000), 213ś264.

[12] Victor Y Pan. 2002. Univariate polynomials: nearly optimal algorithms for nu-
merical factorization and root-finding. J. of Symb. Comp. 33, 5 (2002), 701ś733.

[13] Victor Y. Pan. 2018. New Acceleration of Nearly Optimal Univariate Polynomial
Root-finders. (2018). arXiv:cs.NA/1805.12042, last revised May 2020

[14] Victor Y. Pan. 2019. Old and New Nearly Optimal Polynomial Root-Finders. In
Computer Algebra in Scientific Computing, Matthew England, Wolfram Koepf,
Timur M. Sadykov, Werner M. Seiler, and Evgenii V. Vorozhtsov (Eds.). Springer
International Publishing, Cham, 393ś411.

[15] Victor Y. Pan and Elias P. Tsigaridas. 2013. On the Boolean Complexity of Real
Root Refinement. In Proceedings of the 38th International Symposium on Symbolic
and Algebraic Computation (ISSAC ’13). ACM, New York, NY, USA, 299ś306.
https://doi.org/10.1145/2465506.2465938

[16] Victor Y Pan and Elias P Tsigaridas. 2016. Nearly optimal refinement of real roots
of a univariate polynomial. J. of Symb. Comp. 74 (2016), 181ś204.

[17] James Renegar. 1987. On the worst-case arithmetic complexity of approximating
zeros of polynomials. J. of Complexity 3, 2 (1987), 90ś113.

[18] Siegfried M Rump. 2010. Verification methods: Rigorous results using floating-
point arithmetic. Acta Numerica 19 (2010), 287ś449.

[19] Michael Sagraloff and Kurt Mehlhorn. 2016. Computing real roots of real poly-
nomials. J. of Symb. Comp. 73 (2016), 46ś86.

[20] Arnold Schönhage. 1982. The fundamental theorem of algebra in terms of
computational complexity. Manuscript. Univ. of Tübingen, Germany (1982).

[21] Juan Xu and Chee Yap. 2019. Effective subdivision algorithm for isolating zeros
of real systems of equations, with complexity analysis. In Proceedings of the 2019
on International Symposium on Symbolic and Algebraic Computation. 355ś362.

256

https://doi.org/10.1145/2930889.2930939
https://doi.org/10.1145/2930889.2930939
https://doi.org/10.1145/2930889.2930937
http://arxiv.org/abs/cs.NA/1805.12042, last revised May 2020
https://doi.org/10.1145/2465506.2465938

On FGLM Algorithms with Tropical Gröbner bases

Yuki Ishihara
Graduate School of Science, Rikkyo

University

Tokyo, Japan

yishihara@rikkyo.ac.jp

Tristan Vaccon
Université de Limoges; CNRS, XLIM

UMR 7252

Limoges, France

tristan.vaccon@unilim.fr

Kazuhiro Yokoyama
Departement of Mathematics, Rikkyo

University

Tokyo, Japan

kazuhiro@rikkyo.ac.jp

ABSTRACT

Let K be a field equipped with a valuation. Tropical varieties over

K can be defined with a theory of Gröbner bases taking into ac-

count the valuation of K . Because of the use of the valuation, the

theory of tropical Gröbner bases has proved to provide settings

for computations over polynomial rings over a p-adic field that are

more stable than that of classical Gröbner bases. In this article, we

investigate how the FGLM change of ordering algorithm can be

adapted to the tropical setting.

As the valuations of the polynomial coefficients are taken into

account, the classical FGLM algorithm’s incremental way, monomo-

mial by monomial, to compute the multiplication matrices and the

change of basis matrix can not be transposed at all to the tropical

setting. We mitigate this issue by developing new linear algebra

algorithms and apply them to our new tropical FGLM algorithms.

Motivations are twofold. Firstly, to compute tropical varieties,

one usually goes through the computation of many tropical Gröbner

bases defined for varying weights (and then varying term orders).

For an ideal of dimension 0, the tropical FGLM algorithm provides

an efficient way to go from a tropical Gröbner basis from one

weight to one for another weight. Secondly, the FGLM strategy

can be applied to go from a tropical Gröbner basis to a classical

Gröbner basis. We provide tools to chain the stable computation

of a tropical Gröbner basis (for weight [0, . . . , 0]) with the p-adic

stabilized variants of FGLM of [RV16] to compute a lexicographical

or shape position basis.

All our algorithms have been implemented into SageMath. We

provide numerical examples to illustrate time-complexity. We then

illustrate the superiority of our strategy regarding to the stability

of p-adic numerical computations.

CCS CONCEPTS

· Computing methodologies→ Algebraic algorithms.

KEYWORDS

Algorithms, Tropical Geometry, Gröbner bases, FGLM algorithm,

p-adic precision

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404037

ACM Reference Format:

Yuki Ishihara, Tristan Vaccon, and Kazuhiro Yokoyama. 2020. On FGLM

Algorithms with Tropical Gröbner bases. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.

3404037

1 INTRODUCTION

The development of tropical geometry is now more than three

decades old. It has generated significant applications to very vari-

ous domains, from algebraic geometry to combinatorics, computer

science, economics, optimisation, non-archimedean geometry and

many more. We refer to [MS15] for a complete introduction.

Effective computation of tropical varieties are now available us-

ing Gfan and Singular (see [JRS19] , [GRZ19]). Those computations

often rely on the computation of so-called tropical Gröbner bases

(we use GB for Gröbner bases in the following). Since Chan and

Maclagan’s definition of tropical Gröbner bases taking into account

the valuation in [CM19], computations of tropical GB are avail-

able over fields with trivial or non-trivial valuation, using various

methods: Matrix F5 in [Va15], F5 in [VY17, VVY18] or lifting in

[MR19].

An important motivation for studying the computation of trop-

ical GB is their numerical stability. It has been proved in [Va15]

that for polynomial ideals over a p-adic field, computing tropical

GB (which by definition take into account the valuation), can be

significantly more stable than classical GB.

Unfortunately, no tropical term ordering can be an elimination

order, hence tropical GB can not be used directly for solving polyno-

mial systems. Our work is then motivated by the following question:

can we take advantage of the numerical stability of the computation

of tropical GB to compute a shape position basis in dimension zero

through a change of ordering algorithm?

In this article, we tackle this problem by studying the main

change of ordering algorithm, FGLM [FGLM93]. On the way, we

investigate some adaptations and optimizations of this algorithm

designed to take advantage of some special properties of the ideal

(e.g. Borel-fixedness of its initial ideal).

We also provide a way to go from a tropical term order to an-

other. This produces another motivation: difficulty of computation

can vary significantly depending on the term order (see ğ8.1 of

[VVY18]), hence, using a tropical FGLM algorithm, one could go

from an easy term order to a harder one in an efficient way.

Finally, we conclude with numerical data to estimate the loss

in precision for the computation of a lex Gröbner basis using a

tropical F5 algorithm followed by an FGLM algorithm, in an affine

setting, and also numerical data to illustrate the behavior of the

various variants of FGLM handled along the way.

257

https://doi.org/10.1145/3373207.3404037
https://doi.org/10.1145/3373207.3404037
https://doi.org/10.1145/3373207.3404037

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Yuki Ishihara, Tristan Vaccon, and Kazuhiro Yokoyama

1.1 Related works

Chan and Maclagan have developed in [CM19] a Buchberger algo-

rithm to compute tropical GB for homogeneous input polynomials

(using a special division algorithm). Following their work, adap-

tations of the F5 strategies have been developped in [Va15, VY17,

VVY18] culminating with complete F5 algorithms for affine input

polynomials.

A completely different approach has been developped by Mark-

wig and Ren in [MR19], relating the computation of tropical GB in

K[X1, . . . ,Xn] to the computation of standard basis inRJtK[X1, . . . ,Xn]

(for R a subring of the ring of integers of K). It can be connected to

the Gfanlib interface in Singular to compute tropical varieties (see:

[JRS19]).

Finally, Görlach, Ren and Zhang have developped in [GRZ19]

a way to compute zero-dimensional tropical varieties using shape

position bases and projections. Their algorithms take as input a

lex Gröbner basis in shape position. Our strategies can be used to

provide such a basis stably (precision-wise) when working with

p-adic numbers, and be chained with their algorithms.

1.2 Notations

LetK be a field with a discrete valuation val such thatK is complete

with respect to the norm defined by val. We denote by R = OK

its ring of integers,mK its maximal ideal (with π a uniformizer),

and k = OK /mK its fraction field. We refer to Serre’s Local Fields

[Ser79] for an introduction to such fields. Classical examples of such

fields are K = Qp , with p-adic valuation, and Q((X)) or Fq ((X))

with X -adic valuation.

The polynomial ring K[X1, . . . ,Xn] (for some n ∈ Z>0) will be

denoted by A, and for u = (u1, . . . ,un) ∈ Z
n
≥0, we write xu for

X
u1
1 . . .X

un
n . For д ∈ A, |д | denotes the total degree of д and A≤d

the set of all polynomials inA of total degree less than d . The matrix

of a finite list of polynomials (of total degree ≤ d for somed) written

in a basis of monomials (of total degree ≤ d) is called a Macaulay

matrix.

For w ∈ Im(val)n ⊂ Rn and ≤m a monomial order on A, we

define ≤ a tropical term order as in the following definition:

Definition 1.1. Given a,b ∈ K∗ = K \ {0} and xα and xβ two

monomials in A, we write axα < bxβ if:

• |xα | < |xβ |, or

• |xα | = |xβ |, and val(a) +w · α > val(b) +w · β , or

• |xα | = |xβ |, val(a) +w · α = val(b) +w · β and xα <m xβ .

For u of valuation 0, we write axα =≤ uax
α . Accordingly, axα ≤

bxβ if axα < bxβ or axα =≤ bx
β .

Leading terms (LT) and leading monomials (LM) are defined

according to this term order. See Subsec. 2.3 of [VVY18] for more

information on this definition and its comparison with Def. 2.3 of

[CM19].

Let I ⊂ A be a 0-dimensional. Let B≤ the canonical linear K-basis

ofA/I made of the xα < LM≤(I). Let δ be the cardinality of B≤ .We

denote byB≤ the border ofB≤ (i.e. the xkx
α fork ∈ J1,nK such that

xα ∈ B≤ and xkx
α not in B≤). NF≤ is the normal form mapping

defined by I and ≤ .We define D such that D = 1+maxxα ∈B≤ |x
α |.

2 MULTIPLICATION MATRICES

The first task in the FGLM strategy is to develop the tools for

computations in A/I . The main ingredients are the multiplication

matrices,M1, . . . ,Mn , corresponding to the matrices of the linear

maps given by the multiplication by xi written in the basis B≤ .

Once they are known, it is clear that one can perform any K-

algebra operation on elements of A/I written in the basis B≤ .

To compute those matrices, a natural strategy is to go through

the computation of the normal forms NF (xix
α) for xα ∈ B≤ .

We investigate in this section how to proceed with this task, and

how it compares to the classical case.

2.1 Linear algebra

We recall here the tropical row-echelon form algorithm of [Va15]

that we use for computing normal forms using linear algebra.

Algorithm 1: The tropical row-echelon form algorithm

input :M , a Macaulay matrix of degree d in A, with nrow
rows and ncol columns, andmon a list of monomials

indexing the columns ofM .

output :M̃ , theU of the tropical LUP-form ofM

1 M̃ ← M ;

2 for i = 1 to nrow do

3 Find j such that M̃[i, j] has the greatest term M̃[i, j]xmonj

for ≤ of the row i ;

4 Swap the columns i and j of M̃ , and the i and j entries of

mon ;

5 By pivoting with the i-th row, eliminates the coefficients

of the other rows on the first column; ;

6 Return M̃ ;

We refer the interested reader to [Va15, VVY18]. We illustrate

this algorithm with the following example.

Example 2.1. We present the following Macaulay matrices, over

Q3[x ,y] with w = (0, 0), and ≤m be the graded lexicographical

ordering. The second one is the output of the tropical LUP algorithm

applied on the first one. The monomials indexing the columns are

written on top of the matrix.

x4 x3y y4 x2 xy y2

1 3

1 9 3

9 9

9 9 3 1 9

x4 x2 x3y xy y4 y2

1 3

1 0 − 57
35

9 0 9 − 162
35

−35 0 −18
.

If all four polynomials represented by the matrix belong to some

ideal I (and assuming that y4,y2 ∈ B≤(I)) then we can conclude

that NF≤(xy) = −
18
35y

2 and NF≤(x
3y) = −y4 + 18

35y
2.

2.2 Comparison with classical case

The classical strategy to compute the NF≤m (xix
α) (xα ∈ B≤m)

when working with a monomial ordering ≤m , starting with a re-

duced GB G, is to set apart the following only three cases possible:

258

On FGLM Algorithms with Tropical Gröbner bases ISSAC ’20, July 20–23, 2020, Kalamata, Greece

(Type 1) xix
α ∈ B≤m ; (Type 2) xix

α ∈ LT (G);

(Type 3) xix
α ∈ LT≤m (I) but neither in B≤m nor in LT (G).

Type 1 is the easiest, as in this case NF≤m (xix
α) = xix

α . Type

2 is not very difficult either. If for some д ∈ G, LM(д) = xix
α ,

д = xix
α
+

∑
x β ∈B≤m

cβx
β , then as G is reduced, we get directly

that NF≤m (xix
α) = −

∑
x β ∈B≤m

cβx
β .

Type 3 is the trickiest. We assume that we have already computed

all the NF (x jx
β) for x jx

β <m xix
α . Let xk be the smallest (for

≤m) variable dividing xix
α . Then the normal form

NF

(
xix

α

xk

)
=

∑

x β ∈B≤m , x β <m
xi x

α

xk

cβx
β

is already known. As in the previous sum, xβ <m
xix

α

xk
, then

xkx
β <m xix

α , and all the NF (xkx
β)’s are also already known.

Therefore, we can write

NF (xix
α) =

∑

x β ∈B≤m , x β <m
xi x

α

xk

cβNF (xkx
β),

and NF (xix
α) can be obtained from the previous normal forms.

It is easy to see that the cost of computation of a normal form

in the third case is in O(δ2) field operations. The other two cases

are negligible. As there are O(nδ) multiples to consider, the total

cost for the computation of the multiplication matrices is inO(nδ3)

field operations.

Unfortunately, this strategy can not be completely generalized

to the tropical context. There is no issue with the first two com-

putations. However, there is no straightforward way to adapt the

third one. We illustrate this failure with the following example.

Example 2.2. OverQ3[x ,y]with ≤ defined byw = (0, 0), and ≤m ,

the graded lexicographical ordering, let us take I = ⟨f1, f2, f3, f4⟩

with f1 = x7, f2 = x4y2+3x5y+12x3y3+9xy5, f3 = x2y4+9x5y+

18x3y3+9xy5, f4 = y
6
+12x5y+3x3y3+6xy5. The first monomials

of the third type arrive in degree 7, namely xy6,x2y5,x4y3,x5y2.

Due to the fact that we use a tropical term order, f2, f3, and f4
all involve the monomials x5y,x3y3,xy5. In consequence if one

wants to usemultiples of theNF (x4y2),NF (x2y4),NF (y6), one gets

quantity involving each three monomials among xy6,x2y5,x4y3,

and x5y2. They are all intertwined, and the trick we saw previously

for monomials of the third type can not be used.

2.3 Tropical GB: General case

To untangle the reduction of monomials of the third type, we can

use linear algebra. We have to proceed degree by degree. While

monomials of the first type do not need any special proceeding, we

need to interreduce the reductions of the monomials of the second

and third types. The general strategy is described in Algorithm 2.

Proposition 2.3. Algorithm 2 is correct, and is in O(n3δ3) field

operations over K .

Proof. The essentially different part compared to the classical

case starts on Line 13. Lines 16 and 18 are crucial. By definition,

monomials of the third type are in LT (I). If xα ∈ L can not be

written as xkx
β with xβ of type 2 or 3, it means that all its divisors

are in B≤ . Consequently, it is a minimal generator ot LT (I) and is

Algorithm 2:Multiplication matrices computation algorithm

input :A reduced GB G of the ideal I for ≤, a tropical term

ordering.

output :M1, . . . ,Mn the multiplication matrices of A/I (over

the basis B≤).

1 Using LT (G), compute B≤ (and δ = ♯(B≤));

2 DefineM1, . . . ,Mn as zero matrices in Kδ×δ , their rows and

columns are indexed by the xα ∈ B≤ ;

3 Compute L = {xix
α , for i ∈ J1,nK and xα ∈ B≤}. ;

4 Compute L = L ∩ (B≤ ∪ LT (G))
c ;

5 for xα ∈ L ∩ B≤ do

6 for i such that xi divides x
α do

7 SetMi [x
α , x

α

xi
] = 1 ;

/* The column indexed by xα

xi
is zero, except

on its coefficient indexed by xα /xi */

8 for xα ∈ L ∩ LT (G) do

9 Take д ∈ G such that д can be written

д = xα +
∑
x β ∈B≤

дx β x
β ;

10 for i such that xi divides x
α do

11 for xβ ∈ B≤ do

12 SetMi [x
β , x

α

xi
] = −дx β ;

13 Set M to be a matrix over K with 0 rows and with columns

indexed by L ∪ LT (G) ∪ B≤ . ;

14 for d a degree of a monomial in L (in ascending order) do

15 for xα ∈ L of degree d do

16 Find xi , and д either in G or as a row of M such that

LT (xiд) = xα ;

17 Stack xiд at the bottom of M ;

18 Using multiples of the form xiд or д, for д either inG or as

a row of M , find a complete set of reducers for all the

monomials in L ∪ LT (G) appearing with a non-zero

coefficient in their column, and stack them at the bottom

of M ;

19 Compute the Tropical Row-echelon form of M by

Algorithm 1 and replace M with it ;

20 for xα ∈ L do

21 Take the row s of M with leading coefficient xα . ;

22 for i such that xi divides x
α do

23 for xβ ∈ B≤ do

24 SetMi [x
β , x

α

xi
] = −

M [s,x β]
M [s,xα]

;

25 ReturnM1, . . . ,Mn

of type 2, which is a contradiction. Therefore, any monomial of the

third type is a simple multiple of a monomial of type 2 or 3.

As in the for loop on Line 14, we proceed by increasing degree,

it is an easy induction to prove that such desired xi and д exist.

For the complete set of reducers on Line 18, we use the fact that

the monomials appearing in M all are in B≤ ∪ L, again by an easy

induction (using the fact that the rows of M in previous degree

259

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Yuki Ishihara, Tristan Vaccon, and Kazuhiro Yokoyama

are already reduced), and therefore, the complete set of reducers

can be built.

The Tropical Row-echelon form computation then produces the

desired normal forms. The correctness is then clear.

Regarding to the arithmetic complexity, we should note that both

rows and columns of M are indexed by monomials in L ∪ B≤ and

there are O(nδ) of them. With the row-reduction, the total cost is

then in O(n3δ3) arithmetic operations. □

Remark 2.4. The matrixM is sparse: any row added to the matrix

on Line 17 has at most δ + 1 non-zero coefficients: it is obtained

as the multiple of a reduced row. Can we take advantage of this 1

n
sparsity ratio for a better complexity?

Example 2.5. Let G = (y + 2x ,x2 + 4) be a GB for w = [0, 0]

and grevlex of the ideal it spans in Q2[x ,y]. Then B≤ = {1,x},

L = {x ,y,x2,xy} and L = {xy}. Only d = 2 is considered on Line 4

of Algorithm 2. The following matrices represent respectively M

before and after applying Algorithm 1,M1 andM2:

x2 xy 1

2 1 0

1 0 4

xy x2 1

1 0 −8

0 1 4

(x∗) 1 x

1 0 −4

x 1 0

(y∗) 1 x

1 0 8

x −2 0, , , .

2.4 Finite precision

We can now analyze the loss in precision when applying Algorithms

1 and 2. To prevent loss in precision to explode exponentially, we

replace Line 5 of Algorithm 1 with the following two rows:

(1) By pivoting using the ’leading terms’ of the rows j for j > i ,

eliminate all the coefficients possible of row i ;

(2) By pivoting with row i , eliminate all the coefficients on the

i-th column.

The first row makes sense because by construction, all the rows

ofM have distinct leading terms, and this is kept unchanged during

the pivoting process.

Proposition 2.6. Let us assume that the matrix built on Line 17 of

Algorithm 2 has coefficients in K known at precisionO(πN). All rows

have distinct leading terms, leading coefficient 1 and let us take Ξ be

the smallest valuation of a coefficient of this matrix M . We assume

that Ξ ≤ 0. Let l = rank(M).We assume that N > −l2Ξ. Then, after

the application of Algorithm 11, the coefficients of the obtained matrix
˜M are known at precision O(πN+l

2
Ξ), and the smallest valuation of

a coefficient ˜M is lower-bounded by lΞ.

Proof. After the reduction of row 1 by the other rows, the small-

est valuation on row 1 is lower-bounded by lΞ and its coefficients

are known at precision at least O(πN+lΞ). The coefficients of row

1 for the columns indexed by L ∪ LT (G) are all zeros, except for its

leading coefficient, which is 1 +O(πN+(l−1)Ξ). After the reduction

of the other rows by row 1, on the rows of index > 1, the coeffi-

cients for the columns indexed by L ∪ LT (G) are of valuation at

least Ξ and known at precision O(πN+lΞ). The coefficients for the

columns indexed by B≤ are of valuation at least lΞ and known at

the same precision. The desired result follows by an easy induction

argument. □

1using the modification presented just above this proposition

We then upper-bound the loss in precision for the whole compu-

tation of the multiplication matrices. Recall that:D = 1+ max
xα ∈B≤

|xα |.

Proposition 2.7. Let us assume that the smallest valuation of

a coefficient of G is Ξ and that the coefficients of G are known at

precision O(πN). As G is reduced, we get that Ξ ≤ 0.

Then the coefficients of the matricesM1, . . . ,Mn are of valuation

at least (nδ)D Ξ, and are known at precision O

(
π
N+

(
(nδ)2D+2−1

(nδ)2−1

)
Ξ

)
.

Proof. This is a corollary to the previous proposition. There

are at most D calls to the previous proposition, with matrices of

ranks l1, . . . , lD . Consequently, the upper bound on the valuation is

l1 . . . lDΞ and the precision is inO(πN+(l
2
1+l

2
1 l

2
2+· · ·+l

2
1 ...l

2
D
)Ξ)which

is in O(πN+D(l
2
1 ...l

2
D
)Ξ) As for all i, li ≤ nδ , we get the desired

bounds. □

Remark 2.8. In the very favorable case where G is homogeneous

and w = [0, . . . , 0], we get that Ξ = 0, and no loss in precision

is happening. This is unfortunately not the most interesting case

for polynomial system solving. Numerical data in Section 5 will

show that loss in precision remain very reasonnable when using

w = [0, . . . , 0] even in the affine case.

2.5 Using semi-stability

Following Huot’s PhD thesis [Huo13], when Borel-fixedness (see

Subsec. 3.2) or semi-stability properties are satisfied, many arith-

metic operations can be avoided during the computation of the

multiplication matrices. We begin with semi-stability.

Definition 2.9. I is said to be semi-stable for xn if for all xα such

that xα ∈ LM(I) and xn | x
α we have for all k ∈ J1,n − 1K xk

xn
xα ∈

LM(I).

Semi-stability’s application is explained in Proposition 4.15, The-

orem 4.16 and Corollary 4.19 of [Huo13] (see also Section 4 of

[FGHR14]). We recall the main idea here with its adaptation to the

tropical setting:

Proposition 2.10. If I is semi-stable for xn ,Mn can be read from

G and requires no arithmetic operation.

Proof. The proof is the same as that of Theorem 8 of [FGHR14].

We prove that L∩xnB≤ = ∅. Let xnx
α ∈ L∩xnB≤, with x

α ∈ B≤ .

Then there is some monomialm and д ∈ G such that LM(mд) =

xnx
α . As xα ∈ B≤, we get that xn ∤ m. Since xnx

α ∈ L, then

|m | ≥ 1. Let k < n be such that xk | m. Then, by semi-stability for

xn , x
α
=

m
xk
×

xkLM (д)
xn

∈ LM(I), which is a contradiction. □

Thanks to Proposition 2.10, Algorithm 3 is correct, and its arith-

metic cost is given by the following proposition.

Proposition 2.11. Given a reduced GB G of the ideal I for ≤, a

tropical term ordering, and assuming I is semi-stable for xn , then

Mn can be computed in O(δ2) arithmetic operations, which are only

computing opposites.

To apply the previous result to compute a GB in shape position in

Subsection 4.2, we need to also compute theNF (xi)’s. The following

lemma states that this is not costly.

260

On FGLM Algorithms with Tropical Gröbner bases ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 3: ComputingMn , when semi-stable for xn

input :A reduced GB G of the ideal I for ≤, a tropical term

ordering, assuming I is semi-stable for xn
output :Mn the matrix of the multiplication by xn in A/I

1 Using LT (G), computes B≤ (and δ = ♯(B≤));

2 DefineMn as a zero matrix in Kδ×δ , its rows and columns are

indexed by the xα ∈ B≤ ;

3 Compute Ln = {xnx
α , for xα ∈ B≤}. ;

4 for xα ∈ Ln ∩ B≤ do

5 SetMn [x
α , x

α

xn
] = 1 ;

6 for xα ∈ Ln ∩ LT (G) do

7 Take д ∈ G such that д can be written

д = xα +
∑
x β ∈B≤

дx β x
β . for xβ ∈ B≤ do

8 SetMn [x
β , x

α

xi
] = −дx β ;

9 ReturnMn ;

Lemma 2.12. Given a reduced GB G of the ideal I for ≤, a trop-

ical term ordering, then the NF≤(xi)’s can be computed in O(nδ)

arithmetic operations, which are only computing opposites.

Proof. It is a consequence of the fact that ≤ is degree-compatible:

for any i , xi is either in LT (G) or in B≤ . □

Subsection 4.2 will apply the previous two results to obtain a

fast algorithm to compute a shape-position basis.

Remark 2.13. For grevlex in the classical case, it is known that

after a generic change of variable, I is semi-stable for xn . The reason

is that after a generic change of variable, LT (I) is equal to the GIN of

I (see Definition 4.1.3 of [HH11]) , which is known to be Borel-fixed,

and Borel-fixedness implies semi-stability for xn . In Section 3, we

investigate whether this strategy is still valid in the tropical case.

3 GIN AND BOREL-FIXED INITIAL IDEAL

In this section, we introduce the tropical generic initial ideal of a

0-dimensional ideal analogously to the classical case, and study its

properties of Borel-fixedness and semi-stability. The desired goal

is to be able to use the fast Algorithm 3 after a (generic) change of

variable.

3.1 Tropical GIN

We follow the lines of Chapter 4 of [HH11], and use the usual action

of GLn (K) on A: (η, f (x)) ∈ GLn (K) ×A 7→ η(f) := f (η⊤ · x).

Definition 3.1. An external product of monomials xα1 ∧ · · · ∧xαk

is called a standard exterior monomial if xα1 ≥ · · · ≥ xak . If its

monomial is standard, a term cxα1 ∧ · · · ∧ xαk is called a standard

exterior term. We define an ordering on standard exterior terms by

setting that: cxα1 ∧ · · · ∧xαk ≥ dxβ1 ∧ · · · ∧xβk if val(c)+
∑k
i=1w ·

αi < val(d)+
∑k
i=1w ·βi , or val(c)+

∑k
i=1w ·αi = val(d)+

∑k
i=1w ·βi

and there exists 1 ≤ j ≤ k s.t. xα j > xβj and xαi = xβi for all

i < j. We then define the leading term of an external product

of polynomials f1 ∧ · · · ∧ fk as its largest term, and denote it by

LT (f1 ∧ · · · ∧ fk). The monomial of the leading term is denoted by

LM(f1 ∧ · · · ∧ fk).

Lemma 3.2. Let (f1, . . . , ft) ∈ A
t . If LT (f1) > · · · > LT (ft), then

LT (f1 ∧ · · · ∧ ft) = LT (f1) ∧ · · · ∧ LT (ft).

Proof. Let ci be the coefficient of LM(fi) in fi . Then, c =
∏

ci
is the coefficient of Γ = LT (f1)∧· · ·∧LT (ft) in f1∧· · ·∧ ft . We may

assume that the fi ’s are ordered such that cLT (f1) ∧ · · · ∧ LT (ft) is

a standard exterior term. Let ∆ = dv1 ∧ · · · ∧ vt be another term

in f1 ∧ · · · ∧ ft and di the coefficient of vi in fi . Let x
αi = LM(fi)

and xβi = vi . Since cix
αi is the leading term of fi , it follows

that val(ci) + w · αi ≤ val(di) + w · βi . Thus,
∑t
i=1(val(ci) + w ·

αi) ≤
∑t
i=1(val(di) + w · βi). As val(c) =

∑t
i=1 ci and val(d) =∑t

i=1 di , we obtain val(c)+
∑k
i=1w ·αi ≤ val(d)+

∑k
i=1w · βi . If the

inequality is strict then Γ is strictly bigger than any permutation of

the monomials of ∆ such that a standard exterior term is obtained.

If equality holds. Then, for all i , val(ci) +w · αi = val(di) +w · βi
and xαi ≥ xβi . As Γ is a standard exterior term, we deduce that

also in this case, Γ is strictly bigger than any permutation of the

monomials of ∆ such that a standard exterior term is obtained. □

Lemma 3.3. Let V ⊂ A be a t-dimensional K-vector space. Let

w1, . . . ,wt be monomials with w1 > · · · > wt . Then the following

conditions are equivalent.

(1) the monomialsw1, . . . ,wt form a K-basis of LT (V),

(2) if (f1, . . . , ft) is a K-basis of V , then LM(f1 ∧ · · · ∧ ft) =

w1 ∧ · · · ∧wt ,

(3) there exists a K-basis (f1, . . . , ft) ofV s.t. LM(f1 ∧ · · · ∧ ft) =

w1 ∧ · · · ∧wt .

Proof. (1) ⇒ (2): We may assume that the fj ’s are monic and

LT (f1) > · · · > LT (ft). Since LT (fi) ∈ LT (V), there is j(i) s.t.

LT (fi) = w j(i). Asw1 >1 · · · >1 wt , we obtain j(i) = i and LT (fi) =

wi for all i . By Lemma 3.2, LT (f1∧· · ·∧ ft) = LT (f1)∧· · ·∧LT (ft) =

w1 ∧ · · · ∧wt .

(2) ⇒ (3): It is obvious by choosing a K-basis f1, . . . , ft of V .

(3) ⇒ (1): Since dim(V) = dim(LT (V)) andw1, . . . ,wt is linear

independent, it is enough to show thatwi ∈ LT (V). Let f1, . . . , ft
be monic polynomials forming a K-basis of V with LT (f1) > · · · >

LT (ft) and LT (f1 ∧ · · · ∧ ft) = w1 ∧ · · · ∧ wt . By Lemma 3.2,

LT (f1 ∧ · · · ∧ ft) = LT (f1) ∧ · · · ∧ LT (ft) and thuswi ∈ LT (V). □

Proposition 3.4. Let V ⊂ Ad be a t-dimensional K-vector space

and f1, . . . , ft a basis of V . Let cw1 ∧ · · · ∧wt be the largest (up to

multiplication by an element of valuation 0) standard exterior term

of
∧t A≤d such that there exists η ∈ GLn (R) with

LT (η(f1) ∧ · · · ∧ η(ft)) = cw1 ∧ · · · ∧wt .

Let UV = {η ∈ GLn (R) | LT (η(f1) ∧ · · · ∧ η(ft)) = ε × cw1 ∧ · · · ∧

wt , val(ε) = 0}. Then,UV is open in GLn (R) and for any η,υ ∈ UV ,

LT (ηV) = LT (υV).

Proof. As only a finite amount of monomials are possible and

val(R) is discrete and ≥ 0,UV is well-defined. The valuation being

discrete, UV is open: LT (η(f1) ∧ · · · ∧ η(ft)) = ε × cw1 ∧ · · · ∧wt

amounts to val(q(η)) < ν for carefully chosen ν ∈ R and polynomial

q ∈ Z[kn×n]. The last statement follows from Lemma 3.3. □

From Lemma 3.3,w1 ∧ · · · ∧wt in Prop 3.4 is independent of the

choice of basis of V . For d ∈ Z≥0, let I≤d = I ∩A≤d .

261

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Yuki Ishihara, Tristan Vaccon, and Kazuhiro Yokoyama

Theorem 3.5. Let I be a 0-dimensional ideal withδ = dimK K[X]/I .

We consider the finite dimensional K-vector space I≤δ . Then the non-

empty open setUI := UI≤δ ⊂ GLn (R) satisfies that LT (ηI) = LT (υI)

for any η,υ ∈ UI .

Proof. Let η ∈ UI . We denote LT (ηI≤d) by J≤d . Then J≤d =

LT (υI≤d) for all υ ∈ UI and d > δ . Indeed, since LT (ηI≤δ) contains

the initial terms in the reduced Gröbner basis G of ηI ,

J≤d ⊂ A≤d−δLT (ηI≤δ) = A≤d−δLT (υI≤δ) ⊂ LT (υI≤d).

As dimK (Jd) = dimK (LT (υId)), we obtain Jd = LT (υId) for all

υ ∈ UI . Since LT (ηI) =
⋃∞
d=δ

J≤d , then LT (ηI) = LT (υI) for any

η,υ ∈ UI , which concludes the proof. □

Definition 3.6. We call LM(ηI), with η ∈ UI ⊂ GLn (R) as given

in Theorem 3.5, the tropical generic initial ideal (tropical gin) of I .

Unfortunately, UI is not a Zariski-open subset of GLn (R) in gen-

eral, hence the generic in the name "tropical gin" is only given as

a reference to the classical case. The following proposition is a

consolation.

Proposition 3.7. Assume k is infinite. Then

UI mod π := {η mod π , for η ∈ UI }

is a non-empty Zariski-open set of GLn (k).

Proof. Let q be the polynomial defining UI≤δ in the proof of

Theorem 3.5. One can replace q by some q/π l so that q = q mod π

is non-zero, and one can check that consequently, since k is infinite,

UI mod π = {x ∈ GLn (k) : q(x) , 0} and this is a non-empty

Zariski-open set of GLn (k). □

Remark 3.8. If, e.g., R = RJtK, and one takes η ∈ GLn (R) at

random using a nonatomic distribution over R, then η belongs to

UI with probability one.

3.2 Borel-fixedness

In classical cases, a generic initial ideal is Borel-fixed ideal i.e. it is

fixed under the action of the Borel subgroup B ⊂ GLn (K), which is

the subgroup of all nonsingular upper triangular matrices. In tropi-

cal cases, a generic initial ideal is not always Borel-fixed. However,

it can be Borel-fixed under some conditions.

Example 3.9. Let I = (x2,y2) and K = Q2 (using w = [0, 0] and

grevlex). Then in degree two, for a generic change of variables of

x2 ∧ y2 by the matrix

[
a b

c d

]
, we get in K[x ,y]

∧
K[x ,y]:

2(a2bd−ab2c)x2∧xy+(a2d2−b2c2)x2∧y2+2(acd2−bc2d)xy∧y2.

Hence the tropical GIN is x2∧y2 for degree two, and is therefore

not Borel-fixed, nor semi-stable for y.

Definition 3.10. Let B ⊂ GLn (OK) be the subgroup generated by

nonsingular upper triangular matrices whose diagonal entries have

valuation 0.We call B a Borel subgroup. We say that a monomial

ideal J is tropical Borel-fixed if J is fixed under the action of B.

A direct adaptation of Theorem 4.2.1 and Prop. 4.2.4 of [HH11]

states that the usual properties of the GIN are preserved, under

some conditions.

Proposition 3.11. Let d be the maximal total degree of the re-

duced GB of the tropical generic initial ideal of I . If K = Qp and

p ≥ d , or if val(Z \ {0}) = {0}, then the tropical generic initial ideal

of I is tropical Borel-fixed and moreover, semi-stable for xn .

4 TROPICAL FGLM

In this section, we investigate the second part of the FGLM strategy.

Namely, the multiplication matrices of A/I have been computed us-

ing the algorithms of Section 2, and we can now perform operations

in A/I efficiently.

The strategy is then to go through projections in A/I of mono-

mials and find linear relations among them. When done carefully,

these relations provide polynomials in I , whose leading terms for

the new term order can be read on the monomials defining the

relation. When processed in the right order, we can obtain from

these polynomials a minimal GB of I for our new term order.

4.1 Tropical to classical

We first begin with the easiest case of starting from a tropical GB

and computing a classical GB.

It is clear that once the multiplication matrices are obtained, we

can directly apply the classical FGLM algorithm (namely Algorithm

4.1 of [FGLM93], see also Algorithm 8 of [Huo13]), or its p-adic

stabilized version: Algorithm 3 of [RV16]. This part is in O(nδ3)

arithmetic operations. We refer to Prop 3.6 of loc. cit. and obtain

the following propositions.

Proposition 4.1. The total complexity to compute a classical GB

of I starting from a tropical GB is in O(n3δ3) arithmetic operations.

Behavior regarding to precision can be stated the following way.

Proposition 4.2. Let ≤1 be a tropical term ordering and ≤2 be

a monomial ordering. Let G be an approximate reduced tropical GB

for ≤1 of the ideal I , with coefficients known up to precision O(πN).

Let Ξ be the smallest valuation of a coefficient inG . Let B≤1 and B≤2
be the canonical bases of A/I for ≤1 and ≤2. Let M be the matrix

whose columns are the NF≤1 (x
β) for xβ ∈ B≤2 . Let cond≤1,≤2 (I) be

the biggest valuation of an invariant factor in the Smith Normal Form

ofM . Recall that D = 1 +maxxα ∈B≤ |x
α |.

Then if N > 2cond≤1,≤2 (I) −
(
(nδ)2D+2−1
(nδ)2−1

)
Ξ, we can chain Algo-

rithm 2 and Algorithm 3 of [RV16] to obtain an approximate GB G2

of I for ≤2. The coefficients of the polynomials of G2 are known up to

precision O

(
π
N+

(
(nδ)2D+2−1

(nδ)2−1

)
Ξ−2cond≤1,≤2 (I)

)
.

4.2 Tropical to shape position

We can apply any classical FGLM algorithm if K is an exact field,

or a stabilized variant using Smith Normal Form, as in Algorithm

6 of [RV16]. We refer to Prop. 4.5 of loc. cit.. Complexity is very

favorable when we have the combination of Borel-fixedness and

shape position.

Proposition 4.3. If I is in shape position and semi-stable for xn ,

then we can combine Algorithm 3 with Algorithm 6 of [RV16]). The

time-complexity is in O(nδ2) +O(δ3) arithmetic operations.

262

On FGLM Algorithms with Tropical Gröbner bases ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Proposition 4.4. LetG1 be an approximate reduced GB of I , with

coefficients known at precisionO(πN). Let Ξ be the smallest valuation

of a coefficient in G1. If ≤2 is lex, and if we assume that the ideal I is

in shape position and LM≤1 (I) is semi-stable for xn , then the adapted

FGLM in Algorithm 6 of [RV16]), computes an approximate GBG2 of

I for lex, in shape position. The coefficients of the polynomials of G2

are known up to precision O(πN−2cond≤1,≤2+δΞ). Moreover, we can

read onM whether the precision was enough or not, and hence prove

after the computation that the result is indeed an approximate GB.

4.3 Tropical (or classical) to tropical

We conclude our series of algorithms with a new algorithm to com-

pute a tropical GB of I of dimension 0 knowing the multiplication

matrices of A/I .

In the classical case, the vanilla FGLM algorithm goes through

the monomials xα in ascending order for ≤2, test whether x
α is in

the vector space generated (in A/I) by the monomials xβ such that

xβ <2 x
α , and if so, produce a polynomial in the GB in construction

from the relation obtained by this linear relation.

In the tropical case, because of the fact that coefficients have

to be taken into account, a relation (in A/I) between xα and some

monomials xβ such that xβ <2 xα is not enough to ensure that

xα ∈ LT≤2 (I).We deal with this issue by (1) taking all monomials

of a given degree at the same time, in a big Macaulay matrix, and

(2) reducing them with a special column-reduction algorithm so as

to preserve the leading terms.

The linear algebra algorithm is presented in Algorithm 5, with

the general tropical FGLM algorithm in Algorithm 4.

Algorithm 4: A tropical FGLM algorithm

input :M1, . . . ,Mn the multiplication matrices of A/I , in a

basis B≤1 for a tropical term ordering ≤1, a tropical

term ordering ≤2.

output :A GB G of the ideal I for ≤2.

1 L← {1}, G ← ∅, d ← 1 ;

2 M ← the matrix with δ rows and 0 columns ;

3 P ← the matrix with 0 rows and 0 columns ;

4 while L , ∅ do

5 Stack on the right ofM all the monomials in L of degree d ,

written in the basis B≤1 using the multiplication matrices

;

6 Remove those monomials from L ;

7 Apply Algorithm 5 withM and ≤2, to get a newM and

update the pivoting matrix P ;

/* If M0 is the matrix of the NF≤1 (x
α) for xα

indexing the columns of M, then M = M0P . */

8 For all the new columns indexed by xα that reduced to

zero, add to G the polynomial xα −
∑
γ,α Pγ ,αx

γ , and

remove the multiples of xα from L ;

9 Add to L the xix
α for all i and for all xα new column inM

that did not reduce to zero, and remove the duplicates ;

10 d ← d + 1 ;

11 Return G

Algorithm 5: Column reduction for FGLM

input :M a δ × l matrix over K , whose rows and columns are

indexed by monomials. A tropical term ordering ≤.

An invertible s × s matrix P .

output :A column-reduction ofM compatible with ≤, an

updated P .

1 if M = 0 then ReturnM, P ;

2 Find the coefficientM[i, j] of row indexed by xβ and column

indexed by xα such thatM[i, j]−1xα is smallest, and using

smallest xβ to break ties ;

3 Use this non-zero coefficient to eliminate the other coefficients

on the same row ;

4 Update P accordingly ;

5 Proceed recursively on the remaining rows and columns ;

6 ReturnM, P

The fact that Algorithm 5 computes a column-echelon form of

the matrix (up to column-swapping) along with the pivoting matrix

is clear. What is left to prove is the compatibility of the pivoting

process with the computation of the normal forms and the leading

terms according to ≤2 . It relies on the following loop-invariant.

Proposition 4.5. At any point during the execution of Algorithm

5, for any xα , the column of M indexed by xα corresponds to the

normal form NF≤1 (H) (with respect to ≤1) of some polynomial H

with LT≤2 (H) = xα .

Proof. It is true by construction for any column when enter-

ing Algorithm 5. Also by construction, all columns are labelled

by distinct monomials. Now let us assume that on Line 4, we are

eliminating a coefficient d on the column labelled by xβ using a

coefficient c on the column labelled by xα as pivot. Because of the

choice of pivot on Line 3, we get that c−1xα <2 d−1xβ . Let us

assume that the column indexed by xα corresponds to NF≤1 (H)

with LT≤2 (H) = xα , and the column indexed by xβ corresponds

to NF≤1 (Q) with LT≤2 (Q) = xβ . Please note that xα , xβ . Then

after pivoting the second column corresponds to NF≤1 (Q−dc
−1H).

As LT≤2 (dc
−1H) = dc−1xα <2 xβ , the loop-invariant is then pre-

served, which is enough to conclude the proof. □

Theorem 4.6. Algorithm 4 terminates and is correct: its output is

a GB of the ideal I for ≤2. It requires O(nδ
3) arithmetic operations.

Proof. We use the following loop-invariant: after Line 9 is ex-

ecuted, LT≤2 (G) contains all the minimal generators in LT≤2 (I) of

degree ≤ d , they each correspond to a reduced-to-zero column

ofM , and the xβ corresponding to non-reduced-to-zero columns

of M are all in NS≤2 (I). The proof for this invariant is as fol-

lows. As ≤2 is degree-compatible, it is clear by linear algebra that

rank(M) = dim(A≤d/I≤d). Thanks to Proposition 4.5, the polyno-

mials added toG are in I , andmore precisely, f = xα−
∑
γ Pγ ,αx

γ as

in Line 8 is a polynomial such that LT≤2 (f) = xα and NF≤1 (f) = 0,

as given in the Proposition. Their LT≤2 ’s are minimal generators of

LT≤2 (I) by construction (all multiples of previous generators have

been erased). By a dimension argument, no minimal generator is

missing.

263

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Yuki Ishihara, Tristan Vaccon, and Kazuhiro Yokoyama

Once d is big enough for all minimal generators of LT≤2 (I) to

have been produced, no monomials can be left in L and the algo-

rithm terminates. Termination and correctness are then clear.

As columns are labelled by some xix
α with xα ∈ NS≤2 (I) then

at most nδ columns are produced in the algorithm. As the rank of

M is δ and so is also its number of rows, the column-reduction of a

given column costs O(δ2) arithmetic operations. Consequently, the

total cost of the algorithm is in O(nδ3) arithmetic operations. □

Remark 4.7. The previous algorithm remarkably bears the same

asymptotic complexity as the vanilla classical FGLM algorithm

(O(nδ3) arithmetic operations), regardless of the more involved

linear algebra part. Could fast linear algebra also be applied here?

Example 4.8. Let (x + 1

2
y,y2 + 1) be a GB of the ideal it spans, for

w = [0,−1] and grevlex. We compute a GB of the same ideal for

w = [0, 0] and grevlex. The following matrices are: the polynomials

added toM (in three batches, by degree), the final state ofM and

the final P . In the end, we get (y + 2x ,x2 + 1

4
) as the output GB.

1 x y x2

1 1 −2−2

y −2−1 1

1 x y x2

1 1 0 0

y −2−1 0 0

1 2
−2

1 2

1

1

, ,
P =

5 NUMERICAL DATA

A toy implementation of our algorithms in SageMath [Sage] is

available on https://gist.github.com/TristanVaccon. The following

arrays gather some numerical results. The timings are expressed in

seconds of CPU time.2

5.1 Tropical to classical

For a given p, we take three polynomials with random coefficients

in Zp (using the Haar measure) in Qp [x ,y, z] of degrees 2 ≤ d1 ≤

d2 ≤ d3 ≤ 4. D = d1 + d2 + d3 − 2 is the Macaulay bound. We

first compute a tropical GB for the weight w = [0, 0, 0] and the

grevlex monomial ordering, and then apply Algorithms 2 and 4

to obtain a lex GB. We compare with the strategy of computing a

classical grevlex GB and then applying FGLM to obtain a lex GB.

For any given choice of di ’s, the experiment is repeated 50 times.

Coefficients of the initial polynomials are given at high-enough

precision O(pN) for no precision issue to appear (see [RV16] for

more on FGLM at finite precision).

Coefficients of the output tropical GB or classical GB are known

at individual precision O(pN−m) (for somem ∈ Z)). We compute

the total mean and max on thosem’s on the obtained GB. In the

first following array, we provide the mean and max for the tropical

strategy. In the second, to compare classical and tropical, we provide

couples for the mean on the 50 ratios of timing per execution (t),

along with the arithmetic (Σ) and geometric (π) mean of the 50

ratios of mean loss in precision per execution. Data for p = 101

or 65519 are not worth for these ratios as the loss in precision is 0

most of the time.

In average the tropical strategy takes longer, but save a large

amount of precision (for small p). While the ratio of saved precision

2Everything was performed on a Ubuntu 16.04 with 2 processors of 2.6GHz and 16 GB
of RAM.

may decrease with the degree, the abolute amount of saved preci-

sion is often still very large. We have also noted that the standard

deviations for these ratios can be very large.
precision (trop.) D = 4 5 6 7 8 9

p = 2 11 103 25 278 60 509 176 1253 300 1783 652 3929

3 3 21 12 97 36 396 125 634 141 1002 282 2876

101 0 1 0 1 1 79 0 2 15 408 0 2

65519 0 0 0 0 0 0 0 0 0 0 0 0

trop.
classical

D = 4 5 6 7 8 9

t Σ π t Σ π t Σ π t Σ π t Σ π t Σ π
p = 2 20 .4 .3 5 .4 .2 5 .5 .2 5 .6 .2 1.5 .8 .2 9 1 .2

3 6 .6 .2 6 .5 .2 5 .5 .2 2 .4 .1 1.2 .7 .1 .9 .9 .1

5.2 Tropical to tropical

We repeat the same experiments for mean and max loss in precision,

but this time we compute a tropical GB for weight w = [0, 0, 0]

and then use Algorithm 4 to compute a tropical GB for weight

w = [−2, 4,−8] (grevlex for tie-breaks in both cases). Precision-

wise, it seems that there is an intrinsic difficulty in computing a lex

GB compared to a tropical GB.
precision loss D = 4 5 6 7 8 9

p = 2 2 18 2.5 14 2.6 14 2.9 16 3 17 3.5 19

3 1 9 1 7 1 9 1.4 14 1.4 11 2 13

101 0 1 0 1 0 1 0 2 0 2 0 2

65519 0 0 0 0 0 0 0 0 0 0 0 0

5.3 Semi-stability and shape position

We adapt our setting toQ((t)), using entries with coefficients inZJtK
given at precision 50 (using SageMath’s built-in random function),

and apply the ideas of Subsection 2.5 and Section 3. AsQ is involved,

computations are slow for D ≥ 7 due to coefficients growth.
w = [0, 0, 0]+grevlex D = 4 5 6

mean timing (F5 & FGLM) 2.8 9.4 3.9 102 10 1030

precision F5 (mean & max) 0 2 0 2 0 3

precision FGLM (mean & max) 0 0 0.1 8 0.4 34

REFERENCES
[CM19] Chan A., Maclagan D., Gröbner bases over fields with valuations, Math.

Comp. 88 (2019), 467-483.
[FGHR14] Faugère, J.-C., Gaudry, P., Huot, L., Renault, G., Sub-cubic Change of

Ordering for Gröbner Basis: A Probabilistic Approach, in Proceedings: ISSAC
2014. ACM, Kobe, Japon, pp. 170ś177, 2014

[FGLM93] Faugère, J.-C., Gianni, P., Lazard, D., Mora, T., Efficient computation of zero-
dimensional Gröbner bases by change of ordering, J. of Symbolic Computation
16 (4), 329ś344, 1993

[GRZ19] Görlach, P, Ren, Y, Zhang, L., Computing zero-dimensional tropical varieties
via projections, arXiv:1908.03486

[HH11] Herzog J., Hibi T., Monomial Ideals, Springer, 2001
[Huo13] Huot, L., Résolution de systèmes polynomiaux et cryptologie sur les courbes

elliptiques, Ph.D. thesis, Université Pierre et Marie Curie (Paris VI), http://tel.
archives-ouvertes.fr/tel-00925271

[JRS19] Jensen, A., Ren, Y., Schoenemann, H., The gfanlib interface in Singular and
its applications, J. of Software for Algebra and Geometry 9 (2019), 81-87

[MS15] Maclagan, D. and Sturmfels, B., Introduction to tropical geometry, Graduate
Studies in Mathematics, volume 161, AMS, Providence, RI, 2015

[MR19] Markwig, T. and Ren, Y., Computing Tropical Varieties Over Fields with
Valuation, Foundations of Computational Mathematics, 2019

[RV16] Renault, G. and Vaccon, T. On the p-adic stability of the FGLM algorithm,
arxiv:1602.00848

[Sage] SageMath, the Sage Mathematics Software System (Version 8.6), The Sage
Development Team, 2018, http://www.sagemath.org

[Ser79] Serre, J.-P., Local fields, Vol. 67 of Graduate Texts in Mathematics. Springer-
Verlag, New York-Berlin, translated from the French by Marvin Jay Greenberg

[Va15] Vaccon T., Matrix-F5 Algorithms and Tropical Gröbner Bases Computation,
in Proceedings: ISSAC 2015, Bath, UK. Extended version in the J. of Symbolic
Computation, Dec. 2017.

[VY17] Vaccon T., Yokoyama K., A Tropical F5 algorithm, in Proceedings: ISSAC
2017, Kaiserslautern, Germany.

[VVY18] Vaccon T., Verron T., Yokoyama K., On Affine Tropical F5 algorithm, in
Proceedings: ISSAC 2018, New York, USA. Extended version to appear in the J.
of Symbolic Computation.

264

https://gist.github.com/TristanVaccon
http://tel.archives-ouvertes.fr/tel-00925271
http://tel.archives-ouvertes.fr/tel-00925271
http://www.sagemath.org

Modular Techniques for Effective Localization and Double Ideal
Quotient

Yuki Ishihara∗

Graduate School of Science, Rikkyo University

Tokyo, Japan

yishihara@rikkyo.ac.jp

ABSTRACT

By double ideal quotient, we mean (I : (I : J)) where I and J

are ideals. In our previous work [12], double ideal quotient and

its variants are shown to be very useful for checking prime divi-

sors and generating primary components. Combining those prop-

erties, we can compute "direct localization" effectively, comparing

with full primary decomposition. In this paper, we apply modular

techniques effectively to computation of such double ideal quo-

tient and its variants, where first we compute them modulo sev-

eral prime numbers and then lift them up over rational numbers

by Chinese Remainder Theorem and rational reconstruction. As a

new modular technique for double ideal quotient and its variants,

we devise criteria for output frommodular computations. Also, we

apply modular techniques to intermediate primary decomposition.

We examine the effectiveness of our modular techniques for sev-

eral examples by preliminary computational experiments in Sin-

gular.

CCS CONCEPTS

• Computing methodologies→ Algebraic algorithms.

KEYWORDS

Gröbner Basis, Primary Decomposition, Modular Method, Local-

ization, Double Ideal Quotient

ACM Reference Format:

Yuki Ishihara. 2020.Modular Techniques for Effective Localization andDou-

ble Ideal Quotient. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20–23, 2020, Kalamata, Greece. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404017

1 NEW CONTRIBUTIONS

For proper ideals I and J , double ideal quotient is an ideal of shape

(I : (I : J)). It and its variants are effective for localization and give

us criteria for prime divisors (primary components) and ways to

generate primary components. In [12], "Local Primary Algorithm"

computes the specific primary component from given a prime ideal

without full primary decomposition. However, they tend to be very

time-consuming for computing Gröbner bases and ideal quotients

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20–23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404017

in some cases. Also, there is another problem with a way to find

candidates of prime divisors. As a solution of these problems, we

propose a newmethod for computing double ideal quotient in then

variables polynomial ring with rational coefficients Q[X] by using
"Modular Techniques", where X = {x1, . . . ,xn }. It is well-known
that modular techniques are useful to avoid intermediate coeffi-

cient growth and have a good relationship with parallel computing

(see [2, 5, 11, 15]). In this paper, we have the following contribu-

tions.

(1) Apply modular techniques to double ideal quotient. (Theo-

rem 2.2.8 and Theorem 2.2.9)

(2) Extend criteria about prime divisor in [12]. (Theorem 2.1.4)

(3) Devise a new method for certain intermediate decompo-

sition in some special cases. (Corollary 2.3.2, Proposition

2.3.4)

For a prime number p, let Z(p) = {a/b ∈ Q | p ∤ b} be the

localized ring by p and Fp [X] the polynomial ring over the finite

field. We denote by φp the canonical projection Z(p)[X] → Fp [X].
Given ideals I and J in the polynomial ring with rational coeffi-

cients Q[X], we first compute double ideal quotient of the image

φp ((I : (I : J)) ∩ Z(p)[X]) in Fp [X] for "lucky" primes p (we will

discuss such luckiness later). Next, we lift them up toGcan , a can-

didate of Gröbner basis, from the computed Gröbner basis Ḡ of

φp ((I : (I : J)) ∩ Z(p)[X]) by using Chinese Remainder Theorem

(CRT) and rational reconstruction (see [5]). Avoiding intermediate

coefficient growth, this method is effective for several examples.

Also, we extend the criterion in [12] about prime divisor in or-

der to compute certain "intermediate decomposition" of ideals and

to find prime divisors in some special cases. For an ideal I and a

prime ideal P , it follows that P is a prime divisor of I if and only

if P ⊃ (I : (I : P)) (see Theorem 31 (Criterion 5), [12]). However,

the projected image of a prime ideal may not be a prime ideal but

an intersection of prime ideals in Fp [X]. Thus, we generalize the
criterion to a radical ideal J ⊃ I ; it follows that every prime divisor

P of J is associated with I if and only if J ⊃ (I : (I : J)). For such
a radical ideal J , if J is unmixed, we can compute the intersection

of primary components Q of I whose associated prime is a prime

divisor of J by modular techniques. This ideal may be considered

as an "intermediate component" of I . By gathering these interme-

diate components, we may obtain an "intermediate primary de-

composition" (see Definition 2.3.1). For this computation, we can

utilize maximal independent sets (see Section 2.3 for the definition

of maximal independent set).

Primary decomposition of an ideal in a polynomial ring over

a field is an essential tool of Commutative Algebra and Algebraic

Geometry. Algorithms of primary decomposition have been much

265

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Yuki Ishihara

studied, for example, by [7, 9, 13, 19]. We apply double ideal quo-

tient to check whether candidates of prime divisors from modular

techniques are associated with the original ideal or not. It shall

contribute the total efficiency of the whole process since our "in-

termediate decomposition" may divide a big task into small ones

as a "divide-and-conquer" strategy.

This paper is organized as follows. In section 2.1, we introduce

extended criteria for prime divisor and primary component based

on double ideal quotient and its variants. In section 2.2, we ap-

ply modular techniques to double ideal quotient and its variants.

In section 2.3, we sketch an outline of intermediate primary de-

composition. In section 3, we see some effectiveness of modular

method in several examples in a preliminary experiment. Its prac-

ticality will be examined by computing more detailed experiments.

2 MAIN THEOREMS

Here we show theoretical bases for our new techniques described

in Section 1. We denote an arbitrary field by K and the ideal gen-

erated by f1, . . . , fs ∈ K[X] by (f1, . . . , fs)K [X]. If the base ring is

obvious, we simply write (f1, . . . , fs). Also, we denote by K[X]P
the localized ring by a prime ideal P and by IP the ideal IK[X]P re-

spectively. For an irredundant primary decomposition Q of I , we

say that P is a prime divisor of I if there is a primary component

Q ∈ Q s.t. P =
√
Q . For simplicity, we assume primary decompo-

sition is irredundant. We denote the set of prime divisors of I by

Ass(I) (see Definition 4.1.1 and Theorem 4.1.5 in [10]). For a prime

ideal P , PP is also prime.

2.1 Criteria for prime divisors and primary

components

First, we recall criteria using double ideal quotient and its variants

(see [12], Sect. 3.). In Proposition 2.1.1, the equivalence between (A)
and (B) is originally described in [21]. In our previous work [12],

we relate it with a variant of double ideal quotient (I : (I : P∞)).
Double ideal quotient is also used to compute equidimensional hull

in [7], which we use in Lemma 2.1.7 and Theorem 2.1.10 later. We

will show that such double ideal quotient(s) can be computed effi-

ciently by modular techniques in Section 2.2.

Proposition 2.1.1 ([12], Theorem 31). Let I be an ideal and P a

prime ideal. Then, the following conditions are equivalent.

(A) P ∈ Ass(I),
(B) P ⊃ (I : (I : P)),
(C) P ⊃ (I : (I : P∞)).

Remark 2.1.2. In Proposition 2.1.1, the condition P ⊃ (I : (I : P))
is equivalent to P = (I : (I : P)) since P ⊂ (I : (I : P)) always holds
for any ideals I and P . Indeed, P(I : P) ⊂ I from the definition of

(I : P) and thus P ⊂ (I : (I : P)).

Remark 2.1.3. The operations of double ideal quotient and local-

ization by prime ideal are commutative. Indeed, for ideals I , J and a

prime ideal P , (I : J)P = (IP : JP) from Corollary 3.15 in [1] and thus

we obtain (I : (I : J))P = (IP : (I : J)P) = (IP : (IP : JP)). Similarly,

we have (I : (I : J∞))P = (IP : (I : J∞)P) = (IP : (IP : J∞
P
)) as

(I : J∞) = (I : Jm) and (IP : J∞
P
) = (IP : Jm

P
) for a sufficiently

large integerm. Also, a prime ideal P is associated with an ideal I if

and only if PP is associated with IP since there is a correspondence

between primary decompositions of I and IP (see Proposition 4.9 in

[1]). Similarly, for a P-primary idealQ ,Q is a P-primary component

of I if and only if QP is a PP -primary component of IP .

Next, we introduce extended theorems about double ideal quo-

tient and its variants toward intermediate primary decomposition

in Section 2.3. Proposition 2.1.1 gives a relationship between an

ideal I and a prime divisor P . It can be extended to one between

an ideal I and an intersection of some prime divisors J . Thus, we

consider a radical ideal J instead of a prime ideal P as follows.

Theorem 2.1.4. Let I be an ideal and J a proper radical ideal.

Then, the following conditions are equivalent.

(A) Ass(J) ⊂ Ass(I),
(B) J ⊃ (I : (I : J)),
(C) J ⊃ (I : (I : J∞)).

Proof. First, we show that (A) implies (B). Let P ∈ Ass(J) ⊂
Ass(I). Then, P ⊃ (I : (I : P)) by Proposition 2.1.1. Thus, P ⊃ (I :
(I : P)) ⊃ (I : (I : J)). Since J =

∩
P ∈Ass(J) P , we obtain J ⊃ (I :

(I : J)). Next, we show that (B) implies (C). As (I : J) ⊂ (I : J∞),
we obtain J ⊃ (I : (I : J)) ⊃ (I : (I : J∞)). Finally, we show that

(C) implies (A). Let P ∈ Ass(J). Then, JP ⊃ (I : (I : J∞))P = (IP :

(IP : J∞
P
)) from Remark 2.1.3 and thus JP = PP ∈ Ass(IP) from

Proposition 2.1.1. Hence, P ∈ Ass(I) by Remark 2.1.3. □

Example 2.1.5. Let I = (x) ∩ (x3,y) ∩ (x2 + 1) and J = (x ,y) ∩
(x2 + 1). Then, (I : (I : J)) = (x ,y) ∩ (x2 + 1) = J and Ass(J) =
{(x ,y), (x2 + 1)} ⊂ Ass(I) = {(x), (x ,y), (x2 + 1)}. In addition, we

have (I : (I : J∞)) = (x2,y) ∩ (x2 + 1) ⊂ J .

To generate primary component, the following lemma is well-

known. Here, for a d-dimensional ideal I , equidimensional hull

hull(I) is the intersection of itsd-dimensional primary components.

Lemma 2.1.6 ([7], Section 4. [14], Remark 10). Let I be an ideal

and P a prime divisor of I . For a sufficiently large integerm, hull(I +
Pm) is a P-primary component appearing in a primary decomposi-

tion of I .

Here, we generalize Lemma 2.1.6 to an intersection of equidi-

mensional prime divisors as follows.

Lemma 2.1.7. Let I be an ideal and J an intersection of prime

divisors of I . Suppose J is unmixed i.e. dim(P) = dim(J) for any
P ∈ Ass(J). Then, for a sufficiently large integerm, hull(I + Jm) is
an intersection of primary components appearing in a primary de-

composition of I i.e. hull(I + Jm) = ∩
P ∈Ass(J)Q(P) where Q(P) is a

P-primary component of I .

Proof. Letm be a positive integer. First, we note that, for each

P ∈ Ass(J), I ⊂ hull(I + Jm)P ∩ K[X] ⊂ hull(I + Pm) since
I ⊂ I + Jm ⊂ hull(I + Jm) ⊂ hull(I + Jm)P ∩ K[X]
⊂ hull(I + Pm)P ∩ K[X] = hull(I + Pm)

where the last equality comes from the fact that
√
I + Pm = P and P

is the unique isolated prime divisor of I+Pm . By Lemma 2.1.6, there

exist a sufficiently large integerm(P) and a primary decomposition

Q of I such that hull(I + Pm(P)) ∈ Q. Then,

I ⊂
∩

P ∈Ass(J)
hull(I + Jm(P))P ∩ K[X] ⊂

∩
P ∈Ass(J)

hull(I + Pm(P))

266

Modular Techniques for Effective Localization and Double Ideal Quotient ISSAC ’20, July 20–23, 2020, Kalamata, Greece

and, by intersecting
∩
Q ∈Q,

√
Q<Ass(J)Q with them, we obtain

I ⊂ ©«
∩

P ∈Ass(J)
hull(I + Jm(P))P ∩ K[X]ª®¬

∩
∩

Q ∈Q,
√
Q<Ass(J)

Q

⊂ ©«
(

∩
P ∈Ass(J)

hull(I + Pm(P))ª®¬
∩

∩
Q ∈Q,

√
Q<Ass(J)

Q = I .

Thus,
(∩

P ∈Ass(J) hull(I + Jm(P))P ∩ K[X]
)
∩∩Q ∈Q,

√
Q<Ass(J)Q =

I and hull(I+Jm(P))P∩K[X] is a P-primary component of I . Since J

is unmixed,
√
I + Jm =

√
J =

∩
P ∈Ass(J) P and Ass(hull(I + Jm)) =

Ass(J) i.e. hull(I + Jm) = ∩
P ∈Ass(J) hull(I + Jm)P ∩ K[X]. Thus,

form ≥ max{m(P) | P ∈ Ass(J)}, hull(I + Jm) is an intersection of

primary components of a primary decomposition of I . □

Using variants of double ideal quotient, we devise a criterion for

primary component and generate isolated primary components.

We remark that Theorem 2.1.8 holds for any Noetherian rings.

Theorem 2.1.8 ([12], Theorem 26 (Criterion 1)). Let I be an

ideal and P a prime divisor of I . For a P-primary ideal Q , assume

Q 2 (I : P∞) and let J = (I : P∞)∩Q . Then, the following conditions
are equivalent.

(A) Q is a P-primary component for some primary decomposition

of I .

(B) (I : (I : J)∞) = J .

We also generalize Theorem 2.1.8 to intersection of primary

components as follows. We can check whether m appearing in

Lemma 2.1.7 is large enough or not by Theorem 2.1.9.

Theorem 2.1.9. Let I be an ideal and J an intersection of prime

divisors of I . Suppose J is unmixed. For an unmixed ideal L with√
L = J , assume

√
(L : (I : J∞)) = J and let Z = (I : J∞) ∩ L. Then,

the following conditions are equivalent.

(A) L =
∩
P ∈Ass(J)Q(P) where Q(P) is a P-primary components

of I .

(B) (I : (I : Z)∞) = Z .

Proof. First, we show (A) implies (B). From (A), it is easy to see
that T = Ass((I : J∞)) ∪ Ass(L) is an isolated set (see Definition 5

in [12]). Indeed, for P ′ ∈ Ass(I), if there exists P ∈ T s.t. P ′ ⊂ P ,

then P ′ ∈ T since Ass((I : J∞)) = {P ′ ∈ Ass(I) | J 1 P ′} and

Ass(L) = Ass(J). Thus, for S = K[X] \ (∪P ∈T P), we obtain Z =

IK[X]S ∩K[X] from Lemma 6 in [12] and T = Ass(Z). By Lemma

25 in [12], we obtain (I : (I : Z)∞) = Z .

Second, we show (B) implies (A). Let P ∈ Ass(J). Then, we ob-
tain PP = JP and

√
LP = (

√
L)P = JP = PP . Thus, LP is a PP -

primary ideal and ZP = (I : J∞)P ∩ LP = (IP : J∞
P
) ∩ LP . Since√

(L : (I : J∞)) = J ,
√
(LP : (IP : J∞

P
)) = PP and thus LP 2 (IP :

J∞
P
); otherwise we get

√
(LP : (IP : J∞

P
)) = K[X]P , PP . Here,

(IP : (IP : ZP)∞) = ZP for all P ∈ Ass(J) since (I : (I : Z)∞) = Z

and (IP : (IP : ZP)∞) = (I : (I : Z)∞)P . Thus, by Theorem 2.1.8, LP
is a primary component of IP . Since L is unmixed and L =

√
J , it fol-

lows that L =
∩
P ∈Ass(J) LP ∩K[X]. From Remark 2.1.3, LP ∩K[X]

is a P-primary component of I if and only if LP is a PP -primary

component of IP . Finally, we obtain the equivalence. □

Also, we can compute the isolated primary component from its

associated prime by a variant of double ideal quotient.

Theorem 2.1.10 ([12], Theorem 36). Let I be an ideal and P an

isolated prime divisor of I . Then

hull((I : (I : P∞)∞))
is the isolated P-primary component of I .

We generalize Theorem 2.1.10 as follows.

Theorem 2.1.11. Let I be an ideal and J an intersection of isolated

prime divisors of I . Suppose J is unmixed. Then

hull((I : (I : J∞)∞)) =
∩

P ∈Ass(J)
Q(P)

where Q(P) is the isolated P-primary component of I .

Proof. Let Q be a primary decomposition of I . By Proposition

22 in [12], we obtain

(I : (I : J∞)∞) =
∩

Q ∈Q, J ⊂
√
IK [X]√Q∩K [X]

Q .

Since J ⊂
√
IK[X]√

Q (P) ∩ K[X] =
√
Q(P) = P for P ∈ Ass(J), it

follows that

(I : (I : J∞)∞) =
∩

P ∈Ass(J)
Q(P)∩

∩
Q ∈Q, J ⊂

√
IK [X]√Q∩K [X],

√
Q<Ass(J)

Q .

As J is unmixed, eachQ(P) has the same dimension for P ∈ Ass(J).
Then, dim(∩

Q ∈Q, J ⊂
√
IK [X]√Q∩K [X],

√
Q<Ass(J)

Q) < dim(J) from

the fact that for Q ∈ Q with J ⊂
√
IK[X]√Q ∩ K[X] and

√
Q <

Ass(J), there exists P ∈ Ass(J) s.t. P ⊊
√
Q . Since J is an intersec-

tion of isolated prime divisors of I , we obtain

hull((I : (I : J∞)∞)) =
∩

P ∈Ass(J)
Q(P).

□

2.2 Modular techniques for double ideal

quotient

We propose modular techniques for double ideal quotient. For a

prime number p, let Z(p) = {a/b ∈ Q | p ∤ b} be the localized ring

by p and Fp [X] the polynomial ring over the finite field. We denote

by φp the canonical projection Z(p)[X] → Fp [X]. For F ⊂ Q[X],
we denote by I (F) the ideal generated by F . For F ⊂ Z(p)[X], we
denote ⟨φp (F)⟩ by Ip (F) and φp (I (F) ∩ Z(p)[X]) by I0p (F) respec-
tively.

We recall the outline of "modular algorithm for ideal opera-

tion" (see [16]) as Algorithm 1. Given ideals I , J , ideal operations

AL(∗, ∗) over Q[X] and ALp (∗, ∗) over Fp [X] as inputs, we com-

pute AL(I , J) as the output by using modular computations. First,

we choose a list of random prime numbers P, which satisfies cer-

tain computable condition primeTest. For example, primeTest is

to check whether p is permissible (see Definition 2.2.1) for Gröb-

ner bases of I and J or not. Next, we compute modular operations

Hp = ALp (I , J) for each p ∈ P. After omitting expected unlucky

primes by deleteUnluckyPrimes, we liftHp ’s up toHcan by CRT

267

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Yuki Ishihara

and rational reconstruction. Finally, we check Hcan is really the

correct answer by finalTest. If finalTest says False, then we

enlarge P and continue from the first step. In this paper, we intro-

duce new finalTest for ideal quotient and double ideal quotient.

We remark that the termination of this modular algorithm is en-

sured by the finiteness of unlucky prime numbers. For example,

for a given ideals I , J and an algorithm for the ideal quotient (I : J)
over the rational numbers, there are only finite many steps from

the inputs to the outputs and thus the number of coefficients is

also finite; hence we can project the computations onto those over

finite fields Fp for all prime numbers p except those appearing in

coefficients (see Lemma 6.1 in [16] for details).

Algorithm 1 Modular Algorithm for Ideal Operation

Input: I , J : ideals, AL(∗, ∗): an ideal operation over Q[X],
ALp (∗, ∗): an ideal operation over Fp [X],

Output: AL(I , J) over Q[X]
choose P as a list of random primes satisfying primeTest;

HP = ∅;
while do

for p ∈ P do

compute Hp = ALp (I , J);
HP = HP ∪ {Hp };

end for

(HPlucky ,Plucky) = deleteUnluckyPrimes(HP,P);
lift HPlucky to Hcan by CRT and rational reconstruction;

if Hcan passes finalTest then

return Hcan

end if

enlarge P with prime numbers not used so far;

end while

First, we introduce some notions of good primes as follows.

Definition 2.2.1 ([16], Definition 2.1). Let p be a prime num-

ber, F ⊂ Q[X] and ≺ a monomial ordering. Let G be the reduced

Gröbner basis of I (F) with respect to ≺. Here, we denote by lc≺(f)
the leading coefficient of a polynomial f with respect to ≺.

(1) p is said to be weak permissible for F , if F ⊂ Z(p)[X].
(2) p is said to be permissible for F and ≺, if p is weak permissible

for F ⊂ Q[X] and φp (lc≺(f)) , 0 for all f in F .

(3) p is said to be compatible with F if p is weak permissible for

F and I0p (F) = Ip (F).
(4) p is said to be effectively lucky for F and ≺, if p is permissible

for (G,≺) and φp (G) is the reduced Gröbner basis of Ip (G).
Remark 2.2.2. If p is effectively lucky for F and ≺, then p is com-

patible with F (see Lemma 3.1 (3) in [16]).

Next, the notion ofp-compatible Gröbner basis candidate is very

useful for easily computable tests toward finalTest in modular

techniques .

Definition 2.2.3 ([16], Definition 4.1). Let Gcan be a finite

subset of Q[X] and F ⊂ Q[X]. We call Gcan a p-compatible Gröb-

ner basis candidate for F and ≺, if p is permissible for Gcan and

φp (Gcan) is a Gröbner basis of I0p (F) with respect to ≺.

The following can be used to finalTest in modular techniques.

Lemma 2.2.4 ([16], Proposition 4.1). Suppose that Gcan is a p-

compatible Gröbner basis candidate for (F ,≺), and Gcan ⊂ I (F).
Then Gcan is a Gröbner basis of I (F) with respect to ≺.

We introduce the following easily computable tests for ideal

quotient and saturation in modular techniques, appearing in [16].

Lemma 2.2.5 ([16], Lemma 6.2 and Lemma 6.4). Suppose that a

prime number p is compatible with (F ,≺) and permissible for (f ,≺).
For a finite subsetHcan ⊂ Q[X],Hcan is a Gröbner basis of (I (F) : f)
with respect to ≺, if the following conditions hold;

(1) p is permissible for (Hcan ,≺),
(2) φp (Hcan) is a Gröbner basis of (Ip (F) : φp (f)) with respect to

≺,
(3) Hcan ⊂ (I (F) : f).
For a finite subset Lcan ⊂ Q[X], Lcan is a Gröbner basis of (I (F) :

f ∞) with respect to ≺, if the following conditions hold;
(1) p is permissible for (Lcan ,≺),
(2) φp (Lcan) is a Gröbner basis of (Ip (F) : φp (f)∞) with respect

to ≺,
(3) Lcan ⊂ (I (F) : f ∞).

We generalize Lemma 2.2.5 by replacing f into an ideal J as

follows. We recall that Ip (G) = ⟨φp (G)⟩Fp [X] where p is weak per-

missible for G.

Lemma 2.2.6. Suppose that a prime number p is compatible with

(F ,≺) and permissible for (G,≺). For a finite subset Hcan ⊂ Q[X],
Hcan is a Gröbner basis of (I (F) : I (G)) with respect to ≺, if the
following conditions hold;

(1) p is permissible for (Hcan ,≺),
(2) φp (Hcan) is a Gröbner basis of (Ip (F) : Ip (G)) with respect to

≺,
(3) Hcan ⊂ (I (F) : I (G)).

Proof. Since p is permissible for (Hcan ,≺), we can consider

Ip (Hcan) = ⟨φp (Hcan)⟩. It is enough to show Ip (Hcan) = φp ((I (F) :
I (G)) ∩Z(p)[X]) since the equation implies Hcan is a p-compatible

Gröbner basis candidate for (I (F) : I (G)) with respect to ≺ and a

Gröbner basis of (I (F) : I (G))with respect to ≺ fromHcan ⊂ (I (F) :
I (G)) and Lemma 2.2.4.

It is clear that Ip (Hcan) ⊂ φp ((I (F) : I (G)) ∩Z(p)[X]) as Hcan ⊂
(I (F) : I (G)). To show the inverse inclusion, we pick h ∈ (I (F) :

I (G))∩Z(p)[X]. Then,hG ⊂ I (F)∩Z(p)[X]wherehG = {hд | д ∈ G}
since p is permissible for h and G. Thus,

φp (h)Ip (G) = φp (h)⟨φp (G)⟩ = ⟨φp (hG)⟩
⊂ ⟨φp (I (F) ∩ Z(p)[X])⟩ = I0p (F) = Ip (F)

by the compatibility of F ; we obtain φp (h) ∈ (Ip (F) : Ip (G)) =
Ip (Hcan). Hence Ip (Hcan) ⊃ φp ((I (F) : I (G)) ∩ Z(p)[X]). □

Remark 2.2.7. We can check whether Hcan ⊂ (I (F) : I (G)) or
not, by checking whether I (Hcan)I (G) ⊂ I (F) or not.

We apply this lemma to double ideal quotient as follows.

Theorem 2.2.8. Suppose that a prime number p is compatible

with (F ,≺) and permissible for (G,≺). Assume p satisfies (Ip (F) :

Ip (G)) = φp ((I (F) : I (G)) ∩ Z(p)[X]). For a finite subset Kcan ⊂

268

Modular Techniques for Effective Localization and Double Ideal Quotient ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Q[X], Kcan is a Gröbner basis of (I (F) : (I (F) : I (G))) with respect

to ≺ if the following conditions hold;

(1) p is permissible for (Kcan ,≺),
(2) φp (Kcan) is a Gröbner basis of (Ip (F) : (Ip (F) : Ip (G))) with

respect to ≺,
(3) Kcan ⊂ (I (F) : (I (F) : I (G))).

Proof. Since p is permissible for (Kcan ,≺), we can consider

Ip (Kcan) = ⟨φp (Kcan)⟩. By Lemma 2.2.4, it is enough to show that

Kcan is a p-compatible Gröbner basis candidate of (I (F) : (I (F) :
I (G))). Since Kcan ⊂ (I (F) : (I (F) : I (G))), Ip (Kcan) ⊂ φp ((I (F) :
(I (F) : I (G))) ∩ Z(p)[X]) holds. Thus, we show the other inclusion.

Let h ∈ (I (F) : (I (F) : I (G))) ∩ Z(p)[X]. Then,

φp (h)φp ((I (F) : I (G))∩Z(p)[X]) ⊂ φp (I (F)∩Z(p)[X]) = I0p (F) = Ip (F).
Since φp ((I (F) : I (G)) ∩ Z(p)[X]) = (Ip (F) : Ip (G)), we obtain

φp (h) ∈ (Ip (F) : (Ip (F) : Ip (G))) = Ip (Kcan). Hence, Ip (Kcan) ⊃
φp ((I (F) : (I (F) : I (G))) ∩ Z(p)[X]). □

To check the conditions (Ip (F) : Ip (G)) = φp ((I (F) : I (G)) ∩
Z(p)[X]) andKcan ⊂ (I (F) : (I (F) : I (G))), we need a Gröbner basis
H of (I (F) : I (G)) in general (the former by Ip (H) = (Ip (F) : Ip (G))
and the latter by I (Kcan)I (H) ⊂ I (F), respectively). However, as to
the latter, in a special case that P is an associated prime divisor of I ,

we confirm it more easily. Setting I (G) = P for a prime ideal P , we

devise the following "Associated Test" using modular techniques.

Theorem 2.2.9 (Associated Test). Let I be an ideal and P a

prime ideal. Let F and G be Gröbner bases of I and P respectively.

Suppose p is permissible for F , G and satisfies (Ip (F) : Ip (G)) =
φp ((I (F) : I (G)) ∩ Z(p)[X]). Let Kcan be a finite subset of Q[X].
Then, P is a prime divisor of I if the following conditions hold;

(1) p is permissible for (Kcan ,≺),
(2) φp (Kcan) is a Gröbner basis of (Ip (F) : (Ip (F) : Ip (G))) with

respect to ≺,
(3) (Ip (F) : (Ip (F) : Ip (G))) = Ip (G),
(4) Kcan ⊂ P .

Proof. To prove this, we use Theorem 2.2.8. If all conditions of

Theorem 2.2.8 hold, then Kcan is a Gröbner basis of (I : (I : P))
and thus (I : (I : P)) ⊂ P by the condition Kcan ⊂ P ; hence, P

is a prime divisor of I by Proposition 2.1.1. Now, we show that all

conditions of Theorem 2.2.8 hold. Since we have directly (1) and (2)

in Theorem 2.2.8, it is enough to check the conditionKcan ⊂ (I (F) :
(I (F) : I (G))). Indeed, we obtain Kcan ⊂ P ⊂ (I (F) : (I (F) : I (G)))
by Remark 2.1.2 and (4). □

In above associated test, Kcan will beG if P is a prime divisor of

I . Thus, we omit CRT and rational reconstruction as follows. Also,

we minimize the number of prime numbers we use since we can

check the number is large enough comparing with the following

∥G∥. For a finite set G of Q[X], we define

∥G∥ = max{a2+b2 | a
b
is a coefficient in a term of an element of G}.

Corollary 2.2.10 (AssociatedTestwithoutCRT, Algorithm

2). Let I be an ideal and P a prime ideal. Let F and G be Gröbner

bases of I and P respectively. Let P be a finite set of prime numbers.

Suppose every p ∈ P is permissible for F , G and satisfies (Ip (F) :

Ip (G)) = φp ((I (F) : I (G)) ∩ Z(p)[X]). Then, P is a prime divisor of I

if the following conditions hold;

(1) (Ip (F) : (Ip (F) : Ip (G))) = Ip (G) for every p ∈ P,

(2)
∏

p∈P p is larger than ∥G∥.

Proof. Since
∏

p∈P p is larger than coefficients appearing in

G for the rational reconstruction (see Lemma 4.2. in [5]), G is a

Gröbner basis candidate itself andwe can setKcan = G in Theorem

2.2.9. Then, Kcan satisfies all conditions of the theorem. □

Algorithm 2 Associated Test without CRT

Input: F : a Gröbner basis of an ideal I , G: a Gröbner basis of a

prime ideal P , H : a Gröbner basis of (I (F) : I (G)).
Output: True if P is a prime divisor of I

chooseP as a list of randomprimes satisfying primeTest (p ∈ P
is permissible for F , G and H) and

∏
p∈P p > ∥G∥;

RESTART;

while do

for p ∈ P do

if (Ip (F) : (Ip (F) : Ip (G))) , Ip (G) then
delete p from P;

end if

end for

if
∏

p∈P p ≤ ∥G∥ then
enlarge P with prime numbers not used so far and go back

to RESTART;

end if

if (Ip (F) : Ip (G)) = Ip (H) for every p ∈ P then

return True

end if

enlarge P with prime numbers not used so far and go back to

RESTART;

end while

Also, we devise a non-associated test as follows. The test is use-

ful since it does not need a condition (Ip (F) : Ip (G)) = φp ((I (F) :
I (G)) ∩ Z(p)[X]).

Theorem 2.2.11 (Non-Associated Test, Algorithm 3). Let I

be an ideal and P a prime ideal. Let F andG be Gröbner bases of I and

P respectively. Supposep is permissible for F andG. LetKcan ⊂ Q[X]
and we assume p is permissible for Kcan . Then, P is not a prime

divisor of I if the following conditions hold;

(1) φp (Kcan) is a Gröbner basis of (Ip (F) : (Ip (F) : Ip (G))) with
respect to ≺,

(2) Kcan ⊂ (I : (I : P)),
(3) (Ip (F) : (Ip (F) : Ip (G))) , Ip (G).

Proof. Suppose P is a prime divisor of I . Then, (I : (I : P)) = P

from Remark 2.1.2 and

φp (Kcan) ⊂ φp ((I : (I : P)) ∩ Z(p)[X])
⊂ φp (P ∩ Z(p)[X]) = I0p (G) = Ip (G).

Since ⟨φp (Kcan)⟩ = (Ip (F) : (Ip (F) : Ip (G))) ⊃ Ip (G), we obtain
(Ip (F) : (Ip (F) : Ip (G)) = Ip (G). This contradicts (Ip (F) : (Ip (F) :
Ip (G))) , Ip (G). □

269

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Yuki Ishihara

Algorithm 3 Non-Associated Test

Input: F : a Gröbner basis of an ideal I , G: a Gröbner basis of a

prime ideal P , H : a Gröbner basis of (I (F) : I (G)).
Output: False if P is NOT a prime divisor of I

choose P as a list of random primes satisfying primeTest;

KP = ∅;
while do

for p ∈ P do

compute Kp = (Ip (F) : (Ip (F) : Ip (G)));
if (Ip (F) : (Ip (F) : Ip (G))) = Ip (G) then

delete p from P;

else

KP = KP ∪ {Kp };
end if

end for

(KPlucky ,Plucky) = deleteUnluckyPrimes(KP,P);
lift KPlucky to Kcan by CRT and rational reconstruction;

if I (Kcan)I (H) ⊂ I then

return False

end if

enlarge P with prime numbers not used so far;

end while

Next, we consider modular saturation. Since (I : Jm) = (I : J∞)
for a sufficiently largem, the following holds from Lemma 2.2.6.

Lemma 2.2.12. Suppose that a prime number p is compatible with

(F ,≺) and permissible for (G,≺). For a finite subset Hcan ⊂ Q[X],
Hcan is a Gröbner basis of (I (F) : I (G)∞) with respect to ≺, if the
following conditions hold;

(1) p is permissible for (Hcan ,≺),
(2) φp (Hcan) is a Gröbner basis of (Ip (F) : Ip (G)∞) with respect

to ≺,
(3) Hcan ⊂ (I (F) : I (G)∞).
To check Hcan ⊂ (I (F) : I (G)∞), we can use the following.

Lemma 2.2.13. Let Hcan , F and G be finite sets of K[X]. For G =
{ f1, . . . , fk } and a positive integer m, we denote { fm

1
, . . . , fm

k
} by

G[m]. Then, the following conditions are equivalent.
(A) Hcan ⊂ (I (F) : I (G)∞),
(B) I (Hcan)I (G)m ⊂ I (F) for somem,

(C) I (Hcan)I (G[m]) ⊂ I (F) for somem.

Proof. [(A) ⇒ (B)] This is obvious from the definition of (I (F) :
I (G)∞). [(B) ⇒ (C)] Since I (G[m]) ⊂ I (G)m , I (Hcan)I (G[m]) ⊂
I (Hcan)I (G)m ⊂ I (F). [(C) ⇒ (A)] As I (G)km ⊂ I (G[m]), we ob-
tain I (Hcan)I (G)km ⊂ I (Hcan)I (G[m]) ⊂ I (F) and Hcan ⊂ (I (F) :
I (G)∞). □

Since the number of generators of I (G[m]) is less than that of

I (G)m , it is better to check whether I (Hcan)I (G[m]) ⊂ I (F) or not.
Finally, we introduce modular techniques for double saturation.

Theorem 2.2.14. Suppose that a prime number p is compatible

with (F ,≺) and permissible for (G,≺). Assume p satisfies (Ip (F) :

Ip (G)∞) = φp ((I (F) : I (G)∞) ∩ Z(p)[X]). For a finite subset Kcan ⊂
Q[X], Kcan is a Gröbner basis of (I (F) : (I (F) : I (G)∞)∞) with re-

spect to ≺ if the following conditions hold;

(1) p is permissible for (Kcan ,≺),
(2) φp (Kcan) is a Gröbner basis of (Ip (F) : (Ip (F) : Ip (G)∞)∞)

with respect to ≺,
(3) Kcan ⊂ (I (F) : (I (F) : I (G)∞)∞).

Proof. For a sufficiently large integerm, (I (F) : I (G)∞) = (I (F) :
I (G)m) and (Ip (F) : Ip (G)∞) = (Ip (F) : Ip (G)m). Thus, we can

prove this by the similar way of Theorem 2.2.8. □

2.3 Intermediate primary decomposition

In this section, we introduce intermediate primary decomposition

as a bi-product of modular localizations devised in Section 2.2. We

give a rough outline of possible "intermediate primary decomposi-

tion via MIS". In general, modular primary decomposition is very

difficult to compute since primary component may be different

over infinite many finite fields. For example, I = (x2+1)∩(x +1) is
a primary decomposition in Q[X], however, it is not one in Fp [X]
for every prime number p of type p = 4n + 1. Thus, we propose

intermediate primary decomposition via MIS instead of full primary

decomposition. For a subset of variables X and an ideal I , we call

U a maximal independent set (MIS) of I if K[U] ∩ I = {0} (see

Definition 3.5.3 in [10]). Then, for a subsetU ⊂ X , we define

AssU (Ip (F)) = {P̄p ∈ Ass(Ip (F)) | U is a MIS of P̄p }.
where p is permissible for F . Also, we denote the set of prime di-

visors of I which have the same MISU by

AssU (I) = {P ∈ Ass(I) | U is a MIS of P}.
We note that U is a MIS of I (F) if U is one of the initial ideal

in≺(I (F)) (see Exercise 3.5.1 in [10]). Thus, if p is effective lucky

for (F ,≺) and U is a MIS of in≺(I (F)) then U is also a MIS of I (F)
and Ip (F). Here, we define intermediate primary decomposition in

general setting as follows (a certain generalization of one in [19]).

Definition 2.3.1. Let I be an ideal. Then, a set of ideals Q is

called an intermediate primary decomposition (IPD) of I if

(a) for all Q ∈ Q, Ass(Q) ⊂ Ass(I),
(b)

∩
Q ∈Q Q = I .

We callQ ∈ Q an intermediate primary component of I . In particular,

when there is a subset U of X s.t. Ass(Q) = AssU (I), we call Q an

intermediate component of I viaU .

We remark that
∪
Q ∈Q Ass(Q) = Ass(I). For computing inter-

mediate primary decomposition, the following Corollary is very

useful to generate prime divisors.

Corollary 2.3.2. Let F be a Gröbner basis of I and p a permissi-

ble prime number for F . LetU be a subset ofX such thatAssU (Ip (F))
is not empty, and H̄ a Gröbner basis of J̄ =

∩
Pp ∈AssU (Ip (F)) Pp .

Let Hcan be a Gröbner basis candidate constructed from H̄ and J =

I (Hcan). Assume p is permissible for Hcan . Suppose Hcan is a Gröb-

ner basis of J and p is effectively lucky for the reduced Gröbner basis

L of (I : J) with Ip (L) = (Ip (F) : Ip (Hcan)). If J is a prime ideal then

J is a prime divisor of I .

Proof. To apply Theorem 2.2.9 for I and J , we check the con-

ditions. First, since p is effectively lucky for L, p is compatible with

L by Remark 2.2.2. Thus, φp ((I (F) : I (Hcan)) ∩ Z(p)[X]) = I0p (L) =
Ip (L) = (Ip (F) : Ip (Hcan)). From the assumption, p is permissible

270

Modular Techniques for Effective Localization and Double Ideal Quotient ISSAC ’20, July 20–23, 2020, Kalamata, Greece

for Hcan . As Ip (Hcan) = J̄ is an intersection of prime divisors of

Ip (F), it follows that (Ip (F) : (Ip (F) : Ip (Hcan)) = Ip (Hcan) by
Theorem 2.1.4. Thus, φp (Hcan) = H̄ is a Gröbner basis of (Ip (F) :
(Ip (F) : Ip (Hcan)). It is obvious that Hcan ⊂ J . Hence, all condi-

tions in Theorem 2.2.9 hold and thus J is a prime divisor of I . □

When J is not prime, we can check the radicality of J by the

following lemma. For any effectively lucky p for Hcan , if ⟨H̄ ⟩ is
radical then ⟨Hcan⟩ is also radical.

Lemma 2.3.3 ([16], Lemma 6.7). Suppose that Hcan is the output

of our CRT modular computation, that is, it satisfies the following:

(1) p is permissible for (Hcan ,≺),
(2) φp (Hcan) coincides with the reduced Gröbner basis of

√
Ip (F)

(3) Hcan ⊂
√
I (F)

Then Hcan is the reduced Gröbner basis of
√
I (F) with respect to ≺.

We can extend Corollary 2.3.2 to intersection of prime divisors

by using Theorem 2.1.4 as Proposition 2.3.4.We can ensure that the

lifted ideal I (Hcan) is radical from Lemma 2.3.3 and an intersection

of prime divisors I from Theorem 2.1.4 and Theorem 2.2.8.

Proposition 2.3.4. Under the conditions of Corollary 2.3.2 (ex-

cept the primality of J), if J is a radical ideal then J is some intersec-

tions of prime divisors of I .

We note that, if AssU (Ip (F)) consist of one prime, that is, J̄ is

prime, then we check if J is prime or not more easily. Moreover,

if AssU (Ip (F)) consists of two prime ideals P̄1 and P̄2 and then we

combine those prime divisors and apply the criterion for radical to

the lifting of P̄1 ∩ P̄2. We also make the same argument for P̄1 ∩
P̄2 ∩ P̄3, P̄1 ∩ P̄2 ∩ P̄3 ∩ P̄4 and so on.

Example 2.3.5. Let I = (x) ∩ (x3,y) ∩ (x2 + 1) Let F = {x3y +
xy,x5 + x3} be the reduced Gröbner basis of I . We consider two

prime numbers p = 3, 5. Then, Ass(I3(F)) = {(x), (x ,y), (x2 + 1)}
and Ass(I5(F)) = {(x), (x ,y), (x + 2), (x + 3)}. For U1 = {y} and

U2 = ∅, AssU1
(I3(F)) = {(x), (x2 + 1)} and AssU2

(I3(F)) = {(x ,y)}.
Similarly, AssU1

(I5(F)) = {(x), (x + 2), (x + 3)} and AssU2
(I5(F)) =

{(x ,y)}. For Jp (U) = ∩
Pp ∈AssU (Ip (F)) Pp , it follows that J3(U1) =

(x3 + x), J5(U1) = (x3 + x), J3(U2) = (x ,y) and J5(U2) = (x ,y). By
using CRT, we may compute radicals of intermediate primary com-

ponents Jcan (U1) = (x3+x) and Jcan (U2) = (x ,y). Finally, we obtain
an intermediate primary decomposition {(x3 + x), (x3,y)} of I from
Lemma 2.1.7 and Theorem 2.1.11.

Finally, we sketch an outline of intermediate primary decompo-

sition via MIS as follows. Its termination comes from the finiteness

of unlucky primes for computation of associated prime divisors

and primary components.

Intermediate Primary Decomposition via MIS

Input: F : a Gröbner basis of an ideal I .

Output: {Q(U)}: an IPD via MIS of I .

(Step 1) choose P as a list of random primes satisfying primeTest

(Step 2) compute Ass(Ip (F)) for p ∈ P and choose a set of MISs U
from Ass(Ip (F))

(Step 3) compute Jp (U) = ∩
Pp ∈AssU (Ip (F)) Pp for each U ∈ U and

let JP(U) = JP(U) ∪ {Jp (U)}
(Step 4) delete unlucky p for JP(U) and obtain JPlucky (U)

(Step 5) liftJPlucky (U) to Jcan (U) byCRT and rational reconstruc-

tion. If Jcan (U) is unmixed then go to Step 6; otherwise

RESTART

(Step 6) if Jcan (U) passes finalTest (Proposition 2.3.4) then go to

Step 7: otherwise RESTART

(Step 7) compute an intersection of primary components Q(U) by
hull(I + Jcan (U)m) (Lemma 2.1.7 and 2.1.9) or hull((I : (I :

Jcan (U)∞)∞)) (Theorem 2.1.11) for isolated cases

(Step 8) if
∩
U ∈U Q(U) = I then return {Q(U)}; otherwise RESTART

RESTART: enlarge P with prime numbers not used so far and go

back to Step 2

3 EXPERIMENTS

In this section, we see some naive experiments on Singular [6].

Timings (in seconds) are measured in real time and on a PC with

Intel Core i7-8700B CPU with 32GB memory. We see several ex-

amples with intermediate coefficient growth. The source code for

several algorithms (modQuotient, modSat and modDiq) is open in

https://github.com/IshiharaYuki/moddiq.

To implement modular algorithms for (double) ideal quotient

and saturation, we use the library modular.lib. A function modular

returns a candidate frommodular computations by CRT and ratio-

nal reconstruction. As the optional arguments, the function has

primeTest, deleteUnluckyPrimes, pTest and finalTest. In this

paper, we implemented primeTest, pTest and finalTest for ideal

quotient and saturation. Also, we use Singular implemented func-

tions quotient and sat to compute (I : J) and (I : J∞) respectively
(about computations of ideal quotient and saturation, see [10]). We

explain some details of our implementations. First, modQuotient

computes ideal quotient by modular techniques based on Lemma

2.2.6. Second, modSat computes saturation by modular techniques

based on Lemma 2.2.12 and Lemma 2.2.13. Third, diq computes

double ideal quotient by using quotient twice and modDiq com-

putes double ideal quotient based on Theorem 2.2.8. The func-

tion modDiq uses modQuotient to check the condition that (Ip (F) :
Ip (G)) = φp ((I (F) : I (G)) ∩ Z(p)[X]) and Kcan ⊂ (I (F) : (I (F) :

I (G))) in Theorem 2.2.8. Of course, we can compute double ideal

quotient by using modQuotient twice.

Here, we use the degree reverse lexicographical ordering (dp on

Singular) .We tested our implementation by "cyclic ideal", where

cyclic(n) is defined in Q[x1, . . . ,xn] (see the definition in [4]). We

let P1 = (−15x5 + 16x36 − 60x2
6
+ 225x6 − 4, 2x2

5
− 7x5 + 2x

2

6
− 7x6 +

28, (4x6−1)x5−x6+4, 4x1+x5+x6, 4x2+x5+x6, 4x3+x5+x6, 4x4+
x5+x6) and P2 = (x2

2
+4x2+1,x1+x2+4,x3−1,x4−1,x5−1,x6−1) be

prime divisors of cyclic(6). LetQ1 = ((−15x5+16x36−60x
2

6
+225x6−

4)2, (2x2
5
−7x5+2x26−7x6+28)

2
, (4x6−1)x5−x6+4, 4x1+x5+x6, 4x2+

x5 +x6, 4x3 +x5 +x6, 4x4 +x5 +x6) be a P1-primary ideal. Also, we

let I1 = (8x2y2+5xy3+3x3z+x2yz,x5+2y3z2+13y2z3+5yz4, 8x3+
12y3 + xz2, 7x2y4 + 18xy3z2 + y3z3) be a modification of an ideal

appeared in [3] and I2 = (xw11 − yw10,yw12 − zw11,−w11w20 +

w21w10,−w21w12+w22w11) beA2,3,3 (see [20]). As inputs, we used

their Gröbner bases.

In Table 1, we can see that modQuotient is very effective for

computation of such ideals. In table 2, we compare timings of com-

putations of saturation in each method. To consider ideals with

non-prime components, we take an intersection or products of

271

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Yuki Ishihara

ideals. We can see that modSat is very effective even when multi-

plicities of target primary components are large. In table 3, we see

results of prime divisors checks by double ideal quotient in each

method. We can see that modular methods "double modQuotient"

and modDiq are very efficient, comparing with the rational diq. In

almost cases in the table, modDiq is faster than modQuotient since

the final test (Theorem 2.2.8) may have some effectiveness for ef-

ficient computations.

As a whole, we examined the efficiency of modular techniques

for ideal quotients by computational experiments.

ideal quotient quotient modQuotient

(cyclic(6) : P1) 35.0 11.2
(cyclic(6) : P2) 15.1 7.65

(I 2
1
: I1) 7.80 0.32

(I 3
1
: I1) 255 7.67

(I 4
1
: I1) 2137 68.8

(I1I2 : I2) 0.88 0.72

Table 1: Ideal quotient

saturation sat modSat

((cyclic(6) ∩Q1) : P∞1) 86.9 16.4

(I1I 22 : I∞
2
) 1264 21.9

((I1 · (x100, xy)) : (x, y)∞) 0.33 0.13

((I1 · (x500, xy)) : (x, y)∞) 27.3 1.18

((I1 · (x1000, xy)) : (x, y)∞) 201 4.25

Table 2: Saturation

[ideal, prime divisor] diq double modQuotient modDiq

[cyclic(6), P1] 37.0 28.9 17.8
[cyclic(6), P2] 15.3 9.36 11.3

[I 3
1
, (x, y)] 13.1 8.96 5.32

[I 4
1
, (x, y)] 254 81.7 41.4

[I 2
1
I2, (x, y, z)] 143 80.7 29.1

Table 3: Double ideal quotient

4 CONCLUSION AND REMARKS

In this paper, we apply modular techniques to effective localization

and double ideal quotient. Double ideal quotient and its variants

are used to prime divisor check and generate primary component.

Modular techniques can avoid intermediate coefficient growth and

thus we can compute double ideal quotient and its variants effi-

ciently. We also devise new algorithms for modular prime divisor

check and intermediate primary decomposition. We have already

implemented modQuotient, modSat and modDiq on Singular, and

we can see that modular techniques are very effective for several

examples in experiments.

We are on the way to implement Associated Check (Algorithm

2, 3) and complete an efficient algorithm of Intermediate Primary

Decomposition via MIS. In particular, we can expect that Algo-

rithm 2will also be efficient for exampleswe see in the experiments

of modDiq. Combining Algorithm 2 and Algorithm 3, we may have

a new test for prime divisors as follows. First, we choose a list of

random primes P and check (Ip (F) : (Ip (F) : Ip (G))) = Ip (G) for
each p ∈ P, where I (F) is an ideal and I (G) is a prime ideal as in-

puts. Second, if prime numbers s.t. (Ip (F) : (Ip (F) : Ip (G))) = Ip (G)
aremajority thenwe go toAlgorithm 2; otherwise, go to Algorithm

3. Finally, we continue to enlarge P until we pass the associated

test (Corollary 2.2.10) or the non-associated test (Theorem 2.2.11).

Also, we can compute a Gröbner basis of (I (F) : I (G)) at the same

time during the algorithms.

As our future work, we continue to improve the implementa-

tions and extend experiments to other examples. Also, we are think-

ing about intermediate primary decomposition in another way e.g.

by double saturation.

ACKNOWLEDGEMENTS

This work has been advanced during the author’s research stay

at Technische Universität Kaiserslautern, supported by Overseas

Challenge Program for Young Researchers of Japan Society for the

Promotion of Science. The author is very grateful to the Singu-

lar team for fruitful discussions and kind hospitality there. In par-

ticular, he is very thankful to Wolfram Decker and Hans Schöne-

mann for helpful advice of modular techniques and programming

on Singular at Kaiserslautern. He appreciates the kind support

of the computational facility by Masayuki Noro. He would like to

thank his supervisor, Kazuhiro Yokoyama, for constructive com-

ments and suggestions for the paper.

REFERENCES
[1] Atiyah, M.F., MacDonald, I.G.: Introduction to Commutative Algebra. Addison-

Wesley Series in Mathematics. Avalon Publishing, New York (1994)
[2] Afzal, D., Kanwal, F., Pfister, G., Steidel, S.: Solving via Modular Methods. In:

Bridging Algebra, Geometry, and Topology, Springer Proceedings in Mathemat-
ics & Statistics, vol. 96, 1-9 (2014)

[3] Arnold, E.: Modular algorithms for computing Gröbner bases. J. Symb. Comput.
35, 403-419 (2003)

[4] Backelin, J., Fröberg, R. How we prove that there are exactly 924 cyclic 7-roots.
In: Proceedings of ISSAC 91, ACM Press, 103-111 (1991)

[5] Böhm, J., Decker, W., Fieker, C., Pfister, G.: The use of bad primes in rational
reconstruction. Math. Comput. 84, 3013-3027 (2015)

[6] Decker,W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 4-1-2—A com-
puter algebra system for polynomial computations. http://www.singular.uni-
kl.de (2019).

[7] Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decom-
position. Inventi. Math.110 (1), 207-235 (1992)

[8] Gräbe, H.: On lucky primes. J. Symb. Comput. 15, 199-209 (1993)
[9] Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition

of polynomial ideals. J. Symb. Comput. 6(2), 149-167 (1988)
[10] Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra.

Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04963-1
[11] Idrees, N., Pfister, G., Steidel, S.: Parallelization of modular algorithms. J. Symb.

Comput. 46, 672-684 (2011)
[12] Ishihara Y., Yokoyama K.: Effective Localization Using Double Ideal Quotient

and Its Implementation. In: Computer Algebra in Scientific Computing CASC
2018, LNCS, vol. 11077, Springer, pp.272-287 (2018)

[13] Kawazoe, T., Noro, M.: Algorithms for computing a primary ideal decomposi-
tion without producing intermediate redundant components. J. Symb. Comput.
46(10), 1158-1172 (2011)

[14] Matzat, B.H., Greuel, G.-M., Hiss, G.: Primary decomposition: algorithms and
comparisons. In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra
and Number Theory, pp. 187-220. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-59932-3

[15] Noro,M.:Modular algorithms for computing a generating set of the syzygymod-
ule. In: Computer Algebra in Scientific Computing CASC 2009, LNCS, vol. 5743,
pp. 259-268. Springer (2009)

[16] Noro, M., Yokoyama, K. Usage of Modular Techniques for Efficient Computation
of Ideal Operations. Math.Comput.Sci. 12(1): 1-32, (2018)

[17] Pauer, F.: On lucky ideals for Gröbner bases computations. J. Symb. Comput. 14,
471-482 (1992)

[18] Pfister, G.: Onmodular computation of standard basis. Anal. Stiint. Univ. Ovidius
Constanta 15, 129-138 (2007)

[19] Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of poly-
nomial ideals. J. Symb. Comput. 22(3), 247-277 (1996)

[20] Sturmfels, B.: Solving systems of polynomial equations. In: CBMS Regional Con-
ference Series. American Mathematical Society, no. 97 (2002)

[21] Vasconcelos, W.: Computational Methods in Commutative Algebra and Alge-
braic Geometry. Algorithms and Computation in Mathematics. Springer, Hei-
delberg (2004)

272

How Many Zeros of a Random Sparse Polynomial Are Real?

Gorav Jindal
gorav.jindal@gmail.com

Department of Computer Science, Aalto University
Espoo, Finland

Anurag Pandey
apandey@mpi-inf.mpg.de

Max Planck Institut für Informatik,
Saarland Informatics Campus

Saarbrücken, Germany

Himanshu Shukla
hshukla.math04@gmail.com

Max Planck Institut für Informatik,
Saarland Informatics Campus

Saarbrücken, Germany

Charilaos Zisopoulos
zisopoulos@cs.uni-saarland.de

Department of Computer Science, Saarland University,
Saarland Informatics Campus

Saarbrücken, Germany

ABSTRACT

We investigate the number of real zeros of a univariate 𝑘-sparse

polynomial 𝑓 over the reals, when the coefficients of 𝑓 come from

independent standard normal distributions. Recently Bürgisser,

Ergür and Tonelli-Cueto showed that the expected number of

real zeros of 𝑓 in such cases is bounded by 𝑂 (
√
𝑘 log𝑘). In this

work, we improve the bound to 𝑂 (
√
𝑘) and also show that this

bound is tight by constructing a family of sparse support whose

expected number of real zeros is lower bounded by Ω(
√
𝑘). Our

main technique is an alternative formulation of the Kac integral by

Edelman-Kostlan which allows us to bound the expected number of

zeros of 𝑓 in terms of the expected number of zeros of polynomials

of lower sparsity. Using our technique, we also recover the𝑂 (log𝑛)
bound on the expected number of real zeros of a dense polynomial

of degree 𝑛 with coefficients coming from independent standard

normal distributions.

CCS CONCEPTS

· Theory of computation→Algebraic complexity theory;

· Mathematics of computing→ Continuous functions.

KEYWORDS

Sparse Polynomials, Real Tau conjecture, Random polynomials

ACM Reference Format:

Gorav Jindal, Anurag Pandey, Himanshu Shukla, and Charilaos Zisopoulos.

2020. How Many Zeros of a Random Sparse Polynomial Are Real?. In

International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3373207.3404031

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404031

1 INTRODUCTION

Understanding the number of real zeros of a given real univariate

polynomial has always been of interest, both from a theoretical as

well as an application point of view in science, engineering and

mathematics.

1.1 Zeros of Sparse Polynomials

A lot of the polynomials that we encounter in applications are

sparse, i.e., their degree is considerably larger than their number

of monomials. This motivates studying the question for the sparse

polynomials. Descartes’ famous rule of signs from the 17th century

[6] already sheds some light by bounding the number of non-zero

real zeros of a 𝑘-sparse 𝑓 ∈ R[𝑥] 1 by 2𝑘 −2. There are polynomials

which achieve this bound too. Having some understanding on the

number of real roots of 𝑘-sparse polynomials, it makes sense to ask

the same question for generalizations.

In this spirit, Kushnirenko initiated a systematic study of the

number of real zeros of systems of multivariate sparse polynomial

equations. He coined the term "fewnomials" for sparse polynomials

andmade a series of hypotheses connecting the number of real zeros

of a system of multivariate polynomial equations to the complexity

of symbolic description of the same system. We refer the readers to

a letter [17] which he wrote to Frank Sottile telling about the story

of the genesis of this study. Since the formulation of the hypotheses

in late 1970s, there has been a lot of work on bounding the number

of real zeros of a system of sparse polynomials, most notably [1]

and [10]. See [24] and [9] for surveys on the topic.

In the setting of a single univariate polynomial, however, our

understanding seems very limited. For instance, if we consider the

first non-trivial generalization, i.e. if we consider polynomials of

the form 𝑓 𝑔 + 1, where 𝑓 and 𝑔 are both 𝑘-sparse, to the best of our

knowledge, no bound better than the one given by Descartes’ rule

of sign is known. In particular, no sub-quadratic bound is known.

We also do not know of any example where the number of real

roots of 𝑓 𝑔 + 1 is super-linear in 𝑘 .

1throughout this article, polynomials considered are over reals and have degree 𝑛 with
𝑛 >> 𝑘 .

273

https://doi.org/10.1145/3373207.3404031
https://doi.org/10.1145/3373207.3404031

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jindal, Pandey, Shukla, and Zisopoulos

1.2 Connections to algebraic complexity

theory: Real Tau Conjecture

Koiran [14] provided a strong motivation for computer scientists

to consider generalizations like the ones above in 2011, when he

considered the number of real zeros of the sum of products of sparse

polynomials. He formulated the real 𝜏-conjecture claiming that if a

polynomial is given as

𝑓 =

𝑚∑
𝑖=1

𝑡∏
𝑗=1

𝑓𝑖 𝑗

where all 𝑓𝑖 𝑗 ’s are 𝑘-sparse, then the number of real zeros of 𝑓 is

bounded by a polynomial in 𝑂 (𝑚𝑘𝑡). Thus the conjecture claims

that a univariate polynomial computed by a depth-4 arithmetic

circuit (see [21, 22] for background on arithmetic circuits) with the

fan-in of gates at the top three layers being bounded by𝑚, 𝑡 and

𝑘 respectively will have 𝑂 ((𝑚𝑘𝑡)𝑐) real zeros for some positive

constant 𝑐 . Notice that applying Descartes’ bound only gives an

exponential bound on the number of real zeros of 𝑓 , since a-priori

the sparsity bound that we can achieve for 𝑓 is only 𝑂 (𝑚𝑘𝑡).
What is of particular interest is the underlying connection of this

conjecture to the central question of algebraic complexity theory.

Koiran showed that the conjecture implies a superpolynomial lower

bound on the arithmetic circuit complexity of the permanent, hence

establishing the importance of the question of understanding real

roots of sparse polynomials from the perspective of theory of

computation as well. In fact this connection is what inspired the

authors to investigate the problems considered in this article.

The real 𝜏-conjecture itself was inspired by the Shub and Smale’s

𝜏-conjecture [23] which asserts that the number of integer zeros

of a polynomial with arithmetic circuit complexity bounded by 𝑠

will be bounded by a polynomial in 𝑠 . This conjecture also implies

a superpolynomial lower bound on the arithmetic circuit size of

the permanent [4] and also implies PC ≠ NPC in the Blum-Shub-

Smale model of computation (see [2, 23]). Koiran’s motivation was

to connect the complexity theoretic lower bounds to the number of

real zeros instead of the number of integer zeros, because the latter

takes one to the realm of number theory where problems become

notoriously hard very quickly.

While the real 𝜏-conjecture remains open (see [11, 15, 16] for

some works towards it), Briquel and Bürgisser [3] showed that the

conjecture is true in the average case, i.e. they show that when

the coefficients involved in the description of 𝑓 are independent

Gaussian random variables, then the expected number of real zeros

of 𝑓 is bounded by 𝑂 (𝑚𝑘2𝑡).

1.3 Zeros of random sparse univariate

polynomials

In order to gain a better understanding of the behavior of the

number of real zeros for sparse polynomials and its generalizations,

we study the case of a single univariate sparse random polynomial.

In this article, we only consider the case when the coefficients

are identically distributed independent standard normal random

variables.

With respect to this consideration, the dense case, where there

are no restrictions on the sparsity, thus we have a polynomial 𝑓 of

degree 𝑛 with all its 𝑛 + 1 coefficients as standard normal random

variables, has been extensively studied and is well understood. It

has been considered among others by Littlewood, Offord, Erdős,

Kac, Edelman, Kostlan for various distribution since the 30s (see for

instance [7, 8, 12, 18]). For this article, the works in [7, 12] are most

relevant, since it was Kac [12] who showed the first𝑂 (log𝑛) bound
for the expected number of real zeros for the dense case when

the coefficients are standard normal random variables. It seems

very surprising that there are so few real zeros in the random case.

Edelman and Kostlan [7] gave an alternative, simpler derivation for

the same bound, in addition to providing essential insights to the

integral and numerous generalizations in a variety of cases.

In the sparse case, there is a line of work considering the case

of the multivariate system of random equations (for instance see

[13, 19, 20]). However their focus is different and we are not aware

of any useful adaptations to the univariate case. In fact, we do not

know of any such progress until the recent work of Bürgisser, Ergür

and Tonelli-Cueto [5] which showed that for a random 𝑘-sparse

univariate polynomial, the expected number of real roots in the

standard normal case, is bounded by 4
𝜋

√
𝑘 log𝑘 , where the base of

the logarithm is 𝑒 , as will be everywhere else in this article unless

stated otherwise. Thus they show that in this setting, the number

of real zeros is much less than the Descartes bound.

Before we state our results we set up some notations. Consider

a set 𝑆 = {𝑒1, . . . , 𝑒𝑘 } ⊆ N of natural numbers. For such a set 𝑆 , one

asks how many roots (in expectation) of the random polynomial

𝑓𝑆 =
∑𝑘
𝑖=1 𝑎𝑖𝑥

𝑒𝑖 (here 𝑎𝑖 ’s are independent standard normals) are

real. For an open interval 𝐼 ⊆ R, we use 𝑧𝐼
𝑆
to denote the expected

number of roots of 𝑓𝑆 in 𝐼 . To avoid some degeneracy issues, we

always assume 0 ∉ 𝐼 , this assumption allows us to assume that the

smallest element of 𝑆 is zero. In this paper, we are only concerned

with the case when 𝐼 = (0, 1). See Remark 1 on why this is sufficient.

When 𝐼 = (0, 1), we simply use 𝑧𝑆 to denote 𝑧𝐼
𝑆
.

Our main contribution is the improvement on the bound on the

expected number of real zeros of a random 𝑘-sparse polynomial 𝑓

and proving that this is the best one can do.

Theorem 1. Let 𝑆 ⊆ N be any set as above with | 𝑆 |= 𝑘 , then we

have 𝑧𝑆 ≤ 2
𝜋

√
𝑘 − 1.

Remark 1. Since our bound in Theorem 1 only depends on the size

of 𝑆 , and not on the structure of 𝑆 , we get that 𝑧R
∗

𝑆
= 4𝑧

(0,1)
𝑆

. For

𝑆 = {𝑒1, . . . , 𝑒𝑘 }, 𝑧
(1,∞)
𝑆

is equal to 𝑧
(0,1)
𝑆′ for 𝑆 ′ = {𝑛−𝑒1, . . . , 𝑛−𝑒𝑘 }

by replacing 𝑥 by 1
𝑥 and multiplying by 𝑥𝑛 , where 𝑛 is the degree

of 𝑓𝑆 . Also 𝑧
(−∞,0)
𝑆

= 𝑧
(0,∞)
𝑆

by replacing 𝑥 by −𝑥 .

Theorem 2. There exists a sequence of sets 𝑆𝑘 ⊂ N with |𝑆𝑘 | = 𝑘 +2
such that for 𝑘 ≥ 3, 𝑧𝑆𝑘 ≥ 𝜋−

√
3

16𝜋

√
𝑘 + 1

7 .

Theorem 2 shows that the bound obtained in Theorem 1 is tight

and cannot be reduced further for an arbitrary, in terms of just the

size of 𝑆 , 𝑆 ⊂ N.
Using our techniques, we confirm the intuition from the dense

case that in expectation, all the roots are concentrated around 1

i.e. for any small constant 𝜖 > 0, the expected number of roots in

(0, 1 − 𝜖) is bounded by a constant independent of 𝑛 and 𝑘 .

274

How Many Zeros of a Random Sparse Polynomial Are Real? ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Theorem 3. For a fixed 𝜖 > 0 and any 𝑆 ⊆ N as above, we have

𝑧
(0,1−𝜖)
𝑆

≤ 1

2𝜋

(
log

(
2

𝜖

)
+ 4
√
𝜖
− 4

)
.

1.4 Proof ideas

Our main technical contribution is an alternative formulation of the

Kac integral by Edelman-Kostlan, that we call the Edelman-Kostlan

integral and is presented in detail in Section 2.

The formulation allows us to bound 𝑧𝑆1⊎𝑆2 in terms of the bounds

on 𝑧𝑆1 and 𝑧𝑆2 (presented in Subsection 2.2). Thus we can build our

𝑘-sparse polynomial monomial-by-monomial. We show that every

time we add a monomial, we do not increase the expected number

of roots by a lot. A careful application of this idea yields the desired

𝑂 (
√
𝑘) bound (presented in Section 3).

We also obtain a bound on 𝑧𝑆1+𝑆2 in terms of 𝑧𝑆1 and 𝑧𝑆2 , where

𝑆1 + 𝑆2 is the set obtained as a result of the addition of elements of

𝑆1 and 𝑆2, that is, the so-called Minkowski sum of sets 𝑆1 and 𝑆2
(presented in Subsection 2.1). Combining the bounds on 𝑧𝑆1+𝑆2 and
𝑧𝑆1⊎𝑆2 allows us to recover the𝑂 (log𝑛) bound for the dense case i.e.
𝑆 = {0, 1, . . . , 𝑛}, where we build up our set 𝑆 as a combination of

unions and Minkowski sums of sets (presented in the full version).

Further, the proof that all the roots are concentrated around

1 follows from the analysis of an approximation of the Edelman-

Kostlan integral. This approximation which is inspired by the one

used in [5] makes the analysis of the integral simpler.

Finally in Section 5, we show that we cannot obtain a better

bound for an arbitrary 𝑆 ⊂ N. We show this by applying the

idea of monomial-wise construction of a polynomial (presented in

Section 2.2) on a carefully chosen monomial sequence, thus proving

Theorem 2.

1.5 Previous work: known bounds on 𝑧𝐼
𝑆

In this subsection, we present the state of the art prior to this work

for 𝑧𝐼
𝑆
.

For 𝑆 = {0, 1, 2, . . . , 𝑛} and 𝐼 = R, 𝑧𝐼
𝑆
is known to be bounded by

𝑂 (log𝑛).
Theorem 4 ([7, 12]). If 𝑆 = {0, 1, 2, . . . , 𝑛} then

𝑧R
∗

𝑆 =
2

𝜋
log(𝑛) +𝐶1 +

2

𝑛𝜋
+𝑂

(
1

𝑛2

)
.

Here 𝐶1 ≈ 0.6257358072

Determining the value of 𝑧𝐼
𝑆
for arbitrary sets 𝑆 remains an open

problem. Towards this the best bound known was the following

result by [5].

Theorem 5 ([5, Theorem 1.3]). Let 𝑆 ⊆ N be any set as above with

| 𝑆 |= 𝑘 then we have

𝑧𝑆 ≤ 1

𝜋

√
𝑘 log(𝑘) .

2 PRELIMINARIES

Since our method builds upon the Edelman-Kostlan method [7] by

a novel approach on analyzing their integral, it is essential to look

at the method. In order to compute 𝑧𝑆 for 𝑆 = {𝑒1, . . . , 𝑒𝑘 }, define a
generalization of the moment curve 𝑣𝑆 as 𝑣𝑆 (𝑡) := (𝑡𝑒1 , 𝑡𝑒2 , . . . , 𝑡𝑒𝑘).
This allows the following expression for 𝑧𝐼

𝑆
:

Theorem 6 ([7], Theorem 3,1). For all sets 𝑆 ⊆ N , we have the

following equality for 𝑧𝐼
𝑆

𝑧𝐼𝑆 =
1

𝜋

∫
𝐼

√
(∥𝑣𝑆 (𝑡)∥2 ·

𝑣 ′
𝑆
(𝑡)

2
)2 − (𝑣𝑆 (𝑡) · 𝑣 ′𝑆 (𝑡))2

(∥𝑣𝑆 (𝑡)∥2)2
d𝑡 . (2.1)

We refer to the above integral as the Edelman-Kostlan integral.

The strength of this method is that the integral is parameterized

by the support 𝑆 and the interval 𝐼 , thus allowing one to estimate

the expected number of real zeros for any such arbitrary support

and interval. In their paper, they compute the integral for 𝑆 =

{0, 1, . . . , 𝑘} and 𝐼 = (0, 1) and for these values show that 𝑧𝐼
𝑆
is

bounded by 𝑂 (log𝑘). However, for arbitrary 𝑆 of cardinality 𝑘 , the

integral becomes quite complicated to analyze.

In [5], they get around this difficulty by upper bounding the

integral. This is achieved by ignoring the negative term of the

numerator and through some elementary norm inequalities leads

to the 𝑂 (
√
𝑘 log𝑘) bound. In order to further improve this bound,

we believe it is necessary to analyze the above integral in new ways.

We now give an alternative formulation of the Edelman-Kostlan

integral on which our proofs build upon.

Definition 1. For a set 𝑆 = {𝑒1, 𝑒2, . . . , 𝑒𝑘 } ⊆ N, we define

𝑔𝑆 (𝑡) := (∥𝑣𝑆 (𝑡)∥2)2 =
𝑘∑
𝑖=1

𝑡2𝑒𝑖

In the following lemma, we show that we can express 𝑧𝐼
𝑆
entirely

in terms of 𝑔𝑆 (𝑡) and its derivatives. Hence we define:

Definition 2. Let 𝑔 : R → R≥0 be differentiable function such

that 𝑔−1 (0) is finite. Define the function I(𝑔) : R→ R,

I(𝑔) :=
(
𝑔′(𝑡)
𝑔(𝑡)

) ′
+ 𝑔′(𝑡)
𝑡𝑔(𝑡) = (log(𝑔(𝑡)))′′ + (log(𝑔(𝑡)))′

𝑡
.

Note that whenever the Edelman-Kostlan integral is well-defined,

the conditions on𝑔whichmakeI(𝑔)well-defined and non-negative
are also satisfied. We now give our alternative formulation.

Lemma 1. For all sets 𝑆 ⊆ N , we have the following equality for 𝑧𝐼
𝑆

𝑧𝐼𝑆 =
1

2𝜋

∫
𝐼

√
I(𝑔𝑆 (𝑡))d𝑡 .

Proof. We can rewrite Equation (2.1) as

𝑧𝐼𝑆 =
1

𝜋

∫
𝐼

√
(𝑔𝑆 (𝑡) · (

𝑣 ′
𝑆
(𝑡)

2
)2 − (𝑣𝑆 (𝑡) · 𝑣 ′𝑆 (𝑡))2

𝑔𝑆 (𝑡)
d𝑡 .

Now note the following equality for 𝑣𝑆 (𝑡) · 𝑣 ′𝑆 (𝑡) .

𝑣𝑆 (𝑡) · 𝑣 ′𝑆 (𝑡) =
𝑘∑
𝑖=1

𝑒𝑖𝑡
2𝑒𝑖−1 =

𝑔′
𝑆
(𝑡)
2

275

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jindal, Pandey, Shukla, and Zisopoulos

We also have the following equality for (
𝑣 ′

𝑆
(𝑡)

2
)2.

(
𝑣 ′𝑆 (𝑡)2)2 =

𝑘∑
𝑖=1

𝑒2𝑖 𝑡
2𝑒𝑖−2 =

1

4

(
𝑘∑
𝑖=1

4𝑒2𝑖 𝑡
2𝑒𝑖−2

)

=
1

4

(
𝑘∑
𝑖=1

((2𝑒𝑖 (2𝑒𝑖 − 1)) + 2𝑒𝑖) · 𝑡2𝑒𝑖−2
)

=
1

4

(
𝑘∑
𝑖=1

(2𝑒𝑖 (2𝑒𝑖 − 1) · 𝑡2𝑒𝑖−2
)
+ 1

4

(
𝑘∑
𝑖=1

2𝑒𝑖 · 𝑡2𝑒𝑖−2
)

=
1

4
𝑔′′𝑆 (𝑡) +

1

4𝑡
𝑔′𝑆 (𝑡).

Therefore we can rewrite 𝑧𝐼
𝑆
as

𝑧𝐼𝑆 =
1

𝜋

∫
𝐼

√√√
1

4

(
𝑔𝑆 (𝑡) · (𝑔′′𝑆 (𝑡) +

1

𝑡 𝑔
′
𝑆
(𝑡)) − (𝑔′

𝑆
(𝑡))2

(𝑔𝑆 (𝑡))2

)
d𝑡

=
1

2𝜋

∫
𝐼

√
𝑔′′
𝑆
(𝑡)

𝑔𝑆 (𝑡)
−

(
𝑔′
𝑆
(𝑡)

𝑔𝑆 (𝑡)

)2
+

𝑔′
𝑆
(𝑡)

𝑡𝑔𝑆 (𝑡)
d𝑡

=
1

2𝜋

∫
𝐼

√(
𝑔′
𝑆
(𝑡)

𝑔𝑆 (𝑡)

) ′
+

𝑔′
𝑆
(𝑡)

𝑡𝑔𝑆 (𝑡)
d𝑡

=
1

2𝜋

∫
𝐼

√
I(𝑔𝑆 (𝑡))d𝑡 . □

The formulation in Definition 2 yields the following lemma:

Lemma 2. For two non-negative functions 𝑔1, 𝑔2 : R → R>0, we

have that
√
I(𝑔1 · 𝑔2) ≤

√
I(𝑔1) +

√
I(𝑔2).

Proof. Consider:

I(𝑔1 · 𝑔2) = (log(𝑔1 (𝑡) · 𝑔2 (𝑡)))′′ +
(log(𝑔1 (𝑡) · 𝑔2 (𝑡)))′

𝑡

= (log(𝑔1 (𝑡)))′′ +
(log(𝑔1 (𝑡)))′

𝑡

+ (log(𝑔2 (𝑡)))′′ +
(log(𝑔2 (𝑡)))′

𝑡
= I(𝑔1) + I(𝑔2) .

Now the claim follows by using the fact that
√
𝑥 + 𝑦 ≤

√
𝑥 + √

𝑦 for

non-negative 𝑥,𝑦. □

Lemma 2 allows us to give a bound on the integral when 𝑆 =

𝑆1 ∗ 𝑆2, where ∗ corresponds to the operation of either union

or Minkowski sum of sets. This bound depends on the integrals

associated to the corresponding sets 𝑆1 and 𝑆2.

2.1 Minkowski sum of sets

In this subsection, we upper bound the number of zeroes 𝑧𝑆 when

𝑆 is the Minkowski sum of two collision-free sets 𝑆 = 𝐴 + 𝐵 by the

sum of the number of zeroes for the two summands.

Definition 3. For sets 𝐴, 𝐵 ⊆ N, we define the Minkowski sum of

𝐴, 𝐵 as: 𝐴 + 𝐵 := {𝑎 + 𝑏 : 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}. We say two sets 𝐴, 𝐵 ⊆ N
are collision-free if | 𝐴 + 𝐵 |=| 𝐴 | · | 𝐵 |=| 𝐴 × 𝐵 |, i.e., when all the

ł𝑎 + 𝑏 : 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵ž are distinct.

Now we show how to apply this definition in the context of the

above formulation of 𝑧𝐼
𝑆
and I(𝑔).

Lemma 3. If 𝑆1, 𝑆2 ⊆ N are two collision-free sets, then 𝑧𝐼
𝑆1+𝑆2 ≤

𝑧𝐼
𝑆1

+ 𝑧𝐼
𝑆2
.

Proof. It is easy to see from the definition of 𝑔𝑆 , when 𝑆1, 𝑆2
are collision-free, we have

𝑔𝑆1+𝑆2 (𝑡) = 𝑔𝑆1 (𝑡) · 𝑔𝑆2 (𝑡)
Therefore we obtain

𝑧𝐼𝑆1+𝑆2 =
1

2𝜋

∫
𝐼

√
I(𝑔𝑆1+𝑆2 (𝑡))d𝑡 =

1

2𝜋

∫
𝐼

√
I(𝑔𝑆1 (𝑡) · 𝑔𝑆2 (𝑡))d𝑡

≤ 1

2𝜋

∫
𝐼

√
I(𝑔𝑆1 (𝑡))d𝑡 +

1

2𝜋

∫
𝐼

√
I(𝑔𝑆2 (𝑡))d𝑡

= 𝑧𝐼𝑆1
+ 𝑧𝐼𝑆2

.

, where the last inequality follows from Lemma 2. □

2.2 Union of sets

In this subsection, we provide an upper bound for another set

operation on the support 𝑆 . Specifically, we want to find upper

bounds for 𝑧𝑆1⊎𝑆2 , here 𝑆1 ⊎ 𝑆2 denotes the disjoint union of 𝑆1 and

𝑆2. First we state the following proposition which is easy to verify.

Proposition 1. If 𝑆1, 𝑆2 ⊆ N are two disjoint sets then 𝑔𝑆1⊎𝑆2 (𝑡) =
𝑔𝑆1 (𝑡) + 𝑔𝑆2 (𝑡).

We need the following definition to give our result for expressing

𝑧𝑆1⊎𝑆2 in terms of 𝑧𝑆1 and 𝑧𝑆2 .

Definition 4. Let 𝑆1, 𝑆2 ⊆ N be two disjoint sets with
(
𝑔𝑆1
𝑔𝑆2

) ′
≥ 0

at zero. Let 𝑐1, . . . , 𝑐𝑚 (with 𝑐𝑖 ≤ 𝑐𝑖+1) be the critical points of odd
multiplicity of

𝑔𝑆1
𝑔𝑆2

in (0, 1). Define 𝑐0 := 0 and 𝑐𝑚+1 := 1. We define

the following quantities, here 0 ≤ 𝑖 ≤ 𝑚 and 𝑐 ∈ (0, 1).

𝛾𝑆1,𝑆2 (𝑐) =

√
𝑔𝑠1 (𝑐)
𝑔𝑠2 (𝑐)

𝑇 𝑖
𝑆1,𝑆2

:= (−1)𝑖
(
arctan(𝛾𝑆1,𝑆2 (𝑐𝑖+1)) − arctan(𝛾𝑆1,𝑆2 (𝑐𝑖))

)
𝑅𝑆1,𝑆2 :=

𝑚∑
𝑖=0

𝑇 𝑖
𝑆1,𝑆2

.

We also state a basic easy to verify technical proposition which

will be useful in the proof of the main theorem.

Proposition 2. The following identity is true for all 𝑎, 𝑏, 𝑐, 𝑑 :

(𝑎 + 𝑐
𝑏 + 𝑑

)2
=

(
𝑏

𝑏 + 𝑑

) (𝑎
𝑏

)2
+

(
𝑑

𝑏 + 𝑑

) (𝑐
𝑑

)2
− 1

𝑏𝑑

(
𝑏𝑐 − 𝑎𝑑

𝑏 + 𝑑

)2
.

We may now state the key result of this section.

Lemma 4. Let 𝑆1, 𝑆2 ⊆ N be two disjoint sets. Assume that
(
𝑔𝑆1
𝑔𝑆2

) ′
is non-negative at zero. Note that at least one of

(
𝑔𝑆1
𝑔𝑆2

) ′
and

(
𝑔𝑆2
𝑔𝑆1

) ′
is non-negative at zero. Thus, we can always rename accordingly 𝑆1
and 𝑆2 to ensure this is the case. Then we have

𝑧𝑆1⊎𝑆2 ≤ 𝑧𝑆1 + 𝑧𝑆2 +
1

𝜋
𝑅𝑆1,𝑆2 .

276

How Many Zeros of a Random Sparse Polynomial Are Real? ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Proof. By using Proposition 1, we know that

I(𝑔𝑆1⊎𝑆2) = I(𝑔𝑆1 + 𝑔𝑆2)

=

𝑔′′
𝑆1

+ 𝑔′′
𝑆2

𝑔𝑆1 + 𝑔𝑆2
−

(
𝑔′
𝑆1

+ 𝑔′
𝑆2

𝑔𝑆1 + 𝑔𝑆2

)2
+ 1

𝑡

(
𝑔′
𝑆1

+ 𝑔′
𝑆2

𝑔𝑆1 + 𝑔𝑆2

)

=
𝑔𝑆1

𝑔𝑆1 + 𝑔𝑆2
· I(𝑔𝑆1) +

𝑔𝑆2
𝑔𝑆1 + 𝑔𝑆2

· I(𝑔𝑆2)

+ 1

𝑔𝑆1𝑔𝑆2

(
𝑔𝑆1𝑔𝑆2

′ − 𝑔𝑆2𝑔𝑆1
′

𝑔𝑆1 + 𝑔𝑆2

)2
The last equality follows by applying Proposition 2 on 𝑔′

𝑆1
=

𝑎,𝑔𝑆1 = 𝑏,𝑔′
𝑆2

= 𝑐, 𝑔𝑆2 = 𝑑 . In order to simplify the notations we

denote 1
𝑔𝑆1𝑔𝑆2

(
𝑔𝑆1𝑔

′
𝑆2
−𝑔𝑆2𝑔′𝑆1

𝑔𝑆1+𝑔𝑆2

)2
by𝑊 2. Therefore we have

𝑧𝑆1⊎𝑆2 =
1

2𝜋

1∫
0

√
I(𝑔𝑆1⊎𝑆2 (𝑡))d𝑡

=
1

2𝜋

1∫
0

√
𝑔𝑆1

𝑔𝑆1 + 𝑔𝑆2
· I(𝑔𝑆1) +

𝑔𝑆2
𝑔𝑆1 + 𝑔𝑆2

· I(𝑔𝑆2) +𝑊 2d𝑡

≤ 1

2𝜋

©«
1∫

0

√
I(𝑔𝑆1 (𝑡))d𝑡 +

1∫
0

√
I(𝑔𝑆2 (𝑡))d𝑡 +

1∫
0

|𝑊 | d𝑡ª®¬
= 𝑧𝑆1 + 𝑧𝑆2 +

1

2𝜋

1∫
0

����� 1
√
𝑔𝑆1𝑔𝑆2

(
𝑔𝑆2𝑔

′
𝑆1

− 𝑔𝑆1𝑔
′
𝑆2

𝑔𝑆1 + 𝑔𝑆2

)����� d𝑡 .
Now we just need to upper bound the definite integral

𝐽 :=

1∫
0

����� 1
√
𝑔𝑆1𝑔𝑆2

(
𝑔𝑆2𝑔

′
𝑆1

− 𝑔𝑆1𝑔
′
𝑆2

𝑔𝑆1 + 𝑔𝑆2

)����� d𝑡
The value of 𝐽 in a sub-interval (𝛼, 𝛽) of (0, 1) depends upon the

condition whether 𝑔𝑆2𝑔
′
𝑆1

− 𝑔𝑆1𝑔
′
𝑆2

is positive or negative in (𝛼, 𝛽).
So we divide (0, 1) in the intervals where 𝑔𝑆2𝑔

′
𝑆1
−𝑔𝑆1𝑔′𝑆2 is positive

or negative. Note that𝑔𝑆2𝑔
′
𝑆1
−𝑔𝑆1𝑔′𝑆2 is positive if and only if

(
𝑔𝑆1
𝑔𝑆2

) ′
is positive. Therefore 𝑔𝑆2𝑔

′
𝑆1

− 𝑔𝑆1𝑔
′
𝑆2

changes sign exactly on the

critical points of odd multiplicity of
𝑔𝑆1
𝑔𝑆2

. Suppose (𝛼, 𝛽) is some

sub-interval of (0, 1) where
(
𝑔𝑆1
𝑔𝑆2

) ′
is non-negative. Let us look at

the integral 𝐽 in the interval (𝛼, 𝛽) . We have:

𝐽𝛼,𝛽 :=

𝛽∫
𝛼

1
√
𝑔𝑆1𝑔𝑆2

(
𝑔𝑆2𝑔

′
𝑆1

− 𝑔𝑆1𝑔
′
𝑆2

𝑔2
𝑆2

)
·
(

𝑔2
𝑆2

𝑔𝑆1 + 𝑔𝑆2

)
d𝑡

=

𝛽∫
𝛼

√
𝑔𝑆2
𝑔𝑆1

·
(
𝑔𝑆2𝑔

′
𝑆1

− 𝑔𝑆1𝑔
′
𝑆2

𝑔2
𝑆2

)
·
(

𝑔𝑆2
𝑔𝑆1 + 𝑔𝑆2

)
d𝑡

= 2

𝛽∫
𝛼

(√
𝑔𝑠1
𝑔𝑠2

) ′
·
©«

1

1 +
(√

𝑔𝑠1
𝑔𝑠2

)2 ª®®¬
d𝑡 = 2

𝜂∫
𝛾

(
1

1 + 𝑢2

)
d𝑢

(
substituting 𝑢 :=

√
𝑔𝑠1
𝑔𝑠2

. Here 𝛾 =

√
𝑔𝑠1 (𝛼)
𝑔𝑠2 (𝛼)

and 𝜂=

√
𝑔𝑠1 (𝛽)
𝑔𝑠2 (𝛽)

)

Therefore 𝐽𝛼,𝛽 = 2(arctan(𝜂) − arctan(𝛾)). For intervals where(
𝑔𝑆1
𝑔𝑆2

) ′
is negative, we obtain the same result by the substitution

𝑢 =

√
𝑔𝑠2
𝑔𝑠1

instead, which is reflected on the definition of 𝑇 𝑖
𝑆1,𝑆2

above. Now the claimed inequality for 𝑧𝑆1⊎𝑆2 follows by using the

quantities defined in Definition 4. □

3 PROOF OF THEOREM 1: 𝑂 (
√
𝑘) BOUND

We begin with considering the cases where either |𝑆 | = 1 or |𝑆 | = 2.

This will be the base to construct an inductive argument for the

general case, using Lemma 4.

Lemma 5. For any singleton set 𝑆 , we have I(𝑔𝑆) = 0.

Proof. Suppose 𝑆 = {𝑎}, therefore 𝑔𝑆 (𝑡) = 𝑡2𝑎 . Hence

I(𝑔𝑆) = (2𝑎 log(𝑡))′′ + (2𝑎 log(𝑡))′
𝑡

= −2𝑎

𝑡2
+ 2𝑎

𝑡2
= 0 □

Lemma 6. For all sets 𝑆 of size two, 𝑧𝑆 =
1
4 .

Proof. Without loss of generality we can assume that 𝑆 = {0, 𝑎}.
An easy calculation shows that

√
I(𝑔𝑆 (𝑡)) = 2𝑎𝑡𝑎−1

1+𝑡2𝑎 . Therefore

𝑧𝑆 =
2

2𝜋

1∫
0

𝑎𝑡𝑎−1

1 + 𝑡2𝑎
d𝑡 =

1

4
. □

Now we show that if we increase the sparsity of a polynomial

𝑓 by adding a monomial of degree higher than the degree of 𝑓 ,

we can bound the expected number of real zeros of the resulting

polynomial in terms of the bound for the same quantity for 𝑓 .

Lemma 7. Let 𝑆 ⊆ N be a set with 0 ∈ 𝑆 and | 𝑆 |= 𝑘 . If 𝑎 ∈ N is

such that 𝑎 > max(𝑆) then

𝑧𝑆∪{𝑎} ≤ 𝑧𝑆 + 1

𝜋
arctan

(
1
√
𝑘

)

Proof. Let us first analyze the derivative of
𝑔{𝑎}
𝑔𝑆

. We have

(
𝑔{𝑎}
𝑔𝑆

) ′
=

1

𝑔2
𝑆

(
2𝑎𝑥2𝑎−1

∑
𝑒∈𝑆

𝑥2𝑒 − 𝑥2𝑎
∑
𝑒∈𝑆

2𝑒𝑥2𝑒−1
)
> 0 (3.1)

Therefore
𝑔{𝑎}
𝑔𝑆

is always increasing in (0, 1). Abusing the notation
slightly, let𝑊 be such that

𝑊 2
=

1

𝑔𝑆𝑔{𝑎}

(
𝑔′{𝑎}𝑔𝑆 − 𝑔′

𝑆
𝑔{𝑎}

𝑔𝑆 + 𝑔{𝑎}

)2

(similar to Lemma 4). Hence, we have

√
I(𝑔𝑆∪{𝑎} (𝑡)) =

√
𝑔𝑆 · I(𝑔𝑆)
𝑔𝑆 + 𝑔{𝑎}

+
𝑔{𝑎} · I(𝑔{𝑎})

𝑔𝑆 + 𝑔{𝑎}
+𝑊 2

≤
√
I(𝑔𝑆 (𝑡)) + 0 + |𝑊 |

By substituting into the formula for 𝑧𝑆∪{𝑎} , we get

277

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jindal, Pandey, Shukla, and Zisopoulos

𝑧𝑆∪{𝑎} =
1

2𝜋

1∫
0

√
I(𝑔𝑆∪{𝑎} (𝑡))d𝑡

≤ 1

2𝜋
· ©«

1∫
0

√
I(𝑔𝑆 (𝑡))d𝑡 +

1∫
0

1
√
𝑔𝑆𝑔{𝑎}

(
𝑔′{𝑎}𝑔𝑆 − 𝑔′

𝑆
𝑔{𝑎}

𝑔𝑆 + 𝑔{𝑎}

)
d𝑡

ª®¬
= 𝑧𝑆 + 1

2𝜋

1∫
0

1
√
𝑔𝑆𝑔{𝑎}

(
𝑔′{𝑎}𝑔𝑆 − 𝑔′

𝑆
𝑔{𝑎}

𝑔𝑆 + 𝑔{𝑎}

)
d𝑡

Now we use the substitution 𝑢 =

√
𝑔{𝑎}
𝑔𝑠

to obtain

1∫
0

1
√
𝑔𝑆𝑔{𝑎}

(
𝑔′{𝑎}𝑔𝑆 − 𝑔′

𝑆
𝑔{𝑎}

𝑔𝑆 + 𝑔{𝑎}

)
d𝑡 = 2

𝛽∫
𝛼

(
1

1 + 𝑢2

)
d𝑢 ,

where 𝛼 =

√
𝑔{𝑎} (0)
𝑔𝑠 (0) = 0 and 𝛽=

√
𝑔{𝑎} (1)
𝑔𝑠 (1) = 1√

𝑘
. Note that the

integrand is the derivative of arctan(𝑢), we now have

2

𝛽∫
𝛼

(
1

1 + 𝑢2

)
d𝑢 = 2

(
arctan

(
1
√
𝑘

)
− arctan (0)

)
= 2 arctan

(
1
√
𝑘

)

Hence

𝑧𝑆∪{𝑎} ≤ 𝑧𝑆 + 1

2𝜋

1∫
0

1
√
𝑔𝑆𝑔{𝑎}

(
𝑔′{𝑎}𝑔𝑆 − 𝑔′

𝑆
𝑔{𝑎}

𝑔𝑆 + 𝑔{𝑎}

)
d𝑡

= 𝑧𝑆 + 1

𝜋
arctan

(
1
√
𝑘

)
. □

We may now prove a slightly stronger version of Theorem 1.

Theorem 7 (Theorem 1 restated). Let 𝑆 ⊆ N be a set with 0 ∈ 𝑆

and | 𝑆 |= 𝑘 . Then 𝑧𝑆 ≤ 1
4 + 2

𝜋 (
√
𝑘 − 1 − 1) ≤ 2

𝜋 ·
√
𝑘 − 1.

Proof. If 𝑘 ≤ 2 then the results follows from Lemma 6. So

assume 𝑘 > 2. By using Lemmas 6 and 7, we may always add the

highest element iteratively and obtain that

𝑧𝑆 ≤ 1

4
+ 1

𝜋

𝑘−1∑
𝑖=2

arctan

(
1
√
𝑖

)

We use the following well-known inequality

arctan(𝑥) < 𝑥 for all 𝑥 > 0.

This implies that

𝑧𝑆 − 1

4
≤ 1

𝜋

𝑘−1∑
𝑖=2

1
√
𝑖
≤ 1

𝜋

𝑘−1∑
𝑖=2

1
√
𝑖

≤ 1

𝜋

∫ 𝑘−1

1

√
1

𝑥
d𝑥 =

2

𝜋
(
√
𝑘 − 1 − 1) .

Hence the claimed bound follows. □

4 PROOF OF THEOREM 3: ROOTS

CONCENTRATE AROUND 1

Here we want to show that most of the roots are near 1. First we

need the following proposition useful in the analysis.

Proposition 3. For all 𝑡 ∈ (0, 1), we have√∑
𝑒>0

𝑒2𝑡2𝑒−2 ≤ 1

1 − 𝑡2
+ 2𝑡

(1 − 𝑡2) 3
2

Proof. First use the following well-known equality

1

1 − 𝑡2
=

∑
𝑒≥0

𝑡2𝑒 .

to obtain that(
1

1 − 𝑡2

) ′′
=

∑
𝑒>0

2𝑒 (2𝑒 − 1)𝑡2𝑒−2 = 2(1 + 3𝑡2)
(1 − 𝑡2)3

Therefore ∑
𝑒>0

𝑒 (2𝑒 − 1)𝑡2𝑒−2 = (1 + 3𝑡2)
(1 − 𝑡2)3

.

Clearly√∑
𝑒>0

𝑒2𝑡2𝑒−2 ≤
√∑

𝑒>0

𝑒 (2𝑒 − 1)𝑡2𝑒−2 ≤

√
(1 + 3𝑡2)
(1 − 𝑡2)3

=

√
1

(1 − 𝑡2)2
+ 4𝑡2

(1 − 𝑡2)3
≤ 1

1 − 𝑡2
+ 2𝑡

(1 − 𝑡2) 3
2

□

We now give the proof of Theorem 3.

Proof of Theorem 3. Without loss of generality , we assume

that 0 ∈ 𝑆 , therefore ∥𝑣𝑆 (𝑡)∥2 ≥ 1 for all 𝑡 ∈ R. By using the

equality in Theorem 6 and also by ignoring the second term in the

numerator in Equation (2.1), we get the following inequality for 𝑧𝑆

𝑧
(0,1−𝜖)
𝑆

≤ 1

𝜋

1−𝜖∫
0

√
(∥𝑣𝑆 (𝑡)∥2 ·

𝑣 ′
𝑆
(𝑡)

2
)2

(∥𝑣𝑆 (𝑡)∥2)2
d𝑡

=
1

𝜋

1−𝜖∫
0

𝑣 ′
𝑆
(𝑡)

2

∥𝑣𝑆 (𝑡)∥2
d𝑡 ≤ 1

𝜋

1−𝜖∫
0

𝑣 ′𝑆 (𝑡)2 d𝑡
By using Proposition 3, we have:

𝑣 ′
𝑆
(𝑡)

2
=

√∑
𝑒∈𝑆 𝑒2𝑡2𝑒−2 ≤

1
1−𝑡2 +

2𝑡

(1−𝑡2)
3
2
. Therefore

𝑧
(0,1−𝜖)
𝑆

≤ 1

𝜋

1−𝜖∫
0

𝑣 ′𝑆 (𝑡)2 d𝑡 ≤ 1

𝜋

1−𝜖∫
0

(
1

1 − 𝑡2
+ 2𝑡

(1 − 𝑡2) 3
2

)
d𝑡

=
1

𝜋

©«
1−𝜖∫
0

1

1 − 𝑡2
d𝑡 + 1

𝜋

1−𝜖∫
0

2𝑡

(1 − 𝑡2) 3
2

d𝑡
ª®¬

=
1

𝜋

([
1

2
log

(
1 + 𝑡

1 − 𝑡

)]1−𝜖
0

+
[

2
√
1 − 𝑡2

]1−𝜖
0

)

278

How Many Zeros of a Random Sparse Polynomial Are Real? ISSAC ’20, July 20–23, 2020, Kalamata, Greece

=
1

𝜋

(
1

2
log

(
2 − 𝜖

𝜖

)
+ 2√

𝜖 (2 − 𝜖)
− 2

)

≤ 1

2𝜋

(
log

(
2

𝜖

)
+ 4
√
𝜖
− 4

)
. □

5 THE LOWER BOUND

In this section we will come up with a sequence of sets (𝑆𝑘)𝑘≥1
such that the expected number of real zeros of the corresponding

polynomials is lower bounded by Ω(
√
𝑘), for large enough 𝑘 .

Lemma 8. Suppose 𝑆 = {𝑒1, 𝑒2, . . . , 𝑒𝑘 } with 𝑒𝑘 = max(𝑆) and
𝜖 > 0, then 𝑧

(1−𝜖,1)
𝑆

≤ 𝜖
√
𝑘𝑒𝑘
𝜋 .

Proof. We have:

𝑧
(1−𝜖,1)
𝑆

≤ 1

𝜋

1∫
1−𝜖

√
(∥𝑣𝑆 (𝑡)∥2 ·

𝑣 ′
𝑆
(𝑡)

2
)2

(∥𝑣𝑆 (𝑡)∥2)2
d𝑡 =

1

𝜋

1∫
1−𝜖

𝑣 ′
𝑆
(𝑡)

2

∥𝑣𝑆 (𝑡)∥2
d𝑡

≤ 1

𝜋

1∫
1−𝜖

𝑣 ′𝑆 (𝑡)2 d𝑡 = 1

𝜋

1∫
1−𝜖

(
𝑘∑
𝑖=1

(
𝑒2𝑖 𝑡

2𝑒𝑖−2
)) 1

2

d𝑡

≤ 1

𝜋

1∫
1−𝜖

(
𝑘𝑒2

𝑘

) 1
2
d𝑡 =

1

𝜋

1∫
1−𝜖

(√
𝑘𝑒𝑘

)
d𝑡 =

𝜖

𝜋

(√
𝑘𝑒𝑘

)
□

Remark 2. Thus, we can have 𝑧𝐼
𝑆
arbitrarily small, for a small enough

𝜖 . This fact will be crucial in the proof of Theorem 2. Further, Lemma

8 can be viewed as a supplementary result to Theorem 3. Theorem

3 implies that most of the roots lie in (0, 1 − 𝜖), if 𝜖 is allowed to be

arbitrarily small. Lemma 8 gives a precise formulation of this fact.

5.1 Proof of Theorem 2

From now on we will assume that 𝑆 = {0, 1}⋃{22𝑖 | 1 ≤ 𝑖 ≤ 𝑘 − 1}
and 𝑎 = 22

𝑘

. The following lemma essentially will imply that one

cannot avoid summing over
√

1
𝑘
as in the proof of Theorem 7.

Lemma 9. Let 𝑊 be as in the proof of Lemma 4, then we have∫ 1

1− 1
2𝑎

|𝑊 | d𝑡 ≥ 2
(
arctan

(
1

4
√
𝑘

))
.

Proof. Using the computation in the proof of Lemma 4 we have

1∫
1− 1

2𝑎

|𝑊 | d𝑡 = 2
©«
arctan

(
1

√
𝑘 + 1

)
− arctan

©«
√√

𝑔{𝑎} (1 − 1
2𝑎)

𝑔𝑆 (1 − 1
2𝑎)

ª®¬
ª®¬
.

We now upper bound the value of arctan

(√
𝑔{𝑎} (1− 1

2𝑎)
𝑔𝑆 (1− 1

2𝑎)

)
by giving

a lower bound on 𝑔𝑆 (1 − 1
2𝑎) and an upper bound on 𝑔{𝑎} (1 − 1

2𝑎) .
Using well-known inequalities

(
1 − 1

𝑛

)𝑛
≤ 1

𝑒 (for any 𝑛 ∈ N) and
(1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥 if 𝑥 ≥ −1 and 𝑟 > 1, we have, for large enough 𝑘

𝑔𝑆

(
1 − 1

2𝑎

)
=

𝑘+1∑
𝑖=1

(
1 − 1

2𝑎

)2𝑒𝑖

≥
𝑘+1∑
𝑖=1

(
1 − 2𝑒𝑖

2𝑎

)
≥ 𝑘 + 1 −

(
𝑘+1∑
𝑖=1

2−𝑘
)
≥ 𝑘

Therefore, arctan
©«
√√

𝑔{𝑎} (1 − 1
2𝑎)

𝑔𝑆 (1 − 1
2𝑎)

ª®¬
≤ arctan

©«
√

1
𝑒

𝑘

ª®¬
. which gives

2
©«
arctan

(
1

√
𝑘 + 1

)
− arctan

©«
√√

𝑔{𝑎} (1 − 1
2𝑎)

𝑔𝑆 (1 − 1
2𝑎)

ª®¬
ª®¬

≥ 2 arctan

(
1

√
𝑘 + 1

)
− 2 arctan

©«
√

1
𝑒

𝑘

ª®¬
≥ 2

©«
arctan

©«
1√
𝑘+1

− 1

𝑒
√
𝑘

1 + 1

𝑒
√
𝑘 (𝑘+1)

ª®®¬
ª®®¬
≥ 2

(
arctan

(
1

4
√
𝑘

))
□

For proving Theorem 2 we will again resort to our idea of

monomial-wise construction of the polynomial. The monomial

sequence we choose is 𝑒𝑖+2 = 22
𝑖

for 𝑖 ≥ 1 with 𝑒1 = 0, 𝑒2 = 1.

Before we begin the proof, recall from the proof of Lemma 4 that

𝑧𝑆∪{𝑎} =
1

2𝜋

1∫
0

√
𝑔𝑆

𝑔𝑆 + 𝑔{𝑎}
· I(𝑔𝑆) +

𝑔{𝑎}
𝑔𝑆 + 𝑔{𝑎}

· I(𝑔{𝑎}) +𝑊 2d𝑡

The key idea is to write 𝑧𝑆∪{𝑎} as a sum of two integrals over

disjoint intervals such that I(𝑔𝑆) dominates in one interval while

𝑊 dominates in the other, then lower bound both integrals.

Proof of Theorem 2. Recall from Lemma 5 that I(𝑔{𝑎}) = 0.

Therefore we have

𝑧𝑆∪{𝑎} =
1

2𝜋

©«
1∫

0

√
𝑔𝑆

𝑔𝑆 + 𝑔{𝑎}
· I(𝑔𝑆) + 0 +𝑊 2d𝑡

ª®¬
≥ 1

2𝜋

©«

1− 1
2𝑎∫

0

√
𝑔𝑆

𝑔𝑆 + 𝑔{𝑎}
· I(𝑔𝑆)d𝑡 +

1∫
1− 1

2𝑎

|𝑊 | d𝑡
ª®®®¬

=
1

2𝜋

1∫
0

√
𝑔𝑆

𝑔𝑆 + 𝑔{𝑎}
· I(𝑔𝑆)d𝑡

− 1

2𝜋

1∫
1− 1

2𝑎

√
𝑔𝑆

𝑔𝑆 + 𝑔{𝑎}
· I(𝑔𝑆)d𝑡 +

1

2𝜋

1∫
1− 1

2𝑎

|𝑊 | d𝑡

≥ 1

2𝜋

√
𝑘 + 1

𝑘 + 2

1∫
0

√
I(𝑔𝑆)d𝑡 −

1

2𝜋

1∫
1− 1

2𝑎

√
I(𝑔𝑆)d𝑡

+ 1

2𝜋

1∫
1− 1

2𝑎

|𝑊 | d𝑡
(
𝑔{𝑎}
𝑔𝑆

is increasing (Equation (3.1))
)

=

√
𝑘 + 1

𝑘 + 2
𝑧𝑆 + 1

2𝜋

©«
−

1∫
1− 1

2𝑎

√
I(𝑔𝑆)d𝑡 +

1∫
1− 1

2𝑎

|𝑊 |d𝑡
ª®®®¬

279

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Jindal, Pandey, Shukla, and Zisopoulos

Now by using Lemma 8 with 𝜖 =
1
2𝑎 , Lemma 9 and the inequality

𝜋
4 𝑥 < arctan(𝑥) for 0 < 𝑥 < 1, we have

𝑧𝑆∪{𝑎} ≥
√

𝑘 + 1

𝑘 + 2
𝑧𝑆 + 1

2𝜋

1∫
1− 1

2𝑎

|𝑊 | d𝑡 − 𝑧
(1− 1

2𝑎 ,1)
𝑆

≥
√

𝑘 + 1

𝑘 + 2
𝑧𝑆 + 1

𝜋
arctan

(
1

4
√
𝑘

)
−

√
𝑘 + 1

2𝜋22
𝑘−1

≥
√

𝑘 + 1

𝑘 + 2
𝑧𝑆 + 1

√
𝑘

(
1

16
−
√
𝑘
√
𝑘 + 1

2𝜋22
𝑘−1

)

≥
√

𝑘 + 1

𝑘 + 2
𝑧𝑆 + 𝜋 −

√
3

16𝜋

1
√
𝑘.

(assuming 𝑘 ≥ 3)

≥
√

2

𝑘 + 2
· 𝑧 {0,1} +

𝜋 −
√
3

16𝜋

©«
𝑘−1∑
𝑗=0

1√
𝑘 − 𝑗

·
√

𝑘 + 2 − 𝑗

𝑘 + 2

ª®¬
(iterating k-1 times)

≥
√

2

𝑘 + 2
· 𝑧 {0,1} +

𝜋 −
√
3

16𝜋

©«
𝑘−1∑
𝑗=0

1√
𝑘 + 2 − 𝑗

·
√

𝑘 + 2 − 𝑗

𝑘 + 2

ª®¬
≥ 𝜋 −

√
3

16𝜋

√
𝑘 + 1

7

(
using 𝑧 {0,1} =

1
4

)
□

6 CONCLUSION

We settle the bound on the expected number of real zeros of a

random 𝑘-sparse polynomial when the coefficients are independent

standard normal random variables.We first showed an𝑂 (
√
𝑘) upper

bound for an arbitrary set of size 𝑘 , and then gave an example of

set where this bound is tight. We see this as another step towards

understanding the number of real zeros of sparse polynomials and

related generalizations.

In this article, we considered randomvariables following indepen-

dent standard normal distributions. It would be interesting to study

other distributions on the coefficients, although we expect the

analysis to become increasingly difficult as the distributions become

more complex.

We also mentioned how the real 𝜏-conjecture is connected to

the problem we study and its importance in algebraic complexity.

Towards resolving the conjecture, consider the simple setting where

𝑓 and 𝑔 are both 𝑘-sparse polynomials and we wish to study the

number of real zeros of 𝑓 𝑔 + 1. This is essentially the first case

which is non-trivial, unfortunately very little is known and prior

techniques seem to fail so far.

Also, there is a vast number of restricted arithmetic circuit

models. We invite experts to consider the number of real zeros

of univariate polynomials under such restrictions and explore their

connectionswith complexity theoretic lower bounds. It is conceivable

that one can find a restriction for which the behavior of the expected

number of real zeros is easier to understand than the sparse case and

whichmay lead to new insights towards resolving the aforementioned

generalizations, such as the ones considered in the real 𝜏-conjecture.

ACKNOWLEDGMENTS

We thank our advisor Markus Bläser for his constant support

throughout thework.We thankVladimir Lysikov formany insightful

discussions. AP thanks Sébastien Tavenas for hosting him at Université

Savoie Mont Blanc and for encouraging discussions there.

REFERENCES
[1] Frédéric Bihan and Frank Sottile. 2007. New fewnomial upper bounds from

Gale dual polynomial systems. Mosc. Math. J. 7, 3 (2007), 387ś407, 573. https:
//doi.org/10.17323/1609-4514-2007-7-3-387-407

[2] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. 1998. Complexity
and real computation. Springer-Verlag, New York. xvi+453 pages. https://doi.
org/10.1007/978-1-4612-0701-6 With a foreword by Richard M. Karp.

[3] Irénée Briquel and Peter Bürgisser. 2020. The real tau-conjecture is true on
average. Random Structures & Algorithms (2020). https://doi.org/10.1002/rsa.
20926 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20926

[4] Peter Bürgisser. 2009. On defining integers and proving arithmetic circuit lower
bounds. Comput. Complexity 18, 1 (2009), 81ś103. https://doi.org/10.1007/s00037-
009-0260-x

[5] Peter Bürgisser, Ergür Alperen A., and Josué Tonelli-Cueto. 2019. On the Number
of Real Zeros of Random Fewnomials. SIAM Journal on Applied Algebra and
Geometry 3, 4 (2019), 721ś732.

[6] René Descartes. 1886. La géométrie. Hermann.
[7] Alan Edelman and Eric Kostlan. 1995. How many zeros of a random polynomial

are real? Bull. Amer. Math. Soc. (N.S.) 32, 1 (1995), 1ś37. https://doi.org/10.1090/
S0273-0979-1995-00571-9

[8] Paul Erdös and A. C. Offord. 1956. On the number of real roots of a random
algebraic equation. Proc. London Math. Soc. (3) 6 (1956), 139ś160. https://doi.
org/10.1112/plms/s3-6.1.139

[9] Boulos El Hilany. 2016. Géométrie Tropicale et Systèmes Polynomiaux. Ph.D.
Dissertation. LAMA, Universite Savoie Mont Blanc et de Universite Grenoble
Alpes.

[10] A. G. Hovanskiı̆. 1980. A class of systems of transcendental equations. Dokl.
Akad. Nauk SSSR 255, 4 (1980), 804ś807.

[11] Pavel Hrubes. 2013. On the Real 𝜏-Conjecture and the Distribution of Complex
Roots. Theory of Computing 9 (2013), 403ś411. https://doi.org/10.4086/toc.2013.
v009a010

[12] M. Kac. 1943. On the average number of real roots of a random algebraic equation.
Bull. Amer. Math. Soc. 49 (1943), 314ś320. https://doi.org/10.1090/S0002-9904-
1943-07912-8

[13] A. G. Khovanskiı̆. 1991. Fewnomials. Translations of Mathematical Monographs,
Vol. 88. American Mathematical Society, Providence, RI. viii+139 pages.
Translated from the Russian by Smilka Zdravkovska.

[14] Pascal Koiran. 2011. Shallow circuits with high-powered inputs. In Innovations in
Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 7-9, 2011.
Proceedings. 309ś320. http://conference.iiis.tsinghua.edu.cn/ICS2011/content/
papers/5.html

[15] Pascal Koiran, Natacha Portier, and Sébastien Tavenas. 2015. A Wronskian
approach to the real 𝜏-conjecture. J. Symb. Comput. 68 (2015), 195ś214. https:
//doi.org/10.1016/j.jsc.2014.09.036

[16] Pascal Koiran, Natacha Portier, Sébastien Tavenas, and Stéphan Thomassé. 2015.
A 𝜏-Conjecture for Newton Polygons. Foundations of Computational Mathematics
15, 1 (2015), 185ś197. https://doi.org/10.1007/s10208-014-9216-x

[17] A. Kushnirenko. 26 February 2008. Letter to Frank Sottile. www.math.tamu.edu/
~sottile/research/pdf/kushnirenko.pdf.

[18] J. E. Littlewood and A. C. Offord. 1938. On the Number of Real Roots of a
Random Algebraic Equation. J. London Math. Soc. 13, 4 (1938), 288ś295. https:
//doi.org/10.1112/jlms/s1-13.4.288

[19] Gregorio Malajovich and J. Maurice Rojas. 2004. High probability analysis of the
condition number of sparse polynomial systems. Theoret. Comput. Sci. 315, 2-3
(2004), 524ś555. https://doi.org/10.1016/j.tcs.2004.01.006

[20] J. Maurice Rojas. 1996. On the average number of real roots of certain random
sparse polynomial systems. In The mathematics of numerical analysis (Park City,
UT, 1995). Lectures in Appl. Math., Vol. 32. Amer. Math. Soc., Providence, RI,
689ś699.

[21] Ramprasad Saptharishi. 2015. A survey of lower bounds in arithmetic circuit
complexity. Github survey (2015).

[22] Amir Shpilka and Amir Yehudayoff. 2010. Arithmetic Circuits: A survey of recent
results and open questions. Foundations and Trends in Theoretical Computer
Science 5, 3-4 (2010), 207ś388. https://doi.org/10.1561/0400000039

[23] Michael Shub and Steve Smale. 1995. On the intractability of Hilbert’s
Nullstellensatz and an algebraic version of łNP ≠ P?ž. Duke Math. J. 81 (1995),
47ś54 (1996). https://doi.org/10.1215/S0012-7094-95-08105-8 A celebration of
John F. Nash, Jr.

[24] Frank Sottile. 2011. Real solutions to equations from geometry. University Lecture
Series, Vol. 57. American Mathematical Society, Providence, RI. x+200 pages.
https://doi.org/10.1090/ulect/057

280

https://doi.org/10.17323/1609-4514-2007-7-3-387-407
https://doi.org/10.17323/1609-4514-2007-7-3-387-407
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1002/rsa.20926
https://doi.org/10.1002/rsa.20926
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20926
https://doi.org/10.1007/s00037-009-0260-x
https://doi.org/10.1007/s00037-009-0260-x
https://doi.org/10.1090/S0273-0979-1995-00571-9
https://doi.org/10.1090/S0273-0979-1995-00571-9
https://doi.org/10.1112/plms/s3-6.1.139
https://doi.org/10.1112/plms/s3-6.1.139
https://doi.org/10.4086/toc.2013.v009a010
https://doi.org/10.4086/toc.2013.v009a010
https://doi.org/10.1090/S0002-9904-1943-07912-8
https://doi.org/10.1090/S0002-9904-1943-07912-8
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/5.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/5.html
https://doi.org/10.1016/j.jsc.2014.09.036
https://doi.org/10.1016/j.jsc.2014.09.036
https://doi.org/10.1007/s10208-014-9216-x
 www.math.tamu.edu/~sottile/research/pdf/kushnirenko.pdf
 www.math.tamu.edu/~sottile/research/pdf/kushnirenko.pdf
https://doi.org/10.1112/jlms/s1-13.4.288
https://doi.org/10.1112/jlms/s1-13.4.288
https://doi.org/10.1016/j.tcs.2004.01.006
https://doi.org/10.1561/0400000039
https://doi.org/10.1215/S0012-7094-95-08105-8
https://doi.org/10.1090/ulect/057

On the Geometry and the Topology of Parametric Curves

Christina Katsamaki ∗

christina.katsamaki@inria.fr
Fabrice Rouillier ∗

Fabrice.Rouillier@inria.fr

Elias Tsigaridas
elias.tsigaridas@inria.fr

∗ INRIA Paris
Sorbonne Université and Paris Université

F-75005, Paris, France

Zafeirakis Zafeirakopoulos
zafeirakopoulos@gtu.edu.tr

Institute of Information Technologies
Gebze Technical University, Turkey

ABSTRACT

We consider the problem of computing the topology and describing

the geometry of a parametric curve in R𝑛 . We present an algorithm,

PTOPO, that constructs an abstract graph that is isotopic to the curve

in the embedding space. Our method exploits the benefits of the

parametric representation and does not resort to implicitization.

Most importantly, we perform all computations in the parameter

space and not in the implicit space. When the parametrization

involves polynomials of degree at most 𝑑 and maximum bitsize

of coefficients 𝜏 , then the worst case bit complexity of PTOPO is

Õ𝐵 (𝑛𝑑
6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏). This bound

matches the current record bound Õ𝐵 (𝑑
6 + 𝑑5𝜏) for the problem

of computing the topology of a planar algebraic curve given in

implicit form. For planar and space curves, if 𝑁 = max{𝑑, 𝜏},

the complexity of PTOPO becomes Õ𝐵 (𝑁
6), which improves the

state-of-the-art result, due to Alcázar and Díaz-Toca [CAGD’10],

by a factor of 𝑁 10. However, visualizing the curve on top of the

abstract graph construction, increases the bound to Õ𝐵 (𝑁
7). We

have implemented PTOPO in maple for the case of planar curves.

Our experiments illustrate its practical nature.

CCS CONCEPTS

· Computing methodologies → Symbolic and algebraic

algorithms; · Mathematics of computing → Computations

on polynomials.

KEYWORDS

Parametric curve, topology, bit complexity, polynomial systems

ACM Reference Format:

Christina Katsamaki, Fabrice Rouillier, Elias Tsigaridas, and Zafeirakis

Zafeirakopoulos. 2020. On the Geometry and the Topology of Parametric

Curves. In International Symposium on Symbolic and Algebraic Computation

(ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3373207.3404062

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404062

1 INTRODUCTION

Parametric curves constitute a classical and important topic in

computational algebra and geometry [37] that constantly receives

attention, e.g., [11, 13, 34, 38]. The interest in efficient algorithms

for computing with parametric curves has been motivated, among

others, by the omnipresence of parametric representations in

computer modeling and computer aided geometric design, e.g., [16].

We focus on computing the topology of a real parametric curve,

that is, the computation of an abstract graph that is isotopic

[7, p. 184] to the curve in the embedding space. We design a

complete algorithm, PTOPO, that applies directly to parametric

curves of any dimension.We consider different characteristics of the

parametrization, like properness and normality, before computing

the singularities and other interesting points on the curve. These

points are necessary for representing the geometry of the curve, as

well as for producing a certified visualization of planar and space

curves.

Previous work. A common strategy when dealing with

parametric curves is implicitization. There has been great research

effort, e.g., [11, 35] and references therein, in designing algorithms

to compute the implicit equations describing the curve. However, it

is also important to manipulate parametric curves directly, without

converting them to implicit form.

The study of the topology of a real parametric curve is a topic

that has not received much attention in the literature, in contrast to

its implicit counterpart [14, 22]. It requires special treatment, since

for instance it is not always easy to choose a parameter interval such

that when we plot the curve over it, we include all the important

topological features [3]. Moreover, while visualizing the curve using

symbolic computational tools, the problem of missing points and

branches may arise [31, 36]. Alcázar and Díaz-Toca [3] study the

topology of real parametric curves without implicitizing. They work

directly with the parametrization and address both planar and space

real rational curves. Our algorithm to compute the topology is to be

juxtaposed to their work; we refer to the next paragraph for more

details. We also refer to [12] and [2] for other approaches based on

computations by values and subdivision, respectively.

To compute the topology of a curve it is essential to detect its

singularities. This is an important and well studied problem [3, 22,

32] of independent interest. Apart from classical approaches [17,

41] that work in the implicit representation, we can also compute

the singularities using directly the parametrization. For instance,

necessary and sufficient conditions to identify cusps and inflection

points are expressed in the form of determinants, e.g., [23, 26].

281

https://doi.org/10.1145/3373207.3404062
https://doi.org/10.1145/3373207.3404062

ISSAC ’20, July 20-23, 2020, Kalamata, Greece Christina Katsamaki, Fabrice Rouillier, Elias Tsigaridas, and Zafeirakis Zafeirakopoulos

On computing the singularities of a parametric curve, a line of

work related to our approach, does so by means of a univariate

resultant [1, 19, 28, 30, 32]. Notably in [32] the authors work on

rational parametric curves in affine 𝑛-space; they use generalized

resultants to find the parameters of the singular points. Moreover,

they characterize the singularities and compute their multiplicities.

Cox [13] uses the syzygies of the ideal generated by the

polynomials that give the parameterization to compute the

singularities and their structure. There are state-of-the-art

approaches that exploit this idea and relate the problem of

computing the singularities with the notion of the 𝜇-basis of the

parametrization, e.g., [21] and references therein. Another method

is used in [6], where they compute and characterize the singularities

using factorization of resultants. In [5] they use the projection from

the rational normal curve to the curve and its relation with the

secant varieties to the normal curve.

Overview of our contributions. We introduce PTOPO, a complete,

exact, and efficient algorithm (Alg. 2) for computing the geo-

metric properties and the topology of parametric curves in

R𝑛 . Unlike other algorithms, e.g. [3], it makes no assumptions

on the input curves, such as the absence of axis-parallel

asymptotes, and it does not perform any projections and liftings

when 𝑛 ≥ 2. For this, it is applicable to any dimension.

Nevertheless, it does not handle knots for space curves.

If the (proper) parametrization of the curve consists of

polynomials of degree 𝑑 and bitsize 𝜏 , then PTOPO outputs a

graph isotopic [7, p.184] to the curve in the embedding space, by

performing

Õ𝐵 (𝑛𝑑
6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏)

bit operations in the worst case (Thm. 5.5). We also provide a Las

Vegas variant with expected complexity

Õ𝐵 (𝑑
6 + 𝑑5 (𝑛 + 𝜏) + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏) .

If 𝑛 = O(1), the bounds become Õ𝐵 (𝑁
6), where 𝑁 = max{𝑑, 𝜏}.

The vertices of the output graph correspond to special points

on the curve, in whose neighborhood the topology is not trivial,

given by their parameter values. Each edge of the graph is

associated with two parameter values and corresponds to a unique

smooth parametric arc. For an embedding isotopic to the curve,

we map every edge of the abstract graph to the corresponding

parametric arc.

For planar and space curves, our bound improves the previously

known one due to Alcázar and Díaz-Toca [3] by a factor of Õ𝐵 (𝑁
10).

The latter algorithm [3] performs computations in the implicit space.

On the contrary, PTOPO is a fundamentally different approach since

we work exclusively in the parameter space; we do not use a sweep-

line algorithm to construct the isotopic graph. We handle only the

parameters that give important points on the curve and thus we

avoid performing operations such as univariate root isolation in an

extension field or evaluation of a polynomial at an algebraic number.

Computing singular points is an essential part of PTOPO

(Lem. 4.7). We chose not to exploit recent methods, e.g., [6], for

this task, but to employ older techniques, e.g., [3, 30, 32], that

rely on a bivariate polynomial system, Eq. (2). We take advantage

of this system’s symmetry and of nearly optimal algorithms for

bivariate system solving and for computations with real algebraic

numbers [8, 14, 15, 27]. In particular, we introduce an algorithm for

isolating the roots of over-determined bivariate polynomial systems

by exploiting the Rational Univariate Representation (RUR) [8ś10]

that has worst case and expected bit complexity that matches the

ones for square systems (Thm. 4.6). These are definitive steps for

obtaining the complexity bounds of Thm. 5.4 and Thm. 5.5.

Moreover, our bound matches the current state-of-the-art

complexity bound, Õ𝐵 (𝑑
6 + 𝑑5𝜏) or Õ𝐵 (𝑁

6), for computing the

topology of implicit plane curves [14, 22]. However, if we want

to visualize the graph in 2D or 3D, then we have to compute a

characteristic box (Lem. 5.1) that contains all the the topological

features of the curve and the intersections of the curve with its

boundary. In this case, the complexity of PTOPO becomes Õ𝐵 (𝑁
7)

(Thm. 5.4).

A preprocessing step of PTOPO consists in finding a proper

reparametrization of the curve (if it is not proper). We present

explicit bit complexity bounds (Lem. 3.2) for the algorithm of Pérez

[29] to compute a proper parametrization. Another preprocessing

step is to ensure that there are no singularities at infinity; Lem. 3.3

handles this task and provides explicit complexity estimates.

Last but not least, we provide a certified implementation1 of

PTOPO in maple. So far, the implementation handles the topology

computation and visualization of planar curves. We also provide

an amplified adaptation2 where omitted proofs can be found.

2 NOTATION AND ALGEBRAIC TOOLS

For a polynomial 𝑓 ∈ Z[𝑥], its infinity norm is equal to the

maximum absolute value of its coefficients. We denote by L(𝑓)
the logarithm of its infinity norm. We also call the latter the bitsize

of the polynomial. A univariate polynomial is of size (𝑑, 𝜏) when
its degree is at most 𝑑 and has bitsize 𝜏 . The bitsize of a rational

function is the maximum of the bitsizes of the numerator and the

denominator. We represent an algebraic number 𝛼 ∈ C by the

isolating interval representation. When 𝛼 ∈ R (resp. C), it includes

a square-free polynomial which vanishes at 𝛼 and a (rational)

interval (resp. Cartesian products of intervals) containing 𝛼 and

no other root of this polynomial. We denote by O, resp. O𝐵 , the

arithmetic, resp. bit, complexity and we use Õ, resp. Õ𝐵 , to ignore

(poly-)logarithmic factors. We denote by res𝑥 (𝑓 , 𝑔) the resultant
of the polynomials 𝑓 , 𝑔 with respect to 𝑥 . For 𝑡 ∈ C, we denote by 𝑡
its complex conjugate. We use [𝑛] to signify the set {1, . . . , 𝑛}.

We present some results needed for our analysis. Following [39],

Lem. 2.1 is an application of Cauchy’s bound for polynomials.

Lemma 2.1. Let 𝐴 =
∑𝑚
𝑖=0 𝑎𝑖𝑋

𝑖 , 𝐵 =
∑𝑛
𝑖=0 𝑏𝑖𝑋

𝑖 ∈ Z[𝑋] of degrees
𝑚 and 𝑛 and of bitsizes 𝜏 and 𝜎 respectively. Let 𝛼1, . . . , 𝛼𝑚 be the

complex roots of𝐴, counting multiplicities. Then, for any 𝜅 = 1, . . . ,𝑚

it holds that

2−𝑚𝜎−𝑛𝜏−(𝑚+𝑛) log(𝑚+𝑛)
< |𝐵(𝛼𝜅) | < 2𝑚𝜎+𝑛𝜏+(𝑚+𝑛) log(𝑚+𝑛) .

Lemmata 2.2, 2.3 restate known results on the gcd computation

of various univariate and bivariate polynomials obtained by

combining [10, Lem.4], [8, Lem. 5], [40, Thm. 6.46, Ex.10.21,

Cor. 11.12] and [33].

1https://webusers.imj-prg.fr/~christina.katsamaki/ptopo/
2https://hal.archives-ouvertes.fr/hal-02573423

282

https://webusers.imj-prg.fr/~christina.katsamaki/ptopo/
https://hal.archives-ouvertes.fr/hal-02573423

On the Geometry and the Topology of Parametric Curves ISSAC ’20, July 20-23, 2020, Kalamata, Greece

Lemma 2.2. Let 𝑓1 (𝑋), . . . , 𝑓𝑛 (𝑋) ∈ Z[𝑋] of sizes (𝛿, 𝐿). We can

compute their gcd in worst case complexity Õ𝐵 (𝑛(𝛿
3 + 𝛿2𝐿)), or

with a Monte Carlo algorithm in Õ𝐵 (𝛿
2 + 𝛿𝐿), or with a Las Vegas

algorithm in Õ𝐵 (𝑛(𝛿
2 + 𝛿𝐿)).

Lemma 2.3. Let 𝑓1 (𝑋,𝑌), . . . , 𝑓𝑛 (𝑋,𝑌) ∈ Z[𝑋,𝑌] of bidegrees (𝛿, 𝛿)
and L(𝑓𝑖) = 𝐿. We can compute their gcd in worst case complexity

Õ𝐵 (𝑛(𝛿
5 + 𝛿4𝐿)), or with a Monte Carlo algorithm in Õ𝐵 (𝛿

3 + 𝛿2𝐿),

or with a Las Vegas algorithm in Õ𝐵 (𝑛(𝛿
3 + 𝛿2𝐿)).

3 RATIONAL CURVES

Following closely [3], we introduce basic notions for rational curves.

Let C̃ be an algebraic curve over C𝑛 , parametrized by the map

𝜙 : C d C̃

𝑡 ↦→
(
𝜙1 (𝑡), . . . , 𝜙𝑛 (𝑡)

)
=

(𝑝1 (𝑡)
𝑞1 (𝑡)

, . . . ,
𝑝𝑛 (𝑡)

𝑞𝑛 (𝑡)

)
, (1)

where 𝑝𝑖 , 𝑞𝑖 ∈ Z[𝑡] are of size (𝑑, 𝜏) for 𝑖 ∈ [𝑛], and C̃ is the Zariski

closure of Im(𝜙). We call 𝜙 (𝑡) a parametrization of C̃.

We study the real trace of C̃, that is C := C̃ ∩ R𝑛 . A
parametrization 𝜙 is chatacterized by means of properness (Sec. 3.1)

and normality (Sec. 3.2). To ensure these properties, one can

reparametrize the curve, i.e., apply a rational change of parameter

to the given parametrization. We refer to [38, Ch. 6] for more details

on reparameterization.

Without loss of generality, we assume that no component of the

parametrization 𝜙 is constant; otherwise we could embed C̃ in a

lower dimensional space. We consider that 𝜙 is in reduced form, i.e.,

gcd(𝑝𝑖 (𝑡), 𝑞𝑖 (𝑡)) = 1, for all 𝑖 ∈ [𝑛]. The point at infinity, p∞, is the
point on C we obtain for 𝑡 → ±∞ (if it exists). For a parametrization

𝜙 , we consider the following system of bivariate polynomials:

ℎ𝑖 (𝑠, 𝑡) =
𝑝𝑖 (𝑠)𝑞𝑖 (𝑡) − 𝑞𝑖 (𝑠)𝑝𝑖 (𝑡)

𝑠 − 𝑡
, for 𝑖 ∈ [𝑛] . (2)

Remark 1. The ℎ𝑖 ’s are polynomials since (𝑠, 𝑠) is a root of the

numerator for every 𝑠 . Also, ℎ𝑖 (𝑡, 𝑡) = 𝜙 ′𝑖 (𝑡)𝑞
2
𝑖 (𝑡) for 𝑖 ∈ [𝑛] [20,

Lem. 1.7].

3.1 Proper parametrization

A parametrization is proper if 𝜙 (𝑡) is injective for almost all

points on C̃. In other words, almost every point on C̃ is the

image of exactly one parameter value (real or complex). For other

equivalent definitions of properness we refer to [38, Ch. 4], [32].

The following condition [3, Thm. 1] leads to an algorithm for

checking properness: a parametrization is proper if and only if

deg(gcd(ℎ1 (𝑠, 𝑡), . . . , ℎ𝑛 (𝑠, 𝑡))) = 0. By applying Lem. 2.3 we get

the following:

Lemma 3.1. There is an algorithm that checks if a parametrization 𝜙

is proper in worst-case bit complexity Õ𝐵 (𝑛(𝑑
5+𝑑4𝜏)) and in expected

bit complexity Õ𝐵 (𝑛(𝑑
3 + 𝑑2𝜏)).

If 𝜙 is a not a proper parametrization, then there always exists

a parametrization𝜓 ∈ Z(𝑡)𝑛 and 𝑅(𝑡) ∈ Z(𝑡) such that𝜓 (𝑅(𝑡)) =
𝜙 (𝑡) and𝜓 is proper [38, Thm. 7.6]. There are various algorithms

for obtaining a proper parametrization, e.g., [18, 19, 29, 34, 38]. We

consider the algorithm in [29] for its simplicity; its pseudo-code is

in Alg. 1.

Lemma 3.2. Consider a non-proper parametrization of a curve C,
consisting of univariate polynomials of size (𝑑, 𝜏). Alg. 1 computes a

proper parametrization of C, involving polynomials of degree at most

𝑑 and bitsize O(𝑑2 + 𝑑𝜏), in Õ𝐵 (𝑛(𝑑
5 + 𝑑4𝜏)), in the worst case.

Proof. The algorithm first computes the bivariate polynomials

𝐻1, . . . 𝐻𝑛 . They have bi-degree at most (𝑑, 𝑑) and bitsize at most

2𝜏 + 1. Then, we compute their gcd, that we denote by 𝐻 , in

Õ𝐵 (𝑛(𝑑
5 + 𝑑4𝜏)) (Lem. 2.3). By [25] and [4, Prop. 10.12] we have

that L(𝐻) = O(𝑑 + 𝜏), which is also the case for 𝐶 𝑗 (𝑠).
If the degree of 𝐻 is one, then the parametrization is already

proper and we have nothing to do. Otherwise, we consider 𝐻 as a

univariate polynomial in 𝑠 and we find two of its coefficients that

are relatively prime, using exact division. The complexity of this

operation is𝑚2 · Õ𝐵 (𝑑
2 + 𝑑𝜏) = Õ𝐵 (𝑑

4 + 𝑑3𝜏) [40, Ex. 10.21].
Subsequently, we perform 𝑛 resultant computations to get

𝐿1, . . . 𝐿𝑛 . From these we obtain the rational functions of the new

parametrization. We focus on the computation of 𝐿1. The same

arguments hold for all 𝐿𝑖 . The bi-degree of 𝐿1 (𝑠, 𝑥) is (𝑑,𝑑) [4,
Prop. 8.49] andL(𝐿1) = O(𝑑

2+𝑑𝜏) [4, Prop. 8.50]; the latter dictates
the bitsize of the new parametrization.

To compute 𝐿1, we consider 𝐹1 and 𝐺 as univariate polynomials

in 𝑡 and we apply a fast algorithm for computing the univariate

resultant based on subresultants [24]; it performs Õ(𝑑) operations.
Each operation consists of multiplying bivariate polynomials of

bi-degree (𝑑, 𝑑) and bitsize O(𝑑2 + 𝑑𝜏); so it costs Õ𝐵 (𝑑
4 + 𝑑3𝜏).

We compute the resultant in Õ𝐵 (𝑑
5 + 𝑑4𝜏). We multiply the latter

bound by 𝑛 to conclude the proof. □

Algorithm 1: Make_Proper(𝜙)

Input: A parametrization 𝜙 ∈ Z(𝑡)𝑛 as in Eq. (1)

Output: A proper parametrization𝜓 = (𝜓1, . . . ,𝜓𝑛) ∈ Z(𝑡)
𝑛

1 for 𝑖 ∈ [𝑛] do 𝐻𝑖 (𝑠, 𝑡) ← 𝑝𝑖 (𝑠)𝑞𝑖 (𝑡) − 𝑝𝑖 (𝑡)𝑞𝑖 (𝑠) ∈ Z[𝑠, 𝑡] ;

2 𝐻 ← gcd(𝐻1, . . . , 𝐻𝑛) = 𝐶𝑚 (𝑡)𝑠
𝑚 + · · · +𝐶0 (𝑡) ∈ (Z[𝑡]) [𝑠]

3 if 𝑚 = 1 then return 𝜙 (𝑡) ;

4 Find 𝑘, 𝑙 ∈ [𝑚] such that:

deg(gcd(𝐶𝑘 (𝑡),𝐶𝑙 (𝑡))) = 0 and
𝐶𝑘 (𝑡)
𝐶𝑙 (𝑡)

∉ Q

5 𝑅(𝑡) ←
𝐶𝑘 (𝑡)
𝐶𝑙 (𝑡)

6 𝑟 ← deg(𝑅) = max{deg(𝐶𝑘), deg(𝐶𝑙)}

7 𝐺 ← 𝑠 𝐶𝑙 (𝑡) −𝐶𝑘 (𝑡)

8 for 𝑖 ∈ [𝑛] do
9 𝐹𝑖 ← 𝑥𝑞𝑖 (𝑡) − 𝑝𝑖 (𝑡)

10 𝐿𝑖 (𝑠, 𝑥) ← res𝑡 (𝐹𝑖 (𝑡, 𝑥),𝐺 (𝑡, 𝑠)) = (𝑞𝑖 (𝑠)𝑥 − 𝑝𝑖 (𝑠))
𝑟

11 return𝜓 (𝑡) =
(�̃�1 (𝑡)
�̃�1 (𝑡)

, . . . ,
�̃�𝑛 (𝑡)
�̃�𝑛 (𝑡)

)

3.2 Normal parametrization

Normality of the parametrization concerns the surjectivity of the

map 𝜙 . The parametrization 𝜙 (𝑡) isR-normal if for all points p on C
there exists 𝑡0 ∈ R such that𝜙 (𝑡0) = p. When the parametrization is

not R-normal, the points that are not in the image of 𝜙 for 𝑡 ∈ R are

p∞ (if it exists) and the isolated points that we obtain for complex

values of 𝑡 [31, Prop. 4.2]. An R-normal reparametrization does not

always exist. We refer to [38, Sect. 7.3] for further details.

283

ISSAC ’20, July 20-23, 2020, Kalamata, Greece Christina Katsamaki, Fabrice Rouillier, Elias Tsigaridas, and Zafeirakis Zafeirakopoulos

However, if p∞ exists, then we reparametrize the curve to avoid

possible singularities at infinity. The point p∞ exists if deg(𝑝𝑖) ≤
deg(𝑞𝑖), for all 𝑖 ∈ [𝑛].

Lemma 3.3. If p∞ exists, then we can reparametrize the curve with

a linear function to ensure that p∞ is not a singular point, using

a Las Vegas algorithm in expected time Õ𝐵 (𝑛(𝑑
2 + 𝑑𝜏)). The new

parametrization involves polynomials of size (𝑑, Õ(𝑑 + 𝜏)).

Proof Sketch.We choose 𝑡0 uniformly at random from a large enough

set of integers and we reparametrize as 𝑡 ↦→ 𝑡0𝑡+1
𝑡−𝑡0

. With good

probability 𝜙 (𝑡0) is not singular, so the point at infinity of the

new parametrization is not singular. For a Las Vegas algorithm, we

ensure that 𝜙 (𝑡0) is neither a cusp, i.e., 𝜙
′(𝑡0) ≠ 0, nor a multiple

point, i.e., deg(gcd(𝜙1 (𝑡0)𝑞1 (𝑡) −𝑝1 (𝑡), . . . , 𝜙1 (𝑡0)𝑞1 (𝑡) −𝑝1 (𝑡))) =
0 (Lem. 2.2).

Remark 2. Since the reparametrizing function in the previous lemma

is linear, it does not affect properness [38, Thm. 6.3].

4 SPECIAL POINTS ON THE CURVE

We consider a parametrization 𝜙 of C as in Eq. (1), such that 𝜙

is proper and there are no singularities at infinity. We highlight

the necessity of these assumptions when needed. We detect the

parameters that generate the special points of C, namely the singular,

the isolated, and the extreme points. We identify the values of the

parameter for which 𝜙 is not defined, namely the poles (see Def. 1);

in presence of poles, C consists of multiple components.

Definition 1. The parameters for which 𝜙 (𝑡) is not defined are the
poles of 𝜙 . The sets of poles over the complex and the reals are:

TC𝑃 = {𝑡 ∈ C :
∏

𝑖∈[𝑛]

𝑞𝑖 (𝑡) = 0} and TR𝑃 = TC𝑃 ∩ R.

We consider the solution set 𝑆 of system (2) over C2:

𝑆 = {(𝑠, 𝑡) ∈ C2 : ℎ𝑖 (𝑠, 𝑡) = 0 for all 𝑖 ∈ [𝑛]}.

Remark 3. Notice that when 𝜙 is in reduced form, if (𝑠, 𝑡) ∈ 𝑆 and

(𝑠, 𝑡) ∈ (C \ TC
𝑃
) × C, then also 𝑡 ∉ TC

𝑃
[32, (in the proof of) Lem. 9].

Next, we present some well known results [32, 38] that we adapt

in our notation.

Singular points. Quoting [26], "Algebraically, singular points

are points on the curve, in whose neighborhood the curve cannot

be represented as an one-to-one and𝐶∞ bijective map with an open

interval on the real line". Geometrically, singularities correspond

to shape features that are known as cusps and self-intersections of

smooth branches. Cusps are points on the curve where the tangent

vector is the zero vector. This is a necessary and sufficient condition

when the parametrization is proper [26]. Self-intersections are

multiple points, i.e., points on C with more than one preimages.

Lemma 4.1. The set of parameters corresponding to real cusps is

T𝐶 =

{
𝑡 ∈ R \ TR𝑃 : (𝑡, 𝑡) ∈ 𝑆

}
.

The set of parameters corresponding to real multiple points is

T𝑀 = {𝑡 ∈ R \ TR𝑃 : ∃𝑠 ≠ 𝑡, 𝑠 ∈ R such that (𝑠, 𝑡) ∈ 𝑆}.

Notice that T𝐶 and T𝑀 are not necessarily disjoint, for at the same

point we may have both cusps and smooth branches that intersect.

Isolated points. An isolated point on a real curve can only occur

for complex values of the parameter. Then, the same point is also

obtained by the conjugate of the parameter, therefore it is a multiple

point. The point at infinity is not isolated because it is the limit of

a sequence of real points.

Lemma 4.2. The set of parameters generating isolated points of C is

T𝐼 ={𝑡 ∈ C \ (R ∪ T
C
𝑃) : (𝑡, 𝑡) ∈ 𝑆 and �𝑠 ∈ R s.t. (𝑠, 𝑡) ∈ 𝑆}.

Extreme points. Consider a vector ®𝛿 and a point on C whose

tangent vector is parallel to ®𝛿 . If the point is not singular, then it is

an extreme point of C with respect to ®𝛿 . We compute the extreme

points with respect to the direction of each coordinate axis. Rem. 1

leads to the following lemma:

Lemma 4.3. The set of parameters generating extreme points is

T𝐸 =
{
𝑡 ∈ R \ TR𝑃 :

∏

𝑖∈[𝑛]

ℎ𝑖 (𝑡, 𝑡) = 0 and 𝑡 ∉ T𝐶 ∪ T𝑀
}
.

4.1 Computation and Complexity

From Lemmata 4.1, 4.2, and 4.3, it follows that given a proper

parametrization 𝜙 without singular points at infinity, we can

easily find the poles and the set of parameters generating cusps,

multiple, extreme, and isolated points. We do so, by solving an over-

determined bivariate polynomial system and univariate polynomial

equations. Then, we classify the parameters that appear in the

solutions, by exploiting the fact the system is symmetric.

To compute the RUR [8ś10] of an overdetermined bivariate

system (Thm. 4.6), we employ Lem. 4.4 and Prop. 4.5, which adapt

the techniques used in [8] to our setting.

Lemma 4.4. Let 𝑓 , 𝑔0, 𝑔1, . . . , 𝑔𝑁 ∈ Z[𝑋,𝑌] with degrees bounded

by 𝛿 and bitsize of coefficients bounded by 𝐿. Computing a common

separating element in the form 𝑋 + 𝛼𝑌, 𝛼 ∈ Z for the 𝑁+1 systems

of bivariate polynomial equations {𝑓 = 𝑔0 = 0}, {𝑓 = 𝑔𝑖 = 0},

𝑖 ∈ [𝑛], needs Õ𝐵 (𝑁 (𝛿
6 + 𝛿5𝐿)) bit operations in the worst case, and

Õ𝐵 (𝑁 (𝛿
5 + 𝛿4𝐿)) in the expected case with a Las Vegas Algorithm.

Moreover, the bitsize of 𝛼 does not exceed log(2𝑁𝛿4).

Proposition 4.5. Let 𝑓 , 𝑔 ∈ Z[𝑋,𝑌] with degrees bounded by 𝛿

and coefficients’ bitsizes bounded by 𝐿. We can compute a rational

parameterization {𝑟 (𝑇), 𝑋 =
𝑟𝑋 (𝑇)
𝑟𝐼 (𝑇)

, 𝑌 =
𝑟𝑌 (𝑇)
𝑟𝐼 (𝑇)

} of the system

{𝑓 = 𝑔 = 0} with 𝑟, 𝑟𝐼 , 𝑟𝑋 , 𝑟𝑌 ∈ Z[𝑇] with degrees less than 𝛿2 and

coefficients’ bitsizes in Õ(𝛿 (𝐿 + 𝛿)), in Õ𝐵 (𝛿
5 (𝐿 + 𝛿)) bit operations

in the worst case and Õ𝐵 (𝛿
4 (𝐿 + 𝛿)) expected bit operations with a

Las Vegas Algorithm.

Theorem 4.6. There exists an algorithm that computes the RUR

and the isolating boxes of the roots of the system {ℎ1 (𝑠, 𝑡) = · · · =

ℎ𝑛 (𝑠, 𝑡) = 0} with worst-case bit complexity Õ𝐵 (𝑛(𝑑
6 + 𝑑5𝜏)). There

is also a Las Vegas variant with expected complexity Õ𝐵 (𝑑
6 + 𝑛𝑑5 +

𝑑5𝜏 + 𝑛𝑑4𝜏).

Proof. Assume that we know a common separating linear

element ℓ (𝑠, 𝑡) that separates the roots of the 𝑛-1 systems of

bivariate polynomial equations {ℎ1 = ℎ2 = 0}, {ℎ1 = ℎ𝑖 = 0}, for

3 ≤ 𝑖 ≤ 𝑛. We can compute ℓ with Õ𝐵 (𝑛(𝑑
6 + 𝑑5𝜏)) bit operations

284

On the Geometry and the Topology of Parametric Curves ISSAC ’20, July 20-23, 2020, Kalamata, Greece

in the worst case and with Õ𝐵 (𝑛(𝑑
5 +𝑑4𝜏)) expected bit operations

with a Las Vegas algorithm (Lem. 4.4).

We denote by {𝑟 (𝑇),
𝑟𝑠 (𝑇)
𝑟𝐼 (𝑇)

,
𝑟𝑡 (𝑇)
𝑟𝐼 (𝑇)

} a RUR for {ℎ1 = ℎ2 = 0} with

respect to ℓ . In addition, for 3 ≤ 𝑖 ≤ 𝑛, let {𝑟𝑖 (𝑇),
𝑟𝑖,𝑠 (𝑇)
𝑟𝑖,𝐼 (𝑇)

,
𝑟𝑖,𝑡 (𝑇)
𝑟𝑖,𝐼 (𝑇)

} be

the RUR of {ℎ1 = ℎ𝑖 = 0}, also with respect to ℓ . We can compute

all these representations with Õ𝐵 (𝑛(𝑑
6 + 𝑑5𝜏)) bit operations in

the worst case, and with Õ𝐵 (𝑛(𝑑
5 + 𝑑4𝜏)) in expected case with a

Las Vegas algorithm (Lem. 4.5).

Then, for the system {ℎ1 = ℎ2 = . . . = ℎ𝑛 = 0} we

can define a rational parameterization {𝜒 (𝑇),
𝑟𝑠 (𝑇)
𝑟𝐼 (𝑇)

,
𝑟𝑡 (𝑇)
𝑟𝐼 (𝑇)

}, where

𝜒 (𝑇) = gcd(𝑟 (𝑇), 𝑟3 (𝑇), . . . , 𝑟𝑛 (𝑇),
𝑟𝑠 (𝑇)𝑟3,𝐼 (𝑇) − 𝑟3,𝑠 (𝑇)𝑟𝐼 (𝑇), 𝑟𝑡 (𝑇)𝑟3,𝐼 (𝑇) − 𝑟3,𝑡 (𝑇)𝑟𝐼 (𝑇),

.

.

.
𝑟𝑠 (𝑇)𝑟𝑛,𝐼 (𝑇) − 𝑟𝑛,𝑠 (𝑇)𝑟𝐼 (𝑇), 𝑟𝑡 (𝑇)𝑟𝑛,𝐼 (𝑇) − 𝑟𝑛,𝑡 (𝑇)𝑟𝐼 (𝑇)) .

So, we need to compute the gcd of 3𝑛 − 5 univariate polynomials

of degrees at most𝑑2 and coefficients of bitsizes in Õ(𝑑𝜏). This takes

Õ𝐵 (𝑛(𝑑
6 + 𝑑5𝜏)) bit operations in the worst case and Õ𝐵 (𝑛(𝑑

4 +
𝑑3𝜏)) in the expected case (Lem. 2.2). Isolating the roots of such a

parameterization requires Õ𝐵 (𝑑
6 + 𝑑5𝜏) as in Alg. 7 from [8]. □

Remark 4 (RUR and isolating interval representation). If

we use Thm.4.6 to solve the over-determined bivariate system of the

ℎ𝑖 polynomials of Eq. (2), then we obtain in the output a RUR for the

roots, which is as follows: There is a polynomial 𝜒 (𝑇) ∈ Z[𝑇] of size

(O(𝑑2), Õ(𝑑2 + 𝑑𝜏)) and a mapping

𝑉 (𝜒) → 𝑉 (ℎ1, . . . , ℎ𝑛)

𝑇 ↦→
(𝑟𝑠 (𝑇)
𝑟𝐼 (𝑇)

,
𝑟𝑡 (𝑇)

𝑟𝐼 (𝑇)

)
, (3)

that defines a one-to-one correspondence between the roots of 𝜒 and

those of the system. The polynomials 𝑟𝑠 , 𝑟𝑡 , and 𝑟𝐼 are in Z[𝑇] and

have also size (O(𝑑2), Õ(𝑑2 + 𝑑𝜏)).
Taking into account the cost to compute this parametrization of

the solutions (Thm. 4.6), we can also compute at no extra cost the

resultant of {ℎ1, ℎ2} with respect to 𝑠 or 𝑡 . Notice that both resultants

are the same polynomial, since the system is symmetric. Let 𝑅𝑠 (𝑡) =
res𝑠 (ℎ1, ℎ2). It is of size (O(𝑑

2),O(𝑑2 + 𝑑𝜏)) [4, Prop. 8.46].
Under the same bit complexity, we can sufficiently refine the

isolating boxes of the solutions of the bivariate system (computed

in Thm. 4.6), so that every root (
𝑟𝑠 (𝜉)
𝑟𝐼 (𝜉)

,
𝑟𝑡 (𝜉)
𝑟𝐼 (𝜉)
), where 𝜒 (𝜉) = 0, has

a representation as a pair of algebraic numbers in isolating interval

representation:

((𝑅𝑠 , 𝐼1,𝜉 × 𝐼2,𝜉), (𝑅𝑠 , 𝐽1,𝜉 × 𝐽2,𝜉)) . (4)

Both coordinates are roots of the same polynomial. Moreover, 𝐼2,𝜉 , 𝐽2,𝜉
are empty sets when the corresponding algebraic number is real.

Therefore, we can immediately distinguish between real and complex

parameters. At the same time, we associate to each isolating box of

a root of 𝑅𝑠 the algebraic numbers 𝜌 = (𝜒, 𝐼𝜌 × 𝐽𝜌) for whom it

holds that
𝑟𝑠 (𝜌)
𝑟𝐼 (𝜌)

projects inside this isolating box. We can interchange

between the two of representations in constant time, and this will

simplify our computations in the sequel.

Lemma 4.7. Let C be a curve with a proper parametrization 𝜙 (𝑡)
as in (1), that has no singularities at infinity. We compute the real

poles of 𝜙 and the parameters corresponding to singular, extreme, and

isolated points of C in worst-case bit complexity

Õ𝐵 (𝑛𝑑
6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

and using a Las Vegas algorithm in expected bit complexity

Õ𝐵 (𝑑
6 + 𝑑5 (𝑛 + 𝜏) + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏) .

Proof. The proof is an immediate consequence of the following:

• We compute all ℎ𝑖 ∈ Z[𝑠, 𝑡] in Õ𝐵 (𝑛𝑑
2𝜏): To construct each ℎ𝑖

we perform 𝑑2 multiplications of numbers of bitsize 𝜏 ; the cost

for this is Õ𝐵 (𝑑
2𝜏). The bi-degree of each is at most (𝑑, 𝑑) and

L(ℎ𝑖) ≤ 2𝜏 + 1 = O(𝜏).

• The real poles of 𝜙 are computed in Õ𝐵 (𝑛
2 (𝑑4 + 𝑑3𝜏)): To find the

poles of 𝜙 , we isolate the real roots of each polynomial 𝑞𝑖 (𝑡), for

𝑖 ∈ [𝑛]. This costs Õ𝐵 (𝑛(𝑑
3 + 𝑑2𝜏)) [27]. Then we sort the roots in

Õ𝐵 (𝑛 𝑑 𝑛(𝑑
3 + 𝑑2𝜏)) = Õ𝐵 (𝑛

2 (𝑑4 + 𝑑3𝜏)).
• The parameters corresponding to cusps, multiple and isolated points

of C are computed in Õ𝐵 (𝑛(𝑑
6 + 𝑑5𝜏)):

We solve the bivariate system (2) in Õ𝐵 (𝑛(𝑑
6 +𝑑5𝜏)) or in expected

time Õ𝐵 (𝑑
6 + 𝑛𝑑5 + 𝑑5𝜏 + 𝑛𝑑4𝜏) (Thm. 4.6). Then we have a

parametrization of the solutions of the bivariate system (2) of the

form (3) and in the same time of the form (4) (see Rem. 4). Some

solutions (𝑠, 𝑡) ∈ 𝑆 may not correspond to points on the curve, since

𝑠, 𝑡 can be poles of 𝜙 . Notice that from Rem. 3, 𝑠 and 𝑡 are either both

poles or none of them is a pole. We compute 𝑔𝑠 = gcd(𝑅𝑠 , 𝑄), where
𝑄 (𝑡) =

∏
𝑖∈[𝑛] 𝑞𝑖 (𝑡), and the gcd-free part of 𝑅𝑠 with respect to 𝑄 ,

say 𝑅∗𝑠 . This is done in Õ𝐵 (max{𝑛,𝑑} (𝑛𝑑3𝜏 + 𝑛𝑑2𝜏2)) [10, Lem. 5].

Every root of 𝑅∗𝑠 is an algebraic number of the form (𝑅𝑠 , 𝐼1,𝜉 × 𝐼2,𝜉),
for some 𝜉 that is root of 𝜒 . We can easily determine if it corresponds

to a cusp, a multiple or an isolated point; when real (i.e., 𝐼2,𝜉 = ∅) it
corresponds to a cusp of C if and only if ((𝑅𝑠 , 𝐼1,𝜉), (𝑅𝑠 , 𝐼1,𝜉)) is in 𝑆 .
Otherwise, it corresponds to a multiple point. When it is complex

(i.e., 𝐼2,𝜉 ≠ ∅), it corresponds to an isolated pont of C if and only if

((𝑅𝑠 , 𝐼1,𝜉 × 𝐼2,𝜉), (𝑅𝑠 , 𝐼1,𝜉 × (−𝐼2,𝜉))) ∈ 𝑆 and there is no root in 𝑆 of

the form ((𝑅𝑠 , 𝐼1,𝜉 × 𝐼2,𝜉), (𝑅𝑠 , 𝐽1,𝜉′)).
• The parameters corresponding to extreme points of C are computed

in Õ𝐵 (𝑑
4𝑛𝜏 + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑑2𝑛3𝜏):

For all 𝑖 ∈ [𝑛], ℎ𝑖 (𝑡, 𝑡) is a univariate polynomial of

size (O(𝑑),O(𝜏)). Then, 𝐻 (𝑡) =
∏

𝑖∈[𝑛] ℎ𝑖 (𝑡, 𝑡) is of size

(O(𝑛𝑑), Õ(𝑛𝜏)). The parameters that correspond to extreme points

are among the roots of𝐻 (𝑡). Tomake sure that poles and parameters

that give singular points are excluded, we compute gcd(𝐻,𝑄 · 𝑅𝑠),
where𝑄 (𝑡) =

∏
𝑖∈[𝑛] 𝑞𝑖 (𝑡), and the gcd-free part of 𝐻 with respect

to𝑄 ·𝑅𝑠 , say𝐻
∗. Since𝑄 ·𝑅𝑠 is a polynomial of size (𝑑2+𝑛𝑑, (𝑑+𝑛)𝜏),

the computation of the gcd and the gcd-free part costs Õ𝐵 (𝑛(𝑑
4𝜏 +

𝑛𝑑3𝜏 + 𝑛2𝑑2𝜏)) [10, Lem. 5]. Then, 𝐻 = gcd(𝐻,𝑄 · 𝑅𝑠)𝐻
∗, and the

real roots of 𝐻∗ give the parameters that correspond to extreme

points. We isolate the real roots of 𝐻∗ in Õ𝐵 (𝑛
3 (𝑑3 +𝑑2𝜏)), since it

is a polynomial of size (O(𝑛𝑑), Õ(𝑛(𝑑 + 𝜏))) [27]. □

5 PTOPO: TOPOLOGY AND COMPLEXITY

We present PTOPO, an algorithm to construct an abstract graph

𝐺 that is isotopic [7, p.184] to C when we embed it in R𝑛 . We

emphasize that, currently, we do not treat/compute knots in the

case of space curves. The embedding consists of a graph whose

285

ISSAC ’20, July 20-23, 2020, Kalamata, Greece Christina Katsamaki, Fabrice Rouillier, Elias Tsigaridas, and Zafeirakis Zafeirakopoulos

vertices are points on the curve given by their parameter values.

The edges are smooth parametric arcs that we can continuously

deform to branches of C without any topological changes. We need

to specify a bounding box in R𝑛 inside which the constructed graph

results in an isotopic embedding to C. We comment at the end of the

section on the case where an arbitrary box is provided at the input.

We determine a bounding box in R𝑛 , which we call characteristic,

that captures all the topological information of C:

Definition 2. A characteristic box of C is a box enclosing a subset

of R𝑛 that intersects all components of C and contains all its singular,

extreme, and isolated points.

Let BC be a characteristic box of C. If C is bounded, then C ⊂
BC . If C is unbounded, then the branches of C that extend to infinity
intersect the boundary of BC . A branch of the curve extends to

infinity if for 𝑡 → 𝑡0, it holds | |𝜙 (𝑡) | | > 𝑀 , for any 𝑀 > 0, where

𝑡0 ∈ R ∪ {∞}. Lem. 5.1 computes a characteristic box using the

degree and bitsize of the polynomials in the parametrization (1).

Lemma 5.1. Let C be a curve with a parametrization as in (1).

For 𝑏 = 15𝑑2 (𝜏 + log𝑑) = O(𝑑2𝜏), BC = [−2𝑏 , 2𝑏]𝑛 is

a characteristic box of C.

Proof. We estimate the maximum and minimum values of 𝜙𝑖 ,

𝑖 ∈ [𝑛], whenwe evaluate it at the parameter values that correspond

to special points and also at each pole that is not a root of 𝑞𝑖 .

Let 𝑡0 be a parameter that corresponds to a cusp or an

extreme point with respect to the 𝑖-th direction. Then, it is a

root of 𝜙 ′𝑖 (𝑡). Let 𝑁 (𝑡) = 𝑝 ′𝑖 (𝑡)𝑞𝑖 (𝑡) − 𝑝𝑖 (𝑡)𝑞
′
𝑖 (𝑡) the numerator

of 𝜙 ′𝑖 (𝑡). Then 𝑁 (𝑡0) = 0. The degree of 𝑁 (𝑡) is ≤ 2𝑑 −

1 and L(𝑁) ≤ 22𝜏+log𝑑+1. From Lem. 2.1 we conclude that

|𝑝𝑖 (𝑡0) | ≤ 24𝑑𝜏+𝑑 log(𝑑)+(3𝑑−1) log(3𝑑−1)+𝑑−𝜏 . Analogously, it holds

that |𝑞𝑖 (𝑡0) | ≥ 2−4𝑑𝜏−𝑑 log(𝑑)−(3𝑑−1) log(3𝑑−1)−𝑑+𝜏 . Therefore,

|𝜙𝑖 (𝑡0) | ≤ 22(4𝑑𝜏+𝑑 log(𝑑)+(3𝑑−1) log(3𝑑−1)+𝑑−𝜏) .

Now, let (𝑡1, 𝑡2) be two parameters corresponding to a multiple

point of C, i.e., (𝑡1, 𝑡2) is a root of the bivariate system in Eq. (2).

Take any 𝑗, 𝑘 ∈ [𝑛] with 𝑗 ≠ 𝑘 and let 𝑅(𝑡) = res𝑠 (ℎ 𝑗 , ℎ𝑘). It holds

that 𝑅(𝑡1) = 0. The degree of 𝑅 is ≤ 2𝑑2 andL(𝑅) ≤ 2𝑑 (𝜏 + log(𝑑) +
log(𝑑 + 1) + 1) [4, Prop. 8.29]. Applying Lem. 2.1, we deduce that

|𝜙𝑖 (𝑡1) | ≤ 24𝑑
2 (𝜏+log(𝑑)+log(𝑑+1)+1)+4𝑑2𝜏+(2𝑑2+𝑑) log(2𝑑2+𝑑) .

Let 𝑡3 be a pole of 𝜙 with 𝑞 𝑗 (𝑡3) = 0, for some 𝑗 ≠ 𝑖 . If 𝜙𝑖 (𝑡3) is
defined, applying Lem. 2.1 gives

|𝜙𝑖 (𝑡3) | ≤ 24𝑑𝜏+4𝑑 log 2𝑑 .

To conclude, we take the maximum of the three bounds. However,

to simplify notation, we slightly overestimate the latter bound. □

The vertices of the embedded graph must include the singular

and the isolated points of C. Additionally, to rigorously visualize

the geometry of C, we consider as vertices the extreme points of C,
with respect to all coordinate directions, as well as the intersections

of C with the boundary of the bounding box. We label the vertices

of 𝐺 using the corresponding parameter values generating these

points and we connect them accordingly. Alg. 2 presents the pseudo-

code of PTOPO and here we give some more details on the various

steps. We construct 𝐺 as follows:

First, we compute the poles and the sets T𝐶 , T𝑀 , T𝐸 , and T𝐼 of

parameters corresponding to “special pointsž. Then, we compute

the characteristic box of C, say BC . We compute the set T𝐵
of parameters corresponding to the intersections of C with the

boundary of BC (if any). Lem. 5.2 describes this procedure and its

complexity.

Lemma 5.2. LetB = [𝑙1, 𝑟1]×· · ·×[𝑙𝑛, 𝑟𝑛] inR
𝑛 andL(𝑙𝑖) = L(𝑟𝑖) =

𝜎 , for 𝑖 ∈ [𝑛]. We can find the parameters that give the intersection

points of 𝜙 with the boundary of B in Õ𝐵 (𝑛
2𝑑3 + 𝑛2𝑑2 (𝜏 + 𝜎)).

Proof. For each 𝑖 ∈ [𝑛] the polynomials 𝑞𝑖 (𝑡)𝑙𝑖 − 𝑝𝑖 (𝑡) = 0

and 𝑞𝑖 (𝑡)𝑟𝑖 − 𝑝𝑖 (𝑡) = 0 are of size (O(𝑑),O(𝜏 + 𝜎)). We compute

isolating intervals for all their real solutions in Õ𝐵 (𝑑
2 (𝜏 + 𝜎)) [27].

For any root 𝑡0 of each of these polynomials, since 𝜙 is in reduced

form (by assumption), we have that 𝑡0 ∉ TR
𝑃
. We check if 𝜙 𝑗 (𝑡0) ∈

[𝑙 𝑗 , 𝑟 𝑗], 𝑗 ∈ [𝑛] \ 𝑖 . This requires 3 sign evaluations of univariate

polynomials of size (𝑑, 𝜏 + 𝜎) at all roots of a polynomial of size

(𝑑, 𝜏 + 𝜎). The bit complexity of performing these operations for

all the roots is Õ𝐵 (𝑑
3 + 𝑑2 (𝜏 + 𝜎)) [39, Prop. 4, Prop. 6]. Since we

repeat this procedure 𝑛 − 1 times for every 𝑖 ∈ [𝑛], the total cost is

Õ𝐵 (𝑛
2𝑑3 + 𝑛2𝑑2 (𝜏 + 𝜎)). □

We partition T𝐶∪T𝑀∪T𝐸∪T𝐼∪T𝐵 into groups of parameters that

correspond to the same point on C. For each group, we add a vertex

to 𝐺 if and only if the corresponding point is inside the bounding

box B; for the characteristic box it is inside by construction.

Lemma 5.3. The graph 𝐺 has 𝜅 = O(𝑑2 + 𝑛𝑑) vertices, which can be

computed using O(𝑑2 + 𝑛𝑑) arithmetic operations.

Proof. Since T𝐵 ∩ T𝑀 = ∅ and T𝐸 ∩ T𝑀 = ∅, to each parameter

in T𝐵 and T𝐸 corresponds a unique point on C. So for every 𝑡 ∈
T𝐵 ∪ T𝐸 we add a vertex to 𝐺 , labeled by the respective parameter.

Next, we group the parameters in T𝐶 ∪ T𝑀 ∪ T𝐼 that give the same

point on C and we add for each group a vertex to 𝐺 labeled by the

corresponding parameter values.

Grouping of the parameters is done as follows: For every 𝑡 ∈
T𝐶∪T𝑀 we add a vertex to𝐺 labeled by the set {𝑠 ∈ R : (𝑠, 𝑡) ∈ 𝑆}∪
{𝑡} and for every 𝑡 ∈ T𝐼 we add a vertex to 𝐺 labeled by the set

{𝑠 ∈ C : (𝑠, 𝑡) ∈ 𝑆} ∪ {𝑡}. Notice that we took into account Rem. 3.

We compute these sets simply by reading the elements of 𝑆 .

It holds that T𝐵 = O(𝑛𝑑), T𝐸 = O(𝑛𝑑) and |𝑆 | = O(𝑑2). Since for
each vertex, we can find the parameters that give the same point in

constant time, the result follows. □

We denote by 𝑣1, . . . , 𝑣𝜅 the vertices (with distinct labels) of G

and by 𝜆(𝑣1), . . . , 𝜆(𝑣𝜅) their label sets (i.e., the parameters that

correspond to each vertex). Let T be the sorted list of parameters in

T𝐶 ∪ T𝑀 ∪ T𝐸 ∪ T𝐵
3. If for two consecutive elements 𝑡1 < 𝑡2 in T

there exists a pole 𝑠 ∈ TR
𝑃
such that 𝑡1 < 𝑠 < 𝑡2, then we split T into

two lists: T1 containing the elements ≤ 𝑡1 and T2 containing the

elements ≥ 𝑡2. We continue recursively for T1 and T2, until there

are no poles between any two elements of the resulting list. This

procedure partitions T into T1, . . . , Tℓ .

To add edges to 𝐺 , we consider each T𝑖 with more than one

element, where 𝑖 ∈ [ℓ], independently. For any consecutive

elements 𝑡1 < 𝑡2 in T𝑖 , with 𝑡1 ∈ 𝜆(𝑣𝑖,1) and 𝑡2 ∈ 𝜆(𝑣𝑖,2), we

3Notice that we exclude the parameters of the isolated points.

286

On the Geometry and the Topology of Parametric Curves ISSAC ’20, July 20-23, 2020, Kalamata, Greece

add the edge {𝑣𝑖,1, 𝑣𝑖,2}
4. If p∞ exists, we add an edge to the graph

connecting the vertices corresponding to the last element of Tℓ and

the first element of the T1.

Algorithm 2: PTOPO(𝜙) (Inside the characteristic box)

Input: A proper parametrization 𝜙 ∈ Z(𝑡)𝑛 without

singular points at infinity.

Output: Abstract graph 𝐺

1 Compute real poles TR
𝑃
.

2 Compute parameters of ‘special points’ T𝐶 , T𝑀 , T𝐸 , T𝐼 .

/* Characteristic box */

3 𝑏 ← 15𝑑2 (𝜏 + log𝑑), BC ← [−2
𝑏 , 2𝑏]𝑛

4 T𝐵 ← parameters that give to intersections of C with BC
5 Construct the set of vertices of 𝐺 using Lem.5.3

6 Sort the list of all the parameters T = [T𝐶 , T𝑀 , T𝐸 , T𝐵].

7 Let𝑇1, . . . ,𝑇ℓ the sublists of T when split at parameters in TR
𝑃

8 for every list T𝑖 = [𝑡𝑖,1, . . . , 𝑡𝑖,𝑘𝑖] do
9 for 𝑗 = 1, . . . , 𝑘𝑖 − 1 do
10 Add the edge {𝑡𝑖, 𝑗 , 𝑡𝑖, 𝑗+1} to the graph

11 if p∞ exists then

12 Add the edge {𝑡1,1, 𝑡ℓ,𝑘ℓ } to the graph

Theorem 5.4 (PTOPO inside the characteristic box). Consider

a proper parametrization𝜙 of curve C involving polynomials of degree

𝑑 and bitsize 𝜏 , as (1). Alg. 2 outputs a graph 𝐺 that, if embedded in

R𝑛 , is isotopic to C, within the characteristic box BC . It has worst
case complexity

Õ𝐵 (𝑑
6 (𝑛 + 𝜏) + 𝑛𝑑5𝜏 + 𝑛2𝑑4𝜏 + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

while its expected complexity is

Õ𝐵 (𝑑
6𝜏 + 𝑛𝑑5𝜏 + 𝑛2𝑑4𝜏 + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏) .

If 𝑛 = O(1), then bounds become Õ𝐵 (𝑁
7), where 𝑁 = max{𝑑, 𝜏}.

Proof. We count on the fact that 𝜙 is continuous in R\TR
𝑃
. Thus,

for each real interval [𝑠, 𝑡] with [𝑠, 𝑡] ∩TR
𝑃
= ∅, there is a parametric

arc connecting the points 𝜙 (𝑠) and 𝜙 (𝑡). Since for any (sorted) list

T𝑖 , for 𝑖 ∈ [ℓ], the interval defined by the minimum and maximum

value of its elements has empty intersection with TR
𝑃
, then for any

𝑠, 𝑡 ∈ T𝑖 there exists a parametric arc connecting 𝜙 (𝑠) and 𝜙 (𝑡) and
it is entirely contained in BC . If p∞ exists, then p∞ is inside BC .
Let 𝑡1,1, 𝑡ℓ,𝑘ℓ be the first element of the first list and the last element

of the last list. There is a parametric arc connecting 𝜙 (𝑡1,1) with p∞
and p∞ with 𝜙 (𝑡ℓ,𝑘ℓ). So we add the edge {𝑡1,1, 𝑡ℓ,𝜅ℓ } to 𝐺 . Then,

every edge of𝐺 is embedded to a unique smooth parametric arc and

the embedding of 𝐺 can be trivially continuously deformed to C.
For the complexity analysis, we know from Lem.4.7 that steps

1-2 can be performed in wost-case bit complexity

Õ𝐵 (𝑛𝑑
6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

and in expected bit complexity

Õ𝐵 (𝑑
6 + 𝑑5 (𝑛 + 𝜏) + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

4To avoid multiple edges, we make the convention that we add an edge between 𝑣𝑖,𝑗 ,

𝑗 = 1, 2, and an (artificial) intermediate point corresponding to a parameter in (𝑡1, 𝑡2) .

using a Las Vegas algorithm. From Lemmata 5.1, 5.2, and 5.3 steps 4-

5 cost Õ𝐵 (𝑛
2 (𝑑3𝜏)).

To perform steps 6-7 we must sort all the parameters in T ∪

TR
𝑃
, i.e., we sort O(𝑑2 + 𝑛𝑑) algebraic numbers: The parameters

that correspond to cusps and extreme points can be expressed as

roots of
∏

𝑖∈[𝑛] ℎ𝑖 (𝑡, 𝑡), which is of size (𝑛𝑑, 𝑛𝜏). The poles are

roots of
∏

𝑖∈[𝑛] 𝑞𝑖 (𝑡), which has size (𝑛𝑑, 𝑛𝜏). The parameters that

correspond to multiple points are roots of 𝑅𝑠 which has size (𝑑
2, 𝑑𝜏).

At last, parameters in T𝐵 are roots of a polynomial of size (𝑑, 𝑑2𝜏).
We can consider all these algebraic numbers together as roots of a

single univariate polynomial (the product of all the corresponding

polynomials). It has degree O(𝑑2 + 𝑛𝑑) and bitsize Õ(𝑑2𝜏 + 𝑛𝜏).

Hence, its separation bound is Õ(𝑑4𝜏 +𝑛𝑑3𝜏 +𝑛𝑑2𝜏 +𝑛2𝑑𝜏). To sort
the list of all the algebraic numbers we have to perform O(𝑑2 +𝑛𝑑)

comparisons and each costs Õ(𝑑4𝜏 +𝑛𝑑3𝜏 +𝑛𝑑2𝜏 +𝑛2𝑑𝜏). Thus, the

overall cost for sorting is Õ𝐵 (𝑑
6𝜏 + 𝑛𝑑5𝜏 + 𝑛2𝑑4𝜏 + 𝑛2𝑑3𝜏 + 𝑛3𝑑2𝜏).

The overall bit complexities in the worst and expected case follow

by summing the previous bounds. □

Following the proof of Thm. 5.4 we notice that the term 𝑑6𝜏 in

the worst case bound is due to the introduction of the intersection

points of C with BC . For visualizing the curve within BC , these
points are essential and we cannot avoid them. However, if we are

interested only in the topology of C, i.e., the abstract graph𝐺 , these

points are not important any more. We sketch a procedure to avoid

them and gain a factor of 𝑑 in the complexity bound:

Assume that we have not computed the points on C ∩ BC . We

split again the sorted list T = [T𝐶 , T𝑀 , T𝐸] at the real poles, and we

add an artificial parameter at the beginning and at the end of each

sublist. The rest of the procedure remains unaltered.

To verify the correctness of this approach, it suffices to prove

that the graph that we obtain by this procedure, is isomorphic to the

graph𝐺 at the output of Alg. 2. It is immediate to see that the latter

holds, possibly up to the dissolution of the vertices corresponding to

the first and last artificial vertices. Adding these artificial parameters

does not affect the overall complexity, since we do not perform any

algebraic operations. Therefore, the bit complexity of the algorithm

is determined by the complexity of computing the parameters of the

special points (Lem. 4.7), and so, we have the following theorem:

Theorem 5.5 (PTOPO and an abstract graph). Consider a proper

parametrization 𝜙 of curve C involving polynomials of degree 𝑑 and

bitsize 𝜏 , as (1). Alg. 2 outputs a graph 𝐺 that, if embedded in R𝑛 , is

isotopic to C. It has worst case complexity

Õ𝐵 (𝑛𝑑
6 + 𝑛𝑑5𝜏 + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

while its expected complexity is

Õ𝐵 (𝑑
6 + 𝑑5 (𝑛 + 𝜏) + 𝑑4 (𝑛2 + 𝑛𝜏) + 𝑑3 (𝑛2𝜏 + 𝑛3) + 𝑛3𝑑2𝜏),

If 𝑛 = O(1), then bounds become Õ𝐵 (𝑁
6), where 𝑁 = max{𝑑, 𝜏}.

Remark 5. If we are given a box B ⊂ R𝑛 at the input, we slightly

modify PTOPO, as follows: We discard the parameter values in

T𝐶 ∪ T𝑀 ∪ T𝐸 ∪ T𝐼 that correspond to points not contained in B.
Then, the set of 𝐺 ’s vertices is constructed in the same way. To

connect the vertices, we follow the previously used method with

a minor modification: For any consecutive elements 𝑡1 < 𝑡2 in a

list T𝑖 with more than two elements, such that 𝑡1 ∈ 𝜆(𝑣𝑖,1) and

287

ISSAC ’20, July 20-23, 2020, Kalamata, Greece Christina Katsamaki, Fabrice Rouillier, Elias Tsigaridas, and Zafeirakis Zafeirakopoulos

Figure 1: The left figure is the output of ptopo for the

parametric curve (𝑡8 − 8 𝑡6 + 20 𝑡4 − 16 𝑡2 + 2, 𝑡7 − 7 𝑡5 +
14 𝑡3 − 7 𝑡) while the right figure is the output for the curve

(37 𝑡
3−23 𝑡2+87 𝑡+44

29 𝑡3+98 𝑡2−23 𝑡+10
, −61 𝑡

3−8 𝑡2−29 𝑡+95
11 𝑡3−49 𝑡2−47 𝑡+40

).
.

𝑡2 ∈ 𝜆(𝑣𝑖,2), we add the edge {𝑣𝑖,1, 𝑣𝑖,2} if and only if 𝜙 (𝑡1), 𝜙 (𝑡2) are
not both on the boundary of B; or in other words 𝑡1 and 𝑡2 are not

both in T𝐵 .

6 IMPLEMENTATION AND EXAMPLES

We have implemented PTOPO in maple5. We build upon the real

root isolation routines of maple’s RootFinding library and the

slv package [15], in order to use a certified implementation of

general purpose exact computations with one and two real algebraic

numbers, like comparison and sign evaluations. PTOPO computes

the topology and visualizes parametric curves (currently planar).

To demonstrate its capabilities, we present in Fig. 1 the topology

of two planar curves from [3]. For a given parametric representation

of a curve, PTOPO computes the special points on the curve, the

characteristic box, the corresponding graph, and then it visualizes

the curve (inside the box). The computation, in all cases, takes less

than a second in a MacBook laptop, running maple 2019.

Acknowledgments FR, ET and ZZ are partially supported by Fondation

Mathématique Jacques Hadamard PGMO grand ALMA, Agence Nationale de la

Recherche ANR-17-CE40-0009, PHC GRAPE, and by the projects 118F321 under the

program 2509, 118C240 under the program 2232, and 117F100 under the program 3501

of the Scientific and Technological Research Council of Turkey.

REFERENCES
[1] S. S. Abhyankar and C. J. Bajaj. Automatic parameterization of rational curves

and surfaces IV: Algebraic space curves. ACM Trans. Graph., 8(4):325ś334, 1989.
[2] L. Alberti, B. Mourrain, and J. Wintz. Topology and arrangement computation of

semi-algebraic planar curves. CAGD, 25(8):631 ś 651, 2008.
[3] J. G. Alcázar and G. M. Díaz-Toca. Topology of 2D and 3D rational curves. CAGD,

27(7):483 ś 502, 2010.
[4] S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic Geometry,

volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag,
2003.

[5] A. Bernardi, A. Gimigliano, and M. Idà. Singularities of plane rational curves via
projections. J. Symb. Comput., 09 2016.

[6] A. Blasco and S. Pérez-Díaz. An in depth analysis, via resultants, of the
singularities of a parametric curve. CAGD, 68:22ś47, 2019.

[7] J.-D. Boissonnat and M. Teillaud, editors. Effective Computational Geometry for
Curves and Surfaces. Springer-Verlag, Mathematics and Visualization, 2006.

5https://webusers.imj-prg.fr/~christina.katsamaki/ptopo/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 754362.

[8] Y. Bouzidi, S. Lazard, G. Moroz, M. Pouget, F. Rouillier, and M. Sagraloff. Solving
bivariate systems using Rational Univariate Representations. J. Complexity,
37:34ś75, 2016.

[9] Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier. Rational univariate
representations of bivariate systems and applications. In Proc. 38th Int’l Symp. on
Symbolic and Algebraic Computation, ISSAC ’13, pages 109ś116, NY, USA, 2013.
ACM.

[10] Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier. Separating linear forms and
rational univariate representations of bivariate systems. J. Symb. Comput., pages
84ś119, 2015.

[11] L. Busé, C. Laroche, and F. Yıldırım. Implicitizing rational curves by the method
of moving quadrics. Computer-Aided Design, 114:101ś111, 2019.

[12] J. Caravantes, M. Fioravanti, L. Gonzalez-Vega, and I. Necula. Computing the
topology of an arrangement of implicit and parametric curves given by values.
In V. P. Gerdt, W. Koepf, W. M. Seiler, and E. V. Vorozhtsov, editors, Computer
Algebra in Scientific Computing, pages 59ś73, Cham, 2014. Springer.

[13] D. Cox, A. Kustin, C. Polini, and B. Ulrich. A study of singularities on rational
curves via syzygies. Memoirs of the American Mathematical Society, 222, 02 2011.

[14] D. N. Diatta, S. Diatta, F. Rouillier, M.-F. Roy, and M. Sagraloff. Bounds for
polynomials on algebraic numbers and application to curve topology. arXiv
preprint arXiv:1807.10622, 2018.

[15] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the asymptotic and practical
complexity of solving bivariate systems over the reals. J. Symb. Comput.,
44(7):818ś835, 2009. (Special issue on ISSAC 2007).

[16] R. T. Farouki, C. Giannelli, and A. Sestini. Geometric design using space curves
with rational rotation-minimizing frames. In M. Dñhlen, M. Floater, T. Lyche,
J.-L. Merrien, K. Mùrken, and L. L. Schumaker, editors, Mathematical Methods for
Curves and Surfaces, pages 194ś208. Springer, 2010.

[17] W. Fulton. Algebraic Curves. An Introduction to Algebraic Geometry.
Addison Wesley, 1969.

[18] X.-S. Gao and S.-C. Chou. Implicitization of rational parametric equations. J.
Symb. Comput., 14(5):459 ś 470, 1992.

[19] J. Gutierrez, R. Rubio, and D. Sevilla. On multivariate rational function
decomposition. J. Symb. Comput., 33(5):545 ś 562, 2002.

[20] J. Gutierrez, R. Rubio, and J.-T. Yu. D-resultant for rational functions. Proc.
American Mathematical Society, 130, 08 2002.

[21] X. Jia, X. Shi, and F. Chen. Survey on the theory and applications of 𝜇-bases for
rational curves and surfaces. J. Comput. Appl. Math., 329:2ś23, 2018.

[22] A. Kobel and M. Sagraloff. On the complexity of computing with planar algebraic
curves. J. Complexity, 31, 08 2014.

[23] Y.-M. Li and R. J. Cripps. Identification of inflection points and cusps on rational
curves. CAGD, 14(5):491 ś 497, 1997.

[24] T. Lickteig and M.-F. Roy. SylvesterśHabicht sequences and fast Cauchy index
computation. J. Symb. Comput., 31(3):315ś341, Mar. 2001.

[25] K. Mahler. On some inequalities for polynomials in several variables. J. London
Mathematical Society, 1(1):341ś344, 1962.

[26] D. Manocha and J. F. Canny. Detecting cusps and inflection points in curves.
CAGD, 9(1):1 ś 24, 1992.

[27] V. Pan and E. Tsigaridas. Accelerated approximation of the complex roots and
factors of a univariate polynomial. Theor. Computer Science, 681:138 ś 145, 2017.

[28] H. Park. Effective computation of singularities of parametric affine curves. J.
Pure and Applied Algebra, 173:49ś58, 08 2002.

[29] S. Pérez-Díaz. On the problem of proper reparametrization for rational curves
and surfaces. CAGD, 23(4):307ś323, 2006.

[30] S. Pérez-Díaz. Computation of the singularities of parametric plane curves. J.
Symb. Comput., 42(8):835 ś 857, 2007.

[31] C. A. T. Recio. Plotting missing points and branches of real parametric curves.
Applicable Algebra in Engineering, Communication and Computing, 18, 02 2007.

[32] R. Rubio, J. Serradilla, and M. Vélez. Detecting real singularities of a space curve
from a real rational parametrization. J. Symb. Comput., 44(5):490 ś 498, 2009.

[33] A. Schönhage. Probabilistic computation of integer polynomial gcds. J.
Algorithms, 9(3):365 ś 371, 1988.

[34] T. W. Sederberg. Improperly parametrized rational curves. CAGD, 3(1):67ś75,
May 1986.

[35] T. W. Sederberg and F. Chen. Implicitization using moving curves and surfaces.
In Proc. of the 22nd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, pages 301ś308, NY, USA, 1995.

[36] J. R. Sendra. Normal parametrizations of algebraic plane curves. J. Symb. Comput.,
33:863ś885, 2002.

[37] J. R. Sendra and F. Winkler. Algorithms for rational real algebraic curves. Fundam.
Inf., 39(1,2):211ś228, Apr. 1999.

[38] J. R. Sendra, F. Winkler, and S. Pérez-Díaz. Rational algebraic curves. Algorithms
and Computation in Mathematics, 22, 2008.

[39] A. Strzebonski and E. Tsigaridas. Univariate real root isolation in an extension
field and applications. J. Symb. Comput., 92:31 ś 51, 2019.

[40] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, 3rd edition, 2013.

[41] R. J. Walker. Algebraic curves. Springer-Verlag, 1978.

288

https://webusers.imj-prg.fr/~christina.katsamaki/ptopo/

On the Skolem Problem and Prime Powers

George Kenison
george.kenison@cs.ox.ac.uk

University of Oxford

Oxford, UK

Richard Lipton
richard.lipton@cc.gatech.edu

Georgia Institute of Technology

Atlanta, USA

Joël Ouaknine∗

joel@mpi-sws.org

Max Planck Institute for Software Systems

Saarbrücken, Germany

James Worrell2

jbw@cs.ox.ac.uk

University of Oxford

Oxford, UK

ABSTRACT

The Skolem Problem asks, given a linear recurrence sequence (𝑢𝑛),

whether there exists 𝑛 ∈ N such that 𝑢𝑛 = 0. In this paper we con-

sider the following specialisation of the problem: given in addition

𝑐 ∈ N, determine whether there exists 𝑛 ∈ N of the form 𝑛 = 𝑙𝑝𝑘 ,

with 𝑘, 𝑙 ≤ 𝑐 and 𝑝 any prime number, such that 𝑢𝑛 = 0.

CCS CONCEPTS

· Mathematics of computing→ Discrete mathematics.

KEYWORDS

Skolem Problem, Algebraic number theory, Recurrence sequences,

Decidability

ACM Reference Format:

George Kenison, Richard Lipton, Joël Ouaknine, and James Worrell. 2020.

On the Skolem Problem and Prime Powers. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.

3404036

1 INTRODUCTION

A sequence (𝑢𝑛)
∞
𝑛=0 of real algebraic numbers is called a linear

recurrence sequence if its terms satisfy a recurrence relation 𝑢𝑛 =

𝑎1𝑢𝑛−1 + 𝑎2𝑢𝑛−2 + · · · + 𝑎ℓ𝑢𝑛−ℓ , with fixed real algebraic constants

𝑎1, . . . , 𝑎ℓ such that 𝑎ℓ ≠ 0. Such a recurrence is said to have order ℓ

and a sequence (𝑢𝑛) satisfying the recurrence is wholly determined

by the initial values 𝑢0, . . . , 𝑢ℓ−1. The study of linear recurrence

sequences is motivated by a wide range of phenomena, in areas

such as analysis of algorithms, and biological and economic mod-

elling. Natural decision problems for linear recurrence sequences

include: whether all the terms in a sequence are positive, whether

the terms of the sequence are eventually positive, and whether

∗Also affiliated with the Department of Computer Science, Oxford University, UK.
Supported by ERC grant AVS-ISS (648701) and DFG grant 389792660 as part of TRR
248 (see https://perspicuous-computing.science).
2Supported by EPSRC Fellowship EP/N008197/1.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7100-1/20/07.
https://doi.org/10.1145/3373207.3404036

the sequence contains a zero. The latter, commonly known as the

Skolem Problem [6, 7], is the main object of study in the current

paper.

Let (𝑢𝑛) be a linear recurrence sequence. A remarkable result of

Skolem, Mahler, and Lech states that the set {𝑛 ∈ N : 𝑢𝑛 = 0} is

the union of a finite set together with a finite number of (infinite)

arithmetic progressions. The original result, proved by Skolem [14]

for the field of rational numbers, was subsequently extended to

the field of algebraic numbers by Mahler [9, 10], and then further

extended to any field of characteristic 0 by Lech [8]. All known

proofs of the Skolem-Mahler-Lech Theorem (as it is now known)

employ techniques from 𝑝-adic analysis. These proofs are non-

constructive and the decidability of the Skolem Problem remains

open. Berstel and Mignotte, however, gave an effective method to

obtain all of the arithmetic progressions in the statement of the

theorem [2].

For fields of positive characteristic, the conclusion of the Skolem-

Mahler-Lech Theorem does not hold. Indeed, Lech [8] gave the

following illustrative example. Let 𝐾 = F𝑝 (𝑡) and consider the

sequencewith terms𝑢𝑛 = (1+𝑡)𝑛−𝑡𝑛−1. Then (𝑢𝑛) satisfies a linear

recurrence over 𝐾 , but 𝑢𝑛 = 0 if, and only if, 𝑛 = 𝑝𝑘 . Nevertheless,

Derksen [5] established an analogue of the Skolem-Mahler-Lech

Theorem for fields of positive characteristic, namely he proved that

the set of zeroes in a field of characteristic 𝑝 is a 𝑝-automatic set.

The proof of Derksen was moreover effective, allowing to construct

for a given sequence the automaton representing the set of its zeros.

Returning to the characteristic-zero setting, progress on the de-

cidability of the Skolem Problem has been made by restricting

the problem to linear recurrence sequences of low order. Decid-

ability of the Skolem Problem for sequences of order at most 2

is straightforward and the results are considered folklore. Break-

through work by Mignotte, Shorey, and Tijdeman [11], and, inde-

pendently, Vereshchagin [15], showed decidability of the Skolem

Problem for linear recurrence sequences of order 3 and 4. Tech-

niques from 𝑝-adic analysis and algebraic number theory are em-

ployed in both [11] and [15]. Both papers moreover make critical

use of Baker’s theorem for linear forms in logarithms of algebraic

numbers. The approach via Baker’s Theorem taken in the above

papers does not appear to extend easily to recurrences of higher

order. In particular, decidability of Skolem’s Problem remains open

for recurrences of order 5. However, the recent resurgence of re-

search activity concerning the decidability of various sub-cases of

the Skolem Problem and related questions (see the survey [13])

gives an indication of its fundamental importance to the field.

289

https://doi.org/10.1145/3373207.3404036
https://doi.org/10.1145/3373207.3404036
https://doi.org/10.1145/3373207.3404036

ISSAC ’20, July 20–23, 2020, Kalamata, Greece G. Kenison, R. Lipton, J. Ouaknine, and J. Worrell

In this paper we pursue an alternative approach to restricting the

order of the recurrence as a means of obtaining decidable speciali-

sations of Skolem’s Problem. We consider general recurrences, but

ask to decide the existence of zeros of certain prescribed forms. For

example, we ask whether one can show decidability of the Skolem

Problem when we consider only those 𝑛 ∈ N that are prime powers.

Our first basic resultÐwhich we will generalise in various ways in

the rest of the paperÐis the following, which applies to a class of

simple linear recurrence sequences (i.e., those sequences without

repeated characteristic roots):

Theorem 1.1. Suppose that each term in a linear recurrence se-

quence (𝑢𝑛) can be written as an algebraic exponential polynomial

𝑢𝑛 = 𝐴1𝜆
𝑛
1 +· · ·+𝐴𝑚𝜆

𝑛
𝑚 with𝐴1, . . . , 𝐴𝑚 ∈ Z and 𝜆1, . . . , 𝜆𝑚 distinct

algebraic integers. Fix 𝑐 ∈ N. Then one can decide whether there exists

𝑛 ∈ {𝑝𝑘 : 𝑝 prime, 𝑘 ≤ 𝑐} such that 𝑢𝑛 = 0.

In general, a simple linear recurrence sequence (𝑢𝑛) has the

property that each of its terms is given by an algebraic exponential

polynomial 𝑢𝑛 = 𝐴1𝜆
𝑛
1 + · · · + 𝐴𝑚𝜆

𝑛
𝑚 with 𝐴1, . . . , 𝐴𝑚 ∈ 𝔒 alge-

braic integers in a number field 𝐾 . In Theorem 1.1 we assumed that

𝐴1, . . . , 𝐴𝑚 ∈ Z. More generally, a linear recurrence sequence (𝑢𝑛)

can always be written in the form 𝑢𝑛 = 𝐴1 (𝑛)𝜆
𝑛
1 + · · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚 ,

where the 𝐴𝑖 are univariate polynomials and the 𝜆𝑖 are characteris-

tic roots of the recurrence relation. We establish decidability results

for linear recurrence sequences (𝑢𝑛) in this general setting. We

consider the case of rational polynomial coefficients in Section 3;

that is, 𝐴1, . . . , 𝐴𝑚 ∈ Z[𝑥] and, more generally, algebraic polyno-

mial coefficients in Section 5. We outline two generalisations of

Theorem 1.1 below.

First, assume that the linear recurrence sequence (𝑢𝑛) satisfies

𝑢𝑛 = 𝐴1 (𝑛)𝜆
𝑛
1 + · · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚 such that 𝐴1, . . . , 𝐴𝑚 ∈ Z[𝑥]. The

next result follows as a corollary to Theorem 3.3. In the proof of

Theorem 3.3 we introduce and analyse an associated simple linear

recurrence (𝑣𝑛) with terms 𝑣𝑛 = 𝐴1 (0)𝜆
𝑛
1 + · · · +𝐴𝑚 (0)𝜆𝑛𝑚 .

Theorem 1.2. Let (𝑢𝑛) be a recurrence sequence with rational

polynomial coefficients and (𝑣𝑛) the associated simple recurrence. Fix

𝑐 ∈ N. If 𝑣1 ≠ 0 then one can decide whether there exists 𝑛 ∈ {𝑝𝑘 :

𝑝 prime, 𝑘 ≤ 𝑐} such that 𝑢𝑛 = 0.

Now suppose that the terms of (𝑢𝑛) are given by𝑢𝑛 = 𝐴1 (𝑛)𝜆
𝑛
1 +

· · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚 where the coefficients 𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥] are uni-

variate polynomial with 𝔒 the ring of integers of a finite Galois

extension 𝐾 over Q. As before, let (𝑣𝑛) be the associated simple

recurrence. To each rational prime 𝑝 we associate a constant 𝑓 (𝑝)

(the inertial degree of 𝑝Z in𝐾). The next result follows as a corollary

to Theorem 4.1.

Theorem 1.3. Suppose that (𝑢𝑛) is a recurrence sequence with

algebraic polynomial coefficients and (𝑣𝑛) the associated linear re-

currence as above. Fix 𝑐 ∈ N. If 𝑣1 ≠ 0 then one can decide whether

there exists 𝑛 ∈ {𝑝𝑘𝑓 (𝑝) : 𝑝 prime, 𝑘 ≤ 𝑐} such that 𝑢𝑛 = 0.

We motivate our decidability results with a discussion of the

decidability of the Skolem Problem for linear recurrence sequences

of order 5. The authors of [7] claim to prove that the Skolem Problem

is decidable for integer linear recurrence sequences of order 5;

however, as pointed out in [12], there is a gap in the argument. The

critical case for which the decidability of the Skolem Problem is

open is that of a recurrence sequence of order 5 whose characteristic

polynomial has five distinct roots: four distinct roots 𝜆1, 𝜆1, 𝜆2, 𝜆2 ∈

C such that |𝜆1 | = |𝜆2 |, and a fifth root 𝜌 ∈ R of strictly smaller

magnitude. In this case the terms of such a recurrence sequence (𝑢𝑛)

are given by 𝑢𝑛 = 𝑎
(

𝜆𝑛1 + 𝜆𝑛1

)

+ 𝑏
(

𝜆𝑛2 + 𝜆𝑛2

)

+ 𝑐𝜌𝑛 . Here 𝑎, 𝑏, 𝑐 ∈ R

are algebraic numbers. If |𝑎 | and |𝑏 | are not equal then there is no

known general procedure to determine {𝑛 ∈ N : 𝑢𝑛 = 0}.

Next we consider an example of a linear recurrence sequence

from the aforementioned critical case. We motivate the results

herein and also illustrate the techniques used in this paper by

demonstrating that the sequence does not vanishes at any prime

index.

Example 1.4. For this example set 𝜆1 = 39 + 52i, 𝜆2 = −60 + 25i

and 𝜌 = 1. (Our choices of Pythagorean triples (39, 52, 65) and

(25, 60, 65) ensure that |𝜆1 | = |𝜆2 | = 65.) Let (𝑣𝑛) be the linear

recurrence sequence whose terms satisfy

𝑣𝑛 = 𝜆𝑛1 + 𝜆𝑛1 + 3
(

𝜆𝑛2 + 𝜆𝑛2

)

+ 𝜌𝑛 .

There are no rational primes 𝑝 ∈ N for which 𝑣𝑝 = 0.

We omit many technical definitions and details in the following

presentation (for such details we refer the reader to the preliminariy

material in the next section).

Proof of Example 1.4. Let 𝐾 be the splitting field of the min-

imal polynomial (over Q) associated to (𝑣𝑛). We find that 𝐾 =

Q(𝜆1, 𝜆1, 𝜆2, 𝜆2, 1) � Q(𝑖). The dimension 𝑑 of the field𝐾 as a vector

space over Q is 2. There is a computable constant 𝑁 ∈ N depending

only on 𝑣1 and the field𝐾 introduced in the preliminariesÐthe norm

of the principal ideal generated by 𝑣1Ðwith the following property.

Suppose that 𝑝 ∈ N is a rational prime. Then, by Corollary 3.1 and

Lemma 3.2, 𝑣𝑝 = 0 only if 𝑝 | 𝑁 .

Assume that 𝑣𝑝 = 0 for some prime 𝑝 ∈ N. We calculate 𝑣1 =

−281, which we use to determine 𝑁 . Here 𝑁 = |𝑣1 |
𝑑 = 2812. Thus

𝑝 | 𝑁 = 2812 from our assumption. By happy coincidence, 281 is a

rational prime and so it is sufficient to check whether 𝑣𝑝 = 0 for the

only possible candidate 𝑝 = 281. Using Mathematica we compute

𝑣281 ≈ 3.7 × 10509 (to two significant figures). We conclude that

there does not exist a rational prime 𝑝 ∈ N such that 𝑣𝑝 = 0. □

This paper is organised as follows. In Section 2, we recall prelim-

inary terminology and background material from algebraic num-

ber theory and recurrence sequences. In Section 3, we prove de-

cidability results locating zeroes of recurrence sequences of the

form 𝑢𝑛 = 𝐴1 (𝑛)𝜆
𝑛
1 + · · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚 with polynomial coefficients

𝐴1, . . . , 𝐴𝑚 ∈ Z[𝑥] having integer coefficients. The main result in

Section 3 is Theorem 3.3. In Section 4 we prove decidability re-

sults for linear recurrence sequences with polynomial coefficients

𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥], where 𝔒 is the ring of integers of a Galois

number field. The main result in Section 4 is Theorem 4.1. In Sec-

tion 5 we show that the problem of deciding whether a given linear

recurrence sequence has a prime zero is NP-hard. This matches the

best known lower bound for the general Skolem Problem.

290

On the Skolem Problem and Prime Powers ISSAC ’20, July 20–23, 2020, Kalamata, Greece

2 ALGEBRAIC NUMBER THEORY AND

LINEAR RECURRENCE SEQUENCES

In this section we recall some basic notions concerning algebraic

numbers and linear recurrences that will be used in the sequel.

A complex number 𝛼 is algebraic if there exists a polynomial

𝑃 ∈ Q[𝑥] such that 𝑃 (𝛼) = 0. The minimal polynomial of 𝛼 ∈ A

is the unique monic polynomial 𝜇𝛼 ∈ Q[𝑥] of least degree such

that 𝜇 (𝛼) = 0. The degree of 𝛼 , written deg(𝛼), is the degree of its

minimal polynomial. An algebraic integer 𝛼 is an algebraic number

whose minimal polynomial has integer coefficients. The collection

of all algebraic integers forms a ring B.

A number field 𝐾 is a field extension of Q whose dimension as a

vector space over Q is finite. We call the dimension of this vector

space the degree of the number field and use the notation [𝐾 : Q]

for the degree of 𝐾 . Call a number field 𝐾 Galois if it is the splitting

field of some separable polynomial over Q. Let𝔒 = B ∩ 𝐾 be the

ring of algebraic integers in 𝐾 . Because B ∩ Q = Z, we refer to the

elements of Z as rational integers. For each 𝛼 ∈ 𝐾 there exists a

non-zero 𝑞 ∈ Z such that 𝑞𝛼 ∈ 𝔒.

Given a number field 𝐾 of degree 𝑑 over Q, there are exactly 𝑑

distinct monomorphisms 𝜎𝑖 : 𝐾 → C. We define the norm 𝑁𝐾 (𝛼)

of 𝛼 ∈ 𝐾 by

𝑁𝐾 (𝛼) =

𝑑
∏

ℓ=1

𝜎ℓ (𝛼).

Then 𝑁𝐾 (𝛼) ∈ Q and furthermore 𝑁𝐾 (𝛼) ∈ Z if 𝛼 ∈ 𝔒.

Suppose that 𝑃 ∈ Z[𝑥] is a polynomial with integer coefficients.

The height of 𝑃 is the maximum of the absolute values of its coeffi-

cients and write ∥𝑃 ∥ for the bit length of the list of its coefficients

encoded in binary. It is clear that the degree of 𝑃 is at most ∥𝑃 ∥,

and the height of 𝑃 is at most 2∥𝑃 ∥ .

There is a standard representation of an algebraic number 𝛼 as

a tuple (𝜇𝛼 , 𝑎, 𝑏, 𝜀) where 𝜇𝛼 is the minimal polynomial of 𝛼 and

𝑎, 𝑏, 𝜀 ∈ Q with 𝜀 > 0 sufficiently small so that 𝛼 is the unique

root of 𝜇𝛼 inside the ball of radius 𝜀 centred at 𝑎 + 𝑏i ∈ C. Given a

polynomial 𝑃 ∈ Z[𝑥], we can compute a standard representation

for each of its roots in time polynomial in ∥𝑃 ∥.

We recall some standard terminology and basic results about

ideals in𝔒. The ideal 𝔞 = 𝑎𝔒 generated by a single element 𝑎 ∈ 𝔒

is called principal. For two ideals 𝔞 and 𝔟 of𝔒, define the sum and

product by

𝔞 + 𝔟 := {𝑎 + 𝑏 : 𝑎 ∈ 𝔞, 𝑏 ∈ 𝔟}, and

𝔞𝔟 :=

{ 𝑘
∑

𝑗=1

𝑎 𝑗𝑏 𝑗 : 𝑎 𝑗 ∈ 𝔞, 𝑏 𝑗 ∈ 𝔟

}

.

Two ideals 𝔞 and 𝔟 are said to be coprime if 𝔞 + 𝔟 = 𝔒. In this case

we have 𝔞𝔟 = 𝔞 ∩ 𝔟.

For ideals 𝔞, 𝔟 of𝔒 we say 𝔞 divides 𝔟, and write 𝔞 | 𝔟, if there

exists an ideal 𝔠 such that 𝔟 = 𝔞𝔠. In addition, 𝔞 | 𝔟 if, and only

if, 𝔟 ⊆ 𝔞. An ideal 𝔭 of 𝔒 is called prime if 𝔭 | 𝔞𝔟 implies 𝔭 | 𝔞

or 𝔭 | 𝔟. Recall that the ring of integers𝔒 of a number field does

not necessarily have unique factorisation. However every non-

zero ideal of𝔒 can be written as a product of prime ideals and, in

addition, this factorisation is unique up to the order of the factors.

Let 𝔞 be a non-zero ideal of 𝔒 then the quotient ring 𝔒/𝔞 is

finite, which leads us to define the norm of 𝔞 by 𝑁 (𝔞) = |𝔒/𝔞 |.

This norm has a multiplicative property: 𝑁 (𝔞𝔟) = 𝑁 (𝔞)𝑁 (𝔟) for

every pair of non-zero ideals 𝔞, 𝔟 of𝔒. We can connect norms of

elements and ideals as follows. Suppose that 𝑎 ∈ 𝔒 is non-zero then

𝑁 (𝑎𝔒) = |𝑁𝐾 (𝑎) | and, in addition, if 𝑎 ∈ Q then 𝑁 (𝑎𝔒) = |𝑎𝑑 |

where 𝑑 = [𝐾 : Q].

Suppose that 𝔭 is a prime ideal. Since the quotient ring𝔒/𝔭 is

a finite field and, by definition, 𝑁 (𝔭) = |𝔒/𝔭 |, we conclude that

𝑁 (𝔭) = 𝑝 𝑓 where 𝑓 ≤ [𝐾 : Q] and 𝑝 is a rational prime. Indeed,

𝑝 ∈ 𝔭 and, further, it is the only rational prime in 𝔭. Thus, we

say that the prime ideal 𝔭 lies above the prime ideal 𝑝Z. We will

frequently use the following version of Fermat’s Little Theorem:

Theorem 2.1. For any prime ideal 𝔭 and algebraic integer 𝜆 ∈ 𝔒,

𝜆𝑁 (𝔭) − 𝜆 ∈ 𝔭.

We now recall some of the terminology connecting linear recur-

rence sequences and exponential polynomials. For further details

on this correspondence we refer the reader to [6].

We call a sequence of algebraic numbers (𝑢𝑛)
∞
𝑛=0 satisfying a

recurrence relation 𝑢𝑛 = 𝑎1𝑢𝑛−1 + 𝑎2𝑢𝑛−2 + · · · + 𝑎ℓ𝑢𝑛−ℓ with fixed

real algebraic constants 𝑎1, . . . , 𝑎ℓ such that 𝑎ℓ ≠ 0 a linear recur-

rence sequence. Together with the recurrence relation, the sequence

is wholly determined by the initial values 𝑢0, . . . , 𝑢ℓ−1. The polyno-

mial 𝑓 (𝑥) = 𝑥 ℓ −𝑎1𝑥
ℓ−1−· · ·−𝑎ℓ−1𝑥 −𝑎ℓ is called the characteristic

polynomial associated to the relation. Associated to each linear re-

currence sequence (𝑢𝑛) is a recurrence relation of minimal length.

We call the characteristic polynomial of this minimal length relation

the minimal polynomial of the sequence. Moreover, given a recur-

rence relation the minimal polynomial divides any characteristic

polynomial. The order of a linear recurrence sequence is the degree

of its minimal polynomial.

Let 𝜇 be the minimal polynomial of a linear recurrence sequence

(𝑢𝑛) and 𝐾 the splitting field of 𝜇. Over 𝐾 the polynomial fac-

torises as a product of powers of distinct linear factors 𝜇 (𝑥) =
∏𝑚
𝑖=1 (𝑥 − 𝜆𝑖)

𝑛𝑖 . Here the constants 𝜆1, . . . , 𝜆𝑚 ∈ 𝐾 are the charac-

teristic roots of (𝑢𝑛) with multiplicities 𝑛1, . . . , 𝑛𝑚 . The terms of a

linear recurrence sequence can be realised as an exponential poly-

nomial such that 𝑢𝑛 =
∑𝑚
𝑖=1𝐴𝑖 (𝑛)𝜆

𝑛
𝑖 . Here the 𝜆𝑖 are the distinct

characteristic roots of the recurrence (𝑢𝑛) alongside polynomial co-

efficients 𝐴𝑘 ∈ 𝐾 [𝑥]. If the characteristic polynomial of a sequence

has no repeated roots, the terms in the sequence are each given by

an exponential polynomial 𝑢𝑛 =
∑𝑚
𝑖=1𝐴𝑖 (0)𝜆

𝑛
𝑖 with constant coef-

ficients. A linear recurrence sequence that satisfies this condition

is called simple.

Suppose that (𝑢𝑛)
∞
𝑛=0 is a linear recurrence sequence with char-

acteristic roots 𝜆1, . . . , 𝜆𝑚 ∈ 𝐾 . For each 𝑖 ∈ {1, . . . ,𝑚} there exist

non-zero 𝑞𝑖 ∈ Z such that 𝑞𝑖𝜆𝑖 ∈ 𝔒. Consider the linear recur-

rence sequence (𝑤𝑛)
∞
𝑛=0 with terms given by𝑤𝑛 = 𝑞𝑛1 · · ·𝑞

𝑛
𝑚𝑢𝑛 . By

construction, 𝑤𝑛 = 0 if and only if 𝑢𝑛 = 0 and, further, the char-

acteristic roots of (𝑤𝑛) are algebraic integers in𝔒. Thus, without

loss of generality, we assume that each 𝜆𝑖 ∈ 𝔒 and, in addition,

that 𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥].

Let (𝑢𝑛) be a linear recurrence sequence with terms

𝑢𝑛 = 𝐴1 (𝑛)𝜆
𝑛
1 + · · · +𝐴𝑚 (𝑛)𝜆𝑛𝑚

where 𝜆1, . . . , 𝜆𝑚 ∈ 𝔒 and𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥]. We associate to (𝑢𝑛)

a simple linear recurrence (𝑣𝑛) given by an exponential polynomial

𝑣𝑛 = 𝐴1 (0)𝜆
𝑛
1 + · · · +𝐴𝑚 (0)𝜆𝑛𝑚 .

291

ISSAC ’20, July 20–23, 2020, Kalamata, Greece G. Kenison, R. Lipton, J. Ouaknine, and J. Worrell

We are interested in determining whether 𝑢𝑛 = 0 for 𝑛 = ℓ𝑝𝑘

with 𝑘, ℓ ∈ N bounded and 𝑝 any rational prime. In particular, our

method is limited to those coefficients ℓ ∈ {0, 1, . . . , 𝑐} for which

𝑣ℓ ≠ 0. We introduce the set L𝑐 = {ℓ ∈ N : ℓ ≤ 𝑐, 𝑣ℓ ≠ 0}

consisting of such coefficients. In the case that (𝑢𝑛)
∞
𝑛=0 is simple

we have that 𝑢𝑛 = 𝑣𝑛 for each 𝑛 ∈ N, and so we need only consider

the ℓ ≤ 𝑐 such that 𝑢ℓ ≠ 0. In the case that (𝑢𝑛)
∞
𝑛=0 is not simple it

is possible that (𝑣𝑛) is identically zero; for example, 𝑢𝑛 = 𝑛𝜆𝑛 . If

𝑣0 ≠ 0 then (𝑣𝑛) is not identically zero. Otherwise 𝑣0 = 𝑢0 = 0 and

we have identified a zero term at an index of the desired form.

3 COEFFICIENTS IN Z[𝑥]

3.1 Decidability results

Given a positive rational integer𝑛, recall the multinomial expansion

with exponent 𝑛 is given by the identity

(𝐴1𝑥1 + · · · +𝐴𝑚𝑥𝑚)𝑛 =
∑

𝑏1+···+𝑏𝑚=𝑛

(

𝑛

𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑚

) 𝑚
∏

𝑡=1

𝐴
𝑏𝑡
𝑡 𝑥

𝑏𝑡
𝑡

with the combinatorial coefficient representing the quotient
(

𝑛

𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑚

)

=
𝑛!

𝑏1!𝑏2! · · ·𝑏𝑚!
.

We shall make use of the following result, commonly called the

freshman’s dream.

Corollary 3.1. Suppose that 𝐴1, . . . , 𝐴𝑚 ∈ Z and 𝜆1, . . . , 𝜆𝑚 lie

in the ring𝔒 of integers of some number field 𝑘 . Then for any prime

𝑝 and 𝑘 ∈ N we have the following congruence:

(𝐴1𝜆1 + · · · +𝐴𝑚𝜆𝑚)𝑝
𝑘
≡ 𝐴1𝜆

𝑝𝑘

1 + · · · +𝐴𝑚𝜆
𝑝𝑘

𝑚 (mod 𝑝𝔒).

Proof. Let us expand the left-hand side using the aforemen-

tioned multinomial identity. Now consider each of the combina-

torial coefficients in this expansion. If exactly one of the choices

𝑏1, . . . , 𝑏𝑡 is equal to 𝑝
𝑘 then the corresponding coefficient is equal

to 1, and otherwise it is an integer multiple of 𝑝 . Hence

(𝐴1𝜆1 + · · · +𝐴𝑚𝜆𝑚)𝑝
𝑘
≡ 𝐴

𝑝𝑘

1 𝜆
𝑝𝑘

1 + · · · +𝐴
𝑝𝑘

𝑚 𝜆
𝑝𝑘

𝑚 (mod 𝑝𝔒).

The result follows by repeated application of Fermat’s Little Theo-

rem, 𝐴
𝑝𝑘

𝑖 ≡ 𝐴𝑖 (mod 𝑝Z). □

In combinationwith Corollary 3.1, we use the following technical

lemma in the proof of Theorem 1.1.

Lemma 3.2. Suppose that 𝑏 ∈ 𝔒 is non-zero. There are only finitely

many rational primes 𝑝 such that 𝑝𝔒 | 𝑏𝔒 and, in addition, 𝑁 (𝑏𝔒)

is an effective bound on such primes.

Proof. Since the ideal norm is multiplicative we have 𝑝𝑑 =

𝑁 (𝑝𝔒) | 𝑁 (𝑏𝔒) where 𝑑 = [𝐾 : Q]. We can calculate 𝑁 (𝑏𝔒) ∈ Z

and so obtain an effective bound on any rational prime 𝑝 such that

𝑝𝔒 | 𝑏𝔒. □

Proof of Theorem 1.1. Let us assume that the algebraic inte-

gers 𝜆1, . . . , 𝜆𝑚 all lie in a given number field 𝐾 , and let us denote

by𝔒 the ring of algebraic integers in 𝐾 . We note that it is decidable

whether𝑢𝑝0 = 𝑢1 = 𝐴1+· · ·+𝐴𝑚 = 0. Thus we can assume, without

loss of generality, that 𝑢1 ≠ 0. We shall prove the case 𝑘 = 1. The

proof for higher powers follows with only minor changes to the

argument below.

By Corollary 3.1, the following congruence holds modulo 𝑝𝔒,

𝑢
𝑝
1 = (𝐴1𝜆1 + · · · +𝐴𝑚𝜆𝑚)𝑝 ≡ 𝐴1𝜆

𝑝
1 + · · · +𝐴𝑚𝜆

𝑝
𝑚 = 𝑢𝑝 .

Thus 𝑢
𝑝
1 and 𝑢𝑝 lie in the same coset of 𝑝𝔒. It follows that 𝑢𝑝 = 0

only if 𝑢
𝑝
1 ∈ 𝑝𝔒. Since 𝑝𝔒 | 𝑢

𝑝
1𝔒 and 𝑢1 ≠ 0 (by assumption), we

can apply Lemma 3.2. As 𝑁 (𝑢
𝑝
1𝔒) has only finitely many prime

divisors, we obtain an effective bound on the rational primes 𝑝 such

that 𝑢𝑝 = 0. We have the desired result: given 𝑐 ∈ N, it is decidable

whether there exists an 𝑛 ∈ {𝑝 : 𝑝 prime} such that 𝑢𝑛 = 0. □

We now turn our attention to decidability results for linear re-

currence sequences whose terms are given by an exponential poly-

nomial with polynomial coefficients in Z[𝑥].

Let (𝑢𝑛) be a linear recurrence sequence whose terms are given

by 𝑢𝑛 = 𝐴1 (𝑛)𝜆
𝑛
1 + · · · + 𝐴𝑚 (𝑛)𝜆𝑛𝑚 with 𝐴1, . . . , 𝐴𝑚 ∈ Z[𝑥] and

𝜆1, . . . , 𝜆𝑚 ∈ 𝔒 for some ring of integers in a number field 𝐾 .

We associate a simple sequence (𝑣𝑛) with terms given by 𝑣𝑛 =

𝐴1 (0)𝜆
𝑛
1 + · · · +𝐴𝑚 (0)𝜆𝑛𝑚 to each such sequence (𝑢𝑛). Given 𝑐 ∈ N,

we define the set N𝑐 ⊂ N as follows:

N𝑐 :=
⋃

ℓ∈L𝑐

{ℓ𝑝𝑘 : 𝑝 prime, 𝑘 ≤ 𝑐}.

We recall the set L𝑐 = {ℓ ∈ N : ℓ ≤ 𝑐, 𝑣ℓ ≠ 0} defined in

the previous section. HenceN𝑐 implicitly depends on the sequence

(𝑢𝑛). If𝑢0 = 0 then we have identified a zero term at a desired index.

Otherwise 𝑢0 ≠ 0 and so, for 𝑐 sufficiently large, N𝑐 is infinite. The

goal of this section is to prove the following theorem.

Theorem 3.3. Let (𝑢𝑛) be a linear recurrence sequence whose

terms are given by an exponential polynomial with rational polyno-

mial coefficients as above. Fix 𝑐 ∈ N. Then one can decide whether

there is an 𝑛 ∈ N𝑐 such that 𝑢𝑛 = 0.

Lemma 3.4 below is a generalisation of Corollary 3.1 in two

senses: the lemma considers sequences that are not necessarily

simple and indices of the form ℓ𝑝𝑘 ∈ N.

Lemma 3.4. Let (𝑢𝑛) be a recurrence sequence as above and (𝑣𝑛)

the associated simple recurrence sequence. Let 𝑝 ∈ N be prime and

𝑘, ℓ ∈ N. Then 𝑣
𝑝𝑘

ℓ − 𝑢ℓ𝑝𝑘 ∈ 𝑝𝔒.

Proof. We prove the case when 𝑘 = 1. The general case, dealing

with higher powers 𝑝𝑘 , follows with only minor changes.

First, we have the congruence 𝑣
𝑝
ℓ ≡ 𝑣ℓ𝑝 (mod 𝑝𝔒) by Corol-

lary 3.1 since
(

𝐴1 (0)𝜆
ℓ
1 + · · · +𝐴𝑚 (0)𝜆ℓ𝑚

)𝑝
≡ 𝐴1 (0)𝜆

ℓ𝑝
1 + · · · +𝐴𝑚 (0)𝜆

ℓ𝑝
𝑚 .

Recall that for 𝐴 ∈ Z[𝑥] we have (𝑥 − 𝑦) | (𝐴(𝑥) − 𝐴(𝑦)). By

induction, one can show that 𝑝 | (𝐴(𝑙𝑝) − 𝐴(0)) and so 𝐴(0) ≡

𝐴(ℓ𝑝) (mod 𝑝Z) for each 𝐴 ∈ Z[𝑥]. This is sufficient to deduce a

second congruence

𝑣ℓ𝑝 ≡ 𝐴1 (ℓ𝑝)𝜆
ℓ𝑝
1 + · · · +𝐴𝑚 (ℓ𝑝)𝜆

ℓ𝑝
𝑚 = 𝑢ℓ𝑝 (mod 𝑝𝔒).

Together these two congruences give 𝑣
𝑝
ℓ − 𝑢ℓ𝑝 ∈ 𝑝𝔒, the desired

result. □

292

On the Skolem Problem and Prime Powers ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Proof of Theorem 3.3. Let us consider the case that 𝑘 = 1. As

previously noted, we can assume there is an ℓ ≤ 𝑐 and 𝑣ℓ ≠ 0

(otherwise 𝑢0 = 0). Suppose that 𝑢ℓ𝑝 = 0. Then, by Lemma 3.4, 𝑣
𝑝
ℓ ∈

𝑝𝔒 and so 𝑝𝔒 | 𝑣
𝑝
ℓ 𝔒. Thus 𝑝 | 𝑁 (𝑣

𝑝
ℓ 𝔒). Since𝔒 is a commutative

ring and the ideal norm is multiplicative, we have that 𝑝 | 𝑁 (𝑣ℓ𝔒).

By Lemma 3.2, we obtain an effective bound on the divisors of

𝑣ℓ𝔒 of the form 𝑝𝔒 and hence a bound on the rational primes for

which 𝑢ℓ𝑝 = 0 is possible. Mutatis mutandis the proof holds for

prime powers 𝑝𝑘 with 𝑘 > 1. Clearly the case 𝑘 = 0 is decided by

determining whether 𝑢ℓ = 0. □

3.2 Complexity upper bound

Given a simple linear recurrence sequence (𝑢𝑛), we establish a

quantitative bound on the magnitude of any prime 𝑝 such that

𝑢𝑝 = 0. The bound is in terms of the size of the problem instance.

In the case that (𝑢𝑛) is a simple linear recurrence sequence, we

know that 𝑢𝑛 = 𝐴1𝜆
𝑛
1 + · · · +𝐴𝑚𝜆

𝑛
𝑚 and so the size of the problem

instance is the bit length 𝑆 = ∥⟨𝜆1, 𝜆2, . . . , 𝜆𝑚, 𝐴1, 𝐴2, . . . , 𝐴𝑚⟩∥.

We give the following rudimentary bounds in terms of 𝑆 . First,

we bound log2 |𝐴𝑖 |+1, bit length of the integer𝐴𝑖 , from above by 2𝑆 .

Second, |𝜆𝑖 | is bounded from above by𝐻 (𝜆𝑖) ≤ 2𝑆 where the height

𝐻 (𝜆𝑖) is the maximum absolute value of the coefficients in 𝜇𝜆𝑖 .

Finally, we have deg(𝜆𝑖) ≤ 𝑆 , from which it follows that [𝐾 : Q] =

[Q(𝜆1, . . . , 𝜆𝑚) : Q] ≤ 𝑚𝑆 ≤ 𝑆𝑆 . Because 𝑢1 = 𝐴1𝜆1 + · · ·𝐴𝑚𝜆𝑚 we

have the following elementary bound

𝑁 (𝑢1𝔒) ≤

[𝐾 : Q]
∏

ℓ=1

𝑚
∑

𝑘=1

|𝜎ℓ (𝐴𝑘)𝜎ℓ (𝜆𝑘) | ≤

[𝐾 : Q]
∏

ℓ=1

𝑆23𝑆 ≤
(

𝑆23𝑆
)𝑆𝑆

.

From the above calculations it follows that if 𝑢𝑝 = 0 for some

prime 𝑝 then 𝑝 is at most (𝑆23𝑆)𝑆
𝑆
, i.e., double exponential in 𝑆 ,

the size of the problem instance.

4 COEFFICIENTS IN𝔒[𝑥]

Let us first recall some background material on the decomposition

of prime ideals in the ring of integers𝔒 of a Galois number field

𝐾 . Such decompositions (as products of powers of prime ideals)

are particularly well-behaved in this settingÐ a comprehensive

presentation of this material can be found in [4]. Let 𝑝 ∈ N be

prime. Then 𝑝𝔒 =
∏𝑔
𝑖=1 𝔭

𝑒
𝑖 where the 𝔭𝑖 are the prime ideals lying

above 𝑝Z. Here the integer 𝑒 (𝑝) ≥ 1 is the ramification index of

𝑝 . The degree of the field extension 𝑓 (𝑝) = [𝔒/𝔭𝑖 : Z/𝑝Z], the

inertial degree of 𝔭𝑖 over 𝑝Z, is independent of the prime ideal 𝔭𝑖 .

Suppose that 𝔭 lies above 𝑝Z. We have 𝑁 (𝔭) = 𝑁 (𝑝Z) 𝑓 (𝑝) = 𝑝 𝑓 (𝑝) .

A prime 𝑝Z is ramified in𝔒 if 𝑒 > 1 and unramified otherwise. In

particular, only finitely many primes ramify in𝔒 since 𝑝Z ramifies

in𝔒 if, and only if, 𝑝 divides the discriminant of 𝐾 (see e.g. [4]).

Suppose that 𝐾 is Galois over Q and let𝔒 be the algebraic inte-

gers in 𝐾 . In this section we shall prove decidability results locating

the zeroes of sequences (𝑢𝑛) whose terms are given by an expo-

nential polynomial of the form 𝑢𝑛 = 𝐴1 (𝑛)𝜆
𝑛
1 + · · · + 𝐴𝑚 (𝑛)𝜆𝑛𝑚

with coefficients 𝐴1, . . . , 𝐴𝑚 ∈ 𝔒[𝑥] and 𝜆1, . . . , 𝜆𝑚 ∈ 𝔒. For such

a sequence, fix 𝑐 ∈ N and let L𝑐 = {ℓ ∈ N : ℓ ≤ 𝑐, 𝑣ℓ ≠ 0}

where (𝑣𝑛) is the simple recurrence sequence with terms given by

𝑣𝑛 = 𝐴1 (0)𝜆
𝑛
1 + · · · + 𝐴𝑚 (0)𝜆𝑛𝑚 . Let 𝑓 (𝑝) be the inertial degree of

𝑝Z in𝔒. Then define the set N𝑐 (𝐾) as the union

N𝑐 (𝐾) =
⋃

ℓ∈L𝑐

{ℓ𝑝𝑘 𝑓 (𝑝) : 𝑝 prime, 𝑘 ≤ 𝑐}.

Here our choice of notation is meant to draw comparison with our

previous definition for the set N𝑐 . Without loss of generality we

assume that given 𝑐 ∈ N there is an 𝑙 ≤ 𝑐 such that 𝑣ℓ ≠ 0 for

otherwise the sequence (𝑢𝑛) vanishes at 𝑢0 = 𝑣0 = 0. We denote by

Q𝑐 (𝐾) the subset

Q𝑐 (𝐾) =
⋃

ℓ∈L𝑐

{ℓ𝑝𝑘 𝑓 (𝑝) : 𝑝Z unramified, 𝑘 ≤ 𝑐}.

Similarly, let R𝑐 (𝐾) ⊂ N𝑐 (𝐾) be the corresponding set of elements

where 𝑝Z is ramified in𝔒. Since there are only finitely many prime

ideals 𝑝Z that are ramified in𝔒, the cardinality of the set R𝑐 (𝐾) is

finite. By definition, N𝑐 (𝐾) = Q𝑐 (𝐾) ∪ R𝑐 (𝐾).

Our main result is the following theorem.

Theorem 4.1. Fix 𝑐 ∈ N. Given (𝑢𝑛) as above, one can decide

whether there is an 𝑛 ∈ N𝑐 (𝐾) such that 𝑢𝑛 = 0.

Since the set R𝑐 (𝐾) is finite, locating zero terms 𝑢𝑛 = 0 for 𝑛 ∈

R𝑐 (𝐾) is clearly decidable. So to prove Theorem 4.1 it is sufficient

to prove the next theorem.

Theorem 4.2. Fix 𝑐 ∈ N. Given (𝑢𝑛) as above, one can decide

whether there is an 𝑛 ∈ Q𝑐 (𝐾) such that 𝑢𝑛 = 0.

In order to prove Theorem 4.2, we first prove two technical

results. The first, Lemma 4.3, concerns elements of cosets of 𝑝𝔒

in 𝔒. The second, Lemma 4.4, plays an analogous rôle to that of

Lemma 3.4 in Section 3.

Lemma 4.3. Suppose that 𝜑 ∈ 𝔒 and 𝑝Z is non-zero prime ideal.

If 𝑝Z is unramified with inertial degree 𝑓 (𝑝) then 𝜑𝑝
𝑓 (𝑝)

− 𝜑 ∈ 𝑝𝔒.

Proof. Write 𝑝𝔒 = 𝔭1 · · ·𝔭𝑔 for the unique factorisation of

𝑝𝔒 as a product of the distinct prime ideals 𝔭𝑖 lying above 𝑝Z.

Here the ramification index is unity because 𝑝Z is unramified. By

Theorem 2.1, for each 𝑖 ∈ {1, . . . , 𝑔} and𝜑 ∈ 𝔒we have𝜑𝑁 (𝔭𝑖)−𝜑 ∈

𝔭𝑖 . Since each of the exponents satisfy 𝑁 (𝔭𝑖) = 𝑝
𝑓 (𝑝) , we deduce

that 𝜑𝑝
𝑓 (𝑝)

− 𝜑 ∈ ∩𝑖𝔭𝑖 . Because the distinct prime ideals 𝔭𝑖 are

pairwise co-prime, we have ∩𝑖𝔭𝑖 = 𝔭1 · · ·𝔭𝑔 = 𝑝𝔒 and hence we

have the desired result. □

Lemma 4.4. Let (𝑢𝑛) be a recurrence sequence and (𝑣𝑛) the asso-

ciated simple recurrence sequence as above. Let 𝑝 ∈ N be a rational

prime and 𝑘, ℓ ∈ N. If 𝑝Z ⊂ 𝔒 is unramified with inertial degree

𝑓 (𝑝) then 𝑣ℓ − 𝑢ℓ𝑝𝑘𝑓 (𝑝) ∈ 𝑝𝔒.

Proof. The result is a consequence of the next congruences

𝑣ℓ ≡ 𝑣ℓ𝑝𝑘𝑓 (𝑝) ≡ 𝑢ℓ𝑝𝑘𝑓 (𝑝) (mod 𝑝𝔒) .

The congruences hold trivially when 𝑘 = 0. We shall prove the case

𝑘 = 1 below and omit the case 𝑘 > 1 as it follows similarly. The

first congruence is a simple application of Lemma 4.3:

𝑣ℓ =

𝑚
∑

𝑗=1

𝐴 𝑗 (0)𝜆
ℓ
𝑗 ≡

𝑚
∑

𝑗=1

𝐴 𝑗 (0)𝜆
ℓ𝑝 𝑓 (𝑝)

𝑗 = 𝑣ℓ𝑝 𝑓 (𝑝) (mod 𝑝𝔒) .

Recall that for 𝐴 ∈ 𝔒[𝑥] we have (𝑥 − 𝑦) | (𝐴(𝑥) − 𝐴(𝑦)). The

second congruence holds since 𝑝𝔒 ∋ ℓ𝑝 𝑓 (𝑝) | (𝐴(ℓ𝑝 𝑓 (𝑝)) −𝐴(0))

293

ISSAC ’20, July 20–23, 2020, Kalamata, Greece G. Kenison, R. Lipton, J. Ouaknine, and J. Worrell

or equivalently 𝐴(0) ≡ 𝐴(ℓ𝑝 𝑓 (𝑝)) (mod 𝑝𝔒) for each 𝐴 ∈ 𝔒[𝑥].

Thus

𝑣ℓ𝑝 𝑓 (𝑝) ≡

𝑚
∑

𝑗=1

𝐴 𝑗

(

ℓ𝑝 𝑓 (𝑝)
)

𝜆
ℓ𝑝 𝑓 (𝑝)

𝑗 = 𝑢ℓ𝑝 𝑓 (𝑝) (mod 𝑝𝔒) .

Hence 𝑣ℓ − 𝑢ℓ𝑝 𝑓 (𝑝) ∈ 𝑝𝔒 as desired. □

Proof of Theorem 4.2. Fix 𝑐 ∈ N and assume that 𝑛 ∈ Q𝑐 (𝐾)

such that 𝑢𝑛 = 0. Then 𝑛 is of the form ℓ𝑝𝑘𝑓 (𝑝) where 𝑝 is a prime

and 𝑝Z ⊂ 𝔒 is unramified. By Lemma 4.4, 𝑣ℓ −𝑢ℓ𝑝𝑘𝑓 (𝑝) ∈ 𝑝𝔒. Thus

𝑣ℓ ∈ 𝑝𝔒 and therefore 𝑝𝔒 | 𝑣ℓ𝔒. We then apply Lemma 3.2 to

give an effective bound on the primes by a divisibility argument

for 𝑁 (𝑣ℓ𝔒). Hence the result. □

Our approach in the proof of Theorem 4.1 extends in the fol-

lowing way: we can decide whether there exists there is an 𝑛 =
∑𝑡
𝑗=1 𝑙 𝑗𝑝

𝑘 𝑗 𝑓 (𝑝) such that 𝑢𝑛 = 0. Here the constants 𝑘 𝑗 , 𝑙 𝑗 ∈ N are

bounded independently of the rational prime 𝑝 , and 𝑓 (𝑝) is the

inertial degree of 𝑝Z ⊂ 𝔒. For 𝑙1, . . . , 𝑙𝑡 , 𝑘1, . . . , 𝑘𝑡 ∈ N, we define

𝑆𝑚 = 𝑆𝑚 (𝑙 𝑗 ;𝑘 𝑗) :=

{

∑𝑡
𝑗=1 𝑙 𝑗𝑚

𝑘 𝑗 𝑓 (𝑚) if𝑚 is prime,
∑𝑡
𝑗=1 𝑙 𝑗 if𝑚 = 1.

Fix 𝑐 ∈ N and, as before, let L𝑐 = {ℓ ∈ N : ℓ ≤ 𝑐, 𝑣ℓ ≠ 0}. Define

the set N ′
𝑐 (𝐾) as follows

N ′
𝑐 (𝐾) =

⋃

𝑆1∈L𝑐

{

𝑆𝑝 (𝑙 𝑗 ;𝑘 𝑗) : 𝑝 prime, 𝑘 𝑗 ≤ 𝑐
}

.

We define the sets Q ′
𝑐 (𝐾), for unramified 𝑝Z in 𝐾 , and R ′

𝑐 (𝐾), for

ramified 𝑝Z in 𝐾 , in an analogous manner to the sets Q𝑐 (𝐾) and

R𝑐 (𝐾) associated to N𝑐 (𝐾). Then, like before, N
′
𝑐 (𝐾) = Q ′

𝑐 (𝐾) ∪

R ′
𝑐 (𝐾) and R ′

𝑐 (𝐾) has finite cardinality.

We have the next decidability result.

Theorem 4.5. Fix 𝑐 ∈ N. Then, given (𝑢𝑛) as above, one can decide

whether there is an 𝑛 ∈ N ′
𝑐 (𝐾) such that 𝑢𝑛 = 0.

The proof of Theorem 4.5 follows the approach in the proof of

Theorem 4.1. Since the cardinality of R ′
𝑐 (𝐾) is finite, we need only

prove the next theorem in order to prove Theorem 4.5.

Theorem 4.6. Fix 𝑐 ∈ N. Then, given (𝑢𝑛) as above, one can decide

whether there is an 𝑛 ∈ Q ′
𝑐 (𝐾) such that 𝑢𝑛 = 0.

Given its similarities to the proof of Theorem 4.2, we omit a

formal proof of Theorem 4.6; instead, we outline the key steps in

the proof. We require the following technical lemma; Lemma 4.7

generalises the result in Lemma 4.4.

Lemma 4.7. Let (𝑢𝑛) be a recurrence sequence and (𝑣𝑛) the asso-

ciated simple recurrence sequence as above. Let 𝑝 ∈ N be a rational

prime and 𝑆𝑝 (𝑙 𝑗 ;𝑘 𝑗) be defined as above. If 𝑝Z ⊂ 𝔒 is unramified

then 𝑢𝑆𝑝 − 𝑣𝑆1 ∈ 𝑝𝔒.

Proof. We avoid repeating the proof of Lemma 4.4 by limit-

ing our presentation to the next two observations. First, for each

polynomial 𝐴 ∈ 𝔒[𝑥] we have 𝐴(𝑆𝑝) −𝐴(0) ∈ 𝑝𝔒 since 𝑝𝔒 ∋ 𝑆𝑝
divides𝐴(𝑆𝑝)−𝐴(0). Second, by repeated application of Lemma 4.3,

we have 𝜆𝑆𝑝 − 𝜆𝑆1 ∈ 𝑝𝔒 for 𝜆 ∈ 𝔒. From these observations, one

can obtain the congruences 𝑣𝑆1 ≡ 𝑣𝑆𝑝 ≡ 𝑢𝑆𝑝 (mod 𝑝𝔒) and hence

the desired result. □

We sketch the key steps in the proof of Theorem 4.6.

Proof of Theorem 4.6. Fix 𝑐 ∈ N. Assume that 𝑢𝑆𝑝 = 0 for

some 𝑆𝑝 (𝑙 𝑗 ;𝑘 𝑗) ∈ N ′
𝑐 (𝐾) where 𝑝Z ⊂ 𝔒 is an unramified prime.

Note that 𝑣𝑆1 ≠ 0 since 𝑆𝑝 (𝑙 𝑗 ;𝑘 𝑗) ∈ N ′
𝑐 (𝐾). Then, by Lemma 4.7,

𝑣𝑆1 ∈ 𝑝𝔒 and so 𝑝𝔒 | 𝑣𝑆1𝔒. By Lemma 3.2, 𝑝 necessarily divides

𝑁 (𝑣𝑆1𝔒). Since 𝑁 (𝑣𝑆1𝔒) is computable, one can derive an effective

bound on the rational primes 𝑝 such that 𝑢𝑆𝑝 = 0. □

5 HARDNESS RESULT

In [3], Blondel and Portier proved that the Skolem Problem is NP-

hard (see also [1]). In this section we show that the prime variant

of the Skolem Problem is likewise NP-hard. Following [1], our

proof is by reduction from the Subset Sum Problem: given a finite

set of integer 𝐴 = {𝑎1, . . . , 𝑎𝑚} and 𝑏 ∈ Z a target, written in

binary, decide whether there is a subset 𝑆 ⊆ {1, . . . ,𝑚} such that
∑

𝑘∈𝑆 𝑎𝑘 = 𝑏.

Let us state two well-known theorems in number theory in

order to derive a simple corollary that is fundamental to our proof

of Theorem 5.6.

Theorem 5.1 (Chinese remainder theorem). Let 𝑛1, . . . , 𝑛𝑚
be positive integers that are pairwise co-prime. Then the system of𝑚

equations 𝑟 ≡ 𝑎𝑘 (mod 𝑛𝑘) with each 𝑎𝑘 ∈ Z has a unique solution

modulo 𝑁 where 𝑁 = 𝑛1𝑛2 · · ·𝑛𝑚 .

Dirichlet proved the following theorem on primes in arithmetic

progressions. We use the notation (𝑚,𝑛) to indicate the greatest

common divisor of𝑚,𝑛 ∈ Z.

Theorem 5.2. Suppose that 𝑞 and 𝑟 are co-prime positive integers.

Then there are infinitely many primes of the form ℓ𝑞 + 𝑟 with ℓ ∈ N.

The next corollary is immediate.

Corollary 5.3. Let 𝑝1, . . . , 𝑝𝑚 be a finite set of distinct primes.

Then the system of𝑚 equations 𝑟 ≡ 𝑎𝑘 (mod 𝑝𝑘) with each 𝑎𝑘 ∈ Z

has a unique solution 𝑟 ∈ {0, 1, . . . , 𝑃 − 1} where 𝑃 = 𝑝1𝑝2 · · · 𝑝𝑚 .

Additionally, if (𝑟, 𝑃) = 1 then there are infinitely many ℓ ∈ N for

which ℓ𝑃 + 𝑟 is prime.

Recall that the 𝑛th cyclotomic polynomial given by

Φ𝑛 (𝑥) =
∏

𝑘∈{1,...,𝑛}
(𝑘,𝑛)=1

(

𝑥 − e2𝜋 i𝑘/𝑛
)

is the minimal polynomial over Q of a primitive 𝑛th root of unity.

We call an integer linear recurrence sequence cyclotomic if its

characteristic roots are all roots of unity. The next theorem, con-

cerning Skolem’s Problem in the restricted setting of cyclotomic

sequences, follows from work in [1]. We reproduce the proof as a

lead into our original work on the Skolem Problem restricted to

prime numbers.

Theorem 5.4. The cyclotomic Skolem Problem is NP-hard.

The proof of Theorem 5.4 is by reduction from the Subset Sum

Problem and follows directly from the technical lemma, Lemma 5.5,

below. Before we present the proof, we introduce some notation.

Let {𝑝1, . . . , 𝑝𝑚} be the set of the first𝑚 prime numbers. We de-

fine the linear recurrence sequence (𝑠𝑘 (𝑛))
∞
𝑛=0 with 𝑘 ∈ {1, . . . ,𝑚}

as follows. Let 𝑠𝑘 (𝑛) = 𝑠𝑘 (𝑛−𝑝𝑘) for 𝑛 ≥ 𝑝𝑘 with initial conditions

294

On the Skolem Problem and Prime Powers ISSAC ’20, July 20–23, 2020, Kalamata, Greece

𝑠𝑘 (0) = 1, 𝑠𝑘 (1) = · · · = 𝑠𝑘 (𝑝𝑘 −1) = 0. Then each sequence (𝑠𝑘 (𝑛))

is periodic with period 𝑝𝑘 . The characteristic polynomial associated

to (𝑠𝑘 (𝑛)) is given by

𝑥𝑝𝑘 − 1 =

𝑝𝑘−1
∏

ℓ=0

(

𝑥 − e2𝜋 iℓ/𝑝𝑘
)

.

Thus (𝑠𝑘 (𝑛)) is a cyclotomic sequence.

In order to reduce the Subset Sum Problem to the cyclotomic

Skolem Problem, we consider the inhomogeneous linear recurrence

sequence (𝑡 (𝑛))∞𝑛=0 with terms given by 𝑡 (𝑛) = 𝑏 −
∑𝑚
𝑘=1

𝑎𝑘𝑠𝑘 (𝑛).

The characteristic polynomial associated to (𝑡 (𝑛)) is given by the

least common multiple of

(𝑥𝑝1 − 1) (𝑥 − 1), 𝑥𝑝2 − 1, . . . , 𝑥𝑝𝑚 − 1

(see [6]), from which it follows that each of the characteristic roots

of (𝑡 (𝑛)) are themselves roots of unity, i.e., (𝑡 (𝑛)) is a cyclotomic

sequence.

Lemma 5.5. For (𝑡 (𝑛)) given as above, there exists 𝑁 ∈ N such

that 𝑡 (𝑁) = 0 if and only if the Subset Sum Problem with inputs

{𝑎1, . . . , 𝑎𝑚 ;𝑏} has a solution.

Proof. Suppose that there exists an 𝑁 ∈ N such that 𝑡 (𝑁) = 0,

then the Subset Sum Problem has a solution because the selectors

𝑠𝑘 (𝑛) are {0, 1}-valued. Conversely, suppose that there is a subset

𝑆 ⊆ {1, . . . ,𝑚} such that
∑

𝑘∈𝑆 𝑎𝑘 = 𝑏 and define 𝑁 =
∏

𝑘∈𝑆 𝑝𝑘 .

We have 𝑠𝑘 (𝑁) = 1 for each 𝑘 ∈ 𝑆 since 𝑝𝑘 | 𝑁 , and 𝑠𝑘 (𝑁) = 0

otherwise. Thus

𝑡 (𝑁) = 𝑏 −

𝑚
∑

𝑘=1

𝑎𝑘𝑠𝑘 (𝑁) = 𝑏 −
∑

𝑘∈𝑆

𝑎𝑘 = 0,

as required. □

Weprove the following complexity result for the Skolem Problem

for primes.

Theorem 5.6. Suppose that (𝑢𝑛) is a cyclotomic integer linear

recurrence sequence. The problem of deciding whether there is a prime

𝑝 ∈ N such that 𝑢𝑝 = 0 is NP-hard.

The proof of Theorem 5.6 involves an analysis of theNP-hardness

proof for Skolem’s Problem. Technically we will derive the result

from Lemma 5.7, below.

Let 𝑝1, . . . , 𝑝𝑚 be the first 𝑚 odd primes. We define selector

sequences (𝜎𝑘 (𝑛)) with 𝑘 ∈ {1, . . . ,𝑚} as follows. Let 𝜎𝑘 (𝑛) =

𝜎𝑘 (𝑛 − 𝑝𝑘) for 𝑛 ≥ 𝑝𝑘 with initial conditions 𝜎𝑘 (1) = 1, 𝜎𝑘 (0) =

𝜎𝑘 (2) = · · · = 𝜎𝑘 (𝑝𝑘 − 1) = 0. Then each sequence (𝜎𝑘 (𝑛)) is peri-

odic with period 𝑝𝑘 . Let 𝜏 (𝑛) = 𝑏−
∑𝑚
𝑘=1

𝑎𝑘𝜎𝑘 (𝑛). It is easily shown

that (𝜎𝑘 (𝑛)) and (𝜏 (𝑛)) are cyclotomic recurrence sequences.

Lemma 5.7. There exists an odd prime 𝑝 ∈ N such that 𝜏 (𝑝) = 0 if

and only if there exists a subset 𝑆 ⊆ {1, . . . ,𝑚} that is a solution to

the Subset Sum Problem with inputs {𝑎1, . . . , 𝑎𝑚 ;𝑏}.

Proof. Suppose that there is an odd prime 𝑝 ∈ N such that

𝜏 (𝑝) = 0. Then there is a solution to the Subset Sum Problem as

𝜎𝑘 (𝑝) ∈ {0, 1} for each 𝑘 .

Conversely, suppose that there a subset 𝑆 ⊆ {1, . . . ,𝑚} such that
∑

𝑘∈𝑆 𝑎𝑘 = 𝑏. Consider the set 𝑄 (𝑆) ⊆ Z of integer solutions to the

set of𝑚 equations

{

𝑟 ≡ 1 (mod 𝑝𝑘) if 𝑘 ∈ 𝑆, and

𝑟 ≡ 2 (mod 𝑝𝑘) if 𝑘 ∈ {1, . . . ,𝑚} \ 𝑆.

The choice of residue ensures that 𝑟 is not divisible by any of the

primes 𝑝1, 𝑝2, . . . , 𝑝𝑚 . By the Chinese Remainder Theorem, 𝑄 (𝑆) is

an infinite arithmetic progression. Suppose that 𝑞 ∈ 𝑄 (𝑆). Then, by

definition of the selector sequences, 𝜎𝑘 (𝑞) = 1 if and only if 𝑞 ≡ 1

(mod 𝑝𝑘) if and only if 𝑘 ∈ 𝑆 . Then

𝜏 (𝑞) = 𝑏 −

𝑚
∑

𝑘=1

𝑎𝑘𝜎𝑘 (𝑞) = 𝑏 −
∑

𝑘∈𝑆

𝑎𝑘 = 0.

It remains to show that there is a prime number in 𝑄 (𝑆). This

result follows easily from Corollary 5.3, which completes the proof.

□

6 SUMMARY

In this paper we have given decision procedures for finding zeroes

of certain prescribed linear recurrence sequences. Our main result

shows how to decide the existence of a prime 𝑝 such that 𝑢𝑝 = 0 for

a simple linear recurrence sequence (𝑢𝑛). We have noted that this

decision problem is NP-hard and, implicitly, that the magnitude

of the smallest prime 𝑝 such that 𝑢𝑝 = 0 is at least exponential in

the size of the problem instance. On the other hand, our decision

procedure yields a double exponential bound on the magnitude of

the prime 𝑝 . Closing this exponential gap would be an interesting

direction for further work. Another direction for research would

be to locate zeroes 𝑢𝑛 = 0 where the index 𝑛 ∈ N has two prime

factors.

REFERENCES
[1] S. Akshay, Nikhil Balaji, and Nikhil Vyas. 2017. Complexity of Restricted Variants

of Skolem and Related Problems. In 42nd International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2017) (Leibniz International
Proceedings in Informatics (LIPIcs)), K. Larsen, H. Bodlaender, and J-F. Raskin
(Eds.), Vol. 83. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 78:1ś78:14. https://doi.org/10.4230/LIPIcs.MFCS.2017.78

[2] Jean Berstel and Maurice Mignotte. 1976. Deux propriétés décidables des suites
récurrentes linéaires. Bulletin de la Société Mathématique de France 104, 2 (1976),
175ś184.

[3] Vincent D. Blondel and Natacha Portier. 2002. The presence of a zero in an integer
linear recurrent sequence is NP-hard to decide. Linear Algebra Appl. 351/352
(2002), 91ś98. https://doi.org/10.1016/S0024-3795(01)00466-9 Fourth special
issue on linear systems and control.

[4] Henri Cohen. 1993. A course in computational algebraic number theory. Graduate
Texts in Mathematics, Vol. 138. Springer-Verlag, Berlin. xii+534 pages.

[5] Harm Derksen. 2007. A Skolem-Mahler-Lech theorem in positive characteristic
and finite automata. Inventiones Mathematicae 168, 1 (2007), 175ś224.

[6] Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward. 2003.
Recurrence sequences. Mathematical Surveys and Monographs, Vol. 104. Amer.
Math. Soc., Providence, RI. xiv+318 pages.

[7] Vesa Halava, Tero Harju, Mika Hirvensalo, and Juhani Karhumäki. 2005. Skolem’s
problemśon the border between decidability and undecidability. Technical Report.
Turku Centre for Computer Science.

[8] Christer Lech. 1953. A note on recurring series. Arkiv för Matematik 2 (1953),
417ś421.

[9] K. Mahler. 1935. Eine arithmetische Eigenschaft der Taylor-koeffizienten ratio-
naler Funktionen. Proc. Akad. Wet. Amst. 38 (1935), 50ś69.

[10] K. Mahler and J. Cassels. 1956. On the Taylor coefficients of rational functions.
Mathematical Proceedings of the Cambridge Philosophical Society 52, 1 (1956),
39ś48.

295

https://doi.org/10.4230/LIPIcs.MFCS.2017.78
https://doi.org/10.1016/S0024-3795(01)00466-9

ISSAC ’20, July 20–23, 2020, Kalamata, Greece G. Kenison, R. Lipton, J. Ouaknine, and J. Worrell

[11] Maurice Mignotte, Tarlok Shorey, and Robert Tijdeman. 1984. The distance
between terms of an algebraic recurrence sequence. Journal für die Reine und
Angewandte Mathematik (1984), 63ś76.

[12] Joël Ouaknine and James Worrell. 2012. Decision problems for linear recurrence
sequences. In Reachability problems. Lecture Notes in Computer Science, Vol. 7550.
Springer, Heidelberg, 21ś28.

[13] Joël Ouaknine and James Worrell. 2015. On Linear Recurrence Sequences and
Loop Termination. ACM SIGLOG News 2, 2 (April 2015), 4ś13.

[14] Thoralf Skolem. 1934. Ein Verfahren zur Behandlung gewisser exponentialer Gle-
ichungen und diophantischer Gleichungen. 8de Skand. Mat. Kongress, Stockholm
(1934) (1934), 163ś188.

[15] Nikolai Vereshchagin. 1985. Occurrence of zero in a linear recursive sequence.
Mathematical notes of the Academy of Sciences of the USSR 38, 2 (01 Aug 1985),
609ś615.

296

Computing the Real Isolated Points of an Algebraic
Hypersurface

Huu Phuoc Le
Sorbonne Université, CNRS,

Laboratoire d’Informatique de Paris 6,
LIP6, Équipe PolSys

F-75252, Paris Cedex 05, France
huu-phuoc.le@lip6.fr

Mohab Safey El Din
Sorbonne Université, CNRS,

Laboratoire d’Informatique de Paris 6,
LIP6, Équipe PolSys

F-75252, Paris Cedex 05, France
mohab.safey@lip6.fr

Timo de Wolff
Technische Universität Braunschweig,
Institut für Analysis und Algebra, AG

Algebra
38106 Braunschweig, Germany
t.de-wolff@tu-braunschweig.de

ABSTRACT

Let R be the field of real numbers. We consider the problem of
computing the real isolated points of a real algebraic set in Rn given
as the vanishing set of a polynomial system. This problem plays
an important role for studying rigidity properties of mechanism
in material designs. In this paper, we design an algorithm which
solves this problem. It is based on the computations of critical
points as well as roadmaps for answering connectivity queries
in real algebraic sets. This leads to a probabilistic algorithm of
complexity (nd)O (n log(n)) for computing the real isolated points of
real algebraic hypersurfaces of degree d . It allows us to solve in
practice instances which are out of reach of the state-of-the-art.

CCS CONCEPTS

·Theory of computation→Computational geometry; ·Com-

putingmethodologies→ Symbolic and algebraic algorithms.

KEYWORDS

Semi-algebraic sets; Critical point method; Real algebraic geometry;
Auxetics; Rigidity

ACM Reference Format:

Huu Phuoc Le, Mohab Safey El Din, and Timo de Wolff. 2020. Computing
the Real Isolated Points of an Algebraic Hypersurface. In International

Symposium on Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23,

2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3373207.3404049

1 INTRODUCTION

LetQ ,R andC be respectively the fields of rational, real and complex
numbers. For x ∈ Rn and r ∈ R, we denote by B(x, r) ⊂ Rn the
open ball centered at x of radius r .

Mohab Safey El Din and Huu Phuoc Le are supported by the ANR grants ANR-18-
CE33-0011 Sesame, and ANR-19-CE40-0018 De Rerum Natura, the joint ANR-FWF
ANR-19-CE48-0015 ECARP project, the PGMO grant CAMiSAdo and the European
Union’s Horizon 2020 research and innovative training network programme under
the Marie Skłodowska-Curie grant agreement N° 813211 (POEMA). Timo de Wolff is
supported by the DFG grant WO 2206/1-1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404049

Let f ∈ Q[x1, . . . , xn] andH ⊂ Cn be the hypersurface defined
by f = 0. We aim at computing the isolated points ofH∩Rn , i.e. the
set of points x ∈ H ∩Rn s.t. for some positive r , B(x, r) ∩H = {x}.
We shall denote this set of isolated real points by Z (H).

Motivation. We consider here a particular instance of the more
general problem of computing the isolated points of a semi-algebraic

set. Such problems arise naturally and frequently in the design of
rigid mechanism in material design. Those are modeled canonically
with semi-algebraic constraints, and isolated points to the semi-
algebraic set under consideration are related to mobility/rigidity
properties of the mechanism. A particular example is the study of
auxetic materials, i.e., materials that shrink in all directions under
compression. These materials appear in nature (first discovered
in [20]) e.g., in foams, bones or propylene; see e.g. [32], and have
various potential applications. They are an active field of research,
not only on the practical side, e.g., [11, 16], but also with respect
to mathematical foundations; see e.g. [5, 6]. On the constructive
side, these materials are closely related to tensegrity frameworks,
e.g., [8, 21], which can possess various sorts of rigidity properties.

Hence, we aim to provide a practical algorithm for computing
these real isolated points in the particular case of real traces of
complex hypersurfaces first. This simplification allows us to signifi-
cantly improve the state-of-the-art complexity for this problem and
to establish a new algorithmic framework for such computations.

State-of-the-art. As far as we know, there is no established algo-
rithm dedicated to the problem under consideration here. However,
effective real algebraic geometry provides subroutines from which
such a computation could be done. LetH be a hypersurface defined
by f = 0 with f ∈ Q[x1, . . . , xn] of degree d .

A first approach would be to compute a cylindrical algebraic
decomposition adapted to H ∩ Rn [7]. It partitions H ∩ Rd into
connected cells, i.e. subsets which are homeomorphic to]0, 1[i for
some 1 ≤ i ≤ n. Next, one needs to identify cells which correspond
to isolated points using adjacency information (see e.g. [1]). Such a
procedure is at least doubly exponential in n and polynomial in d .

A better alternative is to encode real isolated points with quanti-
fied formula over the reals. Using e.g. [2, Algorithm 14.21], one can

compute isolated points ofH ∩ Rn in time dO (n
2). Note also that

[31] allows to compute isolated points in time dO (n
3).

A third alternative (suggested by the reviewers) is to use [2,
Algorithm 12.16] to compute sample points in each connected com-
ponent of H ∩ Rn and then decide whether spheres, centered at
these points, of infinitesimal radius, meetH ∩ Rn . Note that these

297

https://doi.org/10.1145/3373207.3404049
https://doi.org/10.1145/3373207.3404049
https://doi.org/10.1145/3373207.3404049

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Huu Phuoc Le, Mohab Safey El Din, and Timo de Wolff

points are encoded with parametrizations of degree dO (n) (their co-
ordinates are evaluations of polynomials at the roots of a univariate
polynomial with infinitesimal coefficients). Applying [2, Alg. 12.16]
on this last real root decision problem would lead to a complexity

dO (n
2) since the input polynomials would have degree dO (n). An-

other approach would be to run [2, Alg. 12.16] modulo the algebraic
extension used to define the sample points. That would lead to a
complexity dO (n) but this research direction requires modifications
of [2, Alg. 12.16] since it assumes the input coefficients to lie in
an integral domain, which is not satisfied in our case. Besides, we
report on practical experiments showing that using [2, Alg. 12.16]
to compute only sample points inH ∩Rn does not allow us to solve
instances of moderate size.

The topological nature of our problem is related to connectedness.
Computing isolated points ofH ∩ Rn is equivalent to computing
those connected components ofH ∩Rn which are reduced to a sin-
gle point (see Lemma 1). Hence, one considers computing roadmaps:
these are algebraic curves contained inH which have a non-empty
and connected intersection with all connected components of the
real set under study. Once such a roadmap is computed, it suffices
to compute the isolated points of a semi-algebraic curve in Rn .
This latter step is not trivial; as many of the algorithms computing
roadmaps output either curve segments (see e.g., [4]) or algebraic
curves (see e.g., [28]). Such curves are encoded through rational

parametrizations, i.e., as the Zariski closure of the projection of the
(x1, . . . , xn)-space of the solution set to

w(t, s) = 0, xi = vi (t, s)/
∂w
∂t
(t, s), 1 ≤ i ≤ n

wherew ∈ Q[t, s] is square-free and monic in t and s and the vi ’s
lie inQ[t, s] (see e.g., [28]). As far as we know, there is no published
algorithm for computing isolated points from such an encoding.

Computing roadmaps started with Canny’s (probabilistic) algo-

rithm running in time dO (n
2) on real algebraic sets. Later on, [27]

introduced new types of connectivity results enabling more free-
dom in the design of roadmap algorithms. This led to [4, 27] for

computing roadmaps in time (nd)O (n
1.5). More recently, [3], still

using these new types of connectivity results, provide a roadmap

algorithm running in time dO (n log2 n)nO (n log3 n) for general real
algebraic sets (at the cost of introducing a number of infinitesi-
mals). This is improved in [28], for smooth bounded real algebraic
sets, with a probabilistic algorithm running in timeO((nd)12n log2 n).
These results makes plausible to obtain a full algorithm running in
time (nd)O (n logn) to compute the isolated points ofH ∩ Rn .

Main result. We provide a probabilistic algorithm which takes
as input f and computes the set of real isolated points Z (H) of
H ∩ Rn . A few remarks on the output data-structure are in order.
Any finite algebraic set Z ⊂ Cn defined overQ can be represented
as the projection on the (x1, . . . , xn)-space of the solution set to

w(t) = 0, xi = vi (t), 1 ≤ i ≤ n

where w ∈ Q[t] is square-free and the vi ’s lie in Q[t]. The se-
quence of polynomials (w,v1, . . . ,vn) is called a zero-dimensional

parametrization; such a representation goes back to Kronecker
[19]. Such representations (and their variants with denominators)
are widely used in computer algebra (see e.g. [12ś14]). For a zero-
dimensional parametrization Q, Z (Q) ⊂ Cn denotes the finite set

represented by Q. Observe that considering additionally isolating
boxes, one can encode Z (Q) ∩ Rn . Our main result is as follows.

Theorem 1. Let f ∈ Q[x1, . . . , xn] of degree d and H ⊂ Cn be

the algebraic set defined by f = 0. There exists a probabilistic algo-
rithm which, on an input f of degree d , computes a zero-dimensional

parametrization P and isolating boxes which encode Z (H) using

(nd)O (n log(n)) arithmetic operations inQ .

In Section 5, we report on practical experiments showing that it
already allows us to solve non-trivial problems which are actually
out of reach of [2, Alg. 12.16] to compute sample points inH ∩ Rn

only. We sketch now the geometric ingredients which allow us to
obtain such an algorithm. Assume that f is non-negative over Rn (if
this is not the case, just replace it by its square) and let x ∈ Z (H).
Since x is isolated and f is non-negative over Rn , the intuition is
that for e > 0 and small enough, the real solution set to f = e

looks like a ball around x , hence a bounded and closed connected
component Cx . Then the restriction of every projection on the
xi -axis to the algebraic set He ⊂ Cn defined by f = e intersects
Cx . When e tends to 0, these critical points in Cx “tend to xž. This
first process allows us to compute a superset of candidate points
inH ∩ Rn containing Z (H). Of course, one would like that this
superset is finite and this will be the case up to some generic linear
change of coordinates, using e.g. [25].

All in all, at this stage we have “candidate pointsž that may lie in
Z (H). Writing a quantified formula to decide if there exists a ball
around these points which does not meetH ∩Rn raises complexity
issues (those points are encoded by zero-dimensional parametriza-
tions of degree dO (n), given as input to a decision procedure).

Hence we need new ingredients. Note that our “candidate pointsž
lie on “curves of critical pointsž which are obtained by letting e

vary in the polynomial systems defining the aforementioned critical
points. Assume now thatH ∩ Rn is bounded, hence contained in
a ball B. Then, for e ′ small enough, the real algebraic set defined
by f = 0 is “approximatedž by the union of the connected compo-
nents of the real set defined by f = e ′ which are contained in B.
Besides, these “curves of critical pointsž, that we just mentioned,
hit these connected components when one fixes e ′. We actually
prove that two distinct points of our set of “candidate pointsž are
connected through these “curves of critical pointsž and those con-
nected components defined by f = e ′ in B if and only if they do not
lie in Z (H). Hence, we use computations of roadmaps of the real
set defined by f = e ′ to answer those connectivity queries. Then,
advanced algorithms for roadmaps and polynomial system solving
allows us to achieve the announced complexity bound.

Many details are hidden in this description. In particular, we
use infinitesimal deformations and techniques of semi-algebraic
geometry. While infinitesimals are needed for proofs, they may be
difficult to use in practice. On the algorithmic side, we go further
exploiting the geometry of the problem to avoid using infinitesimals.

Structure of the paper. In Section 2, we study the geometry of
our problem and prove a series of auxiliary results (in particular
Proposition 7, which coins the theoretical ingredient we need).
Section 3 is devoted to describe the algorithm. Section 4 is devoted
to the complexity analysis and Section 5 reports on the practical
performances of our algorithm.

298

Computing the Real Isolated Points of an Algebraic Hypersurface ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Acknowledgments. We thank the reviewers for their helpful com-
ments.

2 THE GEOMETRY OF THE PROBLEM

2.1 Candidates for isolated points

As above, let f ∈ Q[x1, . . . , xn] andH ⊂ Cn be the hypersurface
defined by f = 0. Let f be a subset ofC[x1, . . . , xn], we denote by
V (f) the simultaneous vanishing locus inCn of f .

Lemma 1. The setZ (H) is the (finite) union of the semi-algebraically

connected components ofH ∩ Rn which are a singleton.

Proof. Recall that real algebraic sets have a finite numner of
semi-algebraically connected components [2, Theorem 5.21]. Let C
be a semi-algebraically connected component ofH ∩ Rn .

Assume thatC is not a singleton and takex andy in C withx , y.
Then, there exists a semi-algebraic continuous map γ : [0, 1] → C
s.t. γ (0) = x and γ (1) = y ; besides, since x , y, there exist t ∈ (0, 1)
such that γ (t) , x . By continuity of γ and the norm function, any
ball B centered at x contains a point γ (t) , x .

Now assume that C = {x}. Observe thatH ∩Rn − {x} is closed
(since semi-algebraically connected components of real algebraic
sets are closed). SinceH ∩Rn is bounded, we deduce thatH ∩Rn −
{x} is closed and bounded. Then, the map y → ∥y − x ∥2 reaches
a minimum overH ∩ Rn − {x}. Let e be this minimum value. We
deduce that any ball centered at x of radius less than e does not
meetH ∩ Rn − {x}. □

To compute those connected components of H ∩ Rn which
are singletons, we use classical objects of optimization and Morse
theory which are mainly polar varieties. Let K be an algebraically
closed field, let ϕ ∈ K[x1, . . . , xn] which defines the polynomial
mapping (x1, . . . , xn) 7→ ϕ(x1, . . . , xn) and V ⊂ Kn be a smooth
equidimensional algebraic set. We denote byW (ϕ,V) the set of
critical points of the restriction of ϕ to V . If c is the co-dimension
of V and (д1, . . . ,дs) generates the vanishing ideal associated to
V , thenW (ϕ,V) is the subset of V at which the Jacobian matrix
associated to (д1, . . . ,дs ,ϕ) has rank less than or equal to c (see e.g.,
[28, Subsection 3.1]).

In particular, the case where ϕ is replaced by the canonical pro-
jection on the i-th coordinate

πi : (x1, . . . , xn) 7→ xi ,

is excessively used throughout our paper.
In our context, we do not assume thatH is smooth. Hence, to

exploit strong topological properties of polar varieties, we retrieve
a smooth situation using deformation techniques. We consider
an infinitesimal ε , i.e., a transcendental element over R such that
0 < ε < r for any positive element r ∈ R, and the field of Puiseux
series over R, denoted by

R⟨ε⟩ =
{

∑

i≥i0 aiε
i/q | i ∈ N, i0 ∈ Z,q ∈ N − {0},ai ∈ R

}

.

Recall that R⟨ε⟩ is a real closed field [2, Theorem 2.91]. One defines
C ⟨ε⟩ as for R⟨ε⟩ but taking the coefficients of the series inC . Recall
thatC ⟨ε⟩ is an algebraic closure of R⟨ε⟩ [2, Theorem 2.17]. Consider
σ =

∑

i≥i0 aiε
i/q ∈ R⟨ε⟩ with ai0 , 0. Then, ai0 is called the valua-

tion of σ . When i0 ≥ 0, σ is said to be bounded over R and the set of

bounded elements ofR⟨ε⟩ is denoted byR⟨ε⟩b . One defines the func-
tion limε : R⟨ε⟩b → R that maps σ to a0 (which is 0 when i0 > 0)
and writes limε σ = a0; note that limε is a ring homomorphism
from R⟨ε⟩b to R. All these definitions extend to R⟨ε⟩n component-
wise. For a semi-algebraic set S ⊂ R⟨ε⟩n , we naturally define the
limit of S as limε S = {limε x | x ∈ S and x is bounded over R}.

Let S ⊂ Rn be a semi-algebraic set defined by a semi-algebraic
formula Φ. We denote by ext(S,R⟨ε⟩) the semi-algebraic set of
points which are solutions of Φ in R⟨ε⟩n . We refer to [2, Chap. 2]
for more details on infinitesimals and real Puiseux series.

By e.g., [22, Lemma 3.5], Hε and H−ε respectively defined by
f = ε and f = −ε are two disjoint smooth algebraic sets inC ⟨ε⟩n .

Lemma 2. For any x lying in a bounded connected component of

H ∩ Rn , there exists a point xε ∈ (Hε ∪ H−ε) ∩ R⟨ε⟩n
b
such that

limε xε = x . For such a point xε , let Cε be the connected component

of (Hε ∪H−ε) ∩ R⟨ε⟩
n containing xε . Then, Cε is bounded over R.

Proof. See [22, Lemma 3.6] for the first claim. The second part
can be deduced following the proof of [2, Proposition 12.51]. □

Proposition 3. Assume that Z (H) is not empty and let x ∈

Z (H). There exists a semi-algebraically connected component Cε
that is bounded overR of (Hε∪H−ε)∩R⟨ε⟩

n such that limε Cε = {x}.

Consequently, for 1 ≤ i ≤ n, there exists an xε ∈ (W (πi ,Hε) ∪

W (πi ,H−ε)) ∩ Cε such that limε xε = x . Hence we have that

Z (H) ⊂ ∩ni=1 limε ((W (πi ,Hε) ∪W (πi ,H−ε)) ∩ R⟨ε⟩
n
b
).

Proof. By Lemma 2, there exists xε ∈ (Hε ∪H−ε)∩R⟨ε⟩
n such

that limε xε = x . Assume that xε ∈ Hε and let Cε be the connected
component ofHε ∩ R⟨ε⟩

n containing xε . Again, by Lemma 2, Cε
is bounded over R. We prove that limε Cε = {x} by contradiction.
The case xε ∈ H−ε is done similarly.

Assume that there exists a point yε ∈ Cε such that limε yε = y

and y , x . Since Cε is semi-algebraically connected, there exists
a semi-algebraically continuous function γ : ext([0, 1],R⟨ε⟩) →
Cε such that γ (0) = xε and γ (1) = yε . By [2, Proposition 12.49],
limε Im(γ) is connected and contains x and y. As limε is a ring
homomorphism, f (limε γ (t)) = limε f (γ (t)) = 0, so limε Im(γ) is
contained inH ∩ Rn . This contradicts the isolatedness of x , then
we conclude that limε Cε = {x}.

Since Cε is a semi-algebraically connected component of the real
algebraic setHε ∩ R⟨ε⟩

n , it is closed. Also, Cε is bounded over R.
Hence, for any 1 ≤ i ≤ n, the projection πi reaches its extrema over
Cε [2, Proposition 7.6], which implies that Cε ∩W (πi ,Hε) is non-
empty. Take xε ∈W (πi ,Hε) ∩ Cε , then xε is bounded over R and
its limit is x . Thus, Z (H) ⊂ limε (W (πi ,Hε) ∩ R⟨ε⟩

n
b
) for any 1 ≤

i ≤ n, which implies Z (H) ⊂ ∩ni=1 limε (W (πi ,Hε) ∩ R⟨ε⟩
n
b
). □

2.2 Simplification

We introduce in this subsection a method to reduce our problem to
the case whereH∩Rn is bounded for all x ∈ Rn . Such assumptions
are required to prove the results in Subsection 2.3. Our technique is
inspired by [2, Section 12.6]. The idea is to associate to the possibly
unbounded algebraic setH∩Rn a bounded real algebraic set whose
isolated points are strongly related to Z (H). The construction of
such an algebraic set is as follows.

Let xn+1 be a new variable and 0 < ρ ∈ R such that ρ is greater
than the Euclidean norm ∥ · ∥ of every isolated point ofH∩Rn . Note

299

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Huu Phuoc Le, Mohab Safey El Din, and Timo de Wolff

that such a ρ can be obtained from a finite set of points containing
the the isolated points ofH ∩Rn . We explain in Subsection 3.2 how
to compute such a finite set.

We consider the algebraic setV defined by the system

f = 0, x21 + . . . + x
2
n + x

2
n+1 − ρ

2
= 0.

Let πx be the projection (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn).
The real counterpart of V is the intersection of H lifted to

Rn+1 with the sphere of center 0 and radius ρ. Therefore, V is a
bounded real algebraic set in Rn+1. Moreover, the restriction of
πx toV ∩ Rn+1 is exactlyH ∩ B(0, ρ). By the definition of ρ, this
image contains all the real isolated points of H . Lemma 4 below
relates Z (H) to the isolated points ofV ∩ Rn+1.

Lemma 4. LetV and πx as above. We denote by Z (V) ⊂ Rn+1

the set of real isolated points of V with non-zero xn+1 coordinate.

Then, πx (Z (V)) = Z (H).

Proof. Note that πx (V ∩ Rn+1) = (H ∩ Rn) ∩ B(0, ρ). We
consider a real isolated point x ′ = (α1, . . . ,αn,αn+1) of V with
αn+1 , 0 and x = πx (x

′) = (α1, . . . ,αn). Assume by contradiction
that x < Z (H), we will prove that x ′ < Z (V), i.e., for any r > 0,
there exists y′ = (β1, . . . , βn, βn+1) ∈ V ∩ Rn+1 such that ∥y′ −
x ′∥ < r . Since x is not isolated, there exists a point y , x such that
∥y − x ∥ < r

1+2ρ/ |αn+1 |
. Let y′ ∈ π−1x (y) such that αn+1βn+1 ≥ 0.

We have that ∥x ∥2 + α2n+1 = ∥y∥
2
+ β2n+1 = ρ2. Now we estimate

| ∥y∥2 − ∥x ∥2 | = (∥x ∥ + ∥y∥) · |∥y∥ − ∥x ∥ | ≤ 2ρ · ∥y − x ∥,

|αn+1 − βn+1 | ≤
|α2n+1 − β

2
n+1 |

|αn+1 |
=

| ∥y∥2 − ∥x ∥2 |

|αn+1 |
≤

2ρ · ∥y − x ∥

|αn+1 |
.

Finally,

∥y′ − x ′∥ ≤ ∥y − x ∥ + |αn+1 − αn+1 | ≤

(

1 +
2ρ

|αn+1 |

)

∥y − x ∥ < r .

So, x ′ is not isolated inV ∩ Rn+1. This contradiction implies that
πx (Z (V)) ⊂ Z (H).

It remains to prove that Z (H) ⊂ πx (Z (V)). For any real iso-
lated point x ∈ Z (H), we consider a ball B(x, r ′) ⊂ B(0, ρ) ⊂ Rn

such that B(x, r ′)∩H = {x}. We have that π−1x (B(x, r
′))∩V∩Rn+1

is equal to π−1x (x) ∩ V ∩ R
n+1, which is finite. So, all the points in

π−1x (B(x, r
′)) ∩ V ∩ Rn+1 are isolated. Since Z (H) ⊂ B(0, ρ), we

deduce that Z (H) is contained in πx (Z (V)).
Thus, we conclude that πx (Z (V)) = Z (H). □

Note that the condition xn+1 , 0 is crucial. For a connected
component C ofH∩Rn that is not a singleton, its intersection with

the closed ball B(0, ρ) can have an isolated point on the boundary
of the ball, which corresponds to an isolated point of V ∩ Rn+1.
This situation depends on the choice of ρ and can be easily detected
by checking the vanishing of the coordinate xn+1.

2.3 Identification of isolated points

By Proposition 3, the real points of ∩ni=1 limεW (πi ,Hε) are poten-
tial isolated points ofH∩Rn . We study now how to identify, among
those candidates, which points are truely isolated.

We use the sameд = x21+. . .+x
2
n+1−ρ

2 andV = V (f ,д) ⊂ Cn+1

as in Subsection 2.2. Let Vε = V (f − ε,д) and V−ε = V (f + ε,д),
note that they are both algebraic subsets ofC ⟨ε⟩n+1.

Lemma 5. Let x ∈ V ∩ Rn+1 such that its xn+1 coordinate is

non-zero. Then, x is not an isolated point ofV ∩ Rn+1 if and only if

there exists a semi-algebraically connected component Cε of (Vε ∪

V−ε) ∩ R⟨ε⟩
n+1, bounded over R, such that {x} ⊊ limε Cε .

Proof. Let x = (α1, . . . ,αn+1) ∈ V ∩ Rn+1 such that αn+1 ,
0. As f (α1, . . . ,αn) = 0, by Lemma 2, there exists a point xε =
(β1, . . . , βn+1) ∈ R⟨ε⟩n+1 such that (β1, . . . , βn) ∈ (Hε ∪ H−ε) ∩

R⟨ε⟩n and limε (β1, . . . , βn) = (α1, . . . ,αn). Since αn+1 , 0, we can
choose βn+1 such that д(xε) = 0. Therefore, for any x as above,
there exists xε ∈ (Vε ∪V−ε) ∩ R⟨ε⟩n+1 such that limε xε = x .

Since (Vε∪V−ε)∩R⟨ε⟩n+1 lies on the sphere (inR⟨ε⟩n+1) defined
by д = 0, every connected component of (Vε ∪ V−ε) ∩ R⟨ε⟩n+1

is bounded over R. Hence, the points of V ∩ Rn+1 whose xn+1
coordinates are not zero are contained in limε (Vε ∪V−ε)∩R⟨ε⟩

n+1.
Let x be a non-isolated point ofV∩Rn+1 whose xn+1-coordinate

is not zero. We assume by contradiction that for any semi-algebrai-
cally connected component Cε of (Vε ∪V−ε) ∩ R⟨ε⟩n+1 (which is
bounded overR by above), then it happens that either limε Cε = {x}

or x < limε Cε .
Since (Vε ∪V−ε) ∩ R⟨ε⟩n+1 has finitely many connected com-

ponents, the number of connected components of the second type
is also finite. SinceV ∩ Rn+1 is not a singleton (by the existence
of x), the connected components of the second type exist. So, we
enumerate them as C1, . . . , Ck and x < limε Cj for 1 ≤ j ≤ k .

As x is not isolated inV ∩ Rn+1 with non-zero xn+1 coordinate
by assumption, there exists a sequence of points (xi)i≥0 inV∩Rn+1

of non-zero xn+1 coordinates that converges to x . Since there are
finitely many Ci , there exists an index j such that limε Cj contains
a sub-sequence of (xi)i≥0. By Proposition 12.49 [BPR], the limit of
the semi-algebraically connected component Cj (which is bounded
over R) is a closed and connected semi-algebraic set. It follows that
x ∈ limε Cj , which is a contradiction. Therefore, there exists a
semi-algebraically connected component of (Vε ∪V−ε) ∩ R⟨ε⟩n+1,
bounded over R, such that {x} ⊊ limε Cε .

It remains to prove the reverse implication. Assume that {x} ⊊
limε Cε for some semi-algebraically connected component Cε of
(Vε ∪ V−ε) ∩ R⟨ε⟩

n+1 that is bounded over R. As limε Cε is con-
nected, we finish the proof. □

Lemma 6. Let x ∈ V ∩ Rn+1 whose xn+1 coordinate is non-zero.
Assume that x is not an isolated point of V ∩ Rn+1. For any semi-

algebraically connected component Cε of (Vε ∪V−ε)∩R
n+1, bounded

over R, such that {x} ⊊ limε Cε , there exists 1 ≤ i ≤ n such that

Cε ∩ (W (πi ,Vε) ∪W (πi ,V−ε)) contains a point x
′
ε which satisfies

limε x
′
ε , x .

Proof. Let Cε be semi-algebraically connected component of
(Vε ∪V−ε) ∩ R⟨ε⟩

n+1, bounded over R, such that {x} ⊊ limε Cε .
Lemma 5 ensures the existence of such a connected component Cε .

Now let xε and yε be two points contained in Cε such that
limε xε = x , limε yε = y and x , y. Let x = (α1, . . . ,αn+1) and
y = (β1, . . . , βn+1). Since x , y, there exists 1 ≤ i ≤ n + 1 such
that αi , βi . Note that if (α1, . . . ,αn) = (β1, . . . , βn) for any y ∈
limε Cε , then limε Cε contains at most two points (by the constraint
д = 0). However, since limε Cε is connected and contains at least
two points, it must be an infinite set. So, we can choose y such that
have that 1 ≤ i ≤ n.

300

Computing the Real Isolated Points of an Algebraic Hypersurface ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

As Cε is closed in R⟨ε⟩n+1 (as a connected component of an
algebraic set) and bounded over R by definition, its projection
on the xi coordinate is a closed interval [a,b] ⊂ R⟨ε⟩ (see [2,
Theorem 3.23]), which is bounded over R (because Cε is). Also,
since [a,b] is closed, there exist x ′a and x ′

b
in R⟨ε⟩n+1 such that

x ′a ∈ π
−1
i (a) ∩ Cε ∩ (W (πi ,Vε) ∪W (πi ,V−ε)) and x

′
b
∈ π−1i (b) ∩

Cε ∩ (W (πi ,Vε) ∪W (πi ,V−ε)). Since αi , βi both lying in R,
{αi , βi } ⊂ [limε a, limε b] implies that limε a , limε b. It follows
that limε x

′
a , limε x

′
b
. Thus, at least one point among limε x

′
a and

limε x
′
b
does not coincide with x . Hence, there exists a point x ′ε in

Cε ∩ (W (πi ,Vε) ∪W (πi ,V−ε)) such that limε x
′
ε , x . □

We can easily deduce from Lemma 5 and Lemma 6 the following
proposition, which is the main ingredient of our algorithm.

Proposition 7. Letx ∈ ∩ni=1 limεW (πi ,Vε)∪W (πi ,V−ε)whose

xn+1 coordinate is non-zero. Then, x is not an isolated point ofV ∩

Rn+1 if and only if there exist 1 ≤ i ≤ n and a connected com-

ponent Cε of Vε ∩ R⟨ε⟩n+1, which is bounded over R, such that

Cε ∩W (πi ,Hε) contains xε , x
′
ε satisfying x = limε xε , limε x

′
ε .

3 ALGORITHM

3.1 General description

The algorithm takes as input a polynomial f ∈ R[x1, . . . , xn].
The first step consists in computing a parametrization P encod-

ing a finite set of points which contains Z (H). Let Hε and H−ε
be the algebraic subsets ofC ⟨ε⟩n respectively defined by f = ε and
f = −ε . By Proposition 3, the set∩ni=1 limεW (πi ,Hε)∪W (πi ,H−ε)

contains the real isolated points of H . To ensure that this set is
finite, we use generically chosen linear change of coordinates.

Given a matrix A ∈ GLn (Q), a polynomial p ∈ Q[x1, . . . , xn]

and an algebraic set S ⊂ Cn , we denote by pA the polynomial
p(A · x) obtained by applying the change of variables A to p and
SA = {A−1 · x | x ∈ S}. Then, we have that V (p)A = V (pA).

In [25], it is proved that, with A outside a prescribed proper
Zariski closed subset ofGLn (Q),W (πi ,HA

ε) ∪W (πi ,H
A
−ε) is finite

for 1 ≤ i ≤ n. Additionally, since A is assumed to be generically

chosen, [24] shows that the ideal
〈

ℓ ·
∂f A

∂xi
− 1,

∂f A

∂x j
for all j , i

〉

defines either an empty set or a one-equidimensional algebraic set,
where ℓ is a new variable. Those extra assumptions are required in
our subroutine Candidates (see the next subsection). Note that, for
any matrixA, the real isolated points ofHA is the image of Z (H)

by the linear mapping associated to A−1. Thus, in practice, we
will choose randomly a A ∈ GLn+1(Q), compute the real isolated
points ofHA, and then go back to Z (H) by applying the change
of coordinates induced byA−1. This random choice ofAmakes our
algorithm probabilistic.

The next step consists of identifying those of the candidates
which are isolated inHA ∩ Rn ; this step relies on Proposition 7.
To reduce our problem to the context where Proposition 7 can be
applied, we use Lemma 4. One needs to compute ρ ∈ R, such that
ρ is larger than the maximum norm of the real isolated points we
want to compute. This value of ρ can be easily obtained by isolating
the real roots of the zero-dimensional parametrization encoding the
candidates. Further, we call GetNormBound a subroutine which
takes as input P and returns ρ as we just sketched. We let д =

x21 + . . . + x
2
n + x

2
n+1 − ρ2. By Lemma 4, Z (H) is the projection

of the set of real isolated points of the algebraic setV defined by
f = д = 0 at which xn+1 , 0. Let X be the set of points of V
projecting to the candidates encoded by P.

Proposition 7 would lead us to computeW (πi ,VA
ε)∪W (πi ,V

A
−ε)

as well as a roadmap ofVA
ε ∪V

A
−ε . As explained in the introduction,

this induces computations over the ground field R⟨ε⟩ which we
want to avoid. We bypass this computational difficulty as follows.
We compute a roadmap Re for VA

e ∪ V
A
−e ∩ Rn+1 (defined by

{ f A = e,д = 0} and { f A = −e,д = 0} respectively) for e small
enough (see Subsection 3.3) and define a semi-algebraic curve K
containing X such that x ∈ X is isolated inVA ∩ Rn+1 if and only
if it is not connected to any other x ′ ∈ X by K . We call IsIsolated
the subroutine that takes as input P, f A and д and returns P with
isolating boxes B of the real points of defined by P which are
isolated inVA ∩ Rn+1.

Once the real isolated points ofVA is computed, we remove the
boxes corresponding to points at which xn+1 = 0 and project the
remaining points on the (x1, . . . , xn)-space to obtain the isolated
points of HA. This whole step uses a subroutine which we call
Remove (see [28, Appendix J]). Finally, we reverse the change of
variable by applying A−1 to get Z (H).

We summarize our discussion in Algorithm 1 below.

Algorithm 1: IsolatedPoints

Input: A polynomial f ∈ Q[x1, . . . , xn]
Output: A zero-dimensional parametrization P such that

Z (H) ⊂ Z (P) and a set of boxes isolating Z (H)

1 A chosen randomly in GLn+1(Q)

2 P← Candidates(f A)

3 ρ ← GetNormBound(P)

4 д← x21 + . . . + x
2
n + x

2
n+1 − ρ

2

5 P,B ← IsIsolated(P, f A,д)

6 P,B ← Removes(P,B, xn+1)

7 P,B ← PA
−1
,BA

−1

8 return (P,B)

3.2 Computation of candidates

Further, we letHA
ε (resp.HA

−ε) be the algebraic set associated to
f A = ε (resp. f A = −ε). To avoid to overload notation, we omit the
change of variables A as upper script. Let ℓ be a new variable. For
1 ≤ i ≤ n, Ii denotes the ideal ofQ[ℓ, x1, . . . , xn] generated by the

set of polynomials
{

ℓ ·
∂f
∂xi
− 1,

∂f
∂x j

for all j , i
}

.

Following the discussion in Subsection 3.1, the algebraic set asso-
ciated to Ii is either empty or one-equidimensional andW (πi ,Hε)∪

W (πi ,H−ε) is finite. Hence, [24, Theorem 1] shows that the alge-
braic set associated to the ideal ⟨f ⟩ + (Ii ∩Q[x1, . . . , xn]) is zero-
dimensional and contains limεW (πi ,Hε) ∪W (πi ,H−ε).

In our problem, the intersection of limεW (πi ,Hε)∪W (πi ,H−ε)

is needed rather than each limit itself. Hence, we use the inclusion

∩ni=1 limε
W (πi ,Hε)∪W (πi ,H−ε) ⊂ V

(

⟨f ⟩ +
∑n
i=1 Ii ∩Q[x1, . . . , xn]

)

.

We can compute the algebraic set on the right-hand side as follows:

(1) For each 1 ≤ i ≤ n, compute a set Gi of generators of the
ideal Ii ∩Q[x1, . . . , xn].

301

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Huu Phuoc Le, Mohab Safey El Din, and Timo de Wolff

(2) Compute a zero-dimensional parametrizationP of the set of
polynomials { f } ∪G1 ∪ . . . ∪Gn .

Such computations mimic those in [24]. The complexity of this al-
gorithm of course depends on the algebraic elimination procedure
we use. For the complexity analysis in Section 4, we employ the
geometric resolution [14]. It basically consists in computing a one-
dimensional parametrization of the curve defined by Ii and next
computes a zero-dimensional parametrization of the finite set ob-
tained by intersecting this curve with the hypersurface defined by
f = 0. We call ParametricCurve a subroutine that, taking the poly-
nomial f and 1 ≤ i ≤ n, computes a one-dimensional parametriza-
tionGi of the curve defined above. Also, let IntersectCurve be a
subroutine that, given a one-dimensional rational parametrization
Gi and f , outputs a zero-dimensional parametrization Pi of their
intersection. Finally, we use a subroutine Intersection that, from the
parametrizations Pi ’s, computes a zero-dimensional parametriza-
tion of ∩ni=1Z (Pi).

Algorithm 2: Algorithm Candidates

Input: The polynomial f ∈ Q[x1, . . . , xn]
Output: A zero-dimensional parametrization P

1 for 1 ≤ i ≤ n do

2 Gi ← ParametricCurve(д, i)

3 Pi ← IntersectCurve(Gi ,д)

4 end

5 P← Intersection(P1, . . . ,Pn)

6 return P

3.3 Description of IsIsolated

This subsection is devoted to the subroutine IsIsolated that identi-
fies isolated points ofHA ∩ Rn among the candidates Z (P) ∩ Rn

computed in the previous subsection. We keep using f to address
f A. Let P be the set {x = (x1, . . . , xn+1) ∈ Rn+1 | (x1, . . . , xn) ∈
Z (P),д(x) = 0, xn+1 , 0}.

For e ∈ R,Ve ∈ Cn+1 denotes the algebraic set defined by f = e

and д = 0. We follow the idea mentioned in the end of Subsection
3.1, that is to replace the infinitesimal ε by a sufficiently small e ∈ R
then adapt the results of Subsection 2.3 toVe .

By definition,Ve ∩Rn+1 is bounded for any e ∈ R. Let t be a new
variable, πx : (x, t) 7→ x and πt : (x, t) 7→ t . For a semi-algebraic
set S ⊂ Rn+1 × R in the coordinate (x, t) and a subset I of R, the
notation SI stands for the fiber π−1t (I) ∩ S. Let Vt = {(x, t) ∈
Rn+1 × R | f (x) = t,д(x) = 0}. Note thatVt is smooth. Recall that
the set of critical values of the restriction of πt to Vt is finite by
the algebraic Sard’s theorem (see e.g., [28, Proposition B.2]).

Since for e ∈ R, the setVe ∩ Rn+1 is compact, the restriction of
πt toVt is proper. Then, by Thom’s isotopy lemma [9], πt realizes a
locally trivial fibration over any open connected subset of R which
does not intersect the set of critical values of the restriction of πt to
Vt . Let η ∈ R such that the open set]−η, 0[∪]0,η[does not contain
any critical value of the restriction of πt to the algebraic set Vt .
Hence,Ve is nonsingular for e ∈] − η, 0[∪]0,η[, (Ve ∩Rn+1) × (] −
η, 0[∪]0,η[) is diffeomorphic toVt ,]−η,0[∪]0,η[.

We need to mention thatW (πi ,He) corresponds to the critical
points of πi restricted toVe with non-zero xn+1 coordinate. Further,
we useW (πi ,Ve) to address those latter critical points.

Now, for 1 ≤ i ≤ n, we defineWi as the closure of
{

(x, t) ∈ Rn+2 |
∂f
∂xi
(x) , 0,

∂f
∂x j
(x) = 0 for j , i, xn+1 , 0

}

∩Vt .

Since A is assumed to be generically chosen,Wi is either empty

or one-equidimensional (because ⟨ℓ ·
∂f
∂xi
− 1,

∂f
∂x j
∀j , i⟩ either de-

fines an empty set or a one-equidimensional algebraic set by [24]).
This implies that the set of singular points ofWi is finite.

By [18], the set of non-properness of the restriction of πt toWi

is finite (this is the set of points y such that for any closed interval
U containingy, π−1t (U)∩Wi is not bounded). Using again [18], the
restriction of πt toWi realizes a locally trivial fibration over any
connected open subset which does not meet the union of the images
by πt of the singular points ofWi , the set of non-properness, and
the set of critical values of the restriction of πt toWi . We let η′i be
the minimum of the absolute values of the points in this union.

We choose now 0 < e0 < min(η,η′1, . . . ,η
′
n). We call Special-

izationValue a subroutine that takes as input f and д and returns
such a rational number e0. Note that SpecializationValue is easily
obtained from elimination algorithms solving polynomial systems
(from which we can compute critical values) and from [26] to com-
pute the set of non-properness of some map.

With e0 as above, we denote I =] − e0, 0[∪]0, e0[. LetWi ,I is
semi-algebraically diffeomorphic toWi ,e × I for every e ∈ I. As
Ve is nonsingular, the critical locusW (πi ,Ve) is guaranteed to be
finite by the genericity of the change of variables A (henceWi ,e

is) and thatW (πi ,Ve) ∩ Rn+1 coincides with πx (Wi ,e). Thus, the
above diffeomorphism implies that, for any connected component
C ofWi ,I , C is diffeomorphic to an open interval in R. Moreover, if

C is bounded, then C \ C contains exactly two points which satisfy
respectively f = 0 and f 2 = e20 . We now consider

Li =
{

x ∈ Rn+1 | 0 < f < e0,д = 0,
∂f
∂x j
= 0 forj , i, xn+1 , 0

}

.

It is the intersection of the Zariski closure Ki of the solution set

to
{

∂f
∂xi
, 0,

∂f
∂x j
= 0 for j , i, xn+1 , 0

}

with the semi-algebraic

set defined by 0 < f < e0. Note that Ki is either empty or one-
equidimensional. As Ve is nonsingular for e ∈ I, Li and Lj are
disjoint for i , j . Since the restriction of πx toVt is an isomorphism
between the algebraic setsVt and Rn+1 with the inverse map x 7→
(x, f (x)), the properties ofWI mentioned above are transferred
to its image Li by the projection πx .

Further, we consider a subroutine ParametricCurve which takes
as input f and i ∈ [1,n] and returns a rational parametrization Ki
ofKi . Also, let Union be a subroutine that takes a family of rational
parametrizations K1, . . . ,Kn to compute a rational parametrization
encoding the union of the algebraic curves defined by the Ki ’s. We
denote by K the output of Union ; it encodesK = ∪ni=1Ki . We refer
to [28, Appendix J.2] for these two subroutines.

Lemma 8 below establishes a well-defined notion of limit for a
point xe ∈W (πi ,Ve) ∪W (πi ,V−e) when e tends to 0.

Lemma 8. Let e0 and Li be as above. For e ∈]0, e0[and xe ∈

(W (πi ,Ve) ∪W (πi ,V−e)) ∩ R
n+1, there exists a (unique) connected

component C of Li containing xe . If C is bounded, let x be the

only point in C satisfying f (x) = 0, then x ∈ limε (W (πi ,Vε) ∪

W (πi ,V−ε)) ∩ R⟨ε⟩
n+1. Thus, we set lim0 xe = x .

302

Computing the Real Isolated Points of an Algebraic Hypersurface ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Moreover, the extension ext(C,R⟨ε⟩) contains exactly one point xε
such that f (xε)

2
= ε2 and limε xε = x .

Proof. Since xe ∈ (W (πi ,Ve) ∪W (πi ,V−e)) ∩ Rn+1 and 0 <
e < e0, we have xe ∈ Li , the existence of C follows naturally. Let
x be the unique point of C satisfying f = 0. Then, the notion lim0
is well-defined. From the proof of [2, Theorem 12.43], we have that

limε (W (πi ,Vε) ∪W (πi ,V−ε)) ∩ R⟨ε⟩
n+1
= πx

(

W(0,+∞) ∩V (t)
)

.

As πx
(

W(0,+∞) ∩V (t)
)

is the set of points corresponding to f = 0

ofLi , we deduce that x ∈ limε (W (πi ,Vε)∪W (πi ,V−ε))∩R⟨ε⟩
n+1.

Since the extension ext(C,R⟨ε⟩) is a connected component of
ext(Li ,R⟨ε⟩) and homeomorphic to an open interval in R⟨ε⟩, there
exists xε ∈ ext(C,R⟨ε⟩) such that f (xε)2 = ε2. Moreover, since 0 =
limε f (xε)

2
= f (limε xε)

2 and x is the only point in C satisfying
f = 0, we conclude that limε xε = x . □

Now, let Re be a roadmap associated to the algebraic setVe ∪
V−e , i.e. Re is contained in (Ve ∪V−e) ∩ Rn+1, of at most dimen-
sion one and has non-empty intersection with every connected
component of (Ve ∪V−e)∩Rn+1. We also require that Re contains
∪ni=1(W (πi ,Ve) ∪W (πi ,V−e)) ∩ Rn+1. The proposition below is
the key to describe IsIsolated.

Proposition 9. Given e ∈]0, e0[andI =]−e0, 0[∪]0, e0[as above.
Let L = ∪ni=1Li and x ∈ P. Then x is not isolated inV ∩ Rn+1 if

and only if there exists x ′ ∈ P such that x and x ′ are connected in

P ∪ L ∪ Re .

Proof. Assume first thatx is not isolated. By Proposition 7, there
exists 1 ≤ i ≤ n and a connected component Cε of (Vε ∪V−ε) ∩
R⟨ε⟩n+1, which is bounded over R, such that Cε ∩ (W (πi ,Vε) ∪
W (πi ,V−ε)) contains xε and x ′ε satisfying x = limε xε , limε x

′
ε .

By the choice of e0, there exist a diffeomorphism θ : Vt ,I →
Ve × I such that θ (Wi ,I) = θ (Wi ,e) × I. Using [2, Exercise 3.2],
ext(θ ,R⟨ε⟩) is a diffeomorphism between:

ext(Vt ,I,R⟨ε⟩) � ext(Ve ,R⟨ε⟩) × ext(I,R⟨ε⟩),

ext(Wi ,I,R⟨ε⟩) � ext(Wi ,e ,R⟨ε⟩) × ext(I,R⟨ε⟩).

As πx is an isomorphism fromVt to Rn+1, there exists a (unique)
bounded connected component Ce ofVe ∩ Rn+1 s.t. Cε is diffeo-
morphic to ext(Ce ,R⟨ε⟩). Moreover, let L and L′ be the connected
components of ext(Li ,R⟨ε⟩) containing xε and x ′ε respectively and
xe and x ′e (∈ ext(Ce ,R⟨ε⟩)) be the intersections of ext(Ce ,R⟨ε⟩)
with L and L′ respectively. Then, limε xε (limε L

′) connects limε xe
(limε x

′
e) to x (x ′). As limε xe and limε x

′
e are connected in Ce , we

conclude that x and x ′ are also connected in P ∪ L ∪ Re . The
reverse implication is immediate using the above techniques □

From Lemma 8 and Proposition 9, any e lying in the interval
]0, e0[defined above can be used to replace the infinitesimal ε . So, we
simply take e = e0/2. For 1 ≤ i ≤ n, we use a subroutine ZeroDim-

Solve which takes as input
{

f − e0/2,д,
∂f
∂x j

for all j , i
}

to com-

pute a zero-dimensional parametrizationQi such thatW (πi ,Ve) =
{x ∈ Z (Qi)|xn+1 , 0}.

To use Proposition 9, we need to compute Re0/2, which we refer
to the algorithm Roadmap in [28]. This algorithm allows us to

compute roadmaps for smooth and bounded real algebraic sets,
which is indeed the case of (Ve0/2 ∪V−e0/2) ∩ R

n+1. First, we call
(another) Union that, on the zero-dimensional parametrizations
Qi , it computes a zero-dimensional parametrization Q encoding
∪ni=1Z (Qi). Given the polynomials f , д, the value e0/2 and the
parametrization Q, a combination of Union and Roadmap returns
a one-dimensional parametrization R representing Re0/2.

Deciding connectivity over P∪L∪Re is done as follows. We use
Union to compute a rational parametrizationS encoding K ∪ Re .
Then, with input S, P, xn+1 , 0 and the inequalities 0 < f <

e0, we use Newton Puiseux expansions and cylindrical algebraic
decomposition (see [10, 30]) following [27], taking advantage of
the fact that polynomials involved in rational parametrizations of
algebraic curves are bivariate. We denote by ConnectivityQuery

the subroutine that takes those inputs and returns P and isolating
boxes of the points defined by P which are not connected to other
points of P.

Algorithm 3: IsIsolated

Input: The polynomials f A ∈ Q[x1, . . . , xn] and
д ∈ Q[x1, . . . , xn+1] and the zero-dimensional
parametrization P.

Output: P with isolating boxes of the isolated points of
VA ∩ Rn+1

1 e0 ← SpecializationValue(f A,д)

2 for 1 ≤ i ≤ n do

3 Qi ← ZeroDimSolve
({

f A − e0/2,д,
∂f A

∂x j
for all j , i

})

4 Ki ← ParametricCurve(f A, i)

5 end

6 K← Union(K1, . . . ,Kn)

7 Q ← Union(Q1, . . . ,Qn)

8 R← Union(RoadMap(f A − e0/2,д,Q),RoadMap(f A +

e0/2,д,Q))
9 S← Union(K,R)

10 B ← ConnectivityQuery(S,P, xn+1 , 0, 0 < f A < e0)

11 return (P,B)

4 COMPLEXITY ANALYSIS

All complexity results are given in the number of arithmetic opera-
tions inQ . Hereafter, we assume that a generic enough matrix A is
found from a random choice. In order to end the proof of Theorem 1,
we now estimate the arithmetic runtime of the calls to Candidates

and IsIsolated.

Complexity of Algorithm 2. Since W (πi ,H
A
ε) is the finite al-

gebraic set associated to
〈

f A − e,
∂f A

∂x j
for all j , i

〉

, its degree is

bounded by d(d − 1)n [17]. Consequently, the degree of the output
zero-dimensional parametrization lies in dO (n). Using [24, Theorem
6] (which is based on the geometric resolution algorithm in [14]),
it is computed within dO (n) arithmetic operations in Q . The last
step which takes intersections is done using the algorithm in [28,
Appendix J.1] ; it does not change the asymptotic complexity.

We have seen that GetNormBound reduces to isolate the real
roots of a zero-dimensional parametrization of degree dO (n). This
can be done within dO (n) operations by Uspensky’s algorithm [23].

303

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Huu Phuoc Le, Mohab Safey El Din, and Timo de Wolff

Complexity of Algorithm 3. Each call to SpecializationValue re-
duces to computing critical values of πi of a smooth algebraic set
defined by polynomials of degree ≤ d . This is done using (nd)O (n)

arithmetic operations inQ (see [15]). Using [14] for ZeroDimSolve

and [29] for ParametricCurve does not increase the overall com-
plexity. The loop is performed n times ; hence the complexity lies
in (nd)O (n). All output zero-dimensional parametrizations have
degree bounded by dO (n). Running Union on these parametriza-
tions does not increase the asymptotic complexity. One gets then
parametrizations of degree bounded by ndO (n). Finally, using [28]
for Roadmap uses (nd)O (n log(n)) arithmetic operations in Q and
outputs a rational parametrization of degree lying in (nd)O (n log(n)).
The call to ConnectivityQuery, done as explained in [27] is polyno-
mial in the degree of the roadmap.

The final steps which consist in calling Removes and undoing
the change of variables does not change the asymptotic complexity.

Summing up altogether the above complexity estimates, one
obtains an algorithm using (nd)O (n log(n)) arithmetics operations
inQ at most. This ends the proof of Theorem 1.

5 EXPERIMENTAL RESULTS

We report on practical performances of our algorithm. Compu-
tations were done on an Intel(R) Xeon(R) CPU E3-1505M v6 @
3.00GHz with 32GB of RAM. We take sums of squares of n random
dense quadrics in n variables (with a non-empty intersection over
R) ; we obtain dense quartics defining a finite set of points. Timings
are given in seconds (s.), minutes (m.), hours (h.) and days (d.).

We used Faugère’s FGb library for computing Gröbner bases
in order to perform algebraic elimination in Algorithms 1, 2 and
3. We also used our C implementation for bivariate polynomial
system solving (based on resultant computations) which we need to
analyze connectivity queries in roadmaps. Timings for Algorithm 2
are given in the column cand below. Timings for the computation
of the roadmaps are given in the column rmp and timings for the
analysis of connectivity queries are given in the column qri below.

Roadmaps are obtained as the union of critical loci of some maps
in slices of the input variety [28]. We report on the highest degree
of these critical loci in the column srmp. The column sqri reports
on the maximum degree of the bivariate zero-dimensional system
we need to study to analyze connectivity queries on the roadmap.

None of the examples we considered could be tackled using
the implementations of Cylindrical Algebraic Decomposition algo-
rithms in Maple and Mathematica.

We also implemented [2, Alg. 12.16] using the Flint C library
with evaluation/interpolation techniques instead to tackle coef-
ficients involving infinitesimals. This algorithm only computes
sample points per connected components. That implementation was

not able to compute sample points of the input quartics for any of

our examples. We then report in the column [BPR] on the degree of
the zero-dimensional system which is expected to be solved by [2,
BPR]. This is to be compared with columns srmp and sqri.

n cand rmp qri total srmp sqri [BPR]
4 2 s. 15 s. 33 s. 50 s. 36 359 7290
5 < 10 min. 1h. 7h. 8 h. 108 4644 65 610
6 < 12h 2 d. 18 d. 20 d. 308 47952 590 490

REFERENCES
[1] Arnon, D. S. A cluster-based cylindrical algebraic decomposition algorithm. J.

Symb. Comput. 5, 1/2 (1988), 189ś212.
[2] Basu, S., Pollack, R., and Roy, M.-F. Algorithms in Real Algebraic Geometry

(Algorithms and Computation in Mathematics). Springer-Verlag, 2006.
[3] Basu, S., and Roy, M. Divide and conquer roadmap for algebraic sets. Discrete &

Computational Geometry 52, 2 (2014), 278ś343.
[4] Basu, S., Roy, M., Safey El Din, M., and Schost, É. A baby step-giant step

roadmap algorithm for general algebraic sets. Foundations of Computational
Mathematics 14, 6 (2014), 1117ś1172.

[5] Borcea, C., and Streinu, I. Geometric auxetics. Proc. R. Soc. Lond., A, Math.
Phys. Eng. Sci. 471, 2184 (2015), 24.

[6] Borcea, C. S., and Streinu, I. Periodic auxetics: structure and design. Q. J. Mech.
Appl. Math. 71, 2 (2018), 125ś138.

[7] Collins, G. E. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition: a synopsis. ACM SIGSAM Bulletin 10, 1 (1976), 10ś12.

[8] Connelly, R., and Whiteley, W. The stability of tensegrity frameworks. Inter-
national Journal of Space Structures 7, 2 (1992), 153ś163.

[9] Coste, M., and Shiota, M. Thom’s first isotopy lemma: a semialgebraic version,
with uniform bounds. RIMS Kokyuroku 815 (1992), 176ś189.

[10] Duval, D. Rational puiseux expansions. Compositio Mathematica 70, 2 (1989),
119ś154.

[11] Gaspar, N., Ren, X., Smith, C., Grima, J., and Evans, K. Novel honeycombs
with auxetic behaviour. Acta Materialia 53, 8 (2005), 2439 ś 2445.

[12] Gianni, P. M., and Teo Mora, T. Algebraic solution of systems of polynomial
equations using Gröebner bases. In Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, 5th International Conference, AAECC-5, Menorca, Spain,
Proceedings (1987), pp. 247ś257.

[13] Giusti, M., Heintz, J., Morais, J. E., and Pardo, L. M.When polynomial equation
systems can be "solved" fast? In Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, 11th International Symposium, AAECC-11, Paris, France,
Proceedings (1995), pp. 205ś231.

[14] Giusti, M., Lecerf, G., and Salvy, B. A Gröbner free alternative for polynomial
system solving. Journal of Complexity 17, 1 (2001), 154 ś 211.

[15] Greuet, A., and Safey El Din, M. Probabilistic algorithm for polynomial
optimization over a real algebraic set. SIAM Journal on Optimization 24, 3 (2014).

[16] Grima, J. N., and Evans, K. E. Auxetic behavior from rotating triangles. Journal
of Materials Science 41, 10 (May 2006), 3193ś3196.

[17] Heintz, J. Definability and fast quantifier elimination in algebraically closed
fields. Theor. Comput. Sci. 24 (1983), 239ś277.

[18] Jelonek, Z., and Kurdyka, K. Quantitative generalized Bertini-Sard theorem for
smooth affine varieties. Discrete & Computational Geometry 34, 4 (2005), 659ś678.

[19] Kronecker, L. Grundzüge einer arithmetischen theorie der algebraischen
grössen. Journal für die reine und angewandte Mathematik 92 (1882), 1ś122.

[20] Lakes, R. Foam structures with a negative poisson’s ratio. Science 235, 4792
(1987), 1038ś1040.

[21] Roth, B., and Whiteley, W. Tensegrity frameworks. Trans. Am. Math. Soc. 265
(1981), 419ś446.

[22] Rouillier, F., Roy, M., and Safey El Din, M. Finding at least one point in each
connected component of a real algebraic set defined by a single equation. J.
Complexity 16, 4 (2000), 716ś750.

[23] Rouillier, F., and Zimmermann, P. Efficient isolation of polynomial’s real roots.
Journal of Computational and Applied Mathematics 162, 1 (2004), 33ś50.

[24] Safey El Din, M. Computing Sampling Points on a Singular Real Hypersurface
using Lagrange’s System. Research Report RR-5464, INRIA, 2005.

[25] Safey El Din, M., and Schost, E. Polar varieties and computation of one point
in each connected component of a smooth real algebraic set. In Proc. of the 2003
Int. Symp. on Symb. and Alg. Comp. (2003), ISSAC ’03, ACM, p. 224ś231.

[26] Safey El Din, M., and Schost, É. Properness defects of projections and compu-
tation of at least one point in each connected component of a real algebraic set.
Discrete & Computational Geometry 32, 3 (2004), 417ś430.

[27] Safey El Din, M., and Schost, É. A baby steps/giant steps probabilistic algorithm
for computing roadmaps in smooth bounded real hypersurface. Discrete &
Computational Geometry 45, 1 (2011), 181ś220.

[28] Safey El Din, M., and Schost, É. A nearly optimal algorithm for deciding
connectivity queries in smooth and bounded real algebraic sets. J. ACM 63, 6
(Jan. 2017), 48:1ś48:37.

[29] Schost, É. Computing parametric geometric resolutions. Applicable Algebra in
Engineering, Communication and Computing 13, 5 (2003), 349ś393.

[30] Schwartz, J. T., and Sharir, M. On the “piano moversž problem. II. general
techniques for computing topological properties of real algebraic manifolds.
Advances in Applied Mathematics 4, 3 (1983), 298 ś 351.

[31] Vorobjov, N. Complexity of computing the local dimension of a semialgebraic
set. Journal of Symbolic Computation 27, 6 (1999), 565ś579.

[32] Yang, W., Li, Z.-M., Shi, W., and Xie, B.-H. Review on auxetic materials. Journal
of Materials Science 39 (2004), 3269ś3279.

304

Letterplace Ð a Subsystem of Singular for Computations with
Free Algebras via Letterplace Embedding

Viktor Levandovskyy
Lehrstuhl D für Mathematik, RWTH

Aachen University

Aachen, Germany

Viktor.Levandovskyy@math.rwth-

aachen.de

Hans Schönemann
TU Kaiserslautern

Kaiserslautern, Germany

hannes@mathematik.uni-kl.de

Karim Abou Zeid
Lehrstuhl D für Mathematik, RWTH

Aachen University

Aachen, Germany

karim.abou.zeid@rwth-aachen.de

ABSTRACT

We present the newest release of the subsystem of Singular called

Letterplace which exists since 2009. It is devoted to computa-

tions with finitely presented associative algebras over fields and

offers Gröbner(śShirshov) bases over free algebras via the Letter-

place correspondence of La Scala and Levandovskyy. This allows

to use highly tuned commutative data structures internally and to

reuse parts of existing algorithms in the non-commutative situa-

tion. The present version has been deeply reengineered, based on

the experience with earlier and experimental versions. We offer

an unprecedented functionality, some of which for the first time in

the history of computer algebra. In particular, we present tools for

elimination theory (via truncated Gröbner bases and via supporting

several kinds of elimination orderings), dimension theory (Gel’fand-

Kirillov and global dimension), and for homological algebra (such

as syzygy bimodules and lifts for ideals and bimodules) to name

a few. Another article in this issue is devoted to the extension of

Gröbner bases to the coefficients in principal ideal rings including

Z, which is also a part of this release. We report on comparison with

other systems and on some advances in the theory. Quite nontrivial

examples illustrate the abilities of the system.

CCS CONCEPTS

·Computingmethodologies→ Special-purpose algebraic sys-

tems; Algebraic algorithms; · Mathematics of computing→

Mathematical software.

KEYWORDS

Noncommutative algebra; Groebner bases; Algorithms; Free alge-

bra; Tensor algebra; Computer Algebra System

ACM Reference Format:

Viktor Levandovskyy, Hans Schönemann, and Karim Abou Zeid. 2020. Let-

terplace Ð a Subsystem of Singular for Computations with Free Algebras

via Letterplace Embedding. In International Symposium on Symbolic and

Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece.ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3373207.3404056

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404056

1 THE BASICS

All rings are assumed to be associative and unital, but not neces-

sarily commutative. 𝐾 stands for a field, 𝑋 for the set {𝑥1, . . . , 𝑥𝑛},

although for theoretical considerations it might be just enumerable.

La Scala and Levandovskyy [18, 19] established a one-to-one

correspondence between the ideals of the free associative algebra

𝐾 ⟨𝑋 ⟩ and the so-called letterplace ideals of the infinitely generated

commutative algebra 𝐾 [𝑋 | N] = 𝐾 [{𝑥𝑖 (𝑗) : 𝑥𝑖 ∈ 𝑋, 𝑗 ∈ N]. The

latter is a difference ring with the natural injective endomorphism

𝜎 : 𝑥𝑖 (𝑗) ↦→ 𝑥𝑖 (𝑗+1) for any 𝑖; letterplace ideals are stable under the

action of 𝜎 . The mentioned correspondence extends to generating

sets and, in particular, to Gröbner bases of ideals and submodules

of free bimodules [3, 17, 24, 26]. Though developed alternatively

to the way generalized Buchberger’s algorithm works, nowadays

it is possible to formulate the whole theory in a way, similar to

Buchberger’s. Nevertheless, merits of Letterplace approach lie in

the predominantly commutative setup of data structures, which

together with its functionalities can be widely reused in the Letter-

place context. As an example of such we demonstrate new mono-

mial orderings, available for usage. Also the creation of critical

pairs and the criteria for discarding them can be seen in an almost

one-to-one correspondence.

1.1 Models of computation

.

Since the algebras under consideration are not Noetherian, a

typical Gröbner basis computation will not terminate. There are

examples, where a finite Gröbner basis of an ideal (given by a finite

generating set) exists for some specific orderings, and is infinite for

the other. And there are situation, where a finite generating set has

always an infinite Gröbner basis.

In order to deal with this situation, in the realm of associative

algebras one employs a bound. It is often called a degree bound, but

we propose - armed by a Letterplace wisdom - to call it rather a

length bound, where the length of a monomial element from the

algebra is literally its’ length as the word in the alphabet. Whereas

the degreemight mean the weighted degree, imposed by the weights

𝑤𝑖 ∈ N on each variable 𝑥𝑖 , i.e. deg𝑤 (𝑥𝑖1 · . . . · 𝑥𝑖𝑘) :=
∑𝑘
𝑗=1𝑤𝑖 𝑗 .

Even when a generating set in the input is N-graded, Buchberger’s

algorithm can recognize this only when a fixed monomial ordering

respects the same grading.

Therefore a length bound 𝑑 ∈ N is usually provided as an argu-

ment to such a computation, then the restricted Letterplace ring

𝐾 [𝑋 | {1 . . . 𝑑}] is a finitely generated commutative Noetherian

305

https://doi.org/10.1145/3373207.3404056
https://doi.org/10.1145/3373207.3404056

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Levandovskyy and Schönemann and Abou Zeid

ring, so any instance of Gröbner basis (even a difference Gröbner

basis) will necessarily terminate.

On the other hand, Pritchard [28] (not widely known) has shown,

that if a finite Gröbner basis of a given ideal exists with respect to

a fixed monomial ordering, it will be found by generalized Buch-

berger’s algorithm in a finite number of steps.

1.2 Encompassing Bimodules

Since we are interested not only in ideals, but in finitely presented

modules, we have to work with free bimodule of finite rank over

free and finitely presented algebras. For such an algebra 𝑅, let 𝜀𝑖
denote the 𝑖-th canonical generator of a free bimodule. Notably, it

commutes only with the constants from the ground field. Then the

free bimodule of rank 𝑟 ∈ N is F𝑟 :=
⊕𝑟

𝑖=1 𝑅𝜀𝑖𝑅. The Gröbner bases

theory, developed in [4] and its Letterplace counterpart generalize

to the setting of finitely (or countably) generated subbimodules of

F𝑟 . We have implemented it and use it for working with e.g.

(bi-)syzygy modules and (bi-)transformation matrices. The classical

Singular types vector and module use the symbol gen(i) for the

𝑖-th canonical basis vector, which commutes with everything by

default. We have extended this for Letterplace by introducing the

symbol ncgen(i) for the 𝑖-th canonical generator of the free bimod-

ule (𝜀𝑖 above), which commutes only with constants. A combination

ncgen(i)·gen(i) allows us to treat free bimodules effectively.

1.3 Monomial Orderings

One of the most pleasant effects of using Letterplace techniques is

the representability of data in terms of commutative data structures.

We utilized it especially in the work with monomial orderings. It

turned out, that due to requirements of the Letterplace setup not

all orderings (see, for example the taxonomy of such in [27]) can

be realized. Nevertheless, many of useful orderings have been im-

plemented Ð to the best of our knowledge, for the first time in

a publicly available software project. The initialization of a free

algebra happens in two steps. In the first one, a commutative ring

is created, and in the second one, a free algebra is built from it

subject to the provided length bound. From the commutative ring

we extract information on a ground field or ring, on the names and

the order of variables and on the monomial ordering. There is a

bijection between the names for orderings, used in the commutative

ring by Singular and their interpretation after the initialization

of the free algebra. Namely, we provide the following monomial

orderings, built over the ordered list of variables 𝑥1, . . . , 𝑥𝑛 , which

is specified by the user:

dp: degree right lexicographical ordering;

Dp: degree left lexicographical ordering;

Wp(w): weighted degree left lexicographical ordering, with w being

a strictly positive vector of weights for the variables;

lp: left total elimination ordering;

rp: right total elimination ordering;

(a(v),<) extra weight ordering extension, with v being a vector

of nonnegative weights for the variables and < is another ordering

from the above.

Moreover, for modules (bimodules) we offer both position-over-

term and term-over-position constructions involving the monomial

orderings as above.

1.4 Length-incompatible orderings

When working with monomial orderings, which are not length-

compatible (which were studied by David Green e.g. in [11] though

in a different context and with other motivation), the following

error message can appear:

? degree bound of Letterplace ring is 10, but at least

11 is needed for this multiplication

After such a message any current computation, based on Gröbner

bases is stopped. This is not a bug, but an indication that internally

a potentially non-Noetherian reduction has been invoked. There is

no other possibility to treat such a situation automatically. Practical

advises include increasing the length bound and keep tail reduction

active by setting option(redTail).

1.5 Fundamental Functionality

With the current release, we offer the following functionalities for

ideals and subbimodules of free bimodule of a finite rank.

twostd(𝐹): a two-sided Gröbner basis of 𝐹 ;

reduce(𝑝,𝐺): a normal form of a vector or a polynomial 𝑝 with

respect to a two-sided Gröbner basis 𝐺 ;

syz(𝐹): a generating set of a syzygy bimodule of 𝐹 ;

modulo(𝑀, 𝐹): kernel of a bimodule homomorphism, defined by𝑀

into a bimodule, presented by the generators of 𝐹 ;

lift(𝑀, 𝑁): computation of a bi-transformation matrix between

a module and its submodule, in other words expressing generators

of a submodule 𝑁 in terms of generators of a module𝑀 ;

liftstd(𝐹,𝑇[, 𝑆]): computation of a two-sided Gröbner basis and

a bi-transformation matrix 𝑇 with (optionally) a syzygy bimodule

𝑆 of 𝐹 ;

rightStd(𝐹): a right Gröbner basis of 𝐹 .

Moreover, given a two-sided Gröbner basis 𝐺 of an ideal, one

can pass to the factor algebra of 𝐾 ⟨𝑋 ⟩ by ⟨𝐺⟩: the data type qring

offers such a passage and supports arithmetic operations. All of the

above functionality is also provided for factor algebras ś that is for

all finitely presented algebras.

A division with remainder algorithm is provided via the classical

pair reduce (producing a remainder) and lift (computing a two-

sided presentation of an element in an ideal or a bimodule).

Letterplace technique is the key technology, used in the kernel.

However, due to the new user-friendly interface, the user will not

see much of Letterplace, but a native free algebra instead.

2 ADVANCED FUNCTIONALITY

Numerous applications can be approached with the functionality

already present in the kernel. Below we give several examples of

the usage. Using Letterplace in the kernel, we provide the following

libraries, written in the interpreter C-like language of Singular. Af-

ter extensively testing the important procedures we reimplemented

the most time-consuming parts in the kernel.

306

Letterplace Ð a Subsystem of Singular for Computations with Free Algebras via Letterplace Embedding ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

freegb.lib is the main initialization library; it also contains nu-

merous legacy, conversion and other technical routines.

fpadim.lib addresses computations of vector space dimensions,

bases of finite dimensional or restricted algebras as well as finite

Hilbert series.

fpalgebras.lib contains many relations of predefined algebras

including various group algebras of finitely generated groups.

fpaprops.lib is one of our flagships. Suppose, that one has a fi-

nite Gröbner basis of an ideal 𝐼 ⊂ 𝐾 ⟨𝑋 ⟩. Then there are procedures

for the computations of Gel’fandśKirillov dimension and an upper

bound for the global dimension (the values of both are inN0∪{∞})

of a finitely presented algebra 𝐾 ⟨𝑋 ⟩/𝐼 , as well as checks, whether

this algebra is left/right/weak Noetherian and prime or semiprime

[25]. Algebraic substitutions (ring morphisms) are offered as well.

ncHilb.lib is a third-party library, presenting tools for comput-

ing multi-graded Hilbert series of not necessary finitely presented

algebras.

3 EXAMPLE SESSION

Consider the ideal I = ⟨𝑓1 = 𝑦𝑥 − 3𝑥𝑦 − 3𝑧, 𝑓2 = 𝑧𝑥 − 2𝑥𝑧 +

𝑦, 𝑓3 = 𝑧𝑦 − 𝑦𝑧 − 𝑥⟩ ⊂ Q⟨𝑧,𝑦, 𝑥⟩. Let us initialize the free algebra

and compute a Gröbner basis of 𝐼 with respect to the degree left

lexicographic ordering with 𝑧 > 𝑦 > 𝑥 . This is done in two steps:

at first, a commutative ring over Q is created. From this ring, the

names of variables, their sequence as well as the monomial ordering

are read. Finally, freeAlgebra creates the free algebra from this

information (stored in a ring) subject to the explicit length bound.

LIB "freegb.lib"; //initialization of free algebras

ring r = 0,(z,y,x),Dp; // degree left lex ord on z>y>x

ring R = freeAlgebra(r,5); // put length bound to 5

ideal I = y*x - 3*x*y - 3*z, z*x - 2*x*z +y, z*y-y*z-x;

option(redSB); // Groebner basis will be minimal

option(redTail); // Groebner basis will be tail-reduced

ideal J = twostd(I); // compute a two-sided GB of I

J; // print generators of J

The output is a finite Gröbner basis of 9 polynomials

{4𝑥𝑦 + 3𝑧, 3𝑥𝑧 − 𝑦, 4𝑦𝑥 − 3𝑧, 2𝑦2 − 3𝑥2, 2𝑦𝑧 + 𝑥,

3𝑧𝑥 + 𝑦, 2𝑧𝑦 − 𝑥, 3𝑧2 − 2𝑥2, 4𝑥3 + 𝑥}.

Note, that the same generating set produces an infinite Gröbner

basis over Z⟨𝑧,𝑦, 𝑥⟩ as we report in [22]. As we see, original gener-

ators have decomposed. Computing their expressions in terms of

the Gröbner basis above is a typical application of the command

lift. However, since bimodule presentation is involved, we need

to activate a free bimodule of a fixed rank.

setring r;

ring R2 = freeAlgebra(r,8,9); // 9 = #elements of J

ideal I = imap(R,I); // transfers I from R to R2

ideal J = imap(R,J);

matrix P = lift(J,I);

print(transpose(P[1]));

> -3/4*ncgen(1),0,1/4*ncgen(3)

This means, that the first generator of 𝐼 is presented as a linear

combination of the 1st and the 3rd generators of 𝐽 :

𝑦𝑥 − 3𝑥𝑦 − 3𝑧 = −
3

4
· (4𝑥𝑦 + 3𝑧) +

1

4
· (4𝑦𝑥 − 3𝑧).

In order to obtain the expressions for generators of 𝐽 is terms of 𝐼 ,

we can use liftstd

matrix T; ideal J2 = liftstd(I, T);

print(T[7][3]);

> -30*z*x*ncgen(3)*y+5*z*ncgen(3)*x*y+...

where the latter is the beginning of the lengthy expression of the

7th element of 𝐽 through the 3rd element of 𝐼 .

The form of leading monomials of 𝐽 raises a conjecture, that

Q⟨𝑥, 𝑦, 𝑧⟩/𝐽 is finite dimensional Q-vector space. Let us check it:

setring R;

LIB "fpadim.lib"; // load the library for K-dimensions

lpKDim(J); // determinte the K-dimension of R/J

> 5

So, the dimension is 5. What is the canonical monomial Q-basis?

lpMonomialBasis(5,0,J); // compute all monomials

// of length up to 5 in Q<x,y,z>/J

which results in {1, 𝑧, 𝑦, 𝑥, 𝑥2}. In a finite-dimensional algebra

every element is clearly algebraic. What is the minimal polynomial

of, say, 𝑦 + 𝑧?

poly p = y+z;

ideal B = 1, p, NF(p^2,J), NF(p^3,J), NF(p^4,J);

LIB "bfun.lib";

list L = linReduceIdeal(B,1); //looks for lin. dep.

L[2][1];

> 24/13*gen(4)+gen(2)

reduce(24/13*p^3+p, J);

> 0

what means that the minimal polynomial of 𝑝 = 𝑦 + 𝑧 is 𝑡3 + 13
24 𝑡 .

In the code, linReduceIdeal computed the linear dependencies

among the elements of the ideal 𝐵, treated as a list. Into 𝐵 we have

entered the normal forms of the consecutive powers of 𝑝 . As we

see, 3rd power of 𝑝 is sufficient in this computation.

4 THE HIGH ART OF ELIMINATION

In the first Weyl algebra 𝐴1 (Q) = Q⟨𝑥, 𝜕 | 𝜕𝑥 = 𝑥𝜕 + 1⟩, consider

the subalgebra 𝑆 , generated by {𝑥𝜕2, 𝑥2𝜕}. A very natural question

in algebra (or ring theory) is how to describe 𝑆 as a finitely presented

algebra? In other words, what is the kernel of the homomorphism

of Q-algebras

Q⟨𝑎, 𝑏⟩ → Q⟨𝑥, 𝜕⟩/⟨𝜕𝑥 − 𝑥𝜕 − 1⟩, 𝑎 ↦→ 𝑥𝜕2, 𝑏 ↦→ 𝑥2𝜕.

Below, we give a conjectural answer and explain why it is only

conjectural.

Another natural question, this time rather from the side of differ-

ential equations, is does the Euler derivation 𝑥𝜕 belong to 𝑆? Below,

we present an affirmative answer with the explicit presentation.

LIB "freegb.lib";

ring r = 0,(x,d,a,b,c),(a(1,1,0,0,0),dp);

ring R = freeAlgebra(r,40);

We use an extra weight monomial ordering, eliminating variables

{𝑥, 𝑑} and set up the length bound 40 for the Letterplace ring R.

𝑐 will stand for the Euler derivation 𝑥𝜕, 𝑏 for 𝑥2𝜕 and 𝑎 for 𝑥𝜕2.

We enter all these relations into the ideal 𝐼 and compute its two-

sided Gröbner basis, which we denote by 𝐽 .

307

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Levandovskyy and Schönemann and Abou Zeid

option(redSB);option(redTail);

ideal I = d*x-c-1, x*d -c, c*d-a, x*c-b;

ideal J = twostd(I);

𝐽 has 244 elements up to leading length 40, what suggests that this

Gröbner basis will probably be infinite. Nevertheless, we find the

following elements after eliminating variables (by the Elimination

Lemma as in e.g. [5]):

{𝑐𝑏 − 𝑏𝑐 − 𝑏, 𝑐𝑎 − 𝑎𝑐 + 𝑎, 𝑏𝑎 − 𝑎𝑏 + 3𝑐2 − 𝑐, 𝑐3 − 𝑎𝑏 + 𝑐2}.

We conjecture, that these relations completely describe the algebra,

generated by {𝑎, 𝑏, 𝑐}. Now, let us attack this ideal of relations with

the left total elimination ordering in the algebra Q⟨𝑎, 𝑏, 𝑐⟩ with

𝑐 ≻ 𝑏 ≻ 𝑎

ring r2 = 0,(c,a,b),lp;

ring R2 = freeAlgebra(r2,20); ideal I2;

I2 = c*b-b*c-b,c*a-a*c+a,b*a-a*b+3*c^2-c,c^3-a*b+c^2;

option(redSB);option(redTail);

ideal J2 = twostd(I2);

The ideal J2 has 10 generators of leading length up to 5, so it is a

finite Gröbner basis of I2. The most interesting, however is the last

generator. From it we extract the proof of the fact that 𝑥𝜕 ∈ 𝑆 :

𝑐 = − 1
40 (6(𝑎𝑏)

2 − 21𝑏𝑎2𝑏 + 24(𝑏𝑎)2 − 9𝑏2𝑎2 − 32𝑎𝑏 − 76𝑏𝑎).

Hence the other 9 generators of the ideal J2 are expressed in vari-

ables {𝑎, 𝑏} only and conjecturally provide the complete description

𝑆 as finitely presented algebra. Why can we say only conjecturally?

It remains to prove that the mentioned 9 relations (i.e. polynomials

in Q⟨𝑎, 𝑏⟩ from the ideal J2), which look as

𝑎𝑏3 − 3𝑏𝑎𝑏2 + 3𝑏2𝑎𝑏 − 𝑏3𝑎 − 6𝑏2, . . . ,

9𝑎2𝑏𝑎𝑏−108𝑏𝑎2𝑏𝑎+171𝑏𝑎𝑏𝑎2−72𝑏2𝑎3+34𝑎2𝑏−800𝑎𝑏𝑎−638𝑏𝑎2−104𝑎

generate 𝑆 . Thus we have to make a conjecture, that an infinite

Gröbner basis of the ideal 𝐽 above can be written in terms of finitely

many families with parametric exponents, which we need to write

down explicitly. Then we need to prove by hands that these families

indeed constitute an infinite Gröbner basis of the ideal 𝐽 . Only then

can we apply the Elimination Lemma in order to conclude, that the

9 elements in 𝑎, 𝑏, obtained from 4-generated ideal I2 as above, are

all relations of the algebra 𝑆 .

Questions similar to those above can be effectively attacked with

the assistance of our implementation. We stress that this assistance,

in the case where no finite Gröbner basis is found, helps to make a

conjecture on the form of the infinite Gröbner basis. And no other

ways of proving such statements except proving by hands are yet

known to us.

In general, the kernel of a ring morphism (see Theorem 5.3), the

preimage of an ideal (two-sided or one-sided [20]) under a ring

morphism, algebraic dependencies, algebraicity of elements and

many more become accessible with working Gröbner bases-based

elimination [5].

A practicing user has to be aware that Ð in distinct contrast to

computations with Noetherian algebras, which are close to commu-

tative Ð instead of "one click" automated solution one has a task,

requiring human guidance. In such a setup Gröbner bases tend to

be infinite, and even uncomputable because of the issue, described

in Section 1.4. Therefore the vast choice of monomial orderings for

elimination is of huge importance.

Remark 4.1. Consider the algebra, generated by {𝑎, 𝑏, 𝑐} subject

to conjectural relations from the above:

{𝑐𝑏 − 𝑏𝑐 − 𝑏, 𝑐𝑎 − 𝑎𝑐 + 𝑎, 𝑏𝑎 − 𝑎𝑏 + 3𝑐2 − 𝑐, 𝑐3 − 𝑎𝑏 + 𝑐2}.

The Gröbner basis property of the ideal of relations imply, that

we are dealing with the factor algebra of a 𝐺-algebra [23] by a

two-sided ideal

𝐾 ⟨𝑎, 𝑏, 𝑐 | 𝑏𝑎 = 𝑎𝑏−3𝑐2 +𝑐, 𝑐𝑏 = 𝑏𝑐 +𝑏, 𝑐𝑎 = 𝑎𝑐 −𝑎⟩/⟨𝑐3−𝑎𝑏 +𝑐2⟩.

Algebras of this type, called 𝐺𝑅-algebras, are very pleasant: they

are Noetherian and possess computable finite Gröbner bases for

their ideals. Another subsystem of Singular called Plural [12, 23]

offers a very broad spectrum of functionality for such algebras. We

stress that in the category of 𝐺𝑅-algebras one does not experience

problems with computability, discussed above. Also, concrete com-

putations with modules directly in a𝐺𝑅-algebra will be, of course,

much faster than addressing such from Letterplace.

5 ALGORITHMIC DEVELOPMENTS

The Gel’fand-Kirillov dimension [15] measures the growth of alge-

bras and modules. It is one of few dimensions, which exist and are

sometimes computable over general finitely presented algebras. As

soon as a finite Gröbner basis of the ideal of relations is known, the

Gel’fand-Kirillov dimension of such an algebra is either a natural

number or ∞ (which corresponds to at least exponential growth

and is present in a free algebra in at least two generators itself).

5.1 Better usage of Ufnarovski graph

Using the Ufnarovski graph [33], we developed a new method to

compute the Gel’fand-Kirillov dimension. Given the Ufnarovski

graph, which is a regular directed graph, one has to count the

maximum number of distinct cycles occuring in a single route.

There is one exception Ð if there are two distinct cycles with a

common vertex in the graph, then one is done immediately (i.e. the

GKdim is ∞). Note that in general, computing the total number

of simple cycles in a directed graph is a problem also known as

#CYCLE and it cannot be solved in polynomial time unless P=NP [1].

This does not apply to our case, because of the exception mentioned

above.

Every neighbor of every vertex in the input graph is only evalu-

ated once and thus Algorithm 1 has a linear runtime of𝑂 (|𝑉 | + |𝐸 |).

5.2 Computing Gel’fandśKirillov dimension of
finitely presented bimodules

Let 𝑅 = 𝐾 ⟨𝑋 ⟩ be a free algebra. Ufnarovski has developed a method

for computing the important Gel’fandśKirillov dimension of an

algebra (and a cyclic bimodule) 𝑅/𝐼 for a two-sided ideal 𝐼 ⊂ 𝑅,

which is given via a finite monomial generating set. We refer to such

algorithm as to GKDim-MonomialIdeal. It is somewhat strange,

that the problem of generalizing this approach from a cyclic to a

finitely presented bimodule has not been addressed before in the

situation of a free algebra. We present an algorithmic solution.

308

Letterplace Ð a Subsystem of Singular for Computations with Free Algebras via Letterplace Embedding ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Algorithm 1Maximum cycle count

Input: A directed graph (𝑉 , 𝐸).

Output: The maximum number of distinct cycles in a single

route in (𝑉 , 𝐸); or∞ if there is a route in (𝑉 , 𝐸) which

contains two distinct cycles with a common vertex.

Note: The maximum cycle count values are shared globally

during the whole algorithm. Every other variable (visited,

cyclic and the graph) is local to each recursion step and is

only passed forward to subsequent recursion steps.

For every vertex 𝑣 ∈ 𝑉 , if it has not been computed yet, compute

the maximum cycle count from 𝑣 as described below. Finally

return the maximum value.

(1) Mark 𝑣 as visited.

(2) For every unvisited neighbor𝑤 of 𝑣 , recursively compute

the maximum cycle count (1) from𝑤 if it has not been

computed yet.

(3) For every visited neighbor𝑤 of 𝑣 (i.e. a neighbor that leads

to a cycle):

(a) If any vertex of the cycle is marked as cyclic (i.e. it is part

of a different cycle), set the maximum cycle count from 𝑣

to∞ and stop here.

(b) Mark all vertices of the cycle as cyclic.

(c) Remove all edges from the cycle.

(d) For every vertex of the cycle, recursively compute the

maximum cycle count (1) from that vertex if it has not

been computed yet.

(4) Set the maximum cycle count from 𝑣 to the maximum of the

maximum cycle count of the neighbors in (2) and 1 + the

maximum cycle count of the neighbors in (3).

Algorithm 2 Gel’fandśKirillov Dimension GKDim-module(𝐺)

Input: 𝐺 ⊂
⊕𝑟

𝑖=1 𝑅𝜀𝑖𝑅, a finite two-sided Gröbner basis of a sub-

bimodule with respect to a term-over-position ordering, based

on a positively weighted degree ordering

Output: Gel’fandśKirillov dimension (from N ∪ {∞}) of⊕𝑟
𝑖=1 𝑅𝜀𝑖𝑅/⟨𝐺⟩

𝐺 ← lm(𝐺)

for 𝑖 = 1 to 𝑟 do

𝐹𝑖 ← {𝑔 ∈ 𝐺 | 𝑔 =𝑚𝜀𝑖𝑚
′, for𝑚,𝑚′ ∈ ⟨𝑋 ⟩}

return Sup({GKDim-MonomialIdeal(𝐹𝑖) : 1 ≤ 𝑖 ≤ 𝑟 })

Recall, that a Z-filtration on an 𝐾-algebra 𝐴 is a family of 𝐾-

vector spaces {𝐴𝑖 , 𝑖 ∈ Z}, such that 𝐴 = ∪𝐴𝑖 , 𝐴𝑖 ⊆ 𝐴𝑖+1 and

𝐴𝑖 ·𝐴 𝑗 ⊆ 𝐴𝑖+𝑗 for 𝑖, 𝑗 ∈ Z. It is called finite-dimensional, if dim𝐾 𝐴𝑖 <

∞ for all 𝑖 .

From such a filtration one creates the associated graded algebra

𝑔𝑟 (𝐴) := ⊕𝑖∈Z𝐴𝑖+1/𝐴𝑖 . A filtration on an 𝐴-bimodule 𝑀 is also a

is a family of 𝐾-vector spaces {𝑀𝑖 : 𝑖 ∈ Z}, such that 𝑀 = ∪𝑀𝑖 ,

𝑀𝑖 ⊆ 𝑀𝑖+1 and 𝐴𝑖 ·𝑀𝑗 , 𝑀𝑖 · 𝐴 𝑗 ⊆ 𝑀𝑖+𝑗 for 𝑖, 𝑗 ∈ Z. This results in

the associated graded (bi-)module 𝑔𝑟 (𝑀) := ⊕𝑖∈Z𝑀𝑖+1/𝑀𝑖 .

Lemma 5.1. For a monomial ordering ≺ on a 𝐾-algebra 𝐴, there

is an associated filtration on 𝐴, constructed as follows. Let us fix a

multiplicative𝐾-basisM of monomials of𝐴, then∀𝜇 ∈ M we define

F𝜇 := 𝐾 ⟨{𝜈 ∈ M : 𝜈 ⪯ 𝜇}⟩. If ≺𝑤 is a positively weighted degree

ordering on 𝑅 := 𝐾 ⟨𝑋 ⟩, then {𝐹𝜇 : 𝜇 ∈ N0} is a finite dimensional

filtration on 𝑅. Moreover, any term-over-position ordering, based on

≺𝑤 , results in an induced finite dimensional N0- filtration on the free

bimodule of finite rank
⊕𝑟

𝑖=1 𝑅𝜀𝑖𝑅.

Lemma 5.2. Algorithm 2 is correct and terminates.

Proof. By Lemma 5.1 and the input specification it follows, that

𝑔𝑟 (𝑅) = 𝑅 and 𝑔𝑟 (𝑀) is finitely generated as 𝑅-module.

By [15, Prop. 6.6] we have

GKdim𝑅 (𝑀) = GKdim𝑔𝑟 (𝑅) (𝑔𝑟 (𝑀)) = GKdim𝑅 (𝑔𝑟 (𝑀)) .

Since 𝑔𝑟 (𝑀) is the module, presented by the subbimodule of lead-

ing terms of a Gröbner basis, we have to determine the Gel’fandś

Kirillov dimension of a finitely generated bimodule, presented by a

monomial subbimodule of the free bimodule of a finite rank. The

classical Proposition [15, Prop. 5.1] establishes the supremum argu-

ment over the component ideals. The termination is evident. □

5.3 Repairing error in the book łGröbner Bases
in Ring Theory"

The book by Huishi Li łGröbner Bases in Ring Theory" [25] was

a motivating companion to us. It contains a number of examples,

illustrating the presented algorithms. We have detected computa-

tionally, that in Example 5 (Chapter 5.3, p. 169), there is a mistake,

which we correct by theoretical means here. We stick to the nota-

tions, used in the book.

Theorem 5.3. Over the free associative algebra 𝐴 = 𝐾 ⟨𝑋1, 𝑋2⟩

consider the family of ideals 𝐼𝑛 = ⟨𝑋𝑛2 𝑋1⟩ for 𝑛 ∈ N0. Then the

following holds

• if 𝑛 = 0, GKdim𝐴/𝐼0 = 1 = gl. dim𝐴/𝐼0,

• if 𝑛 = 1, GKdim𝐴/𝐼1 = 2 = gl. dim𝐴/𝐼0,

• for 𝑛 ≥ 2, GKdim𝐴/𝐼𝑛 = ∞ and gl. dim𝐴/𝐼𝑛 = 2.

Moreover, for 𝑛 ≥ 2 𝐴/𝐼𝑛 contains a free algebra in two variables.

Remark 5.4. In the book [25] it has been wrongly stated that for

𝑛 ≥ 1 one has GKdim𝐴/𝐼𝑛 = 2. Moreover, this information was

used in Corollary 7.7 (p. 186) and in Example 2 (p. 194), where it

was stated that gl. dim𝐴/𝐼𝑛 = 2 for 𝑛 ≥ 1 holds as well, while after

our correction only gl. dim𝐴/𝐼𝑛 ≤ 2 for 𝑛 ≥ 2 follows directly. Nev-

ertheless, we prove by additional computer-supported arguments,

that the equality holds indeed.

Proof. The first claim follows since 𝐴/𝐼0 � 𝐾 [𝑋1]. We note,

that 𝐼0 = ⟨𝑋1⟩ ⊃ 𝐼1 = ⟨𝑋2𝑋1⟩ ⊃ . . . ⊃ 𝐼𝑛 = ⟨𝑋𝑛2 𝑋1⟩ ⊃ . . ., hence for

all 𝑛 we have a natural surjection 𝐾 ⟨𝑋1, 𝑋2⟩/𝐼𝑛+1 → 𝐾 ⟨𝑋1, 𝑋2⟩/𝐼𝑛 ,

thus for all 𝑛 GKdim𝐴/𝐼𝑛+1 ≥ GKdim𝐴/𝐼𝑛 .

Let 𝑛 = 2, then the construction of the Ufnarovski Graph shows

that 𝑋1𝑋2 → 𝑋2𝑋1 → 𝑋1𝑋2 and 𝑋1𝑋2 → 𝑋2𝑋1 → 𝑋 2
1 → 𝑋1𝑋2

are two different cycles with a common vertex. Thus by [25, The-

orem 3.1] GKdim𝐴/𝐼2 = ∞ and by the above, GKdim𝐴/𝐼𝑛 ≥

GKdim𝐴/𝐼2 = ∞ for all 𝑛 ≥ 2.

309

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Levandovskyy and Schönemann and Abou Zeid

At the same time, for 𝑛 ≥ 1 from the Ufnarovski Graph and [25,

Theorem 7.4] we infer, that gl. dim𝐴/𝐼𝑛 ≤ 2. By the same result, for

𝑛 = 1, since GKdim𝐴/𝐼1 = 2 we have the equality gl. dim𝐴/𝐼1 = 2.

Now we show, that for 𝑛 ≥ 2 𝐴/𝐼𝑛 contains a free algebra in two

generators. Consider a homomorphism of 𝐾-algebras

𝜑 : 𝐾 ⟨𝑎, 𝑏⟩ → 𝐾 ⟨𝑋1, 𝑋2⟩/⟨𝑋
𝑛
2 𝑋1⟩, 𝑎 ↦→ 𝑋2𝑋1, 𝑏 ↦→ 𝑋1𝑋2 .

We claim that 𝜑 is injective. As we know by e. g. Borges-Borges [5],

ker𝜑 = ⟨𝑋2𝑋1 − 𝑎,𝑋1𝑋2 − 𝑏, 𝑋
𝑛
2 𝑋1⟩ ∩ 𝐾 ⟨𝑎, 𝑏⟩,

while the ideal belongs to 𝐾 ⟨𝑋1, 𝑋2, 𝑎, 𝑏⟩. A lengthy technical com-

putation by hands delivers, that a Gröbner basis of the ideal above

with respect to a monomial ordering, eliminating {𝑎, 𝑏} is

{𝑋2𝑋1 − 𝑎,𝑋1𝑋2 − 𝑏,𝑋
𝑛−1
2 𝑎, 𝑏𝑋𝑛−22 𝑎,𝑋2𝑏 − 𝑎𝑋2, 𝑋1𝑎 − 𝑏𝑋1},

which has zero intersection with 𝐾 ⟨𝑎, 𝑏⟩. Therefore ker𝜑 = {0}

and for any 𝑛 ≥ 3 the algebra 𝐴/𝐼𝑛 contains a free algebra, e. g.

generated by {𝑋2𝑋1, 𝑋1𝑋2}.

In a similar (and yet easier) fashion we can show, that {𝑋1, 𝑋1𝑋2}

generate a free subalgebra of 𝐴/𝐼𝑛 with 𝑛 ≥ 2.

In order to prove that gl. dim(𝐴/𝐼𝑛) = 2, it is enough to provide

an explicit free resolution. We consider the monomial ideal 𝐽 =

⟨𝑋1𝑋2, 𝑋2𝑋1⟩ ⊂ 𝐴/𝐼𝑛 , which is given by its Gröbner basis.

The methodology, we used in the proof, is as follows: we did

computations with Letterplace for several 𝑛 (in the code below

𝑛 = 3 is used), conjectured the pattern (which is possible due

to finiteness of Gröbner bases), and made a proof by executing

Gröbner bases by hands. Since the latter is rather technical, such

computations of syzygies (addressed in details in [4]) are omitted.

LIB "freegb.lib";

ring r = 0,(X1,X2),(c,dp);

ring R = freeAlgebra(r,10,7);

int n = 3; ideal In = twostd(X2^n*X1);

qring Q = In; // Q = A/In = A/ <X2^3*X1>

ideal J = X2*X1, X1*X2; J = twostd(J); J;

> X1*X2, X2*X1

option(redSB);option(redTail);

module S1, S2, S3;

S1 = syz(J); S2 = syz(S1); S3 = syz(S2);

The first syzygy bimodule of 𝐽 is generated by the column vectors(
𝜀1𝑋

𝑛−1
2 𝑋1 𝜀1𝑋2𝑋1 𝑋2𝑋1𝜀1 𝜀1𝑋1 𝑋2𝜀1 0

0 −𝑋1𝑋2𝜀2 −𝜀2𝑋1𝑋2 −𝑋1𝜀2 −𝜀2𝑋2 𝑋𝑛−12 𝜀2

)
,

the second syzygy bimodule is generated by the columns

©«

0 𝜀1𝑋2𝑋1 𝜀1𝑋1𝑋2 𝜀1𝑋
𝑛−1
2 𝑋1 0

𝜀2𝑋
𝑛−1
2 𝑋1 𝑋𝑛−12 𝜀2𝑋1 0 𝑋𝑛−12 𝜀2𝑋2𝑋1 0

0 −𝑋𝑛2 𝜀3 0 0 0

0 0 𝑋𝑛−12 0 𝜀4𝑋
𝑛−1
2 𝑋1

0 0 0 −𝑋𝑛2 𝜀5 0

−𝑋2𝜀6 0 0 0 −𝑋2𝑋1𝜀6

ª®®®®®®®¬
,

and the third syzygy bimodule ś by the single column(
𝑋𝑛−12 𝜀1, 0,−𝜀3𝑋

𝑛−1
2 𝑋1, 0, 0

)𝑇
.

It is easy to see, that the column subbimodules, generated by sets

above, are given by minimal bimodule generating sets. Also, the 4th

syzygy bimodule can be only zero since the single column cannot

be annihilated other than by zero. Therefore we have obtained

a free bimodule resolution of the 𝐴/𝐼𝑛-bimodule (𝐴/𝐼𝑛)/𝐽 of an

appropriate length, what finishes the proof. □

6 TIMINGS

In the paper [18] we have compared computer algebra systems,

able to compute over free algebras, on the collection on carefully

selected examples. It turned out, that Opal, Bergman [10] and

GBNP [7] have been outperformed byMagma [6] and Singular

[8]. Therefore since that time we compare our implementations

of Singular:Letterplace with two implementations inMagma,

namely a Buchberger-like ś which is the most correct comparison

ś and an 𝐹4-like implementation, which is a priori faster [19, 24].

However, the latter (since many years) remains the only big shot of

functionality, available inMagma apart from the vector enumeration

(which seems to trace back to the famous code of Steve Linton).

On the contrast, we have developed a vast functionality including

syzygies, lifts, elimination and other demanding applications.

There are other implementations of Gröbner bases over free

algebra, which are, however, not easy to acquire, to install and to use.

Still, we mention the package NCPoly for ApCoCoA [16, 34] and a

C++ library called NCAlgebra [14], interfaced via Mathematica.

The following examples were executed on a Debian GNU/Linux

10 machine with an Intel Core i7-9700K CPU and 64GB of memory.

We have used Singular 4.1.2 and Magma V2.24-10. The execution

time is given in seconds. The examples we use have been described

in our previous papers [18, 19, 24]. We utilize the SDEval Bench-

marking Toolkit [13], extending the SymbolicData project [32] for

the automated, transparent and reproducible comparison. In order

to reproduce the timings on the mentioned examples, one needs to

download the single archived file from

http://www.math.rwth-aachen.de/~levandov/issac2020,

and to install SDEval with SymbolicData, the sources of which

can be found at

https://symbolicdata.github.io/SDEval.

The video presentation of the abilities of the Toolkit can be helpful:

https://www.youtube.com/watch?v=CctmrfisZso.

As for criteria for discarding useless critical pairs in a Buchberger-

like algorithm, the product criterion means just that the leading

monomials of elements, building a pair, do not have a non-trivial

overlap, so such pairs are not even built. On the contrary, the chain

criterion is the most important one in the implementation. See [22]

for a detailed discussion on the criteria in a more general setting,

encompassing the one considered here.

7 CONCLUSION

With our implementation in [21] we present ś for the first time in

history of computer algebra ś the rich and fast infrastructure for

computations with finitely presented algebras over fields, supported

by Singular. Already the preliminary versions have been used in

computations, which led to publications like [9, 29].

This computational infrastructure is available in a broader con-

text to the visionary open source system OSCAR [31]. We are also

aware of several wrappers of Letterplace in SageMath [30].

310

http://www.math.rwth-aachen.de/~levandov/issac2020
https://symbolicdata.github.io/SDEval
https://www.youtube.com/watch?v=CctmrfisZso

Letterplace Ð a Subsystem of Singular for Computations with Free Algebras via Letterplace Embedding ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Example Singular Magma (BB) Magma (F4)

lascala_neuh_d10 30.35 26.23 13.62

serre-f4-d15 5.45 62.58 8.96

serre-ha11-d15 11.27 49.63 5.80

serre-eha112-d13 2.05 3.41 1.72

4nilp5s-d8 36.68 55.43 9.54

braidXY 114.19 163.72 4.20

ug2-x1x2x3x4 1.10 21.60 0.83

serre-e6-d15 22.76 154.03 40.99

braid3-11 1.79 2.29 0.64

ufn3 70.22 3.36 2.26

ls3nilp-d10 0.72 3.57 1.98

We plan to provide more functions for matrices and make our

implementation available to the system HomAlg [2], specializing

in homological computations, as a backend.

Notably, there is a recent parallel development of free non-

commutative Gröbner bases over Z by our team and Tobias Metzlaff

[22], where the functionality is almost as broad as the one we have

described for the case of fields.

8 ACKNOWLEDGEMENTS

The authors are grateful to Eva Zerz, Leonard Schmitz (RWTH

Aachen), Tobias Metzlaff (INRIA), Michela Ceria and Teo Mora

(Genova) and Jorge Martìn-Morales (Zaragoza) for fruitful discus-

sions.

The first and third authors (V. Levandovskyy and K .Abou Zeid)

have been supported by Project II.6 of SFB-TRR 195 łSymbolic Tools

in Mathematics and their Applicationsž of the German Research

Foundation (DFG).

REFERENCES
[1] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A Modern

Approach (1st ed.). Cambridge University Press, USA.
[2] Mohamed Barakat, Sebastian Gutsche, and Markus Lange-Hegermann. 2019.

homalg - A homological algebra meta-package for computable Abelian categories.
https://homalg-project.github.io/homalg_project/homalg/.

[3] George M. Bergman. 1977. The diamond lemma for ring theory. Adv. Math. 29
(1977), 178ś218. https://doi.org/10.1016/0001-8708(78)90010-5

[4] Holger Bluhm and Martin Kreuzer. 2007. Computation of two-sided syzygies
over non-commutative rings. Contemp. Math. 421 (2007), 45ś64.

[5] M. A. Borges and M. Borges. 1998. Gröbner bases property on elimination ideal
in the noncommutative case. In Gröbner bases and applications, B. Buchberger
and F. Winkler (Eds.). Cambridge University Press, 323ś337.

[6] W. Bosma, J. Cannon, and C. Playoust. 1997. The Magma algebra system. I: The
user language. Journal of Symbolic Computation 24, 3-4 (1997), 235ś265.

[7] Arjeh M. Cohen, J. W. Knopper, and T. GAP Team. 2016. GBNP, computing
Gröbner bases of noncommutative polynomials (Refereed GAP package). https:
//gap-packages.github.io/gbnp/.

[8] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann.
2020. Singular 4-1-3 Ð A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de.

[9] C. Eder, V. Levandovskyy, J. Schanz, S. Schmidt, A. Steenpass, and M. Weber. 2019.
Existence of quantum symmetries for graphs on up to seven vertices: a computer
based approach. https://arxiv.org/abs/1906.12097.

[10] J. Backelin et. al. 2006. The Gröbner basis calculator Bergman. http://servus.
math.su.se/bergman/.

[11] David J. Green. 2003. Gröbner bases and the computation of group cohomology.
Springer.

[12] Gert-Martin Greuel, Viktor Levandovskyy, Olexander Motsak, and Hans Schöne-
mann. 2019. Plural. A Singular 4-1-2 Subsystem for Computations with
Non-commutative Polynomial Algebras. http://www.singular.uni-kl.de.

[13] Albert Heinle and Viktor Levandovskyy. 2015. The SDEval Benchmarking Toolkit.
ACM Communications in Computer Algebra 49, 1/4 (2015), 1ś9. https://doi.org/

10.1145/2768577.2768578
[14] J.W. Helton and M. Stankus. 2015. NCGB, a Noncommutative Gröbner Basis

Package for Mathematica. http://www.math.ucsd.edu/~ncalg/
[15] Günter R. Krause and Thomas H. Lenagan. 2000. Growth of algebras and Gelfand-

Kirillov dimension. Revised ed. Providence, RI: American Mathematical Society.
[16] Martin Kreuzer. 2013. ApCoCoA, a computer algebra framework. http://https:

//apcocoa.uni-passau.de/
[17] Roberto La Scala. 2014. Extended letterplace correspondence for nongraded

noncommutative ideals and related algorithms. Int. J. Algebra Comput. 24, 8
(2014), 1157ś1182.

[18] Roberto La Scala and Viktor Levandovskyy. 2009. Letterplace ideals and non-
commutative Gröbner bases. Journal of Symbolic Computation 44, 10 (2009),
1374ś1393. https://doi.org/doi:10.1016/j.jsc.2009.03.002

[19] Roberto La Scala and Viktor Levandovskyy. 2013. Skew polynomial rings, Gröbner
bases and the letterplace embedding of the free associative algebra. Journal of
Symbolic Computation 48, 1 (2013), 110ś131. http://dx.doi.org/10.1016/j.jsc.2012.
05.003

[20] Viktor Levandovskyy. 2006. Intersection of Ideals with Non-commutative Subal-
gebras. In Proc. ISSAC’06, J.-G. Dumas (Ed.). ACM Press, 212ś219.

[21] Viktor Levandovskyy, Karim Abou Zeid, and Hans Schönemann. 2020. Singu-
lar:Letterplace Ð A Singular 4-1-3 Subsystem for Non-commutative Finitely
Presented Algebras. http://www.singular.uni-kl.de.

[22] Viktor Levandovskyy, Tobias Metzlaff, and Karim Abou Zeid. 2020. Computation
of free non-commutative Gröbner Bases over Z with Singular:Letterplace. In
Proc. ISSAC’20. ACM Press. to appear.

[23] Viktor Levandovskyy and Hans Schönemann. 2003. Plural - a computer algebra
system for noncommutative polynomial algebras. In Proc. ISSAC’03. ACM Press,
176ś183.

[24] Viktor Levandovskyy, Grischa Studzinski, and Benjamin Schnitzler. 2013. En-
hanced Computations of Gröbner Bases in Free Algebras as a New Application
of the Letterplace Paradigm. In Proc. of the International Symposium on Symbolic
and Algebraic Computation (ISSAC’13), Manuel Kauers (Ed.). ACM Press, 259 ś
266.

[25] Huishi Li. 2002. Noncommutative Gröbner bases and filtered-graded transfer.
Springer.

[26] Teo Mora. 1994. An introduction to commutative and noncommutative Gröbner
bases. Theor. Comput. Sci. 134, 1 (1994), 131ś173. https://doi.org/10.1016/0304-
3975(94)90283-6

[27] Teo Mora. 2016. Solving Polynomial Equation Systems IV: Volume 4, Buchberger
Theory and Beyond (1st ed.). Cambridge University Press.

[28] F. Leon Pritchard. 1996. The ideal membership problem in non-commutative
polynomial rings. J. Symb. Comput. 22, 1 (1996), 27ś48. https://doi.org/10.1006/
jsco.1996.0040

[29] Leonard Schmitz and Viktor Levandovskyy. 2020. Formally Verifying Proofs for
Algebraic Identities of Matrices. To appear in Proc. of the Conference on Intelligent
Computer Mathematics (CICM) 2020.

[30] W.A. Stein et al. 2020. Sage Mathematics Software. The Sage Development Team.
[31] The OSCAR Team. 2020. The OSCAR project. https://oscar.computeralgebra.de.
[32] The SymbolicData Project. 2019. https://symbolicdata.github.io.
[33] Victor Ufnarovski. 1995. Combinatorial and Asymptotic Methods of Algebra.

Algebra-VI (A.I. Kostrikin and I.R. Shafarevich, Eds), Encyclopedia of Mathemati-
cal Sciences, Vol. 57. Springer.

[34] Xingqiang Xiu. 2013. Ncpoly package for ApCoCoA. https://apcocoa.uni-
passau.de/wiki/index.php/Category:Package_ncpoly

311

https://homalg-project.github.io/homalg_project/homalg/
https://doi.org/10.1016/0001-8708(78)90010-5
https://gap-packages.github.io/gbnp/
https://gap-packages.github.io/gbnp/
http://www.singular.uni-kl.de
https://arxiv.org/abs/1906.12097
http://servus.math.su.se/bergman/
http://servus.math.su.se/bergman/
http://www.singular.uni-kl.de
https://doi.org/10.1145/2768577.2768578
https://doi.org/10.1145/2768577.2768578
http://www.math.ucsd.edu/~ncalg/
http://https://apcocoa.uni-passau.de/
http://https://apcocoa.uni-passau.de/
https://doi.org/doi:10.1016/j.jsc.2009.03.002
http://dx.doi.org/10.1016/j.jsc.2012.05.003
http://dx.doi.org/10.1016/j.jsc.2012.05.003
http://www.singular.uni-kl.de
https://doi.org/10.1016/0304-3975(94)90283-6
https://doi.org/10.1016/0304-3975(94)90283-6
https://doi.org/10.1006/jsco.1996.0040
https://doi.org/10.1006/jsco.1996.0040
https://oscar.computeralgebra.de
https://symbolicdata.github.io
https://apcocoa.uni-passau.de/wiki/index.php/Category:Package_ncpoly
https://apcocoa.uni-passau.de/wiki/index.php/Category:Package_ncpoly

Computation of Free Non-commutative Gröbner Bases over Z
with Singular:Letterplace

Viktor Levandovskyy
Lehrstuhl D für Mathematik, RWTH

Aachen University
Aachen, Germany

Viktor.Levandovskyy@math.rwth-
aachen.de

Tobias Metzlaff
AROMATH, INRIA Méditerranée

Université Côte d’Azur
Sophia Antipolis, France
tobias.metzlaff@inria.fr

Karim Abou Zeid
Lehrstuhl D für Mathematik, RWTH

Aachen University
Aachen, Germany

karim.abou.zeid@rwth-aachen.de

ABSTRACT
The extension of Gröbner bases concept from polynomial algebras

over fields to polynomial rings over rings allows to tackle numer-

ous applications, both of theoretical and of practical importance.

Gröbner and Gröbner-Shirshov bases can be defined for various

non-commutative and even non-associative algebraic structures.

We study the case of associative rings and aim at free algebras

over principal ideal rings. We concentrate ourselves on the case of

commutative coefficient rings without zero divisors (i.e. a domain).

Even working over Z allows one to do computations, which can be

treated as universal for fields of arbitrary characteristic. By using

the systematic approach, we revisit the theory and present the algo-

rithms in the implementable form. We show drastic differences in

the behavior of Gröbner bases between free algebras and algebras,

close to commutative. Even the formation of critical pairs has to

be reengineered, together with the criteria for their quick discard-

ing. We present an implementation of algorithms in the Singular

subsystem called Letterplace, which internally uses Letterplace

techniques (and Letterplace Gröbner bases), due to La Scala and

Levandovskyy. Interesting examples accompany our presentation.

CCS CONCEPTS
·Computingmethodologies→ Special-purpose algebraic sys-
tems; Algebraic algorithms; · Mathematics of computing →

Mathematical software.

KEYWORDS
Non-commutative algebra; Gröbner bases; Coefficients in rings;

Algorithms; Computer Algebra System

ACM Reference Format:
Viktor Levandovskyy, Tobias Metzlaff, and Karim Abou Zeid. 2020. Com-

putation of Free Non-commutative Gröbner Bases over Z with Singu-

lar:Letterplace. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404052

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404052

INTRODUCTION
In the recent years a somewhat strange attitude has established itself

around Gröbner bases: non-commutative generalizations of various

concepts, related to algorithms and, in particular, Gröbner bases, are

often met with sceptical expressions like “as expectedž, “straight-

forwardž, “more or less clearž and so on. This is not true in general

for generalizations to various flavours of non-commutativity re-

quire deep analysis of procedures (algorithms) based on very good

knowledge of properties of rings and modules over them. Charac-

teristically, in this paper we demonstrate in e.g. Example 2.4 and 2.5

how intrinsically different Gröbner bases over Z⟨𝑋 ⟩ are even when

compared with Gröbner bases over Q⟨𝑋 ⟩, not taking the commuta-

tive case into account. An example can illustrate this better than a

thousand words: the same set {2𝑥, 3𝑦} delivers a finite strong Gröb-

ner basis {3𝑥, 3𝑦,𝑦𝑥, 𝑥𝑦} over Z⟨𝑥,𝑦⟩ and an infinite Gröbner basis

over Z⟨𝑥,𝑦, 𝑧1, . . . , 𝑧𝑚⟩ for any𝑚 ≥ 1, containing e.g. 𝑥𝑧𝑘𝑖 𝑦,𝑦𝑧
𝑘
𝑖 𝑥

for any natural 𝑘 .

In his recent articles and in the book [22] TeoMora has presented

"a manual for creating your own Gröbner bases theory" over effec-

tive associative rings. This development is hard to underestimate,

for it presents a unifying theoretical framework for handling very

general rings. The theory of non-commutative Gröbner bases was

developed by many prominent scientists since the Diamond Lemma

of G. Bergman [4]. Especially L. Pritchard [24] proved versions of

the PBW Theorem and advanced the theory of bimodules, also over

rings. On the other hand, procedures and even algorithms related

to Gröbner bases in such frameworks are still very complicated.

Therefore, when aiming at implementation, one faces the classical

dilemma: generality versus performance. Perhaps the most general

implementation which exists is the JAS system by H. Kredel [11]. In

our attempts we balance the generality with the performance; based

on Singular, we utilize its’ long and successful experience with

data structures and algorithms in commutative algebra. Notably, the

recent years have seen the in-depth development of Gröbner bases

in commutative algebras with coefficients in principal ideal rings

(O. Wienand, G. Pfister, A. Frühbis-Krüger, A. Popescu, C. Eder,

T. Hofmann and others), see e.g. [8ś10, 20]. This required massive

changes in the structure of algorithms; ideally, one has one code for

several instances of Gröbner bases with specialization to individual

cases. In particular, the very generation of critical pairs and the

criteria for discarding them without much effort were intensively

studied. These developments were additional motivation for us in

the task of attacking Gröbner bases in free algebras over commu-

tative principal ideal rings, with Z at the first place. Currently, to

the best of our knowledge, no computer algebra system is able to

312

https://doi.org/10.1145/3373207.3404052
https://doi.org/10.1145/3373207.3404052

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Levandovskyy and Metzlaff and Abou Zeid

do such computations. Also, a number of highly interesting appli-

cations wait to be solved: in studying representation theory of a

finitely presented algebra (i.e. the one, given by generators and

relations), computations over Z remain valid after specification to

any characteristic and thus encode a universal information. In the

system Felix by Apel et al. [2], such computations were experi-

mentally available, though not documented. In his paper [1], Apel

demonstrates Gröbner bases of several nontrivial examples over

Z⟨𝑋 ⟩, the correctness of which we can easily confirm now.

Our secret weapon is the Letterplace technology [12ś14, 18],

which allows the usage of commutative data structures at the low-

est level of algorithms. We speak, however, in theory, the language

of free algebras over rings, since this is mutually bijective with the

language of Letterplace.

This paper is organized as follows: In the first chapter we fix

the notations which are necessary when dealing with polynomial

rings. Subsequently, in the second chapter we generalize the notion

of Gröbner bases for our setup, present a theoretical version of

Buchberger’s algorithm and give examples to visualize significant

differences compared to the field case or the commutative case.

Implementation of Buchberger’s algorithm depends on and benefits

from the choice of pairs, which we will discuss in the third chapter.

This is followed up by computational examples and discussion on

the implementational aspects.

1 PRELIMINARIES
All rings are assumed to be associative and unital, but not neces-

sarily commutative. We want to discuss non-commutative Gröbner

bases over the integers Z. Equivalently one can take any commuta-

tive Euclidean domain or principal ideal domain1 R.

We work towards an implementation and therefore we are in-

terested in algorithms, which terminate after a finite number of

steps. Since Z⟨𝑋 ⟩ is not Noetherian, there exist finite generating

sets whose Gröbner bases are infinite with respect to any monomial

well-ordering. Therefore, our typical computation is executed sub-

ject to the length bound (where length is meant literally, applied to

words from the free monoid ⟨𝑋 ⟩), specified in the input, and there-

fore terminates per assumption. Thus, we talk about algorithms in

this sense.

Our main goal is to obtain an algorithm to construct a Gröbner

basis over such a ring, finding or adjusting criteria for critical pairs

and setting up an effective method to implement Buchberger’s

algorithm in the computer algebra system Singular. The problem

of applying the statements of commutative Gröbner basis over

Euclidean domains and principal ideal rings, such as in [9, 10, 20, 21],

are divisibility conditions of leading monomials.

Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} denote the finite alphabet with 𝑛 letters.

We set P = R⟨𝑋 ⟩, the free R-algebra of 𝑋 , where all words on 𝑋

form a basis B = ⟨𝑋 ⟩ of P as a free R-module (from now on we say

shortly “B is an R-basisž). Moreover, let P𝑒
= P ⊗R Popp be the

free enveloping R-algebra with basis B𝑒
= {𝑢 ⊗ 𝑣 |𝑢, 𝑣 ∈ B}. The

natural action P𝑒 × P → P, (𝑢 ⊗ 𝑣, 𝑡) ↦→ (𝑢 ⊗ 𝑣)𝑡 := 𝑢𝑡𝑣 makes

a bimodule P into a left P𝑒 -module. We call the elements of B

monomials.

1This concept can be extended to principal ideal rings. It was done in [8] for the
commutative case with so-called annihilator polynomials.

Let ⪯ be a monomial well-ordering on B. With respect to ⪯, a

polynomial 𝑓 ∈ P\{0} has a leading coefficient lc(𝑓) ∈ R , a leading

monomial lm(𝑓) ∈ B and a leading term lt(𝑓) = lc(𝑓) lm(𝑓) ≠ 0.

We denote by |𝑤 | the length of the word 𝑤 ∈ B. An ordering

⪯ is called length-compatible, if 𝑢 ⪯ 𝑣 implies |𝑢 | ≤ |𝑣 |. Every

subset G ⊆ P yields a two-sided ideal, the ideal of leading terms

L(G) = ⟨lt(𝑓) | 𝑓 ∈ G \ {0}⟩.

Naturally, the notions of coefficient, monomial and term carry

over to an element ℎ ∈ P𝑒 by considering ℎ · 1 ∈ P.

Definition 1.1. Let 𝑢, 𝑣 ∈ B. We say, that 𝑢 and 𝑣 have an overlap,

if there exist monomials 𝑡1, 𝑡2 ∈ B, such that at least one of the

four cases

(1) 𝑢𝑡1 = 𝑡2𝑣 (2) 𝑡1𝑢 = 𝑣𝑡2 (3) 𝑡1𝑢𝑡2 = 𝑣 (4) 𝑢 = 𝑡1𝑣𝑡2

holds. Additionally, we say, that 𝑢 and 𝑣 have a non-trivial overlap,

if in the first two cases |𝑡1 | < |𝑣 | and |𝑡2 | < |𝑢 |. In the third, respec-

tively fourth case, we say that 𝑢 divides 𝑣 , respectively 𝑣 divides

𝑢. The set of all elements which are divisible by both 𝑢 and 𝑣 is

denoted by cm(𝑢, 𝑣) (cm: common multiple). The set of all minimal,

non-trivial elements which are divisible by both 𝑢 and 𝑣 is denoted

by lcm(𝑢, 𝑣) (lcm: least ...), i.e. 𝑡 ∈ lcm(𝑢, 𝑣), if and only if there

exist 𝜏𝑢 , 𝜏𝑣 ∈ B𝑒 , such that 𝑡 = 𝜏𝑢𝑢 = 𝜏𝑣𝑣 , representing non-trivial

overlaps of 𝑢 and 𝑣 , and if 𝑡, 𝑡 ∈ lcm(𝑢, 𝑣) with 𝑡 = 𝜏𝑡 for some

𝜏 ∈ B𝑒 , then 𝑡 = 𝑡 and 𝜏 = 1 ⊗ 1. If there are only trivial overlaps,

then lcm(𝑢, 𝑣) = ∅. Moreover, if lm(𝑔) divides lm(𝑓) for 𝑓 , 𝑔 ∈ P,

then lm(𝑔) ⪯ lm(𝑓) holds.

2 NON-COMMUTATIVE GRÖBNER BASES
A Gröbner basis G ⊆ P \ {0} is a generating set for a two-sided

ideal I ⊆ P with the property L(I) ⊆ L(G). In the field case,

this guarantees the existence of a so-called Gröbner representation,

which we will recall subsequently, and for any 𝑓 ∈ I \ {0} the

existence of an element 𝑔 ∈ G, such that lt(𝑔) divides lt(𝑓).

Definition 2.1. Let 𝑓 , 𝑔 ∈ P \ {0}, G ⊆ P \ {0} be a countable

set and I ⊆ P be an ideal. Fix a monomial well-ordering ⪯.

We say that 𝑔 lm-reduces 𝑓 , if lm(𝑔) divides lm(𝑓) with lm(𝑓) =

𝜏 lm(𝑔) for some 𝜏 ∈ B𝑒 and there are 𝑎, 𝑏 ∈ R, 𝑎 ≠ 0 and |𝑏 | <

| lc(𝑓) | (in the Euclidean norm), such that lc(𝑓) = 𝑎 lc(𝑔) +𝑏. Then

the lm-reduction of 𝑓 by 𝑔 is given by 𝑓 − 𝑎𝜏𝑔.

We say that 𝑓 has a strong Gröbner representation w.r.t. G, if

𝑓 =
∑𝑚
𝑖=1 ℎ𝑖𝑔𝑖 with 𝑚 ∈ N, 𝑔𝑖 ∈ G, ℎ𝑖 ∈ P𝑒 and there exists

a unique 1 ≤ 𝑗 ≤ 𝑚, such that lm(𝑓) = lm(ℎ 𝑗𝑔 𝑗) and lm(𝑓) ≻

lm(ℎ𝑖𝑔𝑖) for all 𝑖 ≠ 𝑗 where ℎ𝑖 ≠ 0.

G is called a strong Gröbner basis for I, if G is a Gröbner basis

for I and for all 𝑓 ′ ∈ I \ {0} there exists 𝑔′ ∈ G, such that lt(𝑔′)

divides lt(𝑓 ′).

Those lm-reductions are the key to obtain a remainder after

division through a set G (usually a generating set) and used in

Buchberger’s algorithm to construct a Gröbner basis from G. In this

sense, the idea of a Gröbner basis is to deliver a unique remainder

when dividing through it. Since we operate in a polynomial ring of

multiple variables, the expression “reductionž is more justified than

“divisionž to describe a chain of lm-reductions. The outcome of such

a reduction, i.e. the remainder of the division, is then known as a

normal form.

313

Computation of Free Non-commutative Gröbner Bases over Z with Singular:Letterplace ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

The following strong normal form algorithm uses lm-reductions

and can be compared to the normal form algorithms in algebras

over fields (cf. [15]).

NormalForm

input: 𝑓 ∈ P \ {0}, G ⊆ G finite and partially ordered

output: normal form of 𝑓 w.r.t. G

01: ℎ = 𝑓

02: while ℎ ≠ 0 and Gℎ = {𝑔 ∈ G | 𝑔 lm-reduces ℎ} ≠ ∅ do
03: choose 𝑔 ∈ Gℎ

04: choose 𝑎, 𝑏 ∈ R with:

𝑎 ≠ 0, lc(ℎ) = 𝑎 lc(𝑔) + 𝑏 and |𝑏 | < | lc(ℎ) |

05: choose 𝜏 ∈ B𝑒 with lm(ℎ) = 𝜏 lm(𝑔)

06: ℎ = ℎ − 𝑎𝜏𝑔, the lm-reduction of ℎ by 𝑔

07: end while
08: return ℎ

A normal form of the zero-polynomial is always unique and zero.

Termination and correctness are analogous to the classical proof.

The output of the algorithm is in general not unique, but depends

on the choice of elements 𝑔 ∈ Gℎ which are used for reduction.

We confirm, that the proof of the following theorem carries over

verbatim from the commutative case in [20].

Theorem 2.2. Let G ⊆ P \ {0} and {0} ≠ I ⊆ P. Then the

following statements with respect to G and ⪯ are equivalent:

(1) G is a strong Gröbner basis for I.

(2) Every 𝑓 ∈ I \ {0} has a strong Gröbner representation.

(3) Every 𝑓 ∈ P \ {0} has a unique normal form after reduction.

An earlier non-commutative versionwas also proven by Pritchard

for non-strong Gröbner bases in [24].

Such a strong Gröbner basis can be computed with Buchberger’s

algorithm using syzygy relations between leading terms of gen-

erating polynomials. In the field case, the computation is done

with S-polynomials. However, this does not suffice, when leading

coefficients are non-invertible.

Definition 2.3. Let 𝑓 , 𝑔 ∈ P \ {0}. There exist 𝜏𝑓 , 𝜏𝑔 ∈ B𝑒 , such

that 𝜏𝑓 lm(𝑓) = 𝜏𝑔 lm(𝑔) ∈ cm(lm(𝑓), lm(𝑔)). Furthermore, let 𝑎 =

lcm(lc(𝑓), lc(𝑓)) and 𝑎𝑓 , 𝑎𝑔 ∈ R, such that 𝑎 = 𝑎𝑓 lc(𝑓) = 𝑎𝑔 lc(𝑔).

In a Euclidean domain, the least common multiple is uniquely

determined up to a sign and so are 𝑎𝑓 , 𝑎𝑔 . Then an S-polynomial of

𝑓 and 𝑔 is defined as

spoly(𝑓 , 𝑔) := 𝑎𝑓 𝜏𝑓 𝑓 − 𝑎𝑔𝜏𝑔𝑔.

It is known from the commutative case over rings (e.g. [20]), that

it does not suffice to take such S-polynomials to obtain a strong

Gröbner basis. Let I = ⟨𝑓 = 3𝑥, 𝑔 = 2𝑦⟩. Then every S-polynomial

of 𝑓 and 𝑔 is zero, but clearly 𝑥𝑦 = 𝑓 𝑦 − 𝑥𝑔 ∈ I has a leading

term which is neither divisible by lt(𝑓) nor lt(𝑔). Thus, {𝑓 , 𝑔} is

not a strong Gröbner basis for I. The problematic polynomial 𝑥𝑦

is constructed by looking at the greatest common divisor of the

leading coefficients of 𝑓 and 𝑔.

Let𝑏 = gcd(lc(𝑓), lc(𝑓)) and𝑏 𝑓 , 𝑏 𝑓 ∈ R, such that𝑏 = 𝑏 𝑓 lc(𝑓)+

𝑏𝑔 lc(𝑔) (the Bézout identity for the leading coefficients). As above,

𝑏 is unique in a Euclidean domain as a greatest common divisor,

although the Bézout coefficients 𝑏 𝑓 , 𝑏𝑔 may not be, but depend on

the implementation of a Euclidean algorithm. A G-polynomial of 𝑓

and 𝑔 is defined as

gpoly(𝑓 , 𝑔) := 𝑏 𝑓 𝜏𝑓 𝑓 + 𝑏𝑔𝜏𝑔𝑔.

So far everything seems to work out as in the commutative case.

We consider some examples to see, that this assumption is wrong.

Example 2.4. Let 𝑓 = 2𝑥𝑦, 𝑔 = 3𝑦𝑧 ∈ Z⟨𝑥, 𝑦, 𝑧⟩. Usually we

would compute an S-polynomial 3𝑓 𝑧 − 2𝑥𝑔 = 0 and a G-polynomial

gpoly(𝑓 , 𝑔) := (−1) · 2𝑥𝑦 · 𝑧 + 1 · 𝑥 · 3𝑦𝑧 = 𝑥𝑦𝑧

and add them to {𝑓 , 𝑔} to obtain a strong Gröbner basis for I =

⟨𝑓 , 𝑔⟩ ⊆ P. But clearly

gpoly′(𝑓 , 𝑔) := (−1) · 2𝑥𝑦 ·𝑤 · 𝑦𝑧 + 1 · 𝑥𝑦 ·𝑤 · 3𝑦𝑧 = 𝑥𝑦𝑤𝑦𝑧

is also a G-polynomial of 𝑓 , 𝑔 for every𝑤 ∈ B and must be added

to the basis. In other words there is no finite Gröbner basis for I

and we have to be satisfied with computing up to a fixed maximal

leading monomial or word length. Note that in the case of gpoly

we computed a G-polynomial in the canonical way by looking for

a non-trivial overlap of 𝑥𝑦 and 𝑦𝑧. In the case of gpoly′ we ignored

this overlap. In the commutative case this is irrelevant, because

gpoly(𝑓 , 𝑔) divides gpoly′(𝑓 , 𝑔). Furthermore, in the field case this

is also irrelevant, because we do not need G-polynomials.

Example 2.5. A similar problem occurs with S-polynomials. Let

𝑓 = 2𝑥𝑦 + 𝑥, 𝑔 = 3𝑦𝑧 + 𝑧. Then spoly(𝑓 , 𝑔) = 3𝑓 𝑧 − 2𝑥𝑔 = 𝑥𝑧 is an

S-polynomial of 𝑓 and 𝑔. However, so are all polynomials

spoly′(𝑓 , 𝑔) := 3𝑓 𝑤𝑦𝑧 − 2𝑥𝑦𝑤𝑔 = 3𝑥𝑤𝑦𝑧 − 2𝑥𝑦𝑤𝑧

for any monomial𝑤 ∈ B. Now we can reduce spoly′(𝑓 , 𝑔) to

(spoly′(𝑓 , 𝑔) − 𝑥𝑤𝑔) + 𝑓 𝑤𝑧 = −2𝑥𝑦𝑤𝑧 + 𝑓 𝑤𝑧 = 𝑥𝑤𝑧

which is not reducible any further. Therefore, we have to add

spoly′(𝑓 , 𝑔) to the basis. And even this is not enough. For 𝑓 =

2𝑥𝑦 + 𝑥 we see that

spoly′′(𝑓 , 𝑓) := 𝑓 𝑤𝑥𝑦 − 𝑥𝑦𝑤 𝑓 = 𝑥𝑤𝑥𝑦 − 𝑥𝑦𝑤𝑥 ≠ 0

is an S-polynomial of 𝑓 with itself which does not reduce any

further and we need lm(𝑓)𝑤 lm(𝑓) ∈ cm(lm(𝑓), lm(𝑓)), although

it is clearly not contained in lcm(lm(𝑓), lm(𝑓)). So even principal

ideals do not have finite strong Gröbner bases in general! Such

behavior of S-polynomials does not occur for non-commutative

polynomials over fields.

Also, note that we do not consider any further extensions of

the leading monomials, meaning that the S- and G-polynomial

corresponding to 𝑡 ∈ lcm(lm(𝑓), lm(𝑔)) or lm(𝑓)𝑤 lm(𝑔) make

any further (trivial) overlap relations 𝜏𝑡 or 𝜏 (lm(𝑓)𝑤 lm(𝑔)) for

𝜏 ∈ B𝑒 redundant. Therefore, in the definition of lcm(𝑥, 𝑦) we

stress the importance of the minimality.

The previous example shows that we have to consider all possible

S- and G-polynomials, but those are infinitely many. Moreover, the

set cm(lm(𝑓), lm(𝑔)) contains too many elements that are redun-

dant whereas the set lcm(lm(𝑓), lm(𝑔)) is too small. The following

definition is made to classify two types of S- and G-polynomials,

namely those corresponding to non-trivial overlap relations and

those corresponding to trivial ones.

314

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Levandovskyy and Metzlaff and Abou Zeid

Definition 2.6. Let 𝑓 , 𝑔 ∈ P \ {0} and 𝑎𝑓 , 𝑎𝑔, 𝑏 𝑓 , 𝑏𝑔 ∈ R as in

2.3. We distinguish between the following two cases.

If lm(𝑓) and lm(𝑔) have a non-trivial overlap, then there exist

𝑡 ∈ lcm(lm(𝑓), lm(𝑔)) and 𝜏𝑓 , 𝜏𝑔 ∈ B𝑒 , such that 𝑡 = 𝜏𝑓 lm(𝑓) =

𝜏𝑔 lm(𝑔). Furthermore, we assume that 𝜏𝑓 = 1 ⊗ 𝑡𝑓 , 𝜏𝑔 = 𝑡𝑔 ⊗

1 or 𝜏𝑓 = 1 ⊗ 1, 𝜏𝑔 = 𝑡𝑔 ⊗ 𝑡 ′𝑔 for 𝑡𝑓 , 𝑡𝑔, 𝑡
′
𝑔 ∈ B with |𝑡𝑓 | <

| lm(𝑔) |, |𝑡𝑔 |, |𝑡
′
𝑔 | < | lm(𝑓) |. We define a first type S-polynomial

of 𝑓 and 𝑔 w.r.t. 𝑡 as

spoly𝑡1 (𝑓 , 𝑔) := 𝑎𝑓 𝜏𝑓 𝑓 − 𝑎𝑔𝜏𝑔𝑔

and a first type G-polynomial of 𝑓 and 𝑔 w.r.t. 𝑡 as

gpoly𝑡1 (𝑓 , 𝑔) := 𝑏 𝑓 𝜏𝑓 𝑓 + 𝑏𝑔𝜏𝑔𝑔.

If such 𝜏𝑓 , 𝜏𝑔 do not exist then we set the first type S- and G-

polynomials both to zero. Since two monomials may have several

non-trivial overlaps, these 𝜏𝑓 , 𝜏𝑔 are not unique. More precisely, this

results from P not being a unique (but merely a finite) factorization

domain.

For any𝑤 ∈ B we define the second type S-polynomial of 𝑓 and

𝑔 w.r.t.𝑤 by

spoly𝑤2 (𝑓 , 𝑔) := 𝑎𝑓 𝑓 𝑤 lm(𝑔) − 𝑎𝑔 lm(𝑓)𝑤𝑔

and the second type G-polynomial of 𝑓 and 𝑔 w.r.t.𝑤 as

gpoly𝑤2 (𝑓 , 𝑔) := 𝑏 𝑓 𝑓 𝑤 lm(𝑔) + 𝑏𝑔 lm(𝑓)𝑤𝑔.

Remark 2.7. Clearly, it only makes sense to consider first type

S- and G-polynomials if there is a non-trivial overlap of the lead-

ing monomials. However, as Example 2.4 shows, we always need

to consider second type S- and G-polynomials. For any 𝑤 ∈ B

we have lm(𝑓)𝑤 lm(𝑔) ∈ cm(lm(𝑓), lm(𝑔)) and lm(𝑔)𝑤 lm(𝑓) ∈

cm(lm(𝑓), lm(𝑔)), which are distinct in general. Therefore, we need

to consider both spoly𝑤2 (𝑓 , 𝑔) and spoly𝑤2 (𝑔, 𝑓) and the same holds

for second type G-polynomials. Also, note that the set of first type

S- and G-polynomials is finite, because our monomial ordering is a

well-ordering, whereas the set of second type S- and G-polynomials

is infinite. Therefore, we need to fix an upper bound for the length

of monomials which may be involved.

It is important to point out, that the elements 𝜏𝑓 , 𝜏𝑔 are not

uniquely determined. Take for example 𝑓 = 2𝑥𝑦𝑥 + 𝑦, 𝑔 = 3𝑥 + 1.

Then 𝑡 := 𝑥𝑦𝑥 = lm(𝑓) = 𝑥𝑦 lm(𝑔) ∈ lcm(lm(𝑓), lm(𝑓)), but

also 𝑡 = lm(𝑔)𝑦𝑥 and thus spoly𝑡1 (𝑓 , 𝑔) = −3𝑓 + 2𝑔𝑦𝑥 = 2𝑦𝑥 − 3𝑦

and (spoly𝑡1)
′(𝑓 , 𝑔) = −3𝑓 + 2𝑥𝑦𝑔 = 2𝑥𝑦 − 3𝑦 are both first type

S-polynomials with different leading monomials.

A finite set G ⊆ P is called length-bounded strong Gröbner basis

for an ideal I, if there is a Gröbner basis G′ for I, such that G ⊆ G′

contains precisely the elements of G′ of length smaller or equal to

𝑑 for some 𝑑 ∈ N.

The following algorithm uses Buchberger’s criterion 2.8 as a

characterization for strong Gröbner bases, which we will prove

subsequently. It computes S- and G-polynomials up to a fixed degree

and reduces them with the algorithm NormalForm in order to

obtain a length-bounded strong Gröbner basis for an input ideal.

BuchbergerAlgorithm

input: I = ⟨𝑓1, . . . , 𝑓𝑘 ⟩ ⊆ R⟨𝑋 ⟩, 𝑑 ∈ N, NormalForm

output: length-bounded strong Gröbner basis G for I

01: G = {𝑓1, . . . , 𝑓𝑘 }

02: L = {spoly𝑡1 (𝑓𝑖 , 𝑓𝑗), gpoly
𝑡
1 (𝑓𝑖 , 𝑓𝑗) | ∀ 𝑡

∗, 𝑖, 𝑗}

03: L = L ∪ {spoly𝑤2 (𝑓𝑖 , 𝑓𝑗), gpoly
𝑤
2 (𝑓𝑖 , 𝑓𝑗) | ∀𝑤

∗∗, 𝑖, 𝑗}

04: while L ≠ ∅ do
05: choose ℎ ∈ L

06: L = L \ {ℎ}

07: ℎ = NormalForm(ℎ, G)

08: if ℎ ≠ 0 then
09: G = G ∪ {ℎ}

10: for 𝑔 ∈ G do
11: L = L ∪ {spoly𝑡1 (𝑔, ℎ), gpoly

𝑡
1 (𝑔, ℎ) | ∀ 𝑡

∗}

L = L ∪ {spoly𝑡1 (ℎ, 𝑔), gpoly
𝑡
1 (ℎ, 𝑔) | ∀ 𝑡

∗}

L = L ∪ {spoly𝑤2 (𝑔, ℎ), gpoly𝑤2 (𝑔, ℎ) | ∀𝑤 ∗∗∗}

L = L ∪ {spoly𝑤2 (ℎ, 𝑔), gpoly𝑤2 (ℎ, 𝑔) | ∀𝑤 ∗∗∗}

12: end do
13: end if
14: end while
15: return G

∗ 𝑡 ∈ lcm, such that |𝑡 | < 𝑑
∗∗ 𝑤 ∈ B, such that | lm(𝑓𝑖) | + |𝑤 | + | lm(𝑓𝑗) | < 𝑑
∗∗∗ 𝑤 ∈ B, such that | lm(ℎ) | + |𝑤 | + | lm(𝑔) | < 𝑑

For the algorithm to terminate we need the set L to eventually

become empty. This happens, if and only if after finitely many steps

every S- and G-polynomial based on any combination of leading

terms has normal form zero w.r.t G, i.e. there exists a chain of lm-

reductions, such that the current S- or G-polynomial reduces to

zero. However, lm-reductions only use polynomials of smaller or

equal length and all of these are being computed. Therefore, the

algorithm terminates.

For the correctness of the algorithm we still need a version of

Buchberger’s criterion. More precisely, we want G to be a Gröb-

ner basis for I, if and only if for every pair 𝑓 , 𝑔 ∈ G all their

S- and G-polynomials reduce to zero. Moreover, we only want to

consider first and second type S- and G-polynomials, i.e. only use

𝑡 ∈ cm(lm(𝑓), lm(𝑔)), such that one of the following four cases

(1) 𝑡 = lm(𝑓)𝑡 ′
𝑓
= 𝑡𝑔 lm(𝑔) (2) 𝑡 = lm(𝑓) = 𝑡𝑔 lm(𝑔)𝑡 ′𝑔

(3) 𝑡 = 𝑡𝑓 lm(𝑓) = lm(𝑔)𝑡 ′𝑔 (4) 𝑡 = 𝑡𝑓 lm(𝑓)𝑡 ′
𝑓
= lm(𝑔)

holds for 𝑡𝑓 , 𝑡
′
𝑓
, 𝑡𝑔, 𝑡

′
𝑔 ∈ B. This excludes all cases where 𝑡 is not

minimal, i.e. 𝑡 = 𝜏𝑡 ′ for 𝜏 ∈ B𝑒 and 𝑡 ′ satisfying one of the above

four cases. Pritchard has proven in [24], that for a generating set of

the left syzygy module (which is not finitely generated in general)

we may use only minimal syzygies.

Lemma 2.8. Let G ⊆ P \ {0}. Then G is a strong Gröbner basis for

I := ⟨G⟩, if and only if for every pair 𝑓 , 𝑔 ∈ G their first and second

type S- and G-polynomials reduce to zero w.r.t. G.

Proof. The idea of the proof goes back to [20]; we only need

to show the “ifž part. Let 𝑓 ∈ I \ {0} with 𝑓 =
∑

𝑖 ℎ𝑖𝑔𝑖 for some

ℎ𝑖 ∈ P𝑒 . We set 𝑡 := max(lm(ℎ𝑖𝑔𝑖)) and 𝑀 := {𝑖 ∈ N | lm(ℎ𝑖𝑔𝑖) =

315

Computation of Free Non-commutative Gröbner Bases over Z with Singular:Letterplace ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

𝑡}. Clearly lm(𝑓) ⪯ 𝑡 and we may assume that there is no other

representation of 𝑓 where 𝑡 is smaller. Without loss of generality

let𝑀 = {1, . . . , 𝑚}. Showing, that𝑀 contains exactly one element,

proves the lemma and can be done by contradiction as follows. We

omit the technical details. The setup allows to choose a representa-

tion of 𝑓 , where the coefficient sum
∑𝑚
𝑖=1 | lc(ℎ𝑖) lc(𝑔𝑖) | is minimal

for fixed 𝑡 . If𝑀 contains more than one element, one can consider

the first two polynomials in G (those shall be 𝑔1 and 𝑔2), that occur

in the representation of 𝑓 with 𝑇 = 𝜏1 lm(𝑔1) = 𝜏2 lm(𝑔2). Here,

𝜏1, 𝜏2 ∈ B𝑒 and𝑇 results from one the above four cases (1), . . . , (4).

By analyzing spoly(𝑔1, 𝑔2) and gpoly(𝑔1, 𝑔2) and using the intrin-

sic properties of the Euclidean domainR, we obtain a representation

ℎ1𝑔1 + ℎ2𝑔2 =
∑

𝑗 ℎ
′
𝑗𝑔 𝑗 , which has a smaller coefficient sum than

our original representation. This is in contradiction to the choice

made. □

It is possible to define monic2 and reduced Gröbner bases [19, 23]

in our setup. Let G ⊆ P \ {0}. It is called a reduced Gröbner basis, if

(1) every 𝑔 ∈ G has leading coefficient with signum 1,

(2) L(G \ {𝑔}) ⊊ L(G) for every 𝑔 ∈ G, and

(3) lt(tail(𝑔)) ∉ L(G) for every 𝑔 ∈ G.

The first condition states that, in the case of R = Z, every el-

ement of a reduced Gröbner basis has leading coefficient in Z+.

The second condition is sometimes referred to as “simplicityž and

means that the leading ideal becomes strictly smaller when remov-

ing an element, thus no element is useless. The third condition,

“tail-reducedž, is required in the classical field case with commuta-

tive polynomials to ensure that a reduced Gröbner basis is unique.

However, this does not suffice in our setup: for instance, Pritchard

gave a counterexample in [24].

Let 𝑓 = 2𝑦2, 𝑔 = 3𝑥2 + 𝑦2 and I = ⟨𝑓 , 𝑔⟩. Then {𝑓 , 𝑔} is a

Gröbner basis for I with respect to any ordering 𝑥 ≻ 𝑦 and satisfies

the above three conditions. On the other hand, this is also true for

{𝑓 , 𝑔′} where 𝑔′ = 𝑔 − 𝑓 = 3𝑥2 − 𝑦2, so we have two different

reduced Gröbner bases for I. In the field case the polynomial 𝑔 is

not tail-reduced. This example can be used in both the commutative

and non-commutative case.

When implementing a version of Buchberger’s algorithm, one

should always aim to have a reduced Gröbner basis as an output.

In fact this is more practical, because removing elements, which

are not simplified or tail reduced speeds up the computation, since

we do not need to consider them in critical pairs.

Lemma 2.9. Suppose, that G ⊂ 𝑅⟨𝑋 ⟩ is a result of a Gröbner basis

computation up to a length bound 𝑑 ∈ N, and thus finite. G is a strong

Gröbner basis of the ideal it generates, if and only if a Gröbner basis

computation up to a length bound 2𝑑 − 1 does not change L(G).

Proof. It suffices to prove the "if" part. Assume that G′ is a

result of a computation up to degree 2𝑑 − 1 and L(G) = L(G′). This

means that all overlap relations of length 2𝑑−1, which are precisely

the non-trivial overlap relations for polynomials of degree up to

𝑑 , do not enlarge the leading ideal. In other words, all first kind S-

and G-polynomials reduce to zero. Because G is finite and since

for a Gröbner basis over fields or respectively for a “weakž (not

2An element is monic if it’s leading coefficient is 1

strong) Gröbner basis over rings, we only need non-trivial overlap

relations, this is the characterizing property of a Gröbner basis. □

If we additionally assume that a Gröbner basis computation up

to degree 2𝑑 does not change L(G), then this means that the trivial

overlap relations lm(𝑓) lm(𝑔), which are of length ≤ 2𝑑 , do not

add new polynomials to the basis. It remains to prove that this

suffices for all trivial overlap relations lm(𝑓)𝑤 lm(𝑔) with𝑤 ∈ B

to be irrelevant. Moreover, we need to take the divisibility condi-

tion lt(𝑔) | lt(𝑓) into account. As a consequence we could replace

“Gröbner basisž with “strong Gröbner basisž in Lemma 2.9.

3 CRITICAL PAIRS
To improve the procedure BuchbergerAlgorithm, we need crite-

ria to determine which pairs of polynomials of the input set yield

S- and G-polynomials, which reduce to zero. In the following we

will recall the criteria for discarding critical pairs known from the

commutative case and analyze, which of them can be applied in the

case R⟨𝑋 ⟩.

Remark 3.1. First we consider the case where 𝑡 := lm(𝑓) is

divisible by (or even equals to) lm(𝑔). Then lcm(lm(𝑓), lm(𝑔))

contains exactly one element, namely 𝑡 , because it is the only min-

imal element that is divisible by both leading monomials. There-

fore, spoly𝑡1 (𝑓 , 𝑔) and gpoly𝑡1 (𝑓 , 𝑔) are the only first type S- and

G-polynomials. However, these are not uniquely determined, we

might have more overlap relations of lm(𝑓), lm(𝑔), as we have seen

in the previous example of Remark 2.7, and we still need second

type S-polynomials.

The following Lemma has the obvious consequence that G-

polynomials are redundant over fields.

Lemma 3.2. (cf. [10, 20]) Let 𝑓 , 𝑔 ∈ P \ {0}. If lc(𝑓) | lc(𝑔) in R,

then every G-polynomial of 𝑓 and 𝑔 is redundant.

Proof. By the hypothesis we have𝑏 = lcm(lc(𝑓), lc(𝑔)) = lc(𝑓).

Let 𝑟 ∈ R, such that 𝑟 lc(𝑓) = lc(𝑔). Then lc(𝑓) = (𝑛𝑟 + 1) lc(𝑓) −

𝑛 lc(𝑔) yields any possible Bézout identity for 𝑏, where 𝑛 ∈ Z.

Thus, with 𝑡 = 𝜏𝑓 lm(𝑓) = 𝜏𝑔 lm(𝑔), every G-polynomial of 𝑓

and 𝑔 has shape gpoly(𝑓 , 𝑔) = (𝑛𝑟 + 1)𝜏𝑓 𝑓 − 𝑛𝜏𝑔𝑔 = lc(𝑓)𝑡 +

𝑛(𝑟𝜏𝑓 tail(𝑓)−𝜏𝑔 tail(𝑔))+𝜏𝑓 tail(𝑓). Subtracting 𝜏𝑓 𝑓 , we can reduce

this to 𝑛(𝑟𝜏𝑓 tail(𝑓) − 𝜏𝑔 tail(𝑔)). Note that 𝑟𝜏𝑓 tail(𝑓) − 𝜏𝑔 tail(𝑔)

is an S-polynomial of 𝑓 and 𝑔. Hence, every G-polynomial of 𝑓 and

𝑔 reduces to zero, after we compute their S-polynomials. □

For 𝑓 ∈ P\{0}we define recursively tail0 (𝑓) := 𝑓 and tail𝑖 (𝑓) :=

tail(tail𝑖−1 (𝑓)) for 𝑖 ≥ 1 when tail𝑖−1 (𝑓) ≠ 0.

Lemma 3.3. (Buchberger’s product criterion, cf. [10, 20]) Let 𝑓 , 𝑔 ∈

P \ {0} and𝑤 ∈ B, such that

(1) lc(𝑓) and lc(𝑔) are coprime over R,

(2) lm(𝑓) and lm(𝑔) only have trivial overlaps and

(3) for all 𝑖, 𝑗 ≥ 1,𝑤 does not satisfy:

lm(tail𝑖 (𝑓))𝑤 lm(𝑔) = lm(𝑓)𝑤 lm(tail𝑗 (𝑔)) .

Then 𝑠 := spoly𝑤2 (𝑓 , 𝑔) reduces to zero w.r.t. {𝑓 , 𝑔}.

Proof. Under the assumptions (1) and (2)wehave 𝑠 = 𝑓 𝑤 lt(𝑔)−

lt(𝑓)𝑤𝑔 = 𝑓 𝑤 (𝑔−tail(𝑔))−(𝑓 −tail(𝑓))𝑤𝑔 = tail(𝑓)𝑤𝑔−𝑓 𝑤 tail(𝑔).

316

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Levandovskyy and Metzlaff and Abou Zeid

Note that tail(𝑓)𝑤𝑔 reduces to zero w.r.t. 𝑔 and 𝑓 𝑤 tail(𝑔) reduces

to zero w.r.t. 𝑓 .

By (3) we can assume without loss of generality that lt(𝑠) =

lt(tail(𝑓))𝑤 lt(𝑔). Then 𝑠 reduces to 𝑠 ′ := 𝑠 − lt(tail(𝑓))𝑤𝑔 and

lm(𝑠 ′) ≺ lm(𝑠). Again by (3) there is no cancellation of leading

terms and, since ≺ is a well ordering, we iteratively see that 𝑠

reduces to zero. □

Remark 3.4. The commutative version of Buchberger’s product

(cf. [10, 20]) criterion states, that the S-polynomial reduces to zero,

if the leading terms are coprime over 𝐾 [𝑋].

Condition (3), or rather its negation, describes a very specific

relation between the terms of 𝑓 and 𝑔. There is only a finite amount

of 𝑤 ∈ B, that satisfy such relation and are at the same time

considered in BuchbergerAlgorithm, because we only compute

up to a certain length.

The version over fields for this criterion is much simpler, be-

cause then we only consider𝑤 to be the empty word which clearly

satisfies (3). Moreover, (1) is redundant and Buchberger’s prod-

uct criterion states that an S-polynomial reduces to zero when the

leading monomials have only trivial overlap relations.

We consider further situation where we might find applications

for criteria.

Example 3.5. If lm(𝑓) and lm(𝑔) do not overlap and the leading

coefficients are not coprime, i.e. lcm(lc(𝑓), lc(𝑔)) ≠ 1, then we can

make no a priori statement about reduction. This only applies to

second type S- and G-polynomials. Take for example 𝑓 = 4𝑥𝑦 +

𝑥, 𝑔 = 6𝑧𝑦+𝑧 ∈ Z⟨𝑋 ⟩ = Z⟨𝑥, 𝑦, 𝑧⟩ in the degree left lexicographical

ordering with 𝑥 ≻ 𝑦 ≻ 𝑧. Then spoly12 (𝑓 , 𝑔) = 3𝑓 𝑧𝑦 − 2𝑥𝑦𝑔 =

3𝑥𝑧𝑦−2𝑥𝑦𝑧 and gpoly12 (𝑓 , 𝑔) = (−1) 𝑓 𝑧𝑦+1𝑥𝑦𝑔 = 2𝑥𝑦𝑧𝑦+𝑥𝑦𝑧−𝑥𝑧𝑦

both do not reduce any further and thus must be added to the

Gröbner basis just as any other second type S- and G-polynomial.

Also, for first type S- and G-polynomials no statement can be

made when the leading coefficients are not coprime. For example in

the case of 𝑓 = 4𝑥𝑦+𝑦, 𝑔 = 6𝑦𝑧+𝑦 we have spoly
𝑥𝑦𝑧
1 (𝑓 , 𝑔) = 3𝑓 𝑧−

2𝑥𝑔 = 3𝑦𝑧−2𝑥𝑦 and gpoly
𝑥𝑦𝑧
1 (𝑓 , 𝑔) = (−1) 𝑓 𝑧+1𝑥𝑔 = 2𝑥𝑦𝑧−𝑦𝑧+𝑥𝑦

which do not reduce any further.

Remark 3.6. Recall that the pair {𝑓 , 𝑔} can be replaced in the

commutative case (cf. [10]) by {spoly(𝑓 , 𝑔), gpoly(𝑓 , 𝑔)}, if 𝑡 =

lm(𝑓) = lm(𝑔) (cf. [10]). Now, if lm(𝑓) = lm(𝑔) then in the defini-

tion of first type S- and G-polynomials we have 𝜏𝑓 = 𝜏𝑔 = 1 ⊗ 1 and

therefore spoly𝑡1 (𝑓 , 𝑔) = 𝑎𝑓 𝑓 − 𝑎𝑔𝑔 and gpoly𝑡1 (𝑓 , 𝑔) = 𝑏 𝑓 𝑓 + 𝑏𝑔𝑔.

This yields a linear equation
(

spoly𝑡1 (𝑓 , 𝑔)

gpoly𝑡1 (𝑓 , 𝑔)

)

=

(

𝑎𝑓 −𝑎𝑔
𝑏 𝑓 𝑏𝑔

) (

𝑓

𝑔

)

,

where the defining matrix has determinant 𝑎𝑓 𝑏𝑔 + 𝑎𝑔𝑏 𝑓 = 1, and

thus is invertible over R. Hence, we can obtain 𝑓 and 𝑔 from their

S- and G- polynomial and replace them. The importance of this

statement was discussed for the commutative case in [10] and

translates equivalently to the non-commutative one.

The following two lemmata are chain criteria, which are based

on the idea to have two critical pairs and derive a third one from

them under certain conditions. The commutative versions for both

criteria were proven in [10].

Lemma 3.7. (Buchberger’s S-chain criterion, cf. [10, 20]) Let G ⊆

P\{0} and 𝑓 , 𝑔, ℎ ∈ G. For𝑎, 𝑏 ∈ {𝑓 , 𝑔, ℎ} let lcm(lm(𝑎), lm(𝑏)) ≠

∅ and fix 𝑇𝑎𝑏 ∈ lcm(lm(𝑎), lm(𝑏)) and choose 𝜏𝑎𝑏 ∈ B𝑒 with

𝜏𝑎𝑏 lm(𝑎) = 𝑇𝑎𝑏 . There exist 𝜏𝑏𝑎 ∈ B𝑒 , such that 𝜏𝑏𝑎 lm(𝑏) = 𝑇𝑎𝑏 .

We assume that 𝑇𝑎𝑏 = 𝑇𝑏𝑎 . Furthermore, let

(1) 𝑇ℎ𝑔 = 𝑇𝑔ℎ be divisible by both𝑇ℎ𝑓 and𝑇𝑔𝑓 with 𝛿𝑔𝑓𝑇ℎ𝑓 = 𝑇ℎ𝑔
and 𝛿ℎ𝑓𝑇𝑔𝑓 = 𝑇𝑔ℎ for some 𝛿𝑔𝑓 , 𝛿ℎ𝑓 ∈ B𝑒 ,

(2) lc(𝑓) | lcm(lc(𝑔), lc(ℎ)) over R and

(3) spoly
𝑇𝑓 𝑔
1 (𝑓 , 𝑔) and spoly

𝑇𝑓 ℎ
1 (𝑓 , ℎ) both have strong Gröbner

representations w.r.t. G.

Then spoly
𝑇𝑔ℎ
1 (𝑓 , 𝑔) has a strong Gröbner representation w.r.t. G.

Proof. Let 𝑐𝑎𝑏 :=
lcm(lc(𝑎), lc(𝑏))

lc(𝑎)
for 𝑎, 𝑏 ∈ {𝑓 , 𝑔, ℎ}. Then

one can check by hand, that
𝑐ℎ𝑔

𝑐ℎ𝑓
𝛿𝑔𝑓 spoly

𝑇𝑓 ℎ
1 (𝑓 , ℎ) −

𝑐𝑔ℎ

𝑐𝑔𝑓
𝛿ℎ𝑓 spoly

𝑇𝑓 𝑔
1 (𝑓 , 𝑔)

=𝑐𝑔ℎ𝛿ℎ𝑓 𝜏𝑔𝑓 𝑔 − 𝑐ℎ𝑔𝛿𝑔𝑓 𝜏ℎ𝑓 ℎ +

(

𝑐ℎ𝑔𝑐 𝑓 ℎ

𝑐ℎ𝑓
𝛿𝑔𝑓 𝜏𝑓 ℎ −

𝑐𝑔ℎ𝑐 𝑓 𝑔

𝑐𝑔𝑓
𝛿ℎ𝑓 𝜏𝑓 𝑔

)

𝑓 .

Using the relations for monomial expressions 𝜏𝑎𝑏 , 𝑇𝑎𝑏 , 𝛿𝑎𝑏 and

coeffiecients 𝑐𝑎𝑏 , we see that the first term equals spoly
𝑇𝑔ℎ
1 (𝑔, ℎ)

and we obtain

spoly
𝑇𝑔ℎ
1 (𝑔, ℎ) =

𝑐ℎ𝑔

𝑐ℎ𝑓
𝛿𝑔𝑓 spoly

𝑇𝑓 ℎ
1 (𝑓 , ℎ) −

𝑐𝑔ℎ

𝑐𝑔𝑓
𝛿ℎ𝑓 spoly

𝑇𝑓 𝑔
1 (𝑓 , 𝑔),

which shows that spoly
𝑇𝑔ℎ
1 (𝑔, ℎ) has a strong Gröbner representa-

tion w.r.t. G. This works analogously for second type S-polynomials

spoly𝑤2 (𝑔, ℎ) or spoly�̃�2 (ℎ, 𝑔), if we choose𝑤 or �̃� , such that either

lm(𝑔)𝑤 lm(ℎ) = 𝑇𝑔ℎ or lm(ℎ)�̃� lm(𝑔) = 𝑇ℎ𝑔 . □

We give a similar criterion for G-polynomials, which can be

proven in a manner similar to 3.7.

Lemma 3.8. (Buchberger’s G-chain criterion, cf. [10, 20]) Let G ⊆

P \ {0} and 𝑓 , 𝑔, ℎ ∈ G. We retain the notations 𝑇𝑎𝑏 and 𝜏𝑎𝑏 from

the above. Let

(1) 𝑇ℎ𝑔 = 𝑇𝑔ℎ be divisible by both𝑇ℎ𝑓 and𝑇𝑔𝑓 with 𝛿𝑔𝑓𝑇ℎ𝑓 = 𝑇ℎ𝑔
and 𝛿ℎ𝑓𝑇𝑔𝑓 = 𝑇𝑔ℎ for some 𝛿𝑔𝑓 , 𝛿ℎ𝑓 ∈ B𝑒 and

(2) lc(𝑓) | gcd(lc(𝑔), lc(𝑔)) with 𝑑 :=
gcd(lc(𝑔), lc(𝑔))

lc(𝑓)
.

Then gpoly
𝑇𝑔ℎ
1 (𝑔, ℎ) has a strong Gröbner representation w.r.t. G.

We conclude that the well-known criteria for S- and G-polynomials

from the commutative case can also be applied in the non-commu-

tative case with modifications, if we distinguish between first and

second type S- and G-polynomials. Computations can show how

hard these requirements are to be fulfilled compared to the commu-

tative case by specifically counting the number of applications of

product and chain criteria.

317

Computation of Free Non-commutative Gröbner Bases over Z with Singular:Letterplace ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

4 EXAMPLES
We give examples for Gröbner bases that have been computed up

to a certain length bound over the integers. These examples also

show that although computing over Z delivers infinite results much

more often than when computing over fields, non-commutative

Gröbner bases over Z can be finite as well.

For the examples in this Section, which we take from [1], let

P = Z⟨𝑥, 𝑦, 𝑧⟩ with the degree left lexicographical ordering and

𝑥 ≻ 𝑦 ≻ 𝑧 (if not indicated otherwise).

Example 4.1. We consider the ideal I = ⟨𝑓1 = 𝑦𝑥 −3𝑥𝑦−3𝑧, 𝑓2 =

𝑧𝑥 − 2𝑥𝑧 + 𝑦, 𝑓3 = 𝑧𝑦 − 𝑦𝑧 − 𝑥⟩ ⊂ P. We investigated it over

Q⟨𝑥, 𝑦, 𝑧⟩ in [17] (in the same issue of the proceedings), where

we also comment in details on syntax and commands of Singu-

lar:Letterplace.

LIB "freegb.lib"; //initialization of free algebras

ring r = integer,(z,y,x),Dp; //degree left lex ord z>y>x

ring R = freeAlgebra(r,7); // length bound is 7

ideal I = y*x - 3*x*y - 3*z, z*x - 2*x*z +y, z*y-y*z-x;

option(redSB); // Groebner basis will be minimal

option(redTail); // Groebner basis will be tail-reduced

ideal J = twostd(I); // compute a two-sided GB of I

J; // print generators of J

The output has plenty of elements in each degree (which is

the same as length because of the degree ordering), what hints at

potentially infinite Gröbner basis (what we confirm below) and the

elements, which can be subsequently constructed, are

{𝑓1, 𝑓2, 𝑓3, 12𝑥𝑦 + 9𝑧, 9𝑥𝑧 − 3𝑦, 6𝑦2 − 9𝑥2, 6𝑦𝑧 + 3𝑥,

3𝑧2 + 2𝑦2 − 5𝑥2, 6𝑥3 − 3𝑦𝑧, 4𝑥2𝑦 + 3𝑥𝑧, 3𝑥2𝑧 + 3𝑥𝑦 + 3𝑧,

2𝑥𝑦2 + 3𝑥3 + 3𝑦𝑧 + 3𝑥, 3𝑥𝑦𝑧 + 3𝑦2 − 3𝑥2, 2𝑦3 + 𝑥2𝑦 + 3𝑥𝑧,

2𝑥4 + 𝑦2 − 𝑥2, 2𝑥3𝑦 + 3𝑦2𝑧 + 3𝑥𝑦 + 3𝑧, 𝑥2𝑦𝑧 + 𝑥𝑦2 − 𝑥3,

𝑥𝑦2𝑧 − 𝑦3 + 𝑥2𝑦, 𝑥5 − 𝑦3𝑧 − 𝑥𝑦2 + 𝑥3, 𝑦3𝑧2 − 𝑥4𝑦,

𝑥4𝑧 + 𝑥3𝑦 + 2𝑦2𝑧 + 𝑥2𝑧 + 3𝑥𝑦 + 3𝑧, 𝑥𝑦3𝑧 − 𝑦4 + 𝑥4 − 𝑦2 + 𝑥2,

𝑥𝑦4𝑧 − 𝑦5 + 𝑥2𝑦3, 𝑥𝑦5𝑧 − 𝑦6 + 𝑥4𝑦2 + 𝑦4 + 𝑥4 + 2𝑦2 − 2𝑥2}.

Indeed, we can show that ∀𝑖 ≥ 2 𝐼 contains an element with the

leading monomial 𝑥𝑦𝑖𝑧. Therefore this Gröbner basis is infinite, but

can be presented in finite terms. Note, that the original generators

have been preserved in a Gröbner basis, while over Q (see [17])

they were decomposed. Also, over Q the input ideal has a finite

Gröbner basis of degree at most 3.

Example 4.2. Let I = ⟨𝑓1 = 𝑦𝑥 − 3𝑥𝑦 − 𝑧, 𝑓2 = 𝑧𝑥 − 𝑥𝑧 + 𝑦, 𝑓3 =

𝑧𝑦 −𝑦𝑧 −𝑥⟩ ⊂ P. Then I has a finite strong Gröbner basis, namely

{𝑓1, 𝑓2, 𝑓3, 8𝑥𝑦 + 2𝑧, 4𝑥𝑧 − 2𝑦, 4𝑦𝑧 + 2𝑥,

2𝑥2 − 2𝑦2, 4𝑦2 − 2𝑧2, 2𝑧3 − 2𝑥𝑦}.

As we can see, the leading coefficients of the Gröbner basis above

might vanish, if we pass to the field of characteristic 2. Therefore

the bimodule𝑀 := Z⟨𝑥, 𝑦, 𝑧⟩/𝐼 might have nontrivial 2-torsion, i.e.

there is a nonzero submodule 𝑇2 (𝑀) := {𝑝 ∈ 𝑀 : ∃𝑛 ∈ N0 2
𝑛 · 𝑝 ∈

𝐼 }. By adopting the classical method of Caboara and Traverso for

computing colon (or quotient) ideals to our situation, where we

use the fact that the ground ring is central (i.e. commutes with all

variables), we do the following:

LIB "freegb.lib"; //we will use position-over-term order

ring r = integer,(x,y,z),(c,dp);

ring R = freeAlgebra(r,7,2); // 2==number of components

ideal I = y*x - 3*x*y - z, z*x - x*z +y, z*y-y*z-x;

option(redSB); option(redTail);

ideal J = twostd(I); module N;

N = 2*ncgen(1)*gen(1)+ncgen(2)*gen(2),J*ncgen(1)*gen(1);

module SN = twostd(N); SN;

Above, gen(i) stands for the 𝑖-th canonical basis vector (commut-

ing with everything) and ncgen(i) - for the 𝑖-th canonical genera-

tor of the free bimodule, which commutes only with constants. The

output, which is a list of vectors, looks as follows:

...

SN[9]=[0,z*z*z*ncgen(2)-x*y*ncgen(2)]

SN[10]=[2*ncgen(1),ncgen(2)]

SN[11]=[z*y*ncgen(1)-y*z*ncgen(1)-x*ncgen(1)]

...

From this output we gather all vectors with 0 in the first component

ncgen(1), which results into an ideal, whose Gröbner basis is

{𝑧𝑦 − 𝑦𝑧 − 𝑥, 𝑧𝑥 − 𝑥𝑧 + 𝑦, 𝑦𝑥 + 𝑥𝑦, 2𝑦𝑧 + 𝑥,

2𝑥𝑧 − 𝑦, 2𝑦2 − 𝑧2, 4𝑥𝑦 + 𝑧, 𝑥2 − 𝑦2, 𝑧3 − 𝑥𝑦}.

Another colon computation does not change this ideal, therefore it is

the saturation ideal of 𝐼 at 2, denoted by 𝐿 = 𝐼 : 2∞ ⊂ Z⟨𝑥, 𝑦, 𝑧⟩. It is

the presentation for the 2-torsion submodule𝑇2 (𝑀) = Z⟨𝑥, 𝑦, 𝑧⟩𝐿/𝐼

and, moreover, 2 · 𝐿 ⊂ 𝐼 ⊂ 𝐿 holds.

Example 4.3. In this example we have to run a Gröbner basis of

⟨𝑓1 = 𝑧𝑦 −𝑦𝑧 + 𝑧
2, 𝑓2 = 𝑧𝑥 +𝑦

2, 𝑓3 = 𝑦𝑥 − 3𝑥𝑦⟩ up to length bound

11, in order to prove with the Lemma 2.9 that we have computed a

finite Gröbner basis. We use degree right lexicographical ordering

and obtain {𝑓1, 𝑓2, 𝑓3, 2𝑦
3 + 𝑦2𝑧 − 2𝑦𝑧2 + 2𝑧3}∪

{𝑦2𝑧2 − 4𝑦𝑧3 + 6𝑧4, 𝑦4 + 27𝑥𝑦2𝑧 − 54𝑥𝑦𝑧2 + 54𝑥𝑧3,

54𝑥𝑦2𝑧 − 𝑦3𝑧 − 108𝑥𝑦𝑧2 + 108𝑥𝑧3 + 62𝑦𝑧3 − 124𝑧4, 14𝑧5,

14𝑦𝑧3 − 28𝑧4, 2𝑦𝑧4 − 6𝑧5, 2𝑥𝑦𝑧3 − 4𝑥𝑧4, 𝑥𝑦3𝑧, 2𝑧6, 2𝑥𝑧5}.

As we can see from the leading terms, the corresponding module

might have 2- and 7-torsion submodules.

There have been 17068 critical pairs created, and internal total

degree of intermediate elements was 11. The product criterion has

been used 196 times, while the chain criterion was invoked 36711

times. Totally, up to 2.9 GB of memory was allocated.

In the contrast, the Gröbner basis computation of the same input

over Q considered only 14 critical pairs, went up to total degree

6 of intermediate elements, used no product criterion and 9 times

the chain criterion with less than 1 MB of memory. The result is

{𝑓1, 𝑓2, 𝑓3} ∪ {𝑧5, 𝑦𝑧3 − 2𝑧4}∪

{2𝑦3 + 𝑦2𝑧 − 2𝑦𝑧2 + 2𝑧3, 𝑦2𝑧2 − 2𝑧4, 𝑥𝑦2𝑧 − 2𝑥𝑦𝑧2 + 2𝑥𝑧3}.

This demonstrates once again, how technically involved computa-

tions with free algebras over rings as coefficients are.

5 IMPLEMENTATION
We have created a powerful implementation called Letterplace

[16] in the framework of Singular [7]. Its’ extension to coefficient

rings like Z addresses the following functions with the current

318

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Levandovskyy and Metzlaff and Abou Zeid

release for ideals and subbimodules of a free bimodule of a finite

rank. We provide a vast family of monomial and module orderings

including three kinds of orderings eliminating variables or free

bimodule components.

twostd: a two-sided Gröbner basis; when executed with respect to

an elimination ordering, it allows to eliminate variables [6], and

thus to compute kernels of ring morphisms and preimages of ideals

under such morphisms;

reduce (NF): a normal form of a vector or a polynomial with

respect to a two-sided Gröbner basis;

syz: a generating set of a syzygy bimodule [5] of an input;

modulo: kernel of a bimodule homomorphism;

lift: computation of a transformation matrix between a module

and its submodule, in other words expressing generators of a sub-

module in terms of generators of a module;

liftstd: computation of a two-sided Gröbner basis and a transfor-

mation matrix of a given ideal or subbimodule and, optionally, a

syzygy bimodule.

6 CONCLUSION AND FUTURE WORK
Following Mora’s “manual for creating own Gröbner basis theoryž

[22], we have considered the case of free non-commutative Gröbner

bases for ideals and bimodules over Z⟨𝑋 ⟩. We have derived novel

information on the building critical pairs and on criteria to discard

them when possible. Armed with this theoretical and algorithmic

knowledge, we have created an implementation in a Singular sub-

system Letterplace, which offers a rich functionality at a decent

speed. We are not aware of yet other systems or packages, which

can do such computations.

In this paper we have demonstrated several important appli-

cations of our algorithms and their implementation, in particular

the determination of torsion submodules with respect to natural

numbers.

A further adaptation of our implementation to the explicitly

given Z/𝑚Z is planned, as well as the development (also a theo-

retical) of one-sided Gröbner bases in factor algebras (over fields,

Letterplace already offers rightstd). More functions for dealing

with matrices will make possible the usage of our implementation

as a backend from the system HomAlg [3]. This system performs

homological algebra computations within computable Abelian cat-

egories and uses other computer algebra systems as backends for

concrete calculations with matrices over rings. Also big systems

like SageMath [25] and OSCAR [26] can use our implementation

as backend.

7 ACKNOWLEDGEMENTS
The authors are grateful to Hans Schönemann, Gerhard Pfister

(Kaiserslautern), Anne Frühbis-Krüger (Oldenburg), Leonard Schmitz,

Eva Zerz (RWTH Aachen) and Evelyne Hubert (INRIA) for fruitful

discussions.

The first and third authors (V. Levandovskyy and K. Abou Zeid)

have been supported by Project II.6 of SFB-TRR 195 “Symbolic Tools

in Mathematics and their Applicationsž of the German Research

Foundation (DFG).

The work of the second author (T. Metzlaff) has been supported

by European Union’s Horizon 2020 research and innovation pro-

gramme under the Marie Skłodowska-Curie Actions, grant agree-

ment 813211 (POEMA).

REFERENCES
[1] J. Apel. 2000. Computational ideal theory in finitely generated extension rings.

Theor. Comput. Sci. 244, 1-2 (2000), 1ś33.
[2] J. Apel and U. Klaus. 1991. FELIX ś an assistant for algebraists. In Proc. ISSAC’91.

ACM Press, 382ś389. See also http://felix.hgb-leipzig.de.
[3] Mohamed Barakat, Sebastian Gutsche, and Markus Lange-Hegermann. 2019.

homalg - A homological algebra meta-package for computable Abelian categories.
https://homalg-project.github.io/homalg_project/homalg/.

[4] George M. Bergman. 1977. The diamond lemma for ring theory. Adv. Math. 29
(1977), 178ś218. https://doi.org/10.1016/0001-8708(78)90010-5

[5] Holger Bluhm and Martin Kreuzer. 2007. Computation of two-sided syzygies
over non-commutative rings. Contemp. Math. 421 (2007), 45ś64.

[6] M. A. Borges and M. Borges. 1998. Gröbner bases property on elimination ideal
in the noncommutative case. In Gröbner bases and applications, B. Buchberger
and F. Winkler (Eds.). Cambridge University Press, 323ś337.

[7] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann.
2020. Singular 4-1-3 Ð A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de.

[8] Christian Eder and Tommy Hofmann. 2019. Efficient Gröbner Bases Computation
over Principal Ideal Rings. https://arxiv.org/abs/1906.08543.

[9] Christian Eder, Gerhard Pfister, and Adrian Popescu. 2016. New Strategies for
Standard Bases over Z. https://arxiv.org/abs/1609.04257.

[10] Christian Eder, Gerhard Pfister, and Adrian Popescu. 2018. Standard Bases over
Euclidean Domains. https://arxiv.org/abs/1811.05736.

[11] Heinz Kredel. 2015. Parametric Solvable Polynomial Rings and Applications.
In Proc. CASC’15, Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, and
Evgenii V. Vorozhtsov (Eds.). Springer International Publishing, Cham, 275ś291.
https://doi.org/10.1007/978-3-319-24021-3_21

[12] Roberto La Scala. 2014. Extended letterplace correspondence for nongraded
noncommutative ideals and related algorithms. Int. J. Algebra Comput. 24, 8
(2014), 1157ś1182.

[13] Roberto La Scala and Viktor Levandovskyy. 2009. Letterplace ideals and non-
commutative Gröbner bases. Journal of Symbolic Computation 44, 10 (2009),
1374ś1393. https://doi.org/10.1016/j.jsc.2009.03.002

[14] Roberto La Scala and Viktor Levandovskyy. 2013. Skew polynomial rings, Gröbner
bases and the letterplace embedding of the free associative algebra. Journal of
Symbolic Computation 48, 1 (2013), 110ś131. http://dx.doi.org/10.1016/j.jsc.2012.
05.003

[15] Viktor Levandovskyy. 2005. Nonścommutative computer algebra for polynomial
algebras: Gröbner bases, applications and implementation. http://kluedo.ub.uni-
kl.de/volltexte/2005/1883/.

[16] Viktor Levandovskyy, Karim Abou Zeid, and Hans Schönemann. 2020. Singu-
lar:Letterplace Ð A Singular 4-1-3 Subsystem for Non-commutative Finitely
Presented Algebras. http://www.singular.uni-kl.de.

[17] Viktor Levandovskyy, Hans Schönemann, and Karim Abou Zeid. 2020. Let-

terplace Ð a Subsystem of Singular for computations with free algebras via
Letterplace embedding. In Proc. ISSAC’20. ACM Press. to appear.

[18] Viktor Levandovskyy, Grischa Studzinski, and Benjamin Schnitzler. 2013. En-
hanced Computations of Gröbner Bases in Free Algebras as a New Application
of the Letterplace Paradigm. In Proc. of the International Symposium on Symbolic
and Algebraic Computation (ISSAC’13), Manuel Kauers (Ed.). ACM Press, 259 ś
266.

[19] Huishi Li. 2012. Algebras defined bymonic Gröbner bases over rings. International
Mathematical Forum 7 (2012), 1427ś1450.

[20] Daniel Lichtblau. 2012. Effective computation of strong Gröbner bases over
Euclidean domains. Illinois Journal of Mathematics 56 (2012), 177ś194.

[21] Thomas Markwig, Yue Ren, and Oliver Wienand. 2015. Standard bases in mixed
power series and polynomial rings over rings. Journal of Symbolic Computation
79 (09 2015). https://doi.org/10.1016/j.jsc.2016.08.009

[22] Teo Mora. 2016. Solving Polynomial Equation Systems IV: Volume 4, Buchberger
Theory and Beyond (1st ed.). Cambridge University Press.

[23] Franz Pauer. 2007. Gröbner bases with coefficients in rings. Journal of Symbolic
Computation 42 (2007), 1003 ś 1011. https://doi.org/10.1016/j.jsc.2007.06.006

[24] F. Leon Pritchard. 1996. The ideal membership problem in non-commutative
polynomial rings. J. Symb. Comput. 22, 1 (1996), 27ś48. https://doi.org/10.1006/
jsco.1996.0040

[25] W.A. Stein et al. 2020. Sage Mathematics Software. The Sage Development Team.
[26] The OSCAR Team. 2020. The OSCAR project. https://oscar.computeralgebra.de.

319

http://felix.hgb-leipzig.de
https://homalg-project.github.io/homalg_project/homalg/
https://doi.org/10.1016/0001-8708(78)90010-5
http://www.singular.uni-kl.de
https://arxiv.org/abs/1906.08543
https://arxiv.org/abs/1609.04257
https://arxiv.org/abs/1811.05736
https://doi.org/10.1007/978-3-319-24021-3_21
https://doi.org/10.1016/j.jsc.2009.03.002
http://dx.doi.org/10.1016/j.jsc.2012.05.003
http://dx.doi.org/10.1016/j.jsc.2012.05.003
http://kluedo.ub.uni-kl.de/volltexte/2005/1883/
http://kluedo.ub.uni-kl.de/volltexte/2005/1883/
http://www.singular.uni-kl.de
https://doi.org/10.1016/j.jsc.2016.08.009
https://doi.org/10.1016/j.jsc.2007.06.006
https://doi.org/10.1006/jsco.1996.0040
https://doi.org/10.1006/jsco.1996.0040
https://oscar.computeralgebra.de

Some Properties of Multivariate Differential Dimension
Polynomials and their Invariants

Alexander Levin
levin@cua.edu

The Catholic University of America

Washington, D. C. 20064, USA

ABSTRACT

In this paper we obtain new results on multivariate dimension poly-

nomials of differential field extensions associated with partitions

of basic sets of derivations. We prove that the coefficient of the

summand of the highest possible degree in the canonical representa-

tion of such a polynomial is equal to the differential transcendence

degree of the extension. We also give necessary and sufficient con-

ditions under which the multivariate dimension polynomial of a

differential field extension of a given differential transcendence

degree has the simplest possible form. Furthermore, we describe

some relationships between a multivariate dimension polynomial

of a differential field extension and dimensional characteristics of

subextensions defined by subsets of the basic sets of derivations.

CCS CONCEPTS

· Computing methodologies → Symbolic and algebraic ma-

nipulation.

KEYWORDS

Differential field extension, differential dimension polynomial, dif-

ferential transcendence degree

ACM Reference Format:

Alexander Levin. 2020. Some Properties of Multivariate Differential Di-

mension Polynomials and their Invariants. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.

3404013

1 INTRODUCTION

Differential dimension polynomials introduced in [5] by E. Kolchin

play the same role in differential algebra as Hilbert polynomials

play in commutative algebra and algebraic geometry. An important

feature of differential dimension polynomials is that they describe

in exact terms the freedom degree of a continuous dynamic system

as well as the number of arbitrary constants in the general solution

of a system of algebraic partial differential equations. The following

fundamental result introduces and describes main properties of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404013

(univariate) dimension polynomial of a finitely generated differen-

tial field extension. This theorem combines the results obtained in

[6, Chapter II, Sections 12 and 13] adjusted to the case of differential

fields of characteristic zero.

Theorem 1.1. Let 𝐾 be a differential field of characteristic zero,

that is, a field considered together with the action of a set Δ =

{𝛿1, . . . , 𝛿𝑚} of mutually commuting derivations of 𝐾 into itself. Let

Θ denote the free commutative semigroup of all power products of the

form 𝜃 = 𝛿
𝑘1
1 . . . 𝛿

𝑘𝑚
𝑚 (𝑘𝑖 ≥ 0), let ord 𝜃 =

∑𝑚
𝑖=1 𝑘𝑖 , and for any 𝑟 ≥ 0,

let Θ(𝑟) = {𝜃 ∈ Θ | ord 𝜃 ≤ 𝑟 }. Let 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ be a differ-

ential field extension of 𝐾 generated by a finite set 𝜂 = {𝜂1, . . . , 𝜂𝑛}.

(As a field, 𝐿 = 𝐾 ({𝜃𝜂 𝑗 |𝜃 ∈ Θ, 1 ≤ 𝑗 ≤ 𝑛}).) Then there exists a

polynomial 𝜔𝜂 |𝐾 (𝑡) ∈ Q[𝑡] such that

(i) 𝜔𝜂 |𝐾 (𝑟) = tr. deg𝐾 𝐾 ({𝜃𝜂 𝑗 |𝜃 ∈ Θ(𝑟), 1 ≤ 𝑗 ≤ 𝑛}) for all

sufficiently large 𝑟 ∈ Z;

(ii) deg𝜔𝜂 |𝐾 ≤ 𝑚 and 𝜔𝜂 |𝐾 (𝑡) can be represented as

𝜔𝜂 |𝐾 (𝑡) =
∑𝑚
𝑖=0 𝑎𝑖

(𝑡+𝑖
𝑖

)

where 𝑎0, . . . , 𝑎𝑚 ∈ Z;

(iii) 𝑑 = deg𝜔𝜂 |𝐾 , 𝑎𝑚 and 𝑎𝑑 do not depend on the choice of the

system of Δ-generators 𝜂 of the extension 𝐿/𝐾 . Moreover, 𝑎𝑚 is equal

to the differential transcendence degree of 𝐿 over 𝐾 (denoted by Δ-

tr. deg𝐾 𝐿), that is, to the maximal number of elements 𝜉1, . . . , 𝜉𝑘 ∈ 𝐿

such that the set {𝜃𝜉𝑖 |𝜃 ∈ Θ, 1 ≤ 𝑖 ≤ 𝑘} is algebraically independent

over 𝐾 .

The polynomial 𝜔𝜂 |𝐾 is called the differential dimension poly-

nomial of the differential field extension 𝐿/𝐾 associated with the

system of differential generators 𝜂. The invariants 𝑑 = deg𝜔𝜂 |𝐾
and 𝑎𝑑 in the last part of the theorem are called the differential (or

Δ-) type and typical differential (or Δ-) transcendence degree of the

extension 𝐿/𝐾 ; they are denoted by Δ-type𝐾 𝐿 and Δ-t. tr. deg𝐾 𝐿,

respectively.

Differential dimension polynomials provide a power tool for the

study of systems of algebraic differential equations. For a wide class

of such systems, the dimension polynomial of the corresponding

differential field extension expresses the strength of the system

of equations in the sense of A. Einstein. This concept, that was

introduced in [1] as an important qualitative characteristic of a sys-

tem of PDEs, can be expressed as a certain differential dimension

polynomial, as it is shown in [13]. Another important application of

differential dimension polynomials is based on the fact that if 𝑃 is a

prime (in particular, linear) differential ideal of a finitely generated

differential algebra 𝑅 over a differential field 𝐾 and 𝐿 is the quotient

field of 𝑅/𝑃 treated as a differential overfield of 𝐾 , then the differ-

ential dimension polynomial of the extension 𝐿/𝐾 characterizes

the ideal 𝑃 ; assigning such polynomials to prime differential ideals

has led to a number of new results on the Krull-type dimension

of differential algebras and differential field extensions (see, for

320

https://doi.org/10.1145/3373207.3404013
https://doi.org/10.1145/3373207.3404013
https://doi.org/10.1145/3373207.3404013

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Alexander Levin

example, [3], [4], [12] and [7, Chapter 7]). It should be also added

that the dimension polynomial associated with a finitely generated

differential field extension carries certain differential birational in-

variants, that is, numbers that do not change when we switch to

another finite system of generators of the extension. These invari-

ants are closely connected to some other important characteristics;

for example, one of them is the differential transcendence degree

of the extension. Among recent works on univariate differential

dimension polynomials one has to mention the work of O. Sanchez

[14] on the evaluation of the coefficients of a differential dimension

polynomial, the work of J. Freitag, O. Sanchez andW. Li on the defin-

ability of Kolchin polynomials, and works of M. Lange-Hegermann

[8] and [9], where the author introduced a differential dimension

polynomial of a characterizable (not necessarily prime) differential

ideal and a countable differential polynomial that generalizes the

concept of differential dimension polynomial.

In 2001 the author introduced a concept of a multivariate differ-

ential dimension polynomial of a finitely generated differential field

extension associated with a partition of the set of basic derivations

Δ (see [10]). The proof of the corresponding existence theorem

that generalizes the first two parts of Theorem 1.1, was based on a

special type of reduction in a ring of differential polynomials that

takes into account the partition of Δ. It was also shown that a mul-

tivariate differential dimension polynomial carries essentially more

differential birational invariants of the corresponding differential

field extension than its univariate counterpart. As it is demonstrated

in Example 3.18, a multivariate dimension polynomial associated

with an algebraic differential equation with parameters can carry

all this parameters, while the univariate dimension polynomial

determines just some relation between the parameters. Therefore,

there is a strong motivation for the study of multivariate differential

dimension polynomials and their invariants. The main difficulty

in this study is due to the fact that a multivariate dimension poly-

nomial of a prime differential polynomial ideal is determined by

a characteristic set with respect to several term orderings. Such

sets were introduced in [10], but the corresponding theory is in its

infancy. Another problem, that is partially solved in this paper, is

to characterize invariants of multivariate dimension polynomials

and to find relationships between invariants of such polynomials

associated with different partitions of the basic set of derivations.

In this paper we obtain new results on multivariate differential

dimension polynomials of differential field extensions associated

with partitions of the basic sets of derivations. We give necessary

and sufficient conditions under which the multivariate dimension

polynomial of a differential field extension of a given differential

transcendence degree has the simplest possible form. This result

(Theorem 3.16) generalizes the corresponding property of univari-

ate differential dimension polynomials proved in [15]. We also

prove that the coefficient of the summand of the highest possible

degree in the canonical representation of a multivariate dimension

polynomial is equal to the differential transcendence degree of the

extension. Furthermore, we obtain some relationships between a

multivariate dimension polynomial of a differential field extension

and dimensional characteristics of subextensions defined by subsets

of the basic sets of derivations.

2 PRELIMINARIES

Throughout the paper Z, N and Q denote the sets of all integers, all

nonnegative integers and all rational numbers, respectively. If𝑀 is

a finite set, then Card𝑀 will denote the number of elements of𝑀 .

By a ring we always mean an associative ring with unity. Every ring

homomorphism is unitary (maps unity onto unity), every subring

of a ring contains the unity of the ring, and every algebra over a

commutative ring is unitary. Unless otherwise indicated, every field

is supposed to have zero characteristic.

A differential ring is a commutative ring 𝑅 considered together

with a finite set Δ of mutually commuting derivations of 𝑅 into

itself. The set Δ is called a basic set of the differential ring 𝑅 that

is also called a Δ-ring. A subring (ideal) 𝑅0 of a Δ-ring 𝑅 is called

a differential (or Δ-) subring of 𝑅 (respectively, a differential (or

Δ-) ideal of 𝑅) if 𝛿 (𝑅0) ⊆ 𝑅0 for any 𝛿 ∈ Δ. If a differential (Δ-)

ring is a field, it is called a differential (or Δ-) field. In what follows,

Θ (or ΘΔ if we want to indicate the basic set) denotes the free

commutative semigroup generated by Δ (that is, if Δ = {𝛿1, . . . , 𝛿𝑚},

then Θ = {𝜃 = 𝛿
𝑘1
1 . . . 𝛿

𝑘𝑚
𝑚 | 𝑘1, . . . , 𝑘𝑚 ∈ N}).

If 𝑅 is a Δ-ring and 𝑆 ⊆ 𝑅, then the smallest Δ-ideal of 𝑅 con-

taining 𝑆 is denoted by [𝑆] (as an ideal, it is generated by the set

{𝜃𝜉 | 𝜉 ∈ 𝑆}). If the set 𝑆 is finite, 𝑆 = {𝜉1, . . . , 𝜉𝑞}, we say that the

Δ-ideal 𝐼 = [𝑆] is finitely generated, write 𝐼 = [𝜉1, . . . , 𝜉𝑞]) and call

𝜉1, . . . , 𝜉𝑞 differential (or Δ-) generators of 𝐼 . If a Δ-ideal is prime

(in the usual sense), it is called a prime differential (or Δ-) ideal.

Let 𝑅1 and 𝑅2 be two differential rings with the same basic set

Δ = {𝛿1, . . . , 𝛿𝑚}. (More rigorously, we assume that there exist in-

jective mappings of the set Δ into the sets of mutually commuting

derivations of the rings 𝑅1 and 𝑅2. For convenience we will denote

the images of elements of Δ under these mappings by the same

symbols 𝛿1, . . . , 𝛿𝑚). A ring homomorphism 𝜙 : 𝑅 −→ 𝑆 is called a

differential (or Δ-) homomorphism if 𝜙 (𝛿𝑎) = 𝛿𝜙 (𝑎) for any 𝛿 ∈ Δ,

𝑎 ∈ 𝑅.

If 𝐾 is a Δ-field and 𝐾0 a subfield of 𝐾 which is also a Δ-subring

of𝐾 , then𝐾0 is said to be a differential (or Δ-) subfield of𝐾 , and𝐾 is

called a differential (or Δ-) field extension or a Δ-overfield of𝐾0. We

also say that we have a Δ-field extension𝐾/𝐾0. In this case, if 𝑆 ⊆ 𝐾 ,

then the intersection of all Δ-subfields of 𝐾 containing 𝐾0 and 𝑆 is

the unique Δ-subfield of 𝐾 containing 𝐾0 and 𝑆 and contained in

every Δ-subfield of 𝐾 containing 𝐾0 and 𝑆 . It is denoted by 𝐾0⟨𝑆⟩

or by 𝐾0⟨𝑆⟩Δ if we want to indicate the set of basic derivations Δ.

If 𝐾 = 𝐾0⟨𝑆⟩ and the set 𝑆 is finite, 𝑆 = {𝜂1, . . . , 𝜂𝑛}, then 𝐾 is said

to be a finitely generated Δ-field extension of 𝐾0 with the set of

Δ-generators {𝜂1, . . . , 𝜂𝑛}. In this case we write 𝐾 = 𝐾0⟨𝜂1, . . . , 𝜂𝑛⟩.

It is easy to see that the field 𝐾0⟨𝜂1, . . . , 𝜂𝑛⟩ coincides with the field

𝐾0 ({𝜃𝜂𝑖 |𝜃 ∈ Θ, 1 ≤ 𝑖 ≤ 𝑛}).

Let 𝐿/𝐾 be a Δ-field extension. We say that a set 𝑈 ⊆ 𝐿 is Δ-

algebraically dependent over 𝐾 , if the family {𝜃 (𝑢) |𝑢 ∈ 𝑈 , 𝜃 ∈ Θ}

is algebraically dependent over 𝐾 . Otherwise, the family 𝑈 is said

to be Δ-algebraically independent over 𝐾 . An element 𝑢 ∈ 𝐿 is said

to be Δ-algebraic over 𝐾 if the set {𝑢} is Δ-algebraically dependent

over 𝐾 . A maximal Δ-algebraically independent over 𝐾 subset of 𝐿

is called a differential (or Δ-) transcendence basis of 𝐿 over 𝐾 (or

of the extension 𝐿/𝐾). It is known (see [6, Chapter II]) that every

system of Δ-generators of 𝐿/𝐾 contains a Δ-transcendence basis

of 𝐿 over 𝐾 and if 𝐿/𝐾 is finitely generated as a Δ-field extension,

321

Some Properties of Multivariate Differential Dimension Polynomials and their Invariants ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

then all Δ-transcendence bases have the same number of elements

called the differential (or Δ-) transcendence degree of 𝐿 over 𝐾 ; it is

denoted by Δ-tr. deg𝐾 𝐿.

If 𝐾 is a Δ-field and 𝑌 = {𝑦1, . . . , 𝑦𝑛} is a finite set of symbols,

then one can consider the countable set of symbols Θ𝑌 = {𝜃𝑦 𝑗 |𝜃 ∈

Θ, 1 ≤ 𝑗 ≤ 𝑛} and the polynomial ring 𝑅 = 𝐾 [{𝜃𝑦 𝑗 |𝜃 ∈ Θ, 1 ≤

𝑗 ≤ 𝑛}] in the set of indeterminates Θ𝑌 . This polynomial ring is

naturally viewed as a Δ-ring where 𝛿 (𝜃𝑦 𝑗) = (𝛿𝜃)𝑦 𝑗 (𝛿 ∈ Δ, 𝜃 ∈ Θ,

1 ≤ 𝑗 ≤ 𝑛) and the elements of Δ act on the coefficients of the poly-

nomials as they act in 𝐾 . The ring 𝑅 is called the ring of differential

polynomials in differential (Δ-) indeterminates 𝑦1, . . . , 𝑦𝑛 over the

Δ-field 𝐾 . This ring is denoted by 𝐾{𝑦1, . . . , 𝑦𝑛}; its elements are

called differential (or Δ-) polynomials.

MULTIVARIATE NUMERICAL POLYNOMIALS

OF SUBSETS OF N𝑚

Definition 2.1. A polynomial 𝑓 (𝑡1, . . . , 𝑡𝑝) in 𝑝 variables (𝑝 ≥ 1)

with rational coefficients is said to be numerical if 𝑓 (𝑡1, . . . , 𝑡𝑝) ∈ Z

for all sufficiently large 𝑡1, . . . , 𝑡𝑝 ∈ Z, that is, there exists (𝑠1, . . . , 𝑠𝑝) ∈

Z𝑝 such that 𝑓 (𝑟1, . . . , 𝑟𝑝) ∈ Z whenever (𝑟1, . . . , 𝑟𝑝) ∈ Z𝑝 and

𝑟𝑖 ≥ 𝑠𝑖 (1 ≤ 𝑖 ≤ 𝑝).

Clearly, every polynomial with integer coefficients is numerical.

As an example of a numerical polynomial in 𝑝 variables with non-

integer coefficients one can consider
∏𝑝
𝑖=1

(𝑡𝑖
𝑚𝑖

)

(𝑚1, . . . ,𝑚𝑝 ∈ Z),

where
(𝑡
𝑘

)

=
𝑡 (𝑡−1) ...(𝑡−𝑘+1)

𝑘!
for any 𝑘 ∈ Z, 𝑘 ≥ 1,

(𝑡
0

)

= 1, and
(𝑡
𝑘

)

= 0 if 𝑘 is a negative integer.

If 𝑓 is a numerical polynomial in 𝑝 variables (𝑝 > 1), then deg 𝑓

and deg𝑡𝑖 𝑓 (1 ≤ 𝑖 ≤ 𝑝) will denote the total degree of 𝑓 and the

degree of 𝑓 relative to the variable 𝑡𝑖 , respectively. The follow-

ing theorem gives the žcanonicalž representation of a numerical

polynomial in several variables.

Theorem 2.2. Let 𝑓 (𝑡1, . . . , 𝑡𝑝) be a numerical polynomial in 𝑝

variables 𝑡1, . . . , 𝑡𝑝 , and let deg𝑡𝑖 𝑓 = 𝑚𝑖 (1 ≤ 𝑖 ≤ 𝑝). Then the

polynomial 𝑓 (𝑡1, . . . , 𝑡𝑝) can be represented as

𝑓 (𝑡1, . . . 𝑡𝑝) =

𝑚1
∑

𝑖1=0

. . .

𝑚𝑝
∑

𝑖𝑝=0

𝑎𝑖1 ...𝑖𝑝

(

𝑡1 + 𝑖1

𝑖1

)

. . .

(

𝑡𝑝 + 𝑖𝑝

𝑖𝑝

)

(1)

with integer coefficients 𝑎𝑖1 ...𝑖𝑝 that are uniquely defined by the nu-

merical polynomial.

In the rest of this section we deal with subsets of N𝑚 where the

positive integer𝑚 is represented as a sum of 𝑝 nonnegative integers

𝑚1, . . . ,𝑚𝑝 (𝑝 ≥ 1). In other words, we fix a partition (𝑚1, . . . ,𝑚𝑝)

of𝑚.

If 𝐴 ⊆ N𝑚 , then for any 𝑟1, . . . , 𝑟𝑝 ∈ N, 𝐴(𝑟1, . . . , 𝑟𝑝) will denote

the subset of 𝐴 that consists of all𝑚-tuples (𝑎1, . . . , 𝑎𝑚) such that

𝑎1 + · · · +𝑎𝑚1 ≤ 𝑟1, 𝑎𝑚1+1 + · · · +𝑎𝑚1+𝑚2 ≤ 𝑟2, . . . , 𝑎𝑚1+···+𝑚𝑝−1+1 +

· · · + 𝑎𝑚 ≤ 𝑟𝑝 . Furthermore, we shall associate with the set 𝐴 a

set 𝑉𝐴 ⊆ N𝑚 that consists of all𝑚-tuples 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ N𝑚

that are not greater than or equal to any 𝑚-tuple from 𝐴 with

respect to the product order on N𝑚 . (Recall that the product order

on the set N𝑘 (𝑘 ∈ N, 𝑘 ≥ 1) is a partial order ≤𝑃 on N𝑘 such that

𝑐 = (𝑐1, . . . , 𝑐𝑘) ≤𝑃 𝑐
′
= (𝑐 ′1, . . . , 𝑐

′
𝑘
) if and only if 𝑐𝑖 ≤ 𝑐 ′𝑖 for all

𝑖 = 1, . . . , 𝑘 . If 𝑐 ≤𝑃 𝑐
′ and 𝑐 ≠ 𝑐 ′, we write 𝑐 <𝑃 𝑐

′). Clearly, an

element 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ N𝑚 belongs to 𝑉𝐴 if and only if for any

element (𝑎1, . . . , 𝑎𝑚) ∈ 𝐴 there exists 𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚, such that

𝑎𝑖 > 𝑣𝑖 .

The following two theorems proved in [7, Chapter 2] generalize

the well-known Kolchin’s result on the numerical polynomials of

subsets of N𝑚 (see [6, Chapter 0, Lemma 17]) and give an explicit

formula for the numerical polynomials in 𝑝 variables associated

with a finite subset of N𝑚 .

Theorem 2.3. Let 𝐴 be a subset of N𝑚 where𝑚 =𝑚1 + · · · +𝑚𝑝
for some nonnegative integers𝑚1, . . . ,𝑚𝑝 (𝑝 ≥ 1). Then there exists a

numerical polynomial𝜔𝐴 (𝑡1, . . . , 𝑡𝑝) in 𝑝 variables with the following

properties:

(i) 𝜔𝐴 (𝑟1, . . . , 𝑟𝑝) = Card 𝑉𝐴 (𝑟1, . . . , 𝑟𝑝) for all sufficiently large

(𝑟1, . . . , 𝑟𝑝) ∈ N𝑝 (i. e., there exist (𝑠1, . . . , 𝑠𝑝) ∈ N𝑝 such that the

equality holds for all (𝑟1, . . . , 𝑟𝑝) ∈ N𝑝 such that (𝑠1, . . . , 𝑠𝑝) ≤𝑃
(𝑟1, . . . , 𝑟𝑝)).

(ii) deg𝜔𝐴 ≤ 𝑚 and deg𝑡𝑖 𝜔𝐴 ≤ 𝑚𝑖 for 𝑖 = 1, . . . , 𝑝 .

(iii) deg 𝜔𝐴 = 𝑚 if and only if the set 𝐴 is empty. In this case

𝜔𝐴 (𝑡1, . . . , 𝑡𝑝) =
∏𝑝
𝑖=1

(𝑡𝑖+𝑚𝑖
𝑚𝑖

)

.

(iv) 𝜔𝐴 is a zero polynomial if and only if (0, . . . , 0) ∈ 𝐴.

Definition 2.4. The polynomial 𝜔𝐴 (𝑡1, . . . , 𝑡𝑝) is called the di-

mension polynomial of the set 𝐴 ⊆ N𝑚 associated with the partition

(𝑚1, . . . ,𝑚𝑝) of𝑚.

Theorem 2.5. Let𝐴 = {𝑎1, . . . , 𝑎𝑛} be a finite subset ofN
𝑚 where

𝑛 is a positive integer and𝑚 =𝑚1 + · · · +𝑚𝑝 for some nonnegative

integers𝑚1, . . . ,𝑚𝑝 (𝑝 ≥ 1). Let 𝑎𝑖 = (𝑎𝑖1, . . . , 𝑎𝑖𝑚) (1 ≤ 𝑖 ≤ 𝑛) and

for any 𝑙 ∈ N, 0 ≤ 𝑙 ≤ 𝑛, let Γ(𝑙, 𝑛) denote the set of all 𝑙-element

subsets of the set N𝑛 = {1, . . . , 𝑛}. Furthermore, for any 𝜎 ∈ Γ(𝑙, 𝑝),

let 𝑎𝜎 𝑗 = max{𝑎𝑖 𝑗 |𝑖 ∈ 𝜎} (1 ≤ 𝑗 ≤ 𝑚) and 𝑏𝜎 𝑗 =
∑

ℎ∈𝜎 𝑗

𝑎𝜎ℎ . Then

𝜔𝐴 (𝑡1, . . . , 𝑡𝑝) =

𝑛
∑

𝑙=0

(−1)𝑙
∑

𝜎 ∈Γ (𝑙,𝑛)

𝑝
∏

𝑗=1

(

𝑡 𝑗 +𝑚 𝑗 − 𝑏𝜎 𝑗

𝑚 𝑗

)

(2)

Remark 2.6. Clearly, if 𝐴 ⊆ N𝑚 and 𝐴′ is the set of all minimal

elements of the set𝐴 with respect to the product order on N𝑚 , then

the set 𝐴′ is finite and 𝜔𝐴 (𝑡1, . . . , 𝑡𝑝) = 𝜔𝐴′ (𝑡1, . . . , 𝑡𝑝). Thus, The-

orem 2.5 gives an algorithm that allows one to find the dimension

polynomial of any subset of N𝑚 (with a given representation of𝑚

as a sum of 𝑝 positive integers): one should first find the set of all

minimal points of the subset and then apply Theorem 2.5.

3 MULTIVARIATE DIFFERENTIAL

DIMENSION POLYNOMIALS AND

THEIR INVARIANTS

Let 𝐾 be a differential (Δ-) field whose basic set of derivations Δ is

represented as the union of 𝑝 nonempty disjoint subsets (𝑝 ≥ 1):

Δ = Δ1

⋃

· · ·
⋃

Δ𝑝 (3)

where Δ𝑖 = {𝛿𝑖1, . . . , 𝛿𝑖𝑚𝑖 } for 𝑖 = 1, . . . , 𝑝 (𝑚1+· · ·+𝑚𝑝 =𝑚 where

𝑚 = CardΔ). Thus, we fix a partition of Δ.

Let Θ𝑖 denote the free commutative semigroup generated by Δ𝑖

(1 ≤ 𝑖 ≤ 𝑝) and let Θ be the free commutative semigroup generated

by the whole set Δ. For any 𝜃 = 𝛿
𝑘11
11 . . . 𝛿

𝑘1𝑚1

1𝑚1
𝛿
𝑘21
21 . . . 𝛿

𝑘𝑝𝑚𝑝

𝑝𝑚𝑝
∈ Θ, the

numbers ord𝑖 𝜃 =
∑𝑚𝑖

𝑗=1 𝑘𝑖 𝑗 (𝑖 = 1, . . . , 𝑝) and ord 𝜃 =
∑𝑝
𝑖=1 ord𝑖 𝜃

322

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Alexander Levin

will be called the order of 𝜃 with respect to Δ𝑖 and the order of 𝜃 ,

respectively. If 𝜃, 𝜃 ′ ∈ Θ, we say that 𝜃 ′ divides 𝜃 (or that 𝜃 is a

multiple of 𝜃 ′) and write 𝜃 ′ | 𝜃 if there exists 𝜃 ′′ ∈ Θ such that

𝜃 = 𝜃 ′′𝜃 ′. As usual, the least common multiple of elements 𝜃1 =
∏𝑝
𝑖=1

∏𝑚𝑖

𝑗=1 𝛿
𝑘𝑖 𝑗1
𝑖 𝑗 , . . . , 𝜃𝑞 =

∏𝑝
𝑖=1

∏𝑚𝑖

𝑗=1 𝛿
𝑘𝑖 𝑗𝑞
𝑖 𝑗 ∈ Θ is the element 𝜃 =

∏𝑝
𝑖=1

∏𝑚𝑖

𝑗=1 𝛿
𝑘𝑖 𝑗
𝑖 𝑗 , where 𝑘𝑖 𝑗 = max{𝑘𝑖 𝑗𝑙 |1 ≤ 𝑙 ≤ 𝑞} (1 ≤ 𝑖 ≤ 𝑝, 1 ≤

𝑗 ≤ 𝑚𝑖), denoted by lcm(𝜃1, . . . , 𝜃𝑞).

If 𝑟1, . . . , 𝑟𝑝 , 𝑟 ∈ N, the sets {𝜃 ∈ Θ | ord𝑖 𝜃 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝}

and {𝜃 ∈ Θ | ord 𝜃 ≤ 𝑟 } will be denoted by Θ(𝑟1, . . . , 𝑟𝑝) and Θ(𝑟),

respectively. If 𝜉 ∈ 𝐾 and Θ
′ ⊆ Θ, then Θ

′𝜉 , will denote the set

{𝜃 (𝜉) | 𝜃 ∈ Θ
′}.

We consider 𝑝 orderings <1, · · · <𝑝 of the semigroup Θ defined

as follows. If 𝜃 = 𝛿
𝑘11
11 . . . 𝛿

𝑘𝑝𝑚𝑝

𝑝𝑚𝑝
and 𝜃 ′ = 𝛿

𝑙11
11 . . . 𝛿

𝑙𝑝𝑚𝑝

𝑝𝑚𝑝
are elements

of Θ, then 𝜃 <𝑖 𝜃
′ if and only if the vector

(ord𝑖 𝜃, ord𝜃, ord1 𝜃, . . . , ord𝑖−1 𝜃, ord𝑖+1 𝜃, . . . , ord𝑝 𝜃, 𝑘𝑖1,

. . . , 𝑘𝑖𝑚, 𝑘11, . . . , 𝑘1𝑚1 , 𝑘21, . . . , 𝑘𝑖−1,𝑚𝑖−1 , 𝑘𝑖+1,1, . . . , 𝑘𝑝𝑚𝑝)

is less than the vector

(ord𝑖 𝜃
′, ord𝜃 ′, ord1 𝜃

′, . . . , ord𝑖−1 𝜃
′, ord𝑖+1 𝜃

′, . . . , ord𝑝 𝜃
′,

𝑙𝑖1, . . . , 𝑙𝑖𝑚, 𝑙11, . . . , 𝑙1𝑚1 , 𝑙21, . . . , 𝑙𝑖−1,𝑚𝑖−1 , 𝑙𝑖+1,1, . . . , 𝑙𝑝𝑚𝑝)

with respect to the lexicographic order on N𝑚+𝑝+1.

Let𝐾{𝑦1, . . . , 𝑦𝑛} be the ring of Δ-polynomials in Δ-indeterminates

𝑦1, . . . , 𝑦𝑛 over 𝐾 . Then the elements 𝜃𝑦𝑖 (𝜃 ∈ Θ, 1 ≤ 𝑖 ≤ 𝑛) will be

called terms, and the set of all terms Θ𝑌 will be considered together

with 𝑝 orderings that correspond to the orderings of Θ and are

denoted by the same symbols <1, . . . , <𝑝 . These orderings ofΘ𝑌 are

defined as follows. 𝜃𝑦 𝑗 <𝑖 𝜃
′𝑦𝑘 (𝜃, 𝜃 ′ ∈ Θ, 1 ≤ 𝑗, 𝑘 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑝)

if and only if 𝜃 <𝑖 𝜃
′ or 𝜃 = 𝜃 ′ and 𝑗 < 𝑘 . By the 𝑖th order of a

term 𝑢 = 𝜃𝑦 𝑗 we mean the number ord𝑖 𝑢 = ord𝑖 𝜃 . The number

ord 𝑢 = ord 𝜃 is called the order of 𝑢.

We say that a term 𝑢 = 𝜃𝑦𝑖 is divisible by a term 𝑣 = 𝜃 ′𝑦 𝑗 and

write 𝑣 |𝑢, if 𝑖 = 𝑗 and 𝜃 ′ | 𝜃 . For any terms𝑢1 = 𝜃1𝑦 𝑗 , . . . , 𝑢𝑞 = 𝜃𝑞𝑦 𝑗
with the same Δ-indeterminate 𝑦 𝑗 , the term lcm(𝜃1, . . . , 𝜃𝑞)𝑦 𝑗 is

called the least common multiple of 𝑢1, . . . , 𝑢𝑞 , it is denoted by

lcm(𝑢1, . . . , 𝑢𝑞).

If 𝐴 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}, 𝐴 ∉ 𝐾 , and 1 ≤ 𝑖 ≤ 𝑝 , then the highest

with respect to the ordering <𝑖 term that appears in𝐴 is called the 𝑖-

leader of the Δ-polynomial𝐴. It is denoted by𝑢
(𝑖)
𝐴

. If𝐴 is written as

a polynomial in one variable 𝑢
(1)
𝐴

, 𝐴 = 𝐼𝑑 (𝑢
(1)
𝐴

)
𝑑
+ 𝐼𝑑−1 (𝑢

(1)
𝐴

)
𝑑−1

+

· · · + 𝐼0 (𝐼𝑑 , 𝐼𝑑−1, . . . , 𝐼0 do not contain 𝑢
(1)
𝐴

), then 𝐼𝑑 is called the

leading coefficient of the Δ-polynomial 𝐴 and the partial derivative

𝜕𝐴/𝜕𝑢
(1)
𝐴

= 𝑑𝐼𝑑 (𝑢
(1)
𝐴

)
𝑑−1

+ (𝑑 − 1)𝐼𝑑−1 (𝑢
(1)
𝐴

)
𝑑−2

+ · · · + 𝐼1 is called

the separant of 𝐴. The leading coefficient and the separant of 𝐴 are

denoted by 𝐼𝐴 and 𝑆𝐴 , respectively.

Definition 3.1. Let 𝐴 and 𝐵 be Δ-polynomials in 𝐾{𝑦1, . . . , 𝑦𝑛}.

We say that 𝐴 has lower rank then 𝐵 and write rk 𝐴 < rk 𝐵 if either

𝐴 ∈ 𝐾 ,𝐵 ∉ 𝐾 , or the vector (𝑢
(1)
𝐴
, deg

𝑢
(1)
𝐴

𝐴, ord2 𝑢
(2)
𝐴
, . . . , ord𝑝 𝑢

(𝑝)
𝐴

)

is less than the vector (𝑢
(1)
𝐵
, deg

𝑢
(1)
𝐵

𝐵, ord2 𝑢
(2)
𝐵
, . . . , ord𝑝 𝑢

(𝑝)
𝐵

) with

respect to the lexicographic order (𝑢
(1)
𝐴

and 𝑢
(1)
𝐵

are compared with

respect to <1 and all other coordinates are compared with respect to

the natural order on N). If the two vectors are equal (or 𝐴 ∈ 𝐾 and

𝐵 ∈ 𝐾) we say that the Δ-polynomials 𝐴 and 𝐵 are of the same rank

and write rk 𝐴 = rk 𝐵.

Definition 3.2. Let 𝐴 and 𝐵 be Δ-polynomials in 𝐾{𝑦1, . . . , 𝑦𝑛}

and𝐴 ∉ 𝐾 . We say that 𝐵 is reduced with respect to𝐴 if the following

two conditions hold.

(i) 𝐵 does not contain any term 𝜃𝑢
(1)
𝐴

(𝜃 ∈ Θ, 𝜃 ≠ 1) such that

𝑜𝑟𝑑𝑖 (𝜃𝑢
(𝑖)
𝐴

) ≤ 𝑜𝑟𝑑𝑖𝑢
(𝑖)
𝐵

for 𝑖 = 2, . . . , 𝑝 .

(ii) If 𝐵 contains 𝑢
(1)
𝐴

, then either there exists 𝑗, 2 ≤ 𝑗 ≤ 𝑝, such

that 𝑜𝑟𝑑 𝑗𝑢
(𝑗)
𝐵

< 𝑜𝑟𝑑 𝑗𝑢
(𝑗)
𝐴

or 𝑜𝑟𝑑 𝑗𝑢
(𝑗)
𝐴

≤ 𝑜𝑟𝑑 𝑗𝑢
(𝑗)
𝐵

for all 𝑗 = 2, . . . , 𝑝

and 𝑑𝑒𝑔
𝑢
(1)
𝐴

𝐵 < 𝑑𝑒𝑔
𝑢
(1)
𝐴

𝐴.

A Δ-polynomial 𝐵 is said to be reduced with respect to a set A ⊆

𝐾{𝑦1, . . . , 𝑦𝑛} if 𝐵 is reduced with respect to every element of A.

Remark 3.3. The last definition shows that a Δ-polynomial 𝐵

is not reduced with respect to a Δ-polynomial 𝐴 (𝐴 ∉ 𝐾) if ei-

ther 𝐵 contains a term 𝜃𝑢
(1)
𝐴

(𝜃 ∈ Θ, 𝜃 ≠ 1) such that 𝑜𝑟𝑑𝑖 (𝜃𝑢
(𝑖)
𝐴

) ≤

𝑜𝑟𝑑𝑖𝑢
(𝑖)
𝐵

for 𝑖 = 2, . . . , 𝑝 or𝐵 contains𝑢
(1)
𝐴

and in this case𝑜𝑟𝑑 𝑗𝑢
(𝑗)
𝐴

≤

𝑜𝑟𝑑 𝑗𝑢
(𝑗)
𝐵

for 𝑗 = 2, . . . , 𝑝 and 𝑑𝑒𝑔
𝑢
(1)
𝐴

𝐴 ≤ 𝑑𝑒𝑔
𝑢
(1)
𝐴

𝐵. This observation

is helpful if one would like to show that a Δ-polynomial is not

reduced with respect to some other Δ-polynomial.

Definition 3.4. A set of Δ-polynomials A is called autoreduced

if A
⋂

𝐾 = ∅ and every element of A is reduced with respect to any

other element of this set.

The following two statements are proved in [10] (see[10, Theo-

rem 4.5] and [10, Theorem 4.6]).

Proposition 3.5. Every autoreduced set is finite.

Proposition 3.6. Let A = {𝐴1, . . . , 𝐴𝑟 } be an autoreduced set in

𝐾{𝑦1, . . . , 𝑦𝑛} and 𝐵 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}. Then there are a Δ-polynomial

𝐵0 and nonnegative integers 𝑝𝑖 , 𝑞𝑖 (1 ≤ 𝑖 ≤ 𝑟) such that 𝐵0 is reduced

with respect to A, 𝑟𝑘 𝐵0 ≤ 𝑟𝑘 𝐵, and
∏𝑟
𝑖=1 𝐼

𝑝𝑖
𝐴𝑖
𝑆
𝑞𝑖
𝐴𝑖
𝐵 ≡ 𝐵0 (𝑚𝑜𝑑 [A]).

In what follows, while considering an autoreduced set A =

{𝐴1, . . . , 𝐴𝑟 }, we always assume that its elements are arranged in

order of increasing rank: rk 𝐴1 < · · · < rk 𝐴𝑟 .

Definition 3.7. Let A = {𝐴1, . . . , 𝐴𝑟 } and B = {𝐵1, . . . ,

𝐵𝑠 } be two autoreduced sets. Then A is said to have lower rank than

B if one of the following two cases holds:

(i) There exists 𝑘 ∈ N such that 𝑘 ≤ min{𝑟, 𝑠}, rk 𝐴𝑖 = rk 𝐵𝑖 for

𝑖 = 1, . . . , 𝑘 − 1 and rk 𝐴𝑘 < rk 𝐵𝑘 .

(ii) 𝑟 > 𝑠 and rk 𝐴𝑖 = rk 𝐵𝑖 for 𝑖 = 1, . . . , 𝑠 .

If 𝑟 = 𝑠 and rk 𝐴𝑖 = rk 𝐵𝑖 for 𝑖 = 1, . . . , 𝑟 , then A is said to have

the same rank as B.

The statements of Propositions 3.8 and 3.10 below can be ob-

tained by mimicking the proofs of the corresponding statements for

classical Ritt-Kolchin autoreduced sets (see [7, Proposition 5.3.10

and Lemma 5.3.12]).

Proposition 3.8. Every nonempty family of autoreduced sets

contains an autoreduced set of lowest rank.

Definition 3.9. Let 𝐽 be a Δ-ideal of the ring of Δ-polynomials

𝐾{𝑦1, . . . , 𝑦𝑛}. Then an autoreduced subset of 𝐽 of lowest rank is called

a characteristic set of the ideal 𝐽 .

Proposition 3.10. Let A = {𝐴1, . . . , 𝐴𝑑 } be a characteristic set

of a Δ-ideal 𝐽 of the ring of Δ-polynomials 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛}. Then

323

Some Properties of Multivariate Differential Dimension Polynomials and their Invariants ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

an element 𝐵 ∈ 𝐽 is reduced with respect to the set A if and only if

𝐵 = 0. In particular, 𝐼𝐴 ∉ 𝐽 and 𝑆𝐴 ∉ 𝐽 for every 𝐴 ∈ A.

Let 𝐾 be a Δ-field and 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ a finitely generated

Δ-extension of 𝐾 with a set of Δ-generators 𝜂 = {𝜂1, . . . , 𝜂𝑛}.

Then there exists a natural Δ-homomorphism 𝜙𝜂 of the ring of

Δ-polynomials 𝐾{𝑦1, . . . , 𝑦𝑛} onto the Δ-subring 𝐾{𝜂1, . . . , 𝜂𝑛} of

𝐿 such that𝜙𝜂 (𝑎) = 𝑎 for any𝑎 ∈ 𝐾 and𝜙𝜂 (𝑦 𝑗) = 𝜂 𝑗 for 𝑗 = 1, . . . , 𝑛.

If 𝐴 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}, then 𝜙𝜂 (𝐴) is called the value of 𝐴 at 𝜂 and

is denoted by 𝐴(𝜂). Obviously, 𝑃 = Ker𝜙𝜂 is a prime Δ-ideal of

𝐾{𝑦1, . . . , 𝑦𝑛}. It is called the defining ideal of 𝜂. If we consider

the quotient field 𝑄 of 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛}/𝑃 as a Δ-field (where

𝛿 (𝑢𝑣) =
𝑣𝛿 (𝑢)−𝑢𝛿 (𝑣)

𝑣2
for any 𝑢, 𝑣 ∈ 𝑅), then this quotient field is

naturally Δ-isomorphic to the field 𝐿. The Δ-isomorphism of𝑄 onto

𝐿 is identical on 𝐾 and maps the images of the Δ-indeterminates

𝑦1, . . . , 𝑦𝑛 in the factor ring 𝑅 onto the elements 𝜂1, . . . , 𝜂𝑛 , respec-

tively.

Let𝐾 be a differential (Δ-) field, CardΔ =𝑚, and let a partition (3)

of Δ be fixed: Δ = Δ1
⋃

· · ·
⋃

Δ𝑝 (𝑝 ≥ 1), where Δ𝑖 = {𝛿𝑖1, . . . , 𝛿𝑖𝑚𝑖 }

(1 ≤ 𝑖 ≤ 𝑝). Furthermore, let 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ be a Δ-field exten-

sion of 𝐾 generated by a finite set 𝜂 = {𝜂1, . . . , 𝜂𝑛}. Let 𝑃 be the

defining ideal of 𝜂 and A = {𝐴1, . . . , 𝐴𝑑 } a characteristic set of 𝑃 .

For any 𝑟1, . . . , 𝑟𝑝 ∈ N, let

𝑈 ′
𝑟1 ...𝑟𝑝 = {𝑢 ∈ Θ𝑌 | ord𝑖 𝑢 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝 and 𝑢 is not a

derivative of any 𝑢
(1)
𝐴𝑖

(that is, 𝑢 ≠ 𝜃𝑢
(1)
𝐴𝑖

for any 𝜃 ∈ Θ; 𝑖 = 1, . . . , 𝑑)

and let

𝑈 ′′
𝑟1 ...𝑟𝑝 = {𝑢 ∈ Θ𝑌 | ord𝑖 𝑢 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝 and for every

𝜃 ∈ Θ, 𝐴 ∈ A such that 𝑢 = 𝜃𝑢
(1)
𝐴

, there exists 𝑖 ∈ {2, . . . , 𝑝} such

that ord𝑖 (𝜃𝑢
(𝑖)
𝐴

) > 𝑟𝑖 }.

(If 𝑝 = 1, 𝑈 ′
𝑟1 = {𝑢 ∈ Θ𝑌 | ord1 𝑢 ≤ 𝑟1 and 𝑢 is not a derivative of

any 𝑢
(1)
𝐴𝑖

} and 𝑈 ′′
𝑟1 = ∅.) Furthermore, for any (𝑟1 . . . 𝑟𝑝) ∈ N

𝑝 , let

𝑈𝑟1 ...𝑟𝑝 = 𝑈 ′
𝑟1 ...𝑟𝑝

⋃

𝑈 ′′
𝑟1 ...𝑟𝑝 .

The following theorem proved in [10, Section 5] establishes

the existence and describes the form of a multivariate dimension

polynomial associated with a finite system of Δ-generators of a

Δ-field extension and with a partition of the set Δ. We give an

extended version of this result that follows from the proof of [10,

Theorem 5.1].

Theorem 3.11. With the above notation,

(i) For all sufficiently large (𝑟1 . . . 𝑟𝑝) ∈ N𝑝 , the set 𝑈𝑟1 ...𝑟𝑝 is a

transcendence basis of 𝐾 (

𝑛
⋃

𝑗=1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) over 𝐾 .

(ii) There exist numerical polynomials 𝜔𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝)

and 𝜙𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) in 𝑝 variables such that 𝜔𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝)

= Card𝑈 ′
𝑟1 ...𝑟𝑝 and 𝜙𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝) = Card𝑈 ′′

𝑟1 ...𝑟𝑝 for all suffi-

ciently large (𝑟1 . . . 𝑟𝑝) ∈ N
𝑝 , so that the polynomial

Φ𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) = 𝜔𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) + 𝜙𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) has the prop-

erty thatΦ𝜂 (𝑟1, . . . , 𝑟𝑝) = tr. deg𝐾 𝐾 (

𝑛
⋃

𝑗=1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) for all suf-

ficiently large (𝑟1, . . . , 𝑟𝑝) ∈ N
𝑝 .

(iii) deg𝑡𝑖 Φ𝜂 |𝐾 ≤ 𝑚𝑖 (1 ≤ 𝑖 ≤ 𝑝), so that deg Φ𝜂 |𝐾 ≤ 𝑚 and the

polynomial Φ𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) can be represented as

Φ𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) =

𝑚1
∑

𝑖1=0

. . .

𝑚𝑝
∑

𝑖𝑝=0

𝑎𝑖1 ...𝑖𝑝

(

𝑡1 + 𝑖1

𝑖1

)

. . .

(

𝑡𝑝 + 𝑖𝑝

𝑖𝑝

)

(4)

where 𝑎𝑖1 ...𝑖𝑝 ∈ Z for all 𝑖1 . . . 𝑖𝑝 .

(iv) 𝜙𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) is an alternating sum of polynomials in 𝑝 vari-

ables of the form

𝜙 𝑗 ;𝑘1,...,𝑘𝑞 =

(

𝑡1 +𝑚1 − 𝑏1𝑗

𝑚1

)

. . .

(

𝑡𝑘1−1 +𝑚𝑘1−1 − 𝑏𝑘1−1, 𝑗
𝑚𝑘1−1

)

[(

𝑡𝑘1 +𝑚𝑘1 − 𝑎𝑘1, 𝑗
𝑚𝑘1

)

−

(

𝑡𝑘1 +𝑚𝑘1 − 𝑏𝑘1, 𝑗
𝑚𝑘1

)]

·

(

𝑡𝑘1+1 +𝑚𝑘1+1 − 𝑏𝑘1+1, 𝑗
𝑚𝑘1+1

)

. . .

(

𝑡𝑘𝑞−1 +𝑚𝑘𝑞−1 − 𝑏𝑘𝑞−1, 𝑗
𝑚𝑘𝑞−1

)

·

[

(

𝑡𝑘𝑞 +𝑚𝑘𝑞 − 𝑎𝑘𝑞 , 𝑗
𝑚𝑘𝑞

)

−

(

𝑡𝑘𝑞 +𝑚𝑘𝑞 − 𝑏𝑘𝑞 , 𝑗
𝑚𝑘𝑞

)

]

. . .

(

𝑡𝑝 +𝑚𝑝 − 𝑏𝑝 𝑗

𝑚𝑝

)

, so that deg𝜙𝜂 |𝐾 < 𝑚

Definition 3.12. Numerical polynomial Φ𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝), whose

existence is established by the last theorem, is called a differential

(or Δ-) dimension polynomial of the differential field extension 𝐿 =

𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ associated with the set ofΔ-generators𝜂 = {𝜂1, . . . , 𝜂𝑛}

and with partition (3) of the basic set of derivations Δ.

Remark 3.13. With the notation of the last theorem, if 𝜂1, . . . , 𝜂𝑛
are Δ-algebraically independent over 𝐾 , then

Φ𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) = 𝑛

𝑝
∏

𝑖=1

(

𝑡𝑖 +𝑚𝑖

𝑚𝑖

)

. (5)

Indeed, all elements𝛿
𝑘11
11 . . . 𝛿

𝑘1𝑚1

1𝑚1
𝛿
𝑘21
21 . . . 𝛿

𝑘𝑝𝑚𝑝

𝑝𝑚𝑝
such that

∑𝑚𝑖

𝑗=1 𝑘𝑖 𝑗 ≤

𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑝) form a transcendence basis of 𝐾 (

𝑛
⋃

𝑗=1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗)

over 𝐾 . By Theorem 2.3 (iii), the number of such elements is

𝑛
∏𝑝
𝑖=1

(𝑟𝑖+𝑚𝑖
𝑚𝑖

)

, so we arrive at formula (5).

Remark 3.14. Theorem 3.11 shows that the main problem in

computing the multivariate Δ-dimension polynomial Φ𝜂 |𝐾 is con-

structing a characteristic set of the defining Δ-ideal of the Δ-field

extension. If this ideal is linear (that is, the defining system of differ-

ential equations on the generators of the extension is linear), then

this problem was solved in [11] by an algorithm for constructing

a Gröbner basis with respect to several term orderings (see [11,

Algorithm 1] and [11, Theorem 3.10]). In the nonlinear case the

problem of generalizing the Ritt-Kolchin algorithm to the case of

autoreduced sets with respect to several term orderings defined

above is still open.

For any permutation (𝑗1, . . . , 𝑗𝑝) of the set {1, . . . , 𝑝} (𝑝 ≥ 1),

let ≤𝑗1,..., 𝑗𝑝 denote the corresponding lexicographic order on N𝑝

such that (𝑟1, . . . , 𝑟𝑝) ≤𝑗1,..., 𝑗𝑝 (𝑠1, . . . , 𝑠𝑝) if and only if either 𝑟 𝑗1 <

𝑠 𝑗1 or there exists 𝑘 ∈ N, 1 ≤ 𝑘 ≤ 𝑝 − 1 such that 𝑟 𝑗𝜈 = 𝑠 𝑗𝜈
for 𝜈 = 1, . . . , 𝑘 and 𝑟 𝑗𝑘+1 < 𝑠 𝑗𝑘+1 . If 𝐸 is a finite subset of N𝑝 ,

then 𝐸 ′ will denote the set of all 𝑝-tuples 𝑒 ∈ 𝐸 that are maximal

324

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Alexander Levin

elements of 𝐸 with respect to one of the 𝑝! orders ≤𝑗1,..., 𝑗𝑝 . Say, if

𝐸 = {(3, 0, 2), (2, 1, 1), (0, 1, 4), (1, 0, 3), (1, 1, 6), (3, 1, 0), (1, 2, 0)}

⊆ N3, then 𝐸 ′ = {(3, 0, 2), (3, 1, 0), (1, 1, 6), (1, 2, 0)}.

The following result gives differential birational invariants car-

ried by a multivariate dimension polynomial of a differential field

extension. In particular, it shows that multivariate differential di-

mension polynomials carry essentially more such invariants than

their univariate counterparts.

Theorem 3.15. Let 𝐾 be a differential field with a basic set of

derivations Δ and let partition (3) of the set Δ into the union of 𝑝

disjoint sets (𝑝 ≥ 1) be fixed. Let 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ be a Δ-field

extension of 𝐾 with the finite set of Δ-generators 𝜂 = {𝜂1, . . . , 𝜂𝑛}

and let

Φ𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) =

𝑚1
∑

𝑖1=0

. . .

𝑚𝑝
∑

𝑖𝑝=0

𝑎𝑖1 ...𝑖𝑝

(

𝑡1 + 𝑖1

𝑖1

)

. . .

(

𝑡𝑝 + 𝑖𝑝

𝑖𝑝

)

(6)

be the corresponding differential dimension polynomial. Let 𝐸𝜂 =

{(𝑖1 . . . 𝑖𝑝) ∈ N𝑝 | 0 ≤ 𝑖𝑘 ≤ 𝑚𝑘 (𝑘 = 1, . . . , 𝑝) and 𝑎𝑖1 ...𝑖𝑝 ≠ 0}.

Then 𝑑 = deg Φ𝜂 |𝐾 , 𝑎𝑚1 ...𝑚𝑝 , the elements (𝑘1, . . . , 𝑘𝑝) ∈ 𝐸 ′𝜂 , the

corresponding coefficients 𝑎𝑘1 ...𝑘𝑝 , and the coefficients of the terms of

total degree 𝑑 in Φ𝜂 |𝐾 do not depend on the system of Δ-generators 𝜂.

Proof. The fact that the elements (𝑘1, . . . , 𝑘𝑝) of the set 𝐸
′
𝜂 and

the corresponding coefficients 𝑎𝑘1 ...𝑘𝑝 do not depend on the system

of Δ-generators 𝜂 of 𝐿/𝐾 is established in the proof of Theorem

5.3 of [10] using the observation that if 𝜁 = {𝜁1, . . . , 𝜁𝑞} is another

system of Δ-generators of 𝐿/𝐾 , then there exists (𝑠1, . . . , 𝑠𝑝) ∈

N𝑝 such that Φ𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝) ≤ Φ𝜁 |𝐾 (𝑟1 + 𝑠1, . . . , 𝑟𝑝 + 𝑠𝑝) and

Φ𝜁 |𝐾 (𝑟1, . . . , 𝑟𝑝) ≤ Φ𝜂 |𝐾 (𝑟1+𝑠1, . . . , 𝑟𝑝 +𝑠𝑝) for all sufficiently large

(𝑟1, . . . , 𝑟𝑝) ∈ N
𝑝 . Clearly, these inequalities show that degΦ𝜁 |𝐾 =

degΦ𝜂 |𝐾 . Let 𝑑 = degΦ𝜂 |𝐾 . Let us order the terms of total degree

𝑑 in Φ𝜂 |𝐾 and Φ𝜁 |𝐾 using the lexicographic order ≤𝑝,𝑝−1,...,1 and

for sufficiently large 𝑟 ∈ N, set 𝑥1 = 𝑟 , 𝑥2 = 2𝑥1 , 𝑥3 = 2𝑥2 , . . . , 𝑥𝑝 =

2𝑥𝑝−1 , 𝑅 = 2𝑥𝑝 and 𝑟𝑖 = 𝑥𝑖𝑅 (1 ≤ 𝑖 ≤ 𝑝). If 𝑟 → ∞, then the last two

inequalities immediately imply that Φ𝜂 |𝐾 and Φ𝜁 |𝐾 have the same

coefficients of the corresponding terms of total degree 𝑑 . □

The next theorem characterizes one of the invariants of polyno-

mial (6).

Theorem 3.16. With the notation of the last theorem, 𝑎𝑚1 ...𝑚𝑝 =

Δ-tr. deg𝐾 𝐿.

Proof. Let Δ-tr. deg𝐾 𝐿 = 𝑑 . Then, as it was mentioned in sec-

tion 2, one can choose a Δ-transcendence basis of 𝐿/𝐾 from the set

𝜂, so we can assume that 𝜂1, . . . , 𝜂𝑑 form such a basis. Since the fam-

ily {𝜃𝜂𝑖 | 𝜃 ∈ Θ, 1 ≤ 𝑖 ≤ 𝑑} is algebraically independent over 𝐾 , it

follows from Remark 3.13 that tr. deg𝐾 𝐾 (

𝑑
⋃

𝑗=1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) =

𝑑

𝑝
∏

𝑖=1

(

𝑟𝑖 +𝑚𝑖

𝑚𝑖

)

for all (𝑟1, . . . , 𝑟𝑝) ∈ N𝑝 . Let 𝐹 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑑 ⟩.

Then every element 𝜂 𝑗 , 𝑑 + 1 ≤ 𝑗 ≤ 𝑛, is Δ-algebraic over 𝐾 .

It means that there exists a Δ-polynomial 𝐴 𝑗 ∈ 𝐹 {𝑦 𝑗 } (𝐹 {𝑦 𝑗 } is

the ring of Δ-polynomials in one Δ-indeterminate 𝑦 𝑗 over 𝐹) such

that 𝐴 𝑗 (𝜂 𝑗) = 0. Taking such a polynomial of the smallest possible

degree we can assume that 𝑆𝐴 𝑗
(𝜂 𝑗) ≠ 0. Let 𝐴 𝑗 =

∑𝑞 𝑗
𝑘=0

𝐼 𝑗𝑘 (𝑢
(1)
𝐴 𝑗

)𝑘

where all terms of all 𝐼 𝑗𝑘 are less than 𝑢
(1)
𝐴 𝑗

with respect to <1.

If 𝛿 ∈ Δ, then 𝛿𝐴 𝑗 (𝜂 𝑗) = 0, so

𝑆𝐴 𝑗
(𝜂 𝑗)𝛿 (𝑢

(1)
𝐴 𝑗

(𝜂 𝑗)) +
∑𝑞 𝑗
𝑘=0

𝛿 (𝐼 𝑗𝑘 (𝜂 𝑗))𝑢
(1)
𝐴 𝑗

(𝜂 𝑗) = 0.

The term 𝛿𝑢
(1)
𝐴 𝑗

has the form𝜃 𝑗𝑦 𝑗 for some𝜃 𝑗 ∈ Θ and one can easily

see that for any term 𝑣 in any 𝑆𝐴 𝑗
or 𝛿 (𝐼 𝑗𝑘), we have 𝑣 <1 𝜃 𝑗𝑦 𝑗

and ord𝑖 𝑣 ≤ ord𝑖 𝑢
(𝑖)
𝐴 𝑗

+ 1 (𝑖 = 1, . . . , 𝑝). It follows that 𝜃 𝑗𝜂 𝑗 ∈

𝐹 ({𝜃𝜂𝑘 | 𝜃 ∈ Θ, 𝜃𝑦𝑘 <1 𝜃 𝑗𝑦 𝑗 and ord𝑖 𝜃𝑦𝑘 ≤ 𝑎 𝑗𝑖 for 𝑖 = 1, . . . , 𝑝})

where 𝑎 𝑗𝑖 = ord𝑖 𝑢
(𝑖)
𝐴 𝑗

+ 1 (1 ≤ 𝑖 ≤ 𝑝).

Since 𝐹 = 𝐾
(

⋃𝑑
𝑘=1

⋃

(𝑙1,...,𝑙𝑝) ∈N𝑝 Θ(𝑙1, . . . , 𝑙𝑝)𝜂𝑘

)

, there exist

ℎ1, . . . , ℎ𝑝 ∈ N such that 𝜃 𝑗𝜂 𝑗 ∈ 𝐾 (
⋃𝑑
𝑘=1

Θ(ℎ1, . . . , ℎ𝑝)𝜂𝑘
⋃

{𝜃𝜂𝑘 | 𝜃 ∈ Θ, 𝜃𝑦𝑘 <1 𝜃 𝑗𝑦 𝑗 , ord𝑖 𝜃𝑦𝑘 ≤ 𝑎 𝑗𝑖 (𝑖 = 1, . . . , 𝑝)}).

Let 𝜃 ′ ∈ Θ and 𝜃 𝑗 | 𝜃
′. For any 𝑖 = 1, . . . , 𝑝 , let 𝑠𝑖 = ord𝑖 𝜃

′ (clearly,

𝑠𝑖 ≥ 𝑎 𝑗𝑖). Then

𝜃 ′𝜂 𝑗 ∈ 𝐾 (
⋃𝑑
𝑘=1

Θ(𝑠1 + ℎ1, . . . , 𝑠𝑝 + ℎ𝑝)𝜂𝑘
⋃

{𝜃𝜂𝑙 | 𝜃 ∈ Θ, 𝜃𝑦 𝑗 <1

𝜃 ′𝑦 𝑗 , ord𝑖 𝜃 ≤ ord𝑖 𝜃
′ (1 ≤ 𝑖 ≤ 𝑝) and 𝜃 𝑗 ∤ 𝜃 }).

Therefore, if 𝑟𝑖 ∈ N, 𝑟𝑖 ≥ max𝑑+1≤ 𝑗≤𝑛{𝑎 𝑗𝑖 } (𝑖 = 1, . . . , 𝑝), then

𝐾 (
⋃𝑛
𝑘=1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂𝑘) ⊆ 𝐾 (
⋃𝑑
𝑘=1

Θ(𝑟1 + ℎ1, . . . , 𝑟𝑝 + ℎ𝑝)𝜂𝑘 ∪
⋃𝑛
𝑗=𝑑+1

[Θ(𝑟1, . . . , 𝑟𝑝) \ Θ(𝑟1 − 𝑎 𝑗1, , . . . , 𝑟𝑝 − 𝑎 𝑗𝑝)]𝜂 𝑗).

It follows that Φ𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝) ≤ 𝑑
∏𝑝
𝑖=1

(𝑟𝑖+𝑚𝑖
𝑚𝑖

)

+
∑𝑛
𝑗=𝑑+1

[

∏𝑝
𝑖=1

(𝑟𝑖+𝑚𝑖
𝑚𝑖

)

−
∏𝑝
𝑖=1

(𝑟𝑖−𝑎 𝑗𝑖+𝑚𝑖
𝑚𝑖

)

]

for all sufficien-

tly large (𝑟1, . . . , 𝑟𝑝) ∈ N
𝑝 . Since the total degree of the polynomial

∑𝑛
𝑗=𝑑+1

[

∏𝑝
𝑖=1

(𝑡𝑖+𝑚𝑖
𝑚𝑖

)

−
∏𝑝
𝑖=1

(𝑡𝑖−𝑎 𝑗𝑖+𝑚𝑖
𝑚𝑖

)

]

is less than𝑚, we obtain

that 𝑎𝑚1 ...𝑚𝑝 ≤ 𝑑 .

On the other hand, for all sufficiently large (𝑟1, . . . , 𝑟𝑝) ∈ N𝑝 ,

Φ𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝) = tr. deg𝐾 𝐾 (
⋃𝑛
𝑘=1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂𝑘) ≥

tr. deg𝐾 𝐾 (
⋃𝑑
𝑘=1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂𝑘) = 𝑑
∏𝑝
𝑖=1

(𝑟𝑖+𝑚𝑖
𝑚𝑖

)

,

hence 𝑎𝑚1 ...𝑚𝑝 ≥ 𝑑 .

Thus, 𝑎𝑚1 ...𝑚𝑝 = 𝑑 = Δ-tr. deg𝐾 𝐿. □

With the notation of Theorem 3.15, let 𝑝 ≥ 2, 1 ≤ 𝑘 < 𝑝 ,

Δ
(𝑘)

= Δ1
⋃

· · ·
⋃

Δ𝑘 , and 𝐹𝑟𝑘+1,...,𝑟𝑝 denote the Δ
(𝑘) -field exten-

sion of 𝐾 generated by the set
⋃𝑛
𝑗=1 Θ(0, . . . , 0, 𝑟𝑘+1, . . . , 𝑟𝑝)𝜂 𝑗 (𝑟𝑖 ∈ N), that is, 𝐹𝑟𝑘+1,...,𝑟𝑝

= 𝐾 ⟨
⋃𝑛
𝑗=1 ΘΔ\Δ(𝑘) (𝑟𝑘+1, . . . , 𝑟𝑝)𝜂 𝑗 ⟩Δ(𝑘) . Since Θ(𝑟1, . . . , 𝑟𝑝)

= Θ(𝑟1, . . . , 𝑟𝑘 , 0, . . . , 0)Θ(0, . . . , 0, 𝑟𝑘+1, . . . , 𝑟𝑝), we can combine the

results of Theorems 3.11 and 3.16 to get the following statement.

Corollary 3.17. With the above notation, and the Δ-dimension

polynomial (6) of the extension 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩/𝐾 , the numerical poly-

nomial in 𝑝 − 𝑘 variables 𝜙 (𝑡𝑘+1, . . . , 𝑡𝑝) =
𝑚𝑘+1
∑

𝑖𝑘+1=0

. . .

𝑚𝑝
∑

𝑖𝑝=0

𝑎𝑚1 ...𝑚𝑘𝑖𝑘+1 ...𝑖𝑝

(

𝑡𝑘+1 + 𝑖𝑘+1
𝑖𝑘+1

)

. . .

(

𝑡𝑝 + 𝑖𝑝

𝑖𝑝

)

describes the growth of Δ(𝑘) -tr. deg𝐾 𝐹𝑟𝑘+1,...,𝑟𝑝 , that is,

𝜙 (𝑟𝑘+1, . . . , 𝑟𝑝) = Δ
(𝑘) -tr. deg𝐾 𝐹𝑟𝑘+1,...,𝑟𝑝 for all sufficiently large

𝑟𝑘+1, . . . , 𝑟𝑝 ∈ N𝑝−𝑘 .

This corollary, in particular, shows that if 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ is a

finitely generated differential field extension of a differential field

𝐾 with a basic set Δ, Δ′ ⊆ Δ, Δ′′
= Δ \ Δ

′, and 𝑚1 = CardΔ′,

𝑚2 = CardΔ′′ (𝑚1 +𝑚2 =𝑚 where𝑚 = CardΔ), then there exists

325

Some Properties of Multivariate Differential Dimension Polynomials and their Invariants ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

a univariate numerical polynomial 𝜙 (𝑡) =
∑𝑚2

𝑖=0 𝑐𝑖
(𝑡+𝑖
𝑖

)

(𝑐𝑖 ∈ Z)

such that 𝜙 (𝑟) = Δ
′-tr. deg𝐾 𝐾 ⟨

⋃𝑛
𝑘=1

ΘΔ′′ (𝑟)𝜂𝑘 ⟩Δ′ and 𝑐𝑚2 = Δ-

tr. deg𝐾 𝐿. Furthermore, if Φ𝜂 |𝐾 (𝑡1, 𝑡2) =
∑𝑚1

𝑖=0

∑𝑚2

𝑖2=0
𝑎𝑖 𝑗

(𝑡1+𝑖
𝑖

) (𝑡2+𝑗
𝑗

)

is the bivariate Δ-dimension polynomial of 𝐿/𝐾 associated with

the partition Δ = Δ
′⋃

Δ
′′ and 𝑑 = deg𝑡1 Φ𝜂 |𝐾 < 𝑚1, then Δ

′-

t. tr. deg𝐾 𝐾 ⟨
⋃𝑛
𝑘=1

ΘΔ′′ (𝑟)𝜂𝑘 ⟩Δ′ =
∑𝑚2

𝑖=0 𝑎𝑑 𝑗
(𝑟+𝑗
𝑗

)

(in this case 𝑑 =

Δ
′-type𝐾 𝐾 ⟨

⋃𝑛
𝑘=1

ΘΔ′′ (𝑟)𝜂𝑘 ⟩Δ′).

The following theorem provides necessary and sufficient con-

ditions on generators of a differential field extension of a given

differential transcendence degree 𝑑 under which the corresponding

multivariate dimension polynomial has the simplest possible form.

Theorem 3.18. With the notation of Theorem 3.15, the following

conditions are equivalent.

(i) Φ𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝) = 𝑑

𝑝
∏

𝑖=1

(

𝑡𝑖 +𝑚𝑖

𝑚𝑖

)

.

(ii) Δ-tr. deg𝐾 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ = tr. deg𝐾 (𝜂1, . . . , 𝜂𝑛) = 𝑑 .

Proof. (i) ⇒ (ii). By Theorem 3.16, 𝑑 = Δ-tr. deg𝐾 𝐿 where

𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩. Without loss of generality we can assume that

𝜂1, . . . , 𝜂𝑑 is a Δ-transcendence basis of 𝐿 over 𝐾 . Then for all suffi-

ciently large (𝑟1, . . . , 𝑟𝑝) ∈ N
𝑝 ,

Φ𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝) = tr. deg𝐾 𝐾 (
⋃𝑛
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) =

tr. deg𝐾 𝐾 (
⋃𝑑
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗), hence

tr. deg
𝐾 (

⋃𝑑
𝑗=1 Θ(𝑟1,...,𝑟𝑝)𝜂 𝑗)

𝐾 (
⋃𝑛
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) = 0.

Therefore, every element 𝜂 𝑗 ,𝑑+1 ≤ 𝑗 ≤ 𝑛, is algebraic over the field

𝐹 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑑 ⟩, so if 𝜂 ′ denotes the (𝑛 − 𝑑)-tuple (𝜂𝑑+1, . . . , 𝜂𝑛),

then Φ𝜂′ |𝐹 (𝑡1, . . . , 𝑡𝑝) = 0.

Let 𝑃 be the defining Δ-ideal of 𝜂 ′ in the ring of Δ-polynomials

𝐹 {𝑦1, . . . , 𝑦𝑛−𝑑 }. LetA be a characteristic set of 𝑃 (we use the termi-

nology and term orderings <1, · · · <𝑝 introduced in the beginning

of this section). For every 𝑗 = 1, . . . , 𝑛 − 𝑑 , let 𝐸 𝑗 denote the set

of all (𝑘1, . . . , 𝑘𝑚) ∈ N𝑚 such that 𝛿
𝑘1
1 . . . 𝛿

𝑘𝑚
𝑚 𝑦 𝑗 is a 1-leader of

an element of A. Since Φ𝜂′ |𝐹 = 0, we also have 𝜔𝜂′ |𝐹 = 0 where

𝜔𝜂′ |𝐹 is the polynomial in 𝑝 variables defined in Theorem 3.11(ii).

Furthermore, it follows from Theorem 2.3(iv) that 𝜔𝜂′ |𝐹 = 0 if and

only if 𝐸 𝑗 = {(0, . . . , 0)} for 𝑗 = 1, . . . , 𝑛 − 𝑑 .

Since 𝑦1 <1 𝑦 𝑗 for 𝑗 = 2. . . . , 𝑛 − 𝑑 , a Δ-polynomial in A

with leader 𝑦1 is a usual polynomial in 𝑦1 with coefficients in

𝐹 . Therefore, 𝜂𝑑+1 and all 𝜃𝜂𝑑+1 (𝜃 ∈ Θ) are algebraic over 𝐹 . If

𝜂 ′′ = (𝜂𝑑+2, . . . , 𝜂𝑛), then Φ𝜂′′ |𝐹 (𝑟1, . . . , 𝑟𝑝) ≤ Φ𝜂′ |𝐹 (𝑟1, . . . , 𝑟𝑝) for

all (𝑟1, . . . , 𝑟𝑝) ∈ N𝑝 , so Φ𝜂′′ |𝐹 = 0 and we can repeat the above

arguments and obtain that every 𝜃𝜂 𝑗 (𝜃 ∈ Θ, 𝑑 + 1 ≤ 𝑗 ≤ 𝑛) is

algebraic over 𝐹 .

Since the elements 𝜂𝑑+1, . . . , 𝜂𝑛 are algebraic over the field 𝐹 =

𝐾 ⟨𝜂1, . . . , 𝜂𝑑 ⟩, there exist ℎ1, . . . , ℎ𝑝 ∈ N such that 𝜂𝑑+1, . . . , 𝜂𝑛 are

algebraic over 𝐾 (
⋃𝑑
𝑗=1 Θ(ℎ1, . . . , ℎ𝑝)𝜂 𝑗).

It follows that if (ℎ1, . . . , ℎ𝑝) ≤𝑃 (𝑟1, . . . , 𝑟𝑝), then the field ex-

tension 𝐾 (
⋃𝑛
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗)/𝐾 (

⋃𝑑
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) is alge-

braic.

Suppose 𝜂𝑑+1 is not algebraic over 𝐾 (𝜂1, . . . , 𝜂𝑑). Let 𝑞1, . . . , 𝑞𝑝
be a minimal (with respect to the product order <𝑃) element of N𝑝

such that 𝜂𝑑+1 is algebraic over the field 𝐾 (
⋃𝑑
𝑗=1 Θ(𝑞1, . . . , 𝑞𝑝)𝜂 𝑗).

(By the assumption, (𝑞1, . . . , 𝑞𝑝) ≠ (0, . . . , 0)). Without loss of gen-

erality we can assume that 𝑞1 ≥ 1. Then 𝜂𝑑+1 is transcendental

over the field

𝐾 (
⋃𝑑
𝑗=1 Θ(𝑞1 − 1, . . . , 𝑞𝑝)𝜂 𝑗). Then there exists a term 𝑣 in the ring

of Δ-polynomials 𝐾{𝑦1, . . . , 𝑦𝑑 } such that ord1 𝑣 = 𝑞1, ord𝑖 𝑣 ≤

𝑞𝑖 for 𝑖 = 2, . . . , 𝑝 , 𝜂𝑑+1 is transcendental over the field 𝐾 ′
=

𝐾 ({𝜃𝜂 𝑗 | 𝜃 ∈ Θ(𝑞1, . . . , 𝑞𝑝), 1 ≤ 𝑗 ≤ 𝑑, 𝜃𝑦 𝑗 <1 𝑣}) and algebraic

over the field 𝐾 ′(𝑣 (𝜂)). It follows that 𝑣 (𝜂) is algebraic over

𝐾 (
⋃𝑑
𝑗=1 Θ(𝑞1, . . . , 𝑞𝑝)𝜂 𝑗 \ {𝜂𝑑+1}

⋃

{𝑣 (𝜂)}).

Therefore, if𝜃 ′ ∈ Θ(𝑟1, . . . , 𝑟𝑝)where (ℎ1, . . . , ℎ𝑝) ≤𝑃 (𝑟1, . . . , 𝑟𝑝),

then 𝜃 ′𝑣 (𝜂) is algebraic over 𝐾 (
⋃𝑑
𝑗=1 Θ(𝑟1 + 𝑞1, . . . , 𝑟𝑝 + 𝑞𝑝)𝜂 𝑗 \

{𝜃 ′𝜂𝑑+1}
⋃

{𝜃 ′𝑣 (𝜂)}).

Since 𝜂𝑑+1 is algebraic over 𝐾 (
⋃𝑑
𝑗=1 Θ(𝑞1, . . . , 𝑞𝑝)𝜂 𝑗), 𝜃

′𝜂𝑑+1 is al-

gebraic over 𝐾 (
⋃𝑑
𝑗=1 Θ(𝑠1 + 𝑞1, . . . , 𝑠𝑝 + 𝑞𝑝)𝜂 𝑗) where 𝑠𝑖 = ord𝑖 𝜃

′,

1 ≤ 𝑖 ≤ 𝑝 (clearly, 𝑠𝑖 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝). Therefore, 𝜃 ′𝑣 (𝜂) is

algebraic over 𝐾 (
⋃𝑑
𝑗=1 Θ(𝑠1 + 𝑞1, . . . , 𝑠𝑝 + 𝑞𝑝)𝜂 𝑗 \ {𝜃

′𝑣 (𝜂)}), hence

the set
⋃𝑑
𝑗=1 Θ(𝑟1 + 𝑞1, . . . , 𝑟𝑝 + 𝑞𝑝)𝜂 𝑗 is algebraically dependent

over 𝐾 that contradicts the fact that 𝜂1, . . . , 𝜂𝑑 are Δ-algebraically

independent over 𝐾 .

Thus, 𝜂𝑑+1 is algebraic over 𝐾 (𝜂1, . . . , 𝜂𝑑) and similarly every

𝜂 𝑗 , 𝑑 + 1 ≤ 𝑗 ≤ 𝑛, is algebraic over 𝐾 (𝜂1, . . . , 𝜂𝑑), so 𝑑 = Δ-

tr. deg𝐾 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ = tr. deg𝐾 (𝜂1, . . . , 𝜂𝑛).

(ii)⇒ (i). As in the proof of Theorem 3.16, without loss of gener-

ality we can assume that 𝜂1, . . . , 𝜂𝑑 is a Δ-transcendence basis of

the Δ-field 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ over 𝐾 . Then the elements 𝜂1, . . . , 𝜂𝑑
are algebraically independent over 𝐾 , so 𝐾 (𝜂1, . . . , 𝜂𝑛) is an alge-

braic extension of 𝐾 (𝜂1, . . . , 𝜂𝑑). Thus, 𝐾 (
⋃𝑛
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) is

an algebraic extension of the field 𝐾 (
⋃𝑑
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) for any

(𝑟1, . . . , 𝑟𝑝) ∈ N
𝑝 .

Since Φ(𝜂1,...,𝜂𝑑) |𝐾 (𝑡1, . . . , 𝑡𝑝) = 𝑑
∏𝑝
𝑖=1

(𝑡𝑖+𝑚𝑖
𝑚𝑖

)

and

𝐾 (
⋃𝑛
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) and 𝐾 (

⋃𝑑
𝑗=1 Θ(𝑟1, . . . , 𝑟𝑝)𝜂 𝑗) have the sa-

me transcendence degree over 𝐾 , we obtain the equality of state-

ment (i). □

Proposition 3.19. Let 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ be a Δ-field extension

generated by a finite set 𝜂 = {𝜂1, . . . , 𝜂𝑛} and let partition (3) of the

set Δ be fixed. Suppose that Δ-tr. deg𝐾 𝐿 = 0 or that Δ-tr. deg𝐾 𝐿 =

𝑑 ≥ 1, 𝜂1, . . . , 𝜂𝑑 form a Δ-transcendence basis of 𝐿 over 𝐾 and

𝜂 ′ = {𝜂𝑑+1, . . . , 𝜂𝑛}. Then

Φ𝜂′ |𝐾 ⟨𝜂1,...,𝜂𝑑 ⟩ (𝑟1, . . . , 𝑟𝑝) ≤ Φ𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝)−𝑑

𝑝
∏

𝑖=1

(

𝑟𝑖 +𝑚𝑖

𝑚𝑖

)

(7)

for all sufficiently large (𝑟1, . . . , 𝑟𝑝) ∈ N
𝑝 .

Proof. If Δ-tr. deg𝐾 𝐿 = 0, the statement is obvious. Let 𝑑 = Δ-

tr. deg𝐾 𝐿 ≥ 1 and {𝜂1, . . . , 𝜂𝑑 } a Δ-transcendence basis of 𝐿/𝐾 .

Let 𝐾 ′
= 𝐾 ⟨𝜂1, . . . , 𝜂𝑑 ⟩ and for any 𝑟 = (𝑟1, . . . , 𝑟𝑝) ∈ N

𝑝 , Λ1 (𝑟) =
⋃𝑑
𝑘=1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂𝑘 , Λ2 (𝑟) =
⋃𝑛
𝑙=𝑑+1

Θ(𝑟1, . . . , 𝑟𝑝)𝜂𝑙 and Λ3 (𝑟) =

Λ1 (𝑟)
⋃

Λ2 (𝑟).

Then Φ𝜂′ |𝐾 ′ (𝑟1, . . . , 𝑟𝑝) = tr. deg𝐾 ′ 𝐾 ′(Λ2 (𝑟)) ≤

tr. deg𝐾 (Λ1 (𝑟))
𝐾 (Λ3 (𝑟)) tr. deg𝐾 (Λ1 (𝑟))

𝐾 (Λ3 (𝑟)) =

tr. deg𝐾 𝐾 (Λ3 (𝑟)) − tr. deg𝐾 𝐾 (Λ1 (𝑟)) = Φ𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝) −

𝑑
∏𝑝
𝑖=1

(𝑟𝑖+𝑚𝑖
𝑚𝑖

)

for all sufficiently large (𝑟1, . . . , 𝑟𝑝). □

326

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Alexander Levin

The next example shows that a multivariate dimension polyno-

mial of a Δ-field extension carries essentially more information

about the extension than its univariate counterpart.

Example 3.20. Let 𝐾 be a differential field with a basic set of

derivations Δ = {𝛿1, 𝛿2, 𝛿3} and let 𝐿 be a Δ-field extension of 𝐾

generated by a single Δ-generator 𝜂 with the defining equation

𝛿𝑎1𝛿
𝑏
2𝛿
𝑐
3𝜂 + 𝛿

𝑎
1𝜂 + 𝛿

𝑏
2𝜂 + 𝛿

𝑏+𝑐
3 𝜂 = 0 (8)

where𝑎,𝑏 and 𝑐 are some positive integers. In otherwords,𝐿 = 𝐾 ⟨𝜂⟩

is Δ-isomorphic to the quotient field of the factor ring 𝐾{𝑦}/𝑃

where 𝑃 is the linear (and therefore prime) Δ-ideal of the ring of

differential (Δ-) polynomials 𝐾{𝑦} generated by the Δ-polynomial

𝑓 = 𝛿𝑎1𝛿
𝑏
2𝛿
𝑐
3𝑦 + 𝛿

𝑎
1𝑦 + 𝛿

𝑏
2𝑦 + 𝛿

𝑏+𝑐
3 𝑦. (𝑃 is the defining ideal of 𝜂 over

𝐾 .)

By [6, Chapter II, Theorem 6], the univariate Kolchin differential

dimension polynomial 𝜔𝜂/𝐾 (𝑡) of 𝐿/𝐾 is equal to the univariate

dimension polynomial of the subset {(𝑎, 𝑏, 𝑐)} of N3. Using formula

(2) for 𝑝 = 1, we obtain that

𝜔𝜂/𝐾 (𝑡) =

(

𝑡 + 3

3

)

−

(

𝑡 + 3 − (𝑎 + 𝑏 + 𝑐)

3

)

=

(
𝑎 + 𝑏 + 𝑐

2
)𝑡2 + (

(𝑎 + 𝑏 + 𝑐) (4 − 𝑎 − 𝑏 − 𝑐)

2
)𝑡 +

(𝑎 + 𝑏 + 𝑐) [(𝑎 + 𝑏 + 𝑐)2 − 6(𝑎 + 𝑏 + 𝑐) + 11]

6
. (9)

Now, let us fix a partition Δ = Δ1 ∪ Δ2 with Δ1 = {𝛿1, 𝛿2}.

Let Δ2 = {𝛿3}, and Φ𝜂 (𝑡1, 𝑡2) denote the Δ-dimension polyno-

mial of 𝐿/𝐾 associated with this partition and the Δ-generator

𝜂. With the notation of the first part of this section, we obtain

that 𝑢
(1)
𝑓

= 𝛿𝑎1𝛿
𝑏
2𝛿
𝑐
3𝑦 and 𝑢

(2)
𝑓

= 𝛿𝑏+𝑐3 𝑦. Using the notation of The-

orem 3.11 and formula (2) we obtain that for all sufficiently large

(𝑟1, 𝑟2) ∈ N
2, Card𝑈 ′

𝑟1,𝑟2 =
(𝑟1+2

2

)

(𝑟2 + 1) −
(𝑟1+2−(𝑎+𝑏)

2

)

(𝑟2 + 1 − 𝑐).

Expanding the last expression and using symbols 𝑡1 and 𝑡2 for the

variables representing 𝑟1 and 𝑟2, respectively, we obtain the poly-

nomial 𝜔𝜂 |𝐾 (𝑡1, 𝑡2) (see Theorem 3.11) that describes the size of

Card𝑈 ′
𝑟1,𝑟2 : 𝜔𝜂 |𝐾 (𝑡1, 𝑡2) =

𝑐
2 𝑡

2
1 + (𝑎 + 𝑏)𝑡1𝑡2 +

2𝑎+2𝑏+3𝑐−2𝑎𝑐−2𝑏𝑐
2 𝑡1 +

(𝑎+𝑏) (3−𝑎−𝑏)
2 𝑡2 +

1
2 [(𝑎 + 𝑏 − 2) (𝑎 + 𝑏 − 1) (𝑐 − 1) + 2].

For all sufficiently large (𝑟1, 𝑟2) ∈ N
2, Card𝑈 ′′

𝑟1,𝑟2 =

Card{𝛿
𝑎+𝑘1
1 𝛿

𝑎+𝑘2
2 𝛿

𝑎+𝑘3
3 | 𝑘1, 𝑘2, 𝑘3 ∈ N, 𝑘1 + 𝑘2 ≤ 𝑟1 − (𝑎 + 𝑏), 𝑟3 −

(𝑏 + 𝑐) < 𝑘3 ≤ 𝑟3 − 𝑐} =
(𝑟1+2−(𝑎+𝑏)

2

)

𝑏. Thus, with the notation of

Theorem 3.11, 𝜙𝜂 |𝐾 (𝑡1, 𝑡2) =
𝑏
2 𝑡

2
1 +

𝑏 (3−2𝑎−2𝑏)
2 𝑡1 +

𝑏 (𝑎+𝑏−2) (𝑎+𝑏−1)
2 .

It follows that the bivariate differential dimension polynomial of the

extension 𝐿/𝐾 corresponding to the partition Δ = {𝛿1, 𝛿2}
⋃

{𝛿3}

is

Φ𝜂 |𝐾 (𝑡1, 𝑡2) = (
𝑏 + 𝑐

2
)𝑡21 + (𝑎 + 𝑏)𝑡1𝑡2 +

1

2
[2𝑎 + 5𝑏 + 3𝑐 − 2𝑎𝑏 − 2𝑎𝑐

−2𝑏𝑐 − 2𝑏2]𝑡1 +
(𝑎 + 𝑏) (3 − 𝑎 − 𝑏)

2
𝑡2+

1

2
[(𝑎 + 𝑏 − 2) (𝑎 + 𝑏 − 1) (𝑏 + 𝑐 − 1) + 2] . (10)

Finally, let us fix a partition Δ = Δ1 ∪ Δ2 ∪ Δ3 with Δ𝑖 = {𝛿𝑖 }

(𝑖 = 1, 2, 3). Proceeding as before (with the notation of Theorem

3.11), we obtain that 𝜔𝜂 |𝐾 (𝑡1, 𝑡2, 𝑡3) = 𝑐𝑡1𝑡2 +𝑏𝑡1𝑡3 +𝑎𝑡2𝑡3 + (𝑏 + 𝑐 −

𝑏𝑐)𝑡1 + (𝑎 + 𝑐 − 𝑎𝑐)𝑡2 + (𝑎 +𝑏 − 𝑎𝑏)𝑡3 + 𝑎 +𝑏 + 𝑐 − 𝑎𝑏 − 𝑎𝑐 −𝑏𝑐 + 𝑎𝑏𝑐

and 𝜙𝜂 |𝐾 (𝑡1, 𝑡2) = 𝑏𝑡1𝑡2 + (𝑏 −𝑏2)𝑡1 + (𝑏 −𝑎𝑏)𝑡2 + (𝑏 −𝑎𝑏 −𝑏2 +𝑎𝑏2,

so

Φ𝜂 |𝐾 (𝑡1, 𝑡2, 𝑡3) = (𝑏 + 𝑐)𝑡1𝑡2 + 𝑏𝑡1𝑡3 + 𝑎𝑡2𝑡3

+(2𝑏 + +𝑐 − 𝑏𝑐 − 𝑏2)𝑡1 + (𝑎 + 𝑏 + 𝑐 − 𝑎𝑏 − 𝑎𝑐)𝑡2 + (𝑎 + 𝑏 − 𝑎𝑏)𝑡3

+ (𝑎 + 2𝑏 + 𝑐 − 2𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐 − 𝑏2 + 𝑎𝑏2 + 𝑎𝑏𝑐). (11)

It follows from Theorem 3.15 that the dimension Δ-polynomial in

three variables given by (11) carries four invariants of the extension

𝐿/𝐾 : the total degree 2 and the coefficients 𝑏 + 𝑐 , 𝑏 and 𝑎 of the

terms 𝑡1𝑡2, 𝑡1𝑡3 and 𝑡2𝑡3, respectively. The dimensional polynomial

(10) carries three invariants, the total degree 2 and the coefficients

𝑏 + 𝑐 and 𝑎 + 𝑏, while the univariate Kolchin polynomial (9) carries

only two invariants of the extension, the total degree 2 and the sum

of the parameters 𝑎 +𝑏 + 𝑐 . Therefore, the Δ-dimension polynomial

(11) corresponding to the partition of Δ into the union of three

disjoint subsets determines all three parameters 𝑎, 𝑏 and 𝑐 of the

defining differential equation (8) while the univariate dimension

polynomial gives just the sum of the parameters.

Also, in accordance with the above considerations, the dimension

polynomial (10) (with Δ1 = {𝛿1, 𝛿2} and Δ2 = {𝛿3}) shows that Δ2-

tr. deg𝐾 𝐾 ⟨{𝛿
𝑘1
1 𝛿

𝑘2
2 𝜂 | 𝑘1 +𝑘2 ≤ 𝑟 }⟩Δ2

= (𝑎 +𝑏)𝑟 +
(𝑎+𝑏) (3−𝑎−𝑏)

2 for

all sufficiently large 𝑟 ∈ N.

4 ACKNOWLEDGES

This research was supported by the NSF grant CCF-1714425.

REFERENCES
[1] A. Einstein. The Meaning of Relativity. Appendix II (Generalization of gravitation

theory), 153ś165. Princeton University Press, Princeton, NJ, 1953.
[2] J. Freitag, O. L. Sanchez, O. L.; W. Li. Effective definability of Kolchin polynomials.

Proc.Amer. Math. Soc., 148 (2020), 1455ś1466.
[3] Joseph L. Johnson A notion on Krull dimension for differential rings. Comment.

Math. Helv., 44 (1969), 207ś216.
[4] Joseph L. Johnson. Kähler differentials and differential algebra. Ann. of Math. (2),

89 (1969), 92ś98.
[5] E. R. Kolchin. The notion of dimension in the theory of algebraic differential

equations. Bull. Amer. Math. Soc., 70 (1964), 570ś573.
[6] E. R. Kolchin. Differential Algebra and Algebraic Groups. Academic Press, 1973.
[7] M. V. Kondrateva, A. B. Levin, A. V. Mikhalev, and E. V. Pankratev. Differential

and Difference Dimension Polynomials. Kluwer Acad. Publ., 1999.
[8] M. Lange-Hegermann. The Differential Dimension Polynomial for Character-

izable Differential Ideals. Algorithmic and Experimental Methods in Algebra,
Geometry, and Number Theory (2018), 443ś453.

[9] M. Lange-Hegermann. M. The Differential Counting Polynomial. Foundations of
Computational Mathematics, 18, no. 2, (2018), 291ś308.

[10] A. B. Levin. Multivariable dimension polynomials and new invariants of differ-
ential field extensions. Internat. J. Math. and Math. Sci., 27 (2001), no. 4, 201ś214.

[11] A. B. Levin. Gröbner bases with respect to several orderings and multivariable
dimension polynomials. J. Symb. Comput., 42 (2007), no. 5, 561ś578.

[12] A. B. Levin. Dimension polynomials of intermediate fields and Krull-type dimen-
sion of finitely generated differential field extensions. Mathematics in Computer
Science, 4 (2010), no. 2ś3, 143ś150.

[13] A. V. Mikhalev and E. V. Pankratev. Differential dimension polynomial of a
system of differential equations. Algebra. Collection of papers., 57ś67. Moscow
State University Press, 1980.

[14] O. L. Sanchez. Estimates for the coefficients of differential dimension polynomials.
Mathematics of Computation, 88 (2019), 2959ś2985.

[15] W. Sit. On the differential transcendence polynomials of finitely generated
differential field extensions. Amer. J. Math., 101 (1979), no. 6, 1249ś1263.

327

Further Results on the Factorization and Equivalence for
Multivariate Polynomial Matrices

Dong Lu
1Beijing Advanced Innovation
Center for Big Data and Brain
Computing, Beihang University

Beijing 100191, China
2School of Mathematical Sciences,

Beihang University
Beijing 100191, China
donglu@buaa.edu.cn

Dingkang Wang
1KLMM, Academy of Mathematics

and Systems Science, Chinese
Academy of Sciences,
Beijing 100190, China

2School of Mathematical Sciences,
University of Chinese Academy of
Sciences, Beijing 100049, China

dwang@mmrc.iss.ac.cn

Fanghui Xiao
1KLMM, Academy of Mathematics

and Systems Science, Chinese
Academy of Sciences,
Beijing 100190, China

2School of Mathematical Sciences,
University of Chinese Academy of
Sciences, Beijing 100049, China

xiaofanghui@amss.ac.cn

ABSTRACT
This paper is concerned with the factorization and equivalence
problems of multivariate polynomial matrices. We present a new
criterion for the existence of matrix factorizations for a class of
multivariate polynomial matrices, and prove that these matrix fac-
torizations are unique. Based on this new criterion and the con-
structive proof process, we give an algorithm to compute a matrix
factorization of a multivariate polynomial matrix. After that, we
put forward a sufficient and necessary condition for the equiva-
lence of square polynomial matrices: a square polynomial matrix
is equivalent to a diagonal triangle if it satisfies the condition. An
illustrative example is given to show the effectiveness of thematrix
equivalence theorem.

CCS CONCEPTS
• Computing methodologies→ Symbolic and algebraic algo-
rithms; Algebraic algorithms.

KEYWORDS
Polynomial matrices, Matrix factorization, Matrix equivalence, Mi-
nors, Gröbner basis
ACM Reference Format:
Dong Lu, Dingkang Wang, and Fanghui Xiao. 2020. Further Results on the
Factorization and Equivalence for Multivariate Polynomial Matrices. In In-
ternational Symposium on Symbolic and Algebraic Computation (ISSAC ’20),
July 20–23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3373207.3404020

1 INTRODUCTION
Multidimensional systems have wide applications in image, signal
processing, and other areas (see, e.g., [1, 2]). A multidimensional
system may be represented by a multivariate polynomial matrix,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20–23, 2020, Kalamata, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07…$15.00
https://doi.org/10.1145/3373207.3404020

and we can obtain some important properties of the system by
studying the matrix. Therefore, the factorization problem and the
equivalence problem related to multivariate polynomial matrices
have attracted much attention over the past decades.

Up to now, the factorization problem for univariate and bivari-
ate polynomial matrices has been completely solved by [23, 41, 46],
but the case of more than two variables is still open. In [60], Youla
and Gnavi first introduced three important concepts according to
different properties of polynomial matrices, namely zero prime
matrix factorization, minor prime matrix factorization and factor
prime matrix factorization. Based on the work of [60] on basic
structures of multivariate polynomial matrices, the factorization
problem formultivariate (more than two variables) polynomial ma-
trices has made great progress.

When multivariate polynomial matrices satisfy several special
properties, there are some results about the existence problem of
zero prime matrix factorizations for the polynomial matrices (see,
e.g., [8, 31, 33]). After that, Lin and Bose in [34] proposed the fa-
mous Lin-Bose conjecture: a multivariate polynomial matrix ad-
mits a zero prime matrix factorization if all its maximal reduced
minors generate a unit ideal. This conjecture was proved by Liu et
al. [39], Pommaret [48], Wang and Feng [58], respectively. Wang
and Kwong in [59] gave a sufficient and necessary condition for
a multivariate polynomial with full row (column) rank to have
a minor prime matrix factorization. They extracted an algorithm
from Pommaret’s proof of the Lin-Bose conjecture, and examples
showed the effectiveness of the algorithm. Guan et al. in [22] gen-
eralized the main results in [59] to the case of polynomial matrices
without full row (column) rank. For the existence problem of factor
prime matrix factorizations for multivariate polynomial matrices
with full row (column) rank,Wang and Liu have achieved some im-
portant results (see, e.g., [40, 56]). Then Guan et al. in [21] gave an
algorithm to decide whether a class of polynomial matrices has a
factor prime matrix factorization. However, the existence problem
of factor prime matrix factorizations for multivariate polynomial
matrices remains a challenging open problem so far.

Comparing to the factorization problem of multivariate polyno-
mial matrices which has been widely investigated during the past
years, less attention has been paid to the equivalence problem of
multivariate polynomial matrices. For any given multidimensional
system, our goal is to simplify it into a simpler equivalent form.

328

https://doi.org/10.1145/3373207.3404020
https://doi.org/10.1145/3373207.3404020

ISSAC ’20, July 20–23, 2020, Kalamata, Greece D. Lu, D. Wang and F. Xiao

Since a univariate polynomial ring is a principal ideal domain,
a univariate polynomial matrix is always equivalent to its Smith
form. This implies that the equivalence problem has been solved
[24, 51]. For any given bivariate polynomial matrix, conditions un-
der which it is equivalent to its Smith form have been investigated
in [18, 19, 26]. Note that the equivalence problem of two multivari-
ate polynomial matrices is equivalent to the isomorphism problem
for two finitely presented modules, Boudellioua and Quadrat [6]
and Cluzeau andQuadrat [9–11] obtained some important results
by usingmodule theory and homological algebra. According to the
previous works in [6], Boudellioua in [3, 5] designed some algo-
rithms based on Maple to compute Smith forms for some classes
of multivariate polynomial matrices. For the case of multivariate
polynomial matrices with more than one variable, however, the
equivalence problem is not yet fully solved due to the lack of a
mature polynomial matrix theory (see, e.g., [25, 46, 49]).

From our personal viewpoint, new ideas need to be injected into
these areas to obtain new theoretical results and effective algo-
rithms. Therefore, it would be significant to provide some new cri-
teria to study the factorization problem and the equivalence prob-
lem for some classes of multivariate polynomial matrices.

From the 1990s to the present, there is a class of multivariate
polynomial matrices that has always attracted attention. That is,

M = {F ∈ k[z]l×m : (z1 − f (z2)) | dl (F) with f (z2) ∈ k[z2]},

where z2 = {z2, . . . , zn } anddl (F) is the GCD of all the l×l minors
of F. Many people tried to solve the factorization problem and the
equivalence problem of multivariate polynomial matrices in M.

Let F ∈ M and h = z1 − f (z2). Lin and coauthors presented
some criteria on the existence problem of a matrix factorization
for F w.r.t. h (see, e.g., [29, 30, 36, 37]). Moreover, Lin et al. in [37]
proposed a constructive algorithm to factorize F w.r.t. h. When
dl (F) = h, Wang [57] gave a new result for F to have a minor
prime matrix factorization using methods from computer algebra.
Based on the pioneering work of Lin et al., Liu et al. [38] and Lu
et al. [44, 45] obtained some new criteria for factorizing F w.r.t. h.
When l =m and det(F) = h, Lin et al. [35] proved that F is equiv-
alent to the diagonal triangle diag(1, . . . , 1,h). After that, Li et al.
[27] generalized the main results in [35] to the case of det(F) = hq .

Through research, we find that there are still many multivariate
polynomial matrices in M which do not satisfy previous results
and can be factorized or are equivalent to some diagonal triangles.
As a consequence, we continue to study the factorization problem
and the equivalence problem of multivariate polynomial matrices
in M in this paper.

The rest of the paper is organized as follows. After a brief intro-
duction to matrix factorization and matrix equivalence in Section
2, we use two examples to propose two problems that we shall
consider. We present in Section 3 a new criterion for factorizing F
w.r.t. h, then we study the uniqueness of the matrix factorization
and construct an algorithm to factorize F. A sufficient and neces-
sary condition for a square multivariate polynomial matrix being
equivalent to a diagonal triangle is described in Section 4, and we
use an example to illustrate the effectiveness of the new matrix
equivalence theorem. The paper contains a summary of contribu-
tions and some remarks in Section 5.

2 PRELIMINARIES AND PROBLEMS
In this section we first recall some basic notions which will be used
in the following sections. For those notions which are not formally
introduced in the paper, the reader may consult the references [27,
37, 38, 45]. And then, we use two examples to put forward two
problems that we are considering.

2.1 Basic Notions
Wedenote byk an algebraically closed field, z then variables z1, z2,
. . . , zn , z2 the (n − 1) variables z2, . . . , zn , where n ≥ 3. Let k[z]
and k[z2] be the ring of polynomials in variables z and z2 with
coefficients in k , respectively. Let k[z]l×m be the set of l ×m ma-
trices with entries in k[z]. Without loss of generality, we assume
that l ≤ m, and for convenience we use uppercase bold letters to
denote polynomial matrices. In addition, “w.r.t.” and “GCD” stand
for “with respect to” and “greatest common divisor”, respectively.

Let F ∈ k[z]l×m and f ∈ k[z2], then F(f , z2) denotes a poly-
nomial matrix in k[z2]l×m which is formed by transforming z1
in F into f . Moreover, FT represents the transposed matrix of F.
Throughout the paper, we use di (F) to denote the GCD of all the
i × i minors of F with the convention that d0(F) = 1, where
i = 1, . . . , l . Assume that f1, . . . , fs ∈ k[z], we use ⟨f1, . . . , fs ⟩

to denote the ideal generated by f1, . . . , fs in k[z]. Let д,h ∈ k[z],
then д | h means that д is a divisor of h.

The following concepts are from multidimensional systems the-
ory.

Definition 2.1 ([28, 54]). Let F ∈ k[z]l×m be of full row rank. For
any given integer i with 1 ≤ i ≤ l , let a1, . . . ,aβ denote all the i×i
minors of F, where β =

(l
i

)
·
(m
i

)
. Extracting di (F) from a1, . . . ,aβ

yields
aj = di (F) · bj , j = 1, . . . , β ,

where b1, . . . ,bβ are called all the i × i reduced minors of F.

Definition 2.2 ([60]). Let F ∈ k[z]l×m be of full row rank.
(1) If all the l × l minors of F generate k[z], then F is said to be

a zero left prime (ZLP) matrix.
(2) If all the l × l minors of F are relatively prime, i.e., dl (F) is a

nonzero constant in k , then F is said to be a minor left prime
(MLP) matrix.

(3) If for any polynomial matrix factorization F = F1F2 with
F1 ∈ k[z]l×l , F1 is necessarily a unimodular matrix, i.e.,
det(F1) is a nonzero constant in k , then F is said to be a
factor left prime (FLP) matrix.

Zero right prime (ZRP)matrices, minor right prime (MRP)matri-
ces and factor right prime (FRP) matrices can be similarly defined
for matrices F ∈ k[z]m×l with m ≥ l . We refer to [60] for more
details about the relationship among ZLP matrices, MLP matrices
and FLP matrices.

For any given ZLP matrix F ∈ k[z]l×m , Quillen [50] and Suslin
[55] proved that anm ×m unimodular matrix can be constructed
such that F is its first l rows, respectively. This result is called
Quillen-Suslin theorem, and it solved the question raised by Serre
in [52].

329

Further Results on the Factorization and Equivalence for Multivariate Polynomial Matrices ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 2.3 ([50, 55]). If F ∈ k[z]l×m is a ZLP matrix, then a
unimodular matrix U ∈ k[z]m×m can be constructed such that F is
its first l rows.

There are many algorithms for the Quillen-Suslin theorem, we
refer to [43, 47, 61] for more details. In [16], Fabiańska andQuadrat
first designed a Maple package, which is called QUILLENSUSLIN
[17], to implement theQuillen-Suslin theorem.

LetW be a k[z]-module generated by ®u1, . . . , ®ul ∈ k[z]1×m . The
set of all (b1, . . . ,bl) ∈ k[z]1×l such that b1®u1 + · · ·+ bl ®ul = ®0 is
a k[z]-module of k[z]1×l , is called the (first) syzygy module ofW ,
and denoted by Syz(W). Lin in [32] proposed several interesting
structural properties of syzygy modules. Let F =

[
®uT1 , . . . , ®u

T
l

]T.
The rank ofW is defined as the rank of F that is denoted by rank(F).
Guan et al. in [21] proved that the rank ofW does not depend on
the choice of generators ofW .

Lemma 2.4. With above notations. If rank(W) = r with 1 ≤ r ≤

l , then the rank of Syz(W) is l − r .

Proof. Let k(z) be the fraction field of k[z], and Syz∗(W) =

{ ®v ∈ k(z)1×l : ®v · F = ®0}. Then, Syz∗(W) is a k(z)-vector space of
dimension l − r . For any given l − r + 1 different vectors ®v1, . . . ,

®vl−r+1 ∈ k[z]1×l in Syz(W), it is obvious that ®vi ∈ Syz∗(W)
for each i , and they are k(z)-linearly dependent. This implies that
®v1, . . . , ®vl−r+1 are k[z]-linearly dependent. Thus rank(Syz(W)) ≤
l − r .

Assume that ®p1, . . . , ®pl−r ∈ k(z)1×l are l−r vectors in Syz∗(W),
and they are k(z)-linearly independent. For each j, we have

pj1®u1 + · · ·+ pjl ®ul = ®0, (1)

where ®pj = (pj1, . . . ,pjl). Multiplying both sides of Equation (1)
by the least common multiple of the denominators of pj1, . . . ,pjl ,
we obtain p̄j = (p̄j1, . . . , p̄jl) ∈ k[z] such that p̄j1®u1 + · · · +

p̄jl ®ul = ®0. Then, p̄j ∈ Syz(W), where j = 1, . . . , l − r . Moreover,
p̄1, . . . , p̄l−r are k[z]-linearly independent. Thus, rank(Syz(W)) ≥
l − r .

As a consequence, the rank of Syz(W) is l − r and the proof is
completed. □

Remark 1. Assume that Syz(W) is generated by ®v1, . . . , ®vt ∈

k[z]1×l , and H =
[
®vT1 , . . . , ®v

T
t

]T. It follows from rank(H) = l − r

that t ≥ l − r . That is, the number of vectors in any given generators
of Syz(W) is greater than or equal to l − r .

Definition 2.5 ([7]). Let F ∈ k[z]l×m . For each 1 ≤ i ≤ l , the ideal
generated by all the i×i minors of F is called the i-th determinantal
ideal of F, and denoted by Ii (F). For convenience, let I0(F) = k[z].

Definition 2.6 ([15]). LetW be a finitely generated k[z]-module,

and k[z]1×l
ϕ
−−→ k[z]1×m →W → 0 be a presentation ofW , where

φ acts on the right on row vectors, i.e., φ(®u) = ®u · F for ®u ∈ k[z]1×l
with F being a presentation matrix corresponding to the linear
mapping φ. Then the ideal Fittj (W) = Im−j (F) is called the j-th
Fitting ideal ofW . Here, we make the convention that Fittj (W) =
k[z] for j ≥ m, and that Fittj (W) = 0 for j < max{m − l , 0}.

We remark that Fittj (W) only depend onW (see, e.g., [15, 20]).
In addition, the chain

0 = Fitt−1(W) ⊆ Fitt0(W) ⊆ . . . ⊆ Fittm(W) = k[z]
of Fitting ideals is increasing. We can use SINGULAR procedures
to compute Fitting ideals of modules [13, 14]. Cox et al. in [12]
showed that one obtains the presentation matrix F for W by ar-
ranging the generators of Syz(W) as rows. We denote the submod-
ule of k[z]1×m generated by all the row vectors of F by Im(F), then
Im(F) = Syz(W).

2.2 Matrix Factorization Problem
A matrix factorization of a multivariate polynomial matrix is for-
mulated as follows.

Definition 2.7. Let F ∈ k[z]l×m and h0 | dl (F). F is said to admit
a matrix factorization w.r.t. h0 if F can be factorized as

F = G1F1 (2)
such that G1 ∈ k[z]l×l , F1 ∈ k[z]l×m , and det(G1) = h0. In partic-
ular, Equation (2) is said to be a ZLP (MLP, FLP) matrix factoriza-
tion if F1 is a ZLP (MLP, FLP) matrix.

Throughout the paper, let h = z1 − f (z2) with f (z2) ∈ k[z2].
Combining Definition 2.7 and the type of polynomial matrices we
mentioned in Section 1, this paper will address the following spe-
cific matrix factorization problem.

Problem 1. Let F ∈ M. Under what condition does F have a
matrix factorization w.r.t. h.

So far, some results have been made on Problem 1, and the latest
progress on this problem was obtained by Lu et al. [45].

Lemma 2.8 ([45]). Let F ∈ M. If h ∤ dl−1(F) and the ideal gen-
erated by h and all the (l − 1) × (l − 1) reduced minors of F is k[z],
then F admits a matrix factorization w.r.t. h.

Although Lemma 2.8 gives a criterion to determine whether F
has a matrix factorization w.r.t. h, we found that there exist some
polynomial matrices in M which do not satisfy the conditions of
Lemma 2.8, but still admit matrix factorizations w.r.t. h. Now, we
use an example to illustrate this situation.

Example 2.9. Let

F =

[
F[1, 1] z31 − z32 − z21z3 + z2z

2
3 z1z2 − z2z3 z22

−z1z2 + z23 −z22 + z1z3 0 z2

]

be a polynomial matrix inC[z1, z2, z3]2×4, where F[1, 1] = −2z1z
2
2

+z21z3 + z22z3 − z1z
2
3 + z2z

2
3 and C is the complex field.

It is easy to compute that d2(F) = z2(z1 − z3) and d1(F) = 1.
Let h = z1 − z3, then h | d2(F) implies that F ∈ M. Obviously,
h ∤ d1(F). Sinced1(F) = 1, the entries in F are all the 1×1 reduced
minors of F. Let ≺z be the degree reverse lexicographic order, then
the reduced Gröbner basisG of the ideal generated by h and all the
1 × 1 reduced minors of F w.r.t. ≺z is {z1 − z3, z2, z

2
3}. It follows

from G , {1} that Lemma 2.8 cannot be applied. However, F has
a matrix factorization w.r.t. h, i.e., there exist polynomial matrices
G1 ∈ C[z1, z2, z3]

2×2 and F1 ∈ C[z1, z2, z3]
2×4 such that

F = G1F1 =

[
h z2
0 1

] [
z1z3 − z22 z21 − z2z3 z2 0
−z1z2 + z23 −z22 + z1z3 0 z2

]
,

330

ISSAC ’20, July 20–23, 2020, Kalamata, Greece D. Lu, D. Wang and F. Xiao

where det(G1) = h.

From the above example we see that Problem 1 is far from being
resolved. So, in the next section wemake a detailed analysis on this
problem.

2.3 Matrix Equivalence Problem
Nowwe introduce the concept of the equivalence of two multivari-
ate polynomial matrices.

Definition 2.10. Two polynomial matrices F1 ∈ k[z]l×m and
F2 ∈ k[z]l×m are said to be equivalent if there exist two unimodu-
lar matrices U ∈ k[z]l×l and V ∈ k[z]m×m such that

F1 = UF2V. (3)

In fact, a univariate polynomial matrix is equivalent to its Smith
form. However, this result is not valid for the case of more than one
variable, and there are many counter-examples (see, e.g., [4, 26]).
Hence, people began to consider under what conditions multivari-
ate polynomial matrices in k[z] with n ≥ 2 are equivalent to sim-
pler forms. In [27], Li et al. investigated the equivalence problem
of a class of multivariate polynomial matrices and obtained the fol-
lowing result.

Lemma 2.11 ([27]). Let F ∈ k[z]l×l with det(F) = hq , where
h = z1 − f (z2) and q is a positive integer. Then F is equivalent to
diag(1, . . . , 1,hq) if and only if hq and all the (l−1)×(l−1)minors
of F generate k[z].

For a given matrix that does not satisfy the condition of Lemma
2.11, we use the following example to illustrate that it can be equiv-
alent to another diagonal triangle.

Example 2.12. Let F ∈ C[z1, z2, z3]
3×3 withC being the complex

field, where

F[1, 1] = z1z2 − z22 + z2z3 + z2 − z3 − 1,
F[1, 2] = z1z2z3 − z22z3 + z1z2 − z22 + z2z3 − z3,

F[1, 3] = z1z2z3 − z22z3,

F[2, 1] = z1z2 − z22 + z1 − z2 + z3 + 1,
F[2, 2] = (z1 − z2)(z2z3 + 2z2 + z3 + 1) + z3,

F[2, 3] = z1z2z3 − z22z3 + z1z2 − z22 + z1z3 − z2z3,

F[3, 1] = z1 − z2,

F[3, 2] = z1z3 − z2z3 + 2z1 − 2z2,
F[3, 3] = z1z3 − z2z3 + z1 − z2.

It is easy to compute that det(F) = (z1 − z2)
2. Let h = z1 −

z2 and ≺z be the degree reverse lexicographic order, then the re-
duced Gröbner basis G of the ideal generated by h2 and all the
2 × 2 minors of F w.r.t. ≺z is {z1 − z2}. It follows from G , {1}
that Lemma 2.11 cannot be applied. However, F is equivalent to
diag(1,h,h), i.e., there exist two unimodular polynomial matrices
U ∈ C[z1, z2, z3]

3×3 and V ∈ C[z1, z2, z3]
3×3 such that F = U ·

diag(1,h,h) · V =

z2 − 1 z2 0
1 z2 + 1 z2
0 1 1

1 0 0
0 h 0
0 0 h

z3 + 1 z3 0
1 z3 + 1 z3
0 1 1

.

Based on the phenomenon of Example 2.12, we consider the fol-
lowing matrix equivalence problem in this paper.

Problem 2. Let F ∈ k[z]l×l with det(F) = hr , where h = z1 −

f (z2) and 1 ≤ r ≤ l . What is the sufficient and necessary condition
for the equivalence of F and diag(1, . . . , 1

︸ ︷︷ ︸
l−r

,h, . . . ,h
︸ ︷︷ ︸

r

)?

3 FACTORIZATION FOR POLYNOMIAL
MATRICES

In this section, we first propose a new criterion to judge whether
F ∈ M has a matrix factorization w.r.t. h, and then we study the
uniqueness of this matrix factorization. Based on the constructive
algorithm proposed by Lin et al. [37] and the new criterion, we fi-
nally present a polynomial matrix factorization algorithm and use
a non-trivial example to demonstrate the detailed process of the
algorithm.

3.1 Matrix FactorizationTheorem
We first introduce an important result, which is an answer to the
generalized Serre problem proposed by Lin and Bose [31, 34].

Lemma 3.1 ([58]). Let F ∈ k[z]l×m with rank(F) = r , and all the
r ×r reduced minors of F generate k[z]. Then there existG1 ∈ k[z]l×r
and F1 ∈ k[z]r×m such that F = G1F1 with F1 being a ZLP matrix.

Remark 2. Since rank(F) ≤ min{rank(G1), rank(F1)}, we have
rank(G1) = r in Lemma 3.1. This implies that G1 is a polynomial
matrix with full column rank.

Lemma 3.2 ([37]). Let p ∈ k[z] and f (z2) ∈ k[z2]. If p(f , z2) is a
zero polynomial in k[z2], then (z1 − f (z2)) is a divisor of p.

Now, we propose a new criterion to solve Problem 1.

Theorem 3.3. Let F ∈ M andW = Im(F(f , z2)). If Fittl−2(W)
= 0 and Fittl−1(W) = ⟨d⟩ with d ∈ k[z2] \ {0}, then F admits a
matrix factorization w.r.t. h.

Proof. Let k[z2]1×s
ϕ
−−→ k[z2]1×l →W → 0 be a presentation

ofW , and H ∈ k[z2]s×l be a matrix corresponding to the linear
mapping φ. Then Syz(W) = Im(H).

It follows from Fittl−2(W) = 0 that all the 2×2minors ofH are
zero polynomials. Then, rank(H) ≤ 1. Moreover, Fittl−1(W) =
⟨d⟩ with d ∈ k[z2] \ {0} implies that rank(H) ≥ 1. As a conse-
quence, we have rank(H) = 1.

Let a1, . . . ,aβ ∈ k[z2] and b1, . . . ,bβ ∈ k[z2] be all the 1 × 1

minors and reduced minors ofH, respectively. Then, ai = d1(H) ·
bi for i = 1, . . . , β . Since ⟨a1, . . . ,aβ ⟩ = ⟨d⟩, it is obvious that d |

d1(H). Moreover, we haved =
∑β
i=1 ciai for some ci ∈ k[z2].Thus

d = d1(H) · (
∑β
i=1 cibi). This implies that d1(H) | d . Hence d =

δ ·d1(H), where δ is a nonzero constant.Therefore, ⟨b1, . . . ,bβ ⟩ =
k[z2].

According to Lemma 3.1, there exist G ∈ k[z2]s×1 and H1 ∈

k[z2]1×l such that H = GH1 with H1 being a ZLP matrix. It fol-
lows from Syz(W) = Im(H) that GH1F(f , z2) = 0s×m . Since G
is a matrix with full column rank, we have H1F(f , z2) = 01×m .

Using theQuillen-Suslin theorem, we can construct a unimodu-
lar matrix U ∈ k[z2]l×l such that H1 is its first row. Let F0 = UF,
then the first row of F0(f , z2) = UF(f , z2) is zero vector. By

331

Further Results on the Factorization and Equivalence for Multivariate Polynomial Matrices ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 3.2, h is a common divisor of the polynomials in the first
row of F0, thus

F0 = UF = DF1 = diag(h, 1, . . . , 1
︸ ︷︷ ︸

l−1

) ·

f̄11 f̄12 · · · f̄1m
.
.
.

.

.

.

.

.

.

.

.

.

f̄l1 f̄l2 · · · f̄lm

.

Consequently, we can nowderive thematrix factorization of Fw.r.t.
h:

F = G1F1,
where G1 = U−1D ∈ k[z]l×l , F1 ∈ k[z]l×m and det(G1) = h. □

According to the proof of Theorem 3.3, it is easy to get a more
general result below.

Theorem 3.4. Let F ∈ M andW = Im(F(f , z2)). If Fittr−1(W)
= 0 and Fittr (W) = ⟨d⟩ with d ∈ k[z2] \ {0} and 0 ≤ r ≤ l − 1,
then F admits a matrix factorization w.r.t. hl−r .

Remark 3. In Theorem 3.4, it follows from Fittr−1(W) = 0 and
Fittr (W) = ⟨d⟩ that rank(H) = l − r , where Syz(W) = Im(H).
Based on Lemma 2.4, we have rank(F(f , z2)) = rank(W) = r . F ∈

M implies that h = z1 − f (z2) is a divisor of dl (F), and it is easy
to show that rank(F(f , z2)) ≤ l − 1. Thus, we have r ≤ l − 1. When
r = 0, rank(F(f , z2)) = 0 implies that h | d1(F). Then, we can
extract h from each row of F and obtain a matrix factorization of F
w.r.t. hl .

Let k[z̄j] = k[z1, . . . , zj−1, zj+1, . . . , zn], where 1 ≤ j ≤ n. We
construct a new set of polynomial matrices: Mj = {F ∈ k[z]l×m :
hj | dl (F)}, where hj = zj − f (z̄j) with f (z̄j) being a polynomial
in k[z̄j]. Then, we can get the following corollary.

Corollary 3.5. Let F ∈ Mj and W = Im(F(z1, . . . , zj−1, f ,
zj+1, . . . , zn)). If Fittr−1(W) = 0 and Fittr (W) = ⟨d⟩ with d ∈

k[z̄j] \ {0} and 0 ≤ r ≤ l − 1, then F admits a matrix factorization
w.r.t. hl−rj .

3.2 Uniqueness of Polynomial Matrix
Factorizations

In [42], Liu and Wang studied the uniqueness problem of polyno-
mial matrix factorizations. They pointed out that for a non-regular
factor h0 of F ∈ k[z]l×m , under the condition that there exists a
matrix factorization F = G1F1 with det(G1) = h0, Im(F1) is not
uniquely determined. In other words, when F = G1F1 = G2F2
with det(G1) = det(G2) = h0, Im(F1) and Im(F2) might not be
the same.

Let F ∈ M satisfy the conditions of Theorem 3.4. According
to the proof of Theorem 3.3, we can select different generators of
Syz(W) and obtain different presentation matrices ofW . Then, we
can construct different unimodular matrices and get different ma-
trix factorizations of Fw.r.t.hl−r . Hence, in the following we study
the uniqueness of matrix factorizations of F w.r.t. hl−r .

Theorem 3.6. Let F ∈ M satisfy F = U−1
1 DF1 = U−1

2 DF2,
where U1, U2 are two unimodular matrices in k[z2]l×l , and D =
diag(h, . . . ,h

︸ ︷︷ ︸
l−r

, 1, . . . , 1
︸ ︷︷ ︸

r

). Then, Im(F1) = Im(F2).

Proof. Let F1 =
[
®uT1 , . . . , ®u

T
l

]T and F2 =
[
®vT1 , . . . , ®v

T
l

]T, where
®u1, . . . , ®ul , ®v1, . . . , ®vl ∈ k[z]1×m . So, Im(F1) = ⟨®u1, . . . , ®ul ⟩ and
Im(F2) = ⟨®v1, . . . , ®vl ⟩.

Let F01 = U1F and F02 = U2F. Then F01 = DF1 and F02 =

DF2. It follows that F01 =
[
h®uT1 , . . . ,h®u

T
l−r
, ®uT

l−r+1
, . . . , ®uT

l

]T
and

F02 =
[
h ®vT1 , . . . ,h ®v

T
l−r
, ®vT

l−r+1
, . . . , ®vT

l

]T
. Since U1 and U2 are

two unimodular matrices in k[z2]l×l , we have F01 = U1U−1
2 F02.

This implies that there exist polynomials ai1, . . . ,ail ∈ k[z2] such
that

h®ui = h · (
l−r∑

j=1

ai j ®vj) +
l∑

j=l−r+1

ai j ®vj ,

where i = 1, . . . , l − r . Then, for each i setting z1 of the above
equation to f (z2), we have

ai(l−r+1) ®vl−r+1(f , z2) + · · ·+ ail ®vl (f , z2) = ®0.

As rank(F(f , z2)) = r and rank(F02(f , z2)) = rank(F(f , z2)), we
have that ®vl−r+1(f , z2), . . . , ®vl (f , z2) are k[z2]-linearly indepen-
dent. This implies that ai(l−r+1) = · · · = ail = 0. Hence,

®ui = ai1 ®v1 + · · ·+ ai(l−r) ®vl−r ,

where i = 1, . . . , l − r . Obviously, ®uj is a k[z]-linear combina-
tion of ®v1, . . . , ®vl , where j = l − r + 1, . . . , l . As a consequence,
⟨®u1, . . . , ®ul ⟩ ⊂ ⟨®v1, . . . , ®vl ⟩. We can use the same method to prove
that ⟨®v1, . . . , ®vl ⟩ ⊂ ⟨®u1, . . . , ®ul ⟩.

Therefore, we have Im(F1) = Im(F2). □

Based on Theorem 3.4 and Theorem 3.6, we can now derive the
conclusion: if F ∈ M satisfies the conditions of Theorem 3.4, then
we have F = G1F1 with det(G1) = hl−r and Im(F1) uniquely
determined, where G1 = U−1D with U ∈ k[z2]l×l a unimodular
matrix and D = diag(h, . . . ,h, 1, . . . , 1).

3.3 Algorithm
Combining the algorithm proposed in [37] and the matrix factor-
ization conditions of Theorem 3.4, we get the following algorithm
for factoring matrices inM.

Before proceeding further, let us remark on Algorithm 1.
• Step 2 implies that rank(W) = r .
• In Step 7,H is a presentationmatrix ofW . By Lemma 2.4, we
have rank(H) = l − r . Thus, Fittr−1(W) = Il−r+1(H) = 0.

• In Step 9, #(G) stands for the number of generators in G,
#(G) = 1 implies that Fittr (W) is a principal ideal in k[z2].

• From Step 10 to Step 12, we refer to [44, 45] for more details.
• In Step 15, we need to find another new criterion to judge
whether F has a matrix factorization w.r.t. hl−r .

Now, we use an example to illustrate the calculation process of
Algorithm 1.

Example 3.7. Let

F =

z21 − z1z2 z2z3 + z23 + z2 + z3 −z2z3 − z2
z1z2 − z22 −z1z3 + z2z3 z31 − z21z2 + z1z2 − z22

0 z2 + z3 −z2

be amultivariate polynomialmatrix inC[z1, z2, z3]3×3, where z1 >
z2 > z3 and C is the complex field.

332

ISSAC ’20, July 20–23, 2020, Kalamata, Greece D. Lu, D. Wang and F. Xiao

Algorithm 1: polynomial matrix factorization algorithm
Input :F ∈ M, h = z1 − f (z2) and a monomial order ≺z2

in k[z2].
Output :a matrix factorization of F w.r.t. hl−r , where r is

the rank of F(f , z2).
1 begin
2 compute the rank r of F(f , z2);
3 if r = 0 then
4 extract h from each row of F and obtain F1, i.e.,

F = diag(h, . . . ,h) · F1;
5 return diag(h, . . . ,h) and F1.

6 compute a Gröbner basis {®h1, . . . , ®hs } of the syzygy
module ofW = Im(F(f , z2));

7 let H be a matrix in k[z2]s×l composed of ®h1, . . . , ®hs ;
8 compute a reduced Gröbner basis G of the (l − r)-th

determinantal ideal of H w.r.t. ≺z2 ;
9 if #(G) = 1 then
10 compute a ZLP matrix factorization of H and

obtain a ZLP matrix H1 ∈ k[z2](l−r)×l ;
11 construct a unimodular matrix U ∈ k[z2]l×l such

that H1 is its first l − r rows;
12 extract h from the first l − r rows of UF and obtain

F1, i.e., UF = diag(h, . . . ,h, 1, . . . , 1) · F1;
13 return U−1 · diag(h, . . . ,h, 1, . . . , 1) and F1.
14 else
15 return unable to judge.

It is easy to compute that d3(F) = −z1(z1 −z2)
2(z21z2+z21z3+

z22), d2(F) = z1 − z2 and d1(F) = 1. Let h = z1 − z2 and ≺z2,z3
be the degree reverse lexicographic order. Then, the input of Algo-
rithm 1 are F, h = z1 − z2 and ≺z2,z3 .

Note that

F(z2, z2, z3) =

0 (z2 + z3)(z3 + 1) −z2(z3 + 1)
0 0 0
0 z2 + z3 −z2

,

the rank of F(z2, z2, z3) is r = 1. LetW = Im(F(z2, z2, z3)). Then,
we use Singular command “syz” to compute a Gröbner basis of the
syzygy module ofW , and obtain

H =

[
1 0 −z3 − 1
0 1 0

]
.

It is easy to check that the reduced Gröbner basis of all the 2 × 2
minors of H w.r.t. ≺z2,z3 is G = {1}. Then, Fitt1(W) = I2(H) =
⟨1⟩ and H is a ZLP matrix. This implies that H1 = H. H1 can be
easily extended as the first 2 rows of a unimodular matrix

U =

1 0 −z3 − 1
0 1 0
0 0 1

.

We can extract h from the first 2 rows of UF, and get

UF = DF1 =

z1 − z2 0 0
0 z1 − z2 0
0 0 1

z1 0 0
z2 −z3 z21 + z2
0 z2 + z3 −z2

.

Then, we obtain a matrix factorization of F w.r.t. h2: F = G1F1
= (U−1D)F1 =

z1 − z2 0 z3 + 1
0 z1 − z2 0
0 0 1

z1 0 0
z2 −z3 z21 + z2
0 z2 + z3 −z2

,

where det(G1) = det(U−1D) = h2.
At this moment, d3(F1) = −z1(z

2
1z2 + z21z3 + z22). We reuse

Algorithm 1 to judge whether F1 has a matrix factorization w.r.t.
z1. Similarly, we obtain

F1 = G2F2 =

z1 0 0
0 1 0
0 0 1

1 0 0
z2 −z3 z21 + z2
0 z2 + z3 −z2

,

where det(G2) = z1.
Therefore, we obtain a matrix factorization of F w.r.t. z1(z1 −

z2)
2, i.e., F = GF2 = (G1G2)F2 =

z1(z1 − z2) 0 z3 + 1
0 z1 − z2 0
0 0 1

1 0 0
z2 −z3 z21 + z2
0 z2 + z3 −z2

,

where det(G) = z1(z1 − z2)
2.

Remark 4. In Example 3.7, we can first judge whether F has a
matrix factorization w.r.t. z1. Note that

F(0, z2, z3) =

0 (z2 + z3)(z3 + 1) −z2(z3 + 1)
−z22 z2z3 −z22
0 z2 + z3 −z2

,

the rank of F(0, z2, z3) is r = 2. We compute a Gröbner basis of
the syzygy module of Im(F(0, z2, z3)) and get H =

[
−1 0 z3 + 1

]
.

Since the reduced Gröbner basis of all the 1 × 1 minors of H w.r.t.
≺z2,z3 is G = {1}. Then, Fitt2(W) = I1(H) = ⟨1⟩. This implies
that F has a matrix factorization w.r.t. z1. According to the above
calculations, we have the following conclusions: F has matrix factor-
izations w.r.t. z1, z1 − z2, z1(z1 − z2), (z1 − z2)

2 and z1(z1 − z2)
2,

respectively.

4 EQUIVALENCE FOR POLYNOMIAL
MATRICES

In this section, we first put forward a sufficient and necessary con-
dition to solve Problem 2, and then we use an example to illustrate
the effectiveness of the new matrix equivalence theorem.

4.1 Matrix Equivalence Theorem
We first introduce a lemma, which is a generalization of Binet-
Cauchy formula in [53].

Lemma 4.1 ([53]). Let F = G1F1, where G1 ∈ k[z]l×l and F1 ∈

k[z]l×m . Then an i × i (1 ≤ i ≤ l) minor of F is

det
(
F
(
r1 · · ·ri
j1 · · ·ji

))
=

∑

1≤s1< · · ·<si ≤l

det
(
G1

(r1 · · ·ri
s1 · · ·si

))
·det

(
F1

(
s1 · · ·si
j1 · · ·ji

))
.

In Lemma 4.1, F
(
r1 · · ·ri
j1 · · ·ji

)
denotes an i × i sub-matrix consisting

of the r1, . . . , ri rows and j1, . . . , ji columns of F. Based on this
lemma, we can obtain the following two results.

333

Further Results on the Factorization and Equivalence for Multivariate Polynomial Matrices ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 4.2. Let F ∈ k[z]l×m be of full row rank with F = G1F1,
where G1 ∈ k[z]l×l and F1 ∈ k[z]l×m . Then di (F1) | di (F) and
di (G1) | di (F) for each i ∈ {1, . . . , l}.

Proof. We only provedi (F1) | di (F), since the proof ofdi (G1) |
di (F) follows in a similar manner. For any given i ∈ {1, . . . , l},
let ai,1, . . . ,ai,ti and āi,1, . . . , āi,ti be all the i × i minors of F
and F1 respectively, where ti =

(l
i

) (m
i

)
. For each ai, j , it is a k[z]-

linear combination of āi,1, . . . , āi,ti by using Lemma 4.1, where
j = 1, . . . , ti . Since di (F1) = GCD(āi,1, . . . , āi,ti), for each j we
have di (F1) | ai, j . Then, di (F1) | di (F). □

Lemma 4.3. Let F1, F2 ∈ k[z]l×m be of full row rank. If F1 and
F2 are equivalent, then di (F1) = di (F2) for each i ∈ {1, . . . , l}.

Proof. Since F1 and F2 are equivalent, then there exist two
unimodular matrices U ∈ k[z]l×l and V ∈ k[z]m×m such that
F1 = UF2V. For each i ∈ {1, . . . , l}, it follows from Lemma 4.2 that
di (F2) | di (UF2) | di (F1). Furthermore, we have F2 = U−1F1V−1

since U and V are two unimodular matrices. Similarly, we obtain
di (F1) | di (U−1F1) | di (F2). Therefore, di (F1) = di (F2). □

Before presenting thematrix equivalence theorem,we introduce
a lemma which plays an important role in our proof.

Lemma 4.4 ([44]). Let F ∈ k[z]l×m with rank(F) = r . If all the
r × r minors of F generate k[z], then there exists a ZLP matrix H ∈

k[z](l−r)×l such that HF = 0(l−r)×m .

Combining Lemma 4.4 and the Quillen-Suslin theorem, we can
now solve Problem 2.

Theorem 4.5. Let F ∈ k[z]l×l with det(F) = hr , where h =
z1 − f (z2) and 1 ≤ r ≤ l . Then F and diag(1, . . . , 1,h, . . . ,h) are
equivalent if and only if h | dl−r+1(F) and the ideal generated by h
and all the (l − r) × (l − r) minors of F is k[z].

Proof. For convenience, let D = diag(1, . . . , 1,h, . . . ,h) and
F̄ = F(f , z2). Let a1, . . . ,aβ be all the (l − r) × (l − r) minors of F.
It is obvious that a1(f , z2), . . . ,aβ (f , z2) are all the (l −r)× (l −r)

minors of F̄.
Sufficiency. It follows from h | dl−r+1(F) that rank(F̄) ≤ l − r .

Assume that there exists a point (ε2, . . . , εn) ∈ k1×(n−1) such that
ai (f (ε2, . . . , εn), ε2, . . . , εn) = 0, i = 1, . . . , β . (4)

Let ε1 = f (ε2, . . . , εn), then Equation (4) implies that (ε1, ε2, . . . ,
εn) ∈ k1×n is a common zero of the polynomial system {h =
0,a1 = 0, . . . ,aβ = 0}. This contradicts the fact that h and all the
(l−r)×(l−r)minors of F generate k[z]. Then, all the (l−r)×(l−r)
minors of F̄ generate k[z2]. According to Lemma 4.4, there exists
a ZLP matrix H ∈ k[z2]r×l such that HF̄ = 0r×l . Based on the
Quillen-Suslin theorem,we can construct a unimodularmatrixU ∈

k[z2]l×l such that H is its last r rows. Then, there is a polynomial
matrixV ∈ k[z]l×l such thatUF = DV. Since det(F) = hr andU is
a unimodular matrix, we have F = U−1DV and V is a unimodular
matrix. Therefore, F and D are equivalent.

Necessity. If F and D are equivalent, then there exist two uni-
modular matrices U ∈ k[z]l×l and V ∈ k[z]l×l such that F = UDV.
It follows from Lemma 4.3 that dl−r+1(F) = dl−r+1(D) = h. If
⟨h,a1, . . . ,aβ ⟩ , k[z], then there exists a point ®ε ∈ k1×n such that

h(®ε) = 0 and rank(F(®ε)) < l − r . Obviously, rank(D(®ε)) = l − r

and rank(U−1(®ε)) = rank(V−1(®ε)) = l . Since D = U−1FV−1, we
have
rank(D(®ε)) ≤ min{rank(U−1(®ε)), rank(F(®ε)), rank(V−1(®ε))},

which leads to a contradiction. Therefore, ⟨h,a1, . . . ,aβ ⟩ = k[z]
and the proof is completed. □

Remark 5. When r = l in Theorem 4.5, we just need to check
whether h is a divisor of d1(F).

4.2 Example
Now,we use Example 2.12 to illustrate a constructivemethodwhich
follows Lin et al. in [35] and explain how to obtain the two unimod-
ular matrices associated with equivalent matrices in Theorem 4.5.

Example 4.6. Let F be the same polynomial matrix as in Example
2.12. It is easy to compute that det(F) = (z1 − z2)

2 and d2(F) =
z1 − z2. Let h = z1 − z2, it is obvious that h | d2(F). The reduced
Gröbner basis of the ideal generated by h and all the 1 × 1 minors
of F w.r.t. ≺z is {1}. Then, F is equivalent to diag(1,h,h).

Note that

F(z2, z2, z3) =

(z3 + 1)(z2 − 1) z3(z2 − 1) 0
z3 + 1 z3 0

0 0 0

,

the rank of F(z2, z2, z3) is r = 1. According to the calculation
process of Example 3.7, we can get a ZLP matrix

H =

[
1 −z2 + 1 z22 − z2
−1 z2 − 1 −z22 + z2 + 1

]

such that H · F(z2, z2, z3) = 02×3. Then, a unimodular matrix
U ∈ k[z2]3×3 can be constructed such that H is its the last 2 rows,
where

U =

−1 z2 −z22
1 −z2 + 1 z22 − z2
−1 z2 − 1 −z22 + z2 + 1

.

Now we can extract h from the last 2 rows of UF, and get F =
U−1 · diag(1,h,h) · V =

z2 − 1 z2 0
1 z2 + 1 z2
0 1 1

1 0 0
0 h 0
0 0 h

z3 + 1 z3 0
1 z3 + 1 z3
0 1 1

.

5 CONCLUDING REMARKS
In this paper, we point out two directions of research in which
multivariate polynomial matrices have been explored. The first is
concerned with the factorization problem of multivariate polyno-
mial matrices in M, and the second direction is devoted to the
investigation of the equivalence problem of square matrices inM.

The main contributions of this paper include: (1) a new criterion
(Theorem 3.4) and an algorithm (Algorithm 1) are given to factor-
ize F ∈ M w.r.t. hl−r , as a consequence, the application range of
the constructive algorithm in [37] has been greatly extended; (2)
Theorem 3.6 shows that the output of Algorithm 1 is unique if F
satisfies the new criterion; (3) a sufficient and necessary condition
(Theorem 4.5) is proposed to judge whether a square polynomial
matrix Fwith det(F) = hr is equivalent to diag(1, . . . , 1,h, . . . ,h);
(4) a generalization about the type of polynomial matrices has been

334

ISSAC ’20, July 20–23, 2020, Kalamata, Greece D. Lu, D. Wang and F. Xiao

presented (Corollary 3.5) and the implementation of two main the-
orems (Theorem 3.4 and Theorem 4.5) has been illustrated by two
non-trivial examples.

If #(G) , 1, then Algorithm 1 returns “unable to judge”. At this
moment, how to establish a necessary and sufficient condition for
F ∈ M admitting a matrix factorization w.r.t. hl−r is the question
that remains for further investigation.

ACKNOWLEDGMENTS
This researchwas supported in part by the CASKey Project QYZDJ-
SSW-SYS022.

REFERENCES
[1] N. Bose. 1982. Applied Multidimensional Systems Theory. Van Nostrand Reinhold

Co., New York.
[2] N. Bose, B. Buchberger, and J. Guiver. 2003. Multidimensional Systems Theory

and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands.
[3] M. Boudellioua. 2012. Computation of the Smith form for multivariate polyno-

mial matrices using Maple. American Journal of Computational Mathematics 2,
1 (2012), 21–26.

[4] M. Boudellioua. 2013. Further results on the equivalence to Smith form of mul-
tivariate polynomial matrices. Control and Cybernetics 42, 2 (2013), 543–551.

[5] M. Boudellioua. 2014. Computation of a canonical form for linear 2-D systems.
International Journal of Computational Mathematics 2014, 487465 (2014), 1–6.

[6] M. Boudellioua and A. Quadrat. 2010. Serre’s reduction of linear function sys-
tems. Mathematics in Computer Science 4, 2-3 (2010), 289–312.

[7] W. Brown. 1992. Matrices over Commutative Rings. Taylor and Francis.
[8] C. Charoenlarpnopparut and N. Bose. 1999. Multidimensional FIR filter bank

design using Gröbner bases. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing 46, 12 (1999), 1475–1486.

[9] T. Cluzeau and A. Quadrat. 2008. Factoring and decomposing a class of linear
functional systems. Linear Algebra and Its Applications 428 (2008), 324–381.

[10] T. Cluzeau and A. Quadrat. 2013. Isomorphisms and Serre’s reduction of linear
systems. In Proceedings of the 8th International Workshop on Multidimensional
Systems. VDE, Erlangen, Germany, 1–6.

[11] T. Cluzeau and A.Quadrat. 2015. A new insight into Serre’s reduction problem.
Linear Algebra Appl. 483 (2015), 40–100.

[12] D. Cox, J. Little, and D. O’shea. 2005. Using Algebraic Geometry. Springer, New
York.

[13] W. Decker, G. Greuel, G. Pfister, and H. Schoenemann. 2016. SINGULAR 4.0.3. a
computer algebra system for polynomial computations. https://www.singular.
uni-kl.de/

[14] W. Decker and C. Lossen. 2006. Computing in Algebraic Geometry: a quick start
using SINGULAR. Springer-Verlag.

[15] D. Eisenbud. 2013. Commutative Algebra: with a view toward algebraic geometry.
New York: Springer.

[16] A. Fabiańska and A.Quadrat. 2007. Applications of the Quillen-Suslin theorem to
multidimensional systems theory. In: Park, H., Regensburger, G. (Eds.), Gröbner
Bases in Control Theory and Signal Processing, Radon Series on Computational
and Applied Mathematics, Vol. 3. Walter de Gruyter. 23–106 pages.

[17] A. Fabiańska and A. Quadrat. 2007. A Maple implementation of a constructive
version of the Quillen-Suslin theorem. https://wwwb.math.rwth-aachen.de/
QuillenSuslin/

[18] M.G. Frost andM.S. Boudellioua. 1986. Some further results concerningmatrices
with elements in a polynomial ring. Internat. J. Control 43, 5 (1986), 1543–1555.

[19] M. Frost and C. Storey. 1978. Equivalence of a matrix over R[s, z]with its Smith
form. Internat. J. Control 28, 5 (1978), 665–671.

[20] G. Greuel and G. Pfister. 2002. A SINGULAR Introduction to Commutative Algebra.
Springer-Verlag.

[21] J. Guan, W. Li, and B. Ouyang. 2018. On rank factorizations and factor prime
factorizations for multivariate polynomial matrices. Journal of Systems Science
and Complexity 31, 6 (2018), 1647–1658.

[22] J. Guan, W. Li, and B. Ouyang. 2019. On minor prime factorizations for multi-
variate polynomial matrices. Multidimensional Systems and Signal Processing 30
(2019), 493–502.

[23] J. Guiver and N. Bose. 1982. Polynomial matrix primitive factorization over ar-
bitrary coefficient field and related results. IEEE Transactions on Circuits and
Systems 29, 10 (1982), 649–657.

[24] T. Kailath. 1993. Linear Systems. Englewood Cliffs, NJ: Prentice Hall.
[25] S. Kung, B. Levy, M. Morf, and T. Kailath. 1977. New results in 2-D systems the-

ory, part II: 2-D state-space models–realization and the notions of controllability,
observability, and minimality. In Proceedings of the IEEE, Vol. 65. 945–961.

[26] E. Lee and S. Zak. 1983. Smith forms over R[z1, z2]. IEEE Trans. Automat.
Control 28, 1 (1983), 115–118.

[27] D. Li, J. Liu, and L. Zheng. 2017. On the equivalence of multivariate polynomial
matrices. Multidimensional Systems and Signal Processing 28 (2017), 225–235.

[28] Z. Lin. 1988. Onmatrix fraction descriptions of multivariable linearn-D systems.
IEEE Transactions on Circuits and Systems 35, 10 (1988), 1317–1322.

[29] Z. Lin. 1992. On primitive factorizations for 3-D polynomial matrices. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 39,
12 (1992), 1024–1027.

[30] Z. Lin. 1993. On primitive factorizations for n-D polynomial matrices. In IEEE
International Symposium on Circuits and Systems. 601–618.

[31] Z. Lin. 1999. Notes on n-D polynomial matrix factorizations. Multidimensional
Systems and Signal Processing 10, 4 (1999), 379–393.

[32] Z. Lin. 1999. On syzygy modules for polynomial matrices. Linear Algebra and
Its Applications 298, 1-3 (1999), 73–86.

[33] Z. Lin. 2001. Further results on n-D polynomial matrix factorizations. Multidi-
mensional Systems and Signal Processing 12, 2 (2001), 199–208.

[34] Z. Lin and N. Bose. 2001. A generalization of Serre’s conjecture and some related
issues. Linear Algebra and Its Applications 338 (2001), 125–138.

[35] Z. Lin, M. Boudellioua, and L. Xu. 2006. On the equivalence and factorization of
multivariate polynomial matrices. In Proceeding of ISCAS. Greece, 4911–4914.

[36] Z. Lin, X. Li, andH. Fan. 2005. Onminor prime factorizations forn-D polynomial
matrices. IEEE Transactions on Circuits and Systems II: Express Briefs 52, 9 (2005),
568–571.

[37] Z. Lin, J. Ying, and L. Xu. 2001. Factorizations for n-D polynomial matrices.
Circuits, Systems, and Signal Processing 20, 6 (2001), 601–618.

[38] J. Liu, D. Li, and M. Wang. 2011. On general factorizations for n-D polynomial
matrices. Circuits Systems and Signal Processing 30, 3 (2011), 553–566.

[39] J. Liu, D. Li, and L. Zheng. 2014. The Lin-Bose problem. IEEE Transactions on
Circuits and Systems II: Express Briefs 61, 1 (2014), 41–43.

[40] J. Liu and M. Wang. 2010. Notes on factor prime factorizations for n-D poly-
nomial matrices. Multidimensional Systems and Signal Processing 21, 1 (2010),
87–97.

[41] J. Liu and M. Wang. 2013. New results on multivariate polynomial matrix fac-
torizations. Linear Algebra and Its Applications 438, 1 (2013), 87–95.

[42] J. Liu and M. Wang. 2015. Further remarks on multivariate polynomial matrix
factorizations. Linear Algebra and Its Applications 465 (2015), 204–213.

[43] A. Logar and B. Sturmfels. 1992. Algorithms for the Quillen-Suslin theorem.
Journal of Algebra 145, 1 (1992), 231–239.

[44] D. Lu, X. Ma, and D. Wang. 2017. A new algorithm for general factorizations of
multivariate polynomial matrices. In proceedings of 42nd ISSAC. 277–284.

[45] D. Lu, D. Wang, and F. Xiao. 2020. Factorizations for a class of multivariate
polynomial matrices. Multidimensional Systems and Signal Processing 31 (2020),
989–1004.

[46] M. Morf, B. Levy, and S. Kung. 1977. New results in 2-D systems theory, part I:
2-D polynomial matrices, factorization, and coprimeness. In Proceedings of the
IEEE, Vol. 65. 861–872.

[47] H. Park. 1995. A computational theory of Laurent polynomial rings and multidi-
mensional FIR systems. Ph.D. Dissertation. University of California at Berkeley.

[48] J. Pommaret. 2001. Solving Bose conjecture on linear multidimensional systems.
In Proceeding of European Control Conference. IEEE, 1653–1655.

[49] A. Pugh, S. Mcinerney, M. Boudellioua, D. Johnson, and G. Hayton. 1998. A
transformaition for 2-D linear systems and a generalization of a theorem of
rosenbrock. Internat. J. Control 71, 3 (1998), 491–503.

[50] D. Quillen. 1976. Projective modules over polynomial rings. Inventiones mathe-
maticae 36 (1976), 167–171.

[51] H. Rosenbrock. 1970. State-space and Multivariable Theory. London: Nelson.
[52] J. Serre. 1955. Faisceaux algébriques cohérents. Annals of Mathematics (Second

Series) 61, 2 (1955), 197–278.
[53] G. Strang. 1980. Linear Algebra and Its Applications (Second Edition). Academic

Press.
[54] V. Sule. 1994. Feedback stabilization over commutative rings: the matrix case.

SIAM Journal on Control and Optimization 32, 6 (1994), 1675–1695.
[55] A. Suslin. 1976. Projective modules over polynomial rings are free. Soviet math-

ematics - Doklady 17 (1976), 1160–1165.
[56] M.Wang. 2007. On factor prime factorization forn-D polynomial matrices. IEEE

Transactions on Circuits and Systems I: Regular Papers 54, 6 (2007), 1398–1405.
[57] M.Wang. 2008. Remarks onn-D polynomial matrix factorization problems. IEEE

Transactions on Circuits and Systems II: Express Briefs 55, 1 (2008), 61–64.
[58] M. Wang and D. Feng. 2004. On Lin-Bose problem. Linear Algebra and Its Appli-

cations 390 (2004), 279–285.
[59] M.Wang andC.P. Kwong. 2005. Onmultivariate polynomial matrix factorization

problems. Mathematics of Control, Signals and Systems 17, 4 (2005), 297–311.
[60] D. Youla and G. Gnavi. 1979. Notes on n-dimensional system theory. IEEE

Transactions on Circuits and Systems 26, 2 (1979), 105–111.
[61] D. Youla and P. Pickel. 1984. The Quillen-Suslin theorem and the structure of

n-dimensional elementary polynomial matrices. IEEE Transactions on Circuits
and Systems 31, 6 (1984), 513–518.

335

https://www.singular.uni-kl.de/
https://www.singular.uni-kl.de/
https://wwwb.math.rwth-aachen.de/QuillenSuslin/
https://wwwb.math.rwth-aachen.de/QuillenSuslin/

Punctual Hilbert Scheme and Certified Approximate Singularities

Angelos Mantzaflaris, Bernard Mourrain
angelos.mantzaflaris@inria.fr,bernard.mourrain@inria.fr

INRIA Sophia Antipolis, Université Côte d’Azur
Sophia Antipolis, France

Agnes Szanto
aszanto@ncsu.edu

Dept. of Mathematics, North Carolina State University
Raleigh, NC, USA

ABSTRACT

In this paper we provide a new method to certify that a nearby polyno-

mial system has a singular isolated root and we compute its multiplicity

structure. More precisely, given a polynomial system f = (f1, . . . , fN) ∈
C[x1, . . . ,xn]

N , we present a Newton iteration on an extended deflated

system that locally converges, under regularity conditions, to a small

deformation of f such that this deformed system has an exact singular

root. The iteration simultaneously converges to the coordinates of the

singular root and the coefficients of the so-called inverse system that

describes the multiplicity structure at the root. We use α-theory test

to certify the quadratic convergence, and to give bounds on the size of

the deformation and on the approximation error. The approach relies

on an analysis of the punctual Hilbert scheme, for which we provide

a new description. We show in particular that some of its strata can

be rationally parametrized and exploit these parametrizations in the

certification. We show in numerical experimentation how the approxi-

mate inverse system can be computed as a starting point of the Newton

iterations and the fast numerical convergence to the singular root with

its multiplicity structure, certified by our criteria.

CCS CONCEPTS

· Mathematics of Computing → Roots of Nonlinear Equations.

KEYWORDS

certification, singularity, multiplicity structure, Newton’s method, in-

verse system, multiplication matrix

ACM Reference Format:

AngelosMantzaflaris, BernardMourrain andAgnes Szanto. 2020. Punctual Hilbert

Scheme and Certified Approximate Singularities. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.

3404024

1 INTRODUCTION

Local numerical methods such as Newton iterations have proved their

efficiency to approximate and certify the existence of simple roots. How-

ever for multiple roots they dramatically fail to provide fast numerical

convergence and certification. The motivation for this work is to find a

method with fast convergence to an exact singular point and its multi-

plicity structure for a small perturbation of the input polynomials, and to

give numerical tests that can certify it. The knowledge of the multiplicity

structure together with a high precision numerical approximation of a

singular solution can be valuable information in many problems.

In [27] a method called later integration method is devised to compute

the so-called inverse system or multiplicity structure at a multiple root. It

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404024

is used in [25] to compute an approximation of the inverse system, given

an approximation of that root and to obtain a perturbed system that

satisfies the duality property. However, this method did not give a way

to improve the accuracy of the initial approximation of the root and the

corresponding inverse system. In [16] a new one-step deflation method

is presented that gives an overdetermined polynomial system in the

coordinates of the roots and the corresponding inverse system, serving

as a starting point for the present paper. However, for certification, [16]

refers to the symbolic-numeric method in [1] that only works if the input

system is given exactly with rational coefficients and have a multiple

root with the prescribed multiplicity structure.

In the present paper we give a solution for the following problem:
Problem 1.1. Given a polynomial system f = (f1, . . . , fN) ∈ C[x]N
and a point ξ ∈ Cn , deduce an iterative method that converges quadrat-

ically to the triple (ξ ∗,µ∗,ϵ∗) such that ξ ∗ ∈ Cn , µ∗ defines the coef-
ficients of a basis Λ∗ = {Λ∗1, . . . ,Λ∗r } ⊂ C[dξ ∗] dual to the set Bξ ∗ =

{(x − ξ ∗)β1 , . . . , (x − ξ ∗)βr } ⊂ C[x] and ϵ∗ defines a perturbed poly-

nomial system fϵ ∗ := f + ϵ∗Bξ ∗ with the property that ξ ∗ is an exact

multiple root of fϵ ∗ with inverse system Λ
∗. Furthermore, certify this

property and give an upper bound on the size of the perturbation ∥ϵ∗∥.
The difficulty in solving Problem 1.1 is that known polynomial sys-

tems defining the coordinates of the roots and the inverse system are

overdetermined, and we need a square subsystem of it in the Newton

iterations to guarantee the existence of a root together with the qua-

dratic convergence. Thus, roots of this square subsystem may not be

exact roots of the complete polynomial system, and we cannot certify

numerically that they are approximations of a root of the complete

system. This is the reason why we introduce the variables ϵ that allow

perturbation of the input system. One of the goals of the present paper

is to understand what kind of perturbations are needed and to bound

their magnitude.

Certifying the correctness of the multiplicity structure that the nu-

merical iterations converge to poses a more significant challenge: the

set of parameter values describing an affine point with multiplicity r

forms a projective variety called the punctual Hilbert scheme. The goal

is to certify that we converge to a point on this variety. We study an

affine subset of the punctual Hilbert scheme and give a new description

using multilinear quadratic equations that have a triangular structure.

These equations appear in our deflated polynomial system, have integer

coefficients, and have to be satisfied exactly without perturbation, other-

wise the solution does not define a proper inverse system, closed under

derivation. Fortunately, the structure allowed us to define a rational

parametrization of a strata of the punctual Hilbert scheme, called the

regular strata. In turn, this rational parametrization allows certification

when converging to a point on this regular strata.

Our method comprises three parts: first, we apply the Integration

Method (Algorithm 1) with input f and ξ to compute an approximation

of the multiplicity structure, second, an analysis and certification part

(see Section 6 and Algorithm 2), and third, a numerical iteration part

converging to the exact multiple root with its multiplicity structure for

an explicit perturbation of the input system (see Section 5). The missing

proofs are available at hal.inria.fr/hal-02478768.

Related Work. There are many works in the literature studying the certi-

fication of isolated singular roots of polynomial systems. One approach

336

https://doi.org/10.1145/3373207.3404024
https://doi.org/10.1145/3373207.3404024
https://doi.org/10.1145/3373207.3404024
https://hal.inria.fr/hal-02478768

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Angelos Mantzaflaris, Bernard Mourrain and Agnes Szanto

is to give separation bounds for isolated roots, i.e. a bound that guar-

antees that there is exactly one root within a neighborhood of a given

point. Worst case separation bounds for square polynomial systems with

support in given polytopes and rational coefficients are presented in

[10]. In the presence of singular roots, turned into root clusters after

perturbations, these separation bounds separate the clusters from each

other and bound the cluster size. [11, 32, 33] give separation bounds and

numerical algorithms to compute clusters of zeroes of univariate poly-

nomials. [8] extends α-theory and gives separation bounds for simple

double zeroes of polynomial systems, [12] extend these results to zeroes

of embedding dimension one.

Another approach, called deflation, comprises of transforming the

singular root into a regular root of a new system and to apply certifica-

tion techniques on the new system. [18] uses a square deflated system

to prove the existence of singular solutions. [20] devises a deflation tech-

nique that adds new variables to the systems for isolated singular roots

that accelerates Newton’s method and [21] modifies this to compute the

multiplicity structure. [28] computes error bounds that guarantee the

existence of a simple double root within that error bound from the input,

[22, 23] generalizes [28] to the breadth one case and give an algorithm

to compute such error bound. [24] gives verified error bounds for iso-

lated and some non-isolated singular roots using higher order deflations.

[6, 7, 15, 30, 31, 34] give deflation techniques based on numerical linear

algebra on the Macaulay matrices that compute the coefficients of the

inverse system, with improvements using the closedness property of

the dual space. [13, 14] give a new deflation method that does not intro-

duce new variables and extends α-theory to general isolated multiple

roots for the certification to a simple root of a subsystem of the overde-

termined deflated system. In [16] a new deflated system is presented,

its simple roots correspond to the isolated singular points with their

multiplicity structure. A somewhat different approach is given in [1],

where they use a symbolic-numeric certification techniques that certify

that polynomial systems with rational coefficients have exact isolated

singular roots. More recently, [19] design a square Newton iteration and

provide separation bounds for roots when the deflation method of [20]

terminates in one iteration, and give bounds for the size of the clusters.

The certification approach that we propose is based on an algebraic

analysis of some strata of the punctual Hilbert scheme. Some of its

geometric properties have been investigated long time ago, for instance

in [4, 5, 17] or more recently in the plane [2]. However, as far as we know,

the effective description that we use and the rational parametrization of

the regular strata that we compute have not been developed previously.

2 PRELIMINARIES

Let f := (f1, . . . , fN) ∈ C[x]N with x = (x1, . . . ,xn). Let ξ = (ξ1, . . . ,ξn) ∈
Cn be an isolated multiple root of f . Let I = ⟨f1, . . . , fN ⟩,mξ be the maxi-

mal ideal at ξ andQ be the primary component of I at ξ so that
√
Q = mξ .

The shifted monomials at ξ will be denoted for α = (α1, . . . ,αn) ∈ Nn
by

x
α
ξ
:= (x1 − ξ1)α1 · · · (x1 − ξn)αn .

Consider the ring of power series C[[dξ]] := C[[d1,ξ , . . . ,dn,ξ]] and

we denote d
β

ξ
:= d

β1
1,ξ
· · ·dβn

n,ξ
, with β = (β1, . . . ,βn) ∈ Nn . We identify

C[[dξ]] with the dual space C[x]∗ by considering the action of d
β

ξ
on

polynomials as derivations and evaluations at ξ , defined as

d
β

ξ
(p) := ∂

β (p)
�����ξ =

∂ |β |p
∂x

β1
1 · · ·∂x

βn
n

(ξ) for p ∈ C[x]. (1)

Hereafter, we reserve the notation d and di for the dual variables while ∂

and ∂xi for derivation. We indicate the evaluation at ξ ∈ Cn by writing

di,ξ and dξ , and for ξ = 0 it will be denoted by d. The derivation with

respect to the variable di,ξ in C[[dξ]] is denoted ∂di,ξ (i = 1, . . . ,n).

Observe that

1

β!
d
β

ξ
((x − ξ)α) =

1 if α = β ,

0 otherwise,

where β! = β1! · · · βn !.
For p ∈ C[x] and Λ ∈ C[[dξ]] = C[x]∗, let p · Λ : q 7→ Λ(p q). We

check that p = (xi − ξi) acts as a derivation on C[[dξ]]: (xi − ξi) ·
d
β

ξ
= ∂di,ξ (d

β

ξ
) = βid

β−ei
ξ

. Throughout the paper we use the notation

e1, . . . ,en for the standard basis of Cn or for a canonical basis of any

vector spaceV of dimension n. We will also use integrals of polynomials

in C[[dξ]] as follows: for Λ ∈ C[[dξ]] and k = 1, . . . ,n, ∫
k

Λ denotes

the polynomial Λ∗ ∈ C[[dξ]] such that ∂dk,ξ (Λ
∗) = Λ and Λ∗ has no

constant term. We introduce the following shorthand notation

∫
k

Λ := ∫
k

Λ(d1,ξ , . . . ,dk,ξ ,0, . . . ,0). (2)

For an ideal I ⊂ C[x], let I⊥ = {Λ ∈ C[[dξ]] | ∀p ∈ I ,Λ(p) = 0}. The
vector space I⊥ is naturally identified with the dual space of C[x]/I . We

check that I⊥ is a vector subspace of C[[dξ]] which is closed under the

derivations ∂di,ξ for i = 1, . . . ,n.

Lemma 2.1. If Q is a mξ -primary isolated component of I , then Q⊥ =
I⊥ ∩ C[dξ].

This lemma shows that to compute Q⊥, it suffices to compute all

polynomials of C[dξ] which are in I⊥. Let us denote this set D =
I⊥ ∩ C[dξ]. It is a vector space stable under the derivations ∂di,ξ . Its
dimension is the dimension of Q⊥ or C[x]/Q , that is the multiplicity of

ξ , denoted rξ (I), or simply r if ξ and I is clear from the context.

For an element Λ(dξ) ∈ C[dξ] we define the degree or order ord(Λ)
to be the maximal |β | s.t. dβ

ξ
appears in Λ(dξ) with non-zero coefficient.

For t ∈ N, let Dt be the elements of D of order ≤ t . As D is of

dimension r , there exists a smallest t ≥ 0 s.t.Dt+1 = Dt . Let us call this

smallest t , the nil-index of D and denote it by δξ (I), or simply by δ . As

D is stable by the derivations ∂di,ξ , we easily check that for t ≥ δξ (I),

Dt = D and that δξ (I) is the maximal degree of elements of D.

Let B = {xβ1
ξ
, . . . ,x

βr
ξ
} be a basis of C[x]/Q . We can identify the

elements of C[x]/Q with the elements of the vector space spanC (B). We

define the normal form N (p) of a polynomial p in C[x] as the unique

element b of spanC (B) such that p − b ∈ Q . Hereafter, we are going to
identify the elements of C[x]/Q with their normal form in spanC (B).

For α ∈ Nn , we will write the normal form of xα
ξ
as

N (xα
ξ
) =

r
∑

i=1

µβi ,α x
βi
ξ
. (3)

2.1 The multiplicity structure

We start this subsection by recalling the definition of graded primal-dual

pairs of bases for the space C[x]/Q and its dual. The following lemma

defines the same dual space as in e.g. [6, 7, 23], but we emphasize on a

primal-dual basis pair to obtain a concrete isomorphism between the

coordinate ring and the dual space.

Lemma 2.2 (Graded primal-dual basis pair). Let f , ξ , Q , D, r = rξ (f)

and δ = δξ (f) be as above. Then there exists a primal-dual basis pair

(B,Λ) of the local ring C[x]/Q with the following properties:

(1) The primal basis of the local ring C[x]/Q has the form

B :=
{

x
β1
ξ
,x

β2
ξ
, . . . ,x

βr
ξ

}

. (4)

We can assume that β1 = 0 and that the ordering of the elements

in B by increasing degree. Define the set of exponents in B as E :=

{β1, . . . ,βr } ⊂ Nn .
337

Punctual Hilbert Scheme and Certified Approximate Singularities ISSAC ’20, July 20–23, 2020, Kalamata, Greece

(2) The unique dual basis Λ = {Λ1,Λ2, . . ., Λr } of D ⊂ C[dξ] dual to
B has the form Λi =

1
βi !

d
βi
ξ
+

∑

|α |≤|βi |
α<E

µβi ,α
1
β !
d
α
ξ
.

(3) We have 0 = ord(Λ1) ≤ · · · ≤ ord(Λr), and for all 0 ≤ t ≤ δ

we have Dt = span
{
Λj : ord(Λj) ≤ t

}
, where Dt denotes the

elements of D of order ≤ t , as above.

A graded primal-dual basis pair (B,Λ) ofD as described in Lemma 2.2

can be obtained from any basis Λ̃ of D by first choosing pivot elements

that are the leading monomials with respect to a graded monomial

ordering on C[d], these leading monomials define B, then transforming

the coefficient matrix of Λ̃ into row echelon form using the pivot leading

coefficients, defining Λ.

A monomial set B is called a graded primal basis of f at ξ if there

exists Λ ⊂ C[dξ] such that (B,Λ) is a graded primal-dual basis pair and

Λ is complete for f at ξ .

Next we describe the so-called integration method introduced in [25,

27] that computes a graded pair of primal-dual bases as in Lemma 2.2 if

the root ξ is given. The integration method performs the computation of

a basis order by order. We need the following proposition, a new version

of [27, Theorem 4.2]:

Proposition 2.3. Let Λ1, . . . ,Λs ∈ C[dξ] and assume that ord(Λi) ≤ t

for some t ∈ N. Suppose that the subspace D := span(Λ1, . . . ,Λs) ⊂
C[dξ] is closed under derivation. Then ∆ ∈ C[dξ] with no constant term

satisfies ∂dk (∆) ∈ D for all k = 1, . . . ,n if and only if ∆ is of the form

∆ =

s
∑

i=1

n
∑

k=1

νki ∫
k

Λi (5)

for some νki ∈ C satisfying
s

∑

i=1

νki ∂dl (Λi) − ν li ∂dk (Λi) = 0 for 1 ≤ k < l ≤ n. (6)

Furthermore, (5) and (6) implies that

∂dk (∆) =

s
∑

i=1

νki Λi for k = 1, . . . ,n. (7)

Let Q be a mξ -primary ideal. Proposition 2.3 implies that if Λ =

{Λ1, . . . ,Λr } ⊂ C[dξ] with Λ1 = 1ξ is a basis of Q⊥, dual to the basis

B = {xβ1
ξ
, . . . ,x

βr
ξ
} ⊂ C[x] of C[x]/Q with ord(Λi) = |βi |, then there

exist νki,j ∈ C such that

∂dk (Λi) =
∑

|βj |< |βi |
νki,j Λj .

Therefore, the matrix Mk of the multiplication mapMk by xk − ξk in the

basis B of C[x]/Q is

Mk = [νkj,i]
T
1≤i,j≤r = [µβi ,βj+ek]1≤i,j≤r

using the notation (3) and the convention that νki,j = µβi ,βj+ek = 0 if

|βi | ≥ |βj |. Consequently,
νki,j = µβi ,βj+ek i, j,= 1, . . . ,r ,k = 1, . . . ,n,

and we have

Λi =
∑

|βj |< |βi |

n
∑

k=1

µβi ,βj+ek ∫
k

Λj

where µβi ,βj+ek is the coefficient of x
βi
ξ

in the normal form of x
βj+ek
ξ

in the basis B of C[x]/Q .

Next we give a result that allows to simplify the linear systems in-

volved in the integration method. We first need a definition:

Definition 2.4. Let E ⊂ Nn be a set of exponents. We say that E is

closed under division if β = (β1, . . . ,βn) ∈ E implies that β − ek ∈ E

as long as βk > 0 for all k = 1, . . . ,n. We also call the corresponding

primal basis B = {xβ1
ξ
, . . . ,x

βr
ξ
} closed under division.

The following lemma provides a simple characterization of dual bases

of inverse systems closed under derivation, that we will use in the

integration algorithm.

Lemma 2.5. Let B = {xβ1
ξ
, . . . ,x

βr
ξ
} ⊂ C[x] be closed under division

and ordered by degree. Let Λ = {Λ1, . . . ,Λr } ⊂ C[dξ] be a linearly

independent set such that

Λi =
∑

|βj |< |βi |

n
∑

k=1

µβi ,βj+ek ∫
k

Λj . (8)

Then D = span{Λ1, . . . ,Λr } is closed under derivation iff for all i,s =

1, . . . ,r , |βs | < |βi | and k , l ∈ {1, . . . ,n} we have
∑

j : |βs |< |βj |< |βi |
µβi ,βj+ek µβj ,βs+el − µβi ,βj+el µβj ,βs+ek = 0. (9)

Furthermore, (B,Λ) is a graded primal-dual basis pair iff they satisfy (9)

and

µβi ,βj+ek =

1 for βi = βj + ek

0 for βj + ek ∈ E, βi , βj + ek ,
(10)

To compute the inverse system D of f at a point ξ , we will consider

the additional systems of equations in ξ and µ = {µβi ,α }:
Λi (fj) = 0 for 1 ≤ i ≤ r ,1 ≤ j ≤ N . (11)

Throughout the paper we use the following notation:

Notation 2.6. Let f1, . . . , fN ∈ C[x], ξ ∈ Cn and fix t ∈ N. Let Bt−1 =
{xβ1
ξ
, . . . , x

βrt−1
ξ
} ⊂ C[xξ]t−1 be closed under division and Λt−1 =

{Λ1, . . . ,Λrt−1 } ⊂ C[dξ]t−1 dual to Bt−1 with
∂dk (Λj) =

∑

|βs |< |βj |
µβj ,βs+ekΛs j = 1, . . . ,rt−1,k = 1, . . . ,n.

Consider the following homogeneous linear system of equations in the

variables {νkj : j = 1, . . . ,rt−1, k = 1, . . . ,n}:
∑

j :|βs |< |βj |<t
νkj µβj ,βs+el − ν lj µβj ,βs+ek = 0, 1 ≤ k < l ≤ n (12)

νkj = 0 if βj + ek = βl for some 1 ≤ l ≤ rt−1 (13)

*.
,
rt−1
∑

j=1

n
∑

k=1

νkj ∫
k

Λj
+/
- (fl) = 0 l = 1, . . . , N . (14)

We will denote by Ht the coefficient matrix of the equations in (12) and

(13) and by Kt the coefficient matrix of the equations in (12)-(14).

Algorithm 1 produces incrementally a basis ofD, similarly toMacaulay’s

method. The algorithmic advantage is the smaller matrix size inO (r n2+

N) instead of N
(

n+δ−1
δ

)

, where δ is the maximal degree (depth) in the

dual, cf. [16, 25].

The full Integration Method consists of taking Λ1 := 1ξ for t = 0,

a basis of D0 and then iterating algorithm Integration Method -

Iteration t until we find a value of t when Dt = Dt−1. This implies

that the order δ = δξ (f) = t − 1. This leads to the following definition.

Definition 2.7. We say thatΛ ⊂ C[dξ] is complete for f at ξ if the linear

system Kt of the equations (12)-(14) in degree t = δ + 1 = ord(Λ) + 1 is

such that kerKδ+1 = {0}.
Notice that the full IntegrationMethod constructs a graded primal-

dual basis pair (B,Λ). The basis Λ ⊂ (f)⊥ spans a space stable by deriva-

tion and is complete for f , so that we have span(Λ) = (f)⊥∩C[dξ] = Q⊥
where Q is the primary component of (f) at ξ .

To guarantee that Bt is closed under division, one could choose a

graded monomial ordering ≺ of C[dξ] and compute an auto-reduced

basis of kerKt such that the initial terms for ≺ are d
βi
ξ
. The set Bt

constructed in this way would be closed under division, since Dt is

stable under derivation. In the approachwe use in practice, we choose the

column pivot taking into account the numerical values of the coefficients

338

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Angelos Mantzaflaris, Bernard Mourrain and Agnes Szanto

Algorithm 1 Integration Method - Iteration t

Input: t > 0, f = (f1, . . . , fN) ∈ C[x]N , ξ ∈ Cn ,
Bt−1 = {xβ1ξ , . . . ,x

βrt−1
ξ
} ⊂ C[x] closed under division and

Λt−1 = {Λ1, . . . ,Λrt−1 } ⊂ C[dξ] a basis for Dt−1 dual to Bt−1, of the
form (8).

Output: Either łDt = Dt−1" or Bt = {xβ1ξ , . . . ,x
βrt
ξ
} for some

rt > rt−1 closed under division and Λt = {Λ1, . . . ,Λrt } with Λi of the

form (8), satisfying (9), (10) and (11).

(1) Set up the coefficient matrix Kt of the homogeneous linear system

(12)-(14) in Notation 2.6 in the variables {νkj }j=1, ...,rt−1, k=1, ...,n
associated to an element of the form Λ =

∑rt−1
j=1

∑n
k=1

νkj ∫
k

Λj . Let

ht := dim kerKt .

(2) If ht = 0 then return łDt = Dt−1". If ht > 0 define rt := rt−1 + ht .
Perform a triangulation of Kt by row reductions with row

permutations and column pivoting so that the non-pivoting columns

correspond to exponents βrt−1+1, . . . ,βrt with strict divisors in Bt−1.
Let Bt = Bt−1 ∪ {xβrt−1+1ξ

, . . . ,x
βrt
ξ
}.

(3) Compute a basis Λrt−1+1, . . . ,Λrt ∈ C[dξ] of kerKt from the

triangular reduction of Kt by setting the coefficients of the

non-pivoting columns to 0 or 1. This yields a basis

Λt = Λt−1 ∪ {Λrt−1+1, . . . ,Λrt } dual to Bt . The coefficients νki,j of Λi
are µβi ,βj+ek in (8) so that Eq. (11) are satisfied. Eq. (10) are satisfied,

since Λt is dual to Bt .

and not according to a monomial ordering and we check a posteriori

that the set of exponents is closed under division (See Example 7.1).

The main property that we will use for the certification of multiplici-

ties is given in the next theorem.

Theorem 2.8. If ξ ∗ is an isolated solution of the system f (x) = 0 and

B is a graded primal basis at ξ ∗ closed under division, then the system

F (ξ ,µ) = 0 of all equations (9), (10) and (11) admits (ξ ∗,µ∗) as an isolated
simple root, where µ∗ defines the basis Λ∗ of the inverse system of (f) at ξ

dual to B, due to (8).

3 PUNCTUAL HILBERT SCHEME

The results in Sections 3 and 4 do not depend on the point ξ ∈ Cn ,
so to simplify the notation, we assume in these sections that ξ = 0.

Let m = (x1, . . . ,xn) be the maximal ideal defining ξ = 0 ∈ Cn . Let
C[d] be the space of polynomials in the variables d = (d1, . . . ,dn) and

C[d]t ⊂ C[d] the subspace of polynomials in d of degree ≤ t .

For a vector space V , let Gr (V) be the projective variety of the r

dimensional linear subspaces of V , also known as the Grassmannian of

r -spaces of V . The points in Gr (V) are the projective points of P(∧rV)

of the form v = v1 ∧ · · · ∧ vr for vi ∈ V . Fixing a basis e1, . . . ,es of

V , the Plücker coordinates of v are the coefficients of ∆i1, ...,ir (v) of

v =
∑

i1< · · ·<ir ∆i1, ...,ir (v) ei1 ∧ · · · ∧ eir . WhenV = C[d]r−1, a natural
basis is the dual monomial basis (d

α

α !) |α |<r . The Plücker coordinates
of an element v ∈ Gr (C[d]r−1) for this basis are denoted ∆α1, ...,αr (v)

where αi ∈ Nn , |αi | < r .

If Λ = {Λ1, . . . ,Λr } is a basis of a r -dimensional space D in C[d]r−1
with Λi =

∑

|α |<r µi,α d
α

α ! , the Plücker coordinates of D are, up to

a scalar, of the form ∆α1, ...,αr = det
[
µi,α j

]
1≤i,j≤r . In particular, a

monomial set B = {xβ1 , . . . ,xβr } ⊂ C[x]r−1 has a dual basis in D iff

∆β1, ...,βr (D) , 0. If (B = {xβi }ri=1,Λ = {Λi }ri=1) is a graded primal-dual

basis pair, then µi,βj = δi,j . To keep our notation consistent with the

previous sections, the coordinates of Λi ∈ Λ when Λ is dual to B will be

denoted by µβi ,α instead of µi,α . By properties of the determinant, the

Plücker coordinates of D are such that

µβi ,α =
∆β1, ...,βi−1,α ,βi+1, ...,βr

∆β1, ...,βr
i = 1, . . . ,r . (15)

If D is the dual of an ideal Q = D⊥ ⊂ C[x] and B = {xβ1 , . . . ,xβr }
is a basis of C[x]/Q so that ∆β1, ...,βr (D) , 0, the normal form of

x
α ∈ C[x]r−1 modulo Q = D⊥ in the basis B is

N (xα) =

r
∑

j=1

µβj ,α x
βj
=

r
∑

j=1

∆β1, ...,βj−1,α ,βj+1, ...,βr
∆β1, ...,βr

x
βj .

(if deg(xα) ≥ r , then N (xα) = 0).

Definition 3.1. Let Hr ⊂ Gr (C[d]r−1) be the set of linear spaces D
of dimension r in C[d]r−1 which are stable by the derivations ∂di with

respect to the variables d (i.e. ∂diD ⊂ D for i = 1, . . . ,n). We called Hr

the punctual Hilbert scheme of points of multiplicity r .

If D ⊂ C[d] is stable by the derivations ∂di , then by duality I =

D⊥ ⊂ C[x] is a vector space of C[x] stable by multiplication by xi , i.e.

an ideal of C[x].

Proposition 3.2. D ∈ Hr iff D⊥ = Q is an m-primary ideal such that

dimC[x]/Q = r .

Proof. Let D ∈ Hr . We prove that D⊥ = Q is an m-primary ideal.

As D is stable by derivation, Q = D⊥ is an ideal of C[x]. This also

implies that 1 ∈ D, so that Q ⊂ m. As dimD = dimC[x]/Q = r ,

δ = ord(D) is finite and mδ+1 ⊂ D⊥ = Q . Therefore, Q is m-primary,

which shows the first implication.

Conversely, let Q be a m-primary ideal such that dimC[x]/Q = r .

Then by Lemma 2.1, D = Q⊥ ⊂ C[d]t is stable by derivation and of

dimension r = dimC[x]/Q . Thus D ∈ Hr . This concludes the proof of

the proposition. □

ForD ∈ Hr , for t ≥ 0 we denote byDt the vector space of elements

of D of order ≤ t . We verify that D⊥t = D⊥ +mt+1. The next theorem
follows from Proposition 2.3 and Lemma 2.5.

Theorem 3.3. For B ⊂ C[x] closed under division such that |B | = r and
δ = deg(B), the following points are equivalent:

(1) D ∈ Hr and Bt is a basis of C[x]/(D⊥ +mt+1) for t = 1, . . . ,δ .

(2) The dual basis Λ = {Λ1, . . . ,Λr } of B satisfies Λ1 = 1 and the

equations (8), (9) and (10).

For a sequence h = (h0,h1, . . . ,hδ) ∈ Nδ+1+ and 0 ≤ t ≤ δ , let

ht = (h0, . . . ,ht), rt =
∑t
i=0 hi . For r ≥ 1 we denote by S

r the set of

sequences h of some length δ < r with hi , 0, h0 = 1 and rδ = r . For

h ∈ Sr , we consider the following subvarieties of Hrt :

Hht
= {D ∈ Hrt | dimDi = dimD ∩ C[d]i ≤ ri ,i = 0, . . . ,t }.

These are projective varieties in Hrt defined by rank conditions on

the linear spaces D ∩ C[d]i for D ∈ Hrt , that can be expressed in

terms of homogeneous polynomials in the Plücker coordinates of D. In

particular, the varieties Hh :=Hhδ
are projective subvarieties of Hr .

They may not be irreducible or irreducible components of Hr , but we

have Hr = ∪h∈Sr Hh.
We will study a particular component of Hh, that we call the regular

component of Hh, denoted H
r eд

h
. It is characterized as follows. Let

H
r eд

h0
= {⟨1⟩} = {C[d]0} = G1 (C[d]0) and assume that H

r eд

ht−1
has been

defined as an irreducible component of Hht−1 . Let
Wt = {(Dt−1, Et) | Dt−1 ∈ Hht−1, Et ∈ Grt (C[d]t),

Dt−1 ⊂ Et , ∀i ∂di Et ⊂ Dt−1 }
The constraints Dt−1 ⊂ Et and ∂di Et ⊂ Dt−1 for i = 1, . . . ,n define a

linear system of equations in the Plücker coordinates of Et (see e.g. [9]),
corresponding to the equations (5), (6). By construction, the projection of

339

Punctual Hilbert Scheme and Certified Approximate Singularities ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Wt ⊂ Hht−1 × Grt (C[d]t) on the second factor Grt (C[d]t) is π2 (Wt) =

Hht
and the projection on the first factor is π1 (Wt) =Hht−1 .

There exists a dense subsetUt−1 of the irreducible varietyH
r eд

ht−1
(with

Ut−1 =H
r eд

ht−1
) such that the rank of the linear system corresponding to

(5) and (6) defining Et is maximal. Since π−11 (Dt−1) is irreducible (in fact
linear) of fixed dimension for Dt−1 ∈ Ut−1 ⊂ H

r eд

ht−1
, there is a unique

irreducible component Wt,r eд of Wt such that π1 (Wt,r eд) = H
r eд

ht−1
(see eg. [29][Theorem 1.26]). We define H

r eд

ht
= π2 (Wt,r eд). It is an

irreducible component of Hht
, since otherwiseWt,r eд = π−12 (H

r eд

ht
)

would not be a component ofWt but strictly included in one of the

irreducible components ofWt .

Definition 3.4. Let πt : Hht
→ Hht−1 , D 7→ D ∩ C[d]t−1 be the

projection in degree t−1.We define by induction on t ,H
r eд

h0
= {⟨1⟩} and

H
r eд

ht
is the irreducible component π−1t (H

r eд

ht−1
) of Hht

for t = 1, . . . ,δ .

4 RATIONAL PARAMETRIZATION

Let B = {xβ1 , . . . ,xβr } ⊂ C[x]r−1 be a monomial set. In this section we

assume that B is closed under division and its monomials are ordered by

increasing degree. For t ∈ N, we denote by Bt = B ∩ C[x]t , by B[t] the

subset of its monomials of degree t . Let ht = |B[t] |, rt =
∑

0≤i≤t ht =
|Bt | and δ = deg(B).

Let HB := {D ∈ Hr | Bt is a basis of C[x]/(D⊥ + mt+1),t =
0, . . . ,δ }. By Theorem 3.3, HB is the set of linear spaces D ∈ Hr such

that Dt = D ∩ C[d]t satisfy Equations (8) and (9). It is the open subset

of D ∈ Hh such that ∆Bt (Dt) , 0 for t = 1, . . . ,δ , where ∆Bt :=

∆β1, ...,βrt
denotes the Plücker coordinate for Grt (C[d]t) corresponding

to the monomials in Bt .

Since for D ∈ HB we have ∆B (D) , 0, we can define the affine

coordinates of HB using the coordinates of the elements of the basis

Λ = {Λ1, . . . ,Λr } dual to B:
{

µβj ,α =
∆β1, ...,βj−1,α ,βj+1, ...,βr

∆B
: j = 1, . . . ,r , |α | < r

}

.

The following lemma shows that the values of the coordinates {µβi ,βj+ek :

i, j = 1, . . . r , |βj | < |βi |,k = 1, . . . ,n} uniquely define Λ.

Lemma 4.1. Let B = {xβ1 , . . . ,xβrt } closed under division, D ∈ HB

and Λ = {Λ1, . . . ,Λr } be the unique basis of D dual to B with Λi =
∑

|α | ≤ |βi | µβi ,α
d
α

α ! for i = 1, . . . ,r . Then Λ1 = 1 and for i = 2, . . . ,r

Λi =
∑

|βj |< |βi |

n
∑

k=1

µβi ,βj+ek ∫
k

Λj .

Thus, µβi ,α is a polynomial function of {µβs ,βj+ek : |βs | ≤ |βi |, |βj | <
|βs |,k = 1, . . . ,n} for i = 1, . . . ,r , |α | < |βi |.

Proof. Since D is closed under derivation, by Proposition 2.3 there
exist ci,s,k ∈ C such that ∂dk (Λi) =

∑

|βs |< |βi | ci,s,kΛs . Then
µβi ,βj+ek = Λi (x

βj+ek) = ∂dk (Λi) (x
βj) =

∑

|βs |< |βi |
ci,s,kΛs (x

βj) = ci,j,k .

The second claim follows from obtaining the coefficients inΛ recursively

from Λ1 = 1 and Λi =
∑

|βj |< |βi |
∑n
k=1

µβi ,βj+ek ∫
k

Λj , for i = 2, . . . ,r .

□

Wedefine µ := {µβi ,βj+ek }i,j=1, ...r , |βj |< |βi |,k=1, ...,n , µt := {µβi ,βj+ek ∈
µ : |βi | ≤ t } ⊂ µ and µ[t] := {µβi ,βj+ek ∈ µ : |βj | = t } ⊂ µt . The next

definition uses the fact that Equations (12) and (13) are linear in νkj with

coefficients depending on µt−1:

Definition 4.2. Given Dt−1 ∈ HBt−1 with a unique basis Λt−1 =
{Λ1, . . . ,Λrt−1 } with Λi =

∑

|α |<t µβi ,α
d
α

α ! for j = 1, . . . ,rt−1 that is

dual to Bt−1, uniquely determined by µt−1 = {µβi ,βj+ek : |βi | ≤

t − 1, |βj | < |βi |} as above. Recall from Notation 2.6 that Ht is the

coefficient matrix of the homogeneous linear system (12) and (13) in

the variables {νkj : j = 1, . . . ,rt−1, k = 1, . . . ,n}. To emphasize the

dependence of its coefficients on Dt−1 or µt−1 we use the notation

Ht (Dt−1) or Ht (µt−1). For D ∈ H
r eд

h
in an open subset, the rank ρt

of Ht (Dt−1) is maximal.

The next definition describes a property of a monomial set B such

that it will allow us to give a rational parametrization of HB .

Definition 4.3. For t = 1, . . . ,δ = deg(B) we say thatDt ∈ Grt (C[d]t)

is regular for Bt if,

• dim(Dt) = rt = |Bt |,
• rankHt (Dt−1) = ρt the generic rank of Ht on H

r eд

ht
,

• ∆B[t]
(D[t]) , 0 where ∆B[t]

(D[t]) is the Plücker coordinate of

D[t] ∈ Ght (C[d]r) corresponding to the monomials in B[t].

Let Ut := {Dt ∈ H
r eд

ht
: Dt is regular for Bt }. Then Ut is either

an open dense subset of the irreducible variety H
r eд

ht
or empty if

∆B[t]
(D[t]) = 0 for all D ∈ H

r eд

ht
. We say that B is a regular basis

ifUt =H
r eд

ht
(orUt , ∅) for t = 1, . . . ,δ .

We denote by γ[t] = dimGht (kerHt (Dt−1)) for Dt−1 ∈ Ut−1 and
γ =

∑δ
t=0 γ[t].

If the basis B is regular and closed under division, then H
r eд

h
can

be parametrized by rational functions of free parameters µ. We present

hereafter Algorithm 2 to compute such a parametrization iteratively.

Algorithm 2 Rational Parametrization - Iteration t

Input: t > 0, Bt = {xβ1 , . . . ,xβrt } ⊂ C[x]t closed under division and

regular, µt−1 ⊂ µt−1 and Φt−1 : µt−1 7→
(

qβj ,α (µt−1)
)

|βj | ≤t−1, |α |<r
with qβj ,α ∈ Q(µt−1) parametrizing a dense subset of H

r eд

ht−1
.

Output: µt ⊂ µt and Φt : µt 7→
(

qβj ,α
)

|βj | ≤t, |α |<r , qβj ,α ∈Q(µt)
extending Φt−1 and parametrizing a dense subset of H

r eд

ht
.

(1) Let Ht be as in Notation 2.6, ν = [νkj : j = 1, . . . ,rt−1,k = 1, . . . ,n]T .

Decompose Ht (Φt−1 (µt−1)) · ν = 0 as

[
A(µt−1) B (µt−1) C (µt−1)

]
ν ′
ν ′′
ν

= 0, (16)

where ν ′ is associated to a maximal set of independent columns of

Ht (Φt−1 (µt−1)), ν ′′ = {νkj : x
βj+ek ∈ B[t]} and ν refers to the rest of

the columns. If no such decomposition exists, return łBt is not regularž.

(2) For νkj ∈ ν ′ express νkj = φkj (ν ,ν
′′) ∈ Q(µt−1)[ν ,ν ′′]1 as the

generic solution of the system Ht (Φt−1 (µt−1)) · ν = 0.

(3) For i = rt−1 + 1, . . . ,rt do:
(3.1) Define µ[t],i :=

{
µβi ,βj+ek : νj,k ∈ ν

}
,

µ ′
[t],i
= {µβi ,βj+ek : νkj ∈ ν ′}, µ ′′[t],i = {µβi ,βj+ek : νkj ∈ ν ′′}, and

µt := µt−1 ∪
⋃rt

i=rt−1+1
µ[t],i .

(3.2) For µβi ,βj+ek ∈ µ ′′[t],i set qβi ,βj+ek = µβi ,βj+ek = 1 if

βi = βj + ek and 0 otherwise.

(3.3) For µβi ,βj+ek ∈ µ ′[t],i define
qβi ,βj+ek := φkj (µ[t],i ,µ

′′
[t],i) ∈ Q(µt)

(3.4) For |α | < r and µβi ,α < µt find qβi ,α using Lemma 4.1.

Proposition 4.4. Let B = {xβ1 , . . . ,xβr } ⊂ C[x]r−1 be closed under

division and assume that B is a regular basis. There exist a subset µ ⊂ µ

340

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Angelos Mantzaflaris, Bernard Mourrain and Agnes Szanto

with |µ | = γ and rational functions qβj ,α (µ) ∈ Q(µ) for j = 1, . . . ,r and

|α | < r , such that the map Φ : Cγ →HB defined by

Φ : µ 7→
(

qβj ,α (µ)
)

j=1, ...,r , |α |<r
parametrizes a dense subset of H

r eд

h
.

Definition 4.5. We denote by Ht (µ) a maximal square submatrix of A

in (16) such that det(Ht (µt−1)) , 0.

The size of Ht (µ) is the size of ν
′ in (16), that is the maximal number of

independent columns inHt (µt−1). Given an elementD = Λ1∧· · ·∧Λr ∈
Gr (C[d]r−1), in order to check that D is regular for B, it is sufficient

to check first that ∆B (D) , 0 and secondly that |Ht (µ) | , 0 for all

t = 0, . . . ,δ , where µ = (µβ,α) is the ratio of Plücker coordinates of D
defined by the formula (15).

5 NEWTON’S ITERATIONS

In this section we describe the extraction of a square, deflated system

that allows for a Newton’s method with quadratic convergence. We

assume that the sole input is the equations f = (f1, . . . , fN) ∈ C[x]N ,

an approximate point ξ ∈ Cn and a tolerance ε > 0.

Using this input we first compute an approximate primal-dual pair

(B, Λ) by applying the iterative Algorithm 1. The rank and kernel vectors

of the matrices Kt (see Algorithm 1) are computed numerically within

tolerance ε , using SVD. Note that here and in Section 6 we do not need

to certify the SVD computation but we are only using SVD to certify

that some matrices are full rank by checking that the distance to the

variety of singular matrices is bigger than the perturbation of the matrix.

Thus we need a weaker test, which relies only on a lower bound of the

smallest singular value.

The algorithm returns a basis B = {xβ1
ξ
, . . . ,x

βr
ξ
} with exponent vec-

tors E = {β1, . . . ,βr }, as well as approximate values for the parameters

µ = {µβi ,βj+ek : |βj | < |βi | ∈ E, k = 1, . . . ,n}. These parameters will

be used as a starting point for Newton’s iteration. Note that, by looking

at B, we can also deduce the multiplicity r , the maximal order δ of dual

differentials, the sequences rt = |Bt |, and ht = |B[t] | for t = 0, . . . ,δ .
Let F be the deflated system with variables (x,µ) defined by the

relations (8) and Equations (9), (10) and (11) i.e.

F (x,µ)=

∑

|βs |< |βj |< |βi |
µβi ,βj +ek µβj ,βs +el − µβi ,βj +el µβj ,βs +ek =0 (a)

for all i = 1, . . . , r , |βs | < |βi |, k , l ∈ {1, . . . , n }
µβi ,βj +ek =

{

1 for βi = βj + ek
0 for βj + ek ∈ E, βi , βj + ek ,

(b)

Λi (fj) = 0, i = 1, . . . , r , j = 1, . . . , N . (c)

Here Λ1 = 1x and Λi =
∑

|βj |< |βi |
∑n
k=1

µβi ,βj+ek ∫
k

Λj ∈ C[µ][dx]
denote dual elements with parametric coefficients defined recursively.

Also, if Λi =
∑

|α | ≤ |βi | µβi ,α
d
α
x

α ! then

Λi (fj) =
∑

|α | ≤ |βi |
µβi ,α

∂
α (fj) (x)

α !

which is in C[x,µ] by Lemma 4.1. Note, however, that (a) and (b) are

polynomials in C[µ], only (c) depends on x and µ. Equations (b) define

a simple substitution into some of the parameters µ. Hereafter, we ex-

plicitly substitute them and eliminate this part (b) from the equations

we consider and reducing the parameter vector µ.

By Theorem 2.8, if B is a graded primal basis for f at the root ξ ∗ then
the above overdetermined system has a simple root at a point (ξ ∗,µ∗).

To extract a square subsystem defining the simple root (ξ ∗,µ∗) in
order to certify the convergence, we choose a maximal set of equations

whose corresponding rows in the Jacobian are linearly independent.

This is done by extracting first a maximal set of equations in (a) with

linearly independent rows in the Jacobian. For that purpose, we use the

rows associated to the maximal invertible matrix Ht (Definition 4.5) for

each new basis element Λi ∈ D[t] and t = 1, . . . ,r . We denote by G0

the subsystem of (a) that correspond to rows of Ht .

We complete the system of independent equationsG0 with equations

from (c), using a QR decomposition and thresholding on the transposed

Jacobian matrix of G0 and (c) at the approximate root. Let us denote

by F0 the resulting square system, whose Jacobian, denoted by J0, is

invertible.

For the remaining equations F1 of (c), not used to construct the

square system F0, define Ω = {(i, j) : Λi (fj) ∈ F1}. We introduce new

parameters ϵi,j for (i, j) ∈ Ω and we consider the perturbed system

fi,ϵ = fi −
∑

j |(i,j)∈Ω
ϵi,j x

βj
ξ
.

The perturbed system is fϵ = f − ϵ B, where ϵ is the N × r matrix with

[ϵ]i,j = ϵi,j if (i, j) ∈ Ω and [ϵ]i,j = 0 otherwise. Denote by F (x,µ,ϵ)

obtained from F (x,µ) by replacing Λj (fi) by Λj (fi,ϵ) for j = 1, . . . ,r ,i =

1, . . . ,N . Then the equations used to construct the square Jacobian J0
are unchanged. The remaining equations are of the form

Λj (fi,ϵ) = Λj (fi) − ϵi,j = 0 (i, j) ∈ Ω.
Therefore the Jacobian of the complete system F (x,µ,ϵ) is a square

invertible matrix of the form

Jϵ :=

(

J0 0

J1 Id

)

where J1 is the Jacobian of the system F1 of polynomialsΛj (fi) ∈ C[x,µ]
with (i, j) ∈ Ω.

Since Jϵ is invertible, the square extended system F (x,µ,ϵ) has an

isolated root (ξ ∗,µ∗,ϵ∗) corresponding to the isolated root (ξ ∗,µ∗) of
the square system F0. Furthermore, Λ∗j (fi) = ϵ∗i,j = 0 for (i, j) ∈ Ω. Here
Λ∗1, . . . ,Λ

∗
r ∈ C[dξ ∗] are defined from (ξ ∗,µ∗) recursively by

Λ∗1 = 1ξ ∗ and Λ∗i =
∑

|βj |< |βi |

n
∑

k=1

µ∗
βi ,βj+ek ∫

k

Λ∗j . (17)

We have the following property:

Theorem 5.1. If the Newton iteration

(ξk+1, µk+1) = (ξk , µk) − J0 (ξk , µk)
−1F0 (ξk , µk),

starting from a point (ξ0,µ0) converges when k → ∞, to a point (ξ ∗,µ∗)
such that B is a regular basis for the inverse system D∗ associated to

(ξ ∗,µ∗) and D∗ is complete for f , then there exists a perturbed system

fi,ϵ ∗ = fi−∑j |(i,j)∈Ω ϵ∗i,j x
βj
ξ ∗ with ϵ

∗
i,j = Λ∗j (fi) such that ξ

∗ is a multiple

root of fi,ϵ ∗ with the multiplicity structure defined by µ∗.

6 CERTIFICATION

In this section we describe how to certify that the Newton iteration

defined in Section 5 quadratically converges to a point that defines

an exact root with an exact multiplicity structure of a perturbation

of the input polynomial system f . More precisely, we are given f =

(f1, . . . , fN) ∈ C[x]N , B = {xβ1 , . . . ,xβr } ⊂ C[x] in increasing order

of degrees and closed under division, δ := |βr |. We are also given the

deflated systems F (x,µ), its square subsystem F0 (x,µ) defined in Section

5 and F1 (x,µ) the remaining equations in F (x,µ). Finally, we are given

ξ0 ∈ Cn and µ0 = {µ (0)βi ,βj+ek
∈ C : i, j = 1, . . . ,r , |βj | < |βi |,k =

1, . . . ,n}. Our certification will consist of a symbolic and a numeric part:

Regularity certification. We certify that B is regular (see Definition

4.3). This part of the certification is purely symbolic and inductive on

t . Suppose for some t − 1 < δ we certified that Bt−1 is regular and

computed the parameters µt−1 and the parametrization

Φt−1 : µt−1 7→
(

qβi ,α (µt−1)
)

|βi | ≤t−1, |α | ≤t−1
(Algorithm 2). Then to prove that Bt is regular, we consider the coeffi-

cient matrixHt of equations (12) and (13). We substitute the parametriza-

tion Φt−1 to get the matrices Ht (µt−1). We symbolically prove that the

rows of Ht (µt−1) (Definition 4.5) are linearly independent and span all

341

Punctual Hilbert Scheme and Certified Approximate Singularities ISSAC ’20, July 20–23, 2020, Kalamata, Greece

rows of Ht (µt−1) over Q(µt−1). If that is certified, we compute the pa-

rameters µt and the parametrization Φt : µt 7→
(

qβi ,α (µt)
)

|βi | ≤t, |α | ≤t
as in Algorithm 2 inverting the square submatrix Ht of Ht such that the

denominators of qβi ,α for |βi | = t divide det(Ht (µt−1)) , 0.

Singularity certification.

(C1) We certify that theNewton iteration for the square system F0 start-

ing from (ξ0,µ0) quadratically converges to some root (ξ ∗,µ∗) of
F0, such that ∥ (ξ0,µ0) − (ξ ∗,µ∗)∥2 ≤ β̃ , using α-theory.

(C2) We certify that D∗ = span(Λ∗) is regular for B (see Definition

4.3), by checking that |Ht (µ∗) | , 0 for t = 1, . . . ,δ (See Definition

4.5), using the Singular Value Decomposition of Ht (µ0) and the

distance bound β̃ between µ∗ and µ0.

(C3) We certify that Λ∗ is complete for f at ξ ∗ (see Definition 2.7),

where Λ∗ ⊂ C[dξ ∗] is the dual systems defined from (ξ ∗,µ∗) re-
cursively as in (17). This is done by checking that kerKδ+1 (ξ

∗,µ∗) =
{0} (See Definition 2.7), using the Singular Value Decomposition

of Kδ+1 (ξ0,µ0) and the distance bound β̃ between (ξ ∗,µ∗) and
(ξ0,µ0).

Let us now consider for a point-multplicity structure pair (ξ0,µ0) γ̃ :=

supk≥2 ∥DF−10 (ξ0,µ0)
Dk F0 (ξ0,µ0)

k !
∥ 1
k−1 , β̃ := 2∥DF−10 (ξ0,µ0) F0 (ξ0,µ0)∥,

α̃ := β̃ γ̃ and for a matrix functionA(ξ ,µ), let L1 (A; ξ0,µ0;b) be a bound

on its Lipschitz constant in the ball Bb (ξ0,µ0) of radius b around (ξ0,µ0)

such that ∥A(ξ ,µ) − A(ξ0,µ0)∥ ≤ L1 (A; ξ0,µ0;b) ∥ (ξ ,µ) − (ξ0,µ0)∥ for
(ξ ,µ) ∈ Bb (ξ0,µ0). For a matrixM , let σmin (M) be its smallest singular

value. We have the following result:

Theorem 6.1. Let B = {xβ1 , . . . ,xβr } ⊂ C[x] be closed under division

and suppose B is regular. Suppose that α̃ < α̃0 := 0.26141,

L1 (Kδ+1; ξ0,µ0; β̃) β̃ < σmin (Kδ+1 (ξ0,µ0)) and for t = 1, . . . ,δ it holds

that L1 (Ht ; µ0; β̃) β̃ < σmin (Ht (µ0)). Then the Newton iteration on the

square system F0 starting from (ξ0,µ0) converges quadratically to a point

(ξ ∗,µ∗) corresponding to a multiple point ξ ∗ with multiplicity structure µ∗
of the perturbed system fϵ ∗ = f − ϵ∗Bξ ∗ such that ∥ϵ∗∥ ≤ ∥F1 (ξ0,µ0)∥ +
L1 (F1; ξ0,µ0; β̃) β̃ , where Bξ ∗ = {xβ1ξ ∗ , . . . ,x

βr
ξ ∗ }.

7 EXPERIMENTATION

In this section we work out some examples with (approximate) singu-

larities. The experiments are carried out using Maple, and our code is

publicly available at https://github.com/filiatra/polyonimo.

Example 7.1. We consider the equations

f1 = x31 + x
2
2 + x

2
3 − 1, f2 = x32 + x

2
1 + x

2
3 − 1, f3 = x33 + x

2
1 + x

2
2 − 1,

the approximate root ξ0 = (0.002,1.003,0.004) and threshold ε = 0.01.

In the following we use 32-digit arithmetic for all computations.

We shall first compute a primal basis using Algorithm 1. In the first

iteration we compute the 3× 3 matrix K1 = K1 (ξ0). The elements in the

kernel of this matrix consists of elements of the form Λ = ν11d1 + ν
2
1d2 +

ν31d3. The singular values of K1 (ξ0) are (4.1421,0.0064,0.0012), which

implies a two-dimensional kernel, since two of them are below threshold

ε . The (normalized) elements in the kernel are Λ̃2 = d1 − 0.00117d2 and
Λ̃3 = d3−0.00235d2. Note that d2 was not chosen as a leading term. This

is due to pivoting used in the numeric process, in order to avoid leading

terms with coefficients below the tolerance ε . The resulting primal basis

B1 = {1,x1,x3} turns out to be closed under derivation.

Similarly, in degree 2we compute one element Λ̃4 = d1d3−0.00002d21−
0.00235d1d2 + 5.5 · 10−6d22 − 0.00117 · d2d3 − 0.00002d23 + 5.9 · 10−6d2.

In the next step, we have kerK3 = {0}, since the minimum singular

value is σmin = 0.21549, therefore we stop the process, since the com-

puted dual is approximately complete (cf. Definition 2.7). We derive that

the approximate multiple point has multiplicity r = 4 and one primal

basis is B = {1,x1,x3,x1x3}.

The parametric form of a basis of D1 is kerK1 = ⟨Λ2 = d1 +

µ2,1d2,Λ3 = d3 + µ3,1d2⟩. Here we incorporated (10), thus fixing some

of the parameters according to primal monomials x1 and x3.
The parametric form of the matrix K2 (ξ ,µ) of the integration method

at degree 2 is

ν 11 ν 21 ν 3
1

ν 12 ν 22 ν 3
2

ν 13 ν 23 ν 3
3

(9) 0 0 0 0 0 −µ2,1 0 1 −µ3,1
(9) 0 0 0 0 0 −1 1 0 0
(9) 0 0 0 µ2,1 -1 0 µ3,1 0 0

Λ(f1) 3ξ 21 2ξ2 2ξ3 3ξ1 µ2,1 0 3ξ1 µ3,1 1
Λ(f2) 2ξ1 3ξ 22 2ξ3 1 3µ2,1 ξ2 0 0 3µ3,1 ξ2 1
Λ(f3) 2ξ1 2ξ2 3ξ 23 1 µ2,1 0 0 µ3,1 3ξ3

,

where the columns correspond to the parameters in the expansion (5):
Λ4 = ν

1
1d1 + ν

2
1d2 + ν

3
1d3 + ν

1
2d

2
1 + ν

2
2 (d1d2 + µ2,1 d

2
2)

+ν 32 (d1d3 + µ2,1 d3d2) + ν
1
3 (µ3,1 d1d2) + ν

2
3 (µ3,1 d

2
2) + ν

3
3 (d

2
3 + µ3,1 d2d3)

Setting Λ4 (x1x3) = 1 and Λ4 (x1) = Λ4 (x3) = Λ4 (1) = 0, we obtain

ν11 = ν
3
1 = 0 and ν32 = 1. The dual element of order 2 has the parametric

form

Λ4 = d1d3 + µ4,1d2 + µ4,2d
2
1 + µ4,3d1d2 + µ4,6d

2
3+ (18)

+ (µ2,1 + µ3,1 µ4,6)d2d3 + (µ2,1 µ4,4 + µ3,1 µ4,5)d
2
2

(ν21 = µ4,1,ν
1
2 = µ4,2,ν

2
2 = µ4,3,ν

1
3 = µ4,4,ν

2
3 = µ4,5,ν

3
3 = µ4,6). Overall 8

parameters are used in the representation of D2.

The highlighted entries of K2 (ξ ,µ) form the non-singular matrix H2
in Definition 4.5, therefore D2 is regular for B (cf. Definition 4.3). We

obtain the polynomial parameterization µ4,3 = µ2,1 µ4,2 + µ3,1 ,µ4,4 =

1,µ4,5 = µ2,1 + µ3,1 µ4,6 with the free parameters µ̄ = (µ2,1,µ3,1,µ4,1,

µ4,2,µ4,6). There is no denominator since det H2 = 1.

We now setup the numerical scheme. The overdetermined and de-

flated system F (x,µ) consists of 15 equations:

µ2,1µ4,2 + µ3,1 − µ4,3 ,−µ4,4 + 1 ,−µ2,1µ4,4 − µ3,1µ4,6 + µ4,5,
Λ1 (f1)=f1,Λ1 (f2)=f2,Λ1 (f3)=f3,Λ2 (f1)=2µ2,1x2 + 3x

2
1 ,

Λ2 (f2)=3µ2,1x
2
2 + 2x1,Λ2 (f3)=2µ2,1x2 + 2x1,Λ3 (f1)=2µ3,1x2 + 2x3,

Λ3 (f2)=3µ3,1x
2
2 + 2x3 ,Λ3 (f3)=2µ3,1x2 + 3x

2
3 ,

Λ4 (f1)=µ2,1µ4,3+µ3,1µ4,5+2µ4,1x2+3µ4,2x1+µ4,6 ,

Λ4 (f2)=3µ2,1µ4,3x2+3µ3,1µ4,5x2+3µ4,1x
2
2+µ4,2+µ4,6 ,

Λ4 (f3)=µ2,1µ4,3+µ3,1µ4,5+2µ4,1x2+3µ4,6x3+µ4,2
We now consider JF (ξ0,µ0). This Jacobian is of full rank, and we can

obtain a maximal minor by removing Λ1 (f2),Λ1 (f3),Λ2 (f3) and Λ3 (f3)

from F . We obtain the square 11 × 11 system denoted by F0.

The initial point of the Newton iterations is ξ0 = (0.002,1.003,0.004)

and the approximation of the variables µi,j provided by the numerical

integration method: µ0 = (−0.00117,− 0.00235,5.9 · 10−6,− 0.00002,−
0.00235,1.0,− 0.00117,− 0.00002) .

We now use Theorem 6.1 to certify the convergence to a singular

system. We can compute for (ξ0,µ0) the value β̃ ≈ 0.01302. Moreover,

σmin (Kδ+1 (ξ0,µ0)) = 0.21549 and the minimum singular value of the

highlighted submatrix of K2 (ξ0,µ0) is equal to one. Therefore β̃ is at

least one order of magnitude less than both of them, which is sufficient,

since the involved Lipschitz and γ̃ constants are of the order of 1 for the

input polynomials. In the first iteration we obtain β̃ ≈ 0.00011 which

clearly indicates that we are in the region of convergence. Indeed, the

successive residuals for 4 iterations are 0.00603,4.0 ·10−5,2.07 ·10−9,8.6 ·
10−18,3.55 · 10−35. Clearly, the residual shrinks with a quadratic rate1.

We obtain ξ4 = (1.8 · 10−37,1.0,2.8 · 10−36) and the overdetermined

system is satisfied by this point: ∥F (ξ4,µ4)∥∞ = 8 · 10−35; the resulting
dual structure is D∗2 = {1,d1,d3,d1d3}.
Example 7.2. We demonstrate how our method handles inaccuracies

in the input, and recovers a nearby system with a true multiple point.

Let

f1 = x1
2
+ x1 − x2 + 0.003 , f2 = x2

2
+ 1.004x1 − x2.

1The convergence is seen up tomachine error. If we increase the accuracy to 150 digits the rate

remains quadratic for 7 iterations: . . . 3.55 · 10−35, 6.78 · 10−70, 4.15 · 10−140, 5.1 · 10−281 .
342

https://github.com/filiatra/polyonimo

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Angelos Mantzaflaris, Bernard Mourrain and Agnes Szanto

There is a cluster of three roots around ξ0 = (0.001,−0.002). Our goal is
to squeeze the cluster down to a three-fold real root. We use 32 digits

for the computation. Starting with ξ0, and a tolerance equal to 10−2
Algorithm 1 produces an approximate dual 1, d1 + 1.00099651d2, d

2
1 +

1.00099651d1d2 + 1.00266222d
2
2 + 0.99933134d2 and identifies the pri-

mal basis B = {1,x1,x21 } using pivoting on the integration matrix.

The sole stability condition reads µ1,1 − µ2,2 = 0, and Λ1 = 1, Λ2 =

d1 + µ1,1d2, Λ3 = d
2
1 + µ1,1d1d2 + µ2,1d2 + µ2,2µ1,1d

2
2 .

The nearby system that we shall obtain is deduced by the residue in

Newton’s method. In particular, starting from ξ0, we consider the square

system given by removing the equationsΛ1 (f1) = 0 andΛ2 (f2) = 0. The

rank of the corresponding Jacobian matrix remains maximal, therefore

such a choice is valid. Newton’s iterations converge quadratically to the

point (ξ5,µ5) = (1.1 · 10−33,1.2 · 10−33,1,1,1). The full residual is now
F (ξ5,µ5) = (0,0.003,−10−32,10−32,0.004,0,0) .

This yields a perturbation f̃1 ≈ f1−0.003 and f̃2 ≈ f2−0.004(x1−ξ ∗1) to
obtain a system with an exact multiple root at the origin (cf. Th. 6.1). Of

course, this choice of the square sub-system is not unique. By selecting

to remove equations Λ1 (f1) = 0 and Λ1 (f2) = 0 instead, we obtain

(ξ5,µ5) = (0.00066578,−0.00133245,1.001,1.0,1.001) and the residual

F (ξ5,µ5) = (0,0.005,0.002,0,0,0,0), so that the nearby system

f ∗1 ≈ x1
2
+ x1 − x2 + 0.008, f ∗2 ≈ x2

2
+ 1.004x1 − x2 + 0.002

has a singularity at the limit point ξ ∗ ≈ (0.00066578,−0.00133245)
described locally by the coefficients µ∗ ≈ (1.001,1.0,1.001).

Finally, consider the two square sub-systems as above, after changing

f1, f2 to define an exact three-fold root at the origin (i.e. f1 = x1
2
+

x1 − x2, f2 = x2
2
+ x1 − x2). Newton’s iteration with initial point ξ0

on either deflated system converges quadratically to (ξ ,µ) = (0,1).

This is a general property of the method: exact multiple roots and their

structure are recovered by this process if ξ0 is a sufficiently good initial

approximation (cf. Section 5). We plan to develop this aspect further in

the future.

Example 7.3. We show some execution details on a set of benchmark

examples in taken from [7], see also [26]. For this benchmark, we are

given systems and points withmultiplicities.We perturb the given points

with a numerical perturbation of order 10−2. We use double precision

arithmetic and setup Newton’s iteration; with less than 10 iterations,

the root was approximated within the chosen accuracy.

In Table 1, łIMž is the maximal size of the (numeric) integration

matrix that is computed to obtain the multiplicity, ł#µž is the number

of new parameters that are needed for certified deflation, łSCž is the

number of stability constraints that were computed and łOSž stands for

the size of the overdetermined system (equations × variables). This is
the size of the Jacobian matrix that must be computed and inverted in

each Newton’s iteration. We can observe that the number of parameters

required can grow significantly. Moreover, these parameters induce non-

trivial denominators in the rational functions qβj ,α (µ) of Prop. 4.4. for

the instances cmbs1, cmbs2 and KSS.

System r/n IM SC #µ OS
cmbs1 11/3 27 × 23 75 74 108 × 77
cmbs2 8/3 21 × 17 21 33 45 × 36
mth191 4/3 10 × 9 3 9 15 × 12
decker2 4/2 5 × 5 4 8 12 × 10
Ojika2 2/3 6 × 5 0 2 6 × 5
Ojika3 4/3 12 × 9 15 14 27 × 17
KSS 16/5 155 × 65 510 362 590 × 367
Capr. 4/4 22 × 13 6 15 22 × 19
Cyclic-9 4/9 104 × 33 36 40 72 × 49

Table 1: Size of required matrices and parameters for deflation.

Acknowledgments. This research was partly supported by the H2020-

MSCA-ITN projects GRAPES (GA 860843) and POEMA (GA 813211) and

the NSF grant CCF-1813340.

REFERENCES
[1] Ayyildiz Akoglu, T., Hauenstein, J. D., and Szanto, A. Certifying solutions to overde-

termined and singular polynomial systems over Q. Journal of Symbolic Computation 84
(2018), 147ś171.

[2] Bejleri, D., and Stapleton, D. The tangent space of the punctual Hilbert scheme. The
Michigan Mathematical Journal 66, 3 (Aug. 2017), 595ś610.

[3] Blum, L., Cucker, F., Shub, M., and Smale, S. Complexity and Real Computation.
Springer, NY, 1998.

[4] Briançon, J. Description de HilbnC {x, y }. Inventiones mathematicae 41 (1977),
45ś90.

[5] Briançon, J., and Iarrobino, A. Dimension of the punctual Hilbert scheme. Journal
of Algebra 55, 2 (Dec. 1978), 536ś544.

[6] Dayton, B. H., Li, T.-Y., and Zeng, Z. Multiple zeros of nonlinear systems. Math.
Comput. 80, 276 (2011), 2143ś2168.

[7] Dayton, B. H., and Zeng, Z. Computing the multiplicity structure in solving polyno-
mial systems. In Proc. of ISSAC ’05 (NY, USA, 2005), ACM, pp. 116ś123.

[8] Dedieu, J.-P., and Shub, M. On simple double zeros and badly conditioned zeros of
analytic functions of n variables. Math. Comp. 70, 233 (2001), 319ś327.

[9] Doubilet, P., Rota, G.-C., and Stein, J. On the Foundations of Combinatorial Theory.
Studies in Applied Mathematics 53, 3 (1974), 185ś216.

[10] Emiris, I. Z., Mourrain, B., and Tsigaridas, E. The DMM bound: multivariate (aggre-
gate) separation bounds. In Proceedings of the ISSAC’10 (Munich, Germany, July 2010),
S. Watt, Ed., ACM, pp. 243ś250.

[11] Giusti, M., Lecerf, G., Salvy, B., and Yakoubsohn, J.-C. On location and approx-
imation of clusters of zeros of analytic functions. Found. Comput. Math. 5, 3 (2005),
257ś311.

[12] Giusti, M., Lecerf, G., Salvy, B., and Yakoubsohn, J.-C. On location and approxima-
tion of clusters of zeros: Case of embedding dimension one. Foundations of Computa-
tional Mathematics 7 (2007), 1ś58.

[13] Giusti, M., and Yakoubsohn, J.-C. Multiplicity hunting and approximating multiple
roots of polynomial systems. vol. 604 of Contemp. Math., AMS, pp. 105ś128.

[14] Giusti, M., and Yakoubsohn, J.-C. Approximation numérique de racines isolées
multiples de systèmes analytiques, 2018. arXiv:1809.05446.

[15] Hao, W., Sommese, A. J., and Zeng, Z. Algorithm 931: an algorithm and software for
computing multiplicity structures at zeros of nonlinear systems. ACM Trans. Math.
Software 40, 1 (2013), Art. 5, 16.

[16] Hauenstein, J. D., Mourrain, B., and Szanto, A. On deflation and multiplicity
structure. Journal of Symbolic Computation 83 (2016), 228ś253.

[17] Iarrobino, A. A. Punctual Hilbert Schemes, vol. 188 of Memoirs of the American
Mathematical Society. AMS, Providence, 1977.

[18] Kanzawa, Y., and Oishi, S. Approximate singular solutions of nonlinear equations
and a numerical method of proving their existence. No. 990. 1997, pp. 216ś223.

[19] Lee, K., Li, N., and Zhi, L. On isolation of singular zeros of multivariate analytic
systems, 2019. arXiv:1904.0793.

[20] Leykin, A., Verschelde, J., and Zhao, A. Newton’s method with deflation for isolated
singularities of polynomial systems. Theor. Computer Science 359, 1-3 (2006), 111 ś 122.

[21] Leykin, A., Verschelde, J., and Zhao, A. Higher-order deflation for polynomial sys-
tems with isolated singular solutions. In Algorithms in Algebraic Geometry, A. Dicken-
stein, F.-O. Schreyer, and A. Sommese, Eds., vol. 146 of The IMA Volumes in Mathematics
and its Applications. Springer, 2008, pp. 79ś97.

[22] Li, N., and Zhi, L. Verified error bounds for isolated singular solutions of polynomial
systems: case of breadth one. Theoret. Comput. Sci. 479 (2013), 163ś173.

[23] Li, N., and Zhi, L. Verified error bounds for isolated singular solutions of polynomial
systems. SIAM J. Numer. Anal. 52, 4 (2014), 1623ś1640.

[24] Li, Z., and Sang, H. Verified error bounds for singular solutions of nonlinear systems.
Numer. Algorithms 70, 2 (2015), 309ś331.

[25] Mantzaflaris, A., and Mourrain, B. Deflation and certified isolation of singular
zeros of polynomial systems. In Proc. of ISSAC ’11 (2011), ACM, pp. 249ś256.

[26] Mantzaflaris, A., and Mourrain, B. Singular zeros of polynomial systems. In
Advances in Shapes, Geometry, and Algebra, T. Dokken and G. Muntingh, Eds., vol. 10
of Geometry and Computing. Springer, 2014, pp. 77ś103.

[27] Mourrain, B. Isolated points, duality and residues. Journal of Pure and Applied Algebra
117-118 (1997), 469 ś 493.

[28] Rump, S., and Graillat, S. Verified error bounds for multiple roots of systems of
nonlinear equations. Numerical Algorithms 54 (2010), 359ś377.

[29] Shafarevich, I. R. Basic Algebraic Geometry 1: Varieties in Projective Space, 3rd edi-
tion ed. Springer, New York, 2013.

[30] Wu, X., and Zhi, L. Computing the multiplicity structure from geometric involutive
form. In Proceedings of ISSAC"08 (NY, USA, 2008), ACM, pp. 325ś332.

[31] Wu, X., and Zhi, L. Determining singular solutions of polynomial systems via symbolic-
numeric reduction to geometric involutive form. J. Symb. Comput. 27 (2008), 104ś122.

[32] Yakoubsohn, J.-C. Finding a cluster of zeros of univariate polynomials. vol. 16. 2000,
pp. 603ś638. Complexity theory, real machines, and homotopy (Oxford, 1999).

[33] Yakoubsohn, J.-C. Simultaneous computation of all the zero-clusters of a univariate
polynomial. In Foundations of computational mathematics (Hong Kong, 2000). World Sci.
Publ., River Edge, NJ, 2002, pp. 433ś455.

[34] Zeng, Z. The closedness subspace method for computing the multiplicity structure
of a polynomial system. vol. 496 of Contemp. Math. Amer. Math. Soc., Providence, RI,
2009, pp. 347ś362.

343

Fast Multipoint Evaluation and Interpolation of Polynomials in
the LCH-basis over Fpr

Axel Mathieu-Mahias
Université Paris-Saclay, UVSQ, CNRS, Laboratoire de

mathématiques de Versailles

78000, Versailles, France

axel.mathieu-mahias@uvsq.fr

Michaël Quisquater
Université Paris-Saclay, UVSQ, CNRS, Laboratoire de

mathématiques de Versailles

78000, Versailles, France

michael.quisquater@uvsq.fr

ABSTRACT

Lin, Chung andHan introduced in 2014 the LCH-basis in order to de-

rive FFT-based multipoint evaluation and interpolation algorithms

with respect to this polynomial basis. Considering an affine space

of n = 2j points, their algorithms require O(n · log2 n) operations

in F2r . The LCH-basis has then been extended over finite fields of

characteristic p by Lin et al. in 2016 and an n-point evaluation algo-

rithm has been derived for n = p j with complexity O(n · logp n · p).

However, the problem of interpolating polynomials represented in

such a basis over Fpr has not been addressed.

In this paper, we fill this gap and also derive a faster algorithm for

evaluating polynomials in the LCH-basis atmultiple points over Fpr .

We follow a different approach where we represent the multipoint

evaluation and interpolation maps by well-defined matrices. We

present factorizations of such matrices into the product of sparse

matrices which can be evaluated efficiently. These factorizations

lead to fast algorithms for both the multipoint evaluation and the

interpolation of polynomials represented in the LCH-basis atn = p j

points with optimized complexity O(n · log2 n · log2 p · log2 log2 p).

A particular attention is paid to provide in-place algorithms with

high memory-locality. Our implementations written in C confirm

that our approach improves the original transforms.

CCS CONCEPTS

·Mathematics of computing→Computation of transforms;

Computations in finite fields.

KEYWORDS

Finite fields, multipoint evaluation, interpolation, LCH-basis

ACM Reference Format:

Axel Mathieu-Mahias and Michaël Quisquater. 2020. Fast Multipoint Eval-

uation and Interpolation of Polynomials in the LCH-basis over Fpr . In

International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3373207.3404009

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC, 2020,

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404009

1 INTRODUCTION

Let Fpr be the finite field with p
r elements and let us denote the set

of polynomials with respect to the monomial basis {1,x ,x2, . . .}

by Fpr [x]. LetM(n) denote the number of field operations required

to multiply two polynomials in Fpr [x] of degree less than n, which

may be taken to be in O(n log2 n log2 log2 n). The standard multi-

point evaluation and interpolation problems at n points of such

polynomials over Fpr can be solved withO(M(n) log2 n) operations

in Fpr [5].

The multipoint evaluation and interpolation can be performed

with even lower algebraic complexities when applied to particu-

lar sets of evaluation points. The so-called Fast Fourier transform

(FFT) [3] based algorithms offer complexities as low as O(n log2 n)

[11ś14].

Related work. The LCH-basis presented in [13] is based on sub-

space polynomials over F2r . It has been shown that the resulting

FFT-based multipoint evaluation and interpolation on a affine space

of n = 2j points of polynomials that are represented in that basis

can be done in O(n · log2 n) operations over F2r . The transforms

have been mostly employed in coding theory and in particular ap-

plied to Reed-Solomon codes [9ś13]. Basis conversion algorithms

are also proposed in [12]. Furthermore, fast polynomial arithmetic

in the LCH-basis are presented in [11]. In particular, a fast polyno-

mial division and a fast half-GCD algorithm are derived. Besides,

fast multiplications for long binary polynomials can be found in

[2].

Regarding finite fields of characteristic p, [12] extends the LCH-

basis over Fpr . However, only a solution for the forward transform

is presented. It leads to a multipoint evaluation of polynomials in

the LCH-basis of degree less than n = p j in O(n · logp n · p) opera-

tions of Fpr . To the best of our knowledge, no solution has been

provided to solving the interpolation problem of such polynomials

over Fpr .

Contribution. This paper presents another approach than the orig-

inal solution presented in [11] for solving the multipoint evaluation

and interpolation problems. Namely, we express the map of the

multipoint evaluation of polynomials in the LCH-basis by a matrix.

We then present a factorization of this matrix into the product of

sparsematrices and show how to perform the global computation ef-

ficiently. Our approach relies on standard fast polynomial arithmetic

over Fpr . It leads to a solution for multipoint evaluation at n = p j

points of polynomials that are represented in the LCH-basis over

Fpr optimized fromO(n ·logp n ·p) toO(n ·log2 n ·log2 p ·log2 log2 p).

344

https://doi.org/10.1145/3373207.3404009
https://doi.org/10.1145/3373207.3404009

ISSAC, 2020, Axel Mathieu-Mahias and Michaël Quisquater

We deduce the invertibility of the matrix corresponding to the

evaluation map from its factorization. As the inverse matrix cor-

responds to the interpolation map, we therefore also provide a

solution for fast interpolation of polynomials in the LCH-basis over

Fpr inO(n · log2 n · log2 p · log2 log2 p). To the best of our knowledge,

no solution was provided until now for the interpolation problem

of such polynomials over Fpr . Moreover our approach leads to

in-place algorithms with high memory-locality.

Outline. The paper is organized as follows. Section 2 expresses

the problem of evaluating and interpolating polynomials the LCH-

basis over Fpr . Section 3 gives useful prerequisites. Then, Section

4 expresses the evaluation map by a matrix and presents our fac-

torization into the product of sparse matrices. The matrix of the

inverse map is also exhibited. Section 5 shows how to derive fast

algorithms for multipoint evaluation and interpolation of polyno-

mials in the LCH-basis over Fpr . Experimental results are given in

Section 6 and finally Section 7 concludes the paper.

2 DESCRIPTION OF THE PROBLEM

The first three paragraphs present material introduced in [12, 13].

Let v0, . . . ,vr−1 be a basis of Fpr over Fp , i.e. ⟨v0, . . . ,vr−1⟩ = Fpr

and let e0, . . . , er−1 be the canonical basis ofF
r
p , i.e. , ⟨e0, . . . , er−1⟩ =

F
r
p where any basis element ek is a vector (e0,k , . . . , er−1,k) with

ei,k = 1 if k = i and 0 otherwise.

The LCH-basis over Fpr . For any i, j ≥ 0 such that i + j ≤ r , let

U
j
i and V

j
i be respectively subspaces of Fpr and Frp defined as

U
j
i = ⟨vi , . . . ,vi+j−1⟩, V

j
i = ⟨ei , . . . , ei+j−1⟩ .

Observe that they form stricly ascending chains. Namely,

U 0
0 ⊂ U 1

0 ⊂ . . . ⊂ U r
0 = Fp

r and V 0
0 ⊂ V 1

0 ⊂ . . . ⊂ V r
0 = F

r
p ,

with U 0
0 = V 0

0 = {0}. Now let LU k
0
be linearized polynomials de-

fined over Fpr and of degreep
k such that ker

(
LU k

0

)
= U k

0 . They can

be recursively defined from LU 0
0
(x) = x by the following relation

LU k+1
0

(x) = LU k
0
(x)p − LU k

0
(vk)

p−1 · LU k
0
(x) . (1)

and they are linear (see [1]). Note that LU k
0
is invariant over the

cosets ofU k
0 in Fpr . Namely, for any x ∈ U k

0 = ⟨v0, . . . ,vk−1⟩ and

for any y ∈ U r−k
k
= ⟨vk , . . . ,vr−1⟩,

LU k
0
(x + y) = LU k

0
(y) .

For any x ∈ Fpr and for any ω = (ω0, . . . ,ωr−1) ∈ F
r
p define

χω (x) =

r−1∏
k=0

LU k
0
(x)ωk .

Identifyingωj ∈ Fp to its minimal representative overN, the degree

of χω (x) is therefore
∑r−1
j=0 ωj · p

j .

Invariance of χω . From the invariance property of LU k
0
and the

fact that U k
0 ⊂ U k+1

0 for any k ∈ {0, . . . , r − 1}, it follows that

LU k
0
is invariant over the cosets of U s

0 with s ≤ k . Also, for any

ω = (ω0, . . . ,ωr−1) ∈ V
j
i , we have ωk = 0 for any k < i . Therefore,

χω (x) =
∏r−1

k=0
LU k

0
(x)ωk =

∏r−1
k=i

LU k
0
(x)ωk . It turns out that χω

is invariant over the intersection of the set of cosets of U s
0 with

s ≤ k for k ∈ {i, . . . , r − 1}. This last intersection are the cosets of

U t
0 with t ≤ i .

Polynomials in the LCH-basis over Fpr . Any polynomial of

Fpr [x]/(x
pr − x) can be written in the LCH-basis as

P(x) =
∑
ω ∈Frp

αω · χω (x) , (2)

with αω ∈ Fpr for any ω ∈ Frp . The classical multipoint evaluation

problem consists in evaluating P(x) for any x ∈ Fpr . The classical

interpolation problem consists in recovering the coefficients αω
with ω ∈ Frp from the values P(x) for any x ∈ Fpr .

In [12], the authors consider a variation of the problem where the

polynomials are of the shape∑
ω ∈V

αω · χω (x) (3)

and the set of evaluation is U + µ with µ ∈ Fpr , U and V being

respectively subspaces of Fpr and Frp with same cardinalities. A

divide-and-conquer approach was first proposed in [13] for solv-

ing this multipoint evaluation problem over F2r . By backtracking

their method, the same authors derived an algorithm for the in-

terpolation problem. The forward approach was then generalized

to characteristic p in [12]. However, no method was provided for

solving the interpolation problem over Fpr .

3 PREREQUISITES

In this section, we first define an ordering over the subspaces that

are involved in the evaluation of some polynomial represented in

the LCH-basis . Then, we remind some definitions about matrices

and we state two results about them that are based on the chosen

order.

Ordering. Consider a finite totally ordered set (S, ≤) such that

#S = n, i.e. S = {s0, s1, . . . , sn−1} such that si ≤ sj ⇔ i ≤ j. We

define the index application ind : S 7→ N defined by ind(si) = i for

any i = 0, . . . ,n − 1.

Also for any arbitrary total order on Fp , in the rest of the paper we

consider the lexicographic order denoted by ≤ on Frp . We may also

define a total order on Fpr by requiring that

ϕ(x)
def
≤ ϕ(y) ⇔ x ≤ y for any x ,y ∈ Frp .

The symbol ≤ is used indifferently to refer to the total order on

(subsets) of Frp and Fpr .

Matrices. Consider two finite totally ordered subsets, i.e. S1 =

{x0, . . . ,xn−1} and S2 = {y0, . . . ,ym−1} where the elements are

respectively written from the smallest to the largest. In what follows

345

Fast Multipoint Evaluation and Interpolation of Polynomials in the LCH-basis over Fpr ISSAC, 2020,

we handle matrices over Fpr . The matrix A is defined by

(
(A(x ,y)

)
x ∈S1,y∈S2

≜

©«

ax0,y0 ax0,y1 · · · ax0,ym−1

ax1,y0 ax1,y1 · · · ax1,ym−1

.

.

.

.

.

.
.
.
.

.

.

.

axn−1,y0 axn−1,y1 · · · axn−1,ym−1

ª®®®®¬
.

The symbol ⊗ denotes the Kronecker product of matrices. The prod-

uct of several matrices
∏n

i=0Ai stands for A0 ·A1 · . . . ·An . Finally,

⊕i ∈SAi denotes the block diagonal matrix diag(As0 , . . . ,Asn−1).

These notations can be found in [8]. The following well-known

lemma can be found in [4].

Lemma 3.1. For any two totally ordered sets (S1, ≤1) and (S2, ≤2),

consider the sets S1 × S2 and S2 × S1 together with their respective

lexicographic orders. Consider the matrix P defined by

P = (P (x ,y))x ∈S2×S1,y∈S1×S2 with P (x ,y) =

{
1 if π (y) = x

0 otherwise

where π : S1 ×S2 → S2 ×S1 : (s1, s2) → (s2, s1). Also, for any matrix

A = (A(x ,y))x,y∈S2×S1 , we have

P
⊺ · A · P = (A(π (x),π (y)))x,y∈S1×S2 . (4)

Also, note that for any (s1, s2), (s3, s4) ∈ S1 × S2 and A such that

A =
(
A((s1, s2), (s3, s4))

)
(s1,s2),(s3,s4)∈S1×S2

,

we then have

A =

((
A((s1, s2), (s3, s4))

)
s2,s4∈S2

)
s1,s3∈S1

. (5)

Proof. Let us begin by proving relation (4). For any z ∈ S2 × S1
and for any y ∈ S1 × S2,

(A · P)(z,y) =
∑

u ∈S2×S1

A(z,u) · P(u,y) = A(z,π (y)) .

Therefore, for any x ,y ∈ S1 × S2,

(P⊺ · A · P)(x ,y) =
∑

z∈S2×S1

A(z,π (y)) · P(z,x) = A(π (x),π (y)) .

Let us now prove relation (5). For any two totally ordered sets

(S1, ≤1), (S2, ≤2) with #S1 = n1, #S2 = n2 and the lexicographic

order on S1 × S2, the index of (s1, s2) ∈ S1 × S2 is given by

ind(s1, s2) = ind(s1) · #S2 + ind(s2) . (6)

Therefore, A =
(
A((s1, s2), (s3, s4))

)
(s1,s2),(s3,s4)∈S1×S2

is composed

of n1 × n1 blocks each of size #S2 × #S2. Therefore,

A =
((
A((s1, s2), (s3, s4))

)
s2,s4∈S2

)
s1,s3∈S1

.

□

Now, consider the map

π1, j : Fp × F
j−1
p 7→ F

j−1
p × Fp : (s, t) 7→ π (s, t) = (t , s) .

Identify the spaces Fp × F
j−1
p ,F

j−1
p × Fp and F

j
p . Define π0 as the

identity map and

πk, j =

π1, j ◦ π1, j ◦ . . . ◦ π1, j︸ ︷︷ ︸
k

if k > 0 ,

(π−k, j)
−1 if k < 0 .

For any k ∈ Z, define Pk, j =
(
Pk, j (x ,y)

)
x,y∈F

j
p

where

Pk, j (x ,y) =

{
1 if πk, j (y) = x

0 otherwise.

The second part of the following corollary can be found in [4].

Corollary 3.2. We have Pj, j = Ip j and Pk, j = P
kmod j
1, j for any

k ∈ Z. Moreover, if A = (A(x ,y))x,y∈Fkp
and B = (B(x ,y))

x,y∈F
j−k
p

,

then

P
⊺

k, j
· (B ⊗ A) · Pk, j = A ⊗ B .

where Fkp × F
j−k
p ,F

j−k
p × Fkp and F

j
p are identified.

Proof. By definition of Pk, j and π0, j , we have P0, j = Ip j . Also,

for any x ,y ∈ Fp j and any k ≥ 1(
Pk−1, j · P1, j

)
(x ,y) =

∑
v ∈F

j
p

Pk−1, j (x ,v) · P1, j (v,y)

=

{
1 if πk, j (y) = x ,

0 otherwise.

Therefore, Pk, j = Pk−1, j · P1, j . It follows that Pk, j = Pk1, j for

any k ≥ 0. Observing that πj, j = π1, j ◦ . . . ◦ π1, j︸ ︷︷ ︸
j

=id, we have

Pj, j = Ip j . Therefore, Pk, j = P
k mod j
1, j for any k ≥ 0. According to

the definition of Pk, j and πk, j , for any k < 0,Pk, j =
(
P−k, j

)−1
.

The element −k being positive, we have P−k, j = P−k1, j . Therefore,

Pk, j =
(
P−k1, j

)−1
=

(
P−11, j

)−k
. Also, Pj, j = P

j
1, j = Ip j . It follows

that P−11, j = P
j−1
1, j . It turns out that Pk, j =

(
P
j−1
1, j

)−k
= P

(j−1)·(−k)
1, j =

P
(j−1)·(−k) mod j
1, j = P

k mod j
1, j .

The second part of the corollary follows immediately fromLemma 3.1.

□

4 A FACTORIZATION OF TWO MATRICES

In this section, we start by reducing the multipoint evaluation and

interpolation problems expressed in Section 2 to a canonical form.

Then we associate a matrix to the multipoint evaluation map. We

give a factorization of this matrix into the product of sparse matri-

ces. This factorization allows us to derive its inverse matrix which

corresponds to the inverse map. Finally, we show that the inverse

matrix also factorizes into the product of sparse matrices.

Canonical form. Consider fixed integers i and j such that i, j ≥ 0

and i + j ≤ r . Remember that U
j
i = ⟨vi , . . . ,vi+j−1⟩ and V

j
i =

⟨ei , . . . , ei+j−1⟩. In what follows U i
0 ,U

j
i ,U

r−(i+j)
i+j and V

j
i will be

denoted respectively by UL ,U ,UR and V for the sake of clarity.

Note that Fpr = UL ⊕ U ⊕ UR . Consider the multipoint evaluation

and interpolation problems on a subset of polynomials of the shape

PV (x) =
∑
ω ∈V

αω · χω (x) for any x ∈ U + µ . (7)

346

ISSAC, 2020, Axel Mathieu-Mahias and Michaël Quisquater

Note that because the vector basis (vi)i of Fpr may be freely chosen,

the spaceU may be any vector space of Fpr with dimension j.

Let us show that these problems may be reduced to a canonical

form. Without loss of generality, we may assume that µ ∈ UL ⊕UR .

For any x ∈ U

PV (x + µ) =
∑
ω ∈V

αω · χω (x + µ) .

Writting µ as µL + µR where µL ∈ UL and µR ∈ UR , we have for

any ω ∈ V and any x ∈ U that

χω (x + µL + µR) = χω (x + µR)

because χω is invariant on the cosets ofUL . Hence for any x ∈ U

PV (x + µ) =
∑
ω ∈V

αω · χω (x + µR) .

We deduce that evaluating PV (x) over U + µ reduces to the evalua-

tion of PV overU + µR .

Matrices of evaluation and interpolation maps. Given n = p j

points x ∈ U + µR , we define the linear evaluation map E : Fnpr 7→

F
n
pr by E ((αω)ω ∈V) = (PV (x))x ∈U+µR . This linear map can be

represented by the matrix

X ≜
(
χω (x)

)
x ∈U+µR,ω ∈V

. (8)

A factorization of X for fast evaluation. Let us present a fac-

torization of X into the product of sparse matrices. Let us first

introduce descending chains of U + µR and V . More precisely, for

any k ∈ {0, . . . , j − 1},Uk = ⟨vi+k , . . . ,vi+j−1⟩ + µR and Vk =

⟨ei+k , . . . , ei+j−1⟩. Let Uj = {µR } and Vj = (0, . . . , 0). We have

Us ⊂ Ut and Vs ⊂ Vt if s > t , also U0 = U + µR and V0 = V .

Also, let us define the increasing chain of sets UL,k = U i+k
0 for

k ∈ {0, . . . , j−1}. These sets are related by the invariantUL,k ⊕Uk =

UL ⊕ U0 = U
i+j
0 + µR for any k which expresses different ways to

decompose the affine spaceU
i+j
0 + µR . Finally, these sets are totally

ordered according to Section 3.

Remark. Relation (9) in the following theorem gives essentially

a matrix expression of the recurrence relation behind the divide-

and-conquer approach developed in [12]. Its proof also relies on

the invariance property of the LCH-basis .

Theorem 4.1. Consider the linearized polynomials Lk = LUL,k
defined such that ker(Lk) = UL,k for k = 0, . . . , j − 1. The matrices

Xk defined by (χω (x))x ∈Uk ,ω ∈Vk
satisfy the recursion

Xk =

(⊕
x ∈Uk+1

Vk (x)
)
· P1, j−k ·

(
Ip ⊗ Xk+1

)
· P
⊺

1, j−k
. (9)

for any k = 0, . . . , j − 1 where Vk is the Vandermonde matrix defined

as

Vk (x) =
(
Lk (x + c · vi+k)

d
)
c,d ∈Fp

for any x ∈ Uk+1 and P1, j−k is defined in Section 3. Also, X = X0 and

we have that

X =

j−1∏
k=0

((⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk

)
, (10)

or equivalently

X =

j−1∏
k=0

((⊕
x ∈Uk+1

(
Ipk ⊗ Vk (x)

))
· Bk

)
(11)

where

Bk =

{
Ip j−(k+2) ⊗

((
Ip ⊗ P1,k+1

)
· P
⊺

1,k+2

)
if 0 ≤ k < j − 1 ,

P1, j if k = j − 1 .

(12)

and P1, j , P1,k+1, P1,k+2 are defined in Section 3.

Proof. Let us prove relation (9) by first showing that

Xk =

(⊕
x ∈Uk+1

Vk (x)
)
·
(
Xk+1 ⊗ Ip

)
. (13)

Inwhat followsδb (d) denotes theKronecker delta function, i.e.δb (d) =

1 if b = d and 0 otherwise. On the one hand we have(⊕
x ∈Uk+1

Vk (x)
)
=

(
δx (z) ·

((
Lk (x + c · vi+k)

)b)
c,b ∈Fp

)
x,z∈Uk+1

.

Also, applying Lemma 3.1 on the right-hand side gives(
δx (z) · (Lk (x + c · vi+k))

b
)
(x,c),(z,b)∈Uk+1×Fp

.

Therefore for any (x , c), (z,b) ∈ Uk+1 × Fp ,(⊕
x ∈Uk+1

Vk (x)
)
(x,c),(z,b)

= δx (z) · (Lk (x + c · vi+k))
b
. (14)

On the other hand we have

Xk+1 ⊗ Ip =
(
χω (z) · Ip

)
z∈Uk+1,ω ∈Vk+1

=

(
χϕk+1(ω)(z) · Ip

)
z,ω ∈Uk+1

where

ϕk : Vk 7→ Uk : ω =

i+j−1∑
s=i+k

ωs · es 7→ x =

(
i+j−1∑
s=i+k

ωs · vs

)
+ µR .

We stress that this bijection preserves the order of all elements.

Also, for any z,ω ∈ Uk+1 we have(
χϕk+1(ω)(z) · Ip

)
z,ω
=

(
χϕk+1(ω)(z) ·

(
δb (d)

)
b,d ∈Fp

)
z,ω
,

Also, by Lemma 3.1, the right-hand side gives(
χϕk+1(ω)(z) · δb (d)

)
(z,b),(ω,d)∈Uk+1×Fp

It turns out that for any (z,b) ∈ Uk+1 × Fp , for any (ω,d) ∈ Vk+1 ×

Fp , (
Xk+1 ⊗ Ip

)
(z,b),(ω,d)

= χω (z) · δb (d) . (15)

For any (x , c), (z,b) ∈ Uk+1 × Fp , for any (ω,d) ∈ Vk+1 × Fp we

have that((⊕
x ∈Uk+1

Vk (x)
)
·
(
Xk+1 ⊗ Ip

))
(x,c),(ω,d)

=

∑
z,b

(
⊕

x ∈Uk+1

Vk (x)

)
(x,c), (z,b)

·
(
Xk+1 ⊗ Ip

)
(z,b), (ω,d)

and from (15) and (14), the right-hand side reduces to∑
z,b

δx (z) · (Lk (x + c · vi+k))
b · χω (z) · δb (d) .

347

Fast Multipoint Evaluation and Interpolation of Polynomials in the LCH-basis over Fpr ISSAC, 2020,

Therefore,((⊕
x ∈Uk+1

Vk (x)
)
·
(
Xk+1 ⊗ Ip

))
(x,c),(ω,d)

= Lk (x+c ·vi+k)
d ·χω (x) .

(16)

Observe that for any ω ∈ Vk+1, χω (x) is invariant over the cosets

ofUL,k+1. Also, vi+k ∈ UL,k+1 = ⟨v0, . . . ,vi+k ⟩. Thus,

Lk (x + c · vi+k)
d · χω (x) = Lk (x + c · vi+k)

d · χω (x + c · vi+k) .

Note that Lk (x + c · vi+k)
d
= χd ·ei+k (x + c · vi+k) and therefore

we have that

Lk (x + c · vi+k)
d · χω (x) = χd ·ei+k (x + c · vi+k) · χω (x + c · vi+k)

= χω+d ·ei+k (x + c · vi+k)

where χω+d ·ei+k (x + c · vi+k) = (Xk)(x,c), (ω,d). Hence,

Lk (x + c · vi+k)
d · χω (x) = (Xk)(x,c), (ω,d) .

This proves (13). Finally, by gathering relation (16) with the above

relation and applying corollary 3.2

Xk+1 ⊗ Ip = P1, j−k ·
(
Ip ⊗ Xk+1

)
· P
⊺

1, j−k

which concludes the proof of relation (9).

Let us now prove relation (10) by induction. Consider the base

case k = j. By definition, Xj =
(
χω (x)

)
x ∈Uj ,ω ∈Vj

with Uj = {µR }

and Vj = {(0, 0, . . . , 0)}. Hence Xj =
∏r−1

k=0

(
LUL,k (µR)

)0
= 1. Also,

Xj =
∏

∅ = 1. Now, assume it holds that

Xn =

j−1∏
k=n

((⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk−n

)
.

Starting by applying relation (13), we have

Xn−1 =

(⊕
x ∈Un

Vn−1(x)
)
·
(
Xn ⊗ Ip

)
.

Then, using the induction hypothesis we can write

Xn−1 =

(⊕
x ∈Un

Vn−1(x)
)
·

(
j−1∏
k=n

((⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk−n

)
⊗ Ip

)
.

Noting that Ip =
∏j−1

k=n
Ip and

∏
i Ai ⊗

∏
i Bi =

∏
i (Ai ⊗ Bi),

j−1∏
k=n

((⊕
x ∈Uk+1

Vk (x)
)
⊗Ipk−n

)
⊗ Ip

=

j−1∏
k=n

((⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk−n ⊗ Ip

)
.

Also Ipk−n ⊗ Ip = Ipk−n+1 , therefore

Xn−1 =

(⊕
x ∈Un

Vn−1(x)
)
·

(
j−1∏
k=n

((⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk−n+1

))
.

Since for any matrix A,A ⊗ I1 = A and I1 = Ip0 , then

Xn−1 =

((⊕
x ∈Un

Vn−1(x)
)
⊗ Ip0

)
·

(
j−1∏
k=n

((⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk−n+1

))
,

or equivalently

Xn−1 =

j−1∏
k=n−1

((⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk−n+1

)
.

Let us now prove relation (11). Observe that

X =

j−1∏
k=0

(⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk =

j−1∏
k=0

(⊕
x ∈Uk+1

(
Vk (x) ⊗ Ipk

))
.

Also, according to corollary 3.2,

Vk (x) ⊗ Ipk = P
⊺

1,k+1
·
(
Ipk ⊗ Vk (x)

)
· P1,k+1 .

Therefore,

X =

j−1∏
k=0

(⊕
x ∈Uk+1

(
P
⊺

1,k+1

(
Ipk ⊗ Vk (x)

)
· P1,k+1

))
.

Noting that

⊕
x ∈Uk+1

(
P
⊺

1,k+1

(
Ipk ⊗ Vk (x)

)
· P1,k+1

)

= C
⊺

k
·

(⊕
x ∈Uk+1

(
Ipk ⊗ Vk (x)

))
· Ck

where Ck =
(
Ip j−(k+1) ⊗ P1,k+1

)
and C

⊺

k
=

(
Ip j−(k+1) ⊗ P

⊺

1,k+1

)
, we

have

X =

j−1∏
k=0

(
C
⊺

k
·

(⊕
x ∈Uk+1

(
Ipk ⊗ Vk (x)

))
· Ck

)
.

Let us write this last formula in another way by combining succes-

sive factors. Let us evaluate CT0 . We have

Ip j−(0+1) ⊗ P
⊺
1,0+1 = Ip j−1 ⊗ P

⊺
1,1 = Ip j−1 ⊗ Ip = Ip j .

Also Cj−1 is

Ip j−j ⊗ P1, j = I1 ⊗ P1, j = P1, j .

Finally, for any k such that 0 ≤ k < j − 1, we have

Ck · C
⊺

k+1
=

(
Ip j−(k+1) ⊗ P1,k+1

)
·
(
Ip j−(k+2) ⊗ P

⊺

1,k+2

)
=

(
Ip j−(k+2) ⊗ Ip ⊗ P1,k+1

)
·
(
Ip j−(k+2) ⊗ P

⊺

1,k+2

)
= Ip j−(k+2) ⊗

((
Ip ⊗ P1,k+1

)
· P
⊺

1,k+2

)
.

The result follows. □

A factorization of X−1 for fast interpolation. As explained pre-

viously, X−1 is the matrix of the interpolation map for which the

following corollary gives a factorization into the product of sparse

matrices.

Corollary 4.2. The matrix X as defined in theorem 4.1 is invert-

ible and the inverse matrix X−1 is given by

X
−1
=

j−1∏
k=0

(⊕
x ∈Uj−k

V
−1
j−k−1

(x)
)
⊗ Ipk (17)

or equivalently

X
−1
=

j−1∏
k=0

(
B
−1
j−k−1

·

(⊕
x ∈Uj−k

(
Ip j−k−1 ⊗ V

−1
j−k−1

(x)
)))

(18)

348

ISSAC, 2020, Axel Mathieu-Mahias and Michaël Quisquater

where

B
−1
k
=

Ip j−(k+2) ⊗

(
P1,k+2 ·

(
Ip ⊗ P

⊺

1,k+1

))
if 0 ≤ k < j − 1 ,

P
⊺
1, j if k = j − 1 .

(19)

and P1, j , P1,k+1, P1,k+2 are defined in Section 3.

Proof. By theorem 4.1, we have

X =

j−1∏
k=0

(⊕
x ∈Uk+1

Vk (x)
)
⊗ Ipk .

Therefore, we have

X−1 =

j−1∏
k=0

(⊕
x ∈Uj−k

V−1
j−k−1

(x)
)
⊗ Ipk .

Let us now prove relation (18). According to theorem 4.1,

X =

j−1∏
k=0

((⊕
x ∈Uk+1

(
Ipk ⊗ Vk (x)

))
· Bk

)

where

Bk =

{
Ip j−(k+2) ⊗

((
Ip ⊗ P1,k+1

)
· P
⊺

1,k+2

)
if 0 ≤ k < j − 1 ,

P1, j if k = j − 1 .

Therefore

X−1 =

(
j−1∏
k=0

((⊕
x ∈Uk+1

(
Ipk ⊗ Vk (x)

))
· Bk

))−1
.

Remembering that (A ·B)−1 = B−1 ·A−1 and (A ⊗ B)−1 = A−1⊗B−1

we have

X−1 =

j−1∏
k=0

(
B−1
j−k−1

·

(⊕
x ∈Uj−k

(
Ip j−k−1 ⊗ V−1

j−k−1
(x)

)))
.

Let us compute B−1
k

for 0 ≤ k ≤ j − 1. For any k such that 0 ≤ k <

j − 1, we have

(Bk)
−1
=

(
Ip j−(k+2) ⊗

((
Ip ⊗ P1,k+1

)
· P
⊺

1,k+2

))−1
.

Noting that (A ⊗ B)−1 = A−1 ⊗ B−1, and (A · B)−1 = B−1 · A−1,

P−1
1,k+2

= P
⊺

1,k+2
this gives

(Bk)
−1
= Ip j−(k+2) ⊗

(
P1,k+2 ·

(
Ip ⊗ P

⊺

1,k+1

))
.

Finally,

B−1j−1 =
(
P1, j

)−1
.

The result follows □

5 FAST MULTIPOINT EVALUATION AND
INTERPOLATION IN THE LCH-BASIS

In this section we present algorithms for fast multipoint evaluation

and interpolation of polynomials represented in the LCH-basis over

Fpr . These algorithms are respectively given in theorem 4.1 and

corollary 4.2.

We use an algebraic complexity model, where the running time

of an algorithm is measured in terms of the number of opera-

tions in Fpr . As customary, we use the O-notation to neglect con-

stant factors. We denote by M : N → N a function such that

polynomials in Fpr [X] of degree at most n can be multiplied in

M(n) operations in Fpr . Using FFT multiplication, we can take

M(n) ∈ O(n log2 n log2 loд2n). Our algorithms rely on fast inter-

polation and multipoint evaluation of polynomials written in the

monomial basis. Using algorithms of [5, Ch. 10], both p-point eval-

uation and interpolation can be done in O(M(p) · log2 p).

5.1 Fast multipoint evaluation algorithm in the
LCH-basis over Fpr

In what follows, we show that any sparse matrix involved in the

factorized expression of the matrix X can be processed efficiently

by evaluations at p points of well-defined polynomials in the mono-

mial basis with the standard fast algorithm described above.

Consider a polynomial represented in the LCH-basis , i.e. PV (x) =∑
ω ∈V αω · χω (x) and recall that the evaluation map at the points

x ∈ U + µR is represented by the matrix X = (χω (x))x ∈U+µR,ω ∈V

where U and V are totally ordered. The multipoint evaluation of

PV (x) at the p
j points x ∈ U + µR therefore amounts to compute

(PV (x))x ∈U+µR = X · (αω)ω ∈V . (20)

From theorem 4.1, X factorizes into the product of sparse matrices

which are bloc diagonal matrices for which each bloc is a Vander-

monde matrix of order p. This gives

(PV (x))x ∈U+µR =

(
j−1∏
k=0

((⊕
x ∈Uk+1

(
Ipk ⊗ Vk (x)

))
· Bk

))
· (αω)ω ∈V

where Bk is defined as in (12).

Now by letting ν (j) = (αω)ω ∈V , for any k = j − 1 . . . 0 we have

ν (k) =

((⊕
x ∈Uk+1

(
Ipk ⊗ Vk (x)

))
· Bk

)
· ν (k + 1) , (21)

which gives ν (0) = (PV (x))x ∈U+µR . Note that the bloc diagonal

matrix in (21) is composed of #Uk+1 groups of p
k identical Vander-

monde matrices of order p.

Fast processing of the sparse matrices. Let us denote by ν (k +

1,x) the part of the vector Bk · ν (k + 1) that will be multiplied by

Ipk ⊗ Vk (x). This vector may be further divided into pk vectors of

length p that will be denoted by ν (k + 1,x , l) for 0 ≤ l < pk . Thus

ν (k,x , l) = Vk (x) · ν (k + 1,x , l) (22)

for any iteration j > k ≥ 0, for any x ∈ Uk+1 and for any 0 ≤ l < pk .

Observe now that (22) corresponds to p-point evaluations of well-

defined polynomials of degree less than p over Fpr [X]. Namely, let

f ∈ Fpr [X] be polynomials of degree less than p defined as

f (X) =
∑
d ∈Fp

ν (k + 1,x , l)d · Xd
. (23)

Therefore, evaluating f at the p points of the set Sx,k = {Lk (x + c ·

vi+k) | c ∈ Fp } corresponds indeed to the matrix-vector product

of (22). Also, for any x ∈ Uk+1 there is by definition an (c j)j such

that x =
∑r−1
j=i+k

c j · vj and therefore for any k = 0, . . . , j − 1 we

349

Fast Multipoint Evaluation and Interpolation of Polynomials in the LCH-basis over Fpr ISSAC, 2020,

have according to the linearity of the polynomial Lk that

Sx,k =
{ r−1∑
j=i+k

c j · Lk (vj) + c · Lk (vi+k) | c ∈ Fp

}
. (24)

We have the following algorithm for the multipoint evaluation of

PV at the n = p j points x ∈ U + µR .

Algorithm 1 Fast multipoint evaluation of a polynomial repre-

sented in the LCH-basis over Fpr

Require: PV (x) =
∑
ω ∈V αω · χω (x) where V = V

j
i and the set

U + µR whereU = U
j
i . The vector basis (vi)i of Fpr .

Ensure: ν (0) = (PV (x))x ∈U+µR .

1: Let ν (j) = (αω)ω ∈V .

2: for k from j − 1 down to 0 do

3: Compute ν (k + 1) = Bk · ν(k + 1).

4: for any x ∈ Uk+1 do

5: Compute Sx,k as in (24).

6: for l from 0 to pk − 1 do

7: Let f (X) =
∑
d ∈Fp ν (k + 1,x , l)d · Xd

.

8: Call "Standard fast multipoint evaluation" of [5, Ch. 10].

Input : f , the set of evaluation points Sx,k .

Output : A vector
(
f
(
s
))
s ∈Sx,k

.

9: Set νk = νk | |
(
f
(
s
))
s ∈Sx,k

.

10: end for

11: end for

12: end for

13: return ν (0) = (PV (x))x ∈U+µR .

Complexity. In what follows, n = p j represents the size of the data

in terms of elements of Fpr . The sets Sx,k of step 5 are computed

recursively thanks the recursive definition (1) of the linearized

polynomials. Computing all the sets Sk,x costs at most O(j · p j) =

O(log2 n · n) operations in Fpr . Also, noting that #Uk+1 = p
j−k−1,

it can be seen that algorithm 1 calls the subroutine Standard fast

multipoint evaluation (step 8) j · p j−1 times in total. Remembering

that this subroutine is in O(M(p) log2 p), therefore step 8 requires

c · j · p j−1(M(p) · log2 p) ∈ O(j · p j−1 · (M(p) log2 p))

operations in Fpr where c is a constant. Also, by taking M(p) ∈

O(p log2 p log2 log2 p) and considering the cost of step 5, we have

that Algorithm 1 is in

O(j · p j · log22 p · log2 log2 p) = O(n · logp n · log22 p · log2 log2 p) ,

or equivalently in

O(n · log2 n · log2 p · log2 log2 p) .

5.2 Fast interpolation algorithm in the
LCH-basis over Fpr

In what follows we show that the sparse matrices involved in the

factorized expressions of the matrix representing the interpolation

map can be processed efficiently by applying the standard algo-

rithm for fast interpolation of [5, Ch. 10].

Consider the coefficients (αω)ω ∈V of PV (x) =
∑
ω ∈V αω · χω (x)

from the set of evaluations (PV (x))x ∈U+µR with µR ∈ UR . By (20),

we have

(PV (x))x ∈U+µR = X · (αω)ω ∈V .

Since X is invertible by corollary 4.2, and

X−1 =

j−1∏
k=0

(
B−1
j−k−1

·

(⊕
x ∈Uj−k

(
Ip j−k−1 ⊗ V−1

j−k−1
(x)

)))

where B−1
j−k−1

is defined as in (19), clearly

(αω)ω ∈V = X−1 · (PV (x))x ∈U+µR .

Remembering that ν (j) = (αω)ω ∈V and that ν (0) = (PV (x))x ∈U+µR ,

therefore for any k = 0 . . . j − 1 we have

ν (k + 1) =

(
B−1
j−k−1

·

(⊕
x ∈Uj−k

(
Ip j−k−1 ⊗ V−1

j−k−1
(x)

)))
· ν (k) (25)

which inverses (21). In this case, the elementary operation is

V−1
k
(x) · ν (k,x , l)

where ν(k,x , l) denotes the p elements of ν (k) that have to be mul-

tiplied with V−1
j−k−1

(x) with respect to (25).

Fast processing of the sparse matrices. The above elementary

operation corresponds to a standard fast polynomial interpolation.

More precisely, by interpolating from the evaluations ν (k,x , l) and

the p points of the set {Lk (x + c · vi+k) | c ∈ Fp }, we retrieve

the polynomial f as in (23) from which we extract the coefficients

ν (k + 1,x , l). By doing so for any 0 ≤ k < j, for any x ∈ Uk+1 and

for any 0 ≤ l < pk , we successively retrieve all the ν (k) and in

particular ν (j) = (αω)ω ∈V . The algorithm is given below.

Algorithm 2 Fast interpolation of polynomials represented in the

LCH-basis over Fpr

Require: ν (0) = (PV (x))x ∈U+µR , the set U + µR (where U = U
j
i)

and V = V
j
i . The vector basis (vi)i of Fpr .

Ensure: ν (j) = (αω)ω ∈V .

1: for k from 0 to j − 1 do

2: for any x ∈ Uk+1 do

3: Compute Sx,k as in (24).

4: for l from 0 to pk − 1 do

5: Call "Standard fast interpolation" of [5, Ch. 10].

Input : ν (k,x , l), the set of evaluation points Sx,k .

Output: f (X) =
∑
d ∈Fp ν (k + 1,x , l)d · Xd

.

6: Set ν (k + 1) = ν (k + 1) | | ν (k + 1,x , l).

7: end for

8: end for

9: Compute ν (k + 1) = B−1
j−k−1

· ν (k + 1).

10: end for

11: return ν (j) = (αω)ω ∈V .

Remark. Step 5 would normally require to evaluate the formal de-

rivativeM(X)′ ofM(X) =
∏

k ∈Fp (X − Sx,k). Noting that Sx,k is an

affine set,M(X) isT (X)−T (Lk (x))whereT (X) = Xp−Lk (vi+k)
p−1 ·

X . ThereforeM ′(X) = T ′(X) = −Lk (vi+k)
p−1 which is a constant.

ConsequentlyM ′(X) does not need to be evaluated at the different

350

ISSAC, 2020, Axel Mathieu-Mahias and Michaël Quisquater

points as it would be required normally.

Complexity. In what follows, n = p j represents the size of the

data in terms of elements of Fpr . The cost of algorithm 2 is mainly

given by its steps 3 and 5. As previously explained, the cost of step

3 is at mostO(j ·p j) = O(logp n ·n). Step 5 consists of multiple calls

to the subroutine Standard fast interpolation. This subroutine is

in O(M(p) log2 p) and is called as many times as the subroutine of

algorithm 1. Therefore step 5 and more globally algorithm 2 are in

O(n · log2 n · log2 p · log2 log2 p) .

In-place algorithms. The multipoint evaluation (resp. interpola-

tion) of a polynomial expressed in the LCH-basis is a combination

of permutations and calls to the subroutine Standard fast multipoint

evaluation (resp. Standard fast interpolation) on p points. Permu-

tations are based on perfect shuffle permutations. As explained

in [15], a perfect shuffle can be expressed as the composition of two

involutions and can therefore be implemented by simply swapping

elements, which are in-place operations. The subroutines of fast

multipoint evaluation and interpolation on p points can also be

performed in-place following [6].

6 EXPERIMENTAL RESULTS

We implemented and ran our algorithms on an Intel Core i5 CPU

at 3, 2 Ghz. Our implementations are written in C using the FLINT

library [7]. We compared the timings of our algorithm for fast multi-

point evaluation of polynomials over Fpr with the original method

proposed in [12].

0

100

200

300

400

500

300 600 900 1200 1500

S
e
c
o
n
d
s

p

F
p2

Algorithm 1
Alg. 1 suboptimal.
State of art

0

500

1000

1500

2000

2500

3000

50 100 150 200 250

p

F
p3

Algorithm 1
Alg. 1 suboptimal
State of art

Figure 1: Timings for pr -point evaluation over F2p (left) and

F
3
p (right). Abscissa is characteristic p.

Algorithm 1 suboptimal consists in implementing formula (10)

where the operands of the Kronecker product are commuted using

a well-defined permutation. In this case, the sequence of Vander-

monde matrices Vk (x),x ∈ Uk+1 is repeated p
k times. This lead to

unnecessary memory transfers and/or recomputation of polynomi-

als. Algorithm 1 based on formula (12) remedies this problem. In

this case, each successive Vandermonde matrix is used pk times in

a row. Both algorithm 1 suboptimal and algorithm 1 were imple-

mented following the classical (not in-place) version of the Stan-

dard fast multipoint evaluation and interpolation. In the state of

the art [12], each single evaluation requires O(p) operations while

our approach performs p-point evaluations in O
(
M(p) · log2(p)

)
=

O
(
p · log22 p · log2 log2 p

)
. This explains the improvement of to-

tal complexity for n-point evaluation of polynomials in the LCH-

basis from O(n · logp n · p) to O(n · log2 n · log2 p · log2 log2 p) as

confirmed in Figure 1.

7 CONCLUSION

In this paper, we tackled the problems of fast multipoint evaluation

and interpolation of polynomials represented in the LCH-basis over

Fpr .

We provided a fast algorithm for the multipoint evaluation prob-

lem. We reduced such an evaluation to the problem of computing

multiple multipoint evaluation of (standard) polynomials with re-

spect to the monomial basis at p points over Fpr . By doing so, we

optimized the complexity of the original method fromO(n·logp n·p)

to O(n · log2 n · log2 p · log2 log2 p).

We also provided an algorithm for the fast interpolation problem

which was left unsolved in [12] for finite fields of characteristic p.

We reduced this problem to the one of computing multiple fast in-

terpolation of (standard) polynomials with respect to the monomial

basis at p points over Fpr . Our method is in O(n · log2 n · log2 p ·

log2 log2 p). We implemented both methods using the FLINT library

and we showed that the improvement is confirmed in practice. Us-

ing permutations of the data, which are explicitely given, our algo-

rithms satisfy high memory-locality. They can also be performed

in-place.

ACKNOWLEDGMENTS

The authors would like to thank Robin Larrieu for giving us valuable

information on some aspects of the FLINT library. They also wish to

thank the reviewers of the paper for extremely detailed and fruitful

comments and criticisms.

REFERENCES
[1] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill series in systems

science. McGraw-Hill, 1968.
[2] Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin

Yang. Multiplying boolean polynomials with frobenius partitions in additive fast
fourier transform. CoRR, abs/1803.11301, 2018.

[3] James W. Cooley and John W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Math. Comput., 19:297ś301, 1965.

[4] M. Davio. Kronecker products and shuffle algebra. "IEEE Transactions on Com-
puters", 30(2):116ś125, 1981.

[5] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, New York, NY, USA, 2 edition, 2003.

[6] Pascal Giorgi, Bruno Grenet, and Daniel S. Roche. Fast in-place algorithms for
polynomial operations: division, evaluation, interpolation, 2020.

[7] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory,
2015. Version 2.5.2, http://flintlib.org.

[8] Leslie Hogben. Handbook of linear algebra; 2nd ed. Discrete Mathematics and Its
Applications. Taylor and Francis, Hoboken, NJ, 2013.

[9] Runzhou Li, Qin Huang, and Zulin Wang. Encoding of non-binary quasi-cyclic
codes by lin-chung-han transform. In IEEE Information Theory Workshop, ITW
2018, Guangzhou, China, November 25-29, 2018, pages 1ś5, 2018.

[10] Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han. Efficient frequency-
domain decoding algorithms for reed-solomon codes. CoRR, abs/1503.05761,
2015.

[11] Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han. FFT algorithm for
binary extension finite fields and its application to reed-solomon codes. IEEE
Trans. Information Theory, 62(10):5343ś5358, 2016.

[12] Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang S. Han, and Wei-Ho Chung.
Novel polynomial basis with fast fourier transform and its application to reed-
solomon erasure codes. IEEE Trans. Information Theory, 62(11):6284ś6299, 2016.

[13] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. Novel polynomial
basis and its application to reed-solomon erasure codes. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, pages 316ś325, 2014.

[14] Joris van der Hoeven and Robin Larrieu. The frobenius FFT. In Proceedings of the
2017 ACM on International Symposium on Symbolic and Algebraic Computation,
ISSAC 2017, Kaiserslautern, Germany, July 25-28, 2017, pages 437ś444, 2017.

[15] Qingxuan Yang, John Ellis, Khalegh Mamakani, and Frank Ruskey. In-place
permuting and perfect shuffling using involutions. Information Processing Letters,
113(10):386 ś 391, 2013.

351

http://flintlib.org

WhyMP, a Formally Verified Arbitrary-Precision Integer Library

Guillaume Melquiond
Université Paris-Saclay, CNRS, Inria, LRI

Orsay, France

Raphaël Rieu-Helft
TrustInSoft
Paris, France

Université Paris-Saclay, CNRS, Inria, LRI
Orsay, France

ABSTRACT

Arbitrary-precision integer libraries such as GMP are a critical

building block of computer algebra systems. GMP provides state-

of-the-art algorithms that are intricate enough to justify formal

verification. In this paper, we present a C library that has been for-

mally verified using the Why3 verification platform in about four

person-years. This verification deals not only with safety, but with

full functional correctness. It has been performed using a mixture of

mechanically checked handwritten proofs and automated theorem

proving. We have implemented and verified a nontrivial subset of

GMP’s algorithms, including their optimizations and intricacies.

Our library provides the same interface as GMP and is almost as

efficient for smaller inputs. We detail our verification methodol-

ogy and the algorithms we have implemented, and include some

benchmarks to compare our library with GMP.

CCS CONCEPTS

·Mathematics of computing→Mathematical software; ·The-

ory of computation→Hoare logic; ·Computingmethodolo-

gies → Exact arithmetic algorithms.

ACM Reference Format:

Guillaume Melquiond and Raphaël Rieu-Helft. 2020. WhyMP, a Formally

Verified Arbitrary-Precision Integer Library. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.

3404029

1 INTRODUCTION

The GNUMulti-Precision library, or GMP, is a widely used arbitrary-

precision arithmetic library implemented in C and assembly. It

provides state-of-the art algorithms for basic arithmetic operations

and number-theoretic primitives. It is used in computer algebra

software, as well as safety-critical contexts such as cryptography

and security of Internet applications.

GMP is extensively tested, but some parts of the code are visited

with very low probablity, such as 1/264. This makes random testing

a poor way of ensuring GMP’s correctness. Moreover, most of the

algorithms are quite intricate, so finding bugs through manual

inspection of the code is challenging. As such, GMP has had its

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404029

share of bugs.1 We advocate using formal verification to ensure

memory safety and the absence of correctness bugs for all inputs.

GMP features several layers, each one handling different kinds

of numbers. The innermost one, mpn, handles natural numbers.

The other three layers, mpz, mpq, and mpf, are mostly wrappers

around mpn and handle relative numbers, rational numbers, and

floating-point numbers respectively.

We have verified a subset of algorithms from the mpn and mpz

layers of GMP using the Why3 verification platform using the

following approach. We first implement the GMP algorithms in

WhyML, the high-level specification and programming language

that Why3 provides [7]. We also give them a formal specification

based on GMP’s documentation and our own understanding of

the algorithms. Then, Why3 computes verification conditions that,

once proved, guarantee that the WhyML functions are memory-

safe and satisfy the specifications we provided. Using a collection of

automated theorem provers, we check these verification conditions,

thereby proving the functions correct. Finally, using Why3’s extrac-

tion mechanism, we obtain an efficient and correct-by-construction

C library that closely mirrors the original GMP code. We give more

details on the verification process, guarantees, and caveats, in Sec-

tion 2. The resulting C library, named WhyMP, can be found at

https://gitlab.inria.fr/why3/whymp/

WhyMP is not a full implementation of mpn and mpz. In partic-

ular, mpn contains many algorithms for each basic operation, so

that the optimal one can be used, depending on the size of the in-

puts. We have implemented and verified at least one algorithm for

each of addition, subtraction, multiplication, division, square root,

modular exponentiation, and base conversion (I/O). In most cases,

we have verified only the algorithm best suited to smaller num-

bers (typically up to 1,000 bits). The mpz wrapper is also a work in

progress. Moreover, while our algorithms attempt to mirror GMP’s

implementation closely, there are a few differences. We provide

a detailed list of functions and differences between WhyMP and

GMP in Section 3.

WhileWhyMP does not fully implement GMP’s API, it is compat-

ible with GMP. Indeed, the functions have the same signatures and

specifications. Therefore, in a C program that uses GMP, it is pos-

sible to substitute the calls to GMP for calls to the corresponding

WhyMP functions. Moreover, WhyMP is roughly performance-

competitive with versions of GMP that do not use handwritten

assembly. This is easily explained by the fact that WhyMP closely

mirrors GMP’s code. Most of the performance difference comes

from a small number of very short critical primitives. Therefore,

it should be possible to check them carefully and add them to

the trusted code base to recoup most of the performance loss. We

1Look for “divisionž at https://gmplib.org/gmp5.0.html

352

https://doi.org/10.1145/3373207.3404029
https://doi.org/10.1145/3373207.3404029
https://doi.org/10.1145/3373207.3404029
https://gitlab.inria.fr/why3/whymp/
https://gmplib.org/gmp5.0.html

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Guillaume Melquiond and Raphaël Rieu-Helft

present a more detailed benchmark of various configurations of

GMP and WhyMP in Section 4.

2 VERIFICATION AND TCB

With software developed in a traditional way, users expect bugs to

be plentiful. Only careful code reviews, safety analysis tools and

other memory sanitizers, and lots of testing, both automated and

manual, will ultimately ensure that software is bug-free with a high

level of confidence.

Here, we follow a different approach: formal verification, and

more specifically, deductive program verification. First, we mathe-

matically specify what the library functions are supposed to com-

pute. Then, using Why3, we turn both the code and its specification

into a large logical formula. Finally, we look for a proof of this

formula using automated theorem provers. If we succeed, it means

that the code is safe and that it behaves as documented by the

specification. Sections 2.1 and 2.2 give an overview of what the

specification process entails.

Once formally verified, users should be able to assume that the

library is bug-free, as its correctness has been proved and this

proof has been mechanically checked. But as always, the devil

resides in the details. So, Sections 2.3 and 2.4 carefully review all

the hypotheses the correctness of our library depends on, in order

to understand how large the user’s leap of faith has to be.

2.1 Specifications

Adding a function to WhyMP starts with the conversion of the C

code of a GMP function to WhyML. This manual process is mostly

straightforward, as most C features used by GMP are mapped to

our WhyML model of C. The next step is to provide a specification

for the function. Let us consider the mpn_copyi(r,x,n) function

as an example. It copies n limbs of an mpn number starting at the

memory location pointed by x to a number starting at r .

The first two components of a specification are the preconditions

and postconditions. Those are first-order formulas about the state

of the program and the arguments of the function, as well as its

result in the case of postconditions. Let us start with postconditions.

They express the mathematical relation between the inputs and

the outputs of a function. For mpn_copyi, there is an obvious post-

condition: when the function returns, the limbs stored in memory

in the range [r ; r + n) have the same value as the limbs that were

stored in memory in the range [x ;x + n) when the function started.

This postcondition is not sufficient, though, as it does not state

anything about other memory locations. An mpn_copyi implemen-

tation that would mess with all the other limbs in memory would

satisfy the postcondition but would be meaningless. So, the func-

tion has a second postcondition, which states that the limbs stored

outside the range [x ;x + n) have the same values they had at start.

Preconditions state sufficient conditions for a function to be-

have safely and accordingly to the postconditions. In the case of

mpn_copyi, the precondition simply states that accessing the mem-

ory ranges [x ;x + n) and [r ; r + n) is safe.

With other verification tools, there would usually be a second

precondition that states that the ranges [x ;x+n) and [r ; r+n) do not

overlap. In the case of Why3, the type system ensures that x and r

point into separate memory blocks. More precisely, Why3 statically

rejects any program that can possibly perform a logical data race,

that is, when there are two potentially aliased pointers and one at

least is used for writing. So, when introducing new pointers, the

user has to explicitly tell Why3 their relation to existing ones.

That is it for the part of specification dedicated to the functional

correctness of a program. For verification purpose, we also need to

provide variants and invariants. A variant is an element from a well-

founded ordering, e.g., a positive integer, whose decrease ensures

that loops and recursive calls terminate. For instance, for divide-and-

conquer algorithms, the decreasing value is generally the length of

the integers passed as arguments. Note that, in general, variants do

not tell anything about the time complexity of a function.

Unless a loop can be unrolled, there is generally no obvious way

of turning its behavior into a first-order formula. That is why it

is critical to annotate loops with invariants. In fact, for Why3, the

body of a loop is a black box. The only thing the tool knows about

the program state after a loop is that the loop exited and that its

invariant holds. So, the invariant needs to be strong enough, so

that the specification of the function can be verified, yet it needs to

be inductive so that it is preserved by a loop iteration, and it needs

to hold at loop start. So, finding proper invariants requires a deep

understanding of why an algorithm works correctly.

We now have all the pieces to specify the WhyML code corre-

sponding to mpn_copyi:

let wmpn_copyi (r x: ptr uint64) (n: int32): unit

requires { valid x n /\ valid r n }

ensures { forall i. 0 <= i < n -> r[i] = x[i] }

ensures { forall i. i<0\/n<=i -> r[i]=old r[i] }

= let ref i = 0 in

while (Int32.(<) i n) do

variant { n - i }

invariant {forall j. 0 <= j < i -> r[j] = x[j]}

invariant {forall j. j<0\/i<=j -> r[j]=old r[j]}

r[i] <- x[i];

i <- i + 1;

done

2.2 Proof effort

From the code and its specification, Why3 computes a verification

condition, which is a first-order formula. If the code is safe and if

its specification, including invariants, is adequate, the verification

condition holds. So, in an ideal world, we would just have to submit

it to an automated theorem prover and it would answer that it

found a proof.

While this is true for a function as simple as mpn_copyi, auto-

mated theorem provers either give up or time out, in practice. In

particular, whenever a verification condition contains non-linear

terms, provers tend to get lost in their search for a proof. In that

case, the user needs to annotate the WhyML code with assertions.

This makes for a larger verification condition, but it can now be

split into lots of smaller ones, which hopefully are more agree-

able to automated provers. For example, a property as simple as

∀x ,y, z ∈ Z, y > 0 ⇒ (x ·y +z)÷y = x +z ÷y might require about

10 user assertions before automated theorem provers succeed.

Unfortunately, verification conditions related to the correctness

of GMP-like libraries are full of non-linearity. In fact, even the repre-

sentation of an integer from its limbs is already awfully non-linear:

a =
∑
i aiβ

i . As a consequence, a lot of time is spent annotating the

353

WhyMP, a Formally Verified Arbitrary-Precision Integer Library ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

code with extra assertions. To alleviate this issue, we even imple-

mented and formally verified our own decision procedure dedicated

to proving these kinds of arithmetic facts [10].

Once all the verification conditions are proved, we use Why3 to

extract a C library from the WhyML code [15].

2.3 Guarantees and assumptions

The functional correctness of the library states the adequacy be-

tween the code of the library and its specification. Thus, if the pre-

and postconditions are incorrect, even if the code has been formally

verified, it might still be unfit for any meaningful usage. So, let us

see how bad this can get.

First, let us consider postconditions. The second postcondition

of wmpn_copyi states that the function only touches some specific

parts of memory. It might seem easy to forget this postcondition,

but in practice, it hardly happens. Indeed, if it was missing or too

weak, it would be impossible to verify any nontrivial code that calls

this function, so this kind of mistake gets detected early.

As for the first postcondition of wmpn_copyi, it states what the

function actually performs. Unfortunately, it is a bit too simple and

not quite representative of most functions of a GMP-like library.

So, let us have a look at the WhyML signature of mpz_add as well

as its first postcondition. This function takes three mpz numbers

and stores the sum of the last two into the first one.

let wmpz_add (w u v: mpz_ptr): unit

ensures { value_of w mpz =

old (value_of u mpz + value_of v mpz) }

In the postcondition above, mpz is a global variable that keeps

track of all the mpz numbers in memory. This variable is ghost,

i.e., only visible from the specification; it has no existence in the

code of the function and is erased from the generated code [6]. The

expression (value_of x mpz) designates the mathematical integer

represented in memory by some mpz number x . The plus operator

is the mathematical integer addition and it has no computational

content. Thus, the postcondition states that, when the function

returns, the integer represented byw is the sum of the two integers

that were represented by u and v at the entry of the function. So,

there is no difficulty for the user to trust that the function actually

performs an addition. The situation is similar for all the functions

of the library, as they can always be described by a simple relation

between mathematical integers represented by inputs and outputs.

For preconditions, the situation is a bit more subtle. They have

to be as weak as possible, as the callers of a function have to make

sure that the program state satisfies its preconditions before calling

it. That is true of all calls inside WhyMP, but once the library

has been turned into C functions, nothing prevents the user from

calling them with bad arguments or in an inconsistent state. As the

functions are not programmed in a defensive fashion, they might

then fail in unpredictable ways.

For wmpn_copyi, the precondition states that the input pointers

are valid for accessing a large enough zone. Similarly, for wmpz_add,

there is a validity precondition on the mpz numbers used as inputs

and outputs. There is nothing surprising about these preconditions;

GMP functions have the same requirements.

As mentioned earlier, pointer-manipulating functions also have

some implicit preconditions about the aliasing of pointers. In partic-

ular, the wmpn_copyi function cannot be called if the ranges [r ; r+n)

and [x ;x + n) overlap. Yet, GMP documentation of mpn_copyi im-

plicitly states that overlap is allowed, as long as r < x .2 That does

not mean that wmpn_copyi will behave badly when passed aliased

pointers; it just means that the formal verification does not cover

this case. So, the function, as presented above, is not a perfect

replacement for mpn_copyi.3

The header file wmp.h states all the preconditions that are not

present in GMP’s documentation. They are all related to aliased

pointers, so only functions from the mpn layer are impacted. Since

mpz numbers abstract the notion of pointer away, the WhyMP func-

tions from the mpz layer do not suffer from these formal deficiencies.

They have no hidden preconditions; they all behave in accordance

with GMP’s documentation.

The last point regarding correctness is termination. While the

specifications do not tell anything about the time or space com-

plexity of the functions, they have something to say about their

termination. Indeed, by default, Why3 implicitly enforces total cor-

rectness, that is, assuming that the preconditions hold, the function

terminates and the outputs satisfy the postconditions. In the case

of our library, all the functions have thus been formally proved to

return, but under the assumptions that the program does not run

out of resources. More precisely, given valid inputs, functions from

our library either return correct results, or they abruptly terminate

the program because of a heap overflow, or they signal a stack

overflow, e.g., by a segmentation fault, as would GMP.

2.4 Trusted code base

As we have seen, the user has to understand the mathematical

specification of the library (which is not much different from un-

derstanding its documentation), but at no point does the user need

to understand the code in any way. Yet, to have confidence in the

library, the user still needs to trust several other components.

First, given the WhyML code of the library as well as its specifi-

cation, Why3 generates a set of verification conditions by a calculus

of weakest precondition [9]. So, the user has to trust that Why3 has

performed this computation correctly, that is, if all the verification

conditions hold, then the specification adequately describes the

behavior of the library. Why3 is a generic verification platform that

has been used in numerous occasions, and the calculus of weakest

precondition is a well-known approach to program verification, so

this is not the component the user should worry about.

The verification conditions produced by Why3 are first-order

formulas, which are often too complicated to be proved by a human.

So, Why3 dispatches them to automated theorem provers, either

SMT solvers or superposition-based provers [4]. The user needs

to trust that the verification conditions were properly converted

to the input languages of the provers and that the provers did not

succeed in proving an incorrect theorem. For our library, we use the

SMT solvers Alt-Ergo, CVC3, CVC4, and Z3, and the superposition-

based E prover. All these theorem provers are off-the-shelf tools

2The “iž in mpn_copyi actually means “increasingž.
3Contrarily to the simplified version presented in this paper, the full specification of
wmpn_copyi in WhyMP permits aliased pointers, just as GMP.

354

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Guillaume Melquiond and Raphaël Rieu-Helft

that are widely used. Unfortunately, that does not make them bug-

free, so the usual approach to increase the confidence in a WhyML

development is to consider a verification condition to be proved

only if several provers agree on it.

At this point, the user should be confident that the library is

correct. But this is still WhyML code; it has to be converted to

C code. Why3 is responsible for the extraction to C and the user

needs to trust that none of the meaningful properties of theWhyML

code were lost in the translation to C. There are three parts to it.

The first one is the translation itself: WhyML constructs should

be translated to C constructs. To increase the confidence, we have

kept this translation as simple as possible. In particular, we did not

try to convert any high-level feature of WhyML, such as automatic

memory management or higher-order functions. As a consequence,

the translation from WhyML to C is mostly syntactic [15].

The second part is the model of the C language we have im-

plemented in WhyML. For example, we have defined an abstract

type ptr to represent C pointers, as well as some abstract func-

tions to read and write the pointed location. These functions have

specifications that require the pointers to be valid and ensure that

the memory is consistent, e.g., reading a valid memory location

after writing to it gives back the written value. All these WhyML

functions are then mapped to C functions or operators. So, the

user needs to trust that our specifications of these functions prop-

erly model the semantics of the C language. We had to improve

the memory model, as its original version [15] was not expressive

enough to support aliasing, which is critical for some functions.

The third part is composed of the arithmetic primitives used

by our library. Indeed, WhyMP heavily relies on the availability

of a multiplication of one limb by one limb returning two limbs,

and conversely, of a division of two limbs by one limb. As with the

memory model, these primitives are defined as abstract functions in

WhyML and are mapped to handwritten C functions. Fortunately,

most of those functions are trivial, as we rely on 128-bit support

from C compilers. For example, here is the primitive for division:

uint64_t div64_2by1

(uint64_t ul, uint64_t uh, uint64_t d)

{ return (((uint128_t)uh << 64) | ul) / d; }

The most complicated primitive is the one used to compute an

8-bit approximation of the square root for any integer between 128

and 511. This is implemented as a plain array of integer literals, but

due to a technical limitation of Why3, we cannot express this in

WhyML. So, we have performed the verification outside Why3 [11].

At this point, we have a C library that satisfies a meaningful

specification. The last step is to compile and link it. So, the user

also needs to trust that the compiler will not perform an incorrect

optimization that would mess with the C code. This is quite a leap

of faith, but no larger than the one needed when compiling any C

library out there.

3 VERIFIED ALGORITHMS

Each WhyMP function comes at a significant cost in terms of time

and proof effort, so only a subset of GMP’s functions have been im-

plemented. Moreover, while we strive to mirror GMP’s algorithms

as closely as possible, some differences remain. Some of these dif-

ferences are due to time constraints, others come from technical

limitations of the Why3 platform. Finally, some of GMP functions

are specialized according to whether the hardware provides some

non-standard primitives natively. In these cases, we only considered

the “genericž version of the algorithm, that is, the one where no

particular primitive is expected to be provided by the hardware.

Let us review WhyMP’s algorithms and the differences between

GMP and WhyMP. More details on the algorithms themselves can

be found in previous work [14].

3.1 Addition, subtraction

The algorithms for addition and subtraction in GMP are the school-

book ones, and they are reproduced identically inWhyMP. However,

almost all mpn addition and subtraction functions allow parameter

overlap, which results in an unfortunately large amount of almost-

identical variants of the addition and subtraction algorithms in

WhyMP. Since these functions are very commonly used, we have

tweaked the memory model in order to be able to prove generic

versions of these functions that allow overlapping parameters. In

the end, the exported versions of addition and subtraction can be

called by external users in the same way as their GMP counterparts.

However, they cannot always be called internally, due to limitations

in Why3’s type system, so the library still has a large amount of

addition and subtraction variants for internal use.

3.2 Multiplication

GMP features more than ten different multiplication algorithms,

which are each called when they are optimal depending on the sizes

of the operands. These algorithms can be split into three categories:

the schoolbook algorithm, suited for smaller numbers, Toom-Cook

variants, and finally Schönhage-Strassen multiplication, which is

only used on very large numbers (about 500,000 bits on x86_64).

GMP’s Toom-Cook variants have names of the form toom_xy, with

x ≥ y ≥ 2. They start by splitting their larger operand into x parts

and the smaller into y parts. All these parts need to have roughly

equal length, so the ratio between the lengths of the operands

should be roughly x to y. In addition, the asymptotic complexity

decreases when y grows, so for larger numbers, variants that split

operands into more parts should be called.

For a specific range of number sizes, GMP performs multiplica-

tion by calling toom_22 and toom_32 depending on the relative sizes

of the operands. We have implemented and verified these two func-

tions. Thus, WhyMP’s multiplication is comparable with GMP’s

one until the inputs reach the threshold where GMP starts using

toom_33. For very unbalanced operands, GMP provides a wrapper

that first splits the larger one into many smaller segments, and

then calls toom_42 on each one. As we have not verified toom_42,

the wrapper for multiplication is changed slightly to call toom_32

instead. As will be seen in the benchmarks, this has little impact

on performances.

Finally, GMP features a specialized function for squaring integers

faster thanwith the general multiplication. It is not yet implemented

in WhyMP.

3.3 Division

There are two main division algorithms in GMP: a so-called school-

book algorithm, and a (subquadratic) divide-and-conquer algorithm.

355

WhyMP, a Formally Verified Arbitrary-Precision Integer Library ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

The schoolbook algorithm is far from trivial. For example, each can-

didate quotient digit is computed using a 3-limb by 2-limb division

algorithm [12], using a precomputed pseudo-inverse of the top two

limbs of the divisor). This 3-by-2 division is more costly than the

usual 2-by-1 division but greatly reduces the number of subsequent

adjustment steps. WhyMP implements this algorithm faithfully.

However, GMP’s schoolbook algorithm uses an entirely different

algorithm when the length of the denominator is more than half

that of the numerator. The goal is for the complexity to depend only

on the size of the quotient. WhyMP does not implement this second

algorithm. The performance disparity becomes significant when

the denominator is very close to the numerator in length. Moreover,

WhyMP does not implement divide-and-conquer division.

3.4 Square root

GMP implements a divide-and-conquer square root, with a very

intricate base case that uses precomputed 8-bit approximations

and performs only two Newton iterations and a fast adjustment to

compute the square root of a 64-bit number. WhyMP implements

the exact same square-root algorithms as GMP [11]. However, the

complexity of the square root is dominated by that of the long

division. Therefore, WhyMP’s square root is quadratic (like the

division) whereas GMP’s is subquadratic thanks to the divide-and-

conquer division. The absence of a dedicated squaring function is

also felt somewhat.

3.5 Modular exponentiation

GMP features a modular exponentiation algorithm that implements

the sliding-window method and uses Montgomery reduction so

that only one division is needed in the whole computation. We

have implemented and verified the same algorithm in WhyMP.

Once again, the main performance difference comes from the algo-

rithm’s dependencies. Indeed, modular exponentiation involves a

lot of squaring, so the lack of a dedicated squaring function hurts

WhyMP’s performance.

GMP also features a variant of the modular exponentiation al-

gorithm that is designed to be side-channel secure. More precisely,

its control flow and memory accesses do not depend on the values

of the operands. We have also verified this function, however it

relies on a side-channel secure division, whose verification is still

a work in progress. As a result, WhyMP’s side-channel resistant

modular exponentiation is not usable yet. Moreover, the formal ver-

ification of this function only offers guarantees on its correctness.

We currently do not have any good way to prove that it is indeed

side-channel resistant.

3.6 Base conversions and I/O

GMP’s I/O functions include algorithms that translate a large num-

ber into a string that represents it in an arbitrary base (between

2 and 62) and vice versa. This algorithm is surprisingly intricate,

in particular when converting from/to base 10. Due to time con-

straints, we have chosen to instead verify the conversion algorithms

from Mini-GMP, the standalone version of GMP that is distributed

alongside it. These algorithms are simpler, and we expect that I/O

is usually not the bottleneck in computations on large numbers.

3.7 The mpz layer

The mpz layer is a wrapper around mpn that takes care of number

signs and storage. Most users of GMP interact only with this layer,

so that they do not have to manually manage memory allocations.

Functions of mpz typically do not perform any computation them-

selves. Instead, they call the corresponding mpn function and handle

the various cases required depending on the signs and lengths of

the operands.

However, for each arithmetic operation, there can be several

mpz functions that each handle various cases, even though they

all rely on the same mpn function. For example, there are about

twenty division functions in GMP, so that the best one can be used

depending on whether the quotient, the remainder or both are

needed, whether the divisor is a machine integer or a large integer,

and the rounding mode. While this is the most extreme example,

the mpz layer does represent a large amount of work. In the end,

WhyMP’s mpz layer is still largely a work in progress.

3.8 Compatibility concerns

The signatures of the WhyML functions of our library are such that

the generated C functions have the exact same signature as GMP

functions. Numbers are also represented the same way in memory,

that is, mpn numbers are pointers to an array of limbs stored from

least significant to most significant, while mpz numbers are a record

whose third field is an mpn number. Thus, one can easily pass a

number from one library to a function of the other library.

There are two potential sources of incompatibility, as our library

lacks a bit of genericity. First, it only works with 64-bit limbs, so

it cannot be interfaced with a 32-bit GMP. If the user code only

uses mpz numbers and does not need to mix both libraries, this in-

compatibility does not matter. Second, our library does not support

the custom memory handler of GMP. In particular, it performs its

allocations using malloc. Thus, mpz numbers from one library will

wreak havoc when passed to the other library and freed, unless

GMP’s default memory handler is used.

4 BENCHMARKS

The next sections show how GMP and WhyMP compare on three

benchmarks: multiplication, square root, and a primality test. More

precisely, three variants of GMP and three variants of WhyMP are

tested. Indeed, the direct comparison between GMP and WhyMP is

not that meaningful, as GMP relies on native assembly routines. So,

in addition to the timings of WhyMP and GMP, four other timings

are measured to give a better view of the performances.

First, GMP is also compiled without support for assembly, which

means that only the generic C code is compiled. GMP without

assembly and WhyMP are not exactly in the same ballpark though,

since they do not use the same primitive operations for doing a

64 × 64 → 128 multiplication and a 128-by-64 division. Indeed, in

assembly-free GMP, these are implemented in C using only 64-bit

operations, while WhyMP delegates these operations to the 128-bit

support of the C compiler.

Second, to measure the impact of these two primitives, WhyMP

is also compiled in a way such that their 128-bit implementation is

replaced by the 64-bit one from GMP without assembly.

356

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Guillaume Melquiond and Raphaël Rieu-Helft

Third, the timings of Mini-GMP are measured. Mini-GMP is a C

library “intended for applications which need arithmetic on numbers

larger than a machine word, but which don’t need to handle very

large numbers very efficiently.ž It is distributed along GMP. It uses

the same kind of implementation as GMP without assembly for the

two primitives above, that is, it uses only 64-bit operations.

Finally, some low-level mpn functions of WhyMP are replaced

by their respective GMP counterparts, as these functions are typi-

cally written in assembly. Those functions are add_n (resp. sub_n),

which computes the sum (resp. difference) of equally-sized mpn

numbers; add and sub, for mpn numbers with different sizes; mul_1,

which multiplies an mpn number by a single limb; addmul_1 (resp.

addmul_2), which multiplies an mpn number by a single limb (resp.

a two-limb number), and then accumulates the product into the

destination; and submul_1, which accumulates the opposite of the

product. Note that we could have replaced a lot more functions of

WhyMP by their assembly counterparts fromGMP, including rather

complicated ones, e.g., division by two-limb numbers. Instead, we

chose to focus on a few simple functions, so as to not blow the

trusted code base out of proportions, which would defeat the point

of formally verifying an arithmetic library.

The version of GMP is 6.1.2. The benchmarks are executed on

an Intel Xeon E5-2450 at 2.50GHz. All the libraries are compiled

using GCC 8.3.0 using the options selected by GMP, i.e., “-O2

-march=sandybridge -mtune=sand. . . -fomit-frame-pointerž.

Figure 1 shows the timings obtained on the various benchmarks.

On every figure, abscissas are the number of 64-bit limbs, while

ordinates are the time in microseconds. All the figures are in log-log

scale, so that the asymptotic complexity is apparent. Performance-

wise, the general ordering of the plots is the same on every figure:

GMP is the fastest, then comes WhyMP with GMP’s assembly

primitives, thenWhyMP, then GMPwithout assembly support, then

WhyMP without 128-bit support, and Mini-GMP is the slowest.

4.1 Multiplication

The first benchmark simply tests multiplication for various sizes of

mpn numbers, so as to exercise both the base-case multiplication as

well as Toom-Cook algorithms. Two cases are tested: equal-sized

inputs, and n × 24n unbalanced inputs.

The unbalanced case tests the algorithmic differences between

WhyMP and GMP. Indeed, WhyMP performs 16 calls to toom_32,

which results in 64 n

2 × n

2 multiplications, while GMP performs 12

calls to toom_42, which results in 60 n

2 × n

2 multiplications. Due to

the extra cost of interpolation for toom_42, WhyMP hardly suffers

from not having toom_42 at this level of unbalance.

Comparing the plots of Mini-GMP, WhyMP without 128-bit

support, and GMP without assembly, makes it apparent when the

libraries switch to different algorithms. Mini-GMP sticks with the

quadratic schoolbook algorithm, while WhyMP and GMP switch to

toom_22 aroundn = 30, and then GMP switches to toom_33 around

n = 60. Starting around n = 170 (toom_44 for GMP), the lack of

higher variants of Toom-Cook in WhyMP becomes noticeable, as

the library becomes progressively slower with respect to GMP. For

n ≤ 170, WhyMP is at most twice as slow as GMP, and when

replacing the primitive operations with the assembly ones from

GMP, the slowdown does not exceed 20%. The smaller n is, the

smaller the slowdown, down to about 5% for n ≤ 20.

4.2 Square root

The second benchmark tests the square root for various sizes of mpn

numbers. GMP’s algorithm performs a long division, so WhyMP

greatly suffers from featuring only the schoolbook division, despite

using the same divide-and-conquer square-root algorithm as GMP.

This makes WhyMP with assembly about 50% slower than GMP for

n ≤ 600. Without assembly, WhyMP is twice as slow forn ≤ 90, and

thrice as slow for n ≤ 600. As for Mini-GMP, its poor performance

(up to ×150 times slower for n ≤ 600) can be explained by the

use of a converging sequence yn+1 = (x/yn + yn)/2, rather than a

dedicated algorithm.

4.3 Miller-Rabin’s primality test

The third benchmark implements Miller-Rabin’s primality test for

number sizes commonly encountered in cryptography applications.

This is a simple implementation inspired from GMP’s one. It exer-

cises the mpz layer as well as the modular exponentiation. Note that

the modular exponentiation used in WhyMP is just a wrapper over

mpn_powm, so it supports neither even modulos nor negative expo-

nents, contrarily to mpz_powm. WhyMP is 110% slower than GMP

for n ≤ 28, and 140% slower for n ≤ 60. With assembly primitives,

the slowdown is less than 30% for n ≤ 60.

4.4 Evaluation

Overall, two factors have a large impact on performance: the com-

plexity of the algorithms, and the quality of the underlying arith-

metic primitives. On large numbers, WhyMP’s multiplication and

division falls behind even that of the assembly-free version of GMP

when the latter switches to a more efficient algorithm. In all other

cases, the algorithms are similar enough that the primitives seem to

be the deciding factor. What we conclude from this is thatWhyMP’s

algorithms are close enough to the original that most of the perfor-

mance difference comes from the primitives written in handwritten

assembly, at least for smaller inputs.

5 RELATEDWORK

We have used the Why3 tool [4, 5, 7] to develop a formally verified

arbitrary-precision integer arithmetic library that closely mirrors

GMP. We obtain a verified and efficient C library. Previous work

generally does not deal with a large number of highly optimized

algorithms. As far as we know, this work is the first formally verified

arbitrary-precision integer library that has comparable performance

to the state of the art. Let us discuss a few examples of existing

verifications of arithmetic libraries.

Bertot et al. verified GMP’s square root general case algorithm [3]

using Coq. Our Why3 proof of that algorithm is directly inspired

from their article. Their formalization is rather similar to ours,

but their proof effort is even larger, as Why3 proofs are partially

automated in a way Coq proofs are not.

Myreen and Curello verified an arbitrary-precision integer arith-

metic library [13] using the HOL4 theorem prover. Their work

covers the four basic arithmetic operations, but not the square root

or modular exponentiation. They did not attempt to produce highly

357

WhyMP, a Formally Verified Arbitrary-Precision Integer Library ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

10-2

10-1

100

101

102

103

104

 8 16 32 64 128 256 512

Mini-GMP
WhyMP without 128-bit ops

GMP without assembly
WhyMP

WhyMP with assembly
GMP

(a) Multiplication n × n

10-1

100

101

102

103

104

105

 8 16 32 64 128 256

Mini-GMP
WhyMP without 128-bit ops

GMP without assembly
WhyMP

WhyMP with assembly
GMP

(b) Multiplication n × 24n

10-2

10-1

100

101

102

103

 1 4 16 64 256 1024

Mini-GMP
WhyMP without 128-bit ops

GMP without assembly
WhyMP

WhyMP with assembly
GMP

(c) Square root

102

103

104

105

106

107

 16 32 64 128

Mini-GMP
WhyMP without 128-bit ops

GMP without assembly
WhyMP

WhyMP with assembly
GMP

(d) Miller-Rabin

Figure 1: Timings for multiplication, square root, and Miller-Rabin.

efficient code. However, their verification goes all the way down

to x86 machine code, using formally verified compilers and decom-

pilers. They also manage to automate most of the proofs involving

pointer reasoning, despite using an interactive tool.

Affeldt used Coq to verify a binary extended GCD algorithm

implemented in a variant of MIPS assembly [1], as well as the

basic arithmetic functions the algorithm depends on. The work

uses GMP’s number representation and a memory model based

on separation logic. The author verifies an implementation of the

algorithm in a pseudo-code language and proves the fact that the

pseudocode correctly simulates the MIPS assembly code.

Fischer verified a modular exponentiation library [8] using Is-

abelle/HOL and a framework for verifying imperative programs

developed by Schirmer [16]. The library is not meant to be efficient.

For example, it represents arbitrary-precision integers as garbage-

collected doubly-linked lists of machine integers. The author re-

ports running into issues inside the tool due to the large number of

invariants and conditions needed to keep track of aliasing. This is

exactly the kind of issue that we avoid by forcing function parame-

ters separation, at the cost of some expressivity (see the discussion

on mpn_copyi in Section 2.3).

Berghofer used Isabelle/HOL to develop a verified bignum li-

brary programmed in the Spark fragment of the Ada programming

language [2]. The library provides modular exponentiation as well

as the primitives required to implement it. The modular exponenti-

ation algorithm is a simple square-and-multiply one, without the

sliding-window optimization or the Montgomery reduction that

are featured in GMP and WhyMP. However, the proof effort (2,000

lines of Isabelle written over three weeks) is surprisingly low.

Schoolderman used Why3 to verify hand-optimised Karatsuba

multiplication assembly routines for the AVR architecture [17].

The algorithms are not arbitrary-precision, instead there are many

routines, each specialized for a particular operand size up to 96× 96

bits. This allows the loops to be unrolled, so the algorithms are

branch-free and the proofs are much easier for SMT solvers.

Finally, Zinzindohoué et al. developed a formally verified cryp-

tography library written in F* and extracted to C [18]. It implements

the full NaCl API, and includes a bignum library. The extracted

code is as fast as state-of-the-art C implementations, and part of it is

now deployed in the Mozilla Firefox web browser. Their approach

is very similar to ours in that it consists in verifying the algorithms

in a high-level language suited for verification, and then compiling

them to C. The integers have a small, fixed size that depends on the

choice of elliptic curve. Again, the fact that the number sizes are

known makes the problem much easier for automated solvers. As a

result, their proof enjoys a higher degree of automation than ours.

Thus, while their specifications are similar or larger in length, their

code requires much fewer annotations than ours.

358

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Guillaume Melquiond and Raphaël Rieu-Helft

6 CONCLUSION

WhyMP is an arbitrary-precision integer library. It has been de-

veloped, specified, and annotated, using the WhyML language. Its

correctness has been formally verified using Why3 and several ex-

ternal theorem provers, mostly SMT ones. The formal verification

includes the functional correctness, i.e., the relations between func-

tion inputs and outputs match the definition of the corresponding

mathematical operators. The memory representation of integers

is identical to GMP’s, and the functions have the same signatures,

which makes WhyMP a potential substitute to GMP.

The compatibility with GMP is not limited to the interface. The

library also implements the vast majority of the state-of-the-art

tricks found in GMP, as it was implemented after a detailed analysis

of GMP’s code. This makes it competitive with GMP in some specific

cases. For instance, WhyMP is much faster than the pure C variant

of GMP. Yet, GMP implements numerous finely tuned assembly

routines, which makes WhyMP twice as slow as the standard GMP.

By selecting a few multiply-and-accumulate primitives, WhyMP

can be brought closer, making it only 5% to 20% slower than GMP,

depending on the operation.

In the process of verifying WhyMP, we found one bug in the

comparison function of GMP4 that occurs for very large inputs

(several gigabytes). This is exactly the sort of bug that is easy to

find using formal methods, but hard to test against effectively. Our

work also influenced the development of GMP in another way.

Our correctness proof for the divide-and-conquer multiplication

ended up being so intricate (much more than what GMP’s devel-

opers thought) that they preferred to modify the code, so that its

correctness became more obvious.

This does not mean that GMP is now formally verified, although

our work increases further the (already high) confidence in its

correctness. To the best of our knowledge, such macro-heavy C

code mixed with assembly is completely out of reach of any existing

verification framework, due to the combinatorial explosion that

arises from all the possible architectures and compilation options. If

one really wanted to tackle a formal verification at the level of the

C code, Mini-GMP would make a much more sensible target. Still,

it would require a large proof development on the mathematical

side, though smaller than ours, as Mini-GMP’s algorithms are much

simpler than GMP’s and ours.

During this work, the main obstacle was due to automatic solvers.

While the resulting verification process can be said to be automatic,

it is only so because the WhyML code was heavily annotated, to

the point where it can be seen as a pen-a-paper proof of algorithms.

Nonetheless, this is a machine-checked proof. Some related works

were much more successful in actually performing an automatic

verification. But it was only for functions on fixed-size integers, as

their loops are fully unrollable during verification. This is certainly

not the case of GMP.

As a consequence of the constant fight to get the external solvers

to automatically prove WhyMP’s correctness, formally verifying

functions currently consumes toomuch time. This explains why our

library provides few variants of the functions yet, despite a proof

effort of four person-years. Still, we intend to add at least a divide-

and-conquer division, so that WhyMP can tackle slightly larger

4https://gmplib.org/list-archives/gmp-bugs/2020-February/004733.html

numbers, not only during division, but also square root andmodular

exponentiation. WhyMP also needs some side-channel resistant

functions, so that modular exponentiation can be used in security-

sensitive cryptography applications. Finally, we should investigate

how to verify assembly code for some mainstream instruction sets,

so as to close the performance gap with GMP.

REFERENCES
[1] Reynald Affeldt. 2013. On Construction of a Library of Formally Verified Low-

level Arithmetic Functions. Innovations in Systems and Software Engineering 9, 2
(2013), 59ś77. https://doi.org/10.1007/s11334-013-0195-x

[2] Stefan Berghofer. 2012. Verification of Dependable Software using SPARK
and Isabelle. In 6th International Workshop on Systems Software Verification
(OpenAccess Series in Informatics (OASIcs), Vol. 24). Dagstuhl, Germany, 15ś31.
https://doi.org/10.4230/OASIcs.SSV.2011.15

[3] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. 2002. A Proof of GMP
Square Root. Journal of Automated Reasoning 29, 3-4 (2002), 225ś252. https:
//doi.org/10.1023/A:1021987403425

[4] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich.
2011. Why3: Shepherd Your Herd of Provers. In Boogie 2011: First International
Workshop on Intermediate Verification Languages. Wrocław, Poland, 53ś64. https:
//hal.inria.fr/hal-00790310.

[5] Jean-Christophe Filliâtre. 2013. One Logic To Use Them All. In 24th Interna-
tional Conference on Automated Deduction (Lecture Notes in Artificial Intelligence,
Vol. 7898). Lake Placid, USA, 1ś20.

[6] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. 2016. The
Spirit of Ghost Code. Formal Methods in System Design 48, 3 (2016), 152ś174.
https://doi.org/10.1007/s10703-016-0243-x

[7] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 Ð Where Programs
Meet Provers. In 22nd European Symposium on Programming (Lecture Notes in
Computer Science, Vol. 7792). Heidelberg, Germany, 125ś128.

[8] Sabine Fischer. 2008. Formal Verification of a Big Integer Library. In DATE
Workshop on Dependable Software Systems. http://www-wjp.cs.uni-sb.de/
publikationen/Fi08DATE.pdf

[9] Robert W. Floyd. 1993. Assigning Meanings to Programs. In Program Verification.
Springer, 65ś81.

[10] Guillaume Melquiond and Raphaël Rieu-Helft. 2018. A Why3 Framework for
Reflection Proofs and its Application to GMP’s Algorithms. In 9th International
Joint Conference on Automated Reasoning (Lecture Notes in Computer Science,
Vol. 10900). Oxford, United Kingdom, 178ś193. https://doi.org/10.1007/978-3-
319-94205-6_13

[11] Guillaume Melquiond and Raphaël Rieu-Helft. 2019. Formal Verification of
a State-of-the-Art Integer Square Root. In IEEE 26th Symposium on Computer
Arithmetic. Kyoto, Japan. https://hal.inria.fr/hal-02092970

[12] Niels Moller and Torbjörn Granlund. 2011. Improved Division by Invariant
Integers. IEEE Trans. Comput. 60, 2 (2011), 165ś175. https://doi.org/10.1109/TC.
2010.143

[13] Magnus O. Myreen and Gregorio Curello. 2013. Proof Pearl: A Verified Bignum
Implementation in x86-64 Machine Code. In 3rd International Conference on Certi-
fied Programs and Proofs (Lecture Notes in Computer Science, Vol. 8307). Melbourne,
Australia, 66ś81. https://doi.org/10.1007/978-3-319-03545-1_5

[14] Raphaël Rieu-Helft. 2019. A Why3 Proof of GMP Algorithms. Journal of Formal-
ized Reasoning 12, 1 (2019), 53ś97. https://doi.org/10.6092/issn.1972-5787/9730

[15] Raphaël Rieu-Helft, Claude Marché, and Guillaume Melquiond. 2017. How to
Get an Efficient yet Verified Arbitrary-Precision Integer Library. In 9th Working
Conference on Verified Software: Theories, Tools, and Experiments (Lecture Notes in
Computer Science, Vol. 10712). Heidelberg, Germany, 84ś101. https://doi.org/10.
1007/978-3-319-72308-2_6

[16] Norbert Schirmer. 2005. A Verification Environment for Sequential Imperative
Programs in Isabelle/HOL. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning. 398ś414.

[17] Marc Schoolderman. 2017. Verifying Branch-Free Assembly Code in Why3. In
Working Conference on Verified Software: Theories, Tools, and Experiments. 66ś83.

[18] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and
Benjamin Beurdouche. 2017. HACL*: A Verified Modern Cryptographic Library.
Cryptology ePrint Archive, Report 2017/536. https://eprint.iacr.org/2017/536.

359

https://gmplib.org/list-archives/gmp-bugs/2020-February/004733.html
https://doi.org/10.1007/s11334-013-0195-x
https://doi.org/10.4230/OASIcs.SSV.2011.15
https://doi.org/10.1023/A:1021987403425
https://doi.org/10.1023/A:1021987403425
https://hal.inria.fr/hal-00790310
https://hal.inria.fr/hal-00790310
https://doi.org/10.1007/s10703-016-0243-x
http://www-wjp.cs.uni-sb.de/publikationen/Fi08DATE.pdf
http://www-wjp.cs.uni-sb.de/publikationen/Fi08DATE.pdf
https://doi.org/10.1007/978-3-319-94205-6_13
https://doi.org/10.1007/978-3-319-94205-6_13
https://hal.inria.fr/hal-02092970
https://doi.org/10.1109/TC.2010.143
https://doi.org/10.1109/TC.2010.143
https://doi.org/10.1007/978-3-319-03545-1_5
https://doi.org/10.6092/issn.1972-5787/9730
https://doi.org/10.1007/978-3-319-72308-2_6
https://doi.org/10.1007/978-3-319-72308-2_6
https://eprint.iacr.org/2017/536

On Parameterized Complexity of the Word Search Problem in
the Baumslag–Gersten Group

Alexei Miasnikov∗

Andrey Nikolaev∗

amiasnik@stevens.edu
anikolae@stevens.edu

Stevens Institute of Technology
Hoboken, NJ, USA

ABSTRACT

We consider the word search problem in the BaumslagśGersten

group𝐺𝐵. We show that the parameterized complexity of this prob-

lem, where the area of van Kampen diagram serves as a parameter,

is polynomial in the length of the input and the parameter. This

contrasts the well-known result that the Dehn function and the time

complexity of the word search problem in 𝐺𝐵 are non-elementary.

CCS CONCEPTS

·Theory of computation→ Fixed parameter tractability;Com-

plexity classes; · Mathematics of computing → Discrete mathe-

matics.

KEYWORDS

parameterized complexity, fixed parameter tractability, word prob-

lem, word search problem, BaumslagśSolitar group, Baumslagś

Gersten group, Dehn function

ACM Reference Format:

Alexei Miasnikov and Andrey Nikolaev. 2020. On Parameterized Complex-

ity of the Word Search Problem in the BaumslagśGersten Group. In Inter-

national Symposium on Symbolic and Algebraic Computation (ISSAC ’20),

July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3373207.3404042

1 INTRODUCTION AND PRELIMINARIES

1.1 Word problem in groups and parameterized

complexity

The word problem in groups was introduced by Dehn around 1910

and has been a subject of primary interest in group theory since. A

classical result of Novikov [10] (and later, independently, Boone [2])

is that there exist finitely presented groups with algorithmically

undecidable word problem. There are examples of groups where

the word problem is decidable but NP-complete [12].

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404042

Parameterized complexity was introduced by Downey and Fel-

lows [5] in 1999. They proposed to study the complexity of algo-

rithmic problems in terms of the size of input and parameters of

input or output. This allows a finer classification of hard problems.

For example, the famously NP-complete vertex cover problem [7]

on a graph with 𝑛 vertices can be solved in time 𝑂 (1.2738𝑘 + 𝑘𝑛)

if 𝑘 is the number of vertices in the cover [3]. Problems solvable

in time 𝑓 (𝑘)𝑛𝑐 , where 𝑓 is a computable function, are called fixed

parameter tractable. The class of such problems is denoted FPT. An-

other classical NP-complete problem, dominating set problem [7],

is known to be not fixed parameter tractable, unless parameterized

complexity classes FPT and W[2] coincide [5], which is generally

thought unlikely.

The word search problem in a group𝐺 asks to represent a given

word 𝑤 , provided it is equal to 1 in 𝐺 , as a product of conjugates

of given defining relators or, equivalently, in geometric terms, to

find a van Kampen diagram representing 𝑤 (see Section 1.2 for

details). If the group 𝐺 is finitely (or recursively) presented then

the search word problem in 𝐺 is decidable, so the real question

is about the algorithmic complexity of the problem. In theoretical

computer science this problem could be properly framed in terms

of proof complexity: what is the time complexity to find a łproofž

that a given word𝑤 is equal to 1 in𝐺? Intuitively, the complexity of

this problem may come from two sources: the whole combinatorial

complexity of the corresponding van Kampen diagram; or the sheer

size of the answer (the area of the diagram). Note that the area of

van Kampen diagrams in groups is described by the famous Dehn

functions, which are by now quite well-studied in finitely presented

groups. On the other hand, not much is known about the complexity

of van Kampen diagrams as combinatorial objects. Furthermore,

the complexity of the word search problem in 𝐺 is not necessary

related to the complexity of the word problem itself. Indeed, the

word problem in BaumslagśSolitar group 𝐵𝑆 (1, 2) is decidable in

polynomial time (the group is linear), but the Dehn function of

𝐵𝑆 (1, 2) is exponential (see Section 1.3). More dramatically, the

word problem in the BaumslagśGersten group 𝐺𝐵 is decidable,

surprisingly, in polynomial time [9], even though the Dehn function

in this group is non-elementary, i.e., not bounded by any fixed

iterate of the exponential function [6]. Therefore, the complexity

of the word search problem in 𝐺𝐵 is non-elementary.

In this paper we introduce a natural version of the parameterized

complexity of the word search problem in groups and use it to iden-

tify the source of complexity of this problem, as mentioned above.

Namely, we study the parameterized complexity of the word search

problem in the BaumslagśGersten group𝐺𝐵, where the area 𝑘 of a

360

https://doi.org/10.1145/3373207.3404042
https://doi.org/10.1145/3373207.3404042

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Alexei Miasnikov and Andrey Nikolaev

van Kampen diagram serves as the parameter. We show that in this

case the parameterized complexity of the word search problem in

𝐺𝐵 is polynomial of low degree in both length of the input and the

parameter 𝑘 . In other words, we show that the word search problem

for𝐺𝐵 is fixed parameter tractable with a polynomial function 𝑓 (𝑘).

In this sense, the complexity of the word search problem in 𝐺𝐵

comes purely from the size of the answer.

In conclusion, we would like to note that the main purpose of this

paper is to introduce the parameterized complexity to algorithmic

and geometric group theory and to show that it sheds some light on

important aspects of the word problem in groups. In particular, the

result above demonstrates that, firstly, while the complexity of the

word search problem in a finitely presented (one-relator) group𝐺𝐵

is immense, it comes purely from the size of the answer, and nothing

else. Secondly, this result rehabilitates, in some sense, the classical

decision algorithm for the word problem in HNN-extensions, which

amounts to applying Britton’s lemma repeatedly. The algorithm

is simple and geometrically very transparent, though sometimes

inefficient. At least in the case of the group 𝐺𝐵, it is clear now that

this algorithm is as efficient as a word search problem algorithm can

be. It seems probable that, after proper reformulation, the result may

hold in arbitrary HNN-extensions. Thirdly, there is no any reason to

believe that the methods of [9] (the so-called power circuits) could

be applied to arbitrary one-relator groups to show that the word

problem in such groups is decidable in polynomial time. However,

the classical Britton’s algorithm is still applicable there, which gives

a way to approach the parameterized complexity of the word search

problem in these groups.

1.2 Word problem, van Kampen diagrams, area

as a parameter, asphericity

Given a group presentation 𝐺 = ⟨𝑋 | 𝑅⟩, we can consider the word

problem for this presentation: given a word𝑤 in 𝑋 ∪𝑋−1, establish

whether𝑤 = 1 in𝐺 . (Words in 𝑋 ∪𝑋−1 are called group words in 𝑋 ;

since we do not consider any other kind, throughout this paper we

simply call them words in 𝑋 .) Equivalently, the word problem asks

whether there are words 𝑢1, . . . , 𝑢𝑘 in 𝑋 and 𝑟1, . . . , 𝑟𝑘 ∈ 𝑅 ∪ 𝑅−1

such that

𝑢1𝑟1𝑢
−1
1 · 𝑢2𝑟2𝑢

−1
2 · · ·𝑢𝑘𝑟𝑘𝑢

−1
𝑘

= 𝑤 (1)

in the free group on 𝑋 ; that is, the two words are equal up to

free cancellation. The word length |𝑤 | = 𝑛 (number of letters in

𝑤) serves as the length of input for this problem. Equation (1) is

equivalent to existence of a so-called van Kampen diagram (or

disc diagram): a planar graph with edges labeled by letters from

𝑋 ∪ 𝑋−1, each face labeled by a cyclic permutation of an element

of 𝑅 ∪𝑅−1, and such that its boundary reads the word𝑤 (up to free

cancellation). For example, the van Kampen diagram in Figure 1

(left) shows that in the abelian group ⟨𝑎, 𝑏 | 𝑎−1𝑏−1𝑎𝑏⟩, the word

𝑎−3𝑏−1𝑎𝑏𝑎𝑏−2𝑎𝑏2 is equal to 1. Indeed, from the diagram we can

observe that

𝑎−3𝑏−1𝑎𝑏𝑎𝑏−2𝑎𝑏2 = 𝑎−2 (𝑎−1𝑏−1𝑎𝑏)𝑎2·(𝑎−1𝑏−1𝑎𝑏)·𝑏−1 (𝑎−1𝑏−1𝑎𝑏)𝑏

in the free group, which resolves this instance of the word problem

positively in the sense of equation (1). Conversely, given the above

equality, we can recover the corresponding van Kampen diagram

by drawing a bouquet like the one in Figure 1 (right) and folding

edges with the same labels.

a

a

a

a

a

b

b b

b

b b

a

a

a

a

a

a

b

b

b

b

b b

a

a

b a

Figure 1: From the marked vertex, the boundary reads

𝑎−1𝑎−1𝑎−1𝑏−1𝑎𝑏𝑎𝑏−1𝑏−1𝑎𝑏𝑏 = 𝑎−3𝑏−1𝑎𝑏𝑎𝑏−2𝑎𝑏2.

By the word search problem we mean the following: given a word

𝑤 in 𝑋 and the information that𝑤 = 1 in 𝐺 , find a corresponding

expression (1). Observe that the parameter 𝑘 in (1) is the number

of faces in the corresponding van Kampen diagram. The latter is

usually called the area of a van Kampen diagram. Since each edge

in a reduced van Kampen diagram is a boundary edge or a face

edge, there is a quadratic (in terms of 𝑛 = |𝑤 | and 𝑘) bound on the

total length of expression in the left hand side of (1). With that in

mind, the area 𝑘 can serve as a parameter for the size of answer in

the word search problem.

The function 𝑓 (𝑛) = max{𝑘 | 𝑤 = 1, |𝑤 | ≤ 𝑛} is called the Dehn

function of a presentation. Its growth class does not depend on a

particular choice of presentation for a given group. In this sense,

the Dehn function is defined for a group, and it tells how large an

area is required to establish that a word of length 𝑛 is equal to 1 in

the group.

1.2.1 Asphericity. Generally, a word𝑤 representing identity in a

given group presentation ⟨𝑋 | 𝑅⟩ may possess substantially dif-

ferent expressions (1). However, in such event, we can glue the

two corresponding disc diagrams along their common boundary𝑤 ,

and after free cancellation we can obtain a spherical diagram, see

Figure 2. Group presentations that do not admit non-trivial spher-

Figure 2: Producing a spherical diagram from two disc dia-

grams for the same word.

ical diagrams are called aspherical. This notion is discussed in [8,

Sections III.10, 11]. In [11], aspherical group presentations were

studied in explicit combinatorial terms. Note that, strictly speaking,

there are different notions of asphericity, defined in different terms

(topological, cohomological, combinatorial). They are equivalent to

each other under additional mild assumptions, which hold in the

cases considered in this paper. In particular, the notion of aspheric-

ity we use in this paper is usually called combinatorial asphericity.

To avoid excessive exhibition here, we refer the reader to [8, Section

III.11] and [11, Section 2.2] for further details.

361

On Parameterized Complexity of the Word Search Problem in the Baumslag–Gersten Group ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Our reasoning in Section 2 relies on uniqueness (up to free can-

cellation) of disc diagrams for certain group presentations, i.e., on

asphericity of those groups presentations. Specifically, we use the

following special case of [11, Lemma 2.5] (which was first stated

in [4] in different terms).

Lemma 1.1 ([11]). Let P1 = ⟨𝑋 | 𝑅⟩ be a presentation of a group

𝐺 and let P2 = ⟨𝑋, 𝑡 | 𝑅, 𝑡−1𝑢𝑡𝑣−1⟩, where 𝑢, 𝑣 are words in 𝑋 , be

the standard presentation of an HNN-extension of 𝐺 . Suppose that

𝑡−1𝑢𝑡𝑣−1 is not conjugate to any relator in 𝑅∪𝑅−1, and that𝑢, 𝑣 have

infinite order in P1. Then P2 is aspherical if P1 is aspherical.

1.3 Baumslag–Solitar groups,

Baumslag–Gersten group 𝐺𝐵

BaumslagśSolitar groups are the groups 𝐵𝑆 (𝑚,𝑛) with presentation

⟨𝑎, 𝑏 | (𝑎𝑚)𝑏 = 𝑎𝑛⟩. A group 𝐵𝑆 (𝑚,𝑛) can be viewed as an HNN-

extension of ⟨𝑎⟩ with stable letter 𝑏 and associated subgroups ⟨𝑎𝑚⟩,

⟨𝑎𝑛⟩. These groups are important in combinatorial group theory for

their role as a showcase of a variety of geometric and combinatorial

properties of groups. One such remarkable feature is that while

an algorithm to solve the word problem is simple (it is given by

Britton’s lemma for HNN-extensions), the Dehn function of this

group is exponential if |𝑚 | ≠ |𝑛 |. For example, this can be observed

in 𝐵𝑆 (1, 2) by considering equalities of the form

𝑏−𝑁𝑎𝑏𝑁 · 𝑎 = 𝑎 · 𝑏−𝑁𝑎𝑏𝑁 , 𝑁 = 1, 2,

The BaumslagśGersten group (also known as Gilbert Baumslag

group) is a group with presentation

⟨𝑎, 𝑡 | 𝑎𝑎
𝑡

= 𝑎2⟩.

For our purposes it is more convenient to rewrite this as

𝐺𝐵 = ⟨𝑎, 𝑏, 𝑡 | 𝑎𝑏 = 𝑎2, 𝑎𝑡 = 𝑏⟩,

which shows that𝐺𝐵 is an HNN-extension of the BaumslagśSolitar

group 𝐵𝑆 (1, 2) with stable letter 𝑡 and associated subgroups ⟨𝑎⟩,

⟨𝑏⟩. This group was first introduced by Baumslag [1]. Later Gersten

showed in [6] that the Dehn function of 𝐺𝐵 is non-elementary,

i.e., grows faster than any fixed iterate of the exponential function.

However, Myasnikov, Ushakov, and Won recently showed in [9]

that the word problem in 𝐺𝐵 is polynomial time decidable through

use of the so-called power circuits. In Section 2 we show that the

word search problem in this group is polynomial in 𝑛, 𝑘 , where 𝑛 is

the length of input and 𝑘 is the area of a van Kampen diagram.

2 VAN KAMPEN DIAGRAMS IN

BAUMSLAG–SOLITAR AND

BAUMSLAG–GERSTEN GROUPS

Lemma 2.1. Parameterized complexity of the word search problem

in BaumslagśSolitar group 𝐵𝑆 (1, 2) is polynomial in 𝑛 and 𝑘 , where

𝑛 is the size of input and 𝑘 is the area of a van Kampen diagram.

Proof. Consider BaumslagśSolitar group 𝐵𝑆 (1, 2) = ⟨𝑎, 𝑏 | 𝑎𝑏 =

𝑎2⟩, which can be viewed as an HNN-extension of the cyclic group

⟨𝑎⟩. We recall that by Britton’s lemma if a freely reduced word

𝑤 in 𝑎, 𝑏 represents 1 in 𝐵𝑆 (1, 2), then it has a subword 𝑏−1𝑎𝑚𝑏

or a subword 𝑏𝑎2𝑚𝑏−1. As an iterative step in the solution of the

word search problem, we can replace the former with 𝑎2𝑚 and the

latter with 𝑎𝑚 , thus reducing the number of occurrences of 𝑏, 𝑏−1

in the word. Since by Lemma 1.1 𝐵𝑆 (1, 2) is aspherical, it follows

that this rewriting can be read in a minimal van Kampen diagram,

see Figure 3. (Asphericity of 𝐵𝑆 (1, 2) also follows since this group

is one-relator, see, for example, [8, Proposition III.11.1].)

a
m

a
2m

b b

Figure 3: 𝑏−1𝑎𝑚𝑏 = 𝑎2𝑚 .

Suppose a word 𝑤 in 𝑎, 𝑏 of length 𝑛 is given as the input of

the word search problem, with parameter 𝑘 . We will rewrite the

word𝑤 = 𝑤0 into𝑤1,𝑤2, . . . , so that every𝑤𝑖 has length bounded

by a linear function of 𝑛, 𝑘 ; the number of rewriting steps will be

bounded by 𝑛.

Given a word𝑤𝑖 , we search for a subword of the form 𝑏−1𝑎𝑚𝑏 or

𝑏𝑎2𝑚𝑏−1 and replace it with 𝑎2𝑚 or 𝑎𝑚 , respectively, thus obtaining

𝑤𝑖+1 after free cancellation. As discussed above, if the word 𝑤

represents 1 in 𝐵𝑆 (1, 2), then the word 𝑤𝑖+1 can be read along a

boundary of a subdiagram in the original van Kampen diagram

𝐷0 for𝑤 , and therefore its length after free cancellation does not

exceed twice the number of edges in the diagram, at most

2(𝑛 + 5𝑘) = 2𝑛 + 10𝑘 =𝑚0 .

Indeed, the number of edges is not more than (perimeter)+(maximal

length of relator)·(area of 𝐷0), which is 𝑛 + 5𝑘 . Note that the length

of the rewritten word before the free cancellation does not exceed

2𝑚0, since the length of𝑤𝑖 is bounded by the same𝑚0.

The search takes at most𝑚2
0 steps, the replacement at most 3𝑚0

steps, including free cancellation. The number of steps does not

exceed 𝑛, since every rewriting eliminates a pair of occurrences of

𝑏, 𝑏−1. Therefore, overall number of steps until an empty word is

reached or the procedure fails does not exceed

𝑛 · ((2𝑛 + 10𝑘)2 + 3(2𝑛 + 10𝑘)).

As we compute each word𝑤𝑖+1 from𝑤𝑖 , we can record the relation

applied at each step, and the corresponding location in the word𝑤𝑖 .

This allows us to recover the van Kampen diagram once an empty

word is reached in polynomial time 𝑃 (𝑛, 𝑘). □

As we mentioned in Section 1.3, the BaumslagśGersten group

𝐺𝐵 = ⟨𝑎, 𝑏, 𝑡 | 𝑎𝑏 = 𝑎2, 𝑎𝑡 = 𝑏⟩

is an HNN-extension of the BaumslagśSolitar group 𝐵𝑆 (1, 2) =

⟨𝑎, 𝑏 | 𝑎𝑏 = 𝑎2⟩ by an isomorphism 𝜑 : ⟨𝑎⟩ → ⟨𝑏⟩, 𝜑 (𝑎) = 𝑏.

In Lemma 2.1, we have shown that there is a polynomial upper

bound 𝑃 (𝑛, 𝑘) on the parameterized complexity of the word search

problem in 𝐵𝑆 (1, 2), where 𝑛 denotes the size of the input word and

𝑘 the maximum area of a van Kampen diagram. We exploit this fact

and the reasoning similar to the one we used in its proof to deal

with the word search problem in the BaumslagśGersten group.

Theorem 2.2. Parameterized complexity of the word search prob-

lem in the BaumslagśGersten group 𝐺𝐵 is polynomial in 𝑛 and 𝑘 ,

where𝑛 is the size of input and 𝑘 is the area of a van Kampen diagram.

362

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Alexei Miasnikov and Andrey Nikolaev

Proof. Given a word𝑤 in 𝑎, 𝑏, 𝑡 of length 𝑛 and a parameter 𝑘 ,

we consider subwords of the form

𝑡−1𝑢 (𝑎, 𝑏)𝑡 or 𝑡𝑢 (𝑎, 𝑏)𝑡−1 .

We search for such occurrences where, respectively, 𝑢 (𝑎, 𝑏) ∈ ⟨𝑎⟩

or 𝑢 (𝑎, 𝑏) ∈ ⟨𝑏⟩. Start with the former. Suppose 𝑢 (𝑎, 𝑏) = 𝑎𝑚 . By

Lemma 1.1 it follows that the considered presentation of 𝐺𝐵 is

aspherical. Then by Britton’s lemma the word 𝑢 (𝑎, 𝑏)𝑎−𝑚 can be

read along a boundary of a subdiagram of the van Kampen diagram

for𝑤 of area at most 𝑘 , so |𝑚 | cannot exceed twice the number of

edges in the diagram:

|𝑚 | ≤ 2(𝑛 + 5𝑘) =𝑚0 .

Therefore, establishing whether 𝑢 (𝑎, 𝑏) ∈ ⟨𝑎⟩ reduces to solving

2𝑚0 + 1 word problems 𝑢 (𝑎, 𝑏) = 𝑎𝑚 , −𝑚0 ≤ 𝑚 ≤ 𝑚0, in 𝐵𝑆 (1, 2).

By Lemma 2.1, this can be done in a time that does not exceed∑

|𝑚 | ≤𝑚0

𝑃 (|𝑢 (𝑎, 𝑏) | +𝑚,𝑘) = 𝑅(|𝑢 (𝑎, 𝑏) |,𝑚0, 𝑘).

Notice that 𝑅(|𝑢 (𝑎, 𝑏) |,𝑚0, 𝑘) is a polynomial in |𝑢 (𝑎, 𝑏) |,𝑚0, 𝑘 .

Further observe that, under the condition 𝑢 (𝑎, 𝑏) = 𝑎𝑚 , after

rewriting 𝑡−1𝑢 (𝑎, 𝑏)𝑡 = 𝑏𝑚 the resulting (after free cancellation)

word can still be read in the original van Kampen diagram (an ex-

ample is shown in Figure 4), so iterating this process will never pro-

duce a word longer than𝑚0. Therefore, |𝑢 (𝑎, 𝑏) | ≤ 𝑚0, so the func-

a
2m

a
m

b b

t t
b
m

Figure 4: 𝑏𝑎2𝑚𝑏−1 = 𝑎𝑚 , 𝑡−1𝑎𝑚𝑡 = 𝑏𝑚 .

tion 𝑅(|𝑢 (𝑎, 𝑏) |,𝑚0, 𝑘) is bounded by a polynomial 𝑅(𝑚0,𝑚0, 𝑘) =

𝑄 (𝑛, 𝑘).

The reasoning for the latter case, 𝑢 (𝑎, 𝑏) ∈ ⟨𝑏⟩, is done similarly.

The described rewriting process can iterate at most 𝑛 times (the

number of occurrences of 𝑡 and 𝑡−1). After that we arrive at a

word 𝑤 ′ in 𝑎, 𝑏. We use the algorithm provided by Lemma 2.1 to

solve the word search problem for 𝑤 ′ in 𝐵𝑆 (1, 2). After that, the

van Kampen diagram for 𝑤 can be recovered the same way as in

Lemma 2.1. □

ACKNOWLEDGMENTS

Thework is supported byMathematical Center in Akademgorodok.

REFERENCES
[1] G. Baumslag. 1969. A non-cyclic one-relator group all of whose finite quotients

are cyclic: To Bernhard Hermann Neumann on his 60th birthday. Journal of the
Australian Mathematical Society 10, 3ś4 (1969), 497ś498. https://doi.org/10.1017/
S1446788700007783

[2] W.W. Boone. 1958. The word problem. Proceedings of the National Academy of
Sciences of the United States of America 44, 10 (1958), 1061.

[3] J. Chen, I. A Kanj, and G. Xia. 2006. Improved parameterized upper bounds for
vertex cover. In International symposium on mathematical foundations of computer
science. Springer, 238ś249.

[4] I.M. Chiswell, D.J. Collins, and J. Huebschmann. 1981. Aspherical group presen-
tations. Mathematische Zeitschrift 178, 1 (1981), 1ś36.

[5] R.G. Downey and M.R. Fellows. 2012. Parameterized complexity. Springer Science
& Business Media.

[6] S.M. Gersten. 1992. Dehn Functions and l1-norms of Finite Presentations. Springer
New York, New York, NY, 195ś224. https://doi.org/10.1007/978-1-4613-9730-4_9

[7] R.M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of
computer computations. Springer, 85ś103.

[8] R. Lyndon and P. Schupp. 2001. Combinatorial Group Theory. Springer.
[9] A. Myasnikov, A. Ushakov, and D.W. Won. 2011. The Word Problem in the Baum-

slag group with a non-elementary Dehn function is polynomial time decidable.
Journal of Algebra 345, 1 (2011), 324ś342. https://doi.org/10.1016/j.jalgebra.2011.
07.024

[10] P.S. Novikov. 1955. On algoritmic unsolvability of the word problem in the theory
of groups (in Russian). Tr. Mat. Inst. Akad. Nauk SSSR, Izd. Akad. Nauk SSSR 44
(1955).

[11] M. Sapir. 2014. A Higman embedding preserving asphericity. Journal of the
American Mathematical Society 27, 1 (2014), 1ś42.

[12] M.V. Sapir, J.-C. Birget, and E. Rips. 2002. Isoperimetric and isodiametric functions
of groups. Ann. Math. 156, 2 (2002), 345ś466.

363

https://doi.org/10.1017/S1446788700007783
https://doi.org/10.1017/S1446788700007783
https://doi.org/10.1007/978-1-4613-9730-4_9
https://doi.org/10.1016/j.jalgebra.2011.07.024
https://doi.org/10.1016/j.jalgebra.2011.07.024

On the Chordality of Ordinary Differential Triangular
Decomposition in Top-down Style

Chenqi Mou
LMIB ś School of Mathematical Sciences /

Beijing Advanced Innovation Center for Big Data and Brain Computing,
Beihang University, Beijing 100191, China

chenqi.mou@buaa.edu.cn

ABSTRACT

In this paper we extend existing theoretical results on chordal

graphs in algebraic triangular decomposition in top-down style

to the ordinary differential case. We first propose the concept of

differential associated graph of an ordinary differential polyno-

mial set, and then for two typical algorithms in top-down style for

ordinary differential triangular decomposition based on the pseudo-

division and subresultant regular subchain respectively, we prove

that when the input differential polynomial set has a chordal differ-

ential associated graphG and one perfect elimination ordering ofG

is used, the differential associated graph of any polynomial set in the

decomposition process by these two algorithms is a subgraph of G.

CCS CONCEPTS

· Computing methodologies → Symbolic and algebraic ma-

nipulation; · Theory of computation→ Design and analysis of

algorithms.

KEYWORDS

Differential triangular decomposition, chordal graph, top-down

style, pseudo-division

ACM Reference Format:

Chenqi Mou. 2020. On the Chordality of Ordinary Differential Triangular

Decomposition in Top-down Style. In International Symposium on Symbolic

and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3403999

1 INTRODUCTION

Differential algebra, founded by Ritt [23, 24] and developed by

Kolchin [16] and many others, is the subject to study differential

polynomial systems from an algebraic viewpoint. Since its advent,

the development of differential algebra has been along with com-

putation and algorithms, like computation of characteristic sets for

prime differential ideals [24], algorithmic elimination theory for

differential polynomial systems [27], and the coherence property

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3403999

needed for the computation with partial differential polynomial sys-

tems [26]. Combinedwithmethods from computer algebra, effective

algorithmic methods in differential algebra have been studied, im-

proved, and implemented [1ś4, 10, 13, 15, 17, 32, 37] to solve various

problems related to differential polynomials, e.g., solving systems

of ordinary differential equations [32], identifying the observabil-

ity of control systems [7, 8], and verification of linearizability for

ordinary differential equations [18], etc.

In his seminal book [24], Ritt proposed the concept of character-

istic sets for differential polynomial ideals. Characteristic sets are

a typical kind of differential triangular sets. In the ordinary differ-

ential case, differential triangular sets are ordered sets of ordinary

differential polynomials whose greatest differential indeterminates

strictly increase. The process to decompose any differential poly-

nomial set into finitely many differential triangular sets or systems

with associated zero or ideal relationships is called differential trian-

gular decomposition, and there exist effective methods to perform

differential triangular decomposition [1ś3, 15, 17, 32]. The readers

are referred to the tutorial [14] for more details on this subject.

In this paper we are mainly interested in algorithms in top-down

style for ordinary differential triangular decomposition. The top-

down strategy in triangular decomposition means that the variables

(in the algebraic case) or the differential indeterminates (in the

ordinary differential case) appearing in the input polynomial set

are handled in a strictly decreasing order, and it has been used to

design various algorithms for algebraic and differential triangular

decomposition [5, 9, 17, 31ś34].

The tool we use in this paper to study and analyze ordinary dif-

ferential triangular decomposition in top-down style is the chordal

graph, also called triangulated graphs, see, e.g.,[12, Chap. 4]. Chordal

graphs have very special structures and thus have been applied

in many scientific and engineering areas like optimization [28], in

particular, to design algorithms for sparse Gaussian elimination

[11, 22, 25] and sparse sums-of-squares decomposition [29, 30, 36].

The connections between chordal graphs and triangular decompo-

sition was first revealed in [6], where the new concept of chordal

networks was proposed with an effective algorithm for computing

them based on triangular decomposition. Inspired by their works,

the author of this paper and his collaborators proved that several al-

gorithms in top-down style for triangular decomposition preserve

the chordality of the input polynomial set and proposed sparse

algorithms for triangular decomposition making use of the per-

fect elimination orderings of chordal graphs based on these newly

proved theoretical results [19ś21].

This paper is an attempt to extend the existing analyses on the

chordality of algebraic triangular decomposition in top-down style

364

https://doi.org/10.1145/3373207.3403999
https://doi.org/10.1145/3373207.3403999

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Chenqi Mou

to differential triangular decomposition, and obviously the ordinary

differential case is our first target. In this paper we propose the

concept of differential associated graph of an ordinary differential

polynomial set and clarify its differences from the (algebraic) asso-

ciated graph. Then we prove that when the input polynomial set

is chordal, two algorithms in top-down style for ordinary differen-

tial triangular decomposition based on the pseudo-division [2, 32]

and subresultant regular subchain [15, 35] preserve the chordality,

successfully extending the theoretical results for algebraic trian-

gular decomposition to the ordinary differential case. Like in the

algebraic case [20], sparse algorithms for ordinary differential tri-

angular decomposition may also be proposed with more focused

study and experiments based on the results above, yet they fall out

of the scopes of this paper.

This paper is organized in the following way. After recalling

basic notions and notations for differential algebra and differential

triangular decomposition in Section 2, we associate any differential

polynomial set with a graph based on its differential indeterminates

in Section 3. Then in Sections 4 and 5 respectively, we reformulate

two typical algorithms in top-down style for differential triangular

decomposition based on the pseudo-division and subresultant reg-

ular subchain, and then prove that these two algorithms preserve

the chordality of the input differential polynomial sets if the perfect

elimination orderings are used. We conclude this paper with re-

marks on the underlying problems for extending the results in this

paper to partial differential triangular decomposition in Section 6.

2 PRELIMINARIES

2.1 Ordinary differential polynomial ring

Let K be an ordinary differential field of characteristic 0 with the

derivation δ = d
dt

and x1, . . . , xn be differential indeterminates

ordered as x1 < · · · < xn . Denote the set {x1, . . . , xn } by x and the

derivatives δ jxi =
djxi
dt j

by xi j for all i = 1, . . . ,n and j ∈ Z≥0 (with

xi0 := xi). Then the ordinary differential polynomial ring K{x} is

the polynomial ring overK in the infinitely many variables {xi j |i =

1, . . . ,n, j ∈ Z≥0} equipped with the derivation δ . In this paper

we only study the ordinary differential case, and thus the word

łordinaryž is usually omitted for simplicity. Let F be a differential

polynomial set in K{x}. Then the differential ideal generated by F ,

denoted by [F], is the ideal generated by the polynomials in F and

all their derivatives.

We fix a differential ordering <d on all the derivatives as

x1 <d x11 <d x12 <d · · ·

<d x2 <d x21 <d x22 <d · · ·

.

.

.

<d xn <d xn1 <d xn2 <d · · · .

This ordering is a typical elimination one [14]. For a differential

polynomial F ∈ K{x}, its lead ld(F) is the derivative which ef-

fectively appears in F and is of the highest rank with respect to

(short as w.r.t. hereafter) <d , and its order ord(F) is the index of

the differential indeterminate which effectively appears in F and

is greatest w.r.t. the indeterminate order < (if F involves none of

x1, . . . , xn , then ord(F) := 0). Viewed as a univariate polynomial in

its lead ld(F), the polynomial F can be rewritten as

F = Fd ld(F)d + Fd−1 ld(F)
d−1
+ · · · + F1 ld(F) + F0,

where ld(Fi) <d ld(F) for all i = 0, . . . ,d and Fd , 0. The poly-

nomials Fd and F − Fd ld(F)d in the above formulae are called the

initial and tail of F respectively, denoted by ini(F) and tail(F). The

formal derivative of F w.r.t. ld(F) is called the separant of F and

denoted by sep(F), that is

sep(F) =
∂F

∂ ld(F)
= dFd ld(F)d−1 + (d − 1)Fd−1 ld(F)

d−2
+ · · · + F1.

Let F ,G ∈ K{x} be two differential polynomials. Then F is

said to be partially reduced w.r.t. G if no proper derivative of ld(G)

appears in F and reduced w.r.t.G if it is partially reduced w.r.t.G and

deg(F , ld(G)) < deg(G, ld(G)). We say F is of lower rank than G if

ld(F) <d ld(G), or ld(F) = ld(G) but deg(F , ld(F)) < deg(G, ld(G)).

For any finite set of differential polynomials, we can always find a

differential polynomial with a minimal rank.

2.2 Differential triangular decomposition

Definition 2.1. A finite ordered set T = [T1, . . . ,Tr] of differen-

tial polynomials in K{x} is called a weak differential triangular set

if 0 < ord(T1) < · · · < ord(Tr). Furthermore, if for each i = 1, . . . , r ,

Ti is partially reduced w.r.t. Tj (j , i, 1 ≤ j ≤ r), then T is called a

differential triangular set.

The definition of a weak differential triangular set T in a gen-

eral (ordinary or partial) differential ring requires that for any two

distinct polynomials Ti ,Tj ∈ T , we have that ld(Ti) is not a deriv-

ative of ld(Tj). Since in the ordinary differential ring K{x} there

is only one derivation, this definition is equivalent to the one for

weak differential triangular sets in Definition 2.1 above. Though

the variables of differential polynomials inK{x} are the derivatives

{xi j |i = 1, . . . ,n, j ∈ Z≥0}, ordinary differential triangular sets are

defined w.r.t. the differential indeterminates x1, . . . , xn .

Let P and Q be two differential polynomial sets in K{x}, and K̃

be some differential extension of the differential field K. We denote

the set of common zeros of the differential polynomials in P which

are not zeros of any polynomial in Q by

Z
K̃
(P/Q) := {x ∈ K̃n |P(x) = 0,Q(x) , 0,∀P ∈ P,Q ∈ Q}.

We write Z
K̃
(P/Q) as Z(P/Q) when K̃ is not explicitly specified,

Z({P}/Q) as Z(P/Q), and Z(T /∅) as Z(T) respectively.

Definition 2.2. An ordered set (T ,U) with T a weak differential

triangular set and U a differential polynomial set (possibly an

empty one) in K{x} is called a weak differential triangular system if

for each T ∈ T , we have

Z(ini(T)) ∩ Z(T /U) = ∅ and Z(sep(T)) ∩ Z(T /U) = ∅.

Furthermore, (T ,U) is called a differential triangular system if T

is a differential triangular set.

Compared with the algebraic triangular system [35], the above

definition imposes extra constraints on the separants of the poly-

nomials in the differential triangular sets.

Definition 2.3. Let F be a differential polynomial set F ⊂ K{x}.

Then a finite number of (weak) differential triangular systems

365

On the Chordality of Ordinary Differential Triangular Decomposition in Top-down Style ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

(T1,U1), . . ., (Ts ,Us) is called a differential triangular decompo-

sition of F into (weak) differential triangular systems if Z(F) =⋃s
i=1 Z(Ti/Ui).

The process to construct triangular decomposition of F into

(weak) differential triangular systems is also called differential tri-

angular decomposition for F . We are mainly interested in the solu-

tions of F = 0, then the zero relationship Z(F) =
⋃s
i=1 Z(Ti/Ui)

indicates that this is reduced to compute all the zero sets Z(Ti/Ui)

for i = 1, . . . , s , which are much easier because of the triangular

structure of differential triangular systems [1, 14, 32].

For a differential polynomial set F ⊂ K{x}, we denote F (i) :=

{F ∈ F | ord(F) = i} for i = 0, . . . ,n, and the smallest integer

i (0 ≤ i ≤ n) such that #F (j)
= 0 or 1 for each j = i+1, . . . ,n is called

the level of F and denoted by level(F). Obviously, if level(F) = 0

and F (0)
= ∅, then F forms a weak differential triangular set.

This paper is mainly focused on algorithms for triangular de-

composition in top-down style for ordinary differential polynomial

sets. Let F be a differential polynomial set in K{x} and Φ be a

set of pairs of differential polynomial sets, initialized as {(F , ∅)}.

Then an algorithm for computing differential triangular decompo-

sition of F is said to be in top-down style if for each (P,Q) ∈ Φ

with level(P) = k > 0, this algorithm handles the differential

polynomials in P(k) and Q(k) to produce finitely many differential

polynomials setsP1, . . . ,Ps andQ1, . . . ,Qs such that the following

conditions hold:

(a) Z(P/Q) =
⋃s
i=1 Z(Pi/Qi);

(b) for each i = 1, . . . , s , P
(j)
i = P(j) and Q

(j)
i = Q(j) for j =

k + 1, . . . ,n;
(c) there exists some integer ℓ (1 ≤ ℓ ≤ s) such that #P

(k)
ℓ
= 0

or 1, and the other (Pi ,Qi) (i , ℓ) are put into Φ for later

computation.

The definition above for differential triangular decomposition in top-

down style is an analogue of the corresponding one for (algebraic)

triangular decomposition [20], for the ordinary differential and

algebraic triangular sets are both defined w.r.t. x1, . . . , xn .

2.3 Differential pseudo-division and
subresultant regular subchain

Differential pseudo-division and computation of subresultant reg-

ular subchains are two common operations to reduce differential

polynomials to new ones of lower ranks, together with associ-

ated zero relationships. Corresponding splitting strategies are also

designed based on these operations in differential triangular de-

composition.

Differential pseudo-division

Let F ,G ∈ K{x} be two differential polynomials. Then there

exist methods to (partially) reduce F w.r.t. G: one can find non-

negative integers a, b, and c such that sep(G)aF = R1 mod [G] and

sep(G)b ini(G)cF = R2 mod [G], and R1 and R2 are respectively

partially reduced and reduced w.r.t. G. R1 and R2 here are called

the partial differential and differential pseudo remainders of F w.r.t.

G respectively, denoted by pd-prem(F ,G) and d-prem(F ,G), and

the process above for computing R2 from F and G is called the

differential pseudo-division of F w.r.t. G [37].

Based on the differential pseudo-division, the zero relationship

in Proposition 2.4 holds (see [32, Sec. 3] for a proof). The splitting

strategy based on this zero relationship is commonly used in algo-

rithms for differential triangular decomposition [2, 32], and it is

also the one used in Algorithm 1 we study in Section 4.

Proposition 2.4. Let P,Q be two differential polynomial sets

and T be a differential polynomial in P(k). Then the following zero

relationship holds

Z(P/Q) =Z(P\{T } ∪ {ini(T), tail(T)}/Q)

∪Z(P ∪ {sep(T)}/Q ∪ {ini(T)})

∪Z(P ′/Q ∪ {ini(T), sep(T)}),

where P ′ := P\P(k) ∪ {T }∪{d-prem(P,T) : P ∈ P(k)\{T }}.

Subresultant regular subchain

Let F ,G ∈ K{x} be two differential polynomials such that the

derivative xi j appears effectively in both of them, and let X be the

set of all the derivatives appearing in F orG except xi j . Then write

F =
∑p

k=0
ak x

k
i j and G =

∑q

ℓ=0
bℓ x

ℓ
i j with ak ,bℓ ∈ K[X].

The kth subresultant Hk of F and G w.r.t. xi j can be constructed

via the determinants of certain sub-matrices of the Sylvester ma-

trix of F and G for k = 0, . . . , µ − 1, where µ := p − 1 when

p > q and µ := q otherwise. In particular, the kth subresultant

Hk is said to be regular if its degree equals k . Then the sequence

Hµ−1,Hµ−2, . . . ,H0 is called the subresultant chain of F andG w.r.t.

xi j . Furthermore, let Hd1 , . . . ,Hdr be the regular subresultants in

Hµ−1, . . . ,H0 with d1 > · · · > dr . Then the sequence Hd1 , . . . ,Hdr
is called the subresultant regular subchain (short as SRS) of F andG

w.r.t. xi j .

The zero relationship in Proposition 2.5 holds among polynomi-

als obtained from the subresultant regular subchain of two poly-

nomials (a similar proposition (Prop. 5.2) is presented in [15] in

the language of ideals). The splitting strategy based on this zero

relationship is used in Algorithm 2 we study in Section 5. Note

that in Proposition 2.5 below, each Hi is of lower rank than T2 for

i = 2, . . . , r , and lc(F , x) denotes the leading coefficient of F viewed

as a univariate polynomial in x . Note that x does not need to appear

in F effectively, and when it does not appear lc(F , x) = F naturally.

Proposition 2.5 ([35, Lem. 2.4.2]). Let T1,T2 ∈ K{x} be two

differential polynomials such that ld(T1) = ld(T2) = xi j and T2 is

of lower rank than T1, and H2, . . . ,Hr be the subresultant regular

subchain of T1 and T2 w.r.t. xi j . Denote I := lc(T2, xi j) and Ii :=

lc(Hi , xi j) for i = 2, . . . , r . Then the following zero relationship holds

Z({T1,T2}/I) =

r⋃

i=2

Z({Hi , Ii+1, . . . , Ir }/I Ii).

3 DIFFERENTIAL ASSOCIATED GRAPHS

We first recall the definition of chordal graphs via the perfect elimi-

nation ordering, and then associate an arbitrary differential polyno-

mial set with a graph to reflect how the differential indeterminates

are connected in the set.

Definition 3.1. Let G = (V , E) be an undirected graph, where

V = {x1, . . . , xn } is the set of its vertices and E the set of its edges.

Then a vertex ordering xi1 < xi2 < · · · < xin is called a perfect

366

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Chenqi Mou

elimination ordering of G if for each j = i1, . . . , in , any two distinct

vertices in

{xk : xk < x j and (xk , x j) ∈ E} (1)

are connected by an edge in E. A graph G is said to be chordal if it

has a perfect elimination ordering.

For a differential polynomial F ∈ K{x}, we define the differential

indeterminate support of F to be

supp(F) = {xi |∃ some integer j ∈ Z≥0 such that deg(F , xi j) > 0}.

For a differential polynomial setF ⊂ K{x}, supp(F) :=
⋃
F ∈F supp(F).

Definition 3.2. Let F ⊂ K{x} be a differential polynomial set.

Then the differential associated graph of F , denoted by G̃(F), is an

undirected graph (V , E) such that the vertices V := supp(F) and

E := {(xi , x j) : ∃F ∈ F such that xi , x j ∈ supp(F)}.

Definition 3.3. A differential polynomial set F ⊂ K{x} is said

to be chordal if G̃(F) is chordal.

The definition above for differential associated graphs is an ana-

logue of the (algebraic) associated graphs defined in [6, 19]. The

difference between these two definitions lies in the fact that for a

differential polynomial, its variables are indeed among the deriva-

tives xi j instead of among the differential indeterminates x1, . . . , xn .

Denote the set of all possible derivatives {xi j |i = 1, . . . ,n, j ∈ Z≥0}

by X . Then for a differential polynomial set, when viewed as an

algebraic polynomial set in K[X], the vertices of its (algebraic) as-

sociated graph are from X , while the vertices of its differential

associated graph are from x1, . . . , xn . In this sense, in fact we group

the cluster of vertices from xi , xi1, xi2, . . . in the (algebraic) associ-

ated graph into one vertex xi in the differential associated graph

for each i = 1, . . . ,n. This difference is illustrated in the following

example.

Consider a differential polynomial set F in K{x1, x2, x3, x4, x5}

with K = Q(t):

F := {tx22 + x2 + x1, x3 + tx11 + x1,

(1 + t)x241 + x21 + tx2 + x
2
32, x

2
51 + x31x2 + x3x21}.

(2)

Then the differential associated graph G̃(F) and (algebraic) associ-

ated graph G(F) are shown in Figure 1 below.

Figure 1: Differential associated graph G̃(F) (left) and (alge-

braic) associated graph G(F) (right) for F in (2)

The differential associated graph G̃(F) is a chordal one and thus

F is chordal. For one’s information, the (algebraic) associated graph

G(F) is also a chordal one with x1 < x2 < x22 < x3 < x11 < x21 <

x31 < x51 < x41 < x32 as one perfect elimination ordering. The

underlying reason we choose not to use the (algebraic) associated

graph for the differential one is that otherwise the vertices of the

associated graphs of our interest may change in the process of

common operations in differential triangular decomposition, like

the differential pseudo-division as shown below.

Consider two differential polynomials F = x31 + x1 and G =

x2x3 + x21 − 1 in Q(t){x1, x2, x3}. All the derivatives effectively

appearing in {F ,G} are x1, x2, x21, x3, x31. If one computes

R := d-prem(F ,G) = x1x
2
2 − x2x22 + x

2
21 − x21

and replace F with R, then the derivatives appearing in {R,G} are

x1, x2, x21, x22, x3, with x22 newly introduced and x31 missing.

If we adopted the definition of (algebraic) associated graph for

the differential associated graph of a differential polynomial set, we

would have to study graphs with different vertices for the changes

of the differential associated graphs in differential triangular de-

composition, and we do not see an effective way to do so.

4 CHORDALITY OF WANG’S METHOD FOR
ORDINARY DIFFERENTIAL TRIANGULAR
DECOMPOSITION

In this section and Section 5 to follow, we study the changes of

the differential associated graphs of the polynomial sets appearing

in the process of ordinary differential triangular decomposition

by two typical algorithms in top-down style under the condition

that the input differential polynomial set is chordal and one of

its perfect elimination orderings is used. The aim is to prove that

all these differential associated graphs are subgraphs of the input

chordal graph, or in other words, to prove that these two algorithms

preserves chordality. The method we use is to first reformulate

these two algorithms in a strictly top-down style to identify the

relationships between the polynomial sets in an arbitrary node and

in all cases of its child nodes, and then to prove that the differential

associated graphs are subgraphs of the chordal graph case by case:

this is the same method used in the earlier study on the chordality

of algorithms for triangular decomposition [19ś21].

The algorithm, due to Dongming Wang [32], studied in this

section is the simplest one structurally whose splitting is based

on the differential pseudo-division, and it is an analogue of the

so-called Wang’s algorithm for triangular decomposition in the

algebraic case [31]. It is worth mentioning that the splitting strategy

follows the constructive method for elimination by Seidenberg [27]

and the Rosenfeld-Gröbner algorithm [2] adopts the same strategy

in the ordinary differential case [15].

4.1 Algorithm reformulation

Next we reformulate the original algorithm for ordinary differen-

tial triangular decomposition in top-down style in [32], which is

essentially a depth-first search of the decomposition tree, into Al-

gorithm 1 below, which focuses more on the relationships between

any node in the decomposition process and its child nodes and

thus is convenient for our inductive proof on the chordality of the

polynomial sets in the decomposition process.

In Algorithm 1 (and Algorithm 2 in Section 5), we use the data

structure (P,Q,k) to represent a node with two polynomial sets

367

On the Chordality of Ordinary Differential Triangular Decomposition in Top-down Style ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

P and Q such that #P(i)
= 0 or 1 for i = k + 1, . . . ,n. For a set Φ

consisting of tuples in the form (P,Q, i), let Φ(k) := {(P,Q, i) ∈

Φ| i = k}. The subroutine pop(S) returns an element from a set S

and then removes it from S.

Note that in the original presentation of Wang’s algorithm in

[32], one step is to compute d-prem(Q,T) forQ ∈ Q, but this step is

against the top-down style (see [20, Sec. 5.1] for more discussions).

So in Algorithm 1 below, we remove this step to guarantee that the

modified algorithm is in top-down style. After this modification,

the output differential triangular systems are not guaranteed to be

fine (see [35, pp. 23] for the definition) but the correctness of the

algorithm is not affected.

Algorithm 1:Wang’s method for ordinary differential tri-

angular decomposition Ψ :=WangDiff(F)

Input: F, a differential polynomial set in K{x }

Output: Ψ, a set of finitely many weak differential triangular

systems which form a triangular decomposition of F

1 Φ := {(F, ∅, n)}; Ψ := ∅;

2 for k = n, . . . , 1 do

3 while Φ(k)
, ∅ do

4 (P, Q, k) := pop(Φ(k));

5 if #P(k) > 1 then

6 T := a polynomial in P(k) with a minimal rank;

7 P′ := P\P(k)∪{T }∪{d-prem(P ,T) : P ∈ P(k)\ {T }};

8 Φ := Φ∪ {(P\{T }∪{ini(T), tail(T)}, Q, k)}∪ {(P∪{sep(T)},

Q∪{ini(T)}, k)} ∪ {(P′, Q∪{ini(T), sep(T)}, k)};

9 else if #P(k)
= 1 then

10 T := the polynomial in P(k);

11 Φ := Φ∪ {(P, Q∪{ini(T), sep(T)}, k−1)} ∪ {(P∪{sep(T)},

Q∪{ini(T)}, k)} ∪ {(P\ {T }∪{ini(T), tail(T)}, Q, k)};

12 else

13 Φ := Φ ∪ {(P, Q, k−1)};

14 for (P, Q, 0) ∈ Φ
(0) do

15 if P(0)\ {0} = ∅ then

16 Ψ := Ψ ∪ {(P\ {0}, Q)};

17 return Ψ;

As shown in Algorithm 1, for any node (P,Q,k) in the decom-

position process with k ≥ 1, according to whether #P(k) > 1 or

= 1 it has three child nodes as follows: when #P(k) > 1 they are

(P1,Q1,k), (P2,Q2,k), and (P3,Q,k), where P1,P2,P3,Q1, and

Q2 are defined as

P1 = P\P(k)∪{T }∪{d-prem(P,T) : P ∈ P(k)\{T }},

Q1 = Q∪{ini(T), sep(T)},

P2 = P∪{sep(T)},

Q2 = Q∪{ini(T)},

P3 = P\{T }∪{ini(T), tail(T)};

(3)

andwhen #P(k)
= 1 they are (P,Q1,k−1), (P2,Q2,k), and (P3,Q,k),

where P2,P3,Q1, and Q2 are defined as in (3). The relationships

between the parent and child nodes in the splittings are illustrated

in Figure 2 below.

(P,Q,k)

ini(T)=0

ini(T),0

sep(T),0 sep(T)=0

(P1,Q1,k)
(P2,Q2,k) (P3,Q,k)

(P,Q1,k−1)

#P(k)>1 :

#P(k)
=1 :

Figure 2: Splittings in Wang’s algorithm for ordinary differ-

ential triangular decomposition

4.2 Chordality of differential polynomial sets

Next we first prove that the differential pseudo-division does not

destroy the relationships between the differential indeterminates

defined by the input chordal differential associated graph, and then

prove that the differential associated graph of any polynomial set

appearing in the decomposition process of WangDiff(F), and con-

sequently that of each computed weak differential triangular set, is

a subgraph of G̃(F) if F is chordal.

Proposition 4.1. Let F ⊂ K{x} be a chordal differential poly-

nomial set with x1 < · · · < xn as one perfect elimination ordering of

G̃(F), (P,Q,k) be any node appearing in the decomposition process

of WangDiff(F) such that #P(k) > 1 and G̃(P) ⊂ G̃(F), T be a dif-

ferential polynomial in P(k) with a minimal rank, and P1 be defined

as in (3). Then G̃(P1) ⊂ G̃(F).

Proof. Clearly supp(P1) ⊂ supp(P), and thus to prove G̃(P1) ⊂

G̃(F) it suffices to show that any edge (xi , x j) ∈ G̃(P1) is also in

G̃(F).

For any edge (xi , x j) ∈ G̃(P1), by Definition 3.2 there exists

a polynomial P ∈ P1 such that xi , x j ∈ supp(P). (1) If P ∈ P \

P(k) ∪ {T }, then P ∈ P and thus (xi , x j) ∈ G̃(P) ⊂ G̃(F). (2) If P ∈

{d-prem(P,T) : P ∈ P(k)\{T }}, then there exists a polynomial P̃ ∈

P(k)\{T } such that P = d-prem(P̃,T), and thus xi , x j ∈ supp(P̃) ∪

supp(T).

(2.1) If xi , x j ∈ supp(P̃) or xi , x j ∈ supp(T), then by P̃,T ∈ P we

know that (xi , x j) ∈ G̃(P). By the assumption G̃(P) ⊂ G̃(F), we

have (xi , x j) ∈ G̃(F).

(2.2) Otherwise, without loss of generality, we can assume xi ∈

supp(P̃) and x j ∈ supp(T). Then by P̃,T ∈ P(k) we know that

xi , xk ∈ supp(P̃) and x j , xk ∈ supp(T), and thus (xi , xk) ∈ G̃(P) ⊂

G̃(F) and (x j , xk) ∈ G̃(P) ⊂ G̃(F). Then the chordality of G̃(F)

implies (xi , x j) ∈ G̃(F) and this ends the proof. □

Theorem 4.2. Let F ⊂ K[x] be a chordal differential polynomial

set with x1 < · · · < xn as one perfect elimination ordering of G̃(F)

and (P,Q,k) be any node appearing in the decomposition process of

WangDiff(F). Then G̃(P) ⊂ G̃(F).

Proof. The decomposition process ofWangDiff(F) can be viewed

as building a decomposition tree rooted at (F , ∅,n), with the child

nodes spawned in the way described in Figure 2. We induce on

the depth d of (P,Q,k) in this decomposition tree. When d = 0,

the conclusion naturally holds with P = F . Now assume that for

any node (P,Q,k) of depth d in the decomposition tree, we have

368

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Chenqi Mou

G̃(P) ⊂ G̃(F). Let (P̃, Q̃, k̃) be of depth d + 1 and (P,Q,k) be its

parent node of depth d in the decomposition process. Then it suf-

fices to show that G̃(P̃) ⊂ G̃(F) for P̃ = P1, P2, and P3, where

Pi is constructed as in (3) from P for i = 1, 2, 3 with a polynomial

T ∈ P(k) with a minimal rank.

Case (1), P̃ = P1: the conclusion has been proved in Proposi-

tion 4.1.

Case (2), P̃ = P2: it is easy to see that supp(P2) = supp(P).

For any edge (xi , x j) ∈ G̃(P2), there exists a polynomial P ∈ P2 =

P ∪ {sep(T)} such that xi , x j ∈ supp(P). When P ∈ P, clearly

(xi , x j) ∈ G̃(P); when P = sep(T), we have xi , x j ∈ supp(T) and

thus with T ∈ P we have (xi , x j) ∈ G̃(P).

Case (3), P̃ = P3: the proof is the same as that for [20, Prop. 20]

in the algebraic case. □

Since the weak differential triangular systems computed by

WangDiff(F) are extracted from the leaves in the decomposition

tree (see line 16 of Algorithm 1), directly we have the following

corollary.

Corollary 4.3. Let F ⊂ K[x] be a chordal differential polyno-

mial set with x1 < · · · < xn as one perfect elimination ordering

of G̃(F) and (T1,U1), . . . , (Ts ,Us) be the weak differential trian-

gular systems computed by WangDiff(F). Then G̃(Ti) ⊂ G̃(F) for

i = 1, . . . , s .

In the algebraic case, the variable sparsity of an arbitrary poly-

nomial set F ⊂ K[x] is reflected in the associated graph G(F)

[20, Def. 30]. As an analogue of this, the sparsity for differential

indeterminates of a differential polynomial set can be similarly de-

fined. Then the results obtained in Theorem 4.2 and Corollary 4.3

can be interpreted as: when the input differential polynomial set

F ⊂ K{x} is chordal, Algorithm 1 preserves its sparsity for differ-

ential indeterminates. Therefore, sparse versions of this algorithm

may be designed accordingly, as what is done in [20]. These com-

ments are also valid for Algorithm 2 studied in Section 5.

4.3 An illustrative example

Let us consider a differential polynomial set F := {F1, F2, F3, F4} ⊂

Q(t){x1, x2, x3, x4}, where

F1 = x2 + x1 + 2, F2 = (x21 + 1)x3 + x1,

F3 = x3x4 + x31 − 1, F4 = x41 + x2.

The differential associated graph G̃(F) is shown in the left hand of

Figure 3 below.

Next the process to compute a weak differential triangular de-

composition with WangDiff(F) is demonstrated. First for k = 4,

(F , ∅, 4) is the only node and F3 = x3x4+x31−1 is chosen as the poly-

nomial in F (4) with a minimal rank. Then the differential pseudo-

division is performed, spawning two child nodes (P1,Q1, 4) =

({F1, F2, F3,R1}, {x3}, 4) and ({F1, F2, x3, x31 − 1, F4}, ∅, 4), where

R1 = d-prem(F4, F3) = −x3x32 + x
2
31 − x31 + x2x

2
3 .

We continue with the node (P1,Q1, 4), since there is only one

polynomial F3 ∈ P
(4)
1 , this node falls into the case #P(4)

= 1 in Algo-

rithm 1, and only one child node (P1,Q1, 3) is spawned. Continuing

with this node, the polynomial F2 ∈ P
(3)
1 is chosen as the one with

a minimal rank. After the differential pseudo-division of R1 w.r.t.

Figure 3: Differential associated graphs G̃(F) (left) and

G̃(P1) = G̃(P2) = G̃(P3) = G̃(T) (right)

F2, two child nodes (P2,Q2, 3) = ({F1, F2, F3,R2}, {x3, x21 + 1}, 3)

and ({F1, F3,R, x21 + 1, x1}, {x3}, 3) are spawned, where

R2=d-prem(R1, F2) =(x
2
1x21+x

2
1)x23−x

2
1x

2
22−(x1x

2
21−2x1x21−x1)x22

+ x11x
3
21 + (x

2
1x2 − x1x12 + x

2
11 + 3x11)x

2
21

+ (2x21x2 − 2x1x12 + 2x
2
11 + 3x11)x21

+ x21x2 − x1x12 + x
2
11 + x11.

We continue with the node (P2,Q2, 3), then in the case #P
(3)
2 = 1

only one child node (P2,Q2, 2) is spawned. With F1 ∈ P
(2)
2 chosen

as the one with a minimal rank, the pseudo-division of R2 w.r.t. F1
results in one child node, since ini(F1) = sep(F1) = 1: (P3,Q3, 2) =

({F1, F2, F3,R3}, {x3, x21 + 1}, 2), where

R3=d-prem(R2, F1) =(x
2
1x11−x

2
1)x13−x

2
1x

2
12+x

3
11−(x

3
1+2x

2
1+2)x

2
11

+ (2x31+4x
2
1+1)x11−x

3
1−2x

2
1 .

After the case #P
(2)
3 = 1 is handled, the differential triangular

set T = [R3, F1, F2, F3] is adjoined to Ψ. Then the algorithm will

continue to handle the remaining nodes ({F1, F2, x3, x31−1, F4}, ∅, 4)

and ({F1, F3,R, x21 + 1, x1}, {x3}, 3) in Φ to finish the process of

differential triangular decomposition.

From the viewpoint of graphs, all the differential associated

graphs G̃(P1), G̃(P2), G̃(P3) and G̃(T) are the same, shown in the

right hand of Figure 3.

5 CHORDALITY OF SRS-BASED ALGORITHM
FOR ORDINARY DIFFERENTIAL
TRIANGULAR DECOMPOSITION

5.1 Algorithm reformulation

The algorithm in top-down style for ordinary differential triangular

decomposition based on computation of subresultant regular sub-

chains are first reproduced below as Algorithm 2. The subroutine

SubRegSubchain(P,Q, x) with deg(P, x) > deg(Q, x) returns the

subresultant regular subchain H2, . . . ,Hr of P and Q w.r.t. x . Note

that in line 10 only computation of the partial pseudo-reminder is

needed [15].

As shown in Algorithm 2, for every node (P,Q,k) in the decom-

position process, its child nodes are summarized into 3 cases as

follows.

369

On the Chordality of Ordinary Differential Triangular Decomposition in Top-down Style ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

Algorithm2: SRS-based algorithm for ordinary differential

triangular decomposition Ψ := TriDecSRS(F)

Input: F, a differential polynomial set in K[x]

Output: Ψ, a set of finitely many weak triangular systems which

form a triangular decomposition of F

1 Φ := {(F, ∅, n)}; Ψ := ∅;

2 for k = n, . . . , 1 do

3 while Φ(k)
, ∅ do

4 (P, Q, k) := pop(Φ(k));

5 if #P(k) > 1 then

6 T2 := a polynomial in P(k) with a minimal rank;

7 Φ := Φ ∪ {(P\ {T2 }∪{ini(T2), tail(T2)}, Q, k)}

∪{(P∪{sep(T2)}, Q∪{ini(T2)}, k)};

8 T1 := pop(P(k) \ {T2 });

9 if ld(T1) >d ld(T2) then

10 Φ := Φ∪{(P\{T1 }∪{pd-prem(T1,T2)}, Q∪{sep(T2)}, k)};

11 else

12 (H2, . . . , Hr) := SubRegSubchain(T1,T2, ld(T2));

13 r := r if ld(Hr) = ld(T2) or r := r − 1 otherwise;

14 for i = 2, . . . , r − 1 do

15 Φ :=Φ ∪ {(P\ {T1,T2 } ∪ {Hi , lc(Hi+1, ld(T2)), . . .,

lc(Hr , ld(T2))}, Q∪{ini(T2), lc(Hi , ld(T2))}, k)};

16 Φ := Φ ∪ {(P\ {T1,T2 }∪{Hr , Hr }, Q∪{ini(T2),

lc(Hr , xk)}, k)};

17 else if #P(k)
= 1 then

18 T := the polynomial in P(k);

19 Φ := Φ∪ {(P, Q∪{ini(T), sep(T)}, k−1)} ∪ {(P∪{sep(T)},

Q∪{ini(T)}, k)} ∪ {(P\ {T }∪{ini(T), tail(T)}, Q, k)};

20 else

21 Φ := Φ ∪ {(P, Q, k−1)};

22 for (P, Q, 0) ∈ Φ
(0) do

23 if P(0) \ {0} = ∅ then

24 Ψ := Ψ ∪ {(P \ {0}, Q)};

25 return Ψ;

(1) When #P(k) > 1, letT2 andT1 be chosen from P as in lines 6

and 8 in Algorithm 2 respectively.

(1.1) If ld(T1) >d ld(T2), then the child nodes are (P ′
1,Q1,k),

(P2,Q2,k), and (P3,Q,k), where the differential polynomial set P ′
1

is defined as

P ′
1 := P\{T1} ∪ {pd-prem(T1,T2)}, (4)

and the other sets are as defined in (3), with T2 replacing T there.

(1.2) If ld(T1) = ld(T2), then the child nodes are (P1,2,Q1,2,k), . . .,

(P1,r ,Q1,r ,k), (P2,Q2,k), and (P3,Q,k), where the differential

polynomial sets P1,i and Q1,i are defined as

P1,i :=

P\{T1,T2}∪{Hi , lc(Hi+1,ld(T2)), . . . , lc(Hr ,ld(T2))},

i = 2, . . . , r − 1

P\{T1,T2}∪{Hr ,Hr }, i = r

Q1,i :=Q ∪ {ini(T2), lc(Hi , ld(T2))}, i = 2, . . . , r

(5)

and the other sets are as defined in (3), with T2 replacing T there.

(2) When #P(k)
= 1, let T be chosen from P as in line 18 in

Algorithm 2. Then the child nodes are (P1,Q1,k − 1), (P2,Q2,k),

and (P3,Q,k), where the polynomial sets are as defined in (3).

The splittings to the child nodes in the decomposition process

in these three cases are summarized in Figure 4 below.

(P,Q,k)

ini(T2)=0

ini(T2),0

sep(T2),0 sep(T2)=0

(P ′
1,Q1,k)

(P2,Q2,k) (P3,Q,k)
(P,Q1,k−1)

#P(k) > 1

ld(T1)>d ld(T2)
:

#P(k)
=1 :

(P,Q,k)

ini(T2)=0

ini(T2),0

· · · sep(T2)=0

#P(k) > 1

ld(T1)= ld(T2)

(P1,2,Q1,2,k) (P1,r ,Q1,r ,k)· · · (P2,Q2,k) (P3,Q,k)

Figure 4: Splittings in SRS-based algorithm for ordinary dif-

ferential triangular decomposition

5.2 Chordality of differential polynomial sets

Proposition 5.1. Let F ⊂ K{x} be a chordal differential poly-

nomial set with x1 < · · · < xn as one perfect elimination ordering of

G̃(F), and (P,Q,k) be an arbitrary node in the decomposition pro-

cess of TriDecSRS(F) such that #P(k) > 1 and G̃(P) ⊂ G̃(F). Let

T2 andT1 be chosen from P(k) as in lines 6 and 8 in Algorithm 2 such

that ld(T1) = ld(T2), H2, . . . ,Hr be the subresultant regular subchain

of T1 and T2 w.r.t ld(T2), and P ′
1 and P1,i be defined as in (4) and

(5) for i = 2, . . . , r respectively. Then we have G̃(P ′
1) ⊂ G̃(F) and

G̃(P1,i) ⊂ G̃(F) for i = 2, . . . , r .

Proof. The proof for G̃(P ′
1) ⊂ G̃(F) is easy, and next we focus

on the inclusion G̃(P1,i) ⊂ G̃(F). Clearly for each i = 2, . . . , r ,

supp(Hi) ⊂ supp(T1)∪supp(T2) ⊂ supp(P), and thus supp(P1,i) ⊂

supp(P) ⊂ supp(F). To prove the inclusion G̃(P1,i) ⊂ G̃(F), it

suffices to show that every edge of G̃(P1,i) is also an edge of G̃(F).

For each i = 2, . . . , r , consider an arbitrary edge (xp , xq) of

G̃(P1,i). Then by Definition 3.2 we know that there exists a differ-

ential polynomial P ∈ P1,i such that xp , xq ∈ supp(P).

(1) If P ∈ P \ {T1,T2} ⊂ P, then clearly (xp , xq) ∈ G̃(P) ⊂ G̃(F)

by the assumption.

(2) Else P ∈ {Hi , lc(Hi+1, ld(T2)), . . . , lc(Hr , ld(T2))} in the case

of 2 ≤ i < r or P ∈ {Hr ,Hr } in the case of i = r . Then xp , xq ∈

supp(T1) ∪ supp(T2).

(2.1) If xp , xq ∈ supp(T1) or xp , xq ∈ supp(T2), then clearly

(xp , xq) ∈ G̃(P) ⊂ G̃(F).

(2.2) Else, without loss of generality, we can assume that xp ∈

supp(T1) and xq ∈ supp(T2). Note thatT1,T2 ∈ P(k), and thus xk ∈

supp(T1) and supp(T2). Then (xp , xk), (xq , xk) ∈ G̃(P) ⊂ G̃(F).

370

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Chenqi Mou

With the fact that xp , xq ≤ xk , the chordality of G̃(F) implies

(xp , xq) ⊂ G̃(F), and this ends the proof. □

Theorem 5.2. Let F ⊂ K[x] be a chordal differential polyno-

mial set with x1 < · · · < xn as one perfect elimination ordering

of G̃(F) and (P,Q,k) be any node in the decomposition process of

TriDecSRS(F). Then G̃(P) ⊂ G̃(F).

Proof. The theorem can be proved inductively as in the proof

of Theorem 4.2: the case for P ′
1, P1,2, . . . ,P1,r is proved in Propo-

sition 5.1, and the proofs for the cases P2 and P3 are the same as

Cases (2) and (3) of the proof of Theorem 4.2. □

Corollary 5.3. Let F ⊂K[x] be a chordal differential polynomial

set with x1 < · · · < xn as one perfect elimination ordering of G̃(F)

and (T1,U1), . . . , (Ts ,Us) be the weak differential triangular systems

computed by TriDecSRS(F). Then G̃(Ti) ⊂ G̃(F) for i = 1, . . . , s .

6 CONCLUDING REMARKS

In this paper we prove that two typical algorithms in top-down

style for ordinary differential triangular decomposition based on

the pseudo-division and subresultant regular subchain preserve

the chordality of the input differential polynomial sets. It is worth

mentioning that when the differential associated graph G of the

input differential polynomial set is not chordal, we can always find

a chordal graph G̃ ⊃ G via the chordal completion and then work

on G̃ instead.

It seems that there exist serious problems for the extension of

the theoretical results obtained in this paper to partial differential

triangular decomposition. Here we list a couple of the obstacles we

think of below.

(1) As discussed below Definition 2.1, the definition of partial

differential triangular sets is that for any two distinct polynomials

Ti ,Tj within, we have ld(Ti) is not a derivative of ld(Tj). This means

that two polynomials in a partial differential triangular set may

have leads as ∂x1
∂u

and ∂x1
∂v

of the same differential indeterminate.

This will influence our definition of differential associated graph in

the way that we need to work on the derivatives directly instead of

the differential indeterminates.

(2) For computation of partial differential triangular sets, the

property of coherence has to be considered in the decomposition

process [26] and this is done by introducing the ∆-polynomials,

which seems to be against the top-down strategy. So one has to be

very careful to claim one algorithm for partial differential triangular

decomposition is in top-down style.

Acknowledgements. This work was partially supported by the

National Natural Science Foundation of China (NSFC 11971050

and 11771034) and Beijing Natural Science Foundation (Z180005).

The author would like to thank Dongming Wang for inspirational

discussions and the referees for their detailed and helpful reviews.

REFERENCES
[1] Thomas Bächler, Vladimir Gerdt, Markus Lange-Hegermann, and Daniel Robertz.

2012. Algorithmic Thomas decomposition of algebraic and differential systems.
J. Symbolic Comput. 47, 10 (2012), 1233ś1266.

[2] François Boulier, Daniel Lazard, François Ollivier, and Michel Petitot. 1995. Rep-
resentation for the radical of a finitely generated differential ideal. In Proceedings
of ISSAC 1995. ACM, 158ś166.

[3] François Boulier, François Lemaire, and Marc Moreno Maza. 2010. Computing
differential characteristic sets by change of ordering. J. Symbolic Comput. 45, 1
(2010), 124ś149.

[4] François Boulier, François Lemaire, Adrien Poteaux, and Marc Moreno Maza.
2019. An equivalence theorem for regular differential chains. J. Symbolic Comput.
93 (2019), 34ś55.

[5] Fengjuan Chai, Xiao-Shan Gao, and Chunming Yuan. 2008. A characteristic set
method for solving Boolean equations and applications in cryptanalysis of stream
ciphers. J. Systems Science & Complexity 21, 2 (2008), 191ś208.

[6] Diego Cifuentes and Pablo A Parrilo. 2017. Chordal networks of polynomial
ideals. SIAM J. Appl. Algebra Geom. 1, 1 (2017), 73ś110.

[7] Michel Fliess. 1989. Automatique et corps différentiels. In Forum Math., Vol. 1.
Walter de Gruyter, Berlin/New York, 227ś238.

[8] Michel Fliess and ST Glad. 1993. An algebraic approach to linear and nonlinear
control. In Essays on control. Springer, 223ś267.

[9] Xiao-Shan Gao and Zhenyu Huang. 2012. Characteristic set algorithms for
equation solving in finite fields. J. Symbolic Comput. 47, 6 (2012), 655ś679.

[10] Xiao-Shan Gao, Joris Van Der Hoeven, Chun-Ming Yuan, and Gui-Lin Zhang.
2009. Characteristic set method for differentialśdifference polynomial systems.
J. Symbolic Comput. 44, 9 (2009), 1137ś1163.

[11] John R. Gilbert. 1994. Predicting structure in sparse matrix computations. SIAM
J. Matrix Anal. Appl. 15, 1 (1994), 62ś79.

[12] Martin C. Golumbic. 2004. Algorithmic Graph Theory and Perfect Graphs. Elsevier.
[13] Evelyne Hubert. 2000. Factorization-free decomposition algorithms in differential

algebra. J. Symbolic Comput. 29, 4-5 (2000), 641ś662.
[14] Evelyne Hubert. 2003. Notes on triangular sets and triangulation-decomposition

algorithms II: Differential systems. In International Conference on Symbolic and
Numerical Scientific Computation. Springer, 40ś87.

[15] Evelyne Hubert. 2004. Improvements to a triangulation-decomposition algorithm
for ordinary differential systems in higher degree cases. In Proceedings of ISSAC
2004. ACM, 191ś198.

[16] Ellis R. Kolchin. 1973. Differential Algebra and Agebraic Groups. Academic Press.
[17] Ziming Li and Dongming Wang. 1999. Coherent, regular and simple systems in

zero decompositions of partial differential systems. Systems Science and Mathe-
matical Sciences 12 (1999), 43ś60.

[18] Dmitry A. Lyakhov, Vladimir P. Gerdt, and Dominik L. Michels. 2017. Algorithmic
verification of linearizability for ordinary differential equations. In Proceedings of
ISSAC 2017. ACM, 285ś292.

[19] ChenqiMou and Yang Bai. 2018. On the chordality of polynomial sets in triangular
decomposition in top-down style. In Proceedings of ISSAC 2018. ACM, 287ś294.

[20] Chenqi Mou, Yang Bai, and Jiahua Lai. 2019. Chordal graphs in triangular
decomposition in top-down style. J. Symbolic Comput. (2019). In press.

[21] Chenqi Mou and Jiahua Lai. 2020. On the chordality of simple decomposition in
top-down style. In Proceedings of MACIS 2019. Springer, 138ś152.

[22] Seymour Parter. 1961. The use of linear graphs in Gauss elimination. SIAM Rev.
3, 2 (1961), 119ś130.

[23] Joseph F. Ritt. 1932. Differential Equations from the Algebraic Standpoint. AMS.
[24] Joseph F. Ritt. 1950. Differential Algebra. AMS.
[25] Donald J. Rose. 1970. Triangulated graphs and the elimination process. J. Math.

Anal. Appl. 32, 3 (1970), 597ś609.
[26] Azriel Rosenfeld. 1959. Specializations in differential algebra. Trans. Amer. Math.

Soc. 90, 3 (1959), 394ś407.
[27] Abraham Seidenberg. 1956. An elimination theory for differential algebra. Univ.

Calif. Math. Publ. 3 (1956), 31ś35.
[28] Lieven Vandenberghe and Martin S Andersen. 2015. Chordal graphs and semidef-

inite optimization. Foundations and Trends in Optimization 1, 4 (2015), 241ś433.
[29] Hayato Waki, Sunyoung Kim, Masakazu Kojima, and Masakazu Muramatsu.

2006. Sums of squares and semidefinite program relaxations for polynomial
optimization problems with structured sparsity. SIAM J. Optim. 17, 1 (2006),
218ś242.

[30] Hayato Waki and Masakazu Muramatsu. 2010. A facial reduction algorithm for
finding sparse SOS representations. Oper. Res. Lett. 38, 5 (2010), 361ś365.

[31] Dongming Wang. 1993. An elimination method for polynomial systems. J.
Symbolic Comput. 16, 2 (1993), 83ś114.

[32] Dongming Wang. 1996. An elimination method for differential polynomial
systems I. Systems Science and Mathematical Sciences 9 (1996), 216ś228.

[33] Dongming Wang. 1998. Decomposing polynomial systems into simple systems.
J. Symbolic Comput. 25, 3 (1998), 295ś314.

[34] Dongming Wang. 2000. Computing triangular systems and regular systems. J.
Symbolic Comput. 30, 2 (2000), 221ś236.

[35] Dongming Wang. 2001. Elimination Methods. Springer-Verlag, Wien.
[36] Jie Wang, Haokun Li, and Bican Xia. 2019. A new sparse SOS decomposition

algorithm based on term sparsity. In Proceedings of ISSAC 2019. ACM, 347ś354.
[37] Wen-Tsun Wu. 1989. On the foundation of algebraic differential geometry. Sys-

tems Science and Mathematical Sciences 2 (1989), 289ś312.

371

Approximate GCD by Bernstein Basis, and its Applications

Kosaku Nagasaka∗

nagasaka@main.h.kobe-u.ac.jp

Kobe University

Kobe, Hyogo, Japan

ABSTRACT

For the given pair of univariate polynomials generated by
empirical data hence with a priori error on their coefficients,
computing their greatest common divisor can be done by
several known approximate GCD algorithms that are usually
for polynomials represented by the power polynomial basis
(power form). Recently, there are studies on approximate
GCD of polynomials represented by not the power polyno-
mial basis, and especially the Bernstein polynomial basis
(Bernstein form) is one of them. we are interested in com-
puting approximate GCD of polynomials in the power form
but their perturbation is measured by the Euclidean norm
of perturbation in the Bernstein form, and we introduce its
applications for computing a reduced rational function, the
rational function approximation and Padé approximation to
get a better approximation in 𝐿2-norm on [0, 1].

CCS CONCEPTS

• Computing methodologies → Hybrid symbolic-
numeric methods.

KEYWORDS

approximate GCD, Bernstein polynomial basis, rational
function approximation, Padé approximation

ACM Reference Format:

Kosaku Nagasaka. 2020. Approximate GCD by Bernstein Basis,

and its Applications. In International Symposium on Symbolic and
Algebraic Computation (ISSAC ’20), July 20–23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3373207.3403991

1 INTRODUCTION

Computing the greatest common divisor (GCD) of polynomi-
als is one of fundamental computations in computer algebra
since it is important to get a reduced rational function, the
square-free decomposition and so on, and in general it can
be done by the well-known Euclidean algorithm.

∗

This work was supported by JSPS KAKENHI Grant Number 19K11827.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ISSAC ’20, July 20–23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3403991

For polynomials with a priori error on their coefficients
(e.g. polynomials generated by empirical data), we employ
some of approximate polynomial GCD algorithms instead of
the Euclidean algorithm since we have to take into account a
priori error (see [2, 10, 18] and references therein, for example).
Some of common definitions are as follows where ‖·‖ denotes
a polynomial norm defined later.

Definition 1.1 (approximate GCD with degree).
For the given polynomials 𝑓(𝑥), 𝑔(𝑥) ∈ R[𝑥] and the de-
gree 𝑘 ∈ N, we compute the polynomial 𝑑(𝑥) ∈ R[𝑥] called
“approximate polynomial GCD” of degree 𝑘, which mini-
mizes ‖ 𝛿𝑓 ‖2 + ‖ 𝛿𝑔 ‖2 (called perturbation) and satisfies
𝑓(𝑥)+𝛿𝑓(𝑥) = 𝑡(𝑥)𝑑(𝑥), 𝑔(𝑥)+𝛿𝑔(𝑥) = 𝑠(𝑥)𝑑(𝑥) and deg(𝑑) =
𝑘 for some polynomials 𝛿𝑓(𝑥), 𝛿𝑔(𝑥), 𝑠(𝑥), 𝑡(𝑥) ∈ R[𝑥] such
that deg(𝛿𝑓) ≤ deg(𝑓) and deg(𝛿𝑔) ≤ deg(𝑔).

Definition 1.2 (approximate GCD with tolerance).
For the given polynomials 𝑓(𝑥), 𝑔(𝑥) ∈ R[𝑥] and the tolerance
𝜀 ∈ R≥0, we compute the polynomial 𝑑(𝑥) ∈ R[𝑥] called
“approximate polynomial GCD” of tolerance 𝜀, which has the
maximum degree and satisfies 𝑓(𝑥) + 𝛿𝑓(𝑥) = 𝑡(𝑥)𝑑(𝑥) and
𝑔(𝑥) + 𝛿𝑔(𝑥) = 𝑠(𝑥)𝑑(𝑥) for some polynomials 𝛿𝑓(𝑥), 𝛿𝑔(𝑥),
𝑠(𝑥), 𝑡(𝑥) ∈ R[𝑥] such that deg(𝛿𝑓) ≤ deg(𝑓), deg(𝛿𝑔) ≤
deg(𝑔), ‖𝛿𝑓‖< 𝜀 ‖𝑓‖ and ‖𝛿𝑔‖< 𝜀 ‖𝑔‖.

Most of approximate GCD algorithms are for polynomials
represented by the power polynomial basis (i.e. {1, 𝑥, 𝑥2, . . .}
in R[𝑥]). However, there are studies on approximate GCD
for polynomials represented by the Bernstein polynomial
basis (see [4] for fundamental properties of this basis and
the relation to the Bézier curve). For convenience sake, we
call polynomials represented by the power polynomial ba-
sis “polynomials in the power form”, and by the Bernstein
polynomial basis “polynomials in the Bernstein form”.

For polynomials in the Bernstein form, Sun et al.[14] pro-
pose a method to compute a set of perturbation polynomi-
als that makes the given polynomials having a single com-
mon zero. For the general case, Winkler et al. introduce the
Sylvester resultant and subresultant matrices, and give al-
gorithms for computing approximate GCD in the Bernstein
form (see [15–17] and references therein). Their definition of
approximate GCD is different from Definitions 1.1 and 1.2.
They assume that there exists the correct exact polynomials
hidden by the uniformly distributed random noise bounded
by the given componentwise signal-to-noise ratio hence by
their definition the approximate GCD is the GCD of these
correct exact polynomials. Moreover, Corless and Sevyeri [3]
propose another algorithm for computing approximate GCD
defined by averages of paired close roots, and follows the ideas
introduced by Pan [12]. As for exact polynomials (without

372

https://doi.org/10.1145/3373207.3403991
https://doi.org/10.1145/3373207.3403991
https://doi.org/10.1145/3373207.3403991

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Kosaku Nagasaka

a priori error), Minimair [9] proposes the basis-independent
polynomial division algorithm hence we can carry out the
Euclidean algorithm for polynomials not in the power form
without any conversion to the power form.

1.1 Problem to be solved

We are interested in approximately reducible rational func-
tions appeared in several application areas (e.g. rational
function approximation, Padé approximation and so on). For
the given rational functions with a priori error or computed
by the floating-point arithmetics, we have to use some of ap-
proximate GCD algorithms to get a reduced rational function.
For example, let 𝑟(𝑥) be the following rational function.

𝑟(𝑥) =
−0.36𝑥2 − 0.41𝑥− 0.12

−0.36𝑥3 − 0.76𝑥2 − 0.51𝑥− 0.11
.

By the UVGCD [18], we can reduce 𝑟(𝑥) by an approximate
GCD of degree 1, and we note that UVGCD finds an approx-
imate GCD minimizing the 2-norm of changes in coefficients.
The resulting reduced rational function is the following 𝑟1(𝑥).

𝑟1(𝑥) =
−0.423811𝑥− 0.286141

−0.424212𝑥2 − 0.69792𝑥− 0.268254
.

However, there is a better reduced function w.r.t. the function
values in [0, 1], and the following 𝑟2(𝑥) is one of them.

𝑟2(𝑥) =
−0.283167𝑥− 0.137336

−0.282968𝑥2 − 0.413249𝑥− 0.125889
.

In fact, if we measure the residual relative error by the
following 𝑒𝑟𝑟𝑘 for 𝑘 = 1, 2, we have 𝑒𝑟𝑟1 = 1.06849e-2 and
𝑒𝑟𝑟2 = 7.77569e-6. Hence 𝑟2(𝑥) is much better than 𝑟1(𝑥)
w.r.t. the function values.

𝑒𝑟𝑟𝑘 =

⎯

⎸

⎸

⎷

100
∑︁

𝑖=1

𝑟𝑘(𝑥𝑖)− 𝑟(𝑥𝑖)

⧸︃

⎯

⎸

⎸

⎷

100
∑︁

𝑖=1

𝑟(𝑥𝑖) , 𝑥𝑖 =
𝑖− 1

99
.

This toy example suggests us a possibility that there exists
a better approximate GCD for reducing rational functions
than ever. This is our motivation in this paper.

Especially, for this problem, we are interested in the approx-
imate GCD of polynomials in the power form by Definition
1.1 but the perturbation is measured by the Euclidean norm
of perturbation polynomials in the Bernstein form. One may
think that this is odd. However, as noted in the next sub-
sections, 𝑝(𝛼) is bounded by the minimum and maximum
values of coefficients in the Bernstein form for any 𝛼 ∈ [0, 1]
and 𝑝(𝑥) ∈ R[𝑥]. This property is very useful if any change
in function values is more important than that in coefficients
and one wants to keep the function values as much as possible.
Getting such a better reduced rational function in function
values (e.g. 𝑟2(𝑥)) is the contribution of this paper.

After the preliminary section including some refinements
below, we propose the approximate GCD algorithm in Section
2 with our numerical experiment for computing a reduced
rational function. Their applications for the rational function
approximation and Padé approximation are given in Section
3 with the results of our numerical experiments. In Section
4, we give some remarks.

1.2 Notations and Definitions

Let R be the field of real numbers and R[𝑥] be the polynomial
ring over R in 𝑥. Throughout this paper, all the polynomials
are treated as defined only on 𝑥 ∈ [0, 1] (i.e. transformation
of the variable is required if interested in outside this inter-
val). The power polynomial basis of degree 𝑛 is defined by
{1, 𝑥, . . . , 𝑥𝑛} and we call polynomials represented by this
basis “in the power form”, and the Bernstein polynomial
basis of degree 𝑛 on 𝑥 ∈ [0, 1] is defined by (using binomials)

𝑏𝑛𝑘 (𝑥) =

(︃

𝑛

𝑘

)︃

(1− 𝑥)𝑛−𝑘𝑥𝑘 (𝑘 = 0, 1, . . . , 𝑛)

and we call polynomials represented by this basis “in the
Bernstein form”.

For any polynomial 𝑝(𝑥) ∈ R[𝑥] of degree 𝑛, we denote
it in the power form by 𝑝(𝑥) (just with an alphabetical
letter) and in the Bernstein form by 𝑝(𝑥) (with “ˆ” symbol),
respectively. By 𝑝𝑖 ∈ R and 𝑝𝑖 ∈ R (𝑖 = 0, 1, . . . , 𝑛) we denote
their coefficients, respectively. Therefore, we have

𝑝(𝑥) =

𝑛
∑︁

𝑖=0

𝑝𝑖𝑥
𝑖 =

𝑛
∑︁

𝑖=0

𝑝𝑖𝑏
𝑛
𝑖 (𝑥) = 𝑝(𝑥).

For the coefficients of 𝑝(𝑥) and 𝑝(𝑥), we denote their vector

representations in the ascending order by 𝑝 and ⃗̂𝑝, respectively.
Hence we have

𝑝 = (𝑝0 𝑝1 · · · 𝑝𝑛)
𝑡, ⃗̂𝑝 = (𝑝0 𝑝1 · · · 𝑝𝑛)

𝑡 ∈ R
𝑛+1.

In this paper, we denote the Euclidean norm by ‖·‖𝐸 and
𝐿2-norm by ‖·‖𝐿. Therefore, we have

‖𝑝(𝑥)‖2𝐸=‖𝑝‖2𝐸=

𝑛
∑︁

𝑖=0

|𝑝𝑖|
2, ‖𝑝(𝑥)‖2𝐸=‖⃗̂𝑝‖2𝐸=

𝑛
∑︁

𝑖=0

|𝑝𝑖|
2,

‖𝑝(𝑥)‖2𝐿=

∫︁ 1

0

|𝑝(𝑥)|2𝑑𝑥 =

∫︁ 1

0

|𝑝(𝑥)|2𝑑𝑥 =‖𝑝(𝑥)‖2𝐿 .

In the notations and definitions above, 𝑝(𝑥) and 𝑝(𝑥) have
the same degree in general. However, in the Bernstein form,
even the coefficients of monomials whose degrees are larger
than the degree of the polynomial may not be zeros, as in
the following simple example.

1 = 1 · 𝑏00(𝑥)
0 · 𝑥+ 1 = 1 · 𝑏11(𝑥) + 1 · 𝑏10(𝑥)

0 · 𝑥2 + 0 · 𝑥+ 1 = 1 · 𝑏22(𝑥) + 1 · 𝑏21(𝑥) + 1 · 𝑏20(𝑥).

Therefore, we call the conventional degree in the power form
“true degree” and the highest degree of the basis of polynomial
“formal degree”, in case of ambiguous meanings. For example,
formal degrees of the above polynomials on the right hand
side are 0, 1 and 2, respectively, while the true degree is 0.

1.3 Bernstein polynomial basis properties

There are so many known studies on the Bernstein polynomial
basis. The followings are some of its properties that are
useful for our discussion (see [4] for their proofs and further
information, for example).

373

Approximate GCD by Bernstein Basis, and its Applications ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 1.3 (lower and upper bounds).
For 𝑝(𝑥) ∈ R[𝑥] of formal degree 𝑛, we have

∀𝑥 ∈ [0, 1], min
0≤𝑖≤𝑛

𝑝𝑖 ≤ 𝑝(𝑥) ≤ max
0≤𝑖≤𝑛

𝑝𝑖.

Lemma 1.4 (product).
For 𝑝(𝑥), 𝑞(𝑥), 𝑟(𝑥) ∈ R[𝑥] of formal degrees 𝑛,𝑚, 𝑛 + 𝑚,
respectively, such that 𝑟(𝑥) = 𝑝(𝑥)𝑞(𝑥), we have

𝑟𝑘 =

min(𝑛,𝑘)
∑︁

𝑗=max(0,𝑘−𝑚)

(︀

𝑛

𝑗

)︀(︀

𝑚

𝑘−𝑗

)︀

(︀

𝑛+𝑚

𝑘

)︀ 𝑝𝑗𝑞𝑘−𝑗 (𝑘 = 0, 1, . . . , 𝑛+𝑚).

Lemma 1.5 (basis conversion).

For 𝑝(𝑥) ∈ R[𝑥] of degree 𝑛, we have 𝑝 = 𝒯 ⃗̂𝑝 and ⃗̂𝑝 = 𝒯 −1𝑝

where 𝒯 = (𝑡𝑖𝑗), 𝒯
−1 = (𝑡𝑖𝑗) ∈ R

(𝑛+1)×(𝑛+1) and

𝑡𝑖𝑗 =

{︂

(−1)𝑖−𝑗
(︀

𝑛

𝑖

)︀(︀

𝑖

𝑗

)︀

(𝑖 ≥ 𝑗)

0 (𝑖 < 𝑗)
, 𝑡𝑖𝑗 =

{︂ (︀

𝑖

𝑗

)︀

/
(︀

𝑛

𝑗

)︀

(𝑖 ≥ 𝑗)

0 (𝑖 < 𝑗)
.

The condition numbers of 𝒯 in the vector 1-norm and ∞-norm

are 𝜅1(𝒯) = 𝜅∞(𝒯) = (𝑛+ 1)
(︀

𝑛

𝜈

)︀

2𝜈 where 𝜈 = ⌊ 2(𝑛+1)
3

⌋.

As in the lemma, the condition number of 𝒯 is very large
hence any conversion between the bases is very sensitive (see
also the figure 10 in [4]) though this sensitivity does not affect
our algorithm directly and the conversions can be done by
the exact formulas explicitly.

2 APPROXIMATE GCD ALGORITHM

With the notations and definitions in the previous section,
we restate our problem to be solved in this section as follows.
We note that 𝛿𝑓(𝑥) and 𝛿𝑔(𝑥) in Definition 1.1 are replaced

with 𝛿𝑓(𝑥) and 𝛿𝑔(𝑥), respectively in the following definition.

Definition 2.1 (approximate GCD by Bernstein form).
For the given polynomials 𝑓(𝑥), 𝑔(𝑥) ∈ R[𝑥] and the degree
𝑘 ∈ N, we compute the polynomial 𝑑(𝑥) ∈ R[𝑥] called “ap-
proximate polynomial GCD with perturbation in the Bern-

stein form” of degree 𝑘, which minimizes ‖𝛿𝑓 ‖2𝐸 + ‖𝛿𝑔‖2𝐸
(called perturbation in the Bernstein form) and satis-
fies 𝑓(𝑥) + 𝛿𝑓(𝑥) = 𝑡(𝑥)𝑑(𝑥), 𝑔(𝑥) + 𝛿𝑔(𝑥) = 𝑠(𝑥)𝑑(𝑥) and
deg(𝑑) = 𝑘 for some polynomials 𝛿𝑓(𝑥), 𝛿𝑔(𝑥), 𝑠(𝑥), 𝑡(𝑥) ∈
R[𝑥] such that deg(𝛿𝑓) ≤ deg(𝑓) and deg(𝛿𝑔) ≤ deg(𝑔).

When the correctness of function values (i.e. 𝑓(𝛼) and
𝑔(𝛼) for 𝛼 ∈ [0, 1]) is more important than the correctness
of coefficients, this approximate GCD in Definition 2.1 is
better than that in Definition 1.1 since by Lemma 1.3 the
computed perturbation in the Bernstein form can bound the
perturbation of function values (i.e. 𝛿𝑓(𝛼) and 𝛿𝑔(𝛼)). This in
result gives a better approximation in 𝐿2-norm. For example,
reducing the given rational function with a priori error on
their coefficients by an approximate GCD of its numerator
and denominator meets this condition.

One may think that replacing the objective function (in
the power form) in the known approximate GCD algorithms
with that in the Bernstein form solves this problem. However,
as in Lemma 1.5, the condition number of 𝒯 is very large
hence this simple approach makes the objective function very
sensitive and this optimization becomes very difficult to solve.
Therefore, we solve this problem as follows.

(1) forward conversion:

compute 𝑓(𝑥), 𝑔(𝑥) from 𝑓(𝑥), 𝑔(𝑥) by Lemma 1.5.
(2) approximate GCD:

compute an approximate GCD of 𝑓(𝑥), 𝑔(𝑥).

(i.e. compute 𝑡(𝑥), 𝑠(𝑥), 𝑑(𝑥) in Definition 2.1)
(3) backward conversion:

compute 𝑡(𝑥), 𝑠(𝑥), 𝑑(𝑥) from 𝑡(𝑥), 𝑠(𝑥), 𝑑(𝑥).

Actually this approach is also affected by the sensitivity of the
basis conversion, and the resulting 𝑡(𝑥), 𝑠(𝑥), 𝑑(𝑥) in the step
(3) are corresponding to some correct result for polynomials
that might be far from 𝑓(𝑥) and 𝑔(𝑥) (i.e. backward unstable).
However, for reducing rational functions this may not be a
matter.

For example, let 𝑟(𝑥) be a rational function 𝑓(𝑥)/𝑔(𝑥)
whose numerator and denominator have some approximate
GCD. In this case, as the result of forward conversion numer-
ically, we have some polynomials in the Bernstein form that

might be very far from the exact polynomials 𝑓(𝑥) and 𝑔(𝑥).
However, this difference is caused by a tiny difference in the
power form. Since the given polynomials have a priori error
on their coefficients from the beginning, any tiny difference
in the power form is not a matter in the step (1). Hence the
resulting reduced rational function 𝑡(𝑥)/𝑠(𝑥) based on the
resulting approximate GCD in the step (2) must be a well
approximation of 𝑓(𝑥)/𝑔(𝑥). Finally, in the step (3), the re-
sulting 𝑡(𝑥) and 𝑠(𝑥) have a large perturbation region of 𝑡(𝑥)
and 𝑠(𝑥) by the sensitivity of the backward conversion. This
largeness of the region is just for the coefficients and is not for
the function values by Lemma 1.3. Therefore, the resulting
reduced rational function 𝑡(𝑥)/𝑠(𝑥) is a well approximation
of 𝑓(𝑥)/𝑔(𝑥) w.r.t. the function values in [0, 1].

2.1 Sylvester matrix in Bernstein form

Our algorithm is based on the following Sylvester resul-
tant and subresultant matrices for polynomials in the Bern-
stein form [15–17]. Let 𝑓(𝑥), 𝑔(𝑥) ∈ R[𝑥] be of true de-
grees 𝑛,𝑚 ∈ N, respectively, and 𝑟 ∈ N. The conventional
Sylvester resultant matrix 𝑆0(𝑓, 𝑔)

𝑡 and subresultant matrix

𝑆𝑟(𝑓, 𝑔) ∈ R
(𝑛+𝑚−𝑟)×(𝑛+𝑚−2𝑟) of 𝑓(𝑥) and 𝑔(𝑥) in the power

form are defined as follows.

𝑆𝑟(𝑓, 𝑔) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓0 𝑔0

𝑓1
. . . 𝑔1

. . .

...
. . . 𝑓0

...
. . . 𝑔0

𝑓𝑛−1

. . . 𝑓1 𝑔𝑚−1

. . . 𝑔1

𝑓𝑛
. . .

... 𝑔𝑚
. . .

...

. . . 𝑓𝑛−1

. . . 𝑔𝑚−1

𝑓𝑛 𝑔𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Similarly the Sylvester subresultant matrix of 𝑓(𝑥) and 𝑔(𝑥)
in the Bernstein form is defined as

𝑆𝑟(𝑓, 𝑔) = 𝐷−1
𝑛+𝑚−𝑟𝑇𝑟(𝑓, 𝑔) ∈ R

(𝑛+𝑚−𝑟)×(𝑛+𝑚−2𝑟)

374

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Kosaku Nagasaka

where

𝐷−1
ℓ = diag

(︁

(︀

ℓ

0

)︀−1 (︀

ℓ

1

)︀−1
· · ·

(︀

ℓ

ℓ−1

)︀−1 (︀

ℓ

ℓ

)︀−1
)︁

,

𝑇𝑟(𝑓, 𝑔) =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓0
(︀

𝑛

0

)︀

𝑔0
(︀

𝑚

0

)︀

𝑓1
(︀

𝑛

1

)︀ . . . 𝑔1
(︀

𝑚

1

)︀ . . .

...
. . . 𝑓0

(︀

𝑛

0

)︀
...

. . . 𝑔0
(︀

𝑚

0

)︀

𝑓𝑛−1

(︀

𝑛

𝑛−1

)︀ . . . 𝑓1
(︀

𝑛

1

)︀

𝑔𝑚−1

(︀

𝑚

𝑚−1

)︀ . . . 𝑔1
(︀

𝑚

1

)︀

𝑓𝑛
(︀

𝑛

𝑛

)︀ . . .
... 𝑔𝑚

(︀

𝑚

𝑚

)︀ . . .
...

. . . 𝑓𝑛−1

(︀

𝑛

𝑛−1

)︀ . . . 𝑔𝑚−1

(︀

𝑚

𝑚−1

)︀

𝑓𝑛
(︀

𝑛

𝑛

)︀

𝑔𝑚
(︀

𝑚

𝑚

)︀

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We note that 𝑆0(𝑓, 𝑔)
𝑡 is the Sylvester resultant matrix of

𝑓(𝑥) and 𝑔(𝑥) in the Bernstein form, and these matrices have
the following property [17] as in the power form.

Lemma 2.2. For the largest integer 𝑟 such that 𝑆𝑟(𝑓, 𝑔) is

not column full rank, let 𝑄𝑟
⃗̂𝑠 ∈ R

𝑚−𝑟+1 be the first (𝑚−𝑟+1)

elements and −𝑄𝑟
⃗̂𝑡 ∈ R

𝑛−𝑟+1 be the last (𝑛− 𝑟+1) elements

in any non-zero vector in the column null space of 𝑆𝑟(𝑓, 𝑔)
where

𝑄𝑟 = diag
(︀ (︀

𝑚−𝑟

0

)︀

· · ·
(︀

𝑚−𝑟

𝑚−𝑟

)︀ (︀

𝑛−𝑟

0

)︀

· · ·
(︀

𝑛−𝑟

𝑛−𝑟

)︀)︀

.

Then, the corresponding polynomials 𝑡(𝑥) and 𝑠(𝑥) are the

cofactors of GCD of 𝑓(𝑥) and 𝑔(𝑥), respectively, and the
degree of GCD is 𝑟 + 1.

Winkler and Yang [16] reported that computing the null

space of 𝑆𝑟(𝑓, 𝑔)𝑄𝑟 is numerically better than computing the

null space of 𝑆𝑟(𝑓, 𝑔) to get the cofactors of 𝑓(𝑥) and 𝑔(𝑥),

and 𝑆𝑟(𝑓, 𝑔)𝑄𝑟 includes ⃗̂𝑠 and −⃗̂𝑡 directly.

2.2 UVGCD Algorithm

Lemma 2.2 allows us to extend several approximate GCD
algorithms in the power form to that in the Bernstein form
easily. We focus on the UVGCD algorithm [18] since in the
power form this algorithm is mostly the best choice (among
QRGCD, ExQRGCD, GPGCD, STLNGCD, Fastgcd and
GHLGCD) according to the result of numerical experiments
[10]. We also note that the STLN (structured total least
norm) is used in [17] but their definition of approximate
GCD is different from ours.

The original UVGCD algorithm is for Definition 1.2 hence
we briefly show its variation for Definition 1.1 as Algorithm
1. The Gauss-Newton method used in UVGCD is as follows.
Let 𝐹ℎ(�⃗�, �⃗�) ∈ R

(𝑛+𝑚+3)×(𝑘+1) and �⃗� ∈ R
(𝑛+𝑚+3) be the

following matrix and vector.

𝐹ℎ(�⃗�, �⃗�) =

⎛

⎝

ℎ⃗𝑡

𝐶𝑘(𝑡)
𝐶𝑘(𝑠)

⎞

⎠ , �⃗� =

⎛

⎝

𝛽

𝑓
�⃗�

⎞

⎠

where 𝛽 ≠ 0,∈ R, ℎ(𝑥) ∈ R[𝑥] of degree 𝑘 and 𝐶𝑘(𝑝) denotes
the convolution matrix1 of 𝑘-th order of 𝑝(𝑥) ∈ R[𝑥] such

1The subresultant matrix is also defined by the convolution matrix (cf. [18]).

Algorithm 1 UVGCD (with degree, brief version)

Require: 𝑓(𝑥), 𝑔(𝑥) ∈ R[𝑥], and degree 𝑘 ∈ N.
Ensure: 𝑑(𝑥), 𝑡(𝑥), 𝑠(𝑥) ∈ R[𝑥] in Definition 1.1.
1: construct initial cofactors 𝑡(𝑥), 𝑠(𝑥)

from a non-zero vector in the null space of 𝑆𝑘−1(𝑓, 𝑔).
2: compute initial 𝑑(𝑥) by the least squares.
3: refine 𝑑(𝑥), 𝑡(𝑥), 𝑠(𝑥) by the Gauss-Newton method.
4: return 𝑑(𝑥), 𝑡(𝑥), 𝑠(𝑥).

that 𝐶𝑘(𝑝)�⃗� = �⃗� and 𝑟(𝑥) = 𝑝(𝑥)𝑞(𝑥) for any polynomial
𝑞(𝑥) of degree 𝑘. Then, the refinement step is to solve the
following unconstrained minimization problem.

min
𝑑(𝑥),𝑡(𝑥),𝑠(𝑥)

‖𝐹ℎ(�⃗�, �⃗�)𝑑− �⃗�‖𝐸 .

The actual iteration is the following least squares.
⎛

⎝

𝑑𝑖+1

�⃗�𝑖+1

�⃗�𝑖+1

⎞

⎠ =

⎛

⎜

⎝

𝑑𝑖 − ∆⃗𝑑

�⃗�𝑖 − ∆⃗𝑡

�⃗�𝑖 − ∆⃗𝑠

⎞

⎟

⎠
,

min
∆⃗d, ∆⃗t, ∆⃗s

⃦

⃦

⃦

⃦

⃦

⃦

⃦

𝐽ℎ(𝑑𝑖, �⃗�𝑖, �⃗�𝑖)

⎛

⎜

⎝

∆⃗𝑑

∆⃗𝑡

∆⃗𝑠

⎞

⎟

⎠
−
(︁

𝐹ℎ(�⃗�𝑖, �⃗�𝑖)𝑑𝑖 − �⃗�
)︁

⃦

⃦

⃦

⃦

⃦

⃦

⃦

𝐸

where 𝐽ℎ(𝑑𝑖, �⃗�𝑖, �⃗�𝑖) is the following Jacobian of 𝐹ℎ(�⃗�, �⃗�).

𝐽ℎ(𝑑, �⃗�, �⃗�) =

⎛

⎝

ℎ⃗𝑇

𝐶𝑘(𝑡) 𝐶𝑛−𝑘(𝑑)
𝐶𝑘(𝑠) 𝐶𝑚−𝑘(𝑑)

⎞

⎠ .

Moreover, in our preliminary implementation, we use 𝛽 = 1

and ℎ⃗ = 𝑑0 /‖𝑑0‖
2
𝐸 where 𝑑0 is the initial value of 𝑑.

2.3 Algorithm by Bernstein basis

Algorithm 1 can be extended to Definition 2.1 simply by
replacing everything with their variations in the Bernstein
form. Algorithm 2 is the resulting algorithm.

Let 𝐹ℎ̂(
⃗̂𝑠, ⃗̂𝑡) ∈ R

(𝑛+𝑚+3)×(𝑘+1) and
⃗̂
𝑏 ∈ R

(𝑛+𝑚+3) be the
following matrix and vector.

𝐹ℎ̂(
⃗̂𝑠, ⃗̂𝑡) =

⎛

⎜

⎝

⃗̂
ℎ𝑡

𝐶𝑘(𝑡)

𝐶𝑘(𝑠)

⎞

⎟

⎠
,
⃗̂
𝑏 =

⎛

⎜

⎝

𝛽
⃗̂
𝑓
⃗̂𝑔

⎞

⎟

⎠

where 𝐶𝑘(𝑝) is the matrix such that 𝐶𝑘(𝑝)⃗̂𝑞 = ⃗̂𝑟 and 𝑟(𝑥) =
𝑝(𝑥)𝑞(𝑥) for any polynomial 𝑞(𝑥) of formal degree 𝑘, by

Lemma 1.4. We note that ⃗̂𝑞 does not include any binomial
part of the Bernstein polynomial basis 𝑏𝑘𝑖 (𝑥).

Then, the refinement step is to solve the following uncon-
strained minimization problem in the Bernstein form.

min
𝑑(𝑥),𝑡(𝑥),𝑠(𝑥)

‖𝐹ℎ̂(
⃗̂𝑠, ⃗̂𝑡)

⃗̂
𝑑−

⃗̂
𝑏‖𝐸 .

The actual iteration becomes the following least squares.
⎛

⎜

⎝

⃗̂
𝑑𝑖+1

⃗̂𝑡𝑖+1

⃗̂𝑠𝑖+1

⎞

⎟

⎠
=

⎛

⎜

⎜

⎝

⃗̂
𝑑𝑖 −

⃗̂
∆𝑑

⃗̂𝑡𝑖 −
⃗̂
∆𝑡

⃗̂𝑠𝑖 −
⃗̂
∆𝑠

⎞

⎟

⎟

⎠

,

375

Approximate GCD by Bernstein Basis, and its Applications ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 2 BFGCD (with degree, brief version)

Require: 𝑓(𝑥), 𝑔(𝑥) ∈ R[𝑥], and degree 𝑘 ∈ N.
Ensure: 𝑑(𝑥), 𝑡(𝑥), 𝑠(𝑥) ∈ R[𝑥] in Definition 2.1.

1: convert 𝑓(𝑥), 𝑔(𝑥) to 𝑓(𝑥), 𝑔(𝑥) by Lemma 1.5.
2: construct initial cofactors 𝑡(𝑥), 𝑠(𝑥) from

a non-zero vector in the null space of 𝑆𝑘−1(𝑓, 𝑔)𝑄𝑘−1.

3: compute initial 𝑑(𝑥) by the least squares (Lemma 1.4).

4: refine 𝑑(𝑥), 𝑡(𝑥), 𝑠(𝑥) by the Gauss-Newton method.

5: convert 𝑑(𝑥), 𝑡(𝑥), 𝑠(𝑥) to 𝑑(𝑥), 𝑡(𝑥), 𝑠(𝑥).
6: return 𝑑(𝑥), 𝑡(𝑥), 𝑠(𝑥).

min
⃗̂
∆

d̂
,
⃗̂
∆

t̂
,
⃗̂
∆ŝ

⃦

⃦

⃦

⃦

⃦

⃦

⃦

⃦

𝐽ℎ̂(
⃗̂
𝑑𝑖, ⃗̂𝑠𝑖,

⃗̂𝑡𝑖)

⎛

⎜

⎜

⎝

⃗̂
∆𝑑

⃗̂
∆𝑡

⃗̂
∆𝑠

⎞

⎟

⎟

⎠

−
(︁

𝐹ℎ̂(
⃗̂𝑠𝑖,

⃗̂𝑡𝑖)
⃗̂
𝑑𝑖 −

⃗̂
𝑏
)︁

⃦

⃦

⃦

⃦

⃦

⃦

⃦

⃦

𝐸

where 𝐽ℎ̂(
⃗̂
𝑑𝑖, ⃗̂𝑠𝑖,

⃗̂𝑡𝑖) is the following Jacobian of 𝐹ℎ̂(
⃗̂𝑠, ⃗̂𝑡).

𝐽ℎ̂(
⃗̂
𝑑, ⃗̂𝑠, ⃗̂𝑡) =

⎛

⎜

⎝

⃗̂
ℎ𝑇

𝐶𝑘(𝑡) 𝐶𝑛−𝑘(𝑑)

𝐶𝑘(𝑠) 𝐶𝑚−𝑘(𝑑)

⎞

⎟

⎠
.

2.4 Numerical experiments

We define the following sets of polynomials and rational
functions for 𝑚,𝑛, ℓ ∈ N and 𝜖 ∈ R≥0, whose numerator and
denominator are not coprime approximately.

𝒫𝑚 = { 𝑝(𝑥) ∈ R1[𝑥] | deg(𝑝) = 𝑚 } , R1 = [−1, 1] ⊂ R,

𝒫∗
𝑚 = { 𝑝(𝑥) ∈ 𝒫𝑚 | ∀𝛼 ∈ [0, 1], 𝑝(𝛼) ̸= 0 } ,

ℛ𝑚,𝑛,ℓ,𝜖 =
{︁

𝑡(𝑥)𝑑(𝑥)+𝛿𝑝(𝑥)
𝑠(𝑥)𝑑(𝑥)+𝛿𝑞(𝑥)

⃒

⃒

⃒ 𝑡(𝑥) ∈ 𝒫𝑚−ℓ, 𝑠(𝑥) ∈ 𝒫∗
𝑛−ℓ,

𝑑(𝑥) ∈ 𝒫∗
ℓ , 𝛿𝑝(𝑥) ∈ 𝒫𝑚, 𝛿𝑞(𝑥) ∈ 𝒫𝑛,

‖𝛿𝑝‖𝐸= 𝜖‖𝑡(𝑥)𝑑(𝑥)‖𝐸 , ‖𝛿𝑞‖𝐸= 𝜖‖𝑠(𝑥)𝑑(𝑥)‖𝐸} .

We have randomly generated a couple of subsets (each set
has 100 elements) of ℛ𝑚,𝑛,ℓ,𝜖, and for each rational function
𝑟(𝑥) and 𝑘 = 1, 2, . . . , ℓ, we have computed a reduced rational
function 𝑟(𝑥) by approximate GCD of degree 𝑘 of numerator
and denominator, and computed a residual norm:

‖(𝑟(𝑥1)− 𝑟(𝑥1), . . . , 𝑟(𝑥100)− 𝑟(𝑥100))
𝑡‖𝐸

‖(𝑟(𝑥1), . . . , 𝑟(𝑥100))
𝑡‖𝐸

where 𝑥𝑖 =
𝑖−1
99

for 𝑖 = 1, 2, . . . , 100.
The notable difference between the Sylvester and con-

volution matrices in the power and Bernstein forms is the
binomial terms. This urges each computation of the matrices
in the Bernstein form to use much larger precisions. Therefore
we have done the experiments with the double precision and
32 decimal precisions2, by our preliminary implementations
on Mathematica 12.0.

Figures 1, 2, 3 and 4 show the results where the vertical
axis denotes the averages of the residual norms in the log
scale (e.g. −4 denotes 10−4), “UV”, “BF”, “BB” and “PN”
denote the UVGCD, BFGCD, BFGCD (without the back-
ward conversion to the power form) and Pan’s algorithms,

2We use “$MaxPrecision=$MinPrecision=32” and “SetPrecision[-,32]”
for 32 decimal precisions (that simulates the quad precision).

✻

BF-x and BB-x
are overlapped.

Figure 1: 𝑚 = 9, 𝑛 = 10, ℓ = 5, 𝜖 = 1.0e-3

❍❍❨ BF-x and BB-x
are overlapped.

Figure 2: 𝑚 = 9, 𝑛 = 10, ℓ = 5, 𝜖 = 1.0e-8

Figure 3: 𝑚 = 29, 𝑛 = 30, ℓ = 15, 𝜖 = 1.0e-3

Figure 4: 𝑚 = 29, 𝑛 = 30, ℓ = 15, 𝜖 = 1.0e-8

respectively, and “D” and “Q” denote the double precision
and 32 decimal precisions, respectively. The algorithm by
Sun et al.[14] can be used for 𝑘 = 1 (reducing by a linear
GCD) hence “×→” and “∘→” denote its results with the
double precision and 32 decimal precisions, respectively, as
just a reference.

Our algorithm (BFGCD) works well and is effective for
reducing the given rational function by an approximate GCD
of its numerator and denominator, even if we use the double
precision. However, this also suggests that higher precisions
may be required for higher degree polynomials. Moreover, the
results by the BFGCD without the backward conversion are
better than the BFGCD. This could be caused by numerical
instability of the ill-posedness (the large condition number)
of the basis conversion.

We note that our implementation of the Pan’s algorithm
[12] (hence the method by Kai and Noda [8]) is different from
the original one that seeks a set of common zeros within the
given distance. Our implementation seeks an approximate
GCD of the specified degree by increasing the distance (by
the quadratic order) until we get the desired one. Moreover,
the algorithm by Sun et al.[14] computes only perturbations
hence our implementation solves the least squares in the

376

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Kosaku Nagasaka

power form to compute the reduced rational function by the
linear factor with the resulting common zero.

3 APPLICATIONS

3.1 Rational function approximation

We focus on rational interpolation that is one of methods
for rational function approximation, and its aim is to find a

rational function 𝑟(𝑥) = 𝑝(𝑥)
𝑞(𝑥)

that fits the given data points

{(𝑥1, 𝑣1), . . ., (𝑥ℓ, 𝑣ℓ)} (i.e. 𝑟(𝑥𝑖) ≈ 𝑣𝑖 for 𝑖 = 1, . . . , ℓ). Hence
we are to find a minimizer of the following optimization
problem where 𝑚 = deg(𝑝) and 𝑛 = deg(𝑞) are given.

min
𝑝(𝑥),𝑞(𝑥)

⃦

⃦

⃦

⃦

⃦

(︂

𝑣1 −
𝑝(𝑥1)

𝑞(𝑥1)
, . . . , 𝑣ℓ −

𝑝(𝑥ℓ)

𝑞(𝑥ℓ)

)︂𝑡
⃦

⃦

⃦

⃦

⃦

𝐸

. (3.1)

Especially we focus on 𝑟(𝑥) in the power form though there
are recent studies in other representations (rational Krylov
spaces [1] and rational barycentric representations [11] for
example), and follow some simple algorithms based on the
least squares. However, the optimization above is a non-
convex problem hence we solve the following linearized one.

min
𝑝(𝑥),𝑞(𝑥)

⃦

⃦(𝑣1𝑞(𝑥1)− 𝑝(𝑥1), . . . , 𝑣ℓ𝑞(𝑥ℓ)− 𝑝(𝑥ℓ))
𝑡
⃦

⃦

𝐸
. (3.2)

Since the optimization problems (3.1) and (3.2) are different,
we use the iterative reweighting method [13] to get better
rational function approximations.

One of fundamental problems of rational function approxi-
mation with floating-point arithmetics is that the numerator
and denominator of resulting rational function may have
approximately common zeros if 𝑚,𝑛 are larger than neces-
sary. For this problem, Kai and Noda [8] proposed to use
approximate GCD to reduce the numerator and denominator,
and called the method “Hybrid rational function approxima-
tion”. Their algorithm basically uses the approximate GCD
algorithm by Pan [12] with their theoretical upper bound
of distance between zeros. In the following experiments, we
use UVGCD (Algorithm 1) and BFGCD (Algorithm 2) for
detecting an approximate GCD to get a reduced rational
function (as Algorithm 3), and compare them with other
methods including our implementation of Pan’s algorithm
mentioned at end of Section 2.

3.1.1 Numerical Experiments.

We define the following set (i.e. sampling data) for 𝑚,𝑛, ℓ ∈ N

and 𝜖1, 𝜖2 ∈ R≥0, with a priori error.

𝒮𝑚,𝑛,ℓ,𝜖1,𝜖2 =
{︀

{(𝑥1, 𝑣1), . . . , (𝑥100, 𝑣100)} ⊂ R
2
⃒

⃒

𝑟(𝑥) ∈ ℛ𝑚,𝑛,ℓ,𝜖1 , 𝑥𝑖 =
𝑖−1
99

, 𝑣𝑖 = 𝑟(𝑥𝑖) + 𝛿𝑖,

𝛿𝑖 ∈ R,
∑︀100

𝑖=1 𝛿
2
𝑖 = 𝜖22

∑︀100
𝑖=1 𝑟(𝑥𝑖)

2
}︀

.

We have randomly generated a couple of subsets (each set
has 100 elements) of 𝒮𝑚,𝑛,ℓ,𝜖1,𝜖2 . The sets of the erroneous
sampling data case are ℰ1, ℰ2 with 𝑚 = 19, 𝑛 = 19, ℓ = 0,
𝜖1 = 0, 𝜖2 = 1.0e-3 for ℰ1, and 𝑚 = 19, 𝑛 = 19, ℓ = 0,
𝜖1 = 0, 𝜖2 = 1.0e-8 for ℰ2, and the sets of the approximately
reducible case are 𝒜1,𝒜2 with 𝑚 = 19, 𝑛 = 19, ℓ = 9,
𝜖1 = 1.0e-3, 𝜖2 = 0 for 𝒜1, and 𝑚 = 19, 𝑛 = 19, ℓ = 9,
𝜖1 = 1.0e-8, 𝜖2 = 0 for 𝒜2.

Algorithm 3 HRFA (with UVGCD, BFGCD or Pan’s)

Require: {(𝑥1, 𝑣1), . . ., (𝑥ℓ, 𝑣ℓ)} ⊂ R
2, 𝑚,𝑛 ∈ N, 𝜀 ∈ R≥0

Ensure: rational function approximation 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥)
such that deg(𝑝) ≤ 𝑚, deg(𝑞) ≤ 𝑛 are minimized and
the residual norm w.r.t. (3.1) is less than or equal to 𝜀.

1: solve (3.2) by the iterative reweighting method,
and let 𝑝(𝑥)/𝑞(𝑥) be the resulting rational function.

2: for 𝑘 = min(𝑚,𝑛) to 1 by −1 do
3: compute cofactors 𝑡(𝑥) and 𝑠(𝑥) by approximate GCD

of degree 𝑘, of 𝑝(𝑥) and 𝑞(𝑥), respectively.
4: if the residual norm of 𝑡(𝑥)/𝑠(𝑥) ≤ 𝜀 then
5: 𝑝(𝑥) := 𝑡(𝑥), 𝑞(𝑥) := 𝑠(𝑥) and break.
6: end if
7: end for
8: return 𝑝(𝑥)/𝑞(𝑥).

For each sampling data, by the following methods, we have
computed a reduced rational function 𝑟(𝑥) with 𝑚𝑚𝑎𝑥 =
𝑚 + 10 and 𝑛𝑚𝑎𝑥 = 𝑛 + 10, whose residual norm (3.1) is
less than or equal to 𝜀 = 10max{𝜖1, 𝜖2}, by our preliminary
implementations with the double precision on Mathematica
12.0 (but “AAA” is done by Octave 5.1.0).

LS: this solves (3.2) with deg(𝑝) = �̄� and deg(𝑞) = �̄�
by the iterative reweighting method for �̄� = �̄� =
0, 1, . . . , 𝑛𝑚𝑎𝑥 with �̄� ≤ 𝑚𝑚𝑎𝑥 until the residual norm
condition is satisfied, and reduces �̄� one by one while
the residual norm condition is satisfied.

LS+BF: this follows the “LS” and reduce the resulting
rational function by approximate GCD (by BFGCD) of
degree 𝑘 = min{�̄�, �̄�}, . . . , 1, 0 until the residual norm
condition is satisfied.

UV: this solves (3.2) with deg(𝑝) = 𝑚𝑚𝑎𝑥 and deg(𝑞) =
𝑛𝑚𝑎𝑥 by the iterative reweighting method and reduce
the resulting rational function by approximate GCD
(by UVGCD) of degree 𝑘 = min{𝑚𝑚𝑎𝑥, 𝑛𝑚𝑎𝑥}, . . . , 1, 0
until the residual norm condition is satisfied (i.e. Algo-
rithm 3).

BF: this follows the “UV” but using BFGCD instead of
UVGCD (i.e. Algorithm 3 with BFGCD).

PN: this follows the “UV” but using our implementation
of the Pan’s algorithm instead of UVGCD.

AAA: this follows the algorithm in [11] but using the
Euclidean norm instead of the ∞-norm.

Table 1 shows the results where each value denotes the
average of deg(𝑝) + deg(𝑞) of detected rational functions
𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥). Our method (with BFGCD) is not better
than the methods based on the least squares, however, it is
better than that with UVGCD, Pan’s and AAA algorithm.
Moreover, we note that “LS” and “LS+BF” do not have any
difference in this experiments, however, there is a randomly
generated example that “LS+BF” is a little bit better than
“LS” though it is a very rare case. We have also done the
same experiments by “BF” without the backward conversion
to the power form, and the result is slightly better than “BF”
but not so different.

377

Approximate GCD by Bernstein Basis, and its Applications ISSAC ’20, July 20–23, 2020, Kalamata, Greece

data set ℰ1 ℰ2 𝒜1 𝒜2

LS 5.50 14.55 4.58 12.48
LS+BF 5.50 14.55 4.58 12.48
UV 38.42 49.40 33.20 56.92
BF 10.78 21.54 6.18 14.14
PN 37.62 49.40 50.36 57.64
AAA 31.52 38.24 8.20 14.60

Table 1: degrees of reduced rational functions

3.2 Padé approximation

Padé approximation [6] for the given 𝑓(𝑥) and 𝑚,𝑛 ∈ N is
to find the rational function 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥) called “type
(𝑚,𝑛) Padé approximant” to 𝑓(𝑥) that satisfies

𝑟(𝑥)− 𝑓(𝑥) = 𝑂(𝑥𝑚+𝑛+1), deg(𝑝) = 𝑚, deg(𝑞) = 𝑛.

In general this rational function can be found by solving the
following linear equation
⎛

⎜

⎜

⎜

⎝

𝑓𝑚+1 𝑓𝑚 · · · 𝑓𝑚−𝑛+1

𝑓𝑚+2 𝑓𝑚+1 · · · 𝑓𝑚−𝑛+2

...
...

. . .
...

𝑓𝑚+𝑛 𝑓𝑚+𝑛−1 · · · 𝑓𝑚

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑞0
𝑞1
...
𝑞𝑛

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
0
...
0

⎞

⎟

⎟

⎟

⎠

,

(3.3)
and computing the numerator as
⎛

⎜

⎜

⎜

⎝

𝑝0
𝑝1
...

𝑝𝑚

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑓0 0 · · · 0
𝑓1 𝑓0 · · · 0
...

...
. . .

...
𝑓𝑚 𝑓𝑚−1 · · · 𝑓𝑚−𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑞0
𝑞1
...
𝑞𝑛

⎞

⎟

⎟

⎟

⎠

.

(3.4)
With exact computations and without a priori error, for large
enough 𝑀,𝑁 ∈ N we have the unique reduced representation
of rational functions for all 𝑚,𝑛 ∈ N (𝑚 ≥ 𝑀, 𝑛 ≥ 𝑁).

However, with numerical computations or with a priori
error, it is difficult to find a such rational function of the
maximum order since we can not reduce the computed ra-
tional function due to their numerical error. To overcome
this situation, there are some known studies [5, 7] to find a
Padé approximant with numerator and denominator of the
minimum degrees by basically using the singular values (i.e.
numerical matrix ranks). In the following experiments, we
use UVGCD (Algorithm 1) and BFGCD (Algorithm 2) for
detecting an approximate GCD to determine a Padé approxi-
mant of the minimum degree (as Algorithm 4), and compare
them with other methods. We note that the lines 1 to 13 are
to find the number of possible common zeros of numerator
and denominator, and based on Algorithm 2 in [5].

3.2.1 Numerical Experiments.

We define the following sets (i.e. Taylor coefficients) for
𝑚,𝑛, ℓ ∈ N and 𝜖1, 𝜖2 ∈ R≥0, with a priori error.

ℛ∗
𝑚,𝑛,ℓ,𝜖1

= {𝑟(𝑥) ∈ ℛ𝑚,𝑛,ℓ,𝜖1 |

{𝑓0, 𝑓1, . . . , 𝑓𝑚+𝑛} = Taylor(𝑟), maxi |𝑓i|
mini |𝑓i|

≤ 2𝑚+𝑛
}︁

,

𝒞𝑚,𝑛,ℓ,𝜖1,𝜖2 = {{𝑓0 + 𝛿0, 𝑓1 + 𝛿1, . . . , 𝑓𝑚+𝑛 + 𝛿𝑚+𝑛} |
𝑟(𝑥) ∈ ℛ∗

𝑚,𝑛,ℓ,𝜖1
, {𝑓0, 𝑓1, . . . , 𝑓𝑚+𝑛} = Taylor(𝑟),

𝛿𝑖 ∈ R,
∑︀𝑚+𝑛

𝑖=0 𝛿2𝑖 = 𝜖22
∑︀𝑚+𝑛

𝑖=0 𝑓2
𝑖

}︀

Algorithm 4 Padé app. (with UVGCD, BFGCD or Pan’s)

Require: {𝑓0, 𝑓1, . . . , 𝑓ℓ} ⊂ R, 𝑚,𝑛∈N (ℓ ≥ 𝑚+𝑛), 𝜀∈R≥0

Ensure: Padé approximant 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥) such that
𝑟(𝑥)− 𝑓(𝑥) = 𝑂(𝑥𝑚+𝑛+1) and deg(𝑝) ≤ 𝑚, deg(𝑞) ≤ 𝑛
are minimized by approximate GCD.

1: 𝑘 := 0, 𝜏 := 𝜀 ‖(𝑓0, 𝑓1, . . . , 𝑓ℓ)
𝑡‖𝐸 .

2: if |𝑓𝑖| ≤ 𝜏 (𝑖 = 0, 1, . . . ,𝑚) then
3: 𝑘 := min{𝑚,𝑛}.
4: else
5: while 𝑛 ̸= 0 do
6: compute the singular values of the 𝑛×(𝑛+1) matrix

in (3.3), and let 𝜌 be the number of singular values
that are greater than 𝜏 .

7: if 𝜌 < 𝑛 and 𝑛− 𝜌 ≤ 𝑚 then
8: 𝑛 := 𝜌, 𝑚 := 𝑚− (𝑛− 𝜌), 𝑘 := 𝑘 + (𝑛− 𝜌).
9: else

10: break.
11: end if
12: end while
13: end if
14: solve (3.3) and compute (3.4) with 𝑚,𝑛,

and let 𝑝(𝑥)/𝑞(𝑥) be the resulting rational function.
15: compute cofactors 𝑡(𝑥) and 𝑠(𝑥) by approximate GCD

of degree 𝑘, of 𝑝(𝑥) and 𝑞(𝑥), respectively.
16: return 𝑝(𝑥)/𝑞(𝑥).

where Taylor(𝑟) denotes the coefficients {𝑓0, 𝑓1, . . . , 𝑓𝑚+𝑛}
of Taylor series of 𝑟(𝑥) at 𝑥 = 0.

We have randomly generated a couple of subsets (each set
has 100 elements) of 𝒞𝑚,𝑛,ℓ,𝜖1,𝜖2 . The sets of the erroneous
coefficients case are ℰ3, ℰ4 with 𝑚 = 19, 𝑛 = 20, ℓ = 0,
𝜖1 = 0, 𝜖2 = 1.0e-3 for ℰ3, and 𝑚 = 19, 𝑛 = 20, ℓ = 0,
𝜖1 = 0, 𝜖2 = 1.0e-8 for ℰ4, and the sets of the approximately
reducible case are 𝒜3,𝒜4 with 𝑚 = 19, 𝑛 = 20, ℓ = 10,
𝜖1 = 1.0e-3, 𝜖2 = 0 for 𝒜3, and 𝑚 = 19, 𝑛 = 20, ℓ = 10,
𝜖1 = 1.0e-8, 𝜖2 = 0 for 𝒜4.

For each coefficients data, by the following methods, we
have computed a reduced Padé approximant 𝑟(𝑥) with 𝑚𝑚𝑎𝑥

= 𝑚, 𝑛𝑚𝑎𝑥 = 𝑛 and 𝜀 = 1.0e-12, by our preliminary im-
plementations with the double precision on Mathematica
12.0.

DI: this solves (3.3) and compute (3.4) with 𝑚𝑚𝑎𝑥, 𝑛𝑚𝑎𝑥.
GGT: this follows the algorithm in [5].
GGT WO8: this follows the algorithm in [5] but without

the step 8 (this step reduces the degrees of numerator
and denominator, independently).

UV: this follows the “GGT WO8” to determine 𝑚,𝑛,
solves (3.3) and compute (3.4) with 𝑚𝑚𝑎𝑥, 𝑛𝑚𝑎𝑥, and
reduce the resulting rational function by approximate
GCD (by UVGCD) of degree 𝑘 = 𝑚𝑚𝑎𝑥 − 𝑚 (i.e.
Algorithm 4 with UVGCD).

BF: this follows the “UV” but using BFGCD instead of
UVGCD (i.e. Algorithm 4 with BFGCD).

PN: this follows the “UV” but using our implementation
of the Pan’s algorithm instead of UVGCD.

378

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Kosaku Nagasaka

data set ℰ3 ℰ4

DI 0.845069 (39.0) 0.0627637 (39.00)
GGT 0.845069 (39.0) 0.065353 (38.41)

GGT WO8 0.845069 (39.0) 0.0675395 (38.48)
UV 0.845069 (39.0) 0.143128 (38.48)
BF 0.845069 (39.0) 0.0627698 (38.48)
PN 0.845069 (39.0) 0.0688095 (38.48)

Table 2: residual norm of function values of Padé

data set 𝒜3 𝒜4

DI 3.12831e-7 (39.00) 2.72861e-8 (39.00)
GGT 2.18353e-4 (37.46) 4.73386e-6 (26.16)

GGT WO8 2.18353e-4 (37.46) 4.73386e-6 (26.16)
UV 1.01356e-2 (37.46) 5.01329e-6 (26.16)
BF 3.12942e-7 (37.46) 5.73857e-8 (26.16)
PN 5.51157e-4 (37.46) 1.45860e-3 (26.04)

Table 3: residual norm of function values of Padé

Tables 2 and 3 show the results where each cell denotes
the average of the following residual norms of function values
and the sums of degrees deg(𝑝) + deg(𝑞) for each 𝑟(𝑥) and
its computed Padé approximant 𝑟(𝑥) = 𝑝(𝑥)/𝑞(𝑥).

‖(𝑟(𝑥1)− 𝑟(𝑥1), . . . , 𝑟(𝑥100)− 𝑟(𝑥100))
𝑡‖𝐸

‖(𝑟(𝑥1), . . . , 𝑟(𝑥100))
𝑡‖𝐸

where 𝑥𝑖 =
𝑖−1
99

for 𝑖 = 1, 2, . . . , 100. Our algorithm (BFGCD)
works well and is much effective for the approximately re-
ducible cases. Moreover, we have also done the same exper-
iments by “BF” without the backward conversion to the
power form, and the result is slightly better than “BF” but
not so different.

4 REMARKS

In this paper, we have proposed the BFGCD algorithm that
works very effective according to our numerical experiments.
Especially, it is better than the UVGCD and Pan’s algo-
rithms w.r.t. the function values in [0, 1]. Though the basis
conversion between the power and the Bernstein forms is
ill-conditioned, the property in Lemma 1.3 is very useful and
may be extensible for other applications.

For example, in our numerical experiments in Section 3.1.1,
only “LS” and “LS+BF” try to reduce the degree of numera-
tor independently of its denominator, and our methods (“UV”
and “BF”) only try to reduce the degrees of numerator and
denominator together since they are based on approximate
GCD. However, in “BF” the given polynomials are converted
hence in the Bernstein form, it may be possible to decrease
the degrees of numerator and denominator independently, by
the following useful properties.

Lemma 4.1 (degree elevation).
For 𝑝(𝑥), 𝑞(𝑥) ∈ R[𝑥] of formal degrees 𝑛, 𝑛+ 1, respectively,
such that 𝑝(𝑥) = 𝑞(𝑥), we have 𝑞0 = 𝑝0, 𝑞𝑛+1 = 𝑝𝑛 and

𝑞𝑘 =
𝑘

𝑛+ 1
𝑝𝑘−1 +

(︂

1−
𝑘

𝑛+ 1

)︂

𝑝𝑘 (𝑘 = 1, 2, . . . , 𝑛).

Lemma 4.2 (best degree reduction).
For 𝑝(𝑥) ∈ R[𝑥] of formal degree 𝑛, let 𝑞(𝑥), 𝑟(𝑥) ∈ R[𝑥] be of

formal degrees 𝑚,𝑛 with 𝑚 < 𝑛, respectively, such that 𝑟(𝑥)
is the result of degree elevation of 𝑞(𝑥) by Lemma 4.1. Then,
the followings have the same minimizer 𝑞(𝑥).

min
𝑞(𝑥)

‖𝑝(𝑥)− 𝑞(𝑥)‖𝐿 and min
𝑞(𝑥)

‖⃗̂𝑝− ⃗̂𝑟‖𝐸 .

This approach and other possible applications for polyno-
mials in the Bernstein form will be the future works.

REFERENCES
[1] Mario Berljafa and Stefan Güttel. 2015. Generalized rational

Krylov decompositions with an application to rational approxi-
mation. SIAM J. Matrix Anal. Appl. 36, 2 (2015), 894–916.

[2] Paola Boito. 2011. Structured matrix based methods for approxi-
mate polynomial GCD. Tesi. Scuola Normale Superiore di Pisa
(Nuova Series) [Theses of Scuola Normale Superiore di Pisa (New
Series)], Vol. 15. Edizioni della Normale, Pisa. xvi+199 pages.

[3] Robert M. Corless and Leili R. Sevyeri. 2019. Approximate GCD
in Bernstein basis. ACM Commun. Comput. Algebra 53, 3 (2019),
103–106.

[4] Rida T. Farouki. 2012. The Bernstein polynomial basis: a centen-
nial retrospective. Comput. Aided Geom. Design 29, 6 (2012),
379–419.

[5] Pedro Gonnet, Stefan Güttel, and Lloyd N. Trefethen. 2013. Ro-
bust Padé approximation via SVD. SIAM Rev. 55, 1 (2013),
101–117.

[6] W. B. Gragg. 1972. The Padé table and its relation to certain
algorithms of numerical analysis. SIAM Rev. 14 (1972), 1–16.

[7] O. L. Ibryaeva and V. M. Adukov. 2013. An algorithm for com-
puting a Padé approximant with minimal degree denominator. J.
Comput. Appl. Math. 237, 1 (2013), 529–541.

[8] Hiroshi Kai and Matu-Tarow Noda. 2000. Hybrid rational function
approximation and its accuracy analysis, In Proceedings of the
International Conference on Rational Approximation, ICRA 99
(Antwerp). Reliab. Comput. 6, 4, 429–438.

[9] Manfred Minimair. 2008. Basis-independent polynomial division
algorithm applied to division in Lagrange and Bernstein basis. In
Computer Mathematics. ASCM 2007. Lecture Notes in Comput.
Sci., Vol. 5081. Springer, Berlin, 72–86.

[10] Kosaku Nagasaka. 2020. Toward the best algorithm for approx-
imate GCD of univariate polynomials. J. Symbolic Comput.
(2020). Special issue on MICA 2016. (in press).

[11] Yuji Nakatsukasa, Olivier Sète, and Lloyd N. Trefethen. 2018.
The AAA algorithm for rational approximation. SIAM J. Sci.
Comput. 40, 3 (2018), A1494–A1522.

[12] Victor Y. Pan. 2001. Computation of approximate polynomial
GCDs and an extension. Inform. and Comput. 167, 2 (2001),
71–85.

[13] C. Sanathanan and J. Koerner. 1963. Transfer function synthesis
as a ratio of two complex polynomials. IEEE Trans. Autom.
Control 8, 1 (1963), 56–58.

[14] Jianzhong Sun, Falai Chen, and Yongming Qu. 1998. Approximate
common divisors of polynomials and degree reduction for rational
curves. Appl. Math. J. Chinese Univ. Ser. B 13, 4 (1998), 437–
444. A Chinese summary appears in Gaoxiao Yingyong Shuxue
Xuebao Ser. A 13 (1998), no. 4, 486.

[15] Joab R. Winkler and Ronald N. Goldman. 2003. The Sylvester
resultant matrix for Bernstein polynomials. In Curve and surface
design (Saint-Malo, 2002). Nashboro Press, Brentwood, TN, 407–
416.

[16] Joab R. Winkler and Ning Yang. 2013. Resultant matrices and the
computation of the degree of an approximate greatest common
divisor of two inexact Bernstein basis polynomials. Comput.
Aided Geom. Design 30, 4 (2013), 410–429.

[17] Ning Yang. 2013. Structured matrix methods for computations
on Bernstein basis polynomials. Ph.D. Dissertation. University
of Sheffield, England.

[18] Zhonggang Zeng. 2011. The numerical greatest common divisor
of univariate polynomials. In Randomization, relaxation, and
complexity in polynomial equation solving. Contemp. Math.,
Vol. 556. Amer. Math. Soc., Providence, RI, 187–217.

Our preliminary implementations are available: https://
wwwmain.h.kobe-u.ac.jp/˜nagasaka/research/snap/issac20.nb

379

A Divide-and-conquer Algorithm for Computing Gröbner Bases
of Syzygies in Finite Dimension

Simone Naldi
Univ. Limoges, CNRS, XLIM, UMR 7252

F-87000 Limoges, France

Vincent Neiger
Univ. Limoges, CNRS, XLIM, UMR 7252

F-87000 Limoges, France

ABSTRACT
Let f 1, . . . , fm be elements in a quotient Rn/N which has finite
dimension as a K-vector space, where R = K[X1, . . . ,Xr] and N
is an R-submodule of Rn . We address the problem of computing a
Gröbner basis of the module of syzygies of (f1, . . . , fm), that is, of
vectors (p1, . . . ,pm) ∈ Rm such that p1 f1 + · · · + pm fm = 0.

An iterative algorithm for this problem was given by Marinari,
Möller, and Mora (1993) using a dual representation of Rn/N as
the kernel of a collection of linear functionals. Following this view-
point, we design a divide-and-conquer algorithm, which can be
interpreted as a generalization to several variables of Beckermann
and Labahn’s recursive approach for matrix Padé and rational in-
terpolation problems. To highlight the interest of this method, we
focus on the specific case of bivariate Padé approximation and show
that it improves upon the best known complexity bounds.

KEYWORDS
Syzygies; Gröbner basis; Padé approximation; divide and conquer

ACM Reference Format:
Simone Naldi and Vincent Neiger. 2020. A Divide-and-conquer Algorithm
for Computing Gröbner Bases of Syzygies in Finite Dimension. In Inter-

national Symposium on Symbolic and Algebraic Computation (ISSAC ’20),

July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3373207.3404059

1 INTRODUCTION
Context. Hereafter, R = K[X1, . . . ,Xr] is the ring of r -variate

polynomials over a field K. Given an R-submodule N ⊂ Rn such
that Rn/N has finite dimension D as a K-vector space, as well as a
matrix F ∈ Rm×n with rows f1, . . . , fm ∈ R

n , this paper studies
the computation of a Gröbner basis of the module of syzygies

SyzN(F) = {p = (pi)1≤i≤m ∈ R
m | pF =

∑
1≤i≤m pi fi ∈ N},

where p is seen as a 1 ×m row vector. Note that Rm/SyzN(F) also
has finite dimension, at most D, as a K-vector space.

Following a path of work pioneered by Marinari, Möller and
Mora [1, 25, 27], we focus on a specific situation where N is de-
scribed using duality. That is,N is known throughD linear function-
als φ j : Rn → K such that N = ∩1≤j≤D ker(φ j). In this context, it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404059

is customary to make an assumption equivalent to the following:
Ni = ∩1≤j≤i ker(φi) is an R-module, for 1 ≤ i ≤ D; see e.g. [25,
Algo. 2] [16, Eqn. (4.1)] [30, Eqn. (5)] for such assumptions and re-
lated algorithms. Namely, this assumption allows one to design
iterative algorithms which compute bases of SyzNi (F) iteratively
for increasing i , until reaching i = D and obtaining the sought basis
of SyzN(F). An efficient such iterative procedure is given in [25],
specifically in Algorithm 2 (variant in Section 9 therein); note that it
is written form = n = 1 and F = [1], in which case SyzNi (F) = Ni ,
but directly extends to the casem ≥ 1 and F ∈ Rm×n .

Ideal of points and Padé approximation. One particular case of
interest is when N is the vanishing ideal of a given set of points:
n = 1, and N is the ideal of all polynomials in R which vanish
at distinct points α 1, . . . ,αD ∈ K

r . Here, one takes the linear
functionals for evaluation: φ j : f ∈ R 7→ f (α j) ∈ K. The question
is, given the points,m polynomials as F ∈ Rm×1, and a monomial
order ≼, to compute a ≼-Gröbner basis of the set of vectors p such
that pF vanishes at all the points. Whenm = 1 and F = [1], this
means computing a ≼-Gröbner basis of the ideal of the points, as
studied in [25, 26].

Another case is that of (multivariate) Padé approximation and
its extensions, as studied in [14, 16, 17, 30], as well as in [6] in the
context of the computation of multidimensional linear recurrence
relations. The basic setting is for n = 1, with N an ideal of the

form ⟨Xd1
1 , . . . ,X

dr
r ⟩, and F = [f

−1
] for some given f ∈ R. Then,

elements of SyzN(F) are vectors (q,p) ∈ R
2 such that f = p/q mod

X
d1
1 , . . . ,X

dr
r . Here, the D = d1 · · ·dr linear functionals correspond

to the coefficients of multidegree less than (d1, . . . ,dr); note that
not all orderings of these functionals satisfy the assumption above.

For these two situations, as well as some extensions of them, the
fastest known algorithms rely on linear algebra and have a cost
bound of O(mD2

+ rD3) operations in K [16, 25]; this was recently
improved in [28, Thm. 2.13] and [29] to O(mDω−1

+ rDω log(D))
where ω < 2.38 is the exponent of matrix multiplication [10, 24].

Based on work in [9, 15], in the specific case of an ideal of points
N and the lexicographic order, Ceria and Mora gave a combina-
torial algorithm to compute the ≼lex-monomial basis of R/N , the
Cerlienco-Mureddu correspondence, and squarefree separators for
the points using O(rD2 log(D)) operations [8].

The univariate case. This problem has received attention in the
case of a single variable (r = 1) notably thanks to the numerous
applications of matrix rational interpolation and Hermite-Padé ap-
proximation, which are the two situations described above. Iterative
algorithms were first given for Padé approximation in [18, 34] and
then for Hermite-Padé approximation in [2, 4, 33]; the latter can be
seen as univariate analogues of [25, Algo. 2] and [16, Algo. 4.7].

380

https://doi.org/10.1145/3373207.3404059
https://doi.org/10.1145/3373207.3404059

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Simone Naldi and Vincent Neiger

A breakthrough divide and conquer approach was designed by
Beckermann and Labahn in [3, Algo. SPHPS], allowing one to take
advantage of univariate polynomial matrix multiplication while
previous iterative algorithms only relied on naive linear algebra
operations. This led to a line of work [19, 21, 22, 32, 35] which
consistently improved the incorporation of fast linear algebra and
fast polynomial multiplication in this divide and conquer frame-
work, culminating in cost bounds for rational interpolation and
Hermite-Padé approximation which are close asymptotically to the
size of the problem (if ω = 2, these cost bounds are quasi-linear
in the size of the input). To the best of our knowledge, no similar
divide and conquer technique has been developed in multivariate
settings prior to this work.

Contribution. We propose a divide and conquer algorithm for the
problem of computing a ≼-Gröbner basis of SyzN(F) in the multi-
variate case. This is based on the iterative algorithm [25, Algo. 2],
observing that each step of the iteration can be interpreted as a left
multiplication by a matrix which has a specific shape, which we
call elementary Gröbner basis (see Section 3). The new algorithm
reorganizes these matrix products through a divide and conquer
strategy, and thus groups several products by elementary Gröbner
bases into a single multivariate polynomial matrix multiplication.

Thus, both the existing iterative and the new divide and conquer
approaches compute the same elementary Gröbner bases, but unlike
the former, our algorithm does not explicitly compute Gröbner
bases for all intermediate syzygy modules SyzNi (F). By computing
less, we expect to achieve better computational complexity. To
illustrate this, we specialize our approach to multivariate matrix
Padé approximation and derive complexity bounds for this case; we
obtain the next result, which is a particular case of Proposition 5.5.

Theorem 1.1. For R = K[X ,Y], let f1, . . . , fm ∈ R, and let ≼ be

a monomial order on R. Then one can compute a minimal ≼-Gröbner

basis of the module of Hermite-Padé approximants

{(p1, . . . ,pm) ∈ R
m | p1 f1 + · · · + pm fm = 0 mod ⟨Xd

,Yd ⟩}

using O˜(mωdω+2) operations in K, where O˜(·) means that polylog-

arithmic factors are omitted.

In this case the vector space dimension is D = d2. Thus, as noted
above and to the best of our knowledge, the fastest previously
known algorithm for this task has a cost of O˜(md2(ω−1) + d2ω)

operations in K and does not exploit fast polynomial multiplication.

Perspectives. The base case of our divide and conquer algorithm
concerns the caseN = ker(φ) of a single linear functional, detailed
in Section 3; we thus work in a vector space Rn/N of dimension 1.
A natural perspective is to improve the efficiency of our algorithm
thanks to a better exploitation of fast linear algebra by grouping
several base cases together; using fast linear algebra to accelerate
the base case was a key strategy in obtaining efficient univariate
algorithms [19, 22]. In the context of Padé approximation, where
one can introduce the variables one after another, one could also
try to incorporate known algorithms for the univariate case.

One reason why these improvements are not straightforward to
do in the multivariate case is that there is no direct generalization
of a property at the core of the correctness of univariate algorithms.
This property (see [23, Lem. 2.4]) states that if P1 is a ≼1-Gröbner

basis of N1 ⊃ N and P2 is a ≼2-Gröbner basis of SyzN(P1), then
P2P1 is a ≼1-Gröbner basis ofN , provided that the order ≼2 is well
chosen (a Schreyer order for P1 and ≼1, see Section 2.4). We give
a counterexample to such a property in Example 3.6. It remains
open to find a similar general property that would help to design
algorithms based on matrix multiplication in the multivariate case.

Another difficulty arises in analyzing the complexity of our di-
vide and conquer scheme in contexts where the number of elements
in the sought Gröbner basis is not well controlled, such as rational
interpolation. Indeed, this number corresponds to the size of the
matrices used in the algorithm, and therefore is directly related to
the cost of the matrix multiplication. In fact, the worst-case number
of elements depends on the monomial order and is often pessimistic
compared to what is observed in a generic situation. Thus, future
work involves investigating complexity bounds for generic input
and for interesting particular cases other than Padé approximation.

2 PRELIMINARIES

2.1 Notation
Here and hereafter, the coordinate vector with 1 at index i is denoted
by ei ; its dimension is inferred from the context. A monomial in
Rm is an element of the form νei for some 1 ≤ i ≤ m and some
monomial ν in R; i is called the support of νei . We denote by
Mon(Rm) the set of all monomials in Rm . A term is a monomial
multiplied by a nonzero constant from K. The elements of Rm

are K-linear combinations of elements of Mon(Rm) and are called
polynomials.

Elements in R are written in regular font (e.g. monomials µ and
ν and polynomials f and p), while elements in Rm are boldfaced
(e.g. monomials µ and ν and polynomials f and p). Vectors or
(ordered) lists of polynomials in Rm are seen as matrices, written
in boldfaced capital letters; precisely, (p1, . . . ,pk) ∈ (R

m)k is seen

as a matrix P ∈ Rk×m whose ith row is pi . In particular, in what
follows the default orientation is to see an element of Rm as a row
vector in R1×m .

For the sake of completeness, we recall below in Sections 2.2 to 2.4
some classical definitions from commutative algebra concerning
submodules of Rm ; we assume familiarity with the corresponding
notions concerning ideals of R. For a more detailed introduction
the reader may refer to [11ś13].

2.2 Monomial orders for modules
A monomial order on Rm is a total order ≼ on Mon(Rm) such
that, for ν ∈ Mon(R) and µ1, µ2 ∈ Mon(Rm) with µ1 ≼ µ2, one
has µ1 ≼ νµ1 ≼ νµ2; hereafter µ1 ≺ µ2 means that µ1 ≼ µ2 and
µ1 , µ2. For p ∈ R

m , its ≼-leading monomial is denoted by lm≼(p)
and is the largest of its monomials with respect to the order ≼ (we
take the convention lm≼(0) = 0 for 0 ∈ Rm the zero element). We
extend this notation to collections of polynomials P ⊂ Rm with
lm≼(P) = {lm≼(p) : p ∈ P}, and to matrices P ∈ Rk×m with
lm≼(P) the k ×m matrix whose ith row is the ≼-leading monomial
of the ith row of P .

Example 2.1. The usual lexicographic comparison is a monomial
order on K[X ,Y]: XaYb ≼lex Xa′Yb

′
if and only if a < a′ or (a =

a′ and b < b ′). It can be used to define a monomial order on

381

A Divide-and-conquer Algorithm for Computing Gröbner Bases of Syzygies in Finite Dimension ISSAC ’20, July 20–23, 2020, Kalamata, Greece

K[X ,Y]2, called the term-over-position lexicographic order: for

µ,ν in Mon(K[X ,Y]) and i, j in {1, 2}, µei ≼
top
lex

νe j if and only if
µ ≼lex ν or (µ = ν and i < j).

We refer to [11, Sec. 1.ğ2 and 5.ğ2] for other classical monomial
orders, such as the degree reverse lexicographical order on R, and
the construction of term-over-position and position-over-term or-
ders on Rm from monomial orders on R.

A monomial order ≼ on Rm induces a monomial order ≼i on
R for each 1 ≤ i ≤ m, by restricting to the ith coordinate: for
ν1,ν2 ∈ Mon(R), ν1 ≼i ν2 if and only if ν1ei ≼ ν2ei . In particular,
lm≼(qp) is a multiple of lm≼(p) for q ∈ R and p ∈ Rm :

Lemma 2.2. Let ı̄ be the support of lm≼(p). Then lm≼(qp) =
lm≼ı̄ (q)lm≼(p).

Proof. Write q =
∑

ℓ νℓ and p =
∑
i, j µi jei for terms µi j ,νℓ in

R. Then qp =
∑

ℓ,i, j νℓµi jei , i.e. the terms of qp are all those of
the form νℓµi jei . Now let ℓ̄ and ȷ̄ be such that lm≼ı̄ (q) = νℓ̄ and
lm≼(p) = µı̄ ȷ̄eı̄ . Then νℓ ≺ı̄ νℓ̄ for all ℓ , ℓ̄, which implies that
νℓµı̄ ȷ̄ ≺ı̄ νℓ̄µı̄ ȷ̄ and thus, by definition of ≼ı̄ , that νℓµı̄ ȷ̄eı̄ ≺ νℓ̄µı̄ ȷ̄eı̄ .
On the other hand, µi jei ≺ µı̄ ȷ̄eı̄ holds for all (i, j) , (ı̄, ȷ̄), hence
νℓµi jei ≺ νℓµı̄ ȷ̄eı̄ . Therefore we obtain νℓµi jei ≼ νℓ̄µı̄ ȷ̄eı̄ for all
(i, j, ℓ), with equality only if (i, j, ℓ) = (ı̄, ȷ̄, ℓ̄). This proves that
lm≼(qp) = νℓ̄µı̄ ȷ̄eı̄ = lm≼ı̄ (q)lm≼(p). □

2.3 Gröbner bases
As a consequence of Hilbert’s Basis Theorem, any R-submodule
of Rm is finitely generated [13, Prop. 1.4]. For a (possibly infi-
nite) collection of polynomials P ⊂ Rm , we denote by ⟨P⟩ the
R-submodule of Rm generated by the elements of P. Similarly,
for a matrix P in Rk×m , ⟨P⟩ stands for the R-submodule of Rm

generated by its rows, that is, ⟨P⟩ = {qP | q ∈ Rk }.
For a given submoduleM ⊂ Rm , the ≼-leading module ofM is

the module ⟨lm≼(M)⟩ generated by the leading monomials of the
elements ofM. Then, a matrix P in Rk×m whose rows are inM is
said to be a ≼-Gröbner basis ofM if

⟨lm≼(M)⟩ = ⟨lm≼(P)⟩.

In this case we have ⟨P⟩ =M (see [11, Ch.5, Prop.2.7]), hence we
will often omit the reference to the moduleM and just say that P
is a ≼-Gröbner basis.

A ≼-Gröbner basis P , whose rows are (p1, . . . ,pk), is said to
be minimal if lm≼(pi) is not divisible by lm≼(p j), for any j , i .
It is said to be reduced if it is minimal and, for all 1 ≤ i ≤ k ,
lm≼(pi) is monic and none of the terms of pi is divisible by any of
{lm≼(p j) | j , i}. Given a monomial order ≼ and an R-submodule
M ⊂ Rm , there is a reduced ≼-Gröbner basis ofM and it is unique
(up to permutation of its elements) [13, Sec. 15.2].

Example 2.3. The syzygy module

M = {(p1,p2) ∈ K[X ,Y]
2 | p1 − p2 ∈ ⟨X ,Y ⟩} = Syz⟨X ,Y ⟩([

1
−1])

is generated by (Xe1,Ye1,e1 + e2), that is, by the rows of

P =

X 0
Y 0
1 1

∈ K[X ,Y]3×2.

Furthermore, P is the reduced ≼
top
lex

-Gröbner basis ofM.

2.4 Schreyer orders
In the context of the computation of bases of syzygies it is generally
beneficial to use a specific construction of monomial orders, as first
highlighted by Schreyer [20, 31] (see also [13, Th. 15.10] and [5]).

In the univariate case, the notion of shifted degree plays the same
role as Schreyer orders and is ubiquitous in the computation of bases
of modules of syzygies [19, 21, 35]; an equivalent notion of defects
was also used earlier for M-Padé and Hermite-Padé approximation
algorithms [2, 3]. Specifically, this provides a monomial order on
Rk constructed from a monomial order ≼ on Rm and from the
leading monomials of a ≼-Gröbner basis in Rm of cardinality k .

Definition 2.4. Let ≼ be a monomial order on Rm , and let L =
(µ1, . . . , µk) be a list of monomials of Rm . A Schreyer order for ≼

and L is any monomial order on Rk , denoted by ≼L , such that for
ν1ei ,ν2e j ∈ Mon(Rk), if ν1µi ≺ ν2µ j then ν1ei ≼L ν2e j .

As noted above, this notion is often used with L = lm≼(P) for a list
of polynomials P ∈ Rk×m , which is typically a ≼-Gröbner basis.

Remark that Definition 2.4 uses a strict inequality, and implies
that if ν1ei ≼L ν2e j , then ν1µi ≺ ν2µ j or ν1µi = ν2µ j . In particular,
for ν1 = ν2 = 1 and assuming µi , µ j for all i , j (for instance, if
L = lm≼(P) for a minimal ≼-Gröbner basis P), then ei ≼L e j if and
only if µi ≺ µ j .

Furthermore, for every ≼ and L, a corresponding Schreyer order
exists and can be constructed explicitly: for example, ν1ei ≼L ν2e j
if and only if

ν1µi ≺ ν2µ j or (ν1µi = ν2µ j and i < j).

This specific Schreyer order is the one used in the algorithms in
this paper, where we write

≼L ← SchreyerOrder(≼,L)

to mean that the algorithm constructs it from ≼ and L.

3 BASE CASE OF THE DIVIDE AND
CONQUER SCHEME

In this section we present the base case of our main algorithm. It
constructs Gröbner bases for syzygies modulo the kernel of a single
linear functional, which we call elementary Gröbner bases and
describe in Section 3.1. Further in Section 3.2 we state properties
that are useful to prove the correctness of the base case algorithm
given in Section 3.3. Precisely, this correctness is written having
in mind the design of an algorithm handling several functionals
iteratively by repeating this basic procedure and multiplying the
elementary bases together.

3.1 Elementary Gröbner basis
If I ⊂ R is an ideal such that R/I has dimension 1 as a K-vector
space, then I is maximal: it is of the form ⟨X1 − α1, . . . ,Xr − αr ⟩

for some point (α1, . . . ,αr) ∈ Kr , which directly yields the reduced
Gröbner basis of I, for any monomial order. In this paper, we
will make use of a similar property for submodules of Rm ; such
submodules have Gröbner bases of the form

E =

Iπ−1 λ1

X − α

λ2 Im−π

∈ R(m+r−1)×m , (1)

382

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Simone Naldi and Vincent Neiger

for the vector of variables X = [X1 · · · Xr]
T and vectors of values

α = [α1 · · · αr]
T ∈ Kr×1, λ1 = [λ1 · · · λπ−1]T ∈ K(π−1)×1, and

λ2 = [λπ+1 · · · λm]
T ∈ K(m−π)×1. In what follows, such matrices

are called elementary Gröbner bases.

Theorem 3.1. LetM be anR-submodule ofRm such thatRm/M

has dimension 1 as a K-vector space, then for any monomial order

≼ on Rm , the reduced ≼-Gröbner basis E ofM is as in Eq. (1) with
λi = 0 if ei ≺ eπ for all i , π . Conversely, any matrix E as in Eq. (1)
defines a submoduleM = ⟨E⟩ such that Rm/M has dimension 1 as a
K-vector space, and E is a reduced ≼-Gröbner basis for any monomial

order ≼ such that λi = 0 if ei ≺ eπ for all i , π .

Proof. By [13, Thm. 15.3], a basis of Rm/M as aK-vector space
is given by the monomials not in lm≼(M); since the dimension of
Rm/M as a K-vector space is 1, there exists a unique monomial
which is not in lm≼(M). Thus there is a unique π ∈ {1, . . . ,m}
such that

lm≼(E) = (e1, . . . ,eπ−1,X1eπ , . . . ,Xreπ ,eπ+1, . . . ,em). (2)

By definition of reduced Gröbner bases, the jth polynomial in E is
the sum of the jth element of lm≼(E) and a constant multiple of eπ ;
hence E has the form in Eq. (1). In addition, for i , π , the equality
lm≼(ei + λieπ) = ei implies that λi = 0 whenever ei ≺ eπ .

For the converse, let ≼ be such that λi = 0 if ei ≺ eπ for all
i , π (such an order exists since there are orders for which eπ
is the smallest coordinate vector). Then lm≼(E) is as in Eq. (2); in
particular, the monomials in ⟨lm≼(E)⟩ are precisely Mon(Rm) \
{eπ }. It follows that either eπ ∈ lm≼(M) and ⟨lm≼(M)⟩ = Rm ,
or eπ < lm≼(M) and ⟨lm≼(M)⟩ = ⟨lm≼(E)⟩. In the second case
E is a reduced ≼-Gröbner-basis and Rm/M has dimension 1 by
[13, Thm. 15.3]. To conclude the proof, we show that eπ ∈ lm≼(M)
cannot occur; by contradiction, suppose there exists q ∈ M such
that lm≼(q) = eπ . Since the rows of E generateM, we can write

q = (q1, . . . ,qπ−1,p1, . . . ,pr ,qπ+1, . . . ,qm)E

=
©«
q1, . . . ,qπ−1,

∑
i,π

qiλi +

r∑
j=1

(X j − α j)pj ,qπ+1, . . . ,qm
ª®¬
.

For i , π such that eπ ≺ ei , any nonzero term of qiei would
appear in q and be greater than eπ , hence qi = 0. Moreover, for
i , π such that ei ≺ eπ we have λi = 0. Thus, considering the π th
component of q yields the equality

1 =
∑
i,π

qiλi +

r∑
j=1

(X j − α j)pj =

r∑
j=1

(X j − α j)pj

which is a contradiction since 1 < ⟨X1 − α1, . . . ,Xr − αr ⟩. □

Remark that in the module case (m ≥ 2) the reduced ≼-Gröbner
basis depends on the order ≼, more precisely on how the ei ’s are
ordered by ≼. For instance, the matrix in Example 2.3 is a reduced
≼-Gröbner basis for every order such that e1 ≼ e2, whereas for
orders such that e2 ≼ e1 the reduced ≼-Gröbner basis of the same
module is

E =

1 1
0 X

0 Y

∈ K[X ,Y]3×2.

3.2 Multiplying by elementary Gröbner bases

Let ≼ be a monomial order onRm and let P = (p1, . . . ,pk) ∈ R
k×m

be a ≼-Gröbner basis. In this section, we show conditions on an
elementary Gröbner basis E to ensure that EP is a ≼-Gröbner basis.

We write L = (µ1, . . . , µk) for lm≼(P), that is, µi = lm≼(pi) for
1 ≤ i ≤ k . Let ≼L be a Schreyer order for ≼ and P , and consider a
reduced ≼L-Gröbner basis E ∈ R

(k+r−1)×k which has the form in
Eq. (1); thus

EP = (p1 + λ1pπ , . . . ,pπ−1 + λπ−1pπ ,

(X1 − α1)pπ , . . . , (Xr − αr)pπ ,

λπ+1pπ + pπ+1, . . . , λkpπ + pk)

which is in R(k+r−1)×m . We will show that, under suitable assump-
tions, EP is a ≼-Gröbner basis; the next lemmas use the above
notation. We start by describing the leading terms of EP .

Lemma 3.2. If µi , µπ for all i , π , then

lm≼(EP) = lm≼L (E)L

= (µ1, . . . , µπ−1,X1µπ , . . . ,Xr µπ , µπ+1, . . . , µk).

Proof. First, lm≼((X j − α j)pπ) = X jµπ for 1 ≤ j ≤ r . Next we
claim that lm≼(pi + λipπ) = µi for all i , π . If λi = 0, the identity
is obvious. If λi , 0, then eπ ≼L ei (see Section 3.1), and from
the definition of a Schreyer order and the assumption µπ , µi , we
deduce µπ ≺ µi and hence lm≼(pi + λipπ) = µi . □

Next, we characterize the fact that EP generates a submodule
which differs from the one generated by P .

Lemma 3.3. If µi , µπ for all i , π , then

⟨EP⟩ , ⟨P⟩ ⇔ pπ < ⟨EP⟩ ⇔ µπ < ⟨lm≼(⟨EP⟩)⟩.

Proof. First, remark that ⟨EP⟩ = ⟨P⟩ ⇒ pπ ∈ ⟨EP⟩ ⇒ µπ ∈

⟨lm≼(⟨EP⟩)⟩ is obvious; thus, to conclude the proof it remains
to show that ⟨EP⟩ = ⟨P⟩ ⇐ µπ ∈ ⟨lm≼(⟨EP⟩)⟩. Suppose that
µπ ∈ ⟨lm≼(⟨EP⟩)⟩. Then, since µi ∈ ⟨lm≼(⟨EP⟩)⟩ for all i , π

by Lemma 3.2, we have lm≼(P) ⊂ ⟨lm≼(⟨EP⟩)⟩, hence ⟨lm≼(P)⟩ ⊂
⟨lm≼(⟨EP⟩)⟩. Furthermore, recall that ⟨lm≼(P)⟩ = ⟨lm≼(⟨P⟩)⟩ since
P is a ≼-Gröbner basis, and that ⟨lm≼(⟨EP⟩)⟩ ⊂ ⟨lm≼(⟨P⟩)⟩ since
⟨EP⟩ ⊂ ⟨P⟩: we obtain ⟨lm≼(⟨P⟩)⟩ = ⟨lm≼(⟨EP⟩)⟩. Then, [13,
Lemma 15.5] shows that ⟨EP⟩ = ⟨P⟩. □

For example, if P is aminimal ≼-Gröbner basis, then the assump-
tion in the previous lemma is satisfied. Example 3.6 below exhibits
a case where P is a minimal ≼-Gröbner basis and pπ does belong to
⟨EP⟩. In that case, ⟨EP⟩ = ⟨P⟩ and EP is not a Gröbner basis since
µπ is in ⟨lm≼(⟨EP⟩)⟩ but not in ⟨lm≼(EP)⟩.

Lemma 3.4. If µi , µπ for all i , π and ⟨EP⟩ , ⟨P⟩, then EP is

a ≼-Gröbner basis.

Proof. Suppose by contradiction that EP is not a ≼-Gröbner
basis. Then there exists a nonzero h ∈ ⟨EP⟩ such that lm≼(h) <
⟨lm≼(EP)⟩, that is, by Lemma 3.2, lm≼(h) is not divisible by any of
the elements µi for i , π and X jµπ for 1 ≤ j ≤ r . On the other
hand, lm≼(h) is in ⟨lm≼(⟨EP⟩)⟩ and therefore in ⟨lm≼(P)⟩, hence
lm≼(h) is divisible by at least one µi , 1 ≤ i ≤ k . These divisibility
constraints lead to lm≼(h) = µπ , which implies µπ ∈ ⟨lm≼(⟨EP⟩)⟩.
From Lemma 3.3 one deduces ⟨EP⟩ = ⟨P⟩, which is absurd. □

383

A Divide-and-conquer Algorithm for Computing Gröbner Bases of Syzygies in Finite Dimension ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Corollary 3.5. Assume that ⟨EP⟩ , ⟨P⟩ and that P is a minimal

≼-Gröbner basis. Let j1 < · · · < jℓ be the indices j ∈ {1, . . . , r } such

that X jµπ < ⟨µi , i , π ⟩. Then, the submatrix

Q =

Iπ−1 λ1
X j1 − α j1
.
.
.

X jℓ − α jℓ
λ2 Im−π

∈ R(k+ℓ−1)×k (3)

of E is such thatQP is a minimal ≼-Gröbner basis of ⟨EP⟩.

Proof. SinceP isminimal, µi , µπ for all i , π ; then Lemma 3.4
ensures that EP is a ≼-Gröbner basis and Lemma 3.2 gives

lm≼(QP) = (µ1, . . . , µπ−1,X j1µπ , . . . ,X jℓµπ , µπ+1, . . . , µk).

By construction of j1, . . . , jℓ , one has ⟨lm≼(QP)⟩ = ⟨lm≼(EP)⟩,
which implies

⟨lm≼(⟨EP⟩)⟩ = ⟨lm≼(EP)⟩ = ⟨lm≼(QP)⟩

⊂ ⟨lm≼(⟨QP⟩)⟩ ⊂ ⟨lm≼(⟨EP⟩)⟩.

Hence ⟨lm≼(QP)⟩ = ⟨lm≼(⟨QP⟩)⟩, andQP is a minimal ≼-Gröbner
basis. We conclude using [13, Lem. 15.5], which shows that ⟨QP⟩ ⊂

⟨EP⟩ and ⟨lm≼(⟨QP⟩)⟩ = ⟨lm≼(⟨EP⟩)⟩ imply ⟨QP⟩ = ⟨EP⟩. □

Example 3.6. Consider the case R = K[X ,Y] and m = 1. Let
P = [X

Y+1] ∈ R
2×1, which is the reduced ≼1-Gröbner basis of

⟨X ,Y +1⟩ for anymonomial order ≼1 onMon(R). Let also E ∈ R3×2

whose rows are (Xe1,Ye1,e2); according to Theorem 3.1, E is a
reduced ≼2-Gröbner basis for any monomial order ≼2 on Mon(R2).
Now, the product EP ∈ R3×1 has entries X 2, XY , and Y + 1. Thus,
⟨lm≼3 (EP)⟩ = ⟨X

2,XY ,Y ⟩ = ⟨X 2,Y ⟩ for any monomial order ≼3
on Mon(R). On the other hand, ⟨EP⟩ contains X = X (Y + 1) − XY ,
hence ⟨lm≼3 (EP)⟩ , ⟨lm≼3 (⟨EP⟩)⟩, which means that EP is not a
≼3-Gröbner basis.

3.3 Algorithm
We now describe Algorithm Syzygy_BaseCase, which will serve
as the base case of the divide and conquer scheme.

Theorem 3.7. Let N ⊂ Rn be an R-submodule, let F ∈ Rm×n ,

and let P ∈ Rk×m be a minimal ≼-Gröbner basis of SyzN(F) for some

monomial order ≼ on Rm . Assume that the input of Algorithm 1

is such that ker(φ) ∩ N is an R-module, G = PF , and lm≼(P) =
(µ1, . . . , µk). Then Algorithm 1 returns (Q,L) such that QP is a

minimal ≼-Gröbner basis of Syzker(φ)∩N(F) and L = lm≼(QP).

Proof. If (φ(д1), . . . ,φ(дk)) = (0, . . . , 0), thenAlgorithm 1 stops
at Line 2 and returnsQ = Ik andK . ThusQP = P , hence by assump-
tion L = K = lm≼(P) = lm≼(QP), andQP is a minimal ≼-Gröbner
basis of SyzN(F); besides, the identity SyzN(F) = Syzker(φ)∩N(F)
is easily deduced from (φ(д1), . . . ,φ(дk)) = (0, . . . , 0).

In the rest of the proof, assume (φ(д1), . . . ,φ(дk)) , (0, . . . , 0).

Define E ∈ R(k+r−1)×k as in Eq. (1) with π and λi as in Algorithm 1
and α j = φ(X jдπ)/υπ for 1 ≤ j ≤ r ; in particular, Q computed at
Line 8 is formed by a subset of the rows of E.

First, E is a ≼K -Gröbner basis according to Theorem 3.1, since
by definition of π and λi one gets the implications ei ≼K eπ ⇒

υi = 0⇒ λi = 0, for i , π .

Algorithm 1 Syzygy_BaseCase(φ,G, ≼,L)

Input:
· a linear functional φ : Rn → K,
· a matrixG in Rk×n with rows д1, . . . ,дk ∈ R

n ,
· a monomial order ≼ on Rm ,
· a list K = (µ1, . . . , µk) of elements of Mon(Rm).

Output:
· a matrixQ in R(k+ℓ−1)×k for some ℓ ∈ {0, . . . , r },
· a list L of k + ℓ − 1 elements of Mon(Rk).

1: (υ1, . . . ,υk) ← (φ(д1), . . . ,φ(дk)) ∈ K
k

2: if (υ1, . . . ,υk) = (0, . . . , 0) then return (Ik ,K)
3: ≼K ← SchreyerOrder(≼,K)

4: π ← argmin
≼K
{ei | 1 ≤ i ≤ k,υi , 0} ▷ the index i such that

υi , 0 which minimizes e i with respect to ≼K

5: {j1 < · · · < jℓ} ← {j ∈ {1, . . . , r } | X jµπ < ⟨µi , i , π ⟩}

6: α js ← φ(X jsдπ)/υπ for 1 ≤ s ≤ ℓ

7: λi ← −υi/υπ for 1 ≤ i < π and π < i ≤ k

8: Q ← matrix in R(k+ℓ−1)×k as in Eq. (3)
9: L← (µ1, . . . , µπ−1,X j1µπ , . . . ,X jℓµπ , µπ+1, . . . , µk)

10: return (Q,L)

Next, we claim that ⟨E⟩ = Syzker(φ)∩N(G). Indeed, the rows of
PF are in N , and thus so are those of EG = EPF . Moreover, by
choice of π and λi the rows of EG are in ker(φ), since for i , π

one has φ((pi + λipπ)F) = φ(дi + λiдπ) = υi + λiυπ = 0 and
for 1 ≤ j ≤ r one has φ((X j − α j)pπ F) = φ((X j − α j)дπ) =

φ(X jдπ) − α jυπ = 0. Therefore the rows of EG are in ker(φ) ∩ N ,
that is, ⟨E⟩ ⊂ Syzker(φ)∩N(G). To prove the reverse inclusion, re-

call from Theorem 3.1 that ⟨E⟩ has codimension 1 in Rk and hence
Syzker(φ)∩N(G) is either ⟨E⟩ or R

k . Since

0 , υπ = φ(дπ) = φ(pπ F) = φ(eπ PF) = φ(eπG)

one has that eπ < Syzker(φ)∩N(G), hence Syzker(φ)∩N(G) = ⟨E⟩.
It follows that ⟨EP⟩ = Syzker(φ)∩N(F). Indeed, the rows of EPF

are in ker(φ) ∩N as noted above, and thus ⟨EP⟩ ⊂ Syzker(φ)∩N(F).
Now let p ∈ Syzker(φ)∩N(F); thus in particular p ∈ SyzN(F), and

p = qP for some q ∈ Rk . Then pF = qPF = qG ∈ ker(φ) ∩ N ,
hence q ∈ Syzker(φ)∩N(G) = ⟨E⟩, and therefore p ∈ ⟨EP⟩.

Now, φ(pπ F) , 0 implies pπ < Syzker(φ)∩N(F) = ⟨EP⟩. Thus
Lemma 3.3 ensures ⟨EP⟩ , ⟨P⟩, and finally Corollary 3.5 states
that QP is a minimal ≼-Gröbner basis of ⟨EP⟩ = Syzker(φ)∩N(F).
Besides Lemma 3.2 yields lm≼(QP) = lm≼K (Q)K = L. □

4 DIVIDE AND CONQUER ALGORITHM
Repeating the basic procedure described in Section 3.3 iteratively,
we obtain an algorithm for syzygy basis computation when N
is an intersection of kernels of linear functionals with a specific
property (see Eq. (4)). This algorithm is similar to [25, Algo. 2] and
[30, Algo. 3.2], apart from differences in the input description. Here,
the input consists of linear functionals φ1, . . . ,φD : Rn → K, with
the assumption that

Ni = ∩1≤j≤i ker(φ j) is an R-module for 1 ≤ i ≤ D. (4)

Then we consider the R-module N = ND = ∩1≤j≤D ker(φ j),
which is such that Rn/N has dimension at most D as a K-vector

384

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Simone Naldi and Vincent Neiger

space. For F in Rm×n , the following algorithm computes a minimal
≼-Gröbner basis of the syzygy module SyzN(F). Note that we do
not specify the representation of F since it may depend on the spe-
cific functionals φi ; typically, one considers F to be known modulo
N , via the images of its rows by the functionals φi .

Algorithm 2 Syzygy_Iter(φ1, . . . ,φD , F , ≼)

Input:
· linear functionals φ1, . . . ,φD : Rn → K such that Eq. (4),
· a matrix F in Rm×n ,
· a monomial order ≼ on Rm .

Output:
· a minimal ≼-Gröbner basis P ∈ Rk×m of SyzN(F).

1: P ← Im ∈ R
m×m ;G ← F ; L← (e1, . . . ,em) = lm≼(P)

2: for i = 1, . . . ,D do
3: (Q,L) ← Syzygy_BaseCase(φi ,G, ≼,L)

4: P ← QP ;G ← QG

5: return P

Corollary 4.1. At the end of the ith iteration of Algorithm 2, P

is a minimal ≼-Gröbner basis of SyzNi (F), and one hasG = PF as

well as L = lm≼(P). In particular, Algorithm 2 is correct.

Proof. Note that at Line 1 of Algorithm 2, P = Im is the reduced
≼-Gröbner basis of Rm = SyzN0

(F) with N0 = R
n , and both

G = PF = F and L = (e1, . . . ,em) = lm≼(P) hold. We conclude
that if D = 0, Algorithm 2 is correct.

The rest of the proof is by induction on D. We claim that the
properties in the statement are preserved across the D iterations.
Precisely, we assume that at the beginning of the ith iteration, P is
a minimal ≼-Gröbner basis of SyzNi (F),G = PF , and L = lm≼(P).

Since Ni+1 = ker(φi+1) ∩ Ni is an R-module, applying Theo-
rem 3.7 shows that (Q,L) computed during the iteration are such
that L = lm≼(QP) and that QP is a minimal ≼-Gröbner basis of
SyzNi+1 (F). □

This allows us to deduce bounds on the size of a minimal ≼-
Gröbner basis of SyzN(F).

Lemma 4.2. Let P ∈ Rk×m be the output of Algorithm 2. Then,

m ≤ k ≤ m + (r − 1)D, and thus the same holds for any minimal

≼-Gröbner basis of SyzN(F). Furthermore, at the end of the iteration

i of Algorithm 2, the basisQ has at most k + D − i elements.

Proof. Remark that all minimal ≼-Gröbner bases of the same
module have the same number of rows. Before the first iteration,
the basis is Im which has m rows, and each iteration of the for
loop adds ℓ − 1 rows to the basis for some ℓ in {0, . . . , r }. Therefore
k ≤ m + (r − 1)D, and the last claim follows from ℓ − 1 ≥ −1. The
lower bound m ≤ k comes from the fact that Rm/SyzN(F) has
finite dimension as a K-vector space. □

This iterative algorithm can be turned into a divide and conquer
one (Algorithm 3), by reorganizing how the products are performed.
It computes a minimal ≼-Gröbner basis of SyzN(F), if one takes as
inputG = F and K = (e1, . . . ,em).

Algorithm 3 Syzygy_DaC(φ1, . . . ,φD ,G, ≼,K)

Input:
· linear functionals φ1, . . . ,φD : Rn → K,
· a matrixG in Rk×n ,
· a monomial order ≼ on Rm ,
· a list K = (µ1, . . . , µk) of elements of Mon(Rm).

Output:
· a matrixQ in Rℓ×m for some ℓ ≥ 0,
· a list L of ℓ elements of Mon(Rm).

1: if D = 1 then return Syzygy_BaseCase(φi ,G, ≼,K)
2: (Q1,L1) ← Syzygy_DaC(φ1, . . . ,φ ⌊D/2⌋ ,G, ≼,K)

3: (Q2,L2) ← Syzygy_DaC(φ ⌊D/2⌋+1, . . . ,φD ,Q1G, ≼,L1)

4: return (Q2Q1,L2)

Theorem 4.3. Let N ⊂ Rn be an R-submodule, let F ∈ Rm×n ,

and let P ∈ Rk×m be a minimal ≼-Gröbner basis of SyzN(F) for some

monomial order ≼ on Rm . Assume that the input of Algorithm 3 is

such thatG = PF , and lm≼(P) = (µ1, . . . , µk), and

Ni ∩ N is an R-module for 1 ≤ i ≤ D, (5)

where Ni = ∩1≤j≤i ker(φ j). Then Algorithm 3 outputs (Q,L) such

that QP is a minimal ≼-Gröbner basis of SyzND∩N(F) and L =

lm≼(QP).

Proof. If D = 1 the output returned by Algorithm 1 is cor-
rect, since by Theorem 3.7, QP is a minimal ≼-Gröbner basis of
Syzker(φ1)∩N

(F) and L = lm≼(QP). We assume by induction hy-
pothesis that Algorithm 3 returns the output foreseen by Theo-
rem 4.3 when the number of input linear functionals is < D, and
when the assumptions of the theorem are satisfied.

By such a hypothesis, since G = PF and K = lm≼(P), one
deduces that (Q1,L1) are such that Q1P is a ≼-Gröbner basis of
SyzM (F), withM = N⌊D/2⌋ ∩ N , and L1 = lm≼(Q1P).

Let Ki = ∩ ⌊D/2⌋+1≤j≤i ker(φ j), for each i = ⌊D/2⌋ + 1, . . . ,D.
By hypothesis Ki ∩M = Ni ∩ N is a module, for i = ⌊D/2⌋ + 1,
. . . , i = D. Since Q1G = Q1PF and Q1P is a ≼-Gröbner basis of
SyzM (F), and L1 = lm≼(Q1P), we can apply again the induction
hypothesis, and conclude that (Q2,L2) is such that Q2Q1P is a
minimal ≼-Gröbner basis of SyzKD∩M (F) = SyzND∩N(F), and
L2 = lm≼(Q2Q1P). We conclude that the global output (Q2Q1,L2)

satisfies the claimed properties. □

5 MULTIVARIATE PADÉ APPROXIMATION
The algorithm in the previous section gives a general framework,
which can be refined when applied to a particular context. Here,
we consider the context of multivariate Padé approximation, where

N = ⟨X
d1
1 , . . . ,X

dr
r ⟩ × · · · × ⟨X

d1
1 , . . . ,X

dr
r ⟩ ⊆ R

n
, (6)

for some d1, . . . ,dr ∈ Z>0. We begin with some remarks on the
degrees and sizes of Gröbner bases of syzygy modules SyzN(F).

To express this context in the framework of Section 4, we take for
theD linear functionals φi the dual basis of the canonical monomial
basis of Rn/N . Precisely, the linear functionals are φµ, j : Rn → K
for 1 ≤ j ≤ n and all monomials µ ∈ Mon(R) with degXi

(µ) < di
for 1 ≤ i ≤ r , defined as follows: for f = (f1, . . . , fn) ∈ Rn , φµ, j (f)
is the coefficient of the monomial µ in fj . These linear functionals

385

A Divide-and-conquer Algorithm for Computing Gröbner Bases of Syzygies in Finite Dimension ISSAC ’20, July 20–23, 2020, Kalamata, Greece

can be ordered in several ways to ensure that Eq. (4) is satisfied.
Here we design our algorithm by ordering the functionals φµ, j
according to the term-over-position lexicographic order on the
monomials µe j ∈ Mon(Rn).

Example 5.1. Consider the case of r = 2 variables X ,Y with
d1 = 2, d2 = 4, and n = 2. Then the functionals are

φ1,1, φ1,2, φY ,1, φY ,2, φY 2,1, φY 2,2, φY 3,1, φY 3,2,

φX ,1, φX ,2, φXY ,1, φXY ,2, φXY 2,1, φXY 2,2, φXY 3,1, φXY 3,2,

in this specific order.

Lemma 5.2. Let N be as in Eq. (6), let F ∈ Rm×n , and let ≼ be a

monomial order on Rm . Then, for 1 ≤ i ≤ r , each polynomial in the

reduced ≼-Gröbner basis of SyzN(F) either has degree in Xi less than

di or has the form X
di
i e j for some 1 ≤ j ≤ m.

Proof. Let P be the reduced ≼-Gröbner basis of SyzN(F) and
let i ∈ {1, . . . , r }. Since Rm/SyzN(F) has finite dimension as a
K-vector space, for each j ∈ {1, . . . ,n} there is a polynomial in P

whose ≼-leadingmonomial has the formXd
i e j for somed ≥ 0. Since

P is reduced, any other (p1, . . . ,pm) in P whose ≼-leading mono-
mial has support j is such that degXi

(pj) < d ≤ di ; the last inequal-

ity follows from the fact that the monomial Xdi
i e j is in SyzN(F)

and thus is a multiple of Xd
i e j . It follows that all polynomials in P

whose ≼-leading monomial is not among {Xdi
i e j , 1 ≤ j ≤ n} must

have degree in Xi less than di . On the other hand, any polynomial

in P whose ≼-leading monomial is Xdi
i e j for some j must be equal

to this monomial, since it belongs to SyzN(F) and P is reduced. □

In the context of Algorithm 3, Lemma 5.2 allows us to truncate
the productQ2Q1 while preserving a ≼-Gröbner basis.

Corollary 5.3. Let N be as in Eq. (6), let F ∈ Rm×n , let ≼
be a monomial order on Rm , and let P ∈ Rk×m be a minimal ≼-

Gröbner basis of SyzN(F). If P is modified by truncating each of its

polynomials modulo ⟨X
d1+1
1 , . . . ,X

dr+1
r ⟩, then P is still a minimal

≼-Gröbner basis of SyzN(F).

Proof. On the first hand, this modification of P does not af-
fect the ≼-leading terms since they all have Xi -degree less than
di + 1 according to Lemma 5.2, hence after modification we still
have ⟨lm≼(P)⟩ = ⟨lm≼(SyzN(F))⟩. On the other hand, after this
modification we also have ⟨P⟩ ⊆ SyzN(F) since we started from a
basis of SyzN(F) and added to each of its elements some multiples

of ⟨Xd1+1
1 , . . . ,X

dr+1
r ⟩, which are contained in SyzN(F). Then [13,

Lem. 15.5] yields ⟨P⟩ = SyzN(F), hence the conclusion. □

Then, the divide and conquer approach can be refined as de-
scribed in Algorithm 4. The correctness of this algorithm can be
shown by following the proof of Theorem 4.3 and with the follow-
ing considerations. By induction hypothesis,Q1 is such that each
component of the rows ofQ1G is an element of

⟨X
d1
1 , . . . ,X

dj−1
j−1 ,X

⌊dj /2⌋
j ,X j+1, . . . ,Xr ⟩,

hence its truncation modulo

⟨X
d1
1 , . . . ,X

dj
j ,X j+1, . . . ,Xr ⟩

Algorithm 4 Padé(d1, . . . ,dr ,G, ≼,K)

Input:
· integers d1, . . . ,dr ∈ Z>0,
· a matrixG in Rk×n ,
· a monomial order ≼ on Rm ,
· a list K = (µ1, . . . , µk) of elements of Mon(Rm).

Output:
· a matrixQ in Rℓ×m for some ℓ ≥ 0,
· a list L of ℓ elements of Mon(Rm).

1: if d1 = · · · = dr = 1 then
2: Q ∈ Rk×k ← Ik ; H ← G mod X1, . . . ,Xr ; L← K

3: for i = 1, . . . ,n do
4: φ ← linear functional Rn → K defined by φ(f) = fi (0)

5: (Qi ,L) ← Syzygy_BaseCase(φ,H , ≼,L)

6: Q ← QiQ mod X 2
1 , . . . ,X

2
r

7: H ← QiH mod X1, . . . ,Xr

8: return (Q,L)

9: j ← max{i ∈ {1, . . . , r } | di > 1}
10: (Q1,L1) ← Padé(d1, . . . ,dj−1, ⌊dj/2⌋, 1, . . . , 1,G, ≼,K)

11: G2 ← X
−⌊dj /2⌋
j (Q1G mod X

d1
1 , . . . ,X

dj
j ,X j+1, . . . ,Xr)

12: (Q2,L2) ← Padé(d1, . . . ,dj−1, ⌈dj/2⌉, 1, . . . , 1,G2, ≼,L1)

13: Q ← Q2Q1 mod X
d1+1
1 , . . . ,X

dr+1
r

14: return (Q,L2)

is an R-multiple of X
⌊dj /2⌋
j . It follows that on Line 11, G2 is well

defined. Moreover, for p ∈ Rm the next equations are equivalent:

pQ1G = 0 mod X
d1
1 , . . . ,X

dj−1
j−1 ,X

dj
j

pG2 = pX
−⌊dj /2⌋
j Q1G = 0 mod X

d1
1 , . . . ,X

dj−1
j−1 ,X

⌈dj /2⌉
j

This justifies the division by X
⌊dj /2⌋
j at Line 11 and the fact that

the second call is done with ⌈dj/2⌉ instead of dj at Line 12.
For the complexity analysis, we use Lemma 5.2 to give a bound

on the size of the computed Gröbner bases, which differs from the
general bound in Lemma 4.2.

Corollary 5.4 (of Lemma 5.2). Let N be as in Eq. (6), let F ∈
Rm×n , let ≼ be a monomial order on Rm , and let P ∈ Rk×m be a

minimal ≼-Gröbner basis of SyzN(F). Then,

k ≤ md1 · · ·dr /(max1≤i≤r di).

Proof. Let L = lm≼(P) ∈ Rk×m and let ı̄ be such that dı̄ =
max1≤i≤r di . It is enough to prove that L has at most d1 · · ·dr /dı̄
rows of the form µe j for each j ∈ {1, . . . ,m}; by Lemma 5.2, the
monomial µ ∈ Mon(R) hasXi -degree at most di for 1 ≤ i ≤ r . Now,
for each monomial ν = X

e1
1 · · ·X

eı̄−1
ı̄−1 X

eı̄+1
ı̄+1 · · ·X

er
r with ei ≤ di for

all i , ı̄, there is at most one row µe j in L such that µ = νX e
ı̄ for

some e ≥ 0: otherwise, one of two such rows would divide the
other, which would contradict the minimality of P . The number of
such monomials ν is precisely d1 · · ·dr /dı̄ . □

Herewe haveD = nd1 · · ·dr , hence the above bound on the cardi-
nality of minimal ≼-Gröbner bases refines the bound in Lemma 4.2
as soon asm ≤ n(r − 1)(max1≤i≤r di).

386

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Simone Naldi and Vincent Neiger

Proposition 5.5. For R = K[X ,Y], let

N = ⟨Xd
,Y e ⟩ × · · · × ⟨Xd

,Y e ⟩ ⊂ Rn ,

let F ∈ Rm×n with degX (F) < d and degY (F) < e , and let ≼ be a

monomial order on Rm . Algorithm 4 computes a minimal ≼-Gröbner

basis of SyzN(F) usingO˜((M
ω−1
+Mn)(M + n)de) operations in K,

whereM =mmin(d, e).

Proof. According to Corollary 5.4, the number of rows of the
matricesQ computed in Algorithm 4 is at mostM =mmin(d, e). It
follows that all matricesQi ,Q1,Q2,Q in the algorithm have at most
M rows and at mostM columns, and that the matricesG,H ,G1,G2
have at mostM rows and exactly n columns. Besides, by Kronecker
substitution [7, Chap. 1 Sec. 8], multiplying two bivariate matrices
of dimensionsM ×M (resp.M ×n) and bidegree at most (d, e) costs
O˜(Mωde) (resp. O˜(Mω (1 + n/M)de)) operations in K.

Let C(m,n,d, e) denote the number of field operations used by
Algorithm 4; we have C(m,n,d, e) ≤ C(M,n,d, e). First, for e > 1,
C(M,n,d, e) is bounded by C(M,n,d, ⌊e/2⌋) + C(M,n,d, ⌈e/2⌉) +
O˜(Mω (1 + n/M)de). Indeed, there are two recursive calls with
parameters (d, ⌊e/2⌋) and (d, ⌈e/2⌉), and two matrix productsQ1G

and Q2Q1 to perform; as noted above, the latter products cost
O˜(Mω (1 + n/M)de) operations in K. The same analysis for d > 1
and e = 1 shows that C(M,n,d, 1) is bounded by C(M,n, ⌊d/2⌋, 1)+
C(M,n, ⌈d/2⌉, 1) +O˜(Mω (1 + n/M)d).

Finally, ford = e = 1, we show that C(M,n, 1, 1) ∈ O(M(M+n)n).
In this case, there are n iterations of the loop. Each of them makes
one call to Syzygy_BaseCase, which uses O(M) field operations
for computing the λi ’s at Line 7; note that the α j ’s are zero in the
present context where the linear functional φ corresponds to the
constant coefficient. The computed basisQi has a single nontrivial
column (it has the form in Eq. (3)), so that computing QiQ mod
⟨X 2

1 , . . . ,X
2
r ⟩ (resp.QiH mod ⟨X1, . . . ,Xr ⟩) can be done naively at

a cost of O(M2) (resp. O(M(M + n))) operations in K.
Based on the previous inequalities, unrolling the recursion by

following the divide-and-conquer scheme leads to the announced
complexity bound. □

ACKNOWLEDGMENTS
Acknowledgements. The first author acknowledges support from
the Fondation Mathématique Jacques Hadamard through the Pro-
gramme PGMO, project number 2018-0061H.

REFERENCES
[1] M.E. Alonso, M.G. Marinari, and T. Mora. 2003. The Big Mother of all Dualities:

Möller Algorithm. Communications in Algebra 31, 2 (2003), 783ś818. https:
//doi.org/10.1081/AGB-120017343

[2] B. Beckermann. 1992. A reliable method for computing M-Padé approximants
on arbitrary staircases. J. Comput. Appl. Math. 40, 1 (1992), 19ś42. https://doi.
org/10.1016/0377-0427(92)90039-Z

[3] B. Beckermann and G. Labahn. 1994. A Uniform Approach for the Fast Computa-
tion of Matrix-Type Padé Approximants. SIAM J. Matrix Anal. Appl. 15, 3 (1994),
804ś823. https://doi.org/10.1137/S0895479892230031

[4] B. Beckermann and G. Labahn. 1997. Recursiveness in matrix rational interpo-
lation problems. J. Comput. Appl. Math. 77, 1 (1997), 5ś34. https://doi.org/10.
1016/S0377-0427(96)00120-3

[5] C. Berkesch and F.-O. Schreyer. 2015. Syzygies, finite length modules, and
random curves. InCommutative Algebra and Noncommutative Algebraic Geometry.
Mathematical Sciences Research Institute Publications (Vol. 67), pp. 25ś52.

[6] J. Berthomieu and J.-C. Faugère. 2018. A Polynomial-Division-Based Algorithm
for Computing Linear Recurrence Relations. In Proceedings ISSAC 2018. 79ś86.
https://doi.org/10.1145/3208976.3209017

[7] D. Bini and V. Y. Pan. 1994. Polynomial and Matrix Computations (Vol. 1): Funda-
mental Algorithms. Birkhauser Verlag.

[8] M. Ceria and T. Mora. 2018. Combinatorics of ideals of points: a Cerlienco-
Mureddu-like approach for an iterative lex game. Preprint arXiv:1805.09165.

[9] L. Cerlienco and M. Mureddu. 1995. From algebraic sets to monomial linear
bases by means of combinatorial algorithms. Discrete Mathematics 139, 1-3 (1995),
73ś87. https://doi.org/10.1016/0012-365X(94)00126-4

[10] D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic
progressions. J. Symb. Comput. 9, 3 (1990), 251ś280. https://doi.org/10.1016/
S0747-7171(08)80013-2

[11] D. A. Cox, J. Little, and D. O’Shea. 2005. Using Algebraic Geometry (second edition).
Springer-Verlag New-York, New York, NY. https://doi.org/10.1007/b138611

[12] D. A. Cox, J. Little, and D. O’Shea. 2007. Ideals, Varieties, and Algorithms (third
edition). Springer-Verlag New-York, New York, NY. https://doi.org/10.1007/978-
0-387-35651-8

[13] D. Eisenbud. 1995. Commutative Algebra: with a View Toward Algebraic Geometry.
Springer, New York, Berlin, Heildelberg. https://doi.org/10.1007/978-1-4612-
5350-1

[14] J.B. Farr and S. Gao. 2006. Computing Gröbner bases for vanishing ideals of
finite sets of points. In International Symposium on Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes. Springer, 118ś127.

[15] B. Felszeghy, B. Ráth, and L. Rónyai. 2006. The lex game and some applications.
J. Symb. Comput. 41, 6 (2006), 663ś681. https://doi.org/10.1016/j.jsc.2005.11.003

[16] P. Fitzpatrick. 1997. Solving aMultivariable Congruence by Change of TermOrder.
J. Symb. Comput. 24, 5 (1997), 575ś589. https://doi.org/10.1006/jsco.1997.0153

[17] P. Fitzpatrick and J. Flynn. 1992. A Gröbner basis technique for Padé approxi-
mation. J. Symb. Comput. 13, 2 (1992), 133ś138. https://doi.org/10.1016/S0747-
7171(08)80087-9

[18] K. O. Geddes. 1973. Algorithms for Analytic Approximation (to a Formal Power-
series). Ph.D. Dissertation. University of Toronto, Canada.

[19] P. Giorgi, C.-P. Jeannerod, and G. Villard. 2003. On the complexity of polynomial
matrix computations. In ISSAC’03 (Philadelphia, PA, USA). ACM, 135ś142. https:
//doi.org/10.1145/860854.860889

[20] M. Janet. 1920. Sur les systèmes d’équations aux dérivées partielles. J. Math.
Pures Appl. 170 (1920), 65ś152.

[21] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. 2016. Fast computation
of minimal interpolation bases in Popov form for arbitrary shifts. In ISSAC’16
(Waterloo, ON, Canada). ACM, 295ś302. https://doi.org/10.1145/2930889.2930928

[22] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. 2017. Computing minimal
interpolation bases. J. Symb. Comput. 83 (2017), 272ś314. https://doi.org/10.
1016/j.jsc.2016.11.015

[23] C.-P. Jeannerod, V. Neiger, and G. Villard. 2020. Fast computation of approximant
bases in canonical form. J. Symb. Comput. 98 (2020), 192ś224. https://doi.org/10.
1016/j.jsc.2019.07.011

[24] F. Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In ISSAC’14
(Kobe, Japan). ACM, 296ś303. https://doi.org/10.1145/2608628.2608664

[25] M. G. Marinari, H. M. Möller, and T. Mora. 1993. Gröbner bases of ideals defined
by functionals with an application to ideals of projective points. Appl. Algebra
Engrg. Comm. Comput. 4, 2 (1993), 103ś145. https://doi.org/10.1007/BF01386834

[26] H. M. Möller and B. Buchberger. 1982. The Construction of Multivariate Polyno-
mials with Preassigned Zeros. In EUROCAM’82 (LNCS), Vol. 144. Springer, 24ś31.
https://doi.org/10.1007/3-540-11607-9_3

[27] T. Mora. 2009. The FGLM Problem and Möller’s Algorithm on Zero-dimensional
Ideals. In Gröbner Bases, Coding, and Cryptography, M. Sala, S. Sakata, T. Mora,
C. Traverso, and L. Perret (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
27ś45. https://doi.org/10.1007/978-3-540-93806-4_3

[28] V. Neiger. 2016. Bases of relations in one or several variables: fast algorithms and

applications. Ph.D. Dissertation. École Normale Supérieure de Lyon. https:
//tel.archives-ouvertes.fr/tel-01431413/

[29] V. Neiger and É. Schost. 2019. Computing syzygies in finite dimension using fast
linear algebra. Preprint arXiv:1912.01848.

[30] H. O’Keeffe and P. Fitzpatrick. 2002. Gröbner basis solutions of constrained
interpolation problems. Linear Algebra Appl. 351 (2002), 533ś551. https://doi.
org/10.1016/S0024-3795(01)00509-2

[31] F-O. Schreyer. 1980. Die Berechnung von Syzygien mit dem verallgemeinerten
Weierstraßschen Divisionssatz. Ph.D. Dissertation. Master’s thesis, Fakultät für
Mathematik, Universität Hamburg.

[32] A. Storjohann. 2006. Notes on computing minimal approximant bases. In
Challenges in Symbolic Computation Software (Dagstuhl Seminar Proceedings).
http://drops.dagstuhl.de/opus/volltexte/2006/776

[33] M. Van Barel and A. Bultheel. 1992. A general module theoretic framework for
vector M-Padé and matrix rational interpolation. Numer. Algorithms 3 (1992),
451ś462. https://doi.org/10.1007/BF02141952

[34] P. Wynn. 1960. The Rational Approximation of Functions which are Formally
Defined by a Power Series Expansion. Math. Comp. 14, 70 (1960), 147ś186.

[35] W. Zhou and G. Labahn. 2012. Efficient Algorithms for Order Basis Computation.
J. Symb. Comput. 47, 7 (2012), 793ś819. https://doi.org/10.1016/j.jsc.2011.12.009

387

https://doi.org/10.1081/AGB-120017343
https://doi.org/10.1081/AGB-120017343
https://doi.org/10.1016/0377-0427(92)90039-Z
https://doi.org/10.1016/0377-0427(92)90039-Z
https://doi.org/10.1137/S0895479892230031
https://doi.org/10.1016/S0377-0427(96)00120-3
https://doi.org/10.1016/S0377-0427(96)00120-3
https://doi.org/10.1145/3208976.3209017
https://doi.org/10.1016/0012-365X(94)00126-4
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1007/b138611
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1016/j.jsc.2005.11.003
https://doi.org/10.1006/jsco.1997.0153
https://doi.org/10.1016/S0747-7171(08)80087-9
https://doi.org/10.1016/S0747-7171(08)80087-9
https://doi.org/10.1145/860854.860889
https://doi.org/10.1145/860854.860889
https://doi.org/10.1145/2930889.2930928
https://doi.org/10.1016/j.jsc.2016.11.015
https://doi.org/10.1016/j.jsc.2016.11.015
https://doi.org/10.1016/j.jsc.2019.07.011
https://doi.org/10.1016/j.jsc.2019.07.011
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1007/BF01386834
https://doi.org/10.1007/3-540-11607-9_3
https://doi.org/10.1007/978-3-540-93806-4_3
https://tel.archives-ouvertes.fr/tel-01431413/
https://tel.archives-ouvertes.fr/tel-01431413/
https://doi.org/10.1016/S0024-3795(01)00509-2
https://doi.org/10.1016/S0024-3795(01)00509-2
http://drops.dagstuhl.de/opus/volltexte/2006/776
https://doi.org/10.1007/BF02141952
https://doi.org/10.1016/j.jsc.2011.12.009

Generic Bivariate Multi-point Evaluation, Interpolation and
Modular Composition with Precomputation

Vincent Neiger
Univ. Limoges, CNRS, XLIM, UMR 7252

F-87000 Limoges, France

Johan Rosenkilde
Technical University of Denmark

Kgs. Lyngby, Denmark

Grigory Solomatov
Technical University of Denmark

Kgs. Lyngby, Denmark

ABSTRACT

Suppose K is a large enough field and P ⊂ K2 is a fixed, generic
set of points which is available for precomputation. We introduce a
technique called reshaping which allows us to design quasi-linear
algorithms for both: computing the evaluations of an input polyno-
mial f ∈ K[x ,y] at all points of P; and computing an interpolant
f ∈ K[x ,y] which takes prescribed values on P and satisfies an
input y-degree bound. Our genericity assumption is explicit and
we prove that it holds for most point sets over a large enough field.
If P violates the assumption, our algorithms still work and the
performance degrades smoothly according to a distance from being
generic. To show that the reshaping technique may have an impact
on other related problems, we apply it to modular composition:
suppose generic polynomialsM ∈ K[x] and A ∈ K[x] are available
for precomputation, then given an input f ∈ K[x ,y] we show how
to compute f (x ,A(x)) remM(x) in quasi-linear time.

KEYWORDS

Multi-point evaluation, interpolation, modular composition, bivari-
ate polynomials, precomputation.

ACM Reference Format:

Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov. 2020. Generic
Bivariate Multi-point Evaluation, Interpolation and Modular Composition
with Precomputation. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404032

1 INTRODUCTION

Outline. Let K be an effective field. We consider the three clas-
sical problems for bivariate polynomials K[x ,y] mentioned in the
title. We assume a model where part of the input is given early
as preinput which is available for heavier computation, and the
primary goal is to keep the complexity of the online phase, once the
remaining part of the input is given, to a minimum.

Multi-point evaluation (MPE): with preinput a point set P =
{(αi , βi)}ni=1 ⊆ K

2 and input f ∈ K[x ,y], compute
(

f (αi , βi)
)n
i=1.

We give two algorithms: the first requires pairwise distinct αi ’s
and has online complexity Õ(degx f degy f + n) as long as P is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404032

balanced, a notion described below; the second accepts repeated x-
coordinates with online complexity Õ(degx f (degx f +degy f)+n)
as long as a certain łshearingž of P is balanced. łsoft-Ož ignores
logarithmic terms: O(f (n)(log f (n))c) ⊂ Õ(f (n)) for any c ∈ Z≥0.

Interpolation: with preinput a point set P as before, and input
values γ ∈ Kn , compute f ∈ K[x ,y] such that

(

f (αi , βi)
)n
i=1 = γ ,

satisfying some constraints on the monomial support. We give an
algorithm which preinputs a degree bound d and outputs f such
that degy f < d and degx f ∈ O(n/d). The online complexity is

Õ(n) if P and a shearing of P are both balanced; d should exceed
the x-valency of P, i.e. the maximal number of y-coordinates for
any given x-coordinate.

Modular composition: with preinput M,A ∈ K[x], we input
f ∈ K[x ,y] and compute f (x ,A) remM . Our algorithm has on-
line complexity Õ(degx f degy f + degA + degM), as long as the
bivariate ideal ⟨M,y −A⟩ is balanced.

We prove that if P ⊆ K2 is random of fixed cardinality n, and if
|K| ≫ n2 log(n) then P is balanced with high probability. Similarly,
ifM is square-free and A is uniformly random of degree less than
degM , then ⟨M,y −A⟩ is balanced with high probability. Our proof
techniques currently do not extend to proving that sheared point
sets are balanced. A few trials we conducted suggest that this may
often be the case if the x-valency of P is not too high. The cost of
the second MPE algorithm is not symmetric in the x- and y-degree,
so whenever degx f < degy f one should consider transposing
the input, i.e. evaluating f (y,x) on {(βi ,αi)}ni=1. In this case, the
balancedness assumption is on the transposed point set.

Our algorithms are deterministic, and once the preinput has
been processed, the user knows whether it is balanced and hence
whether the algorithms will perform well. Further, the performance
of our algorithms deteriorates smoothly with how łunbalancedž
the preinput is, in the sense of certain polynomials, which depend
only on preinput, having sufficiently well behaved degrees. In a
toolbox one might therefore apply our algorithms whenever the
preinput turns out to be sufficiently balanced and reverting to other
algorithms on very unbalanced preinput.

A typical use of precomputation is if we compute e.g. MPEs on
the same point set for many different polynomials. This occurs in
coding theory, where bivariate MPE corresponds to the encoding
stage of certain families of codes such as some Reed-Muller codes [1,
Chap. 5] and some algebraic-geometric codes [14]: here P is fixed
and communication consists of a long series of bivariate MPEs on
P. In these applications, P is often not random but chosen carefully,
and so our genericity assumptions might not apply.

Techniques. We introduce a tool we call reshaping for achieving
the following: given an ideal I ⊆ K[x ,y] and f ∈ K[x ,y], compute
f̂ ∈ f + I with smaller y-degree. For instance in MPE, we let

388

https://doi.org/10.1145/3373207.3404032
https://doi.org/10.1145/3373207.3404032

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov

Γ ⊂ K[x ,y] be the ideal of polynomials which vanish on all the
points P. Then all elements of f + Γ have the same evaluations
on P, so we compute a f̂ ∈ f + Γ of y-degree 0 (it exists if P has
distinct x-coordinates), and then apply fast univariate MPE.

An obvious idea to accomplish this iteratively is to find some
д ∈ Γ of lower y-degree than f and whose leading y-term is 1, and
then compute f̃ = f remд. The problem is that the x-degree of f̃
may now be as large as degx f + (degy f −degy д) degx д. Our idea
is to seek polynomials д that we call reshapers, which have the form

д = y2d/3 − д̂ ,
where degy д̂ < d/3 andd = degy f +1 (for simplicity, here 3 divides

d). Writing f = f1y
2d/3
+ f0 with degy f0 < 2d/3, then f̃ = f1д̂+ f0

is easy to compute, has y-degree less than 2d/3, and x-degree only
degx f + degx д. Repeating such a reduction O(log(d)) times with
reshapers of progressively smaller y-degree, we eventually reach
y-degree 0.

For efficiency, we therefore need the x-degrees of all these re-
shapers д to be small. For MPE, stating that д ∈ Γ specifies n linear
contraints on the coefficients of д̂, so we look for д with about n
monomials. Generically, since degy д̂ ≈ d/3, one may expect to find
д with degx д ≈ 3n/d . Informally, P is balanced if all the reshapers
needed in the above process satisfy this degree constraint.

Above, we assumed the point set has distinct x-coordinates. To
handle repetitions, we shear the points by (α , β) 7→ (α + θβ, β),
where θ generates an extension field of K of degree 2. The resulting
point set has distinct x-coordinates. This replaces f (x ,y)with f (x−
θy,y), and whenever degx f < degy f we stay within quasi-linear
complexity if the sheared point set is balanced.

Previous work. Quasi-linear complexity has been achieved for
multivariate MPE and interpolation on special point sets and mono-
mial support: Pan [18] gave an algorithm on grids, and van der
Hoeven and Schost [26] (see also [5, Sec. 2]) generalised this to
certain types of subsets of grids, constraining both the points and
the monomial support. See [26] for references to earlier work on
interpolation, not achieving quasi-linear complexity.

In classical univariate modular composition, we are given f ,M,A
in K[x] and seek f (A) remM . Brent and Kung’s baby-step giant-
step algorithm [2, 19] performs this operation in Õ(n(ω+1)/2), where
ω is the matrix multiplication exponent with best known boundω <
2.373 [13]. Nüsken and Ziegler [17] extended this to a bivariate f ,
computing f (x ,A) remM in complexityO(degx f (degy f)(ω+1)/2),
assuming that A andM have degree at most degx f degy f . They
applied this to solve MPE in the same cost; in this paper, we use
essentially the same link between these problems. To the best of
our knowledge, this is currently the best known cost bound for
these problems, in the algebraic complexity model.

In a breakthough, Kedlaya and Umans [11] achieved łalmost
linearž time for modular composition and MPE, for specific types of
fields K and in the bit complexity model. For modular composition,
the cost isO(n1+ϵ) bit operations for any ϵ > 0, while for MPE it is
O((n + (degx f)2)1+ϵ), assuming degy f < degx f (the algorithm
also supports multivariate MPE). Unfortunately, these algorithms
have so far resisted attempts at a practical implementation [25].

Our quasi-linear complexities improve upon the above results
(including Kedlaya and Umans’ ones since quasi-linear compares

favorably to almost linear); however we stress that none of the latter
have the two constraints of our work: allowing precomputation,
and genericity assumption. For modular composition, precompu-
tation on M was suggested in [24] to leverage its factorisation
structure. Except for slight benefits of precomputation in Brent and
Kung’s modular composition (used in the Flint and NTL libraries
[8, 22]), we are unaware of previous work focusing on the use of
precomputation for MPE, Interpolation, and Modular Composition.

Genericity has recently been used by Villard [27], who showed
how to efficiently compute the resultant of two generic bivariate
polynomials; a specific case computes, for given univariateM andA,
the characteristic polynomial ofA in K[x]/⟨M⟩, with direct links to
the modular composition f (A) remM [27, 28]. This led to an ongo-
ing work on achieving exponent (ω +2)/3 for modular composition
[15]. In that line, the main benefit from genericity is that ⟨M,y −A⟩
admits bases formed by m polynomials of y-degree < m and x-
degree at most deg(M)/m, for a given parameter 2 ≤ m ≤ deg(M).
Such a basis is represented as anm ×m matrix over K[x] with all
entries of degree at most deg(M)/m, and one can then rely on fast
univariate polynomial matrix algorithms. In this paper, genericity
serves a purpose similar to that in [15, 27]: it ensures the existence
of such bases for several parametersm, and also of the reshapers д
mentioned above; besides wemake use of these bases to precompute
these reshapers. Whereas an important contribution of [27] is the
efficient computation of such bases, here they are only used to find
reshapers in the precomputation stage and the speed of computing
them is not a main concern. Once the reshapers are known, our
algorithms work without requiring any other genericity property.

Organisation. After some preliminaries in Section 2, we describe
the reshaping strategy for an arbitrary ideal in Section 3. Then
Sections 4 to 6 give algorithms for each of the three problems. We
discuss precomputation in Section 7 and genericity in Section 8.

2 PRELIMINARIES

For complexity estimates, we use the algebraic RAM model and
count arithmetic operations in K. By M(n) we denote the cost of
multiplying two univariate polynomials over K of degree at most n;
one may take M(n) ∈ O(n logn log logn) ⊂ Õ(n) [3]. Division with
remainder in K[x] also costsO(M(n)) [30, Thm. 9.6]. When degrees
of a polynomial, say f ∈ K[x ,y], appear in complexity estimates,
we abuse notation and let degx f denote max(degx f , 1).

It is well-known that univariate interpolation and multi-point
evaluation can be done in quasi-linear time [30, Cor. 10.8 and 10.12]:
given f ∈ K[x] and α1, . . . ,αn ∈ K, we may compute

(

f (αi)
)n
i=1

in time O(M(degx f + n) logn) ⊆ Õ(degx f + n); given α1, . . . ,αn
and β1, . . . , βn in K with the αi ’s pairwise distinct, we may com-
pute the unique corresponding interpolant in timeO(M(n) logn) ⊆
Õ(n). We will also use the fact that two bivariate f ,д ∈ K[x ,y]
can be multiplied in time O(M(dxdy)) ⊂ Õ(dxdy), where dx =
max(degx f , degx д) and dy = max(degy f , degy д) [30, Cor. 8.28].

For a bivariate polynomial f =
∑k
i=0 fi (x)yi ∈ K[x ,y] such that

fk , 0, we define its y-leading coefficient as LCy (f) = fk ∈ K[x].
For our genericity results, we will invoke the following staple:

Lemma 2.1 (DeMillo-Lipton-Schwartz-Zippel [7, 21, 31]). Let

f ∈ K[x1, . . . ,xn] be non-zero of total degree d , and T ⊆ K be finite.

389

Generic Bivariate Multi-point Evaluation, Interpolation and Modular Composition with Precomputation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

For α1, . . . ,αk ∈ T chosen independently and uniformly at random,

the probability that f (α1, . . . ,αk) = 0 is at most d/|T |.

For a point set P ⊆ K2, the x-valency of P, denoted by νx (P), is
the largest number of y-coordinates for any given x-coordinate, i.e.

νx (P) = max
α ∈K
|{β ∈ K | (α , β) ∈ P}| .

When νx (P) = 1, the x-coordinates of P are pairwise distinct.
The vanishing ideal of P is the bivariate ideal

Γ(P) = { f ∈ K[x ,y] | f (α , β) = 0 for all (α , β) ∈ P} ,
Hereafter, ≺lex stands for the lexicographic order on K[x ,y] with
x ≺lex y, and LTlex(f) is the ≺lex-leading term of f ∈ K[x ,y]. The
following is folklore and follows e.g. from [12] and [6, Thm. 3].

Lemma 2.2. Let P ⊂ K2 be a point set of cardinality n and let

G = {д1, . . . ,дs } be the reduced ≺lex-Gröbner basis of Γ(P), ordered
by ≺lex. Then д1 ∈ K[x], and дs is y-monic with degy дs = νx (P).

3 RESHAPE

We first describe our algorithm Reshape which takes f ∈ K[x ,y]
and an ideal I and finds f̂ ∈ f + I whose y-degree is below some
target. This will pass through several intermediate elements of f + I
of progressively smaller y-degree. This sequence of y-degrees has
the following form:

Definition 3.1. We say η = (ηi)ki=0 ∈ Z
k+1
>0 is a (η0,ηk)-reshaping

sequence if ηi−1 > ηi ≥ ⌊ 23ηi−1⌋ for i = 1, . . . ,k . For I ⊆ K[x ,y] an
ideal andη = (ηi)ki=0 a reshaping sequence, we sayд = (дi)

k
i=1 ∈ I

k

is an η-reshaper for I if дi = yηi + д̂i where degy д̂i ≤ 2ηi − ηi−1,
for each i = 1, . . . ,k .

Our algorithms are faster with short reshaping sequences, so we
should choose ηi ≈ 2

3ηi−1, and hence 2ηi −ηi−1 ≈
1
3ηi . It is easy to

see that for any a,b ∈ Z>0, there is an (a,b)-reshaping sequence of
length less than log3/2(a)+ 2. Observe that for any (a,b)-reshaping
sequence we have ηi ≥ 2

3 (ηi−1 − 1) for i = 1, . . . ,k and therefore

2ηi − ηi−1 ≥ ηi−1−4
3 ≥ ηi

3 − 1 . (1)

By considering the cases ηi ≥ 3 and ηi = 1, 2, we get 2ηi −ηi−1 ≥ 0.

Theorem 3.2. Algorithm 1 is correct and has complexity

Õ(∑k
i=i0

ηi (degx f +
∑i
j=i0

degx дj))

⊆ Õ(k degy f degx f + k
∑k
i=i0

ηi degx дi) ,
for the smallest i0 such that ηi0 ≤ degy f .

Proof. Let f̂i , f̂i,0, f̂i,1 be the values of f̂ , f̂0, f̂1 at the end of
iteration i . First, the iterations for i < i0 perform no operation and
keep f̂i = f , since ηi > degy f̂i−1 implies f̂i,1 = 0 and f̂i = f̂i−1.
In particular, if ηi > degy f for all i then the algorithm is correct
and returns f without using any arithmetic operation. Now for
i ≥ i0, observe that f̂i = f̂i,1д̂i + f̂i,0 = f̂i−1 − f̂i,1дi ; thus in the

end f̂ ∈ f + I since each дi belongs to I . We show the following
loop invariants, which imply the degree bounds on the output:

degx f̂i ≤ degx f +
∑i
j=i0

degx дj , and degy f̂i < ηi .
Both are true for i = i0 − 1 (just before the loop, if i0 = 1). For the
x-degree, f̂i = f̂i−1 − f̂i,1дi yields degx f̂i ≤ degx f̂i−1 + degx дi ,

Algorithm 1 Reshape(f ,η,д)
Input: A bivariate polynomial f ∈ K[x ,y]; a reshaping se-
quence η = (ηi)ki=0 ∈ Z

k+1
>0 with degy f < η0; an η-reshaper

д = (дi)ki=1 ∈ I
k for some ideal I ⊆ K[x ,y].

Output: a polynomial f̂ ∈ f + I such that degy f̂ < ηk and

degx f̂ ≤ degx f +
∑k
i=1 degx дi .

1: f̂ ← f

2: for i = 1, . . . ,k do

3: Write дi = yηi + д̂i where degy д̂i ≤ 2ηi − ηi−1
4: Write f̂ = f̂1y

ηi + f̂0 where degy f̂0 < ηi

5: f̂ ← f̂1д̂i + f̂0 ▷ equivalent to f̂ ← f̂ − f̂1дi
6: return f̂

and the loop invariant follows. For the y-degree, by construction
degy f̂i,0 < ηi and degy f̂i,1 ≤ degy f̂i−1 − ηi hold; the assumption

degy f̂i−1 < ηi−1 then gives degy f̂i,1д̂i < ηi , hence degy f̂i < ηi .
For complexity, the only costly step is at Line 5 and for iterations

i ≥ i0. From the above bound degy f̂i,1д̂i < ηi , multiplying f̂i,1

and д̂i costsO(M((degx f̂i,1+degx д̂i)ηi)). Since degx д̂i = degx дi ,

since both f̂i,0 and f̂i,1 have x-degree at most degx f̂i−1, and since

degy f̂i,0 < ηi , the total cost of the ith iteration is in

Õ((degx f̂i−1 + degx д̂i)ηi) ⊆ Õ((degx f +
∑i
j=i0

degx дj)ηi).
Summing over all iterations, we get the first complexity bound in
the theorem; the second one follows from it, using the fact that
degy f ≥ ηi0 > ηi0+1 > . . . > ηk and i0 ≥ 1. □

We now define the balancedness of a point set. In Section 8 we
prove that this notion captures the expected x-degree of reshapers.

Definition 3.3. Let P ⊆ K2 be a point set of cardinality n, and
let η = (ηi)ki=0 be a reshaping sequence. Then P is η-balanced if

there exists an η-reshaper д = (дi)ki=1 ∈ K[x ,y]
k for Γ(P) such

that degx дi ≤ ⌊ n
2ηi−ηi−1+1 ⌋ + 1 for i = 1, . . . ,k .

The next bound is often used below for deriving complexity
estimates; it follows directly from Eq. (1).

Lemma 3.4. Let η = (ηi)ki=0 be a reshaping sequence, P ⊆ K
2 be

an η-balanced point set of cardinality n, and д = (дi)ki=1 be an η-

reshaper for Γ(P). Then∑k
i=i0

ηi degx дi ≤ (3n+ηi0)k for 1 ≤ i0 ≤ k .
We conclude this section with two results about the existence of

η-reshapers for vanishing ideals of point sets.

Lemma 3.5. Let P ⊆ K2 be a point set andη = (ηi)ki=0 a reshaping
sequence. If νx (P) ≤ min1≤i≤k (2ηi − ηi−1 + 1), then there exists an

η-reshaper д ∈ K[x ,y]k for Γ(P).

Proof. By Lemma 2.2, the reduced ≺lex-Gröbner basis G of
Γ(P) contains a polynomial with ≺lex-leading term yνx (P). Thus
degy y

η remG < νx (P) for anyη, and settingдi = yηi −(yηi remG)
yields an η-reshaper as long as νx (P) ≤ 2ηi − ηi−1 + 1 for all i . □

Corollary 3.6. Let P ⊆ K2 be a point set of cardinality n and

a,b ∈ Z>0 withn > a > b ≥ νx (P). Then there is an (a,b)-reshaping
sequence η which satisfies the condition of Lemma 3.5 and has length

k ≤ log3/2(a) + 1 ∈ O(log(a)).

390

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov

Proof. Let v = νx (P) − 1 and let η′ = (η′0, . . . ,η
′
k
) be any

(a −v,b −v)-reshaping sequence with k ≤ log3/2(a −v) + 1. Now
let η = (η0, . . . ,ηk) be defined by ηi = η′i +v for i = 0, . . . ,k . Then,
η is an (a,b)-reshaping sequence. Indeed, clearly the endpoints are
correct and ηi−1 > ηi for i = 1, . . . ,k ; moreover,

ηi = η
′
i +v ≥ ⌊ 23η

′
i−1⌋ +v = ⌊ 23ηi−1 +

1
3v⌋ ≥ ⌊

2
3ηi−1⌋ .

To conclude, we use 2η′i − η
′
i−1 ≥ 0 as mentioned above to observe

that 2ηi − ηi−1 + 1 = 2η′i − η
′
i−1 +v + 1 ≥ v + 1 = νx (P). □

4 MULTI-POINT EVALUATION

In this section we use reshaping for MPE with precomputation; i.e.
given a point set P ⊂ K2 upon which we are allowed to perform
precomputation, and a polynomial f ∈ K[x ,y] which is assumed to
be received at online time, compute f (P) for all P ∈ P. Algorithm 2
deals with the case νx (P) = 1, which we reduce to an instance of
univariate MPE using Reshape. The cost of Algorithm 2 follows
directly from Theorem 3.2 and Lemma 3.4.

Algorithm 2MPE-DistinctXd,η,P (f)

Preinput: d ∈ Z>0; a (d, 1)-reshaping sequence η; a point set
P = {(αi , βi)}ni=1 ⊂ K

2 with the αi ’s pairwise distinct.
Precomputation:

a: д← η-reshaper for Γ(P)
Input: f ∈ K[x ,y] with degy f < d .

Output:
(

f (α1, β1), . . . , f (αn , βn)
)

∈ Kn .
1: f̂ ← Reshape(f ,η,д) ∈ K[x]
2: return

(

f̂ (α1), . . . , f̂ (αn)
)

∈ Kn ▷ univariate MPE

Theorem 4.1. Algorithm 2 is correct. If P is η-balanced and η has

length in O(log(n)), the complexity is Õ(degx f degy f + n).

Algorithm 2 can easily be extended to the case where νx (P) > 1
by partitioning P into νx (P) many subsets, each having x-valency
one. This approach also has quasi-linear complexity in the input
size as long as νx (P) ≪ n, or more precisely if nνx (P) ∈ Õ(n).

When νx (P) is large, this strategy is costly, and we proceed
instead by shearing the point set, as proposed byNüsken and Ziegler
[17], so that the resulting point set has distinct x-coordinates: by
taking θ ∈ L \ K, where L is an extension field of K of degree 2,
we apply the map (α , β) 7→ (α + θβ , β) to each element of P. The
problem then reduces to evaluating f̄ = f (x − θy,y) at the sheared
points. To compute f̄ , [17] provides an algorithm with complexity
O(M(dx (dx +dy)) log(dx)) using a univariate Taylor shift of f seen
as a polynomial in x over the ring L[y]. Algorithm 3 describes an
algorithm for this task which improves the cost on the logarithmic
level, by using Taylor shifts of the homogeneous components of f .

Algorithm 3 ShearPoly(f ,a,b)

Input: f =
∑dx
i=0

∑dy
j=0 fi, jx

iy j ∈ L[x ,y]; a ∈ L and b ∈ L.
Output: f (ax + by,y).

1: for t = 0, . . . ,dx + dy do

2: ht ←
∑min(t,dx)
i=max(0,t−dy) fi,t−iz

i ∈ L[z]
3: st ← ht (az + b) ▷ Taylor shift

4: return
∑dx+dy
t=0 yt st (x/y)

Theorem 4.2. Algorithm 3 correctly computes f (ax+by,y), which
has x-degree at most dx and y-degree at most dx + dy , at a cost of

O((dx + dy)M(dx) log(dx)) ⊂ Õ(dx (dx + dy)) operations in L.

Proof. Observe that ytht (x/y) is the homogeneous component

of f of degree t , and in particular f =
∑dx+dy
t=0 ytht (x/y). Thus

f (ax + by,y) = ∑dx+dy
t=0 ytht

(

ax+by
y

)

=

∑dx+dy
t=0 yt st (x/y),

hence the correctness. The degree bounds on the output are straight-
forward. As for complexity, only Line 3 uses arithmetic operations.
First, scaling ht (z) 7→ ht (az) costs O(dx) operations in L, since
deght ≤ dx ; then the Taylor shift ht (az) 7→ ht (az + b) costs
O(M(dx) log(dx)) operations in L according to [29, Fact 2.1(iv)].
Summing over the dx +dy iterations yields the claimed bound. □

This leads to Algorithm 4, where P may have repeated αi ’s.

Algorithm 4 MPE-Sheard,η,P (f)

Preinput: an integer d ∈ Z>0; a (d, 1)-reshaping sequence η;
a point set P = {(αi , βi)}ni=1 ⊂ K

2.
Precomputation:

a: (L,θ) ← degree 2 extension of K, element θ ∈ L \ K
b: P̄ ← {(αi + θβi , βi)}ni=1 ⊂ L

2

c: Do the precomputation of MPE-DistinctXd,η, P̄
Input: f ∈ K[x ,y] with degx f + degy f < d .

Output:
(

f (α1, β1), . . . , f (αn , βn)
)

∈ Kn .
1: f̄ ← ShearPoly(f , 1,−θ) ▷ f̄ = f (x − θy, y)
2: return MPE-DistinctXd,η, P̄ (f̄)

Theorem 4.3. Algorithm 4 is correct. If P̄ is η-balanced and η has

length inO(log(n)), its complexity is Õ(degx f (degx f +degy f)+n).

5 INTERPOLATION

In this section we use reshaping for the interpolation problem in
a similar setting: we input a point set P for precomputation, and
input interpolation values at online time. When P is appropriately
balanced, we solve the interpolation problem in quasi-linear time
(see Algorithm 5). The strategy is to first shear the point set to have
unique y-coordinates and compute u ∈ L[y] which interpolates
the values on the sheared y-coordinates. Then we reshape this into
r ∈ L[x ,y] with x- and y-degrees roughly

√
n. Shearing back this

polynomial to interpolate the original point set is now in quasi-
linear time; a last reshaping allows us to meet the target y-degree.

Theorem 5.1. Algorithm 5 is correct and has complexity

Õ

(

k1n + k2

(√
n +

k1
∑

j=1
degx д1, j

)2
+

2
∑

ℓ=1
kℓ

kℓ
∑

j=1
ηℓ,k degx дℓ, j

)

.

If P̄ is η1-balanced and P is η2-balanced, and both η1 and η2 have

length in O(logn), then the complexity is Õ(n).

Proof. First note that a reshaping sequence of length O(logn)
and satisfying the preinput constraints exists, due to Corollary 3.6
and the assumption d ≥ νx (P). For correctness, observe that all
points in P̄ have pairwise distinct y-coordinates, so computing u
makes sense. Viewingu as an element ofL[x ,y]with degx u = 0, we

391

Generic Bivariate Multi-point Evaluation, Interpolation and Modular Composition with Precomputation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 5 Interpolated,η,P (γ)

Preinput: an integer d ∈ Z>0; an (n,d)-reshaping sequence
η = (ηi)ki=0 such that ηk1 = ⌊

√
n⌋ for some k1; a point set

P = {(αi , βi)}ni=1 ⊆ K
2 such that νx (P) ≤ d ≤ ⌊

√
n⌋ + 1 and

νx (P) ≤ min1≤i≤k (2ηi − ηi−1 + 1).
Precomputation:

a: η1 ← (ηi)
k1
i=0 and η2 ← (ηi)

k
i=k1

b: (L,θ) ←
{

(K, 0) if νy (P) = 1

degree 2 extension of K,θ ∈ L \ K otherwise

c: P̄ ← {(αi , β̄i)}ni=1, where β̄i = θαi + βi
d: д1 ← η1-reshaper for P̄
e: д2 ← η2-reshaper for P
Input: Interpolation values γ = (γi)ni=1 ∈ K

n .
Output: f ∈ K[x ,y] satisfying f (αi , βi) = γi for i = 1, . . . ,n,
degy f < d and degx f ≤ ⌊

√
n⌋ +∑д∈д1∪д2

degx д.

1: u ∈ L[y] with degu < n and u(β̄i) = γi for i = 1, . . . ,n
2: r ← Reshape(u,η1,д1) ∈ L[x ,y]
3: s ← r (x ,θx + y) ▷ using ShearPoly

4: Write s = s1 + θs2, where s1, s2 ∈ K[x ,y]
5: return Reshape(s1,η2,д2) ∈ K[x ,y]

haveu(αi , β̄i) = γi . By Theorem 3.2 then r has the same evaluations

and degy r < ⌊
√
n⌋ and degx r ≤

∑k1
i=1 degx д1,i .

Then, in both cases νy (P) = 1 and νy (P) > 1, we have

γi = r (αi , β̄i) = s(αi , βi) = s1(αi , βi) + θs2(αi , βi)
for i = 1, . . . ,n. Since s1, s2 ∈ K[x ,y] and all γi ’s are in K, we get
s2(αi , βi) = 0 and s1(αi , βi) = γi for i = 1, . . . ,n. We also then have
that degy s1 ≤ degy s < ⌊

√
n⌋ and

degx s1 ≤ degx s ≤ degy r + degx r ≤ ⌊
√
n⌋ +∑k1

j=1 degx д1, j .

Thus, by Theorem 3.2 again, the output f is such that f (αi , βi) = γi
for i = 1, . . . ,n, and degy f < d , and

degx f ≤ ⌊
√
n⌋ +∑k1

j=1 degx д1, j +
∑k2
j=1 degx д2, j .

The complexity bound gathers the calls to Algorithms 1 and 3, and
the relaxed cost assuming balancedness is due to Lemma 3.4. □

6 MODULAR COMPOSITION

We now turn to the following modular composition problem: given
M,A ∈ K[x]with n := degx M > degx A, and f ∈ K[x ,y], compute

f (x ,A(x)) remM(x) ∈ K[x] . (2)

We consider the variant of the problem whereM andA are available
for precomputation. Computing (2) is tantamount to computing the
unique element of (f + I) ∩K[x] of degree less than n, for the ideal
I = ⟨M,y −A⟩ ⊆ K[x ,y]. One can thus see this as a reshaping task:
given f of some y-degree, reshape it to a polynomial of y-degree 0
while keeping it fixed modulo I : this is formalised as Algorithm 6.

Like for point sets above, if η = (ηi)ki=0 is a reshaping sequence,
we say that I = ⟨M,y−A⟩ isη-balanced if there exists anη-reshaper
д = (дi)ki=1 for I such that degx дi ≤ ⌊ n

2ηi−ηi−1+1 ⌋ + 1.

Theorem 6.1. Algorithm 6 is correct. If ⟨M,y −A⟩ is η-balanced
andη has length inO(log(n)), the complexity is Õ(degx f degy f +n).

Algorithm 6 ModCompd,η,M,A(f)

Preinput:d ∈ Z>0; a (d, 1)-reshaping sequenceη; polynomials
M,A ∈ K[x] with n := degx M > degx A.
Precomputation:

a: д← η-reshaper for ⟨M,y −A⟩
Input: f ∈ K[x ,y] with degy f < d .
Output: f (x ,A) remM ∈ K[x].

1: f̂ ← Reshape(f ,η,д) ∈ K[x]
2: return f̂ remM ▷ univariate division with remainder

7 PRECOMPUTING RESHAPERS

7.1 Reshapers for general ideals

Here we describe Algorithm 7 for precomputing reshapers for any
zero-dimensional ideal I ⊆ K[x ,y], given a ≺lex-Gröbner basis of I .
It operates through the K[x]-module Iδ := { f ∈ I | degy f < δ },
so we first expound the relation between this and I as a corollary
of Lazard’s structure theorem on bivariate ≺lex-Gröbner bases [12].

Corollary 7.1. Let G = {b0, . . . ,bs } ⊂ K[x ,y] be a minimal

≺lex-Gröbner basis defining an ideal I = ⟨G⟩. For δ ∈ Z>0, let
Iδ = { f ∈ I | degy f < δ }, let ŝ = max{i | degy bi < δ , 0 ≤ i ≤ s},
let di = degy bi for 0 ≤ i ≤ ŝ and dŝ+1 = δ . Then Iδ is a K[x]-
submodule of K[x ,y]degy<δ which is free of rank δ − d0 and admits

the basis {y jbi | 0 ≤ j < di+1 − di , 0 ≤ i ≤ ŝ}.

A proof is given in appendix. We will use the following K[x]-
module isomorphism which converts between bivariate polynomi-
als of bounded y-degree and vectors over K[x]: for any δ ∈ Z>0,
ϕδ : f =

∑δ−1
j=0 fj (x)y j ∈ K[x ,y] 7→ [f0, . . . , fδ−1] ∈ K[x]1×δ .

If I is zero-dimensional then in Corollary 7.1 we have d0 = 0
and Iδ has rank δ . Any basis B of Iδ can be represented as a
nonsingular matrix MB ∈ K[x]δ×δ whose rows are ϕδ (B). Then,
∆(Iδ) := deg det(MB) does not depend on the choice of B since all
bases of Iδ have the same determinant up to scalar multiplication.

In this section, we use the Popov form [20], which can be defined
for any matrix and with łshiftsž; here we only need the unshifted,
nonsingular square case.

Definition 7.2. For any row vector v ∈ K[x]1×δ its row degree

denoted degv is the maximal degree among its entries. The pivot
ofv is the rightmost entry ofv with degree degv . A nonsingular
matrix P = [pi j] ∈ K[x]δ×δ is in Popov form if pii is the pivot of
the ith row, is monic, and degpii > degpji for any j , i .

For a (free)K[x]-submoduleM ⊂ K[x]1×δ of rank δ , we identify
a basis ofM as the rows of a nonsingular matrix in K[x]δ×δ . Any
suchM has a unique basis P ∈ K[x]δ×δ in Popov form, which
we call the Popov basis ofM. It has minimal row degrees in the
following sense: if N ∈ K[x]δ×δ is another basis ofM, there is a
bijectionψ from the rows of P to the rows of N such that degp ≤
degψ (p) for any row p of P . The Popov basis satisfies ∆(M) =
∆(P) = |cdeg(P)|, using the following notation: the sum of the
entries of a tuple t ∈ Zδ≥0 is denoted |t |; the column degree of a

matrix B ∈ K[x]δ×δ is cdeg(B) = (di)δi=1 ∈ Z
δ
≥0, with di the largest

degree in the ith column of B (for a zero column, di = 0).
The next result allows us to compute Popov forms efficiently.

392

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov

Proposition 7.3 ([16]). There is an algorithm which inputs a

nonsingular matrix B ∈ K[x]δ×δ and outputs the Popov basis of

the K[x]-row space of B using Õ(δω−1 |cdeg(B)|) operations in K,
assuming that δ ∈ O(|cdeg(B)|).

Since Popov forms are łcolumn reducedž, they are well suited for
matrix division with remainder [10, Thm. 6.3-15]: if P ∈ K[x]δ×δ is
the Popov basis ofM, then for anyv ∈ K[x]1×δ there is a unique
u ∈ v +M such that cdeg(u) < cdeg(P) entrywise; we denote
u = v rem P . Furthermore, u has minimal row degree among all
vectors inv +M. Such remainders can be computed efficiently:

Proposition 7.4 ([16]). There is an algorithm which inputs a

Popov form P ∈ K[x]δ×δ and v ∈ K[x]1×δ such that cdeg(v) <
cdeg(P) + (∆(P), . . . ,∆(P)) entrywise, and outputs v rem P using

Õ(δω−1 ∆(P)) operations in K, assuming that δ ∈ O(∆(P)).

Algorithm 7 ComputeReshaper(G,η,δ)
Input: A reduced ≺lex-Gröbner basis G = {b0, . . . ,bs } ⊂
K[x ,y], sorted by increasing y-degree, for a zero-dimensional
ideal I (hence b0 ∈ K[x]); η,δ ∈ Z>0 with δ < η.
Output: If no polynomial in yη + I has y-degree < δ , łFail”;
otherwise, д = yη − д̂ ∈ I with degy д̂ < δ and degx д̂ minimal.

1: R ← yη remG

2: if degy R ≥ δ then return łFail”
3: Bδ ← basis of Iδ = { f ∈ I | degy f < δ } as in Corollary 7.1

4: B ∈ K[x]δ×δ ← row-wise applying ϕδ to elements of Bδ
5: P ∈ K[x]δ×δ ← Popov basis of Iδ from the basis B
6: д̂← −ϕ−1

δ
(ϕδ (R) rem P) ∈ K[x ,y]

7: return д = yη − д̂ ∈ K[x ,y]

Theorem 7.5. Algorithm 7 is correct. Assuming η ∈ O(∆(Iδ)), it
costs Õ(δω−1 ∆(Iδ) + ηs degx b0) operations in K.

Proof. Since G is a ≺lex-Gröbner basis, if yη + I contains a
polynomial of y-degree less than δ , then degy (yη remG) ≤ δ and
the algorithm does not fail at Line 2.

For correctness of the output, observe that yη − R ∈ I so satis-
factory д = yη − д̃ all have д̃ ∈ R + Iδ . Now, д̂ of Line 6 is clearly
in R + Iδ since P is the Popov basis of Iδ , but also д̂ has minimal
x-degree in the coset R + Iδ . Hence among all д of the correct form,
the algorithm returns that of minimal x-degree.

For complexity, work is done in Lines 1, 5 and 6. Since G is re-
duced, degx b0 > . . . > degx bs . Therefore the diagonal entries in B
are dominant in their columns and |cdegB | = ∆(B) = ∆(P) = ∆(Iδ).
For Line 1, we use the algorithm of [23] with cost Õ(ηs degx b0),
see Lemma A.2. Line 5 costs Õ(δω−1 |cdegB |) by Proposition 7.3
and Line 6 costs Õ(δω−1 ∆(P)) since degx R < degx b0 < ∆(P). □

7.2 Reshapers for the considered problems

We turn to obtaining the reduced ≺lex-Gröbner basis of Γ(P). We
will consider the K[x]-submodule Γm (P) = Γ(P) ∩ K[x ,y]degy<m
which by Lemma 2.2 and Corollary 7.1 is free and of rankm. To
obtain a ≺lex-Gröbner basis, our approach is to first compute the
Hermite basis of Γm (P). This is the unique basis whose correspond-
ing matrix H ⊂ K[x]m×m is lower triangular, with each diagonal
entry monic and strictly dominating the degrees in its column.

Lemma 7.6. For any point set P ⊆ K2 and anym > νx (P), we
have Γ(P) = ⟨Γm (P)⟩ and ∆(Γm (P)) = |P |.

Proof. By Lemma 2.2 the elements of the reduced ≺lex-Gröbner
basis of Γ(P) have y-degree at most νx (P), implying the first claim.
Further, this means the quotient K[x ,y]/Γ(P) is isomorphic to the
quotient of modules K[x ,y]degy<m/Γm (P). It is a basic property of

zero-dimensional varieties that the K-dimension of the former is
the number of points in P, which is hence also the K-dimension of
the latter. This dimension is ∆(Γm (P)) by [16, Lem. 2.3]. □

Proposition 7.7. There is an algorithm which inputs P ⊂ K2 and
outputs the reduced ≺lex-Gröbner basis of Γ(P) and has complexity

Õ(νx (P)ω−1 |P |).

Proof. Let Γ = Γ(P), Γm = Γm (P), andm = νx (P) + 1. We first
compute the Hermite basisH of Γm (P) in time Õ(mω−1 |P |) using (a
special case of) [9, Thm. 1.5], in which taking s = (0,n, . . . , (m−1)n)
ensures that the s-Popov basis P of Γm is the Hermite basis.

Let G = {д0, . . . ,дm−1} ⊂ K[x ,y] be given as the ϕ−1m -image
of the rows of H . By Lemma 7.6 and since H is lower triangular,
G is a ≺lex-Gröbner basis of Γ but not necessarily minimal. Con-
struct G ′ ⊆ G from G by excluding the elements д ∈ G such
that there is д′ ∈ G with degy д

′
< degy д and degx (LCy (д′)) ≤

degx (LCy (д)), i.e. LTlex(д′) divides LTlex(д). This makes G ′ a mini-
mal ≺lex-Gröbner basis of Γ [4, Lem. 3 of Chap. 2 ğ7], and we claim it
is the reduced one. Indeed, sinceH is in Hermite form, the selection
criteria for G ′ ensures that for any д , д′ in G ′ and any term x iy j

in д′, we have i < degx (LTlex(д)) or j < degy д, and hence G ′ is
reduced. Obtaining G ′ from H costs no arithmetic operations. □

Corollary 7.8. Given a point set P ⊆ K2 of cardinality n and

a reshaping sequence η = (ηi)ki=0 with n ≥ ηk and satisfying the

condition of Lemma 3.5, then we can determine if P is η-balanced

and compute an η-reshaper д = (дi)ki=1 for P where each element

has minimal possible x-degree in complexity Õ(kηω−10 n + η0νxnk).

Proof. By Proposition 7.7, computing a reduced ≺lex-Gröbner
basis G = (bi)νxi=0 of Γ(P) costs Õ(ν

ω−1
x n) ⊂ Õ(ηω−10 n). We then

run Algorithm 7 on input η = ηi and δi = 2ηi − ηi−1 + 1 > νx for
i = 1, . . . ,k . Lemma 7.6 ensures ∆(Γδ (P)) = n for any δ > νx , thus
the cost of each call to Algorithm 7 becomes Õ(ηω−10 n+η0νxn). □

Corollary 7.9. Given M,A ∈ K[x] with n := degM > degA
and a reshaping sequence η = (ηi)ki=0 with n ≥ ηk , then we can

determine if I := ⟨M,y−A⟩ isη-balanced and compute anη-reshaper

д = (дi)ki=1 for P where each element has minimal possible x-degree

in complexity Õ(kηω−10 n).

Proof. For any δ , and using the notation of Algorithm 7, the
basis B of Iδ is lower triangular with diagonal entries (M, 1, . . . , 1).
Hence ∆(B) = ∆(Iδ) = n. Using s = 1 and degx b0 = degx M = n,
the cost follows from Theorem 7.5. □

8 GENERICITY

Now we show that on random input our algorithms usually have
quasi-linear complexity, i.e. that random point sets are balanced
and that ⟨M,y −A⟩ is balanced for random univariate A,M .

393

Generic Bivariate Multi-point Evaluation, Interpolation and Modular Composition with Precomputation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 8.1. Let α1, . . . ,αn ∈ K be distinct, let y1, . . . ,yn be new

indeterminates, and consider for s ∈ Z>0 the matrix

As =
[

Vs | DVs | . . . | Dm−1Vs
]

∈ K[y1, . . . ,yn]n×ms (3)

where D is the diagonal matrix with entries (y1, . . . ,yn), and Vs =
[α j−1i]1≤i≤n,1≤j≤s ∈ K

n×s . Then As has rank min(n,ms).

Proof. Note that by rank of a matrix over K[y1, . . . ,yn], we
mean the rank of that matrix seen as over the field of fractions
K(y1, . . . ,yn). If we specialise yi to αsi for i = 1, . . . ,n, we obtain

the Vandermonde matrix Âs = [α j−1i]1≤i≤n,1≤j≤ms ∈ Kn×ms of

the points α1, . . . ,αn . Since these points are distinct, Âs has full
rank min(n,ms). Hence As must also have full rank. □

The columns of As can be identified to monomials x iy j with
i < s and j < m. In particular, if p ∈ Γ(P) is a bivariate polynomial
with x-degree less than s and y-degree less thanm which vanishes
on a point set P = {(αi , βi)}ni=1 ⊂ K

2 with distinct αi ’s, then the
coefficients of p form a vector in the right kernel of the matrix
Âs = (As) |yi→βi ∈ Kn×ms specializing yi to βi .

The next lemma determines the exact row degrees of the Popov
basis P ∈ K[x]m×m of ϕm (Γm (P)) for a łrandomž point set P,
where Γm (P) = Γ(P) ∩ K[x ,y]degy<m as in Section 7.2.

Lemma 8.2. Let α1, . . . ,αn ∈ K be distinct, let T ⊆ K be a finite

subset, and let λ : Kn → Kn be an affine map. For γ1, . . . ,γn ∈ T
chosen independently and uniformly at random, set P = {(αi , βi)}ni=1
where (β1, . . . , βn) = λ(γ1, . . . ,γn). Letm ∈ Z with νx (P) < m ≤ n
and let (d, t) =qo_rem(n,m). With probability at least 1−2nm/|T |,
the Popov basis P ∈ K[x]m×m of ϕm (Γm (P)) has exactlym − t rows
of degree d and t rows of degree d+1 and in particular degx P ≤ d+1.

Proof. Let p1, . . . ,pm ∈ K[x ,y] be the polynomials defined by
the rows of P . Lemma 2.2 shows ∆(P) = n = ∑m

i=1 degx pi .
For any s ∈ Z>0, letAs ∈ K[y1, . . . ,yn]n×ms be as in Lemma 8.1,

hence rank(As) = min(n,ms). Let Âs = (As) |yi→βi ∈ Kn×ms . Tak-
ing s = d , as mentioned above, if degx pi < d for some i , then the co-
efficient vector of pi is in the right kernel of Âd , and so rank(Âd) <
rank(Ad) =md ≤ n. Thus, lettingM ∈ K[y1, . . . ,yn] be a non-zero
md×md minor ofAd thenM(β1, . . . , βn) = M(λ(γ1, . . . ,γn)) = 0;M
has degree at mostm−1 in each variable, so the total degree ofM is
less than nm, and since λ is affine the compositionM(λ(z1, . . . , zn))
also has total degree less than nm. Then, by Lemma 2.1 the proba-
bility thatM(λ(γ1, . . . ,γn)) = 0 is at most nm/|T |.

Assume now that all rows of P have degree at least d . For each
i such that degx pi = d , the coefficients of pi form a vector in the

right kernel of Âd+1 ∈ Kn×m(d+1). By Lemma 8.1, Ad+1 has a right
kernel (over the fractions) of dimensionm(d + 1) −n =m − t . Since
the rows of P are linearly independent overK[x], and therefore also
over K, whenever rank(Âd+1) = rank(Ad+1) at mostm − t rows of
P have x-degree d . We thus consider N ∈ K[y1, . . . ,yn] a non-zero
n×n minor ofAd+1. Again N has total degree less than nm and the
probability that N (β1, . . . , βn) = N (λ(γ1, . . . ,γn)) = 0 is at most
nm/|T |, bounding the probability that rank(Âd+1) < rank(Ad+1).

Hence, with probability at least 1 − 2nd/|T |, P has all rows of
degree at least d and j rows of degree exactly d with j ≤ m− t . Each
of the remainingm − j rows has degree at least d + 1, while their

degrees must sum ton−jd =md+t−jd = (m−j)d+t ≤ (m−j)(d+1).
Hence each of them has degree exactly d + 1. □

Algorithm 7 for computing reshapers outputs a д = yη − д̂
with degy д̂ < δ satisfying degx д̂ ≤ degx P , where P is the Popov
basis of Γδ (P). Lemma 8.2 states that generically we can expect
degx P ≤ ⌊ nδ ⌋ + 1, and so when δ = 2ηi − ηi−1 + 1 in a reshaping
sequence, this matches the definition of η-balanced.

Corollary 8.3. Let α1, . . . ,αn ∈ K be distinct, let T ⊆ K a finite

subset, and let λ : Kn → Kn be an affine map. For γ1, . . . ,γn ∈ T
chosen independently and uniformly at random, set P = {(αi , βi)}ni=1
where (β1, . . . , βn) = λ(γ1, . . . ,γn). Let η = (ηi)ki=0 be a reshaping

sequence with η0 ≤ n and satisfying the constraint of Lemma 3.5.

Then P is η-balanced with probability at least 1 − n2k/|T |.

The above proposition directly applies to both ourMPE and inter-
polation algorithms on randompoint sets with uniquex-coordinates.
Note that in the case of interpolation, where the point set is sheared
if itsy-valency is greater than one, the property of beingη-balanced
is not inherited a priori by the sheared point set. The probability
of being η-balanced, however, is preserved, since the shearing acts
as an affine transformation on the y-coordinates. There are many
formulations depending on the type of randomness one needs over
the point sets; the following is a simple example over finite fields:

Corollary 8.4. Let d,n ∈ Z>0 with d ≤ n and Fq be a finite

field with q elements, and let P = {(αi , βi)}ni=1 ⊆ F
2
q be chosen

uniformly at random among point sets with cardinality n. Then with

probability of at least
(

1 − n2

q

) (

1 − 3n2(log3/2(n)+1)
q

)

over the choice

of P the following two problems can be solved with cost Õ(n):
(1) Input polynomial f ∈ Fq [x ,y] such that degx f < n/d and

degy f < d , and output (f (αi , βi))ni=1 ∈ F
n
q .

(2) Input interpolation values γ = (γi)ni=1 ∈ F
n
q , and output f ∈

Fq [x ,y] satisfying f (αi , βi) = γi for i = 1, . . . ,n, as well
as degy f < d and degx f ≤ cn for some constant c which

depends only on n and d .

Proof sketch. The probability simply bounds the probability
that P has unique x-coordinates and that it is balanced in all the
necessary ways. By Corollary 3.6 there is an appropriate reshaping
sequence of length at most log3/2(n) + 2. □

We do not make a claim about the genericity in Algorithm 4: due
to the shearing in that algorithm, the arguments of this section do
not immediately apply. Lastly, we turn to modular composition.

Theorem 8.5. LetM ∈ K[x] be square-free of degreen and letη be

a (d, 1)-reshaping sequence of length k with 0 < d ≤ n. Let T ⊆ K be

a finite subset, and let A =
∑n−1
i=0 aix

i−1 ∈ K[x] where a0, . . . ,an−1
are chosen independently and uniformly at random from T . Then
⟨M,y −A⟩ is η-balanced with probability at least 1 − n2k/|T |.

Proof. Let L be the splitting field of M , so M =
∏n

i=1(x − αi)
for some pairwise distinct α1, . . . ,αn ∈ L. Define the stochastic
variables βi = A(αi) for i = 1, . . . ,n; the map λ(a0, . . . ,an−1) =
(β1, . . . , βn) is L-linear. Consider P = {(αi , βi)}ni=1 ⊆ L

2. Then
Corollary 8.3 implies that P is η-balanced with probability at least

1− n2k
|T | . In this case, for each i there exists дi = yηi + д̂i ∈ IL where

394

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov

degy д̂i < 2ηi − ηi−1 and degx д̂i ≤ ⌊ n
2ηi−ηi−1+1 ⌋ + 1, and where

IL = ⟨M,y −A⟩ ⊗K L. Let {1, ζ , . . . , ζ s−1} ⊂ L be a basis of L : K
and write дi = дi,0 + ζдi,1 + . . . + ζ s−1дi,s−1 with дi, j ∈ K[x ,y].
Then дi ∈ IL implies that дi,0 ∈ I , and by the shape of дi then
дi,0 = y

ηi + д̂i,0 where the x- and y-degree of д̂i,0 satisfy the same
bounds as д̂i . Then the tuple д0 = (д1,0, . . . ,дk,0) ∈ K[x ,y]k forms
a balanced η-reshaper for I . □

REFERENCES
[1] E. F. Assmus and J. D. Key. 1992. Designs and Their Codes. Cambridge University

Press. https://doi.org/10.1017/CBO9781316529836
[2] R. P. Brent and H. T. Kung. 1978. Fast Algorithms for Manipulating Formal Power

Series. J. ACM 25, 4 (1978), 581ś595. https://doi.org/10.1145/322092.322099
[3] D. G. Cantor and E. Kaltofen. 1991. On fast multiplication of polynomials over

arbitrary algebras. Acta Informatica 28, 7 (1991), 693ś701. https://doi.org/10.
1007/BF01178683

[4] D. A. Cox, J. Little, and D. O’Shea. 2015. Ideals, Varieties, and Algorithms (4th ed.).
Springer. https://doi.org/10.1007/978-3-319-16721-3

[5] N. Coxon. 2018. Fast systematic encoding of multiplicity codes. J. Symb. Comput.
(2018). https://doi.org/10.1016/j.jsc.2018.08.005

[6] X. Dahan. 2009. Size of Coefficients of Lexicographical Gröbner Bases: The Zero-
Dimensional, Radical and Bivariate Case. In Proceedings ISSAC 2009. 119ś126.
https://doi.org/10.1145/1576702.1576721

[7] R. A. DeMillo and R. J. Lipton. 1978. A Probabilistic Remark on Algebraic Program
Testing. Inf. Process. Lett. 7, 4 (1978), 193ś195. https://doi.org/10.1016/0020-
0190(78)90067-4

[8] W. Hart, F. Johansson, and S. Pancratz. 2015. FLINT: Fast Library for Number
Theory. Version 2.5.2, http://flintlib.org.

[9] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. 2016. Fast Computation of
Minimal Interpolation Bases in Popov Form for Arbitrary Shifts. In Proceedings
ISSAC 2016. 295ś302. https://doi.org/10.1145/2930889.2930928

[10] T Kailath. 1980. Linear Systems. Prentice-Hall.
[11] K. Kedlaya and C. Umans. 2011. Fast Polynomial Factorization and Modular

Composition. SIAM J. Comput. 40, 6 (Jan. 2011), 1767ś1802. https://doi.org/10.
1137/08073408X

[12] D. Lazard. 1985. Ideal bases and primary decomposition: case of two variables. J.
Symb. Comput. 1, 3 (1985). https://doi.org/10.1016/S0747-7171(85)80035-3

[13] F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings
ISSAC 2014. ACM, 296ś303. https://doi.org/10.1145/2608628.2608664

[14] S. Miura. 1993. Algebraic geometric codes on certain plane curves. Electronics
and Communications in Japan (Part III: Fundamental Electronic Science) 76, 12
(1993), 1ś13. https://doi.org/10.1002/ecjc.4430761201

[15] V. Neiger, B. Salvy, É. Schost, and G. Villard. 2020. Faster modular composition
(work in progress).

[16] V. Neiger and T. X. Vu. 2017. Computing Canonical Bases ofModules of Univariate
Relations. In Proceedings ISSAC 2017. https://doi.org/10.1145/3087604.3087656

[17] M. Nüsken and M. Ziegler. 2004. Fast Multipoint Evaluation of Bivariate Polyno-
mials. In Proceedings ESA 2004. https://doi.org/10.1007/978-3-540-30140-0_49

[18] V. Y. Pan. 1994. Simple Multivariate Polynomial Multiplication. J. Symb. Comput.
18, 3 (1994), 183ś186. https://doi.org/10.1006/jsco.1994.1042

[19] M. S. Paterson and L. J. Stockmeyer. 1973. On the number of nonscalar multipli-
cations necessary to evaluate polynomials. SIAM J. Comput. 2, 1 (1973), 60ś66.
https://doi.org/10.1137/0202007

[20] V Popov. 1970. Some properties of the control systems with irreducible matrix-
transfer functions. In Seminar on Diff. Eq. and Dyn. Sys., II. 169ś180. https:
//doi.org/10.1007/BFb0059934

[21] J. T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Polynomial
Identities. J. ACM 27, 4 (1980), 701ś717. https://doi.org/10.1145/322217.322225

[22] V. Shoup. 2020. NTL: A Library for doing Number Theory, version 11.4.3.
http://www.shoup.net.

[23] J. van der Hoeven. 2015. On the complexity of multivariate polynomial division.
In Proceedings ACA 2015. 447ś458. https://doi.org/10.1007/978-3-319-56932-1_28

[24] J. van der Hoeven and G. Lecerf. 2018. Modular composition via factorization. J.
Complexity 48 (2018), 36ś68. https://doi.org/10.1016/j.jco.2018.05.002

[25] J. van der Hoeven and G. Lecerf. 2019. Fast multivariate multi-point evaluation
revisited. J. Complexity (2019). https://doi.org/10.1016/j.jco.2019.04.001

[26] J. van der Hoeven and É. Schost. 2013. Multi-point evaluation in higher di-
mensions. Appl. Algebra Eng. Commun. Comput. 24, 1 (2013), 37ś52. https:
//doi.org/10.1007/s00200-012-0179-3

[27] G. Villard. 2018. On computing the resultant of generic bivariate polynomials. In
Proceedings ISSAC 2018. 391ś398. https://doi.org/10.1145/3208976.3209020

[28] G. Villard. 2018. On computing the resultant of generic bivariate polynomials.
Presentation at ISSAC 2018. http://www.issac-conference.org/2018/slides/villard-
computingresultant.pdf

[29] J. von zur Gathen. 1990. Functional decomposition of polynomials: the tame case.
J. Symb. Comput. 9, 3 (1990). https://doi.org/10.1016/S0747-7171(08)80014-4

[30] J. von zur Gathen and J. Gerhard. 2013. Modern Computer Algebra (3rd ed.).
Cambridge University Press. https://doi.org/10.1017/CBO9781139856065

[31] R. Zippel. 1979. Probabilistic algorithms for sparse polynomials. In Proceedings
EUROSAM’79. 216ś226. https://doi.org/10.1007/3-540-09519-5_73

APPENDIX

Corollary A.1 (of [12]). Let G = {b0, . . . ,bs } ⊂ K[x ,y] be a
minimal ≺lex-Gröbner basis, sorted according to ≺lex. Then

(1) degy b0 < . . . < degy bs ; and
(2) LCy (bs) | LCy (bs−1) | · · · | LCy (b0).

Proof of Corollary 7.1. Since I is an ideal of K[x ,y] and Iδ =
I ∩ K[x ,y]degy<δ , then Iδ is a K[x]-submodule of K[x ,y]degy<δ .
Let B denote the (claimed) basis in the corollary. Clearly B ⊆
Iδ , and the elements of B all have different y-degree and so are
K[x]-linearly independent. Also |B| = δ − d0, so if B generates
Iδ then it is a basis of it and the rank of Iδ is δ − d0. It remains to
show that B generates Iδ , so take some f ∈ Iδ . Since f ∈ I the
multivariate division algorithm usingG and the order ≺lex results in
q0, . . . ,qs ∈ K[x ,y] such that f = q0b0 + . . .+qsbs with degy qi ≤
degy f − degy bi . Since degy f < δ this means qŝ+1 = . . . = qs = 0.
Say that in each iteration of the division algorithm, we use the
greatest index i for which LTlex(bi) divides the leading term of the
current remainder. Thus no term of qibi is divisible by LTlex(bi+1)
for any i < s . But by Corollary A.1 then LCy (bi+1) divides LCy (bi),
and so if degy (qibi) ≥ degy bi+1 then LTlex(bi+1) | LTlex(qibi).
Consequently degy qi < degy bi+1 − degy bi , and therefore f is a
K[x]-linear combination of the elements of B. □

Lemma A.2. There is an algorithm which inputs a ≺lex-Gröbner
basisG = [b0, . . . ,bs] ⊆ K[x ,y] with degy b0 = 0, and a polynomial

f ∈ K[x ,y], and outputs f remG in time Õ(|G |dx (degy f)), where
dx = max(degx f , degx b0).

Proof. This is a special case of [23]: the multivariate division
algorithm computes q0, . . . ,qs ,R ∈ K[x ,y] such that f = q0b0 +
. . . + qsbs + R with R = f remG , and the cost of the algorithm can
be bounded as

∑s
i=0 deg

◦
x (qibi) deg◦y (qibi) + deg◦x (R) deg◦y (R) ,

where deg◦x (·) denotes an a priori upper bound on the x-degree,
and similarly for deg◦y (·). Since G is a ≺lex-Gröbner basis, then
deg◦y (qibi) ≤ degy f and deg◦y (R) ≤ degy f . For the x-degrees,
note that in an iteration of the division algorithm where bi , i > 0
is used, then degx R̃ < degx b0, where R̃ is the current remain-
der, since otherwise the algorithm would have reduced by b0 as
degy b0 = 0. Hence degx (qi) ≤ degx (qiLTlex(bi)) < degx b0 and

so deg◦x (qibi) ≤ 2 degx b0. Similarly, deg◦x (R) < degx b0. Left is
only deg◦x (q0b0): since q0b0 = f − q1b1 − . . . − qsbs − R, then
degx (q0b0) ≤ max(degx f , 2 degx b0). □

395

https://doi.org/10.1017/CBO9781316529836
https://doi.org/10.1145/322092.322099
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1016/j.jsc.2018.08.005
https://doi.org/10.1145/1576702.1576721
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1016/0020-0190(78)90067-4
http://flintlib.org
https://doi.org/10.1145/2930889.2930928
https://doi.org/10.1137/08073408X
https://doi.org/10.1137/08073408X
https://doi.org/10.1016/S0747-7171(85)80035-3
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1002/ecjc.4430761201
https://doi.org/10.1145/3087604.3087656
https://doi.org/10.1007/978-3-540-30140-0_49
https://doi.org/10.1006/jsco.1994.1042
https://doi.org/10.1137/0202007
https://doi.org/10.1007/BFb0059934
https://doi.org/10.1007/BFb0059934
https://doi.org/10.1145/322217.322225
https://doi.org/10.1007/978-3-319-56932-1_28
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2019.04.001
https://doi.org/10.1007/s00200-012-0179-3
https://doi.org/10.1007/s00200-012-0179-3
https://doi.org/10.1145/3208976.3209020
http://www.issac-conference.org/2018/slides/villard-computingresultant.pdf
http://www.issac-conference.org/2018/slides/villard-computingresultant.pdf
https://doi.org/10.1016/S0747-7171(08)80014-4
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1007/3-540-09519-5_73

Conditional Lower Bounds on the Spectrahedral Representation
of Explicit Hyperbolicity Cones

Rafael Oliveira
rafael@uwaterloo.ca
University of Waterloo
Waterloo, Ontario

ABSTRACT

Over the past decade there has been growing interest on charac-

terizing which convex cones over R𝑛 are spectrahedral, that is, are

a linear section of the cone of positive semidefinite matrices. This

interest is largely motivated by applications in control theory, opti-

mization and combinatorics. One particular class of convex cones

of interest is the class of hyperbolicity cones, where the (still open)

Generalized Lax Conjecture states that every hyperbolicity cone is

spectrahedral. Recent works [1, 2] have established that the hyper-

bolicity cones of the elementary symmetric polynomials and the

homogeneous multivariate matching polynomial are spectrahedral,

but the question of whether there exists an efficient spectrahedral

representation for such cones remains open. Previous work [11]

has provided exponential lower bounds on the spectrahedral repre-

sentation of non-explicit hyperbolicity cones which are known to

be spectrahedral. The current best lower unconditional bounds for

explicit cones are the linear lower bounds proved by [7].

In this paper we establish the first superpolynomial hardness

of the minimal spectrahedral representation for an explicit family

of hyperbolicity cones, assuming Valiant’s VP vs VNP conjecture is

true, that is, that the permanent polynomial cannot be computed by

algebraic circuits of polynomial size. More precisely, we prove that

the hyperbolicity cone of Amini’s homogeneous matching polyno-

mial must require superpolynomial spectrahedral representations,

assuming that Valiant’s conjecture is true. This is the first work

providing a (conditional) superpolynomial lower bound on the

spectrahedral representation of an explicit hyperbolicity cone.

CCS CONCEPTS

· Theory of computation → Algebraic complexity theory;

Convex optimization; Semidefinite programming; · Mathemat-

ics of computing → Convex optimization.

KEYWORDS

Algebraic Complexity, Hyperbolic Polynomials, Hyperbolicity Cones,

Convex Optimization, Semidefinite Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404010

ACM Reference Format:

Rafael Oliveira. 2020. Conditional Lower Bounds on the Spectrahedral Rep-

resentation of Explicit Hyperbolicity Cones. In International Symposium on

Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3373207.

3404010

1 INTRODUCTION

Let x = (𝑥1, . . . , 𝑥𝑛) be a vector of variables 𝑥1, . . . , 𝑥𝑛 and a =

(𝑎1, . . . , 𝑎𝑛) ∈ R𝑛 be a vector of elements 𝑎1, . . . , 𝑎𝑛 from R. A

homogeneous polynomial ℎ(x) ∈ R[𝑥1, . . . , 𝑥𝑛] is hyperbolic with

respect to a direction e := (𝑒1, . . . , 𝑒𝑛) ∈ R𝑛 if ℎ(e) ≠ 0 and for

all vectors a ∈ R𝑛 , the univariate polynomial 𝑓 (𝑡) := ℎ(𝑡e − a)

only has real zeros. By a result due to Gårding [3], each hyperbolic

polynomial ℎ(x) defines a hyperbolicity cone, a closed convex cone

denoted by Λ+ (ℎ, e) and defined as

Λ+ (ℎ, e) := {a ∈ R𝑛 | all roots of ℎ(𝑡e − a) are non-negative}.

Gårding also showed [3] that Λ+ (ℎ, e) can be equivalently de-

fined as the closure of the connected component of {a ∈ R𝑛 |

ℎ(a) ≠ 0} that contains e.

Hyperbolic polynomials and hyperbolicity cones originated in

the theory of PDE in the works of Petrovsky and Gårding, and are of

importance in combinatorics and optimization. Hyperbolicity cones

are important objects in optimization, as they generalize semidefi-

nite cones and Güler [4] showed that one could generalize interior

point methods of optimization to hyperbolicity cones. Since then

the theory of hyperbolic programming has been vastly expanded,

see [12] and references therein.

Despite much progress on the optimization side of hyperbolic

programming, the geometric and complexity theoretic aspects of

hyperbolicity cones are much less understood.

On the geometric side, an important open question is concerned

with how general the class of hyperbolicity cones is. Spectrahedral

cones, that is, linear sections of the cone of positive semidefinite ma-

trices, form the most well-known examples of hyperbolicity cones.

The generalized Lax conjecture states that every hyperbolicity cone

is also a spectrahedral cone, whereas the projected Lax conjecture

states that every hyperbolicity cone is a linear projection of a spec-

trahedral cone. Despite much recent work and some impressive

progress on these conjectures [8, 10], they remain open.

The origins of these conjectures came from partial differential

equations. When the number of variables of a hyperbolic poly-

nomial is 3, say ℎ(𝑥,𝑦, 𝑧) is hyperbolic in direction (𝑎, 𝑏, 𝑐), Lax

conjectured [9] that any such hyperbolic polynomial could be writ-

ten as a determinant of a linear combination of symmetric matrices

of the form 𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶 such that 𝑎 · 𝐴 + 𝑏 · 𝐵 + 𝑐 · 𝐶 is positive

396

https://doi.org/10.1145/3373207.3404010
https://doi.org/10.1145/3373207.3404010
https://doi.org/10.1145/3373207.3404010

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Rafael Oliveira

definite. This conjecture certainly implies that for 3 variables, every

hyperbolicity cone is a spectrahedral cone. A positive answer to

this conjecture was given by Helton and Vinnikov [5].

On the complexity theoretic side, very little is known about the

complexity of representing hyperbolicity cones which are known

to be spectrahedral. In the recent work [11], the authors prove

exponential lower bounds even for approximate spectrahedral rep-

resentations of non-explicit hyperbolicity cones which are spectra-

hedral. However, prior to the present work, no superpolynomial

lower bound on the spectrahedral representation for an explicit

hyperbolicity cone which is also spectrahedral was known. In the

next section we present our main result and the overview of its

proof, which is given formally in the next sections.

1.1 Main result and proof overview

In this paper, we prove a conditional lower bound on the minimal

spectrahedral representation of the hyperbolicity cone of an explicit

family of spectrahedral polynomials. More precisely, we prove the

following theorem:

Theorem 1.1. There exists an explicit family of hyperbolic polyno-

mials {ℎ𝑛 (x)}𝑛≥1 and directions {e𝑛}𝑛≥1, where ℎ𝑛 (x) has poly(𝑛)

variables and poly(𝑛) degree, whose hyperbolicity cone Λ+ (ℎ𝑛, e𝑛)

is spectrahedral and such that any spectrahedral representation of

Λ+ (ℎ𝑛, e𝑛) must have superpolynomial size in 𝑛, assuming that

VP ≠ VNP.

High-level ideas of the proof: The high level idea guiding the

proof of Theorem 1.1 comes from the combination of the four facts

below:

(1) Every spectrahedral cone has a corresponding definite de-

terminantal representation. This follows by the definition of

the spectrahedral cone.

(2) Irreducible hyperbolic polynomials are the minimal defining

polynomials of their hyperbolicity cones. This fact follows

from standard results in real algebraic geometry, and a proof

is given in [5, Lemma 2.1].

(3) A necessary condition for the hyperbolicity cone of an irre-

ducible hyperbolic polynomialℎ(x) to be spectrahedral is the

existence of a definite determinantal polynomial which is a

multiple ofℎ(x). In Proposition 2.4 a necessary and sufficient

condition is given.

(4) Factors of polynomials of small degree computed by small

algebraic circuits also have small algebraic circuits, as was

proved in the seminal work [6].

The facts above yield a useful necessary condition for a hyperbolic-

ity cone to have a polynomial sized spectrahedral representation,

and this necessary condition comes from algebraic complexity: the

hyperbolic polynomial must be computed by polynomial sized cir-

cuits! This can be seen as follows: given a hyperbolicity cone, take

its minimal defining polynomial ℎ(x). By [5, Lemma 2.1], any other

polynomial 𝑞(x) defining the same hyperbolicity cone must be a

multiple of ℎ(x). If the hyperbolicity cone of ℎ(x) is spectrahedral,

then there is a definite determinantal polynomial 𝐷 (x) defining the

hyperbolicity cone of ℎ(x). If 𝐷 (x) can be defined by polynomial

sized matrices, then the polynomial 𝐷 (x) can be computed by poly-

nomial sized circuits. Thus, Kaltofen’s seminal result (item 4) tells

us that ℎ(x) can also be computed by polynomial sized circuits!

With the necessary condition above, the proof strategy is straight-

forward: simply construct an explicit irreducible hyperbolic poly-

nomial ℎ(x) that requires superpolynomial sized algebraic circuits

to compute it, and whose hyperbolicity cone is spectrahedral. Irre-

ducibility of ℎ(x) implies that it is the minimal defining polynomial

of its hyperbolicity cone, by item 2 above. Hardness of ℎ(x) and

the necessary condition given by the previous paragraph, implies

that any definite determinantal representation of the hyperbolicity

cone of ℎ(x) must have superpolynomial size.

The only task left is to construct an irreducible hyperbolic poly-

nomial which has a spectrahedral hyperbolicity cone and that is

hard to compute by algebraic circuits. And it just so happens that

Amini’s homogeneous matching polynomial over the complete bi-

partite graph has all the properties above. Amini [1] shows that the

homogeneous matching polynomial has a spectrahedral hyperbol-

icity cone. In Section 4 we show that this polynomial is irreducible

for the complete bipartite graph.

Since we do not currently know superpolynomial lower bounds

on the circuit complexity of any explicit polynomial, we will prove

a conditional lower bound, which is based on Valiant’s conjecture

that VP ≠ VNP. Valiant’s conjecture can be stated as: the Perma-

nent polynomial cannot be computed by polynomial sized circuits.

Thus, to prove that Amini’s homogeneous matching polynomial

is hard, we prove a reduction result: we show that if the matching

polynomial of the complete bipartite graph can be computed by

polynomial sized circuits, then there is a polynomial sized circuit

computing the Permanent.

1.2 Related Work

Much work in the past decade has focused on proving generaliza-

tions of the Lax conjecture, whose aim is to relate hyperbolicity

cones to spectrahedral cones. The generalized Lax conjecture states

that every hyperbolicity cone is spectrahedral, while the projected

Lax conjecture states that every hyperbolicity cone is the projection

of a spectrahedral cone.

In [8], the author makes progress towards the generalized Lax

conjecture, proving that every smooth hyperbolic polynomial is

a factor of a definite determinantal polynomial, thus establishing

one part of the equivalence from Proposition 2.4. In [10], the au-

thors prove that smooth hyperbolicity cones are projections of

spectrahedra, thus showing that the projected Lax conjecture is

holds for almost all hyperbolicity cones. However, in these papers

the computational complexity of their constructions is still left un-

explored, and the current work is a step forward in understanding

the computational complexity of these hyperbolicity cones.

On the lower bounds/impossibility side, [13] proves that many

compact convex semialgebraic sets in euclidean space are not pro-

jections of spectrahedra. In [11], the authors prove exponential

lower bounds on the spectrahedral representations of non-explicit

spectrahedral hyperbolicity cones. Their lower bounds are uncon-

ditional, albeit being non-explicit.

397

Conditional Lower Bounds on the Spectrahedral Representation of Explicit Hyperbolicity Cones ISSAC ’20, July 20–23, 2020, Kalamata, Greece

1.3 Organization

In Section 2 we formally define hyperbolic polynomials and their

hyperbolicity cones, spectrahedral cones and definite determinantal

representations, establishing the basic facts about them, as well as

the interconnections between these concepts. In Section 3 we estab-

lish the basic definitions and facts that we will need from Algebraic

Complexity Theory, including the irreducibility and hardness of

a variant of the Permanent polynomial. In Section 4 we prove the

main result of the paper, which is the conditional lower bound on

the spectrahedral representation of the hyperbolicity cone of the

matching polynomial. In Section 5 we conclude and present some

open problems.

2 HYPERBOLIC POLYNOMIALS AND

SPECTRAHEDRALITY

In this section we formally define hyperbolic polynomials, definite

determinantal representations, spectrahedral representations, and

establish the known relationships between these three concepts.

2.1 Hyperbolic Polynomials and Definite

Determinantal Representation

In this section we formally give the main definitions and back-

ground needed from hyperbolic polynomials and definite determi-

nantal representations which will be used in the later sections.

Definition 2.1 (Hyperbolic Polynomial). A homogeneous polyno-

mial ℎ(x) ∈ R[x] of degree 𝑑 is hyperbolic with respect to direction

e ∈ R𝑛 if ℎ(e) ≠ 0 and for every a ∈ R𝑛 , the univariate polynomial

ℎ(𝑡 · e − a) is real rooted (counting their multiplicities). That is,

ℎ(𝑡 · e − a) has exactly 𝑑 real roots.

Definition 2.2 (Hyperbolicity Cone). If ℎ(x) ∈ R[x] is a hyper-

bolic polynomial with respect to direction e, its hyperbolicity cone

is the set defined by

Λ+ (ℎ, e) := {a ∈ R𝑛 | all roots of ℎ(𝑡e − a) are non-negative }.

Definition 2.3 (Definite Determinantal Representation). We say

that a homogeneous polynomialℎ(𝑥) ∈ R[x] has a definite determi-

nantal representation at b ∈ R𝑛 if there are 𝐴1, . . . , 𝐴𝑛 ∈ Sym𝑑 (R)

and 𝜆 ∈ R∗ such that:

(1)

𝑛∑
𝑖=1

𝑏𝑖 · 𝐴𝑖 ≻ 0

(2) ℎ(x) = 𝜆 · det

(
𝑛∑
𝑖=1

𝑥𝑖 · 𝐴𝑖

)
.

Proposition 2.4 (Spectrahedral Representation Eqivalent

Formulation [17]). Let ℎ ∈ R[x] be hyperbolic with respect to

e ∈ R𝑛 . The hyperbolicity cone Λ+ (ℎ, e) is spectrahedral if, and only

if, there is a hyperbolic polynomial 𝑞 ∈ R[x] with respect to e such

that the following two conditions are satisfied:

(1) 𝑞 · ℎ has a definite determinantal representation at e

(2) Λ+ (ℎ, e) ⊆ Λ+ (𝑞, e).

The following follows from [5, Lemma 2.1]. It essentially states

that the hyperbolicity cone Λ+ (ℎ, e) of an irreducible hyperbolic

polynomial ℎ has the polynomial ℎ as its minimal defining polyno-

mial. That is, any other polynomial 𝑔 also defining Λ+ (ℎ, e) must

be a multiple of ℎ.

Proposition 2.5 (Hyperbolic Cones of Irreducible Polyno-

mials). If ℎ ∈ R[x] is an irreducible and hyperbolic polynomial with

respect to e ∈ R𝑛 , and 𝑞 ∈ R[x] is a hyperbolic polynomial such that

Λ+ (ℎ, e) = Λ+ (𝑞, e), then ℎ divides 𝑞.

If a hyperbolicity cone Λ+ (ℎ, e) is spectrahedral, i.e. a linear

section of the positive semidefinite cone, let

Λ+ (ℎ, e) =

{
a ∈ R𝑛 |

∑
𝑖=1

𝑎𝑖 · 𝐴𝑖 ⪰ 0

}

be any spectrahedral representation of the hyperbolicity cone,

where 𝐴𝑖 ∈ 𝑆𝑦𝑚𝐷 (R) are real symmetric matrices of dimension 𝐷 .

In this case, we have that 𝑃 (x) = Det(
∑𝑛
𝑖=1𝐴𝑖 ·𝑥𝑖) is a hyperbolic

poylnomial at e such that Λ+ (𝑃, e) = Λ+ (ℎ, e). Thus, if ℎ(x) is an

irreducible polynomial, by Proposition 2.5, we must have that ℎ(x)

divides 𝑃 (x). We will need this fact in the proof of our main result

in Section 4.

2.2 Homogeneous Multivariate Matching

Polynomial

In this section we describe our candidate hard polynomial, which

was first defined in [1, Definition 2.1] as a multivariate generaliza-

tion of the univariate matching polynomial from algebraic combi-

natorics, and as a variant on the multivariate matching polynomial

of Heilmann and Lieb.

Definition 2.6 (HomogeneousMultivariateMatching Polynomial [1]).

Let 𝐺 (𝑉 , 𝐸) be an undirected graph, x = (𝑥𝑣)𝑣∈𝑉 and w = (𝑤𝑒)𝑒∈𝐸
be indeterminates. The homogeneous multivariate matching polyno-

mial is defined by

𝜇𝐺 (x,w) =
∑

𝑀 ∈M(𝐺)

(−1) |𝑀 | ·
∏

𝑣∉𝑉 (𝑀)

𝑥𝑣 ·
∏
𝑒∈𝑀

𝑤2
𝑒 , (1)

where in the equation above M(𝐺) is the set of all matchings of

𝐺 (including the empty set), 𝑀 is a matching of 𝐺 (the collection

of edges forming the matching), 𝑉 (𝑀) is the set of vertices partic-

ipating in the matching 𝑀 and |𝑀 | is the number of edges in the

matching.

Remark 2.7. Note that if a graph𝐺 has perfect matchings, they

are captured by 𝜇𝐺 (x,w) by setting x = 0. That is,

𝜇𝐺 (0,w) =
∑

𝑀 is perfect matching

(−1) |𝑀 | ·
∏
𝑒∈𝑀

𝑤2
𝑒

Throughout this section, we let e := (1𝑉 , 0𝐸) be the direction

given by the all one’s vector in the variables (𝑥𝑣)𝑣∈𝑉 and the zero

vector in the variables (𝑤𝑒)𝑒∈𝐸 . In [1, Theorem 2.12], Amini shows

that the hyperbolicity cone Λ+ (𝜇𝐺 , e) is spectrahedral.

Proposition 2.8 (Spectrahedrality of Matching Polyno-

mial [1]). The hyperbolicity cone Λ+ (𝜇𝐺 (x,w), e) is spectrahedral.

From the fact above, together with Proposition 2.4, we obtain

the following corollary.

Corollary 2.9. There exists a hyperbolic polynomial 𝑞 ∈ R[x,w]

w.r.t. direction e such that the polynomial 𝑞 · 𝜇𝐺 (x,w) has a definite

determinantal representation and Λ+ (𝜇𝐺 , e) ⊆ Λ+ (𝑞, e).

398

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Rafael Oliveira

3 ALGEBRAIC COMPLEXITY

In this section, we define the basic notions of algebraic complexity

and establish the basic facts which we will need for the proof of

our main theorem in the next section. We start with the definition

of an algebraic circuit, which can be found in [14].

Definition 3.1 (Algebraic Circuits). An algebraic circuit Φ over a

field F and a set of variables x = (𝑥1, . . . , 𝑥𝑛) is a directed acyclic

graph defined as follows. The vertices of Φ are the gates of the

circuit, and each gate of indegree 0 is labeled by either a variable

from x or by a field element from F. Every other gate in Φ is labeled

by either +,× and has indegree 2.

From the definition above, one can see that an algebraic circuit

computes polynomials in a natural way. Each input gate is either a

variable or a field element, and a + gate computes the polynomial

given by the sum of its input gates, and a × gate computes the

product of its input gates. We say that a circuit Φ computes a

polynomial 𝑝 if there is a gate of Φ which computes the polynomial

𝑝 .

The size of an algebraic circuit is defined as the number of gates

in the circuit. The formal degree of a circuit Φ is defined inductively

as follows: an input gate of Φ has degree 1 if it is a variable, and

0 otherwise. For any + gate 𝑢 = 𝑣 + 𝑤 of the circuit, we make

deg(𝑢) = max{deg(𝑣), deg(𝑤)} and for a × gate 𝑢 = 𝑣 × 𝑤 we

make deg(𝑢) = deg(𝑣) + deg(𝑤). We define the degree of Φ as the

maximum degree among the degrees of the gates of Φ.

We say that a circuit Φ is a homogeneous circuit if each gate of Φ

computes a homogeneous polynomial. Note that in a homogeneous

circuit Φ computing a (homogeneous) polynomial 𝑝 of degree 𝑑

only the gates of degree ≤ 𝑑 are needed from Φ. Hence, if we are

interested in the computation of 𝑝 alone, we can assume that Φ has

degree 𝑑 as well.

Given a polynomial 𝑝 (x), denote its homogeneous component of

degree 𝑟 by𝐻𝑟 [𝑝 (x)]. The following proposition due to [15] tells us

that given an algebraic circuit of polynomial size, we can efficiently

compute its low degree components with algebraic circuits. A proof

can be found in [14, Theorem 2.2].

Proposition 3.2 (Complexity of Computing Homogeneous

Components [15]). If 𝑝 (x) ∈ R[x] can be computed by an algebraic

circuit Φ(x) of size 𝑠 , then for every 𝑟 ∈ N, there is a homogeneous cir-

cuit Ψ(x) of size at most𝑂 (𝑟2𝑠) computing 𝐻0 [𝑝 (x)], . . . , 𝐻𝑟 [𝑝 (x)].

Remark 3.3. Note that in the proposition above, there is no require-

ment on the degree of the circuit Φ, while the homogeneous circuit Ψ

will have degree bounded by 𝑟 .

One of themain goals of algebraic complexity theory is to classify

which families of polynomials {𝑝𝑛}𝑛≥1 where 𝑝𝑛 ∈ F[𝑥1, . . . , 𝑥𝑛]

can be computed by a family of algebraic circuits {Φ𝑛}𝑛≥1 of poly-

nomial size. The theory has mostly been concerned with families

of polynomials {𝑝𝑛}𝑛≥1 with deg(𝑝𝑛) being a polynomial function

of 𝑛.

For such families of polynomials having polynomial degree in

the number of variables, the class of families of polynomials which

can be computed by a family of algebraic circuits of polynomial

size is denoted by VP. This is the class of łefficiently computablež

polynomials.

One of the most important family of polynomials which is in VP

is the family defined by the determinant polynomial: given an 𝑛 ×𝑛

symbolic matrix 𝑋 ,

Det𝑛 (𝑋) =
∑
𝜎 ∈𝑆𝑛

(−1)𝜎
𝑛∏
𝑖=1

𝑋𝑖𝜎 (𝑖) .

Another important class of families of polynomials is the class

denoted by VNP, which is the algebraic analogue of the class NP,

and informally speaking is the class of families of polynomials

which can be łdefined efficiently.ž For a more precise definition

see [14, Definition 1.3].

There is a beautiful theory of completeness and reductions for

these algebraic classes, analogue to the theory developed in the

boolean setting for P and NP, whose origins trace back to the

seminal work of Valiant [16]. One of the major open problems

in algebraic complexity theory, posed by Valiant, is whether the

classes VP and VNP are different or not.

One complete family of polynomials in VNP is defined by the

permanent polynomial: given an 𝑛 × 𝑛 symbolic matrix 𝑋 ,

Per𝑛 (𝑋) =
∑
𝜎 ∈𝑆𝑛

𝑛∏
𝑖=1

𝑋𝑖𝜎 (𝑖) ,

and therefore the VP versus VNP question can be stated as:

Conjecture 3.4 (Valiant’s VP ≠ VNP Conjecture). The fam-

ily defined by the permanent polynomials {Per𝑛 (𝑋)}𝑛 ≥ 1 cannot

be computed by circuits in VP.

For the sake of conciseness, we shall fromnowon refer to a family

of polynomials simply by one of its elements. For instance, when

talking about the family defined by the permanent polynomials

of degree 𝑛, we shall simply talk about the polynomial Per𝑛 (𝑋).

The parameter defining the family of polynomials is 𝑛. Thus, we

will refer to the polynomial Per𝑛 (𝑋) and the family {Per𝑛 (𝑋)}𝑛≥1
interchangeably.

The class VP enjoys many closure properties under fundamental

algebraic operations. One of its most remarkable was proved in the

seminal work of Kaltofen [6] and states that the class VP is closed

under factorization.

Proposition 3.5 (Factors are Closed in VP [6]). If a polyno-

mial 𝑝 (x) ∈ R[x] of degree 𝑑 can be computed by an algebraic circuit

of size 𝑠 , then any factor𝑔(x) of the polynomial 𝑝 (x) can be computed

by an algebraic circuit of size poly(𝑛, 𝑠, 𝑑).

We now proceed to establishing two lemmas that shall be im-

portant for us in the subsequent sections. From now on, we will

be working over the base field R. The first lemma establishes the

VNP-hardness of a particular polynomial: the squared permanent

polynomial, which is defined below.

Lemma 3.6 (Complexity of the sqared Permanent). Let𝑊 =

(𝑤2
𝑖, 𝑗)

𝑛
𝑖,𝑗=1 be a symbolic matrix over the variables w = (𝑤𝑖, 𝑗)

𝑛
𝑖,𝑗=1. If

VP ≠ VNP then any algebraic circuit computing Per𝑛 (𝑊) must have

superpolynomial size.

Proof. Assume, for the sake of contradiction, that there is a

circuit Φ(w) of size 𝑂 (𝑛𝑐) computing Per𝑛 (𝑊), where 𝑐 ∈ Z is a

positive constant.

399

Conditional Lower Bounds on the Spectrahedral Representation of Explicit Hyperbolicity Cones ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Let 𝑢𝑖, 𝑗 = (1 − 𝑥𝑖, 𝑗)
1/2. Then, Φ(u) = Per𝑛 (𝐽 − 𝑋), where 𝐽 is

the all-ones matrix and 𝑋 = (𝑥𝑖, 𝑗) is a pure symbolic matrix.

Each 𝑢𝑖, 𝑗 is a univariate real analytic function on the variable

𝑥𝑖, 𝑗 over the ball of radius 1/2 around the origin. Take the Taylor

expansion of 𝑢𝑖, 𝑗 around 𝑥𝑖, 𝑗 = 0. Call this Taylor series 𝑣𝑖, 𝑗 . The

truncated Taylor series 𝑣𝑖, 𝑗 , truncated at degree 𝑛, can be computed

by an algebraic circuit of size𝑂 (𝑛), as it is an univariate polynomial

of degree 𝑛. Let 𝑇𝑖, 𝑗 be the truncation of 𝑣𝑖, 𝑗 at degree 𝑛.

Letting 𝑇 = (𝑇𝑖, 𝑗)
𝑛
𝑖,𝑗=1, we have that

(−1)𝑛 · Per𝑛 (𝑋) = 𝐻𝑛 [Per𝑛 (𝐽 − 𝑋)] = 𝐻𝑛 [Φ(𝑇)] .

Note that Φ(𝑇) is a circuit of size1 𝑂 (𝑛𝑐+3), as we replaced each

variable𝑤𝑖, 𝑗 in the cicuit Φ(w) by the truncated Taylor expansion

𝑇𝑖, 𝑗 of 𝑢𝑖, 𝑗 , and we saw that each 𝑇𝑖, 𝑗 can be computed by a circuit

of size 𝑂 (𝑛). As there are 𝑛2 such Taylor expansions, the size is

𝑂 (𝑛𝑐+3).

By applying Proposition 3.2, the homogeneous part of degree 𝑛

of Φ(𝑇) can be computed by a homogeneous circuit of size 𝑂 (𝑛2 ·

𝑛𝑐+3) = 𝑂 (𝑛𝑐+5) and degree 𝑛. This implies that Per(𝑋) ∈ VP,

which would imply that VP = VNP. □

We will also need to establish that the squared permanent is an

irreducible polynomial. This will be important in our proof that

the homogeneous matching polynomial of the complete bipartite

graph is irreducible.

Lemma 3.7 (Irreducibility of the sqared Permanent). Let

𝑛 ≥ 2 and𝑊 = (𝑤2
𝑖, 𝑗)

𝑛
𝑖,𝑗=1 be a symbolic matrix over the variables

w = (𝑤𝑖, 𝑗)
𝑛
𝑖,𝑗=1. Then the polynomial Per(𝑊) is irreducible over

R[w].

Proof. Suppose Per(𝑊) = 𝑝 (w) · 𝑞(w). Assume there is some

entry (𝑖, 𝑗) ∈ [𝑛]2 such that 𝑝 (w) is linear w.r.t. 𝑤𝑖, 𝑗 . In this case,

𝑞(w) is also linear w.r.t.𝑤𝑖, 𝑗 andwewould have 𝑝 (w) = 𝑎𝑝 ·𝑤𝑖, 𝑗 +𝑏𝑝
and 𝑞(w) = 𝑎𝑞 ·𝑤𝑖, 𝑗 + 𝑏𝑞 , where 𝑎𝑝 , 𝑏𝑝 , 𝑎𝑞, 𝑏𝑞 ∈ R[w] are nonzero

polynomials which do not depend on𝑤𝑖, 𝑗 . In this case, we have that

𝑎𝑝 · 𝑎𝑞 computes the permanent of the (𝑖, 𝑗)-minor of𝑊 (and thus

is a sum of squares polynomial) and we have that 𝑏𝑝 · 𝑏𝑞 computes

another sum of squares polynomial (due to the cofactor expansion

of the Permanent). This implies that 𝑎𝑝 · 𝑎𝑞 > 0 for all its non-zero

values, and so is 𝑏𝑝 · 𝑏𝑞 > 0.

However, as Per(𝑊) = 𝑝 (w) · 𝑞(w), the linear term in 𝑤𝑖, 𝑗 in

the multiplication 𝑝 (w) ·𝑞(w) must vanish, thus implying 𝑎𝑝 ·𝑏𝑞 +

𝑎𝑞 · 𝑏𝑝 = 0, which implies that 𝑎𝑝 · 𝑏𝑞 · 𝑎𝑞 · 𝑏𝑝 < 0 for any non-

zero evaluation of these polynomials, contradicting the previous

paragraph.

Thus, we are left with the case where for each𝑤𝑖, 𝑗 , we have that

either 𝑝 (w) = 𝑤2
𝑖, 𝑗 ·𝑎𝑝 +𝑏𝑝 and 𝑞(w) = 𝑏𝑞 , where 𝑎𝑝 , 𝑏𝑝 , 𝑏𝑞 ∈ R[w]

do not depend on 𝑤𝑖, 𝑗 , or the other way around (𝑞 is the purely

quadratic polynomial in𝑤𝑖, 𝑗 whereas 𝑝 is constant in𝑤𝑖, 𝑗). In this

case, since no linear terms on any𝑤𝑖, 𝑗 appear in the factorization

Per(𝑊) = 𝑝 (w) · 𝑞(w), this factorization after doing a change of

variables 𝑥𝑖, 𝑗 = 𝑤
2
𝑖, 𝑗 yields a polynomial factorization of the usual

permanent, which is known to be irreducible for 𝑛 ≥ 2. □

1The more precise bound is𝑂 (𝑛max(𝑐,3)) , since the size of a composition of circuits is
simply the sum of the sizes of the circuits being used.

4 COMPLEXITY OF DEFINITE

DETERMINANTAL REPRESENTATIONS

In this sectionwe prove themain result of this paper: the conditional

complexity lower bound on the spectrahedral representation of the

matching polynomial for the complete bipartite graph 𝐾𝑛,𝑛 .

For this section, we will let 𝜇 (x,w) ≜ 𝜇𝐾𝑛,𝑛
(x,w) and e =

(1𝑛, 1𝑛, 0𝐸 (𝐾𝑛,𝑛)) be the hyperbolicity direction for 𝜇 (x,w) from

Amini’s theorem.

Lemma 4.1 (Complexity of Complete Bipartite Matching

Polynomial). Assuming VP ≠ VNP, that is, that the permanent

polynomial has super-polynomial circuit size, then the polynomial

𝜇 (x,w) requires super polynomial size circuits.

Proof. Let 𝑊 = (𝑤2
𝑖 𝑗)
𝑛
𝑖,𝑗=1 be a symbolic matrix. Note that

𝜇 (0,w) = Per𝑛 (𝑊). By Lemma 3.6 and our assumption that VP ≠

VNP, we have that 𝜇 (0,w) requires superpolynomial-sized circuits

to compute it.

If Φ(x,w) is any algebraic circuit computing 𝜇 (x,w) with size 𝑠

(i.e., having 𝑠 gates, one of them computing the polynomial 𝜇 (x,w)),

the circuit Φ(0,w), obtained by setting the input variables x to 0,

also has size ≤ 𝑠 and computes the polynomial 𝜇 (0,w). As Φ(0,w)

requires superpolynomial size, by the previous paragraph, we also

have that Φ(x,w) requires superpolynomial size. □

Lemma 4.2 (Irreducibility of Complete Bipartite Matching

Polynomial). The polynomial 𝜇 (x,w) is irreducible over R[x,w].

Proof. Suppose, for the sake of contradiction, that 𝜇 (x,w) fac-

tors. Then, there exist polynomials 𝑝 (x,w) and 𝑞(x,w) such that

𝜇 (x,w) = 𝑝 (x,w) · 𝑞(x,w). Consider the polynomials above in the

ring (R[w]) [x]. As the constant coefficient of 𝜇 (x,w) is 𝜇 (0,w) =

(−1)𝑛 · Per𝑛 (𝑊), which is nonzero, we must have that 𝑝 (0,w) and

𝑞(0,w) are nonzero. However, by Lemma 3.7, we have that Per𝑛 (𝑊)

is irreducible, which implies w.l.o.g. that 𝑝 (0,w) = (−1)𝑛 ·Per𝑛 (𝑊)

and 𝑞(0,w) = 1.

Since 𝜇 (x, 0) =
∏

1≤𝑖≤2𝑛

𝑥𝑖 is nonzero, we must have 𝑝 (x, 0) and

𝑞(x, 0) are nonzero. If we look at 𝜇 (x, 0) = 𝑝 (x, 0) ·𝑞(x, 0), we have

that 𝑞(x, 0) must either be constant or a monomial over x. As the

previous paragraph implies 𝑞(0, 0) = 1, 𝑞(x, 0) cannot be a non-

constant monomial over x, as that would imply 𝑞(0, 0) = 0. Hence,

we have that 𝑝 (x, 0) =
∏

1≤𝑖≤2𝑛

𝑥𝑖 .

If 𝑞(x,w) is a non-constant polynomial, any of its non-constant

monomials must depend on both x and w variables, as 𝑞(0,w) =

𝑞(x, 0) = 1. If 𝑞(x,w) depends on some x variable, say 𝑥1 w.l.o.g.,

write 𝑞(x,w) = 𝑞1 (x,w)𝑥1 + 𝑞0 (x, y), where 𝑞0 does not depend

on 𝑥1. As 𝜇 (x,w) is linear in 𝑥1, we must have that 𝑞 is linear in

𝑥1 and 𝑝 does not depend on 𝑥1. However, this contradicts the fact

that 𝑝 (x, 0) =
∏

1≤𝑖≤2𝑛

𝑥𝑖 . Hence, we conclude that 𝑞(x,w) does not

depend on any x variable, which implies 𝑞(x,w) = 𝑞(0,w) = 1,

which proves that 𝜇 (x,w) is irreducible. □

Putting the pieces together, we can now prove our main result:

assuming that VP ≠ VNP, any spectrahedral representation of the

hyperbolicity cone of the complete bipartite matching polynomial

has superpolynomial size.

400

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Rafael Oliveira

Theorem 4.3 (Hardness of Spectrahedral Representation).

Assuming that VP ≠ VNP, the following is true: any spectrahedral

representation of the spectrahedral cone Λ+ (𝜇, e) of the matching

polynomial 𝜇𝐾𝑛,𝑛
(x,w) has superpolynomial dimension.

Proof. Let (𝐴𝑖)𝑖∈[𝑛] ∪ (𝐵 𝑗)𝑗 ∈[𝑛] ∪ (𝐶 (𝑖, 𝑗))(𝑖, 𝑗) ∈[𝑛]2 be a spec-

trahedral representation of the hyperbolicity cone Λ+ (𝜇, e) of the

polynomial 𝜇 (x,w), where 𝐴𝑖 , 𝐵 𝑗 ,𝐶 (𝑖, 𝑗) ∈ 𝑆𝑦𝑚𝑑 (R) are real sym-

metric matrices of dimension𝑑 such that
∑
𝑖∈[𝑛] 𝐴𝑖 +

∑
𝑗 ∈[𝑛] 𝐵 𝑗 ≻ 0.

Let

𝑔(x,w) = Det
©«
𝑛∑

𝑖, 𝑗=1

𝐴𝑖𝑥𝑖 + 𝐵 𝑗𝑥𝑛+𝑗 +𝐶 (𝑖, 𝑗)𝑤 (𝑖, 𝑗)
ª®¬

The irreducibility of 𝜇 (x,w) proved in Lemma 4.2, together with

Proposition 2.5 tell us that 𝜇 (x,w) divides 𝑔(x,w). If 𝑑 = poly(𝑛),

the equality above gives an arithmetic circuit of size poly(𝑑) com-

puting 𝑔(x,w). In this case Proposition 3.5 and 𝜇 (x,w) | 𝑔(x,w)

imply that 𝜇 (x,w) is computed by algebraic circuits of polynomial

size, which contradicts Lemma 4.1. □

5 CONCLUSION AND OPEN PROBLEMS

In this paper we gave the first (conditional) lower bound on the

spectrahedral representation of an explicit hyperbolicity conewhich

is known to be spectrahedral. An important component of our proof

was to observe that the algebraic circuit complexity of the minimal

defining polynomial of this hyperbolicity cone plays an important

role in lower bounding the spectrahedral representation. Removing

the standard complexity assumption on the proof above is the

first open problem left by this work. It would be interesting to see

whether the hyperbolicity assumption, and the special nature of

the spectrahedral (or definite determinantal) representation could

be further used to improve the lower bound above.

Another interesting question, in the viewpoint of optimization,

is whether the complexity of representing a hyperbolicity cone

(the ones known to be spectrahedral) via its hyperbolic polynomial

can in general be much more efficient than representing it via its

spectrahedral representation. This could show that using hyperbolic

polynomials could provide faster ways of testing membership in

in the hyperbolicity cone, than via checking the corresponding

inequality given by the spectrahedral representation.

To achieve such a separation between representation by giving

a circuit for the hyperbolic polynomial, one would have to find a

hyperbolic polynomial (with a spectrahedral hyperbolicity cone)

which can be computed by small algebraic circuits, but any definite

determinantal representation of it is large. The elementary symmet-

ric polynomials are great candidates for such separation, as they can

be computed by algebraic circuits of𝑂 (𝑛3) size. On the other hand,

the best upper bound on the spectrahedral representation of the

hyperbolicity cones of the elementary symmetric polynomials is

exponential [1, 2]. Thus, another open question is to obtain a lower

bound on the spectrahedral representation of these hyperbolicity

cones.

For optimization, the best possible separation which could show

the advantages of hyperbolic programming is with respect to spec-

trahedral shadows. In this case, one would have to exhibit a hyper-

bolicity cone which can be efficiently described through a small

algebraic circuit computing its minimal defining polynomial, but for

which any spectrahedral shadow of this cone is of superpolynomial

size.

ACKNOWLEDGMENTS

The author is grateful to Nikhil Srivastava for posing the question

at the Simons program and for useful conversations throughout

this work. The author is also grateful to Mario Kummer and Rainer

Sinn for useful conversations throughout the course of this work.

This work started while the author was a research fellow at the

Simons Institute, Berkeley and part of this work was done while the

author was a postdoctoral fellow at the Department of Computer

Science, University of Toronto.

REFERENCES
[1] Nima Amini. 2019. Spectrahedrality of hyperbolicity cones of multivariate match-

ing polynomials. Journal of Algebraic Combinatorics 50, 2 (2019), 165ś190.
[2] Petter Brändén. 2014. Hyperbolicity cones of elementary symmetric polynomials

are spectrahedral. Optimization Letters 8, 5 (2014), 1773ś1782.
[3] Lars Gårding. 1959. An inequality for hyperbolic polynomials. Journal of Mathe-

matics and Mechanics (1959), 957ś965.
[4] Osman Güler. 1997. Hyperbolic polynomials and interior point methods for

convex programming. Mathematics of Operations Research 22, 2 (1997), 350ś377.
[5] J William Helton and Victor Vinnikov. 2007. Linear matrix inequality representa-

tion of sets. Communications on Pure and Applied Mathematics: A Journal Issued
by the Courant Institute of Mathematical Sciences 60, 5 (2007), 654ś674.

[6] Erich Kaltofen. 1989. Factorization of polynomials given by straight-line pro-
grams. Randomness and Computation 5, 375-412 (1989), 2ś3.

[7] Mario Kummer. 2016. Two results on the size of spectrahedral descriptions. SIAM
Journal on Optimization 26, 1 (2016), 589ś601.

[8] Mario Kummer. 2017. Determinantal representations and Bézoutians. Mathema-
tische Zeitschrift 285, 1-2 (2017), 445ś459.

[9] Peter D Lax. 1958. Differential equations, difference equations and matrix theory.
Communications on Pure and Applied Mathematics 11, 2 (1958), 175ś194.

[10] Tim Netzer and Raman Sanyal. 2015. Smooth hyperbolicity cones are spectrahe-
dral shadows. Mathematical Programming 153, 1 (2015), 213ś221.

[11] Prasad Raghavendra, Nick Ryder, Nikhil Srivastava, and Benjamin Weitz. 2019.
Exponential lower bounds on spectrahedral representations of hyperbolicity
cones. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2322ś2332.

[12] James Renegar. 2004. Hyperbolic programs, and their derivative relaxations. Tech-
nical Report. Cornell University Operations Research and Industrial Engineering.

[13] Claus Scheiderer. 2018. Spectrahedral shadows. SIAM Journal on Applied Algebra
and Geometry 2, 1 (2018), 26ś44.

[14] Amir Shpilka and Amir Yehudayoff. 2010. Arithmetic circuits: a survey of recent
results and open questions. Foundations and Trends® in Theoretical Computer
Science 5, 3ś4 (2010), 207ś388.

[15] Volker Strassen. 1973. Vermeidung von Divisionen. Journal für die reine und
angewandte Mathematik 264 (1973), 184ś202.

[16] Leslie G Valiant. 1979. Completeness classes in algebra. In Proceedings of the
eleventh annual ACM symposium on Theory of computing. 249ś261.

[17] Victor Vinnikov. 2012. LMI representations of convex semialgebraic sets and
determinantal representations of algebraic hypersurfaces: past, present, and
future. In Mathematical methods in systems, optimization, and control. Springer,
325ś349.

401

Ideal Interpolation, H-Bases and Symmetry

Erick Rodriguez Bazan
Université Côte d’Azur, France
Inria Méditerranée, France

erick-david.rodriguez-bazan@inria.fr

Evelyne Hubert
Université Côte d’Azur, France
Inria Méditerranée, France
evelyne.hubert@inria.fr

ABSTRACT

Multivariate Lagrange and Hermite interpolation are examples of

ideal interpolation. More generally an ideal interpolation problem

is defined by a set of linear forms, on the polynomial ring, whose

kernels intersect into an ideal.

For an ideal interpolation problem with symmetry, we address

the simultaneous computation of a symmetry adapted basis of the

least interpolation space and the symmetry adapted H-basis of

the ideal. Beside its manifest presence in the output, symmetry is

exploited computationally at all stages of the algorithm.

CCS CONCEPTS

·Computingmethodologies→ Symbolic and algebraic algo-

rithms;

KEYWORDS

Interpolation; Symmetry; Representation Theory; Group Action;

H-basis; Macaulay matrix; Vandermonde matrix

ACM Reference Format:

Erick Rodriguez Bazan and Evelyne Hubert. 2020. Ideal Interpolation, H-

Bases and Symmetry. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404057

1 INTRODUCTION

Preserving and exploiting symmetry in algebraic computations is a

challenge that has been addressed within a few topics and, mostly,

for specific groups of symmetry; For instance interpolation and

symmetric group [23], cubature [4, 14], global optimisation [17, 32],

equivariant dynamical systems [15, 20] and solving systems of

polynomial equations [12, 13, 16, 19, 21, 31, 38]. In [33] we addressed

multivariate interpolation and in this article we go further with ideal

interpolation. We provide an algorithm to compute simultaneously

a symmetry adapted basis of the least interpolation space and a

symmetry adapted H-basis of the associated ideal. In addition to

being manifest in the output, symmetry is exploited all along the

algorithm to reduce the size of the matrices involved, and avoid

sizable redundancies. Based on QR-decomposition (as opposed to

LU-decomposition previously) the algorithm also lends itself to

numerical computations.

Multivariate Lagrange, and Hermite, interpolation are examples

of the encompassing notion of ideal interpolation, introduced in [2].

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404057

They are defined by linear forms consisting of evaluation at some

nodes, and possibly composed with differential operators, without

gaps. More generally a space of linear forms Λ on the polynomial

ring K[x] = K[x1, . . . , xn] is an ideal interpolation scheme if

I =
⋂
λ∈Λ

ker λ = {p ∈ K[x] : λ(p) = 0, for all λ in Λ} (1)

is an ideal in K[x]. In the case of Lagrange interpolation, I is the

ideal of the nodes and is thus a radical ideal.

If Λ is invariant under the action of a group G, then so is I. In
[33] we addressed the computation of an interpolation space for Λ

i.e., a subspace of the polynomial ring that has a unique interpolant

for each instantiated interpolation problem, that is both invariant

and of minimal degree. An interpolation space for Λ identifies with

the quotient space K[x]/I. Hence a number of operations related

to I can already be performed with a basis of an interpolation

space for Λ: decide of membership to I, determine normal forms

of polynomials modulo I and compute matrices of multiplication

maps inK[x]/I. Yet it has also proved relevant to compute Gröbner

bases or H-bases of I.
Initiated in [26], for a set Λ of point evaluations, computing a

Gröbner basis of I found applications in the design of experiments

[29, 30]. As pointed out in [25], one can furthermore interpret the

FGLM algorithm [10] as an instance of this problem. The linear

forms are the coefficients, in the normal forms, of the reduced

monomials. The alternative approach in [11] can be understood

similarly.

The resulting algorithm then pertains to the Berlekamp-Massey-

Sakata algorithm and is related the multivariate version of Prony’s

problem to compute Gröbner bases, border bases, or H-bases [1, 28,

35, 36]

All ,the above mentioned algorithms and complexity analyses

heavily depend on a term order and basis of monomials. These

are notoriously not suited for preserving symmetry. Our ambition

in this paper is to showcase how symmetry can be embedded in

the representation of both the interpolation space and the repre-

sentation of the ideal. This is a marker for the more canonical

representations.

The least interpolation space, defined in [6], and revisited in [33]

is a canonically defined interpolation space. It serves here as the

canonical representation of the quotient of the polynomial algebra

by the ideal. It has great properties, even beyond symmetry, that

cannot be achieved by a space spanned by monomials. In [33]

we freed the computation of the least interpolation space from

its reliance on the monomial basis by introducing dual bases. We

pursue this approach here for the representation of the ideal by H-

bases [24, 27]. Where Gröbner bases single out leading terms with a

term order, H-bases work with leading forms and the orthogonality

with respect to the apolar product. The least interpolation space

402

https://doi.org/10.1145/3373207.3404057
https://doi.org/10.1145/3373207.3404057

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Erick Rodriguez Bazan and Evelyne Hubert

then reveals itself as the orthogonal complement of the ideal of

leading forms.

As a result, computing a H-basis of the interpolation ideal is

achieved with linear algebra in subspaces of homogeneous polyno-

mials of growing degrees. Yet we shall first redefine the concepts at

play in an intrinsic manner, contrary to the computation centered

approach in [27, 34]. The precise algorithm we shall offer to com-

pute H-bases somehow fits in the loose sketch proposed in [5]. Yet

we are now in a position to incorporate symmetry in a natural way,

refining the algorithm to exploit it; A totally original contribution.

Symmetry is preserved and exploited thanks to the block diago-

nal structure of the matrices at play in the algorithms. This block

diagonalisation, with predicted repetitions in the blocks, happens

when the underlying maps are discovered to be equivariant and

expressed in the related symmetry adapted bases. The case of the

Vandermonde matrix was settled in [33]. In this paper, we also need

the matrix of the prolongation map, knowned in the monomial

basis as the Macaulay matrix. Figuring out the equivariance of this

map is one of the original key results of this paper.

The paper is organized as follows. In Section 2 we define ideal

interpolation and explain the identification of an interpolation

space with the quotient algebra. In Section 3 we review H-bases and

discuss how they can be computed in the ideal interpolation setting.

In Section 4 we provide an algorithm to compute simultaneously a

basis of the least interpolation space and an orthogonal H-basis of

the ideal. In Section 5 we show how the Macaulay matrix can be

block diagonalized in the presence of symmetry. This is then applied

in Section 6 to obtain an algorithm to compute simultaneously

a symmetry adapted basis of the least interpolation space and a

symmetry adapted H-basis of the ideal. All along the paper, the

definitions and notations comply with those in [33].

2 IDEAL INTERPOLATION

In this section, we consider the ideal interpolation problem and

explain the identification of an interpolation space with the quotient

algebra.We recall that the least interpolation space is the orthogonal

complement of the ideal of the leading forms, I0.
K denotes either C or R. K[x] = K[x1, . . . , xn] denotes the ring

of polynomials in the variables x1, . . . , xn with coefficients in K;

K[x]≤d and K[x]d the K−vector spaces of polynomials of degree

at most d and the space of homogeneous polynomials of degree d

respectively. The dual of K[x], the set of K−linear forms on K[x],
is denoted by K[x]∗. A typical example of a linear form on K[x] is
the evaluation eξ at a point ξ of Kn : eξ (p) = p(ξ).
K[x]∗ can be identified with the ring of formal power series

K[[∂]] = K[[∂1, . . . , ∂r]], with the understanding that ∂β (xα) = α !
or 0 according to whether α = β or not. Concomitantly K[x] is
equipped with the apolar product that is defined, for p =

∑
α pαx

α

and q =
∑
α qαx

α , by ⟨p,q⟩ := p(∂)q = ∑
α α !pαqα ∈ K.

If P is a (homogeneous) basis of K[x] we denote P† its dual
with respect to this scalar product. For λ ∈ K[x]∗ we can write

λ =
∑
p∈P λ(p)p†(∂).

An interpolation problem is a pair (Λ,ϕ)whereΛ is a finite dimen-

sional linear subspace of K[x]∗ and ϕ : Λ −→ K is a K-linear map.

An interpolant, i.e., a solution to the interpolation problem, is a

polynomial p such that λ(p) = ϕ(λ) for any λ ∈ Λ. An interpolation

space for Λ is a polynomial subspace P of K[x] such that there is a

unique interpolant for any map ϕ.

The least interpolation space Λ↓ was introduced in [7], and revis-

ited in [33]. The least term λ↓ ∈ K[x] of a power series λ ∈ K[[∂]] is
the unique homogeneous polynomial for which λ − λ↓(∂) vanishes
to highest possible order at the origin. Given a linear space of linear

forms Λ, we define Λ↓ as the linear span of all λ↓ with λ ∈ Λ.
IfL = {λ1, λ2, . . . , λr } is a basis of Λ and P = {p1,p2, . . . ,pr } ⊂

K[x], then P is a basis for an interpolation space of Λ if and only if

the Vandermonde matrix

WPL :=
[
λi

(
pj
)]

1≤i≤r
1≤j≤r

(2)

is invertible. This latter is to be interpreted as the matrix in the

bases P and the dual of L of the restriction of the Vandermonde

operatorw : K[x] → Λ
∗ such thatw(p)(λ) = λ(p). This is the adjoint

of embedding Λ ֒→ K[x]∗ and hence is surjective.

All along this paper we shall assume that

I = kerw = ∩λ∈Λ ker λ

is an ideal. When for instance Λ = ⟨eξ1 , . . . , eξr ⟩K then I is the

ideal of the points {ξ1, . . . , ξr } ⊂ K[x]. One sees in general that

dimK[x]/I = dimΛ
∗
= dimΛ =: r .

With Q = {q1, . . . ,qr } ⊂ K[x], we can identify K[x]/I with

⟨Q⟩K if ⟨Q⟩K ⊕ I = K[x]. With a slight shortcut, we say that Q is

a basis for K[x]/I.
Proposition 2.1. Q = {q1, . . . ,qr } ⊂ K[x] spans an interpola-

tion space for Λ iff it is a basis for the quotient K[x]/I.
Proof. If Q = {q1, . . . ,qr } is a basis of K[x]/I then for any

p ∈ K[x] there is a q ∈ ⟨q1, . . . ,qr ⟩K such that p ≡ q mod I. Hence
λ(p) = λ(q) for any λ ∈ Λ and thus ⟨Q⟩K is an interpolation space

for Λ. Conversely if ⟨q1, . . . ,qr ⟩K is an interpolation space for Λ

then {q1, . . . ,qr } are linearly independent modulo I and therefore

a basis for K[x]/I. Indeed if q = a1q1 + . . . + arqr ∈ I then any

interpolation problem has multiple solutions in ⟨Q⟩K, i.e, if p is

the solution of (Λ,ϕ) so is p + q, contradicting the interpolation

uniqueness on ⟨Q⟩K. □

For p ∈ K[x] we can find its natural projection on K[x]/I by
taking the unique q ∈ ⟨Q⟩K that satisfies λ(q) = λ(p) for all λ ∈ Λ.
From a computational point of view, q is obtained by solving the
Vandermonde system, i.e.,

q = (q1, . . . , qr)
(
WQL

)−1 ©«

λ1(p)
.
.
.

λr (p)

ª®®®¬
with L = {λ1, . . . , λr } a basis of Λ.

Similarly, the matrix of the multiplication map, in the basis Q, is
mp : K[x]/I → K[x]/I,

[q] 7→ [pq]

is obtained as [mp]Q =
(
WQL

)−1
WQL◦mp

where L ◦mp = {λ1 ◦
mp , . . . , λr ◦mp }.

When working with Gröbner bases, one fixes a term order and

focuses on leading terms of polynomials and the initial ideal of

I. The basis of choice for K[x]/I consists of the monomials that

do not belong to the initial ideal. An H-basis of I is somehow

the complement of the least interpolation space Λ↓ and hence can

403

Ideal Interpolation, H-Bases and Symmetry ISSAC ’20, July 20–23, 2020, Kalamata, Greece

be made to reflect the possible invariance of Λ and I. Instead of

leading terms, the focus is then on the leading homogeneous forms.

Hereafter we denote by p0 the leading homogeneous form of p,

i.e., the unique homogeneous polynomial such that deg
(
p − p0

)
<

deg (p). Given a set of polynomials P we denote P0 =
{
p0 | p ∈ P

}
.

Proposition 2.2. Let Q be an interpolation space of minimal

degree for Λ. Then Q ⊕ I0 = K[x].

Proof. We proceed by induction on the degree, i.e, we assume

that any polynomial p in K[x]≤d can be written as p = q + l where

q ∈ Q and l ∈ I0. Note that the hypothesis holds trivially when d

is equal to zero.

Now letp ∈ K[x]≤d+1. SinceK[x] = ⟨Q⟩K⊕I there exists q ∈ Q
and l ∈ I such that p = q + l . Since Q is of minimal degree, q and

l are in K[x]≤d+1. Writing l = l0 + l1 he have p = q + l
0
+ l1 with

l1 ∈ K[x]≤d then by induction l1 = q1 + l2 with q1 ∈ Q and l2 ∈ I0
and therefore p = q + q1 + l

0
+ l2 ∈ Q ⊕ I0. □

As a consequence we retrieve the result of [7, Theorem 4.8].

Corollary 2.3. Considering orthogonality with respect to the

apolar product it holds that Λ↓
⊥
⊕ I0 = K[x].

Proof. Follows from the fact that λ(p) = 0⇒ ⟨λ↓,p0⟩ = 0. □

3 H-BASES

H-bases were introduced by [24]. The use of H-basis in interpolation

has been further studied in [27, 34]. In this section we review the

definitions and present the sketch of an algorithm to compute the

H-basis of I = ⋂
λ∈Λ ker λ.

Definition 3.1. A finite set H := {h1, . . . ,hm } ⊂ K[x] is an
H-basis of the ideal I := ⟨h1, . . . ,hm⟩ if, for all p ∈ I there are

д1, . . .дm such that,

p =

m∑
i=1

hiдi and deg(hi) + deg(дi) ≤ deg(p), i = 1, . . . ,m.

Theorem 3.2. [27] LetH := {h1, . . . ,hm } and I := ⟨H⟩. Then
the following conditions are equivalent:

(1) H is an H-basis of I.
(2) I0 :=

〈{
h0 | h ∈ I

}〉
=

〈
h01, . . . ,h

0
m

〉
.

Hilbert Basis Theorem says that I0 has a finite basis, hence

any ideal in K[x] has a finite H-basis. We shall now introduce

the concepts of minimal, orthogonal and reduced H-basis. The

notion of orthogonality is considered w.r.t the apolar product. Our

definitions somewhat differ from [27] as we dissociate them from

the computational aspect. We need to introduce first the following

vector space of homogeneous polynomials.

Definition 3.3. Given a setH = {h1, . . . ,hm } of homogeneous
polynomials in K[x] and a degree d , we define the subspace Vd (H)
as

Vd (H) =
{

s∑
i=1

дihi
�� дi ∈ K[x]d−deg(hi)

}
⊂ K[x]d .

Vd (H) is the image of the linear mapψd :

ψd ,h : K[x]d−d1 × . . . × K[x]d−dm → K[x]d
(д1, . . . , дm) →

m∑
i=1

дihi
.

We denote by MMd ,Pd (H) the matrix of ψd in the bases Md

and Pd of K[x]d−d1 × . . . × K[x]d−dm and K[x]d respectively. It is

referred to as the Macaulay matrix forH . We can write Vd (H) as

Vd (H) =

|Pd |∑
i=0

aipi

��� (a1, . . . , a |Pd |) ∈ R
(
MMd ,Pd (H)

)

,

whereR
(
MMd ,Pd (H)

)
denotes the column space ofMMd ,Pd (H).

We shall use the notation P0
d
for the set of the degree d elements

of P0. In other words P0
d
= P0 ∩ K[x]d .

Definition 3.4. We say that an H-basisH is minimal if, for any
d ∈ N,H0

d
is linearly independent and

Vd

(
I0
d−1

)
⊕
〈
H0
d

〉
K
= I0

d
. (3)

FurthermoreH is said to be orthogonal if
〈
H0
d

〉
K
is the orthogonal

complement of Vd

(
I0
d−1

)
in I0

d
.

Note that if hi and hj are two elements with deghi > deghj of

an orthogonal H-basis we have〈
h0i ,ph

0
j

〉
= 0 for all p ∈ K[x]deghi−deghj .

Definition 3.5. LetH = {h1, . . . ,hm } be an orthogonal H-basis

of an ideal I. The reduced H-basis ofH is defined by

H̃ =
{
h01 − h̃01, . . . ,h

0
m − h̃0m

}
(4)

where, for p ∈ K[x], p̃ is the projection of p on the orthogonal

complement of I0 parallel to I.
[27, Lemma 6.2] show how p̃ can be computed givenH .

Schematic computation of H-bases. In the next section we elabo-

rate on an algorithm to compute concomitantly the least interpola-

tion space and an H-basis for the ideal associated to a set of linear

forms Λ. As a way of introduction we reproduce the sketch of an

algorithm as proposed by [5] to compute an H-basis until degree

D. It is based on the asumption that we have access to a basis of

Id := I ∩ K[x]≤d for any d .

Algorithm 1 [5] H-basis construction

Input: - a degree D .

- basis for Id for 1 ≤ d ≤ D .

Output : - an H-basis until degree D

1: H ← {} ;
2: for d = 0 to D do

3: Cd ← a basis of Vd (H0);
4: Bd ← a basis for the complement of Vd (H) in I0d ;
5: B̂d ← projection of Bd in Id
6: H ← H⋃ B̂d ;
7: return H;

404

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Erick Rodriguez Bazan and Evelyne Hubert

The correctness of Algorithm 1 is shown by induction. Assume
that Hd−1 consists of the polynomials in an H-basis of I up to
degreed−1. Considerp ∈ I with deg(p) = d . By Step 4 in Algorithm
1 we have

p0 =
∑
hi ∈H

h0iдi +
∑

bi ∈Bd
aibi (5)

with дi ∈ K[x]d−deg(hi) and ai ∈ K. From (5) we have that p ∈ I
and

∑
hi ∈H hiдi +

∑
bi ∈Bd+1 ai b̂i ∈ I have the same leading form.

Thus

p −
∑

hi ∈Hd−1
hiдi −

∑
bi ∈Bd

ai b̂i ∈ Id−1

therefore using the induction hypothesis we get that

p =
∑

hi ∈Hd−1

hiдi +
∑

bi ∈Bd+1
ai b̂i +

∑
hi ∈Hd−1

hiqi

with qi ∈ K[x]≤d−1−deg(hi) and thereforeH is an H-basis.

Algorithm 1 can be applied in the ideal interpolation scheme. In

this setting a basis of Id can be computed for any d using Linear

Algebra techniques due to the following relation.

Id =

|P≤d |∑
i=1

aipi |
(
a1, . . . , a |P≤d |

)t
∈ ker

(
W
P≤d
L

)
and pi ∈ P≤d

,

for any basis P≤d of K[x]≤d .
In the next section we will give an efficient and detailed version

of Algorithm 1 in the ideal interpolation case. We will integrate the

computations of an H-basis for I = ∩λ∈Λ ker λ and a basis for Λ↓.
When the ideal is given by a set of generators it is also possible

to compute an H-basis with linear algebra if you know a bound on

the degree of the syzygies of the generators. A numerical approach,

using singular value decomposition, was introduced in [22]. Alter-

natively an extension of Buchberger’s algorithm is presented in

[27]. It relies, at each step, on the computation of a basis for the

module of syzygies of a set of homogeneous polynomials.

4 SIMULTANEOUS COMPUTATION OF THE
H-BASIS AND LEAST INTERPOLATION
SPACE

In this section we present an algorithm to compute both a (or-

thogonal) basis of Λ↓ and an orthogonal H-basis H of the ideal

I = ∩λ∈Λ ker λ. We proceed degree by degree. At each iteration

of the algorithm we compute a basis of Λ↓ ∩ K[x]d and the set

H0
d
= H0 ∩ K[x]d . Recall from Corollary 2.3, Theorem 3.2, and

Definition 3.4 that

K[x] = Λ↓
⊥
⊕ I0, I0 = ⟨H0⟩, and I0

d
= Vd

(
I0
d−1

) ⊥
⊕
〈
H0
d

〉
K
.

I is the kernel of the Vandermonde operator while Λ↓ can be

inferred from a rank revealing form of the Vandermonde matrix.

With orthogonality prevailing in the objects we compute it is natural

that the QR-decomposition plays a central role in our algorithm.

For am×n matrix M, the QR-decomposition is M = QR where Q

is am×m orthogonal matrix and R is am×n upper triangular matrix.

If r is the rank of M the first r columns of Q form an orthogonal

basis of the column space of M and the remainingm − r columns

of Q form an orthogonal basis of the kernel of MT [18, Theorem

5.2.1]. We thus often denote the QR-decomposition of a matrix M

as

[Q1 | Q2] ·
[
R

0

]
= M

where Q1 ∈ Km×r ,Q2 ∈ Km×(m−r) and R ∈ Kr×n . Algorithms to

compute the QR-decomposition can be found for instance in [18].

In the Lagrange interpolation case, Fassino and Möller [8] al-

ready used the QR-decomposition to propose a variant of the BM-

algorithm [26] so as to compute a monomial basis of an interpola-

tion space, the complement of the initial ideal for a chosen term

order. They furthermore study the gain in numerical stability for

perturbed data. We shall use QR-decomposition to further obtain a

homogeneous basis of Λ↓ and an orthogonal H-basis of the ideal.

Due to Corollary 2.3 the reduction p̃ of p that appeared in Defi-

nition 3.5 is the unique interpolant of p in Λ↓.

Definition 4.1. Given a space of linear forms Λ, we denote by

Λ≥d the subspace of Λ given by

Λ≥d =
{
λ ∈ Λ | λ↓ ∈ K[x]⩾d

}
∪ {0}.

Hereafter we organize the elements of the bases of K[x], Λ, or
their subspaces, as row vectors. In particular P and P† are dual
homogeneous bases for K[x] according to the apolar product. Their
degree part Pd and P†

d
are dual bases of K[x]d .

A basis L≥d of Λ≥d can be computed inductively thanks to the

following observation.

Proposition 4.2. Assume L≥d is a basis of Λ≥d . Consider the
QR-decomposition

W
Pd
L≥d
= [Q1 | Q2] ·

[
Rd
0

]

and the related change of basis [Ld | L≥d+1] = L≥d · [Q1 |Q2]. Then
• L≥d+1 is a basis of Λ≥d+1;
• Rd =W

Pd
Ld has full row rank;

• The components of Ld ↓ = P†d ·R
T
d
form a basis of Λ↓∩K[x]d .

We shall furthermore denote by L≤d =
⋃d
i=0 Li the thus con-

structed basis of a complement of Λ≥d+1 in Λ.

Proof. It all follows from the fact that a change of basis L′ =
LQ of Λ implies that WPL′ = QTWPL . In the present case Q =

[Q1 |Q2] is orthogonal and hence QT = Q−1.
The last point simply follows from the fact that, for λ ∈ Λ,

λ =
∑
p∈P λ(p)p†(∂). Hence if T = WPL then the j-th component

of L is
∑
i tjip

†(∂). □

This construction gives us a basis of Λ↓ ∩ K[x]d in addition to

a basis of Λ≥d+1 to pursue the computation at the next degree.

Before going there, we need to compute a basis H0
d
for the com-

plement of Vd (H0
<d
) in I0

d
. For that we shall use an additional QR-

decomposition as explained in Proposition 4.5, after two prepara-

tory lemmas.

Lemma 4.3. Let d ≥ 0 and let Pd be a basis of K[x]d then:

I0
d
=

|Pd |∑
i=1

aipi |
(
a1, . . . , a |Pd |

)t
∈ ker

(
W
Pd
Ld

)
and pi ∈ Pd

.

405

Ideal Interpolation, H-Bases and Symmetry ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Proof. Recall that I is the kernel of the Vandermonde operator,

andWPL is the matrix of this latter. The Vandermonde submatrix

W
P≤d
L≤d can be written as follows

W
P≤d
L≤d

=W
P≤d
[L≤d−1 | Ld] =

©«
W
P≤d−1
L≤d−1

W
Pd
L≤d−1

0 W
Pd
Ld

ª®®¬
(6)

where W
P≤d−1
L≤d−1 has full row rank.

Assume first that p is a polynomial in I0
d
. Then there is q ∈ I of

degree d such that q0 = p. Let q =

(
q≤d−1
qd

)
and p = qd be the

coefficients of q and p respectively in the basis P. As q ∈ Id we
have that

W
P≤d
L≤d

· q = ©«
W
P≤(d−1)
L≤d−1

· q≤d−1 +W
Pd
L≤d−1

· qd
W
Pd
Ld
· qd

ª®¬
= 0

and therefore p = qd is in kernel of W
Pd
Ld . Now let v a vector

in the kernel of W
Pd
Ld . A vector u such that

(
u

v

)
∈ K(n+dd) and

W
P≤d
L≤d ·

(
u

v

)
= 0 can be found as the solution of the following

equation.

W
P≤(d−1)
L≤d−1 u =W

Pd
Ld v −WPdL≤d−1v. (7)

As W
P≤(d−1)
L≤d−1 has full row rank, Equation 7 always has a solution.

Then P≤d ·
(
u

v

)
∈ I and therefore Pd · v ∈ I0d . □

Lemma 4.4. Consider the row vector q of coefficients of a polyno-

mial q ofK[x]d in the basis Pd . The polynomial q is in the orthogonal

complement of Vd (H) in K[x]d if and only if the row vector q is in

the left kernel of MMd ,P†d
(H).

Proof. The columns of MMd ,P†d
are the vectors of coefficients,

in the basis P†
d
, of polynomials that span Vd (H). The member-

ship of q in the left kernel of MMd ,P†d
(H) translates as the apolar

product of q with these vectors to be zero. And conversely. □

Proposition 4.5. Consider the QR-decomposition[(
W
Pd
Ld

)T
MMd ,P†d

(H)
]
= [Q1 | Q2] ·

[
R

0

]

The components of the row vector Pd ·Q2 span the orthogonal com-

plement of Vd (H) in I0d .

Proof. The columns in Q2 span kerW
Pd
Ld ∩ ker

(
MMd ,P†d

)t
.

The result thus follows from Lemmas 4.3 and 4.4. □

We are now able to show the correctness and termination of

Algorithm 2.

Algorithm 2

Input: - L a basis of Λ (r = |L | = dim (Λ))
- P a basis of K[x]≤r
- P† the dual basis of P w.r.t the apolar product.

Output: - H a reduced H-basis for I := ker Λ

- PΛ a basis of the least interpolation space of Λ.

1: H0 ← {}, PΛ ← {}
2: d ← 0

3: L≤0 ← {}, L≥0 ← L
4: while L≥d , {} do
5: Q ·

[
Rd
0

]
=W

Pd
L≥d

▷ QR-decomposition of W
Pd
L≥d

6: PΛ ← PΛ
⋃ P†

d
· RT

d

7: [Ld | L≥d+1] ← L≥d · QT ▷ Note that Rd =W
Pd
Ld

8: L≤d+1 ← L≤d ∪ Ld
9: [Q1 | Q2] · R =

[
RT
d

MMd ,P†d
(H)

]
10: H0 ← H0 ⋃ Pd · Q2

11: d ← d + 1

12: for all p ∈ H0 do

13: H ← H⋃ {
p − PΛ

(
W
PΛ
L≤d

)−1
(L≤d)T

}

14: return (H, PΛ)

Correctness. In the spirit of Algorithm 1, Algorithm 2 proceeds

degree by degree. At the iteration for degree d we first compute a

basis for Λ≥d+1 by splitting L≥d into L≥d+1 and Ld . As explained
in Proposition 4.2, this is obtained through the QR-decomposition

of W
Pd
L≥d . From this decomposition we also obtain a basis for Λ↓ ∩

K[x]d as well as W
Pd
Ld . We then go after H0

d
, which spans the

orthogonal complement of Vd (H0
≤d−1) in I

0
d
. The elements ofH0

d

are computed via intersection of kerW
Pd
Ld and ker

(
MMd ,P†d

)t
as

showed in Proposition 4.5. Algorithm 2 stops when we reach a

degree δ such that L≥δ is empty. Notice that for d ≥ δ the matrix

W
Pd
Ld is an empty matrix and therefore its kernel is the full space

K[x]d . Then as a consequence of Lemma 4.3, for all d > δ we have

that Vd (I0d−1) = I
0
d
hence ⟨H0

d
⟩ is an empty set. The latter implies

that when the algorithm stops we have computed the full H-basis

H0 for I0.
We then obtain an H-basis of I by finding the projections, onto

Λ↓ and parallel to I, of the elements ofH0. These are the polyno-

mials of Λ↓ interpolating the elements ofH0 according to Λ.

Termination. Considering r := dim(Λ) we have that L≥r is an
empty set, this implies that in the worst case our algorithm stops

after r iterations.

Complexity. The most expensive computational step in Algo-

rithms 2 is the computation of the kernel of

[(
W
Pd
Ld

)T
MMd ,P†d

(H)
]
,

with number of columns and rows given by

row(d) =
(d+n−1
n−1

)
=

dn−1
(n−1)! + O

(
dn−1

)
col(d) = ∑ |H |

i=1

(d−di+n−1
n−1

)
+ |Ld | = |H |d

n−1

(n−1)! + O
(
dn−1

) (8)

406

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Erick Rodriguez Bazan and Evelyne Hubert

where d1, . . . ,d |H | are the degrees of the elements of the com-

puted H-basis until degree d . Then the computational complexity of

Algorithm 2 relies on the method used for the kernel computation

of VM(d), which in our case is the QR-decomposition.

We are giving a frame for the simultaneous computation of an

H-basis and the Least interpolation space, but there is still room

for improving the performance of Algorithm 2. The structure of

the Macaulay matrix might be taken into account to alleviate the

linear algebra operations as for instance in [1]. We can also consider

different variants of Algorithm 2. In Proposition 4.6 we show that

orthogonal bases for K[x]d ∩ Λ↓ and I0d can be simultaneously

computed by applying QR-decomposition in the Vandermonde

matrix (WPdL≥d)
T . Therefore we can split Step 9 in two steps. First

we do a QR-decomposition (WPdL≥d)
T to obtain orthogonal bases of

K[x]d ∩ Λ↓ and I0d . Once that we have in hand a basis of I0
d
we

obtain the elements ofHd as its complement in the column space

ofMMd ,P†d
(H).

Proposition 4.6. Let [Q1 | Q2] ·
[
Rd
0

]
=

(
W
Pd
L≥d

)T
be a QR-

decomposition of
(
W
Pd
L≥d

)T
. Let r be the rank of

(
W
Pd
L≥d

)T
. Let {q1 . . .qr }

and {qr+1 . . .qm } be the columns of Q1 and Q2 respectively. Then

the following holds:

(1) PΛ,d =
{
P†
d
· q1, . . . , P†d · qr

}
is a basis of K[x]d

⋂
Λ↓.

(2) N = {Pd · qr+1, . . . , Pd · qm } is a basis of I0d .
(3) Ifp ∈ PΛ,d andq ∈ N then ⟨p,q⟩ = 0, i.e.,K[x] =

(
Λ↓ ∩ K[x]d

) ⊥
⊕

I0
d
.

In the case where P is orthonormal with respect to the apolar product,

i.e. P = P†, then PΛ,d and N are also orthonormal bases.

Proof. Let D such that L≥D = {} and let L≤D =
⋃
d≤D Ld

be a basis of Λ. Then the matrix W
P≤D
L≤D is block upper triangular

with non singular diagonal blocks. Consider {a1, . . . aℓ} ∈ K |P≤D |
the rows of W

P≤D
L≤D . By Proposition [33, Proposition 2.3] we have

that PΛ
{(
P†≤D · at1

)
↓
, . . . ,

(
P†≤D · atℓ

)
↓

}
is a basis of Λ↓, we can

rewrite PΛ as
D⋃
d=1

{
P†
d
· bt1 , . . . , P

†
d
· bt

ℓd

}
where

{
b1, . . . ,bℓd

}
is a

basis of the row space of
(
W
Pd
Ld

)
. Since PΛ is a graded basis then{

P†
d
· bt1 , . . . , P

†
d
· bt

ℓd

}
is a basis K[x]d ∩ Λ↓.

Part (2) in the proposition is a direct consequence of Lemma 4.3
and the fact that the columns of Q2 form a basis of the kernel of

W
Pd
L≥d . Let now q ∈ PΛ,d and p ∈ N . Then,

⟨p, q ⟩ =
〈 ∑
pi ∈Pd

aipi ,
∑

qi ∈P†d

biqi

〉
=

∑
i=1

aibi = 0.

Last equality stems from a and b being different rows in Q.

□

5 SYMMETRY REDUCTION

The symmetries we deal with are given by the linear action of a

finite groupG on Kn . It is thus given by a representation ϑ ofG on

K
n . It induces a representation ρ of G on K[x] given by

ρ(д)p(x) = p(ϑ (д−1)x). (9)

It also induces a linear representation on the space of linear forms,

the dual representation of ρ :

ρ∗(д)λ(p) = λ(ρ(д−1)p), p ∈ K[x] and λ ∈ K[x]∗. (10)

We shall deal with an invariant subspace Λ of K[x]∗. Hence the
restriction of ρ∗ to Λ is a linear representation of G in Λ.

In the above Algorithm 2, to compute an H-basis of I = kerw ,

we use the Vandermonde and Macaulay matrices. We showed in

[33, Section 4.2] how the Vandermonde matrix can be block diag-

onalized using appropriate symmetry adapted bases of K[x] and
Λ. We show here how to obtain such a block diagonalization on

the Macaulay matrix when the space spanned by H is invariant

under the induced action of a group G on K[x]. The key relies on

exhibiting the equivariance of the prolongation map Ψd ,h defined

in Section 3.
With notations compliant with [33], for any representation θ of

a groupG on a K-vector space V , a symmetry adapted basis P of V
is characterized by the fact that the matrix of the representation θ
in P is

[θ (д)]P = diag
(
R1(д) ⊗ Ic1 , . . . , RN (д) ⊗ IcN

)
.

where Rj =
(
r
j

kl

)
1≤k ,l≤nj

is the matrix representation of the irre-

ducible representation ρ j of G and c j is the multiplicity of ρ j in
θ . Hence P = ∪Nj=1P j where P j spans the isotypic component Vj

associated to ρ j . Introducing the map πj ,kl =
nj
|G |

∑
д∈G r

j

kl
(д−1)θ (д)

we can say that P j is determined by p
j
1 , . . . , p

j
cj to mean that

p
j
1 , . . . , p

j
cj is a basis of πj ,11(V) and

P j = {p j1 , . . . , p
j
cj , . . . , πj ,nj 1(p

j
1), . . . , πj ,nj 1(p

j
cj)}. (11)

When dealing with K = R, the statements we write are for the

case where all the irreducible representations of G are absolutely

irreducible, and thus the matrices Rj (д) all have real entries. This
is the case of all reflection groups. Yet these statements can be

modified to also work with irreducible representations of complex

type, which occur, for instance, for the cyclic groupCm withm > 2.
Consider now a setH = {h1, . . . ,hl } of homogeneous polyno-

mials of K[x]. We denote d1, . . . ,dℓ their respective degrees and

h = [h1, . . . ,hℓ] the row vector of K[x]ℓ . Associated to h, and a
degree d , is the map introduced in Section 3

ψd ,h : K[x]d−d1 × . . . × K[x]d−dℓ → K[x]d

f = [f1, . . . , fℓ]t → h · f .
(12)

We assume that H forms a basis of an invariant subspace of

K[x] and we call θ the restriction of the representation ρ to this

subspace, whileΘ is thematrix representation in the basisH :Θ(д) =
[θ (д)]H . Then [ρ(д)(h1), . . . , ρ(д)(hℓ)] = h ◦ ϑ (д−1) = h · Θ(д).
Note that, since the representation ρ on K[x] preserves degree,
deghi , deghj ⇒ Θi j (д) = 0, ∀д ∈ G.

Proposition 5.1. Consider h = [h1, . . . ,hℓ] ∈ K[x]d1 × . . . ×
K[x]dl and assume that h ◦ ϑ (д−1) = h · Θ(д), for all д ∈ G . For any
d ∈ N, the mapψd ,h is τ − ρ equivariant for the representation τ on

K[x]d−d1 × . . . × K[x]d−dℓ defined by τ (д)(f) = Θ(д) · f ◦ ϑ (д−1).

407

Ideal Interpolation, H-Bases and Symmetry ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Proof. (ρ(д) ◦ψd ,h)(f) = ρ(д)(h · f) = h ◦ ϑ (д−1) · f ◦ ϑ (д−1) =
h · Θ(д) · f ◦ ϑ (д−1) = (ψh ◦ τ (д)) (f). □

By application of [9, Theorem 2.5], the matrix of ψd ,h is block

diagonal in symmetry adapted bases of K[x]d−d1 × . . . × K[x]d−dℓ
and K[x]d . Yet, in the algorithm to compute symmetry adapted

H-basis, the setH increases with d at each iteration and τ changes

accordingly. We proceed to discuss how to hasten the computation

of a symmetry adapted basis of the evolving space K[x]d−d1 × . . .×
K[x]d−dℓ .

The setH = H1 ∪ . . .HN that we shall build, degree by degree,

is actually a symmetry adapted basis. In particular, for 1 ≤ i ≤ N ,

H i spans the isotypic component associated to the irreducible rep-

resentation ρi . If the multiplicity of the latter, in the span ofH , is

ℓi then the cardinality ofH i is ℓi ni . The matrices of the represen-

tation θ in this basis are Θ(д) = diag(Ri (д) ⊗ Iℓi |i = 1 . . .N).
Assume H i is determined by hi ,1, . . . ,hi ,ℓi , of respective de-

grees di ,1, . . . ,di ,ℓi . In other words, for 1 ≤ l ≤ ℓi ,
hi ,l =

[
hi ,l , πi ,21(hi ,l), . . . , πi ,ni 1(hi ,l)

]
is such that hi ,l ◦ ϑ (д−1) = hi ,l · Ri (д). Hence the related product

subspace K[x]ni
d−di ,l is invariant under τ . The symmetry adapted

bases for all these subspaces can be combined into a symmetry

adapted basis for the whole product space
(
K[x]d1,1 × K[x]d1,ℓ1

)n1 ×
. . . ×

(
K[x]dN ,1

× K[x]d1,ℓN
)nN

. Note that the components K[x]nie
with representation τi ,e defined by τi ,e (д)(f) = Ri (д) · f ◦ ϑ (д−1)
are bound to reappear several times in the overall algorithm of next

section. Hence the symmetry adapted bases for the evolving τ can

be computed dynamically.

6 CONSTRUCTING SYMMETRY ADAPTED
H-BASIS

In this section we show, when the space Λ is invariant, an orthog-

onal equivariant H-basis H can be computed. In this setting, we

exploit the symmetries of Λ to build H . A robust and symmetry

adapted version of Algorithm 2 is presented. The block diagonal

structure of the Vandermonde and Macaulay matrices allow to re-

duce the size of the matrices to deal with. The H-basis obtained as

the output of Algorithm 3 inherits the symmetries of Λ.

Proposition 6.1. LetI = ∩λ∈Λ ker λ andd ∈ N. IfΛ is invariant,

then so are I, I0, I0
d
,Vd

(
I0
<d

)
. Also, ifH is an orthogonal H-basis

of I, then ⟨H0
d
⟩K is invariant.

Proof. Letp ∈ I andд ∈ G , sinceΛ is closed under the action of

G, λ(ρ(д)(p)) = ρ∗(д) ◦ λ(p) = 0 for all λ ∈ Λ therefore ρ(д)(p) ∈ I
implying the invariance of I. Considering d the degree of p we can

writep asp = p0+p1, withp1 ∈ K[x]<d . Then we have that ρ(д)p =
ρ(д)p0 + ρ(д)p1 ∈ I, as ρ is degree preserving then ρ(д)p0 ∈ I0

d
and

the invariance of I0 follows. Now for every q =
∑
hi ∈I0d−1

qihi ∈

Vd

(
I0≤d

)
, it holds that ρ(д)q = ∑

hi ∈I0d−1
ρ(д)qiρ(д)hi ⊂ Vd

(
I0≤d

)
,

thus Vd

(
I0≤d

)
is an invariant subspace. Finally recalling (3) we

conclude that ⟨H0
d
⟩K is also G-invariant for being the orthogonal

complement of a G−invariant subspace. □

Algorithm 3 is a symmetry adapted version of Algorithm 2. In

any iteration we computeH0
d
as a symmetry adapted basis of the

orthogonal complement of Vd (H0
<d
) in I0.

This structure is obtained degree by degree. Assuming that the

elements ofH0
<d

form a symmetry adapted basis it follows from

[33, Section 4.2] and Proposition 5.1 that the matrices W
Pd
L and

MMd ,Pd (H0
<d
) are block diagonal. Computations over the sym-

metry blocks leads to the symmetry adapted structure ofH0
d
. For

any degree d we only need to consider the matrices W
Pi ,1
d

Li ,1≥d
and

Mi
d
(H0

<d
), i.e., only one block per irreducible representation.

Once we have in hand H0
=

[
h111, . . . , h

1
1n1

, . . . , hNcN nN

]T
and a

symmetry adapted basis for Λ↓, we computeH by interpolation.

SinceH0 ∈ K[x]θ
ϑ
, by [33, Proposition 3.5], its interpolant in Λ↓ is

also ϑ − θ equivariant. Therefore

H =
[
h111 − h̃111, . . . , h

1
1n1
−�h11n1 , . . . , hNcN nN

−�hNcN nN

]T
∈ K[x]θ

ϑ
.

The setH of its component is thus a symmetry adapted basis. The

correctness and termination of Algorithm 3 follow from the same

arguments exposed for Algorithm 2. Note that both Macaulay and

Vandermonde matrices split in
∑N
i=1 ni blocks. Assuming that the

blocks are equally distributed and thanks to [37, Proposition 5] we

can approximate the dimensions of the blocks by Mi (H0)
M(H0) ≈

WP
i

Li
WPL
≈

1
|G | . Therefore depending on the size of G the dimensions of the

matrices to deal with in Algorithm 3 can be considerably reduced.

Algorithm 3

Input: - L a s.a.b of Λ (r = |L | = dim (Λ), ri =
��Li ,1��)

- P an orthonormal graded s.a.b of K[x]≤r
-Mi a graded s.a.b of K[x]ni≤r , 1 ≤ i ≤ N

Output: - H an orthogonal equivariant H-basis for I := ker Λ

- PΛ a s.a.b of the least interpolation space for Λ.

1: H0 ← {}, PΛ ← {}
2: d ← 0

3: L≤0 ← {}, L≥0 ← L
4: while L≥d , {} do
5: for i = 1 to N such that Li ,1≥d , ∅ do

6: Q ·
[
Rd ,i
0

]
=W

Pi ,1
d

Li ,1≥d
▷ QR-decomposition of W

Pi ,1
d

Li ,1≥d
7:

[
Li ,1
d
| Li ,1≥d+1

]
← Li ,1≥d · Q

T

8: Li ,1≤d+1 ← L
i ,1
≤d ∪ L

i ,1
d

9: [Q1 | Q2] · R =
[
RT
d ,i

Mi
d
(H0)

]
10: for α = 1 to ni do

11: Pi
Λ
← Pi

Λ
∪ Pi ,α

d
· RT

d ,i

12: H0
i ← H0

i

⋃ Pi ,α
d
· Q2

13: d ← d + 1

14: for i = 1 to N do

15: for all p ∈ H0
i do

16: H ← H⋃ {
p − Pi ,1

Λ

(
W
Pi ,1
Λ

Li ,1≤d

)−1 (
Li ,1≤d

)T }

17: return (H, PΛ)

408

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Erick Rodriguez Bazan and Evelyne Hubert

Example 6.2. The subgroup of the orthogonal group R3 that

leaves the regular the cube invariant is commonly called Oh . It

has order 48 and 10 inequivalent irreducible representations whose

dimensions are (1, 1, 1, 1, 2, 2, 3, 3, 3, 3). Consider Ξ ⊂ R3 the invari-
ant set of 26 points illustrated on Figure 1a. They are grouped in

three orbits O1,O2 and O3 of Oh . The points in O1 are the vertices
of a cube with the center at the origin and with edge length

√
3. The

points in O2 and in O3 are the centers of the faces and middle of

the edges of a cube with the center at the origin and edge length 1.

Consider Λ = span
({
eξ | ξ ∈ Ξ

} ⋃ {
eξ ◦ D ®ξ | ξ ∈ O2

})
. Λ is an

invariant subspace and I = ⋂
λ∈Λ ker λ is an ideal. An orthogonal

equivariant H-basisH of I is given by

h11 =
[
− 3637 +

109
37

(
x2 + y2 + z2

)
− 110

37

(
x4 + y4 + z4

)
− 36

37

(
x2y2 + x2z2 + y2z2

)
+ x6 + y6 + z6

]

h71 =
[
yz3 − y3z , xz3 − x3z , xy3 − x3y

]

h72 =
[
x (y4 − y2 + z4 − z2 − 3(x4 − 2x2 + 1)), y (z4 − z2 + x4 − x2 − 3(y4 − 2y2 + 1)),

z
(
4
3 x

2y2 − 3(z4 − 2z2 + 1)
)]

h91 =
[
yz (−2 − 4

3 x
2
+ y2 + z2), xz (−2 + x2 − 4

3 y
2
+ z2), xy (−2 + x2 + y2 − 4

3 z
2)

From the structure ofH it follows that h111 is the minimal degree

invariant polynomial (up to a constant multiple) of I. In Figure 1b

we show the zero surface of h111 which is Oh invariant.

(a) Points in Ξ divided

in orbits

(b) Variety of the minimal degree invariant

polynomial h111 of I
Figure 1: Lowest degree invariant algebraic surface through

an invariant set of the points Ξ

Example 6.3. Lets consider the cyclic groupC3, and its action over

R3. It has order 3 and 3 inequivalent irreducible representations of

dimension 1, one absolutely irreducible representation and a pair of

conjugate irreducible representations of complex type. We analyze

the cyclic n−th roots system [3], which has been widely used as a

benchmark. The cyclic 3−th roots system is defined by:

C(3) : x + y + z, xy + yz + zx, xyz − 1.
The associated ideal I = ⟨C(3)⟩ of C(3) is invariant under C3.

The reduced Gröbner basis G of I w.r.t the graded reverse lexi-

cographic order and its corresponding normal set N are given by

G :=
{
x + y + z, y2 + yz + z2, z3 − 1

}
and N :=

{
1, z, y, z2, yz, yz2

}
.

Applying Algorithm 3 to the linear forms given by the coefficients

of the normal forms w.r.tN , we obtain a symmetry adapted H-basis

H =
{
x + y + z, x2 + y2 + z2, x3 + y3 + z3 − 3

}
as well as a sym-

metry preserving and robust representation of the quotient P =
{1, (y − z)(x − z)(x − y), x − z, y − z, (x − y)(x − 2z + y), (y − z)(2x − y − z)}.

REFERENCES
[1] J. Berthomieu, B. Boyer, and J.-C. Faugère. 2017. Linear algebra for comput-

ing Gröbner bases of linear recursive multidimensional sequences. Journal of
Symbolic Computation 83 (2017), 36 ś 67.

[2] G. Birkhoff. 1979. The algebra of multivariate interpolation. Constructive ap-
proaches to mathematical models (1979), 345ś363.

[3] G. Björck. 1990. Functions of modulus 1 on Z n whose Fourier transforms have
constant modulus, and łcyclic n-rootsž. In Recent Advances in Fourier Analysis
and its Applications. Springer, 131ś140.

[4] M. Collowald and E. Hubert. 2015. A moment matrix approach to computing
symmetric cubatures. (2015). https://hal.inria.fr/hal-01188290.

[5] C. De Boor. 1994. Gauss elimination by segments and multivariate polynomial
interpolation. In Approximation and Computation: A Festschrift in Honor of Walter
Gautschi. Springer, 1ś22.

[6] C. De Boor and A. Ron. 1990. On multivariate polynomial interpolation. Con-
structive Approximation 6, 3 (1990).

[7] C. De Boor and A. Ron. 1992. The least solution for the polynomial interpolation
problem. Mathematische Zeitschrift 210, 1 (1992).

[8] C. Fassino and H.M. Möller. 2016. Multivariate polynomial interpolation with
perturbed data. Numerical Algorithms 71, 2 (2016), 273ś292.

[9] A. Fässler and E. Stiefel. 1992. Group theoretical methods and their applications.
[10] J.-C Faugere, P. Gianni, D. Lazard, and T. Mora. 1993. Efficient computation of

zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic
Computation 16, 4 (1993), 329ś344.

[11] J.-C. Faugère and C. Mou. 2017. Sparse FGLM algorithms. Journal of Symbolic
Computation 80, 3 (2017), 538 ś 569.

[12] J.-C. Faugere and J. Svartz. 2013. Grobner bases of ideals invariant under a
commutative group: the non-modular case. In Proc. ISSAC 2013. ACM, 347ś354.

[13] K. Gatermann. 1990. Symbolic solution of polynomial equation systems with
symmetry. In ISSAC’90 Tokyo, Japan. ACM-Press, 112ś119.

[14] K. Gatermann. 1992. Linear representations of finite groups and the ideal theo-
retical construction ofG-invariant cubature formulas. In Numerical integration
(Bergen, 1991). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 357. Kluwer Acad.
Publ., Dordrecht, 25ś35.

[15] K. Gatermann. 2000. Computer algebra methods for equivariant dynamical systems.
Lecture Notes in Mathematics, Vol. 1728. Springer-Verlag, Berlin.

[16] K. Gatermann and F. Guyard. 1999. Gröbner bases, invariant theory and equi-
variant dynamics. J. Symbolic Comput. 28, 1-2 (1999), 275ś302.

[17] K. Gatermann and P. A. Parrilo. 2004. Symmetry groups, semidefinite programs,
and sums of squares. J. Pure Appl. Algebra 192, 1-3 (2004), 95ś128.

[18] G. Golub and C. Van Loan. 1996. Matrix Computations (3rd Ed.).
[19] E. Hubert and G. Labahn. 2012. Rational invariants of scalings from Hermite

normal forms. In Proc. ISSAC 2012. ACM, 219ś226.
[20] E. Hubert and G. Labahn. 2013. Scaling invariants and symmetry reduction of

dynamical systems. Found. Comput. Math. 13, 4 (2013), 479ś516.
[21] E. Hubert and G. Labahn. 2016. Computation of the Invariants of Finite Abelian

Groups. Mathematics of Computations 85, 302 (2016), 3029ś3050.
[22] M. Javanbakht and T. Sauer. 2019. Numerical computation of H-bases. BIT

Numerical Mathematics 59, 2 (2019), 417ś442.
[23] T. Krick, A. Szanto, and M. Valdettaro. 2017. Symmetric interpolation, Exchange

Lemma and Sylvester sums. Comm. Algebra 45, 8 (2017), 3231ś3250.
[24] F.S. Macaulay. 1916. The algebraic theory of modular systems. Cambridge Tracts

in Mathematics and Mathematical Physics 19 (1916).
[25] M.G. Marinari, H.M. Möller, and T. Mora. 1991. Gröbner bases of ideals given by

dual bases. In ISSAC’91. ACM, 55ś63.
[26] H.M. Möller and B. Buchberger. 1982. The construction of multivariate polyno-

mials with preassigned zeros. In European Computer Algebra Conference.
[27] H.M. Möller and T. Sauer. 2000. H-bases for polynomial interpolation and system

solving. Advances in Computational Mathematics 12, 4 (2000), 335ś362.
[28] B.Mourrain. 2017. Fast algorithm for border bases of ArtinianGorenstein algebras.

In ISSAC’17 Kaiserslautern, Germany. ACM Press, 333ś340.
[29] G. Pistone, E. Riccomagno, and H.P. Wynn. 2000. Algebraic statistics: Computa-

tional commutative algebra in statistics. Chapman and Hall/CRC.
[30] G. Pistone and H.P. Wynn. 1996. Generalised confounding with Gröbner bases.

Biometrika 83, 3 (1996), 653ś666.
[31] C. Riener and M. Safey El Din. 2018. Real root finding for equivariant semi-

algebraic systems. In Proc. ISSAC 2018. ACM, 335ś342.
[32] C. Riener, T. Theobald, L. J. Andrén, and J. B. Lasserre. 2013. Exploiting symmetries

in SDP-relaxations for polynomial optimization. Math. Oper. Res. 38, 1 (2013).
[33] E. Rodriguez Bazan and E. Hubert. 2019. Symmetry Preserving Interpolation. In

ISSAC’19. https://hal.inria.fr/hal-01994016
[34] T. Sauer. 2001. Gröbner bases, Hśbases and interpolation. Trans. Amer. Math. Soc.

353, 6 (2001), 2293ś2308.
[35] T. Sauer. 2017. Prony’s method in several variables. Numer. Math. 136, 2 (2017).
[36] T. Sauer. 2018. Prony’s method in several variables: symbolic solutions by uni-

versal interpolation. J. Symbolic Comput. 84 (2018), 95ś112.
[37] J. P. Serre. 1977. Linear representations of finite groups. Springer.
[38] J. Verschelde and K. Gatermann. 1995. Symmetric Newton polytopes for solving

sparse polynomial systems. Adv. in Appl. Math. 16, 1 (1995), 95ś127.

409

https://hal.inria.fr/hal-01188290
https://hal.inria.fr/hal-01994016

Generalizing The Davenport-Mahler-Mignotte Bound ś The
Weighted Case

Vikram Sharma
vikram@imsc.res.in

The Institute of Mathematical Sciences, HBNI
Chennai, India

ABSTRACT

Root separation bounds play an important role as a complexity

measure in understanding the behaviour of various algorithms in

computational algebra, e.g., root isolation algorithms. A classic

result in the univariate setting is the Davenport-Mahler-Mignotte

(DMM) bound. One way to state the bound is to consider a directed

acyclic graph (V , E) on a subset of roots of a degree d polynomial

f (z) ∈ C[z], where the edges point from a root of smaller absolute

value to one of larger absolute, and the in-degrees of all vertices is

at most one. Then the DMM bound is an amortized lower bound

on the following product:
∏

(α ,β)∈E |α − β |. However, the lower
bound involves the discriminant of the polynomial f , and becomes

trivial if the polynomial is not square-free. This was resolved by

Eigenwillig, 2008, by using a suitable subdiscriminant instead of

the discriminant. Escorcielo-Perrucci, 2016, further dropped the

in-degree constraint on the graph by using the theory of finite

differences. Emiris et al., 2019, have generalized their result to

handle the case where the exponent of the term |α − β | in the

product is at most themultiplicity of either of the roots. In this paper,

we generalize these results by allowing arbitrary positive integer

weights on the edges of the graph, i.e., for a weight function w :

E → Z>0, we derive an amortized lower bound on
∏

(α ,β)∈E |α −
β |w (α ,β). Such a product occurs in the complexity estimates of

some recent algorithms for root clustering (e.g., Becker et al., 2016),

where the weights are usually some function of the multiplicity of

the roots. Because of its amortized nature, our bound is arguably

better than the bounds obtained by manipulating existing results

to accommodate the weights.

KEYWORDS

Root separation bounds, confluent Vandermonde matrix, finite dif-

ferences, sub-discriminants, nuclear norm.

ACM Reference Format:

Vikram Sharma. 2020. Generalizing The Davenport-Mahler-Mignotte Bound

ś The Weighted Case. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404016

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404016

1 INTRODUCTION

Given a monic univariate polynomial f (z) ∈ C[z], of degree d with

roots α1, . . . ,αd , not all distinct, a root separation bound is a

lower bound on the smallest distance sep(f) between any distinct

pair of roots of f . A classic result [11] states that

sep(f) > d−(d+2)/2∆(f)1/2M(f)1−d ,

where

∆(f):=
∏
i<j

(αi − α j)2

is the discriminant of f , and

M(f):=
d∏
i=1

max {1, |αi |} (1)

is theMahler measure of f .

The parameter sep(f) naturally occurs in the complexity anal-

ysis of many algorithms; examples are the (real or complex) root

isolation algorithms ([13], [3], [5], [2]). However, most of these

algorithms need a lower bound on the product of certain pairs of

roots and not just the worst case separation. To capture these pairs,

we consider a simple (i.e., no loops and multiple edges) undirected

graph G = (V , E), whose vertices are a subset of the distinct roots
of f . Then we want a lower bound on

∏
(αi ,α j)∈E |αi − α j |. One

straightforward lower bound is sep(f) |E | , but Davenport [3] used
the amortized nature of theMahler measure to derive a lower bound

for real roots that essentially matches the lower bound on sep(f)
given above; the argument was later modified by Mignotte to com-

plex roots [12]. A consequence of these results is a straightforward

improvement in the complexity bounds on the running time of

algorithms for root isolation algorithms by a multiplicative factor

of the degree.

Both these lower bounds, nevertheless, rely on the discriminant

∆(f) and are trivial when the polynomial is not square-free, i.e.,

it has multiple roots. A remedy is to work with the square-free

part f̂ of f , but this again blows the bound by exponential factors

because of the growth in the coefficients of f̂ as compared to f .

An alternative presented by Eigenwillig [4] used the (d − r)-th sub-

discriminant of f instead of the the discriminant, where r is the

number of distinct roots of f . However, there are some constraints

on the graph G for the bound to be applicable, namely, in the di-

rected acyclic graph obtained by directing the edges of G from a

root of smaller absolute value to one of larger absolute value, the

in-degree of all the vertices is at most one. Escorcielo-Perrucci [7]

dropped this in-degree constraint by using the theory of finite dif-

ferences. Despite this, their result gives weaker bounds on products

410

https://doi.org/10.1145/3373207.3404016
https://doi.org/10.1145/3373207.3404016

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Vikram Sharma

of the form ∏
(αi ,α j)∈E

|αi − α j |w (αi ,α j), (2)

wherew : E → N is aweight function that assigns a positive inte-

ger to all the edges.1 In the special case where the weight function

is such that the weight of an edge is bounded by the multiplicity of

one of its vertices, [10] and [6] have derived lower bounds when

the coefficients of f are real and complex numbers, respectively.

To state their bound, let f have r distinct roots α1, . . . ,αr with

multiplicities m1, . . . ,mr , respectively, f̂ denote the square-free

part of f , and for a root αi let ∆i denote the distance to the nearest

distinct root. Then the bound in [6] is the following: If K ⊆ [r] and
wi ∈ N is such thatwi ≤ mi , for i ∈ K , then∏

i ∈K
∆
wi

i ≥ 2−d (r+2)(∥ f ∥∞∥ f̂ ∥∞)−dM(f)1−r |res(f , f̂ ′)|, (3)

here ∥ · ∥∞ is the maximum absolute value over the coefficient

sequence of the polynomial, and res(·, ·) is the univariate resul-

tant. These bounds, though useful, fail to provide amortized lower

bounds when thewi ’s exceed the multiplicity. Such a scenario, for

instance, occurs in the complexity analysis of some recent root

clustering algorithms [1, 2], where the following product occurs,

for some subsets Ki ⊆ [r]:∏
i ∈K

∆

∑
j∈Ki mj

i .

One way to derive a lower bound on this product is to exponentiate

the left-hand side of (3) to the degree d (since the sum of the mul-

tiplicities over Ki is bounded by d), move the extraneous factors

to the denominator in the right-hand side, and upper bound these

to get a lower bound on the desired product. But, just as was the

case with sep(f) |E | earlier, such an approach loses the amortization

property and gives exponentially worse bounds.

In this paper, we derive a lower bound on the product in (2) for

arbitrary weight functions. The restrictions on the weights in the

earlier approaches was an outcome of the choice of the symmetric

function (either the discriminant, sub-discriminant or the resultant).

We instead choose a symmetric function based on the weights and

try to optimize over all valid choices of the function. This is done

by constructing a confluent Vandermonde matrix to get the desired

weight structure in the exponents. The choice of the confluent Van-

dermonde is especially helpful when the weights are skewed in

distribution, because this means we can pick a different multiplicity

structure on the roots and obtain better bounds. The spectral struc-

ture of the weighted adjacency matrix Aw :=[wi , j]i , j=1, ...,r plays
an important role in the choice of the multiplicity structure for

constructing the confluent Vandermonde matrix. For ease of com-

prehension, we state our result when f is an integer polynomial

(since then the absolute value of the non-zero symmetric function

is at least one, which is how the bounds are used in practice) and

is also monic (otherwise divideM(f) by the absolute value of the

leading coefficient). Let ∥Aw ∥⋆ denote the nuclear norm of Aw ,

i.e., the sum of its singular values, n:=r
⌈√

∥Aw ∥⋆
⌉
, andw(E) be the

1Throughout, we use N to denote the set of positive integers and Z≥0 the set of
non-negative integers.

sum of the weights over the edges of G. Then we show that∏
(αi ,α j)∈E

|αi − α j |w (αi ,α j) >

M(f)−2r ∥Aw ∥⋆
(
n
√
3

)− 3r ∥Aw ∥⋆
2 −w (E)

n−n/2. (4)

The bound is amortized because the exponent of the Mahler mea-

sure does not contain w(E), which would be the case if we try to

derive the lower bound by modifying the earlier results (see (11)

below).

In the next section, we give the requisite details and properties

of the confluent Vandermonde matrix; Section 3 contains the state-

ment of our main result Theorem 3.2 and its comparison with a

modification of an existing bound; Section 4 contains a proof of the

main result, and in Section 4.1 we specialize it to obtain the form

given above in (4).

2 CONFLUENT VANDERMONDE

Consider the column vector

v(x)t :=
[
1 x x2 · · · xn

]
.

Define the vector obtained by differentiating each entry in the

column above i times and dividing by i!, ie.,

vi (x)t :=
[(0

i

)
x−i

(1
i

)
x1−i

(2
i

)
x2−i · · ·

(n−1
i

)
xn−1−i

]
,

(5)

with the natural convention that
(j
i

)
= 0 if j < i . Let

β :=(β1, . . . , βr) ∈ Cr

be an r -dimensional vector of complex numbers,

µ:=(µ1, . . . , µr) ∈ Nr

be a sequence of positive integers, and n:=
∑
i µi . Then the con-

fluent Vandermonde matrix V (β ; µ) is the n × n matrix with

columns (vj (βi)), where 1 ≤ i ≤ r and 0 ≤ j ≤ µi − 1. We will

also use the notation V (β1, . . . , βr ; µ1, . . . , µr) when we want to

emphasize the βi ’s and µi ’s. We illustrate it below for r = 3 and

µ1 = 2, µ2 = 3.

V (β, r) =

1 0 1 0 0

β1 1 β2 1 0

β21
(2
1

)
β1 β22 2β2 1

β31
(3
1

)
β21 β32 3β22

(3
2

)
β2

β41
(4
1

)
β31 β42 4β32

(4
2

)
β22

.

The block, B(βi), corresponding to a βi , is the set of columns

(vj (βi)), for j = 0, . . . , µi − 1. If all the µi ’s are one then we obtain

the standard Vandermonde matrix denoted as V (β). A key obser-

vation in understanding the determinant of the matrix above is to

consider the matrix obtained by replacing the last columnvµi−1(βi),
corresponding to some βi with µi > 1, with the column v(y), for
some variable y, which gives us the matrix

V (y):=V (β1, . . . , βi ,y, βi+1, . . . , βr ; µ1, . . . , µi − 1, 1, µi+1, . . . , µr).
(6)

Let V(y):= det(V (y)). By expanding along the column correspond-

ing to y, we can express V(y) as a polynomial in y with degree

at most n − 1. If we differentiate this polynomial (µi − 1) times,

divide by (µi − 1)! and substitute y = βi , then we will recover the

411

Generalizing The Davenport-Mahler-Mignotte Bound ś The Weighted Case ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

determinant ofV (β ; µ) expanded along the last column of the block

B(βi). More precisely,

det(V (β ; µ)) = V(µi−1)(y)
(µi − 1)!

����
y=βi

. (7)

This result is crucial in deriving the following explicit form for the

determinant [9].

Proposition 2.1. The determinant of the confluent Vandermonde

matrix satisfies

det(V (β ; µ)) =
∏

1≤i<j≤r
(βj − βi)µi µ j .

3 THE DAVENPORT-MAHLER-MIGNOTTE

BOUND

The following variant of the bound appears in [7].

Proposition 3.1. Let α :=(α1, . . . ,αr) be a sequence of distinct

complex numbers, and

M(α):=
r∏
i=1

max {1, |αi |} . (8)

IfG(V , E) is an undirected simple graph (i.e., with no multi edges and

self-loops) with vertices V ⊆ {α1, . . . ,αr }, then∏
(αi ,α j)∈E

|αi − α j | ≥ | det(V (α))|M(α)−(r−1)
(
r
√
3

)−|E |
r−r/2.

Remark: The result in [7] actually uses the sub-discriminant.

Given a degree d polynomial

f (z) =
r∏
i=1

(z − αi)mi ,

with distinct roots αi of multiplicitymi , for 1 ≤ i ≤ r , the (d − r)
discriminant of f is given by

sDiscd−r (f):= det(V (α))2
r∏
j=1

mi . (9)

Taking absolute values and substituting the expression for the ab-

solute value of the determinant into Proposition 3.1 we get∏
(αi ,α j)∈E

|αi − α j | ≥ |sDiscd−r (f)|1/2M(f)−(r−1)

×
(
r
√
3

)−|E |
r−r/2∏r
i=1

√
mi
. (10)

Escorcielo-Perrucci [7] then use the following upper bound by

Eigenwillig [4] to derive the final form of their result: Ifm1, . . . ,mr

are natural numbers such that
∑r
i=1mi = d then

r∏
i=1

√
mi ≤ 3min{d ,2(d−r)}/6.

Instead, if we use the AM-GM inequality then we get a sharper

bound, namely
r∏
i=1

√
mi ≤

(
d

r

)r/2
.

Substituting this in (10), we get the following improvement over

[7]:

∏
(αi ,α j)∈E

|αi − α j | ≥ |sDiscd−r (f)|1/2M(f)−(r−1)
(
r
√
3

)−|E |
d−r/2.

We will generalize Proposition 3.1 above to account for non-zero

integer weights on the edges, i.e., a lower bound on the product

given in (2). To illustrate the advantage of our approach, we first

give the details of a lower bound obtained by a straightforward

modification of Proposition 3.1.

Letwmax be the largest weight over all the edges inG. Then we

can raise the bound in the Proposition 3.1 to this weight and move

the extraneous factor to the right-hand side, and replace them with

an upper bound. For any edge (αi ,α j) ∈ E, we have

|αi − α j |wmax−w (αi ,α j) ≤ (2M(f))wmax .

Therefore, we obtain the following lower bound as a modification

of Proposition 3.1, which we will use to compare with the bound

derived in this paper:∏
(αi ,α j)∈E

|αi − α j |w (αi ,α j)

≥ | det(V (α))|wmaxM(α)−((r−1)wmax+ |E |wmax)·

2−(|E |wmax)
(
r
√
3

)−|E |wmax

r−(rwmax)/2. (11)

In comparison, we obtain the following generalization:

Theorem 3.2. Let α1, . . . ,αr ∈ C be distinct complex numbers.

Let G(V , E) be an undirected graph whose vertices V is a subset of

{α1, . . . ,αr }, with an associated a weight function w : E → N.

Denote by

Aw = [w(αi ,α j)]i , j=1, ...,r
the associated weighted adjacency matrix. To every vertex αi ∈ V ,

we assign a potential µi ∈ N such that for every edge (αi ,α j) ∈ E,

we have w(αi ,α j) ≤ µi µ j . Define µ as the column-vector of these

potentials, n:=
∑r
i=1 µi ,M(α) be as in (8), andw(E) as the sum of the

weights of the edges in the graph G, i.e.,

w(E):=
∑

(αi ,α j)∈E
w(αi ,α j). (12)

Then ∏
(αi ,α j)∈E

|αi − α j |w (αi ,α j) > | det(V (α ; µ))| M(α)−∥µµt−Aw ∥∞

(
n
√
3

)−∑
i (µi2)−w (E)

n−n/2, (13)

where ∞-norm of a matrix is the maximum one-norm over all the

rows of the matrix.

Remarks:

(1) Since we are dealing with symmetric matrices, we can re-

place the ∞-norm with the induced 1-norm, which is the

maximum over the sum of the columns.

(2) If all the weights are one, then we can take µi ’s as 1, and

obtain Proposition 3.1 as a corollary.

412

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Vikram Sharma

(3) There is an interesting trade-off between the absolute values

of the exponent ofM(α) and n/
√
3, namely, as the number

of edges in G increases the former decreases whereas the

latter increases.

In order to compare (10) and (13), we make three assumptions:

(i) G is connected, so |E | ≥ r − 1,

(ii) µi =
√
wmax, for all i = 1, . . . , r , and

(iii) f is an integer polynomial.

From the last assumption, it follows that both | det(V (α))| and
| det(V (α ; µ))| are at least one, and that is how we often use them

in applications. The second assumption implies that n = r
√
wmax.

We now compare three analogous terms from both the bounds by

taking logarithms.

From the assumption of connectivity, it follows that the absolute

value of the exponent of M(α) in (10) is at least 2(r − 1)wmax,

whereas in (13) it is at most rwmax. If r ≥ 2, then it follows that

the former is larger than the latter. The difference is because of the

amortized property of the bound in (13).

Consider the negation of the logarithm of the term

n−
∑
i (µi2)−w (E)

in (13). This is equal to(∑
i

(
µi

2

)
+w(E)

)
logn ≤

(∑
i

(
µi

2

)
+ |E |wmax

)
log(r√wmax).

Since
(µi
2

)
≤ µ2i /2, it follows that

∑
i

(µi
2

)
≤ rwmax/2. Therefore,

the right-hand side above is upper bounded by

2|E |wmax log(r
√
wmax)

which is somewhat larger than (− log r−|E |wmax), the corresponding
term in (10). It must be remarked, nevertheless, that the choice in

the second assumption is not the best (see Section 4.1) and is only

used for illustration at this point.

The negation of the logarithm of n−n/2 in (13) is

r
√
wmax log(r

√
wmax),

which is better than the corresponding term in (10), namely,

(rwmax) log r ,

for sufficiently largewmax.

3.1 Some Results from the Theory of Finite

Differences

Let f : C→ C be a function and y1, . . . ,yn be n nodes. Then the

divided difference of f on these n nodes is given by

f [y1, . . . ,yn]:=
n∑

k=1

n∏
ℓ=1;ℓ,k

1

(yk − yℓ)
f (yk). (14)

If f (z):=zm , for somem ∈ Z≥0, then we have the following closed

form:

f [y1, . . . ,yn] =

∑
(t1, ...,tn)∈Zn≥0∑n
i=1 ti=m−n+1

∏n
j=1 y

tj
j if n ≤ m + 1

0 if n > m + 1.

(15)

Given i1, . . . , in ∈ Z≥0, denote by

f (i1, ...,in)[y1, . . . ,yn]:=
1

i1!

∂i1

∂y
i1
1

· · · 1

in !

∂in

∂y
in
n

f [y1, . . . ,yn]. (16)

Then the following claim is straightforward to show:

Lemma 3.3. Given i1, . . . , in ∈ Z≥0, the quantity

f (i1, ...,in)[y1, . . . ,yn]
is a linear combination of f (kj)(yj), where j = 1, . . . ,n and kj =

0, . . . , i j . Moreover, the coefficient of f (i j)(yj) in this linear combina-

tion is
1

i j !

n∏
ℓ=1:ℓ,j

1

(yj − yℓ)iℓ+1
.

Proof. For simplicity, we only argue for i1; the argument is sim-

ilar for other cases. Consider the effect of 1
i1!

∂i1

∂y
i1
1

on f [y1, . . . ,yn].
By linearity of the derivative operator, we only need to focus on

the term f (y1)/
∏

i,1(y1 − yi). From Leibniz’s rule applied to this

term we get the expression

1

i1!

f (i1)(y1)∏
i,1(y1 − yi)

.

The effect of the other partial derivatives 1
iℓ !

∂iℓ

∂y
iℓ
ℓ

is only on the

terms in the denominator, which yields the desired expression for

the coefficient of f (i1)(y1). □

If f (z):=zm , for somem ∈ Z≥0, and (i1, . . . , in) ∈ Zn≥0, then as a

generalization of (15), we obtain the following

f (i1, ...,in)[y1, . . . ,yn] =

∑
(t1, ...,tn)∈Zn≥0∑n
i=1 ti=m−n+1

∏n
j=1 (

tj
ij
)ytj −ijj if n≤m+1

0 if n>m+1

(17)

with the natural convention that
(tj
i j

)
= 0 if tj < i j .

4 A PROOF OF THE MAIN RESULT

The idea of the proof is similar to [7]. Given the undirected graph

G, we first direct its edges to go from a root of smaller modulus to

one of larger modulus; this way we obtain a directed acyclic graph

G; the in-degrees of the vertices in G can be larger than one, which

is the case addressed in [7]. We consider the vertices of G in the

reverse order of a topological sort on its vertices, i.e., in the order

(α1, . . . ,αr), where if (αi ,α j) is an edge in G then j < i . Let In(αi)
denote the set of all vertices that have an edge pointing to αi , di be

the cardinality of In(αi) (i.e., the in-degree of αi), and
V0:=V (α ; µ). (18)

At the ith step we will process the block corresponding to αi in

Vi−1, where i ≥ 1, to obtain a matrix Vi . The relation between the

two matrices is the following:

detVi−1 = det(Vi)
∏

α j ∈In(αi)
(αi − α j)w (α j ,αi). (19)

The matrix Vi is instead obtained from Vi−1 in stages by modifying

the columns in the block corresponding to αi , that is, there are two

413

Generalizing The Davenport-Mahler-Mignotte Bound ś The Weighted Case ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

loops ś one over the blocks B(αi), and an inner loop processing the

columns of the block B(αi). The end result is a matrix Vr such that

det(V0) = det(Vr)
r∏
i=1

∏
α j ∈In(αi)

(αi − α j)w (α j ,αi).

The final step is to derive an upper bound on | det(Vr)|; this is done
by applying Hadamard’s inequality, and obtaining upper bounds on

the two-norms of the columns ofVr . In what follows, we will use α

in place of αi , µα as the size of the block B(α), k :=di , and V :=Vi−1.
Without loss of generality, let us assume that β1, . . . , βk are

the k vertices in In(α), with respective weightsw1, . . . ,wk . Since

we are processing the vertices in reverse topological order, we

know that the blocks corresponding to these vertices have not been

changed. Let µ1, . . . , µk be the sizes of the blocks B(β1), . . . ,B(βk),
respectively. We will replace each column in the block B(α) by a

suitable linear combination of the columns in the blocks B(α) and
B(βi) for i = 1, . . . ,k . The linear combination will be obtained by

taking a suitable partial derivative of the form given in (16) and then

substituting yi ’s appropriately. Ideally, we would have replaced,

say the last column in B(α), by the partial derivative obtained by

taking full weights,w1, . . . ,wk . However, there is a slight obstacle,

namely, that the derivatives of f (βi), for i = 1, . . . ,k , cannot exceed

beyond µi − 1. To overcome this we assign each edge (βi ,α) with
corresponding weightwi to a column in the block B(α), namely to

the ⌈wi/µi ⌉-th column in B(α); sincewi ≤ µi µα by assumption on

weights, the edge will be assigned to a column in B(α). Let Sj ⊆ [k],
for j = 1, . . . , µα , denote the set of all indices assigned to the jth

column of B(α), i.e.,
Sj := {i ∈ [k] : ⌈wi/µi ⌉ = j} . (20)

By assignment it follows that Sj ’s form a partition of [k]. The rea-
son why this assignment works is the following: each column in

B(α), along with its preceding columns in B(α) and the blocks

B(β1), . . . ,B(βk), can be used to factor out (βi − α)µi ; therefore,
⌈wi/µi ⌉ columns will be required to get to (βi − α)wi . An illustra-

tive aid for the subsequent proof is provided in Figure 1.

V = Vi−1

1 2 µ1

B(β1)

1 2

B(α)

µα

j + 1

In V (j+1),
the columns
(j + 1) to
µα have been
processed.

1 2 µk

B(βk)

j

Figure 1: The matrixVi−1 and the block B(α) at stage i of the
proof. At the jth step in processing V , the columns (j + 1) to
µα of the block B(α) have been processed to obtainV (j+1). In
V (j+1), the jth column is processed to obtain V (j).

We will now process the columns of B(α) starting from the last

column to the first in V ; it will help the reader to note that the

columns will be counted from 1 to µα . Suppose we have already

processed the columns of B(α) from µα down to (j + 1) in V ; let

V (j+1) be the resulting matrix; initially, define V (µα+1):=V . For βℓ ,

ℓ = 1, . . . ,k , define

rℓ :=

{
µℓ ifwℓ is divisible by µℓ ,

(wℓ mod µℓ) otherwise.
(21)

We inductively claim the following relation for j ≤ µα :

det(V) = det(V (j+1))
µα∏

κ=j+1

∏
ℓ∈Sκ

(βℓ − α)(κ−j−1)µℓ+rℓ . (22)

The proof is by reverse induction on decreasing values of j; the

base case trivially holds for j = µα , since the product vanishes and

V = V (µα+1) by choice.

To complete the inductive claim (22), we have to obtain the

following terms from the jth column in B(α):
(1) the residue terms (βℓ − α)rℓ , for each index ℓ ∈ Sj , and

(2) a factor of (βℓ − α)µℓ for all the indices ℓ ∈ Sκ , where κ > j .

This is done by taking a suitable partial derivative of the finite

difference. Let

Nj :=| ∪µα
κ=j Sκ |, (23)

that is the total number of indices assigned to column j or greater;

clearly Nj ≤ k . We will introduce Nj variables for each of these

indices, and a variable y0 for α . Note that the jth column of the

block B(α) in V (j+1) is obtained by substituting z = α in vj−1(z)
given in (5). Themth entry of this column, form = 1, . . . ,n, is(

m − 1

j − 1

)
zm−j

=

(zm−1)(j−1)
(j − 1)! . (24)

Define fm (z):=zm−1, and consider the finite difference

fm [y0,y1, . . . ,yNj
],

where the yℓ ’s are variables. Since the order of yi ’s in (16) does

not matter, we can assume without loss of generality that Sj ={
1, . . . , |Sj |

}
, the indices in Sj+1 are the next |Sj+1 | numbers, and

so on Sµα is the last |Sµα numbers smaller than Nj ; thus the sets Sκ ,

for κ = j, . . . , µα , form a partition of the set
{
1, . . . ,Nj

}
. Further

define

i0:=j − 1, iℓ :=rℓ − 1, (25)

for ℓ = 1, . . . , |Sj |, and
iℓ = µℓ − 1, (26)

for ℓ = |Sj | + 1, . . . ,Nj . Then we replace themth entry of the jth

column vj−1(α) in the matrix V (j+1) by

f
(i0, ...,iNj)
m [y0,y1, . . . ,yNj

] (27)

and substitute y0:=α , and yℓ :=βℓ , for ℓ = 1, . . . ,Nj .This is done for

all the n entries (that is,m = 1, . . . ,n) in the jth column. LetV (j) be
the resulting matrix. From Lemma 3.3 we know that the coefficient

of f
(i0)
m (y0) is

1

i0!

Nj∏
ℓ=1

1

(y0 − yℓ)iℓ+1
=

1

(j − 1)!

µα∏
κ=j

∏
ℓ∈Sκ

1

(α − βℓ)iℓ+1
, (28)

which is same for all m = 1, . . . ,n. Therefore, the replacement

of the entries of the jth column in the matrix V (j+1) by (27), for

414

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Vikram Sharma

m = 1, . . . ,n, is tantamount to obtaining thematrixV (j) fromV (j+1)

by replacing the jth column ofV (j+1) by a linear combination of its

other columns and a scaled version of the jth column, where the

scaling factor is the product term in (28); the 1/(j − 1)! is not part of
the scaling as it already occurs in all the entries of the column (see

(24)). In terms of the determinant, we obtain the following relation:

det(V (j+1)) = det(V (j))
µα∏
κ=j

∏
ℓ∈Sκ

(βℓ − α)iℓ+1

= det(V (j))
∏
ℓ∈Sj

(βℓ − α)rℓ
µα∏

κ=j+1

∏
ℓ∈Sκ

(βℓ − α)µℓ .

Substituting this in (22), we have the desired inductive relation:

det(V) = det(V (j))
µα∏
κ=j

∏
ℓ∈Sκ

(βℓ − α)(κ−j)µℓ+rℓ .

We stop when j = 1, to get

det(V) = det(V (1))
µα∏
κ=1

∏
ℓ∈Sκ

(βℓ − α)(κ−1)µℓ+rℓ .

But recall from (20) that for an index ℓ ∈ Sκ , we have ⌈wℓ/µℓ⌉ =
κ. Furthermore, from (21) it follows that wℓ = (κ − 1)µℓ + rℓ .

Since ∪µα
κ=1Sκ = [k], we have accounted for all the βℓ ’s, and so the

equation above is the same as

det(V) = det(V (1))
k∏
ℓ=1

(βℓ − α)wℓ

= det(V (1))
∏

α j ∈In(αi)
(α j − α)w (α j ,αi).

Defining Vi :=V
(1) and recalling that V = Vi−1, we complete the

proof of the inductive claim (19). Applying the claim for i = 1 to r ,

and making appropriate substitutions, we get the desired relation

(29).

det(V0) = det(Vr)
r∏
i=1

∏
α j ∈In(αi)

(αi − α j)w (α j ,αi), (29)

where V0 = V (α ; µ) (see (18)) The absolute value of the product on
the right-hand side is the value that we need to lower bound; we

know the determinant on the left-hand side from Proposition 2.1,

so all that remains is to derive an upper bound on | det(Vr)|. We

will use Hadamard’s inequality for this purpose, which requires

us to derive an upper bound on the two-norms of the columns of

the matrix Vr . Let Vr (αi ; j) denote the jth column of the block

of columns Vr (αi) corresponding to B(αi) in V0; note that Vr (αi)
may be the same as B(αi) (this happens, for instance, when there

are no edges incident on αi in G). In what follows, we derive an

upper bound on ∥Vr (αi ; j)∥2.
Recall the definition of Nj from (23), and that µi is the size of the

block B(αi). For convenience again, let the sets Sj , Sj+1, . . . , Sµi ⊆
In(αi) be indexed such that Sj =

{
1, . . . , |Sj |

}
, the next |Sj+1 | num-

bers are in Sj+1 and so on until Sµi is the last |Sµi | numbers smaller

than Nj ; thus these sets form a partition of the set
{
1, . . . ,Nj

}
. Now

themth entry in the column Vr (αi ; j) is (27). From (17), we have

the following bound on the absolute value of (27) after substituting

n:=Nj + 1, y0 = α0:=αi , yℓ :=αℓ , ℓ = 1, . . . ,Nj , and the indices iℓ ’s

are defined as in (25) and (26):∑
(t0,t1, ...,tNj)∈Z

Nj +1

≥0
t0+t1+· · ·+tNj =m−1−Nj

Nj∏
ℓ=0

(
tℓ
iℓ

)
|αℓ |tℓ−iℓ .

Since α1, . . . ,αNj
have edges directed to αi , their absolute val-

ues are smaller than |αi |. Therefore, the quantity above is upper

bounded by ∑
(t0,t1, ...,tNj)∈Z

Nj +1

≥0
t0+t1+· · ·+tNj =m−1−Nj

Nj∏
ℓ=0

(
tℓ
iℓ

)
|αi |m−1−Nj−iℓ ,

which is equal to

|αi |m−1−Nj−
∑Nj

ℓ=0
iℓ

∑
(t0,t1, ...,tNj)∈Z

Nj+1

≥0
t0+t1+· · ·+tNj =m−1−Nj

Nj∏
ℓ=0

(
tℓ
iℓ

)
. (30)

Define

Mj :=Nj +

Nj∑
ℓ=0

iℓ = Nj + j − 1 +

Nj∑
ℓ=1

iℓ, (31)

where the second equality follows from the fact that i0 = j − 1

(see the definition in (25)). The binomial coefficients
(tℓ
iℓ

)
vanish for

tℓ < iℓ , so we can assume that tℓ ≥ iℓ . If jℓ :=tℓ − iℓ , then

Nj∑
ℓ=0

tℓ =

Nj∑
ℓ=0

iℓ +

Nj∑
ℓ=0

jℓ,

and so the constraint
∑Nj

ℓ=0
tℓ =m − 1 − Nj is equivalent to

Nj∑
ℓ=0

jℓ =m − 1 − Nj −
Nj∑
ℓ=0

=m − 1 −Mj

where the last step follows from the definition ofMj (31). Changing

the indices from tℓ to jℓ in (30), we get the following bound the

mth entry of Vr (αi ; j):

|αi |m−1−Mj

∑
(j0, j1, ..., jNj)∈Z

Nj +1

≥0
j0+j1+· · ·+jNj =m−1−Mj

Nj∏
ℓ=0

(
iℓ + jℓ
iℓ

)
. (32)

We next derive a closed form for the summation term above.

Consider the generating function∑
tℓ ≥iℓ

(
tℓ
iℓ

)
xtℓ−iℓ =

∑
jℓ ≥0

(
iℓ + jℓ
jℓ

)
x jℓ = (1 − x)−(iℓ+1)

for a given ℓ. Taking the product of these for different choices of ℓ,

it follows that the summation term in the right-hand side of (32) is

the coefficient of xm−1−Mj in the generating function

(1 − x)−
∑Nj

ℓ=0
(iℓ+1)

= (1 − x)−(Mj+1)

415

Generalizing The Davenport-Mahler-Mignotte Bound ś The Weighted Case ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

which is (
m − 1

Mj

)
.

This implies that (32) is equal to |αi |m−1−Mj
(m−1
Mj

)
.

From the argument in the preceding paragraph, it follows that

in the matrix Vr the two-norm of the jth column, in the block of

columns corresponding to B(αi), is

∥Vr (αi ; j)∥2 ≤
(

n∑
m=1

|αi |2(m−1−Mj)
(
m − 1

Mj

)2)1/2
.

Since form − 1 ≤ Mj the binomial term vanishes, we can start the

summation from Mj onwards to obtain the following equivalent

form

∥Vr (αi ; j)∥2 ≤ ©«
n−1∑

m=Mj

|αi |2(m−Mj)
(
m

Mj

)2ª®¬
1/2

.

Substituting |αi | by
max
1

|αi |:=max {1, |αi |} (33)

and pulling out its largest power from the summation we have the

following upper bound on the two-norm

∥Vr (αi ; j)∥2 ≤ max
1

|αi |(n−1−Mj) ©«
n−1∑

m=Mj

(
m

Mj

)2ª®¬
1/2

.

Using the upper bound from [7, Lemma 7] on the summation term

above, we get the following inequality

∥Vr (αi ; j)∥2 ≤ max
1

|αi |(n−1−Mj)
(
n
√
3

)Mj √
n.

Taking the product of these quantities for j = 1, . . . , µi , we get the

following upper bound on the product of the two-norms of the

columns in the block Vr (αi) in Vr :
µi∏
j=1

∥Vr (αi ; j)∥2 ≤ max
1

|αi |
∑µi
j=1(n−1−Mj)

(
n
√
3

)∑µi
j=1 Mj

nµi /2.

(34)

Let us understand the term
∑µi
j=1Mj .

Lemma 4.1. For a vertex αi in the directed acyclic graph G, define

wi :=
∑

αℓ ∈In(αi)
w(αℓ,αi), (35)

that is, the sum of the weights of all edges incident on αi . Then

µi∑
j=1

Mj =

(
µi

2

)
+wi .

Proof. Recall the definition of the sets Sj , from (20), and the

definition ofMj , from (31). Given a j, and ℓ ∈ Sj , iℓ = rℓ − 1 from

(25); for ℓ ∈ Sκ , where κ = j + 1, . . . , µi , iℓ = µℓ − 1. Therefore, we

can rewrite (31) as

Mj = Nj + j − 1 +
∑
ℓ∈Sj

(rℓ − 1) +
∑

ℓ∈∪κ> jSκ

(µℓ − 1)

= j − 1 +
∑
ℓ∈Sj

rℓ +
∑

ℓ∈∪κ> jSκ

µℓ .

The sum
∑
j
∑

ℓ∈Sj rℓ is the sum of the residue terms over all indices

in ∪µi
j=1Sj . Now consider the sum

µi∑
j=1

∑
ℓ∈∪κ> jSκ

µℓ .

For two indices j < κ, the summation over j contributes an µℓ for

every ℓ ∈ Sκ . Therefore,

µi∑
j=1

©«
∑
ℓ∈Sj

rℓ +
∑

ℓ∈∪κ> jSκ

µℓ
ª®¬
= wi

□

Substituting the result in the lemma above into (34), we get the

following upper bound on the two-norms of the columns in Vr (αi)
µi∏
j=1

∥Vr (αi ; j)∥2 ≤ max
1

|αi |(n−1)µi−(
µi
2)−wi

(
n
√
3

)(µi2)+wi

nµi /2.

Taking the product of this bound for i = 1, . . . , r , along with

Hadamard’s inequality, gives us the following upper bound

| det(Vr)| ≤
r∏
i=1

(
max
1

|αi |(n−1)µi−(
µi
2)−wi

(
n
√
3

)(µi2)+wi
)
nn/2.

(36)

where we use the fact that n =
∑r
i=1 µi . The term

(n−1)µi −
(
µi

2

)
−wi =

r∑
j=1;j,i

µi µ j −wi +

(
µi

2

)
<

r∑
j=1
j,i

µi µ j −wi +µ
2
i .

If µ be the column vector of all µi ’s, andAw be the adjacency matrix

with the (i, j)th entry as the weightw(αi ,α j) of the corresponding
edge (αi ,α j), then the last term in the inequality above is the one-

norm of the ith row of the matrix µµt −Aw . Since the∞-norm of

the matrix ∥µµt −Aw ∥∞ is the maximum over all the row-sums,

we have

(n − 1)µi −
(
µi

2

)
−wi ≤ ∥µµt −Aw ∥∞.

As for the term

r∑
i=1

((
µi

2

)
+wi

)
=

r∑
i=1

(
µi

2

)
+w(E),

wherew(E) is defined in (12). Substituting these bounds in (36), we

obtain the following upper bound

| det(Vr)| ≤ M(α)∥µµt−Aw ∥∞
(
n
√
3

)∑
i (µi2)+w (E)

nn/2. (37)

Substituting this upper bound in (29) and moving it to the denomi-

nator in the left-hand side completes the proof of Theorem 3.2.

4.1 Choosing the best matrix

Theorem 3.2 leaves open the choice of the potentials µi ∈ N, i =
1, . . . , r . Our aim here is to find the best possible choice of µi ’s

satisfying the edge constraints w(αi ,α j) ≤ µi µ j and at the same

time minimizing ∥µµt −Aw ∥∞. For example, if all the weights are

416

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Vikram Sharma

one then it is clear that µi = 1, for i = 1, . . . , r , is the best possible

assignment. In which case,

V (α ; µ) = V (α), ∥µµt −Aw ∥∞ ≤ (r − 1), n = r , w(E) = |E |

and so Theorem 3.2 matches the bound given in Proposition 3.1.

Consider the relaxed version of the problem where µi ’s are posi-

tive reals; it is clear that rounding them up to the nearest integer

would give a valid solution (though not an optimum solution) to the

problem over the positive integers. Then the optimization problem

is to minimize ∥µµt −Aw ∥∞ such that

µµt ≥ Aw

where ‘≥’ heremeans entrywise; note that the non-edge constraints

are trivially satisfied since no µi is ever assigned to zero. Since Aw
is non-negative, we know from the Perron-Frobenius theory [9]

that the spectrum of Aw is an eigenvalue ρ(Aw) of Aw . Moreover,

as Aw is symmetric it can be orthogonally diagonalized, i.e., Aw =

QΛQt , where Q is the r × r orthogonal matrix whose columns

qk , k = 1, . . . , r , are the eigenvectors of Aw and Λ is a diagonal

matrix that has the corresponding eigenvalues ofAw . Another way

to express the relation is that Aw is the sum of some rank one

matrices obtained by its eigenvectors, i.e.,

Aw =

r∑
k=1

λkqkq
t
k
.

We can also assume that the ∥qk ∥2 = 1 for k = 1, . . . , r . Combined

with the equation above it follows that the (i, j)-th entry of Aw

w(αi ,α j) =
r∑

k=1

λkqk ,iqk , j .

Since by assumption ∥qk ∥2 = 1, taking absolute values we get

w(αi ,α j) ≤
r∑

k=1

|λk | = ∥Aw ∥⋆,

where ∥Aw ∥⋆ is the nuclear norm of Aw . Therefore, we can take

µ in Theorem 3.2 as the vector

µ:=
⌈√

∥Aw ∥⋆
⌉ r︷ ︸︸ ︷
(1, 1, . . . , 1), (38)

which implies that

n = r
⌈√

∥Aw ∥⋆
⌉

in the theorem. The error in the approximation can be shown to be

bounded by

∥µµt −Aw ∥∞ ≤ 2r ∥Aw ∥⋆,

and ∑
i

(
µi

2

)
≤ 3r ∥Aw ∥⋆

2
,

where in the last inequality we use the observation that as Aw
has entries in Z≥0, its spectrum is greater than one, and hence

∥Aw ∥⋆ ≥ 1. By making these substitutions in Theorem 3.2, we

obtain the result, namely (4), mentioned in Section 1.

5 CONCLUSION AND FUTURE WORK

Our derivation using the confluent Vandermonde matrix to get the

desired weights in the exponents has the advantage of optimizing

over the various choices of the matrix. We have given a first attempt

at exploiting this choice. Whereas rank-one approximations to

matrices are well studied [8], the challenge in our context is to

derive a symmetric rank-one matrix that also dominates Aw .

One would also like to derive a lower bound on the absolute

value of det(V (α ; µ)) in terms of the polynomial f , to get a more

direct comparison with the earlier results. Perhaps an algorithm

to compute the determinant from the coefficients would also be

interesting; a related recent result is an algorithm to compute the

D+(f)-root function defined as
∏

1≤i<j≤r (αi − α j)mi+mj , i.e.,G is

the complete graph on the roots and the weight of an edge is the

sum of the multiplicity of its vertices [14]. Similar to [6], one would

like to derive weighted version of the results for the more general

setting of polynomial systems.

REFERENCES
[1] Prashant Batra and Vikram Sharma. 2019. Complexity of a Root Clustering

Algorithm. CoRR abs/1912.02820 (2019). https://arxiv.org/abs/1912.02820
[2] Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee Yap. 2018. A near-

optimal subdivision algorithm for complex root isolation based on the Pellet
test and Newton iteration. Journal of Symbolic Computation 86 (2018), 51 ś 96.
https://doi.org/10.1016/j.jsc.2017.03.009

[3] James H. Davenport. 1985. Computer algebra for Cylindrical Algebraic Decomposi-
tion. Tech. Rep. The Royal Inst. of Technology, Dept. of Numerical Analysis and
Computing Science, S-100 44, Stockholm, Sweden. Reprinted as Tech. Report
88-10 , School of Mathematical Sci., U. of Bath, Claverton Down, Bath BA2 7AY,
England. URL http://www.bath.ac.uk/~masjhd/TRITA.pdf.

[4] Arno Eigenwillig. 2008. Real Root Isolation for Exact and Approximate Polynomials
Using Descartes’ Rule of Signs. Ph.D. Thesis. University of Saarland, Saarbruecken,
Germany.

[5] Arno Eigenwillig, Vikram Sharma, and Chee Yap. 2006. Almost Tight Complexity
Bounds for the Descartes Method. In Proc. of the 31st Intl. Symp. on Symbolic and
Algebraic Computation. 71ś78. Genova, Italy. Jul 9-12, 2006.

[6] Ioannis Emiris, Bernard Mourrain, and Elias Tsigaridas. 2019. Separation bounds
for polynomial systems. Journal of Symbolic Computation (2019). https://doi.
org/10.1016/j.jsc.2019.07.001

[7] Paula Escorcielo and Daniel Perrucci. 2017. On the Davenport-Mahler bound. J.
Complexity 41 (2017), 72ś81. https://doi.org/10.1016/j.jco.2016.12.001

[8] Shmuel Friedland. 2013. Best rank one approximation of real symmetric tensors
can be chosen symmetric. Frontiers of Mathematics in China 8 (2013), 19ś40.
https://doi.org/10.1007/s11464-012-0262-x.

[9] R. Horn and C. Johnson. 1991. Topics in Matrix Analysis. Cambridge University
Press, Cambridge.

[10] Alexander Kobel and Michael Sagraloff. 2015. On the complexity of computing
with planar algebraic curves. J. Complexity 31, 2 (2015), 206ś236. https://doi.
org/10.1016/j.jco.2014.08.002

[11] Maurice Mignotte. 1992. Mathematics for Computer Algebra. Springer-Verlag,
Berlin.

[12] Maurice Mignotte. 1995. On the Distance Between the Roots of a Polynomial.
Applicable Algebra in Engineering, Commun., and Comput. 6 (1995), 327ś332.

[13] Victor Y. Pan. 2002. Univariate polynomials: Nearly optimal algorithms for
numerical factorization and root-finding. Journal of Symbolic Computation 33, 5
(2002), 701ś733.

[14] Jing Yang and Chee K. Yap. 2020. On mu-Symmetric Polynomials. CoRR
abs/2001.07403 (2020). https://arxiv.org/abs/2001.07403

417

https://arxiv.org/abs/1912.02820
https://doi.org/10.1016/j.jsc.2017.03.009
https://doi.org/10.1016/j.jsc.2019.07.001
https://doi.org/10.1016/j.jsc.2019.07.001
https://doi.org/10.1016/j.jco.2016.12.001
https://doi.org/10.1016/j.jco.2014.08.002
https://doi.org/10.1016/j.jco.2014.08.002
https://arxiv.org/abs/2001.07403

General Witness Sets for Numerical Algebraic Geometry

Frank Sottile, Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA

Frank Sottile
sottile@math.tamu.edu

ABSTRACT

Numerical algebraic geometry has a close relationship to intersec-

tion theory from algebraic geometry. We deepen this relationship,

explaining how rational or algebraic equivalence gives a homotopy.

We present a general notion of witness set for subvarieties of a

smooth complete complex algebraic variety using ideas from in-

tersection theory. Under appropriate assumptions, general witness

sets enable numerical algorithms such as sampling and member-

ship. These assumptions hold for products of flag manifolds. We

introduce Schubert witness sets, which provide general witness

sets for Grassmannians and flag manifolds.

CCS CONCEPTS

· Computing methodologies→ Hybrid symbolic-numeric

methods.

KEYWORDS

numerical algebraic geometry, intersection theory, witness set,

Schubert variety

ACM Reference Format:

Frank Sottile. 2020. General Witness Sets for Numerical Algebraic Geometry.

In International Symposium on Symbolic and Algebraic Computation (ISSAC

’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3373207.3403995

INTRODUCTION

Numerical algebraic geometry uses numerical analysis to study

algebraic varieties. Its foundations rest on numerical homotopy

continuation, which enables the numerical computation of solu-

tions to systems of polynomial equations [26]. It relies on the fun-

damental concept of a witness set [24, 25], which is a data structure

for representing a subvariety of affine or projective space on a com-

puter. Witness sets also appear in symbolic computation under the

term lifting fiber, and have been used to establish the complexity

of computing points on an algebraic variety [10].

A witness set for an irreducible variety V of dimension k is

a triple, (F ,Λ,W), where F is a system of polynomial equations

Research of Sottile supported in part by NSF grant DMS-1501370 and Simons Founda-
tion Collaboration Grant for Mathematics Number 636314.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3403995

whose zero set containsV as a component and Λ is a general linear

space of codimension k (represented by k general linear polyno-

mials) which meets V transversally in the finite setW of points.

Numerical continuation of the pointsW when Λ is moved allows

one to, for example, sample points from V . Consequently,W may

be considered to be a generic point of V in the sense of Weil [28].

A witness set for a subvariety also represents its fundamental

cycle in homology. The homology of projective space has a basis

given by classes [L] of linear spaces. Since linear spaces satisfy

dualityÐL ∩ Λ is a point when L and Λ are general linear spaces

of complementary dimensionÐthe homology class [V] of a subva-

riety V of dimension k is determined by its degree, which is the

number of points in its intersection with a general linear space Λ

of codimension k . That is, if L is a linear space of dimension k , then

[V] = deg(V ∩ Λ) · [L] .

In a witness set, we replace the number deg(V ∩ Λ) by the set

W := V ∩ Λ and require that the intersection be transverse, which

we may, by Bertini’s Theorem.

The concept of witness sets and their manipulation is linked to

ideas from intersection theory [6, 7]. A witness setW is a concrete

representation of the localized intersection product [V] • [Λ] ∈
H0 (V ∩ Λ) [6, Ch. 8]. As W is a set of deg(V) points of V , we

are implicitly working in the group of cycles modulo numerical

equivalence. As a homotopy is a family of varieties (or points) over

C, homotopies are connected to the notion of rational equivalence.

We propose a notion of witness set for subvarieties of a smooth

algebraic variety X , based on ideas from intersection theory. This

requires an equivalence relation, such as numerical equivalence,

on algebraic cycles such that the resulting group of cycles on X

is a finitely generated free abelian group on which the intersec-

tion pairing is nondegenerate. Choosing an additive basis of cycles

gives general witness sets for subvarieties of X . With additional

assumptions (given in Section 3) this notion is refined, and there are

algorithms using general witness sets such as changing a witness

set, sampling, and membership testing.

Products of projective spaces satisfy these additional assump-

tions, and these ideas for such products were proposed in [12].

These assumptions hold for flag manifolds, where the natural gen-

eral witness sets are Schubert witness sets. We explain how Schu-

bert witness sets enable numerical continuation algorithms for

sampling and membership.

Numerical algebraic geometry operates on the geometric side

of algebraic geometry, with algorithms based on geometric con-

structions, such as fiber products [27], images of maps [13], and

monodromy [26, ğ15.4]. It is also suited for intersection theory,

using excess intersection formulas to compute Chern numbers [4].

Understanding witness sets in terms of intersection theory is a

natural continuation.

418

https://doi.org/10.1145/3373207.3403995
https://doi.org/10.1145/3373207.3403995

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Frank Sottile

0 1t

C |[0,1]

Figure 1: Paths over [0, 1] and predictor-corrector steps.

This paper is organized as follows. Section 1 gives background

from numerical algebraic geometry, including numerical continua-

tion, witness sets, and some fundamental algorithms. Section 2 gives

background from intersection theory and explains the connection

of rational equivalence to numerical homotopy continuation. We

present general witness sets in Section 3, and explain how additional

hypotheses enable algorithms for sampling and membership. In

Section 4 we introduce Schubert witness sets, which are the natural

general witness sets for flag manifolds and explain the fundamental

algorithms for Schubert witness sets.

1 CLASSICAL WITNESS SETS

We review aspects of numerical algebraic geometry as may be found

in [2, 26].

1.1 Homotopy continuation

A homotopy is a polynomial map

H = H (x ; t) : Cn × C −→ CN , (1)

where H−1 (0) ⊂ Cn × C defines an algebraic curve C with a domi-

nant projection to the distinguished (t) coordinate, C. We suppose

that 1 is a regular value of the projection to C and we know the

points of the fiber, and we use them to obtain the points of the fiber

over 0.

For example, suppose that F = (f1, . . . , fn) with fi a polynomial

of degree di . Then the Bézout homotopy

H (x ; t) := (1 − t)F + t (x
di
i −1 | i = 1, . . . ,n)

connects the points over t = 1, (x1, . . . ,xn) where xi is a di -th root

of unity, to the unknown solutions to F = 0.

Restricting t to the interval [0, 1] ⊂ C (more generally to a path

in C connecting 1 to 0 [2, ğ 2.1]), the algebraic curve C becomes a

collection of real paths in Cn × [0, 1] connecting points in the fiber

at t = 1 to those at t = 0. A point (x , 1) in the fiber of C at t = 1

lies on a unique path, and standard predictor-corrector methods

construct a sequence (x1, t1), . . . , (xs , ts) of points along that path

with 1 > t1 > · · · > ts = 0 so that xs is a solution to H (x , 0) = 0.

This is illustrated in Figure 1.

These numerical algorithms do not compute points on paths or

on varieties, but rather refinable approximations to such points.

This uses Newton’s method which replaces a point x ∈ Cn by the

result of a Newton step

NF (x) := x − (DF (x))−1 (x) ,

where F : Cn → Cn is a polynomial map and DF (x) is its Jacobian

derivative. When x is sufficiently close to a solution x∗ of F , the
sequence of iterations defined by x0 := x and xi = NF (xi−1) for
i > 0 satisfies

∥xi − x∗∥ <
(

1

2

)2i−1
∥x − x∗∥ .

When this occurs, we say that x converges quadratically to x∗.
Smale’s α-theory [22] involves a computable [14] constant α (F ,x)

such that if α (F ,x) < (13−3
√
17)/4, then x converges quadratically

to a solution. Other approaches to certification (e.g. Krawcyzk’s

Method [18, 20]) use interval arithmetic [21].

We ignore the question of whether our approximations lie in

the basin of quadratic convergence under Newton iterations and

simply refer to them as solutions, state that they lie on paths or on

varieties, et cetera.

1.2 Witness sets and algorithms

Algorithms based on numerical homotopy continuation can com-

pute the isolated solutions to a system of polynomial equations

F (x) = 0 and follow solutions along homotopy paths. Sommese,

Verschelde, andWampler [24, 25] introduced the notion of a witness

set, which enables the representation and manipulation of algebraic

subvarieties of Cn using numerical homotopy continuation.

Let F : Cn → CN be a polynomial map and V ⊂ Cn a union of

irreducible components of F−1 (0) of dimension k . A witness set for

V is a triple (F ,Λ,W) where Λ : Cn → Ck is k general affine forms

andW = V ∩ Λ−1 (0). As Λ is general,W consists of deg(V) points

and the intersection is transverse.

We may use a witness setW to compute other witness sets. If Λ′

is another set ofk independent affine forms, the convex combination

Λ(t) := (1 − t)Λ′ + tΛ may be used with F to define a homotopy

that connects the pointsW at t = 1 to pointsW ′ := V ∩ (Λ′)−1 (0)
at t = 0. Numerical continuation along this homotopy computes

the pointsW ′ (when finite) from the pointsW . When Λ′ is general,
we obtain another witness set (F ,Λ′,W ′) for V .

As every point ofV lies on some affine subspace of codimension

k which meets V properly, continuation of a witness set along

such homotopies samples points of V . Moreover, if p ∈ Cn and we

419

General Witness Sets for Numerical Algebraic Geometry ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

choose Λ′ such that Λ′(p) = 0, but Λ′ is otherwise general, then
p ∈ V if and only if p ∈ W ′. These three algorithms, moving a

witness set, sampling points of a variety, and the membership test,

are fundamental methods to study a variety V given a witness set,

and form the basis for more sophisticated algorithms.

2 INTERSECTION THEORY

We recall aspects of algebraic cycles and intersection theory, and

then discuss how rational equivalence leads to homotopies as in

Subsection 1.1. This material, with proofs, is found in Chapters 1

and 19 of [6]. Other sources include [5, 7].

Let X be a smooth algebraic variety of dimension n. If V ,Λ ⊂ X
are subvarieties of dimensions k and l with k+l ≥ n, then either

V ∩Λ is empty or it has dimension at least k+l−n. It is proper if it has
this expected dimension. The intersection V ∩ Λ is transverse at a

pointp ∈ V∩Λwhen bothV andΛ are smooth atp and their tangent

spaces at p span the tangent space of X at p,TpV +TpΛ = TpX . The

intersection Y ∩ Z is generically transverse if it is transverse at a

dense set of points p ∈ V ∩ Λ. Generically transverse is necessary

as any of V , Λ, or V ∩ Λ may have singular points. Generically

transverse intersections are proper.

2.1 Intersection theories

Let X be a connected, complete, smooth, irreducible complex al-

gebraic variety of dimension n. For each 0 ≤ k ≤ n, the group

ZkX of k-cycles on X is the free abelian group generated by the

k-dimensional irreducible subvarieties of X . The fundamental cy-

cle [V] of an irreducible subvariety V of X is the corresponding

generator of ZkX . A subscheme V ⊂ X of dimension k also has

a fundamental cycle. For each irreducible component Λ of V of

dimension k , letmΛ,V be its multiplicity in V , which is the generic

multiplicity of V along Λ. The fundamental cycle of V is

[V] :=
∑

Λ

mΛ,V [Λ] .

A cycle
∑

αV [V] with αV ≥ 0 is effective. If αV ∈ {0, 1}, it is
multiplicity-free. The fundamental cycle of a generically transverse

intersection is multiplicity-free. A map ι : Y → X of varieties in-

duces a map ι∗ : ZkY → ZkX . When ι is an inclusion and V ⊂ Y is

a subscheme, ι∗[V] = [ι (V)].

Sending a subvariety V to its fundamental cycle in homology

induces the cycle class map cl : ZkX → H2k (X ,Q). Its kernel is the

group Homk X of k-cycles with an integer multiple homologically

equivalent to zero and its image is the k-th algebraic homology

H
alg

k
X of X . (The shift in homological degree from 2k to k is for

notational consistency.) The group H
alg

k
X is a finitely generated

free abelian group. As X is smooth, homology has an intersection

product which induces a bilinear map H
alg

k
X ×Halg

l
X → H

alg

k+l−nX ,
where (α , β) 7→ α · β . When k + l = n, this gives the intersection

pairing H
alg

n−kX × H
alg

k
X → H

alg
0 X = Z.

Suppose thatY ⊂ X×P1 is an irreducible subvariety of dimension

k+1 with projections ι to X and f to P1,

Y ⊂ X × P1

✁
✁☛

❆
❆❯

ι f

X P1

(2)

where f is surjective. The fibers of f are naturally subschemes of

X of dimension k . Call the cycle

[ι (f −1 (0))] − [ι (f −1 (1))] ∈ ZkX (3)

an elementary rational equivalence. Elementary rational equiva-

lences generate the subgroup Ratk X ⊂ ZkX of k-cycles rationally

equivalent to zero. The quotient AkX := ZkX/Ratk X is the k-th

Chow group of X . As X is smooth, there is an intersection product

as with homology.

Let V and Λ be subvarieties of X of dimension k and l . The

localized intersection product [6, Ch. 8] of their fundamental cycles

is a cycle class

[V] • [Λ] ∈ Ak+l−n (V ∩ Λ) . (4)

Its image in Ak+l−nX under the map induced by the inclusion V ∩
Λ →֒ X is the intersection product [V] · [Λ]. When the intersection

is proper, the localized intersection product is the fundamental

cycle of the scheme-theoretic intersection, [V ∩ Λ].

Let deg : A0X → Z be the degree map on 0-cycles

deg :
∑

mp [p] 7−→
∑

mp ,

the sum over p ∈ X . Note that only finitely many coefficientsmp

are non-zero. Composing with the product gives an intersection

pairing An−kX ×AkX → A0X → Z as before.
If we replace P1 by an irreducible curve T and 0, 1 ∈ P1 by two

smooth points of T in the definition of rational equivalence, we

obtain algebraic equivalence. Let Algk X ⊂ ZkX be the group gen-

erated by differences of algebraically equivalent k-cycles, the group

of cycles algebraically equivalent to zero. Let BkX := ZkX/Algk X

be the group of cycles modulo algebraic equivalence. This has an

intersection product and pairing Bn−kX × BkX → B0X = Z as

before.

A cycle β ∈ ZkX is numerically equivalent to zero if, for every

α ∈ An−kX , we have deg(α · β) = 0, where β is the image of β

in AkX . Let Numk X ⊂ ZkX be the subgroup of k-cycles numer-

ically equivalent to zero. Set NkX := ZkX/Numk X , which is a

finitely generated free abelian group. The intersection pairing is

nondegenerate by the definition of numerical equivalence.

Proposition 1. For every 0 ≤ k ≤ n we have

Ratk X ⊂ Algk X ⊂ Homk X ⊂ Numk X , (5)

as subgroups of ZkX . The maps AkX → BkX → H
alg

k
X → NkX are

compatible with the intersection product. The groupsH
alg

k
X and NkX

are finitely generated free abelian groups and the intersection pairing

Nn−kX × NkX → Z is nondegenerate.

Define A∗X to be the direct sum of the AkX and the same for

B∗X , H
alg
∗ , and N∗X .

Remark 2. The first two inclusions in (5) are strict in general. A

conjectured equality of Homk X and Numk X is a consequence of

Grothendieck’s ‘standard conjectures’ [17, ğ 5]. The question of

when the intersection pairing on N∗X is perfect is related to the

representability of integral homology classes by algebraic cycles. ⋄

420

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Frank Sottile

X

f

❄

P1

0 1

C |[0,1]

✲φ

0 1t

D |[0,1]

Cd

❄

h

C

Figure 2: An elementary rational equivalence defines a homotopy.

2.2 Intersection theory and homotopy

continuation

Elementary rational and algebraic equivalences give homotopies in

the sense of Subsection 1.1.

Let Y ⊂ X ×P1 be an irreducible subvariety of dimension n−k+1
having projections ι toX and f to P1 with f surjective as in (2). This

gives an elementary rational equivalence (3) in Ratn−k X . Suppose
that V ⊂ X has dimension k and meets ι f −1 (1) transversally. Then
(V ×P1)∩Y contains a curveC passing throughV ∩ι f −1 (1). Writing

д for the restriction of f to C gives a surjective map д : C → P1.
Then д−1[0, 1] gives arcs in C connecting the points of д−1 (1) to
д−1 (0) as in Figure 1. Choosing coordinates and equations for the

varieties, we obtain a homotopy as in Subsection 1.1.

Theorem 3. Let Y ⊂ X × P1 give an elementary rational equiv-

alence in Ratn−k X (3) and V ⊂ X be a subvariety of dimension

k meeting ι f −1 (1) transversally with д the restriction of f to the

curve C = (V × P1) ∩ Y . Let U ⊂ X be an affine open set contain-

ing ιд−1[0, 1]. For any embedding φ : U → Cd there is a homotopy

H (x ; t) defining a curve D ⊂ Cd × C with φ−1 (D) = C ∩ (U × P1)
and φ−1 (D |[0,1]) = д−1[0, 1].

Proof. Let C ⊂ P1 be an affine line containing [0, 1]. Then the

arcs д−1[0, 1] lie in the curveC◦ := C ∩ (U ×C). Let φ : U → Cd be

a map realizing U as a subvariety of Cd . Then φ × idC realizes C◦

as a subvariety of Cd × C. Let D be its closure and h : D → C the

projection map. Choosing any system of equations H : Cd × C→
CN with D = H−1 (0) gives a homotopy. See Figure 2. □

Remark 4. This leads to a numerical homotopy algorithm to find

the points of ιд−1 (0), given those of ιд−1 (1). Write h : D → C for

the projection. As φιд−1 (1) = h−1 (1), we may use the homotopy to

trace these points along the arcs of h−1[0, 1] to obtain the points

of h−1 (0). Since h−1 (0) = φιд−1 (0), applying φ−1 to h−1 (0) gives
ιд−1 (0). ⋄

Remark 5. Theorem 3 used rational equivalence as homotopy

continuation assumes that t is rational (t ∈ C). Given an elementary

algebraic equivalence, replace C by a smooth affine curve T , the

points 0 and 1 by points p,q ∈ T , and the interval [0, 1] by an

arc γ on T connecting p to q. This gives arcs connecting points of

(V × P1) ∩ Y above p to points above q. Choosing coordinates (φ)

gives a homotopy H (x ; t), but the parameter t is not rational, as

it takes values in γ ⊂ T . This becomes a traditional homotopy by

choosing a mapψ : T → P1 withψ (p) = 1 andψ (q) = 0, and then

the path γ from p to q gives a path ψ (γ) between 1 and 0, which

is followed in the homotopy. This is not a rational equivalence as

only a subset of the points in a fiber (ψ ◦ ϕ)−1 are followed along

ψ (γ) from 1 to 0 (these are the points above γ ⊂ T). ⋄

3 GENERAL WITNESS SETS

LetX be an algebraic variety and fixC∗ to be an intersection theory

as in Proposition 1 such thatC∗X is a finitely generated free abelian

group with nondegenerate intersection pairing. A basis for C∗X
gives a normal form (6) for a fundamental cycle [V], leading to

general witness sets. We discuss when general witness sets may be

moved and may be used for sampling and membership.

3.1 General witness sets

The kth Betti number bk of X is the rank of the free Z-moduleCkX .

While it has a Z-basis of cycles α1, . . . ,αbk ∈ ZkX , these need

not be effective. There are however, independent effective cycles

[L
(k)
1], . . . , [L

(k)

bk
] ∈ ZkX , with each L

(k)
i an irreducible subvariety

of dimension k . These form a basis for theQ-vector spaceCkX ⊗ZQ,
called an effective Q-basis. We work with a fixed choice of cycles

{L(a)
b
} that form an effective Q-basis for C∗X .

For a subvariety V of X of dimension k , there are rational num-

bers c j (V) for j = 1, . . . ,bk defined by the expansion of the funda-

mental cycle of V in this basis,

[V] =

bk
∑

j=1

c j (V)[L
(k)
j] . (6)

The intersection pairing onCn−kX ×CkX is encoded by the bn−k ×
bk integer matrixM (k) whose entries are

M
(k)
i, j := deg

(

[L
(n−k)
i] · [L(k)j]

)

, (7)

where i = 1, . . . ,bn−k and j = 1, . . . ,bk . As the intersection pairing

is nondegenerate, bn−k = bk andM (k) is invertible.

Consequently, if c (V) := (c j (V) | j = 1, . . . ,bk)
T is the vector

of coefficients in the representation (6) of V , then the vector of

intersection multiplicities,

d (V) :=
(

deg([V] · [L(n−k)1]), . . . , deg([V] · [L(n−k)
bn−k

])
)T
,

421

General Witness Sets for Numerical Algebraic Geometry ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

satisfies d (V) = M (k)c (V), and so we may recover the class (6) of

V from these intersection multiplicities by inverting this relation,

c (V) = (M (k))−1d (V).

As dimV + dimL
(n−k)
i = dimX , the product [V] · [L(n−k)i]

is the image in C0X of the localized product [V] • [L(n−k)i] in

C0 (V ∩ L(n−k)i). This in turn is the image of the localized inter-

section product (4) in A0 (V ∩ L(n−k)i) under the map A∗ → C∗ of
Proposition 1. When the intersection is proper (has dimension 0),

[V] • [L(n−k)i] is the fundamental cycle [V ∩ L(n−k)i] of the inter-

section, which is
∑

p∈V∩L (n−k)
i

mp p ,

wheremp is the intersection multiplicity of V ∩ L(n−k)i at p.

Definition 6. Let V ⊂ X be a subvariety of dimension k . A gen-

eral witness set for V is a triple (V ,Λ•,W•), where Λ• is a list

(Λ1, . . . ,Λbn−k) of subvarieties of X such that [Λi] = [L
(n−k)
i] and

W• is a list (W1, . . . ,Wbn−k) of cycles such thatWi ∈ Z0 (V ∩ Λi)

represents the localized product [V]• [Λi]. We call each component

Wi a general witness set. ⋄
By the preceeding discussion, general witness sets encode fun-

damental cycles.

Theorem 7. Suppose that (V ,Λ•,W•) is a general witness set for
V . The vector c (V) of coefficients of [V] in the basis [L

(k)
j] of CkX is

obtained from the vector deg(W•) := (deg(W1), . . . , deg(Wbn−k))
T

of the degrees of theWi by the formula c (V) = (M (k))−1 deg(W•).

Example 8. The cyclesWi are not necessarily effective. If X :=

BlpP
2, the blow up of P2 in a point p, thenC1X = [ℓ]Z + [E]Z (this

holds in any intersection theory), where ℓ is the proper transform

of a line in P2 and E is the exceptional divisor. In this case,M (1)
=

(1 0
0 −1) as [ℓ]

2
= 1, [ℓ] · [E] = 0, and [E]2 = −1. A general witness

set for E isW• = (0,−[q]), where q ∈ E. ⋄
Example 9. Projective space Pn has free abelian Chow groups

A∗Pn . Here, bk = 1 for 0 ≤ k ≤ n and L(k) is any k-dimensional

linear subspace (k-plane). By Bertini’s Theorem, a general (n−k)-
plane Λ meets a k-dimensional subvariety V of Pn transversally in

deg(V) pointsW = V ∩ Λ. Thus classical witness sets are general
witness sets. ⋄

Chow groups are not typically finitely generated free abelian

groups with a nondegenerate intersection pairingÐe.g. if E is an

elliptic curve, then A0E = E × Z and A1E = Z. (This is remedied

for E by algebraic equivalence as B0E = B1E = Z.) Nevertheless,
for many common varieties X , rational equivalence and numeri-

cal equivalence coincide. A sufficient condition is that X admits

an action of a solvable linear algebraic group with finitely many

orbits [9]. This class of varieties includes projective space, toric

varieties, Grassmannians, flag manifolds, and spherical varieties.

If X is such a space and Y any variety, then there is a Künneth

isomorphism A∗X ⊗ A∗Y
∼−−→ A∗ (X × Y), so products with these

spaces preserve these properties.

Example 10. Hauenstein and Rodriguez [12] developed multipro-

jective witness sets for subvarieties of products of projective spaces,

which are general witness sets for these varieties. Letm,n ≥ 1. The

Chow group of Pm × Pn is a free abelian group that is isomorphic

to its cohomology. To describe a basis, for each 0 ≤ a ≤ m and

0 ≤ b ≤ n, let Ka ⊂ Pm and Lb ⊂ Pn be linear subspaces of dimen-

sions a and b, respectively. The classes [Ka] ⊗ [Lb] = [Ka × Lb]
with a + b = k form a basis for Ak (P

m × Pn).
A subvariety V ⊂ Pm × Pn of dimension k has bidegrees da,b =

da,b (V) for a + b = k defined by

[V] =
∑

a+b=k

da,b [Ka × Lb] ,

where 0 ≤ a ≤ m and 0 ≤ b ≤ n. A multihomogeneous witness set

for V is a triple (V ,Λ•,W•) where

(i) For each (a,b) with a + b = k , Λa,b = Ma × Nb where

Ma ⊂ Pm and Nb ⊂ Pn are linear subspaces of codimension

a and b, respectively, such that

(ii) Wa,b := V ∩Λa,b is transverse and therefore consists of da,b
points, and

(iii) Λ• = {Λa,b | a + b = k } andW• = {Wa,b | a + b = k }.
Hauenstein and Rodriguez enrich this structure by representing

V as a component of the solution set of a system of bihomogeneous

polynomials and the linear subspacesMa and Nb by general linear

forms on their ambient projective spaces. They give algorithms

based on multihomogeneous witness sets for moving a witness set,

membership, sampling, regeneration, and numerical irreducible

decomposition using a trace test [23]. An alternative trace test for

multihomogeneous witness sets is developed in [19], and extensions

to more than two factors are given in [11]. ⋄

3.2 Moving, sampling and membership

While general witness sets provide a representation of a cycle class

[V], without further assumption, their utility is limited. We first

describe how rational or algebraic equivalence allows a general

witness set to be moved, and then discuss conditions on subvarieties

Λi in an effective Q-basis that allow sampling and a membership

test. The moving lemma is essential for actual computations.

If (V ,Λ•,W•) is a general witness set for a subvariety V ⊂ X

of dimension k and V ∩ Λi is transverse, then we may move the

general witness setWi using any elementary rational or algebraic

equivalence involving Λi .

Theorem 11. Suppose that Λi is an effective cycle with [Λi] =

[L
(n−k)
i] in C∗X that meets a subvariety V transversally in a general

witness setWi = V ∩ Λi . For any elementary rational equivalence

[Λi] − [Λ′i] ∈ Ratn−k X , homotopy continuation ofWi along this

rational equivalence as in Theorem 3 computes a general witness set

W ′i ∈ C0 (V ∩ Λ′i).

Proof. Suppose thatY ⊂ X ×P1 as in (2) gives an elementary ra-

tional equivalence [Λi]−[Λ′i] ∈ Ratn−k X (so thatΛi = ι f
−1 (1) and

Λ′i = ι f
−1 (0)). SinceV meets Λi transversally inWi , by Theorem 3,

there is a homotopy connectingWi with points onV ∩Λ′i . IfV ∩Λ
′
i

is transverse, then numerical homotopy continuation may be used

to compute the pointsW ′i = V ∩ Λ′i . If it is not transverse, so that

homotopy paths become singular at t = 0, then endgames [1, 15]

422

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Frank Sottile

may be used to compute the endpoints of the paths and the corre-

sponding multiplicities. These points and multiplicities give a cycle

W ′i ∈ Z0 (V ∩ Λ′i) representing [V] • [Λ
′
i]. □

Remark 12. By Remark 5, an elementary algebraic equivalence

also gives a homotopy. ⋄
The exceptional divisor E of X = BlpP

2 does not move. Thus it

may not be possible to move a generator Li of Cn−kX in a rational

or algebraic family, and thus move a general witness setWi for a

subvariety V of X . Even when a generator Li moves, it may not

move with sufficient freedom.

While E ⊂ BlpP
2 does not move, the proper transform ℓ of a line

moves fairly freely. For any curveC ⊂ BlpP
2 and any smooth point

x of C with x < E, there is a proper transform ℓ′ of a line in P2 (so
[ℓ]− [ℓ′] is an elementary rational equivalence) that contains x and

meets C ∖ E transversally. This suggests the following definition.

Definition 13. A subvariety Λ of X satisfies the moving lemma

with respect to a dense open subset U of X if for any subvariety

V of X and smooth point x ∈ V ∩ U , there is a subvariety Λ′ of
X containing x with V ∩ Λ′ transverse in U and [Λ] − [Λ′] is an
elementary rational equivalence. ⋄

Remark 14. Suppose that a member L
(n−k)
i of an effectiveQ-basis

for Cn−kX satisfies the moving lemma with respect toU . Given a

general witness setWi = V ∩ L(n−k)i , the algorithm of Theorem 11

for movingWi may be used to sample points of V ∩ U and test

membership in V for points x ∈ U . ⋄
It is always possible to choose an effective Q-basis for Cn−kX

with one member satisfying a generic moving lemma.

Proposition 15. Let X be a smooth variety andV ⊂ X any affine

open subset. Then there is a dense open subset U ⊂ V such that for

every k with 1 ≤ k ≤ n = dimX , there exists a subvariety Λ of X of

dimension k that satisfies the moving lemma with respect toU .

Proof. Let π : V → An be a finite map given by Noether normal-

ization andU ⊂ V be the set of points x where dxπ is unrammified.

Then the inverse images π−1 (L) of affine k-planes L in An form

a family of rationally equivalent subvarieties which satisfy the

moving lemma with respect toU . □

4 SCHUBERT WITNESS SETS

While an elementary rational equivalence gives rise to homotopies

(Theorem 3), the Chow ring A∗X of cycles on X modulo rational

quivalence does not typically satisfy hypotheses which allow gen-

eral witness sets as in Section 3. Even when A∗X satisfies these

hypotheses, a general witness setWi might not be an effective cy-

cle or it might not be possible to useWi for sampling or testing

membership, even generically on an open subsetU ⊂ X .
Nevertheless, for the important class of flag varieties, the theory

of witness sets for subvarieties of projective spaces extends opti-

mally. Flag varieties include projective spaces, Grassmannians, and

products thereof. The Chow ring of a flag variety has an integer

basis of effective Schubert cycles, which are the fundamental classes

of Schubert varieties (defined below), and the intersection pairing

is nondegenerate. Consequently, subvarieties of X have general

witness sets. Also, the intersection matrixMk (7) is a permutation

matrix, implying that the coefficients (6) are positive integers. Fi-

nally, each Schubert variety satisfies the moving lemma on the

whole flag variety. We expain all this below.

There is a well-known classification of flag varieties [3]. LetG be

a semisimple reductive algebraic group, such as SLmC, a symplectic

or complex orthogonal group, or a product of such groups. A flag

variety forG is a compact homogeneous space forG . It has the form

G/P for P a subgroup of G containing a maximal solvable (Borel)

subgroup B of G. The orbit of B (or of any conjugate of B) on G/P

gives an algebraic cell decomposition ofG/P . Closures of these cells

are Schubert varieties whose fundamental cycles give a Z-basis for

the Chow ring A∗G/P . This has a detailed combinatorial structure,

which may be found in [3] or in [8], the latter for G = SLmC.

We summarize its salient features, which imply that the natural

general witness sets for flag varietiesÐSchubert witness setsÐhave

the optimal properties of classical witness sets. We describe them

for the Grassmannian of lines in P4, and show how to determine a

Schubert witness set for the set of lines on a quadric P4.

A partially ordered set (poset) is a set S with a binary relation ≤
that is reflexive, antisymmetric, and transitive. If S has a minimal

and a maximal element, and all maximal chains in S have the same

length, then S is ranked. The rank rk(α) of an element α ∈ S is the

number of elements below α in any maximal chain containing α

and the rank of S is the rank of its maximal element. Write Sk for

the set of elements of S of rank k .

We summarize some of the structure of a flag variety. Proofs are

found in [3, 8].

Proposition 16. For a flag variety G/P of dimension n, rational

equivalence coincides with numerical equivalence, and we have the

following.

(i) G/P has an algebraic cell decomposition,

G/P =
∐

α ∈S
X ◦α ,

where S is a ranked poset of rank n. We have X ◦α ≃ Crk(α) ,
and if Xα is the Zariski closure of X ◦α , then

Xα =
∐

β ≤α
X ◦
β
.

(ii) We have A∗G/P =
⊕

β [Xβ] · Z and

AkG/P =
⊕

rk(β)=k

[Xβ] · Z ,

so that {[Xβ] | β ∈ Sk } is a Z-basis for AkG/P .
(iii) For any subvarieties Y ,Z ⊂ G/P , there is a dense open subset

O of G such that дY ∩ Z is generically transverse for д ∈ O.
(iv) For every β ∈ Sk , there is a β̂ ∈ Sn−k and a dense open subset

O ofG such that for any β ∈ Sn−k and д ∈ O, the intersection
дXα ∩Xβ is empty if α , β̂ , and if α = β̂ , then the intersection

is transverse and consists of a single point.

Remark 17. Part (iii), the moving lemma for subvarieties of G/P ,

is Kleiman’s Bertini Theorem [16]. ⋄

Remark 18. WhenG/P = Pn , S = [0,n] is a chain of length n and

Xa is a linear subspace of dimension a.

423

General Witness Sets for Numerical Algebraic Geometry ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

When G/P = Pm × Pn , S = [0,m] × [0,n] and for (a,b) ∈ S ,
X (a,b) = Ka×Lb whereKa ⊂ Pm and Lb ⊂ Pn are linear subspaces

of dimensions a and b, respectively.

We describe the poset S and Schubert varieties for the Grassma-

nian of lines in P4 in Subsection 4.1. ⋄

A flag variety G/P has general witness sets, as rational and

numerical equivalence coincide. Using classes of Schubert vari-

eties for a basis of A∗G/P , we obtain Schubert witness sets. For

a subvariety V ⊂ G/P of dimension k , a Schubert witness set

(V ,дX•,W•) has the form дX• = (дXα | α ∈ Sn−k) with д ∈ G and

W• = (Wα | α ∈ Sn−k) where

Wα = V ∩ дXα for α ∈ Sn−k (8)

is transverse for all α ∈ Sn−k . By (iii) for each α , a general translate
дXα meetsV transversally, and wemay use the same group element

д for every α ∈ Sn−k .
By (iv), the intersection matrixM (k) is

M
(k)

α,β
=

{

1 if α = β̂

0 if α , β̂
,

and thus

[V] =
∑

β ∈Sn−k
deg(W

β̂
)[Xβ] . (9)

We summarize some properties of Schubert witness sets.

Theorem 19. Let V ⊂ G/P be a subvariety of dimension k . Each

componentWα of a Schubert witness setW• is a multiplicity-free

cycle. Any componentWα of a Schubert witness set (8) may be moved

to any other Schubert witness setW ′α = V ∩hXα along an elementary

rational equivalence. A non-zero Schubert witness setWα may be

used to sample points of V and to test membership in V for any point

x ∈ G/P .

Proof. For α ∈ Sn−k ,Wα = V ∩ дXα (8) is transverse, soWα is

a multiplicity-free cycle. Suppose thatW ′α = V ∩ hXα is the α th

component of another Schubert witness set for V . Let φ : C → G

be a smooth rational map with φ (0) = д and φ (1) = h (e.g. φ (t) =

ψ (t)д where ψ is a one-parameter subgroup with ψ (0) = 1 and

ψ (1) = hд−1). Then

Y = {(x , t) | x ∈ φ (t)Xα } ⊂ G/P × P1

as in (2) with ι f −1 (0) = дXα and ι f −1 (1) = hXα . By Theorem 3,

(V × P1) ∩ Y is a homotopy betweenWα andW ′α .
Since translates of Xα coverG/P (and thusV), these homotopies

may be used to sample points of V , and to test membership in V

for any x ∈ G/P as in Subsection 1.2. □

Remark 20. Property (iv) of Proposition 16, that the Schubert

basis is self-dual under the intersection pairing, simplifies the use

of general witness sets. A variety with an intersection theory C∗
that is finitely generated and has the property that every subvariety

V satisfies the moving lemma for U = X is a duality space if the

basis is self-dual under the intersection pairing as in (iv). ⋄
General witness sets simplify whenX is a duality space. If {L(k)i |

i = 1, . . . ,bk } are subvarieties whose cycles form a basis for CkX

and {L(n−k)i | i = 1, . . . ,bn−k = bk } subvarieties representing the

dual basis in that

deg
(

[L
(k)
i] • [L(n−k)j]

)

=

{

1 i = j

0 otherwise

Then if V ⊂ X has dimension k with general witness setsWi =

V ∩ Λi , where the intersection is transverse and [Λi] = [L
(n−k)
i],

then

[V] =
∑

deg(Wi) · [L(k)i] . (10)

as in (9). ⋄

4.1 Schubert witness sets for G(1,P4)

Let G(1,P4) be the Grassmannian of lines in P4. This is a homoge-

neous space of dimension 6 for SL5C. Its Schubert decomposition

is in terms of a flag of linear spaces

M• : M0 ∈ M1 ⊂ M2 ⊂ M3 ⊂ P4 ,

where dimMi = i . Schubert varieties are parametrized by pairs i, j

with 0 ≤ i < j ≤ 4. Then Xi j = Xi jM• is

Xi jM• := {ℓ ∈ G(1,P4) | ∅ , ℓ ∩Mi , ℓ ⊂ Mj } .

The dimension of Xi j is i + j − 1 and Xi j ⊂ Xab if i ≤ a and j ≤ b.
Duality is given by î j = 4−j, 4−i . We display the partial order S for

G(1,P4) below.

34
24

23 14
13 04

12 03
02

01

Duality is obtained by reflecting in the horizontal line of symmetry

with 1̂3 = 13 and 0̂4 = 04.

Let Q ⊂ P4 be a smooth quadric which is the zero set of a

quadratic polynomial f and let VQ ⊂ G(1,P4) be the set of lines
that lie on Q . This has codimension 3 in G(1,P4). Indeed, consider

the parametrization ℓ(t) = tp + (1 − t)q of the line through the

points p,q ∈ P4. Then f (ℓ(t)) is a quadratic polynomial in t whose

coefficients are polynomials in the coordinates of p and q. This line

lies on Q when the three coefficients of f (ℓ(t)) vanish.

A Schubert witness set for VQ has the form
(

VQ , (W13,W04), (дX13,дX04)
)

,

whereWα = VQ ∩ дXα is transverse. LetM• be the flag in P4 that
defines дXα . Since

X04M• = {ℓ | M0 ∈ ℓ}

is the set of lines that contain the point M0 and M0 < Q (as M• is
general), we haveW04 = VQ ∩ X04M• = ∅. As

X13M• = {ℓ | M1 ∩ ℓ , ∅ and ℓ ⊂ M3} ,

we see that VQ ∩ X13M• is the set of lines ℓ on Q ∩M3 that meet

M1. BecauseM3 is a general P
3,Q ∩M3 is a quadratic hypersurface

in P3. This contains two families of lines, and each point ofQ ∩M3

424

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece Frank Sottile

lies on one line from each family. SinceM1 meets Q in two points,

W13 = VQ ∩ X13M• consists of four lines. As

[VQ] = deg(W13)[X13] + deg(W04)[X04] = 4[X13] ,

if Q ′ is a second quadric, then

[VQ ∩VQ ′] = [VQ]
2
= 16[X13]

2
= 16[X01] ,

which recovers the well-known fact that 16 lines lie on a general

quartic surface Q ∩Q ′ in P4.

REFERENCES
[1] D.J. Bates, J.D. Hauenstein, and A.J. Sommese. 2011. A parallel endgame. In Ran-

domization, relaxation, and complexity in polynomial equation solving. Contemp.
Math., Vol. 556. Amer. Math. Soc., 25ś35.

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. 2103. Numerically
Solving Polynomial Systems with Bertini. SIAM.

[3] M. Brion. 2005. Lectures on the geometry of flag varieties. In Topics in cohomo-
logical studies of algebraic varieties. Birkhäuser, Basel, 33ś85.

[4] S. Di Rocco, D. Eklund, C. Peterson, and A.J. Sommese. 2011. Chern numbers of
smooth varieties via homotopy continuation and intersection theory. J. Symbolic
Comput. 46, 1 (2011), 23ś33.

[5] D. Eisenbud and J. Harris (Eds.). 2016. 3264 and All That. Cambridge University
Press.

[6] Wm. Fulton. 1984. Intersection Theory. Number 2 in Ergebnisse derMath. Springer-
Verlag.

[7] Wm. Fulton. 1984. Introduction to Intersection Theory in Algebraic Geometry.
AMS.

[8] William Fulton. 1997. Young tableaux. London Mathematical Society Student
Texts, Vol. 35. Cambridge University Press, Cambridge. x+260 pages.

[9] W. Fulton, R. MacPherson, F. Sottile, and B. Sturmfels. 1995. Intersection theory
on spherical varieties. J. Algebraic Geom. 4, 1 (1995), 181ś193.

[10] Marc Giusti and Joos Heintz. 1993. La détermination des points isolés et de la
dimension d’une variété algébrique peut se faire en temps polynomial. In Compu-
tational algebraic geometry and commutative algebra (Cortona, 1991). Cambridge
Univ. Press, 216ś256.

[11] J.D. Hauenstein, A. Leykin, J.I. Rodriguez, and F. Sottile. 2019. A numerical toolkit
for multiprojective varieties. ArXiv.org/1908.00899.

[12] J.D. Hauenstein and J.I. Rodriguez. 2020. Numerical irreducible decomposition of
multiprojective varieties. Advances in Geometry, to appear.

[13] J.D. Hauenstein and A.J. Sommese. 2010. Witness sets of projections. Appl. Math.
Comput. 217, 7 (2010), 3349ś3354.

[14] J.D. Hauenstein and F. Sottile. 2012. Algorithm 921: alphaCertified: certifying
solutions to polynomial systems. ACM Trans. Math. Software 38, 4 (2012), Art. ID
28, 20.

[15] B. Huber and J. Verschelde. 1998. Polyhedral end games for polynomial continu-
ation. Numer. Algorithms 18, 1 (1998), 91ś108.

[16] S.L. Kleiman. 1974. The transversality of a general translate. Compositio Math.
28 (1974), 287ś297.

[17] S.L. Kleiman. 1994. The standard conjectures. InMotives (Seattle, WA, 1991). Proc.
Sympos. Pure Math., Vol. 55. Amer. Math. Soc., Providence, RI, 3ś20.

[18] R. Krawczyk. 1969. Newton-algorithmen zur bestimmung von nullstellen mit
fehler-schranken. Computing 4, 3 (1969), 187ś201.

[19] A. Leykin, J.I. Rodriguez, and F. Sottile. 2018. Trace test. Arnold Math. J. 4, 1
(2018), 113ś125.

[20] R.E. Moore and S.T. Jones. 1977. Safe starting regions for iterative methods. SIAM
J. Numer. Anal. 14, 6 (1977), 1051ś1065.

[21] R.E. Moore, R.B. Kearfott, and M.J. Cloud. 2009. Introduction to interval analysis.
SIAM. xii+223 pages.

[22] S. Smale. 1986. Newton’s method estimates from data at one point. In The merging
of disciplines: new directions in pure, applied, and computational mathematics
(Laramie, Wyo., 1985). Springer, New York, 185ś196.

[23] A.J. Sommese, J. Verschelde, and C.W. Wampler. 2002. Symmetric functions
applied to decomposing solution sets of polynomial systems. SIAM J. Numer.
Anal. 40, 6 (2002), 2026ś2046 (2003).

[24] A.J. Sommese, J. Verschelde, and C.W. Wampler. 2005. Introduction to numerical
algebraic geometry. In Solving polynomial equations. Algorithms Comput. Math.,
Vol. 14. Springer, Berlin, 301ś335.

[25] A.J. Sommese and C.W. Wampler. 1996. Numerical algebraic geometry. In The
mathematics of numerical analysis. Lectures in Appl. Math., Vol. 32. Amer. Math.
Soc., 749ś763.

[26] A.J. Sommese and C.W. Wampler. 2005. The numerical solution of systems of
polynomials. World Scientific.

[27] A.J. Sommese and C.W. Wampler. 2008. Exceptional sets and fiber products.
Found. Comput. Math. 8, 2 (2008), 171ś196.

[28] A. Weil. 1962. Foundations of algebraic geometry. Amer. Math. Soc. xx+363 pages.

425

Parametric Standard System for Mixed Module

and its Application to Singularity Theory

Hiroshi Teramoto
∗

teramoto@es.hokudai.ac.jp
Hokkaido University/Institute for Chemical Reaction

Design and Discover
Sapporo, Japan

PRESTO, Department of Research Promotion
Tokyo, Japan

Katsusuke Nabeshima

Tokushima University
Tokushima, Japan

nabeshima@tokushima-u.ac.jp

ABSTRACT

We provide a concrete computational algorithm for com-
puting the standard basis for a mixed module proposed by
Gatermann and Hosten [1]. We extend it to parametric stan-
dard system for a mixed module and provide an algorithm to
compute it. We demonstrate our algorithm by applying it to
classiĄcation of map-germs relative to A in which complicated
moduli structures appear.

CCS CONCEPTS

• Computing methodologies → Algebraic algorithms.

KEYWORDS

mixed-module, comprehensive standard basis, singularity
theory

ACM Reference Format:

Hiroshi Teramoto and Katsusuke Nabeshima. 2020. Parametric

Standard System for Mixed Module and its Application to Sin-

gularity Theory. In International Symposium on Symbolic and
Algebraic Computation (ISSAC ’20), July 20–23, 2020, Kalamata,

Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

1145/3373207.3404027

1 INTRODUCTION

Mixed modules are sums of two modules over two different
rings. Mixed modules appear in various settings such as Stan-
ley decomposition of a quotient ideal and singularity theory.
In singularity theory, mixed modules appear in classiĄcation
of map-germs relative to various equivalence relations such as
A [2], KB [3, 4], and A [G]-equivalence [5] for some Lie group
G. There, the concept of (extended) tangent space plays an
important role and an (extended) tangent space is a mixed

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ISSAC ’20, July 20–23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404027

module relative to these equivalences. Compared to the con-
ventional module over a single ring, the algebraic structure of
a mixed module can be highly complicated, which makes clas-
siĄcation of map-germs relative to these equivalences difficult.
This is thought of as one of the motivations of Mather [6]
to reduce classiĄcation of stable map-germs relative to A to
that of those relative to K since, in the latter case, (extended)
tangent spaces of map-germs are modules.

One of the pioneering works for automation of classiĄcation
relative to these equivalences is done by Kirk [7Ű9] based
on the complete transversal theorem [10, 11]. Unlike the
conventional module where efficient computation can be done
by using the standard basis, there was no such a concept for
mixed module at that time. In their algorithm, they handle
mixed modules in jet spaces as a huge vector space over R.
It seems that their software is no longer available and it is
difficult to assess the efficiency of their algorithm but it can
be made much more efficient if mixed module structures are
taken into account.

Since then, a possible generalization of standard bases
for mixed modules is proposed by Gatermann and Hosten
[1] and it is applied to solve classiĄcation of map-germs
relative to KB. In this paper, we extend it to parametric
standard system for a mixed module (comprehensive standard
system (CSS) for a mixed module), propose a computational
algorithm (Algorithms 2-4) for it, and apply the algorithm
to solve classiĄcation problems involving complicated moduli
structure.

In Sec. 2, we review standard basis for a mixed module
by [1] and introduce a concrete computational algorithm
(Algorithm 1) for it. In Sec. 3, we extend it to CSS for a mixed
module along with an example to demonstrate it. In Sec. 4,
we demonstrate CSS for a mixed module in classiĄcation of
map-germs relative to A. In Sec. 5, we provide conclusions
and remarks.

2 STANDARD BASIS FOR MIXED
MODULE [1]

Let K be a Ąeld and let λ = (λ1, · · · , λnλ
) and x = (x1, · · · , xnx)

be variables such that they are disjoint with each other. Let
K [x, λ] be the polynomial ring with variables x and λ, ⟨x, λ⟩
be the ideal generated by x and λ, and K [x, λ]⟨x,λ⟩ be the
localization of K [x, λ] with respect to ⟨x, λ⟩.

426

https://doi.org/10.1145/3373207.3404027
https://doi.org/10.1145/3373207.3404027
https://doi.org/10.1145/3373207.3404027

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Teramoto and Nabeshima

Definition 2.1. A (x, λ)-mixed module M ⊂
(

K [x, λ]⟨x,λ⟩

)n

is a K [λ]⟨λ⟩-module which may be written as a sum M =

N + Q, where N ⊂
(

K [x, λ]⟨x,λ⟩

)n
is a K [x, λ]⟨x,λ⟩-module

of finite codimension as a K-vector space in
(

K [x, λ]⟨x,λ⟩

)n

and Q ⊂
(

K [x, λ]⟨x,λ⟩

)n
is a K [λ]⟨λ⟩-module.

Let ≺x,λ be a local ordering in the set of monomials in x
and λ. Let ≺x,λ,m be a module ordering in the monomials in
(

K [x, λ]⟨x,λ⟩

)n
which is compatible with the ordering ≺x,λ,

i.e., a module ordering satisfying:

(1) xαλβei ≺x,λ,m xα′

λβ′

ej

⇒ xα+α′′

λβ+β′′

ei ≺x,λ,m xα′+α′′

λβ′+β′′

ej ,

(2) xαλβ ≺x,λ xα′

λβ′ ⇒ xαλβei ≺x,λ,m xα′

λβ′

ei,

for all α, α′, α′′ ∈ Z
nx

≥0, β, β′, β′′ ∈ Z
nλ

≥0, and i, j ∈ ¶1, · · · , n♢,
where ei = (0, · · · , 0, 1, 0, · · · , 0) is the i-th canonical ba-
sis vector of

(

K [x, λ]⟨x,λ⟩

)n
with 1 at the iâĂŞth place.

Let LM≺x,λ,m
(f), LT≺x,λ,m

(f), and LC≺x,λ,m
(f) be the

leading monomial, leading term and leading coefficient of
f ∈

(

K [x, λ]⟨x,λ⟩

)n
, respectively.

Definition 2.2 (Initial Module). The initial module
in≺x,λ,m

(M) is defined as the K [λ]⟨λ⟩-module

in≺x,λ,m
(M)

= ⟨LM≺x,λ,m
(f)
∣

∣∀g ∈ K [x, λ]⟨x,λ⟩ , gf ∈M ⟩K[x,λ]⟨x,λ⟩

+ ⟨LM≺x,λ,m
(f) ♣f ∈M ⟩K[λ]⟨λ⟩

.

Definition 2.3 ((x, λ)-mixed standard basis). An (x, λ)-
mixed standard basis of M is a pair

(

S(1), S(2)
)

of two finite

sets S(1) and S(2) such that

M = ⟨S(1)⟩K[x,λ]⟨x,λ⟩
+ ⟨S(2)⟩K[λ]⟨λ⟩

and

in≺x,λ,m
(M) = ⟨LM≺x,λ,m

(

S(1)
)

⟩K[x,λ]⟨x,λ⟩

+ ⟨LM≺x,λ,m

(

S(2)
)

⟩K[λ]⟨λ⟩
.

Lemma 37 in [1] guarantees the existence of an (x, λ)-
mixed standard basis with respect to an arbitrary local order
≺x,λ. A brief sketch of the algorithm for computing standard
basis for a given pair of Ąnite number of generators in N and
Q is given in [1]. Here, we provide a concrete algorithm for
computing a pair

(

S(1), S(2)
)

for a given pair of Ąnite num-
ber of generators in N and Q. We deĄne the S-polynomial
spoly (f, g) for non-zero f, g ∈ K [x, λ]n as follows: Sup-
pose LM≺x,λ,m

(f) = xαλβei and LM≺x,λ,m
(g) = xα′

λβ′

ej

(α, α′ ∈ Z
nx

≥0, β, β′ ∈ Z
nλ

≥0 and i, j ∈ ¶1, · · · , n♢). The S-
polynomial spoly (f, g) is deĄned as

LCM

xαλβ , xα′

λβ′

f

LC≺x,λ
(f) xαλβ

−
g

LC≺x,λ
(g) xα′ λβ′

(1)
if i = j and 0 in the other cases, where xα = xα1

1 xα2

2 · · ·x
αnx
nx

and λβ = λβ1

1 λβ2

2 · · ·λ
βnλ
nλ

. For α, α′ ∈ Z
nx

≥0, we write α ≤ α′

if αi ≤ α′
i holds for all i = 1, · · · , nx.

Algorithm 1. Compute Standard Basis for Mixed Module

Input: N, Q ⊂ K [x, λ]n : Ąnite sets of generators of the
mixed module ⟨N⟩K[x,λ]⟨x,λ⟩

+ ⟨Q⟩K[λ]⟨λ⟩

Output:
(

S(1), S(2)
)

: standard basis
1: S(1) ← the reduced standard basis of N ;
2: S(2) ← the non-zero reduced normal forms of the ele-

ments of Q with respect to S(1);

3: P1 ←

spoly (f, g)

∣

∣

∣

∣

∣

∣

f ∈ S(1), g ∈ S(2), i = j and α ≤ α′

LM≺x,λ,m
(f) = xαλβei,

and LM≺x,λ,m
(g) = xα′

λβ′

ej

;

4: P2 ←

spoly (f, g)

∣

∣

∣

∣

∣

∣

f ∈ S(2), g ∈ S(2), i = j and α = α′

LM≺x,λ,m
(f) = xαλβei,

and LM≺x,λ,m
(g) = xα′

λβ′

ej

;

5: P = P1 ∪ P2;
6: while P ̸= ∅ do
7: f ← one of the elements in P ;
8: P ← P \ ¶f♢;
9: f ← the reduced normal form of f in Algorithm 32

in [1] with respect to
(

S(1), S(2)
)

;
10: if f ̸= 0

(

LM≺x,λ,m
(f) = xαλβei

)

then

11: P ← P∪
{

spoly (f, g)

∣

∣

∣

∣

g ∈ S(1), i = j and α ≥ α′,

LM≺x,λ,m
(g) = xα′

λβ′

ej

}

;

12: P ← P∪
{

spoly (f, g)

∣

∣

∣

∣

g ∈ S(2), i = j and α = α′,

LM≺x,λ,m
(g) = xα′

λβ′

ej

}

;

13: S(2) ← S(2) ∪ ¶f♢;
14: end if
15: end while

end

Algorithm 1 terminates in Ąnite steps. It can be shown as
follows. The set of monomials in

(

k [x, λ]⟨x,λ⟩

)n
that do not

belong to ⟨S(1)⟩K[x,λ]⟨x,λ⟩
is Ąnite since the codimension of

N in
(

k [x, λ]⟨x,λ⟩

)n
is Ąnite. Let Moncan be the set of Ąnite

number of monomials which are not divisible by any element
of LM≺x,λ

(

S(1)
)

. By Algorithm 1, in the while loop (6-15th
line), it is guaranteed that LM

(

S(2)
)

⊂ Moncan holds. It is
because the set S(2) is initiated in line 2 of Algorithm 1 as
the non-zero reduced normal forms of the elements of Q with
respect to S(1) and all the new elements added to S(2) are
non-zero reduced normals forms in Algorithm 32 in [1] with
respect to

(

S(1), S(2)
)

, whose leading terms are not multiples
of any LM≺x,λ

(

S(1)
)

by Lemma 33 in [1]. Every time a
non-zero element f is found in the while loop, the number
of elements in LM

(

S(2)
)

increases by one. Since the number
of elements in Moncan is Ąnite, the number of elements in
LM≺x,λ,m

(

S(2)
)

is saturated in Ąnite steps. After the step,
a non-zero element f cannot appear in the while loop and
thus the number of elements in P decreases by one in each
iteration of the while loop. Since the number of elements in
P is Ąnite, the iteration terminates in Ąnite steps.

Theorem 41 in [1] guarantees the output of Algorithm 1,
i.e.,

(

S(1), S(2)
)

is a standard basis of the mixed module
M = N + Q.

In summary, we get the following.

427

Parametric Standard System for Mixed Module
and its Application to Singularity Theory ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Theorem 2.1. For a given finite set of generators N, Q ⊂
K [x, λ]n, Algorithm 1 terminates in finite steps and outputs

an (x, λ)-mixed standard basis
(

S(1), S(2)
)

of

⟨N⟩K[x,λ]⟨x,λ⟩
+ ⟨Q⟩K[λ]⟨λ⟩

.

2.1 Example

In this example, we compute the A-codimension of a map-
germ f :

(

R
2, 0
)

→
(

R
2, 0
)

, deĄned as

(x1, x2) 7→
(

y1 = x1, y2 = x1x2 + x5
2 + x7

2

)

,

which is Type 6 in [12], by using a mixed standard basis. In
this example and in the forthcoming examples, we use the
variables (x, y) instead of (x, λ) as in [1] since in this context
y is supposed to be a coordinate in the target space of the
map-germ and it is not common to use λ for that.

Let En be the set of function-germs f : (Rn, 0)→ R, Mn

be its maximal ideal, andMk
n for k ∈ N is recursively deĄned

as:M1
n =Mn andMk+1

n =Mn ·Mk
n. Let the tangent space

of f relative to A be

TA (f) =M2⟨(1, x2) ,
(

0, x1 + 5x4
2 + 7x6

2

)

⟩E2

+ f∗⟨M2E2
2 ⟩f∗E2

,

where f∗E2 = ¶η ◦ f ♣η ∈ E2 ♢ and

f∗⟨M2E2
2 ⟩f∗E2

= f∗⟨(y1, 0) , (y2, 0) , (0, y1) , (0, y2)⟩f∗E2

= ⟨(f1 (x) , 0) , (f2 (x) , 0) , (0, f1 (x)) , (0, f2 (x))⟩f∗E2
.

Since f is 7-A-determined [12],

M2E2
2

TA (f)
∼=

M2E2
2

TA (f) +M8
nE2

2

which is isomorphic to

(

⟨x1, x2⟩R [x, y]⟨x,y⟩

)2

M
, as an R-vector

space where M is an (x, y)-mixed module with

N = ⟨x1, x2⟩ · ⟨ ∂f

∂x1
,

∂f

∂x2
⟩R[x,y]⟨x,y⟩

+ ⟨y1 − f1 (x) , y2 − f2 (x)⟩ ·
(

R [x, y]⟨x,y⟩

)2

+ ⟨x1, x2⟩8 ·
(

R [x, y]⟨x,y⟩

)2
(2)

and
Q = ⟨y1, y2⟩ ·

(

R [x, y]⟨x,y⟩

)2
. (3)

By computing an (x, y)-mixed standard basis of M , we can
get the A-codimension of f .

In this example, we use the following module ordering:

xα1

1 xα2

2 yβ1

1 yβ2

2 ei ≺ x
α′

1

1 x
α′

2

2 y
β′

1

1 y
β′

2

2 ej

iff one of the following holds:

(1) α1 + α2 + β1 + β2 > α′
1 + α′

2 + β′
1 + β′

2

(2) α1 + α2 + β1 + β2 = α′
1 + α′

2 + β′
1 + β′

2 and β1 < β′
1

(3) α1 + α2 + β1 + β2 = α′
1 + α′

2 + β′
1 + β′

2 and β1 = β′
1

and β2 < β′
2

(4) α1 + α2 + β1 + β2 = α′
1 + α′

2 + β′
1 + β′

2 and β1 = β′
1

and β2 = β′
2 and α1 < α′

1

(5) α = α′ and β = β′ and i > j.

For the module ordering, an (x, y)-mixed standard basis
(

S(1), S(2)
)

of N + Q is computed by Algorithm 1 imple-
mented in Singular [13]:

S(1) =
{(

0, y2 + 4y5
2 + 6x7

2

)

,
(

y2,−4y6
2 + 6x8

2

)

, (0, y1 − x2) ,
(

y1,−5x5
2 − 7x7

2

)

,
(

x2, x2
2

)

,
(

x1,−5x5
2 − 7x7

2

)

,
(

0, x1x2 + 5x5
2 + 7x7

2

)

,
(

0, x2
1 − 25x8

2

)

,
(

x9
2, 0
)}

,

S(2) =
{(

0, x5
2 + 7/5x7

2

)

, (0, x1) ,
(

0, x6
2 + 3/2x8

2

)

,
(

0, x5
2 + 3/2x7

2

)

,
(

0, x7
2

)

,
(

0, x8
2

)}

.

The quotient vector space

(

⟨x1, x2⟩R [x, y]⟨x,y⟩

)2

M
is spanned

by monomials in
(

⟨x1, x2⟩R [x, y]⟨x,y⟩

)2
that are neither mul-

tiples of LM≺x,λ,m
(f) for f ∈ S(1) nor involutive multiples

of LM≺x,λ,m
(f) for f ∈ S(2), where a monomial xαyβei is an

involutive multiple of xα′

yβ′

ej if i = j, α = α′ and β ≥ β′,
i.e., βi ≥ β′

i for all i = 1, · · · , ny. In this case,

M2E2
2

TA (f)
∼= ⟨(0, x2) ,

(

0, x2
2

)

,
(

0, x3
2

)

,
(

0, x4
2

)

⟩R

and the A-codimension of f is 4, which coincides with the
result in Table 1 in [12].

In the next section, we extend the result to that of mixed
modules with parameters.

3 COMPREHENSIVE STANDARD
SYSTEM FOR MIXED MODULE

Let K be a Ąeld and let λ = (λ1, · · · , λnλ
), a = (a1, · · · , ana),

and x = (x1, · · · , xnx) be variables such that they are disjoint
with each other. Let K [a] [x, λ] be the polynomial ring with
variables x, λ, and a. Let K be the algebraic closure of K.
Let t = (t1, · · · , tna) ∈ Kna and σt : K [a] [x, λ] → K [x, λ]
be a specialization morphism deĄned as σt (f) = f ♣

a=t
. In

the same manner, we deĄne σt (f) for f ∈ K (a) [x, λ] and
t ∈ Kna if the denominators of all the coefficients of the
terms of f are specialized to be nonzero at t. Let V (E) =
¶t ∈ Kna ♣∀h ∈ E, h (t) = 0♢ be an affin algebraic set of an
ideal E ⊂ K [a].

Definition 3.1 (Comprehensive Standard System
for Mixed Module). Let N, Q ⊂ K [a] [x, λ]n be finite sets
such that ⟨σt (N)⟩K[x,λ]⟨x,λ⟩

has a finite codimension as a K-

vector space in
(

K [x, λ]⟨x,λ⟩

)n
for all t ∈ V . Let S

(1)
i , S

(2)
i ⊂

K [a] [x, λ]n be a finite subset, and (Ei, Ni) ⊂ K [a]×K [a] for

i = 1, · · · , ℓ. The triple set G =
{

Ei, Ni,

S
(1)
i , S

(2)
i

}

i=1,··· ,ℓ

is called Comprehensive Standard System (CSS) for N, Q with
respect to ≺x,λ,m over V ⊂ Kna if the following conditions
hold:

(1) V ⊂
⋃ℓ

i=1
V (Ei) \ V (Ni).

(2) For any t ∈ V and i ∈ ¶1, · · · , ℓ♢ such that t ∈
V (Ei) \V (Ni) holds, the pair

σt

S
(1)
i

, σt

S
(2)
i

428

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Teramoto and Nabeshima

is an (x, λ)-mixed standard basis of ⟨σt (N)⟩K[x,λ]⟨x,λ⟩
+

⟨σt (Q)⟩K[λ]⟨λ⟩
.

Like in Algorithm 1, the Ąrst step is to compute the com-
prehensive standard basis of N . By DeĄnition 3.1, for any
t ∈ Kna , the specialization σt (N) is of Ąnite codimension in
(

K [x, λ]⟨x,λ⟩

)n
, the comprehensive standard basis of N can

be computed by using the algebraic local cohomology (ALC)
[14, 15]. Another algorithm such as [16] can be used for that
purpose but there is at least one beneĄt to using ALC in this
part, that is, reduction by ALC does not require any division
algorithm and can be made quite efficient. In Algorithm 3,
reduction by a standard basis of N occurs many times and
this part can be made quite efficient if ALC is used. In our
implementation, we implemented ALC for Ąnite-codimension
modules with parameters in Singular.

In what follows, we provide our algorithm to compute CSS
for given pairs of Ąnite generators N and Q in K [a] [x, λ]n.

Algorithm 2. Compute CSS

Input: N, Q ⊂ K [a] [x, λ]n, Ein, Nin ⊂ K [a]
Output: G : CSS on V (Ein) \ V (Nin)

1: G← ∅;
2:

{

Ei, Ni, S
(1)
i

}

i=1,··· ,ℓ′
← comprehensive standard

system of N on V (Ein) \ V (Nin);
3: for i ∈ ¶1, · · · , ℓ′♢ do

4:

{

Eij , Nij , S
(1)
i , S

(2)
ij

}

j=1,··· ,ℓ′′

← CSSMain

Ei, Ni, S
(1)
i , Q

;(See Algorithm 3)

5: G← G ∪
{

Eij , Nij , S
(1)
i , S

(2)
ij

}

j=1,··· ,ℓ′′
;

6: end for

end

Algorithm 3. CSSMain

Ei, Ni, S
(1)
i , Q

Input: Ei, Ni ⊂ K [a], S
(1)
i , Q ⊂ K [a] [x, λ]n

Output: G : CSS on V (Ei) \ V (Ni)
1: G← ∅;
2: Q← the reduced normal form of Q in terms of S

(1)
i in

(

K (a) [x, λ]⟨x,λ⟩

)n
, keep non-zero elements only and

multiply each non-zero element to the least common
multiple of the demominators of the coefficients of its
terms in K [a];

3: S(1) ← S
(1)
i ;

4: S(2) ← the reduced normal form of Q in terms of
EiK [a] [x, λ]n, keep non-zero elements only;

5: h← the square-free part of LCM
(

LC≺x,λ,m

(

S(2)
))

;
6:
(

h1, · · · , hnf

)

← the irreducible factors of h;
7: G← G∪
⋃nf

j=1
CSSMain

(

Ei + ⟨hj⟩,
(
∏j−1

l=1
hl

)

Ni, S(1), S(2)
)

; ∗

∗If j = 1, we suppose
∏

j−1

l=1
hl = 1.

8: P1 ←

spoly (f, g)

∣

∣

∣

∣

∣

∣

f ∈ S(1), g ∈ S(2), i = j and α ≤ α′,

LM≺x,λ,m
(f) = xαλβei,

and LM≺x,λ,m
(g) = xα′

λβ′

ej

;

†

9: P2 ←

spoly (f, g)

∣

∣

∣

∣

∣

∣

f ∈ S(2), g ∈ S(2), i = j and α = α′,

LM≺x,λ,m
(f) = xαλβei,

and LM≺x,λ,m
(g) = xα′

λβ′

ej

;

10: P ← P1 ∪ P2;

11: G ← G ∪ CSSSub

Ei, hNi, S
(1)
i , S

(2)
i , P

; (See Algo-

rithm 4)
12: return;

end

Algorithm 4. CSSSub
(

Ei, Ni, S(1), S(2), P
)

Input: Ei, Ni ⊂ K [a], S(1), S(2) ⊂ K [a] [x, λ]n, P ⊂ K (a) [x, λ]n

Output: G : CSS on V (Ei) \ V (Ni)
1: G← ∅;
2: while P ̸= ∅ and Ni ̸⊂

√
Ei do

3: f ← one of the elements in P ;
4: P ← P \ ¶f♢;
5: f ← the reduced normal form of f in Algorithm 32

in [1] with respect to
(

S(1), S(2)
)

in K (a) [x, λ]n mul-
tiplied by the least common multiple of the denomi-
nators of the coefficients of all the terms of f so that
f ∈ K [a] [x, λ] holds;

6: f ← the reduced normal form of f in terms of
EiK [a] [x, λ]n;

7: while f ̸= 0 do

8: P1 ←

spoly (f, g)

∣

∣

∣

∣

∣

∣

g ∈ S(1), i = j and α ≥ α′,

LM≺x,λ,m
(f) = xαλβei,

and LM≺x,λ,m
(g) = xα′

λβ′

ej

;

9: P2 ←

spoly (f, g)

∣

∣

∣

∣

∣

∣

g ∈ S(2), i = j and α = α′,

LM≺x,λ,m
(f) = xαλβei,

and LM≺x,λ,m
(g) = xα′

λβ′

ej

;

10: P ′ ← P ∪ P1 ∪ P2;
11: G← G∪

CSSSub
(

Ei, LC≺x,λ,m
(f) Ni, S(1), S(2) ∪ ¶f♢ , P ′

)

;
12: Ei ← Ei + ⟨LC≺x,λ,m

(f)⟩;
13: f ← f − LT≺x,λ,m

(f);
14: end while
15: end while
16: if Ni ̸⊂

√
Ei then

17: G← G ∪
{(

Ei, Ni, S(1), S(2)
)}

;
18: end if

end

For a given input Ei, Ni ⊂ K [a], S
(1)
i , Q ⊂ K [a] [x, λ]n,

CSSMain outputs a CSS for N, Q over V (Ei) \ V (Ni). In
Algorithm 2, in line 2, a comprehensive standard system of N
over V (Ein)\V (Nin) is computed. This computation can be

done by using [14, 15]. By letting
{

Ei, Ni, S
(1)
i

}

i=1,··· ,ℓ′

be a comprehensive standard system over V (Ein) \ V (Nin),

†Here, we suppose Pi ⊂ K (a) [x, λ]n and compute spoly (f, g) for f, g

regarded as elements of K (a) [x, λ]n by using Eq. (1).

429

Parametric Standard System for Mixed Module
and its Application to Singularity Theory ISSAC ’20, July 20–23, 2020, Kalamata, Greece

the algorithm computes S(2) for each locally closed set V (Ei)\
V (Ni) for i ∈ ¶1, · · · , ℓ′♢ in line 4 and outputs a comprehen-
sive standard system for N and Q.

In Algorithm 3, initialization of the set S(2) and the set
of S-polynomials for Algorithm 4 is done. In lines 5 and 6 in
Algorithm 3, the irreducible factors

(

h1, · · · , hnf

)

and their
product h of the product of LC≺x,λ,m

(

S(2)
)

are computed. If
σt (h) ≠ 0 for t ∈ Kna , all the leading coefficients of σt

(

S(2)
)

are non-zero. Algorithm 3 decomposes the locally closed set
V (Ei) \ V (Ni) such as

V (Ei) \ V (Ni) = [V (Ei) \ V (hNi)]

∪
nf
⋃

j=1

V (Ei + ⟨hj⟩) \ V

j−1
∏

l=1

hlNi

]

,

and recursively call CSSMain for each locally closed set except
to the Ąrst one V (Ei) \ V (hNi). On the locally closed set
V (Ei)\V (hNi), all the leading coefficients of the elements in
S(2) are non-zero and thus the S-polynomials of the elements
in between S(1) and S(2) or that of the elements among
S(2) are well-deĄned on V (Ei) \ V (hNi). The set of the S-
polynomials P is initiated in lines 8 - 10 of Algorithm 3 and
forwarded to CSSSub in line 11.

In Algorithm 4, CSS on V (Ei) \ V (Ni) (Put Ei = Ei

and Ni = hNi to match it with the previous context.) is
computed. Note that all the leading coefficients of S(2) are
supposed to be non-zero on V (Ei)\V (Ni). For each element
f in the set of the S-polynomials P , its reduced normal form
with respect to

(

S(1), S(2)
)

and EiK [a] [x, λ] are computed
in lines 5 and 6, respectively. If the reduced normal form of
f is non-zero, Algorithm 4 enters into the while loop starting
from line 7 to line 18. In the while loop, the locally closed
set V (Ei) \ V (Ni) is decomposed into

V (Ei) \ V (Ni) =
[

V (Ei) \ V
(

LC≺x,λ,m
(f) Ni

)]

∪
[

V
(

Ei + ⟨LC≺x,λ,m
(f)⟩

)

\ V (Ni)
]

.

For the Ąrst locally closed set V (Ei) \ V
(

LC≺x,λ,m
(f) Ni

)

,
the leading coefficient of f is non-zero. In this case, Algo-
rithm 4 updates the set of the S-polynomials and S(2) and
recursively call CSSSub. For the second locally closed set
V
(

Ei + ⟨LC≺x,λ,m
(f)⟩

)

\ V (Ni), the leading coefficient of
f is zero and thus LT≺x,λ,a

(f) is subtracted from f , Ei is
updated to Ei + ⟨LC≺x,λ,m

(f)⟩ and the loop continues while
P ̸= ∅ and Ni ̸⊂

√
Ei. In the end, if P = ∅ but Ni ̸⊂

√
Ei,

Algorithm 4 adds the resulting
(

Ei, Ni, S(1), S(2)
)

to G. This
is the Ćow of Algorithms 2-4. For Algorithms 2-4, we can
prove the following theorem.

Theorem 3.1 (Correctness and Termination in Fi-
nite Steps). For a given finite set of generators N, Q ⊂
K [a] [x, λ]n such that ⟨σt (N)⟩K[x,λ]⟨x,λ⟩

has a finite codimen-

sion as a K vector space in
(

K [x, λ]⟨x,λ⟩

)n
for all t ∈ Kna ,

Algorithms 2-4 terminate in finite steps and output a Com-
prehensive Standard System (CSS) for N, Q with respect to
≺x,λ,m over V (Ein) \ V (Nin).

Proof. First, we prove the correctness of Algorithms 2-4.
All the outputs are ones in Algorithm 4, it is enough to
prove that the output of Algorithm 4 is a comprehensive
standard system for N and Q over V (Ei) \V (Ni). We prove
that by showing that all the possible S-polynomials among
the elements in σt

(

S(1)
)

and σt

(

S(2)
)

are reduced to 0 by
(

σt

(

S(1)
)

, σt

(

S(2)
))

for all t ∈ V (Ei) \ V (Ni), which im-
plies that

(

σt

(

S(1)
)

, σt

(

S(2)
))

is an (x, λ)-mixed standard
basis for the mixed module generated by σt (N) and σt (Q)
(Theorem 41 in [1]).

All the S-polynomials between the elements in σt

(

S(1)
)

are reduced to 0 with respect to σt

(

S(1)
)

for all t ∈ V (Ei) \
V (Ni) since the triple

{(

Ei, Ni, S(1)
)}

is a comprehensive
standard basis over V (Ei) \ V (Ni).

All the leading coefficients of the elements in S(1) and
S(2) in the input are non-zero over V (Ei) \ V (Ni). There-
fore, σt (spoly (f, g)) = spoly (σt (f) , σt (g)) holds for all
f, g ∈ S(1) ∪ S(2) and for all t ∈ V (Ei) \ V (Ni). Under
the setting, suppose spoly (f, g) is reduce to r by

(

S(1), S(2)
)

in
(

K (a) [x, λ]⟨x,λ⟩

)n
modulo Ei as is done for f in lines 5

and 6 in Algorithm 4. Note that all the divisions occuring in
Algorithm 32 in [1] are divisions by the leading coefficients
and thus σt (r) is well-deĄned for all t ∈ V (Ei) \ V (Ni). If
either r = 0 or σt

(

LC≺x,λ,m
(r)
)

̸= 0 for t ∈ Kna , σt (r)
coincides with the normal form of σt (spoly (f, g)) with re-
spect to

(

σt

(

S(1)
)

, σt

(

S(2)
))

by a similar argument as in
Theorem 1 in [17]. This means that if spoly (f, g) is re-
duced to 0 with respect to

(

S(1), S(2)
)

in
(

K (a) [x, λ]⟨x,λ⟩

)n

modulo Ei, spoly (σt (f) , σt (g)) is reduced to 0 with re-
spect to

(

σt

(

S(1)
)

, σt

(

S(2)
))

in
(

K [x, λ]⟨x,λ⟩

)n
for all t ∈

V (Ei) \ V (Ni). The S-polynomials

P1 =

spoly (f, g)

∣

∣

∣

∣

∣

∣

f ∈ S(1), g ∈ S(2), i = j and α ≤ α′

LM≺x,λ,m
(f) = xαλβei,

and LM≺x,λ,m
(g) = xα′

λβ′

ej

and

P2 =

spoly (f, g)

∣

∣

∣

∣

∣

∣

f ∈ S(2), g ∈ S(2), i = j and α = α′

LM≺x,λ,m
(f) = xαλβei,

and LM≺x,λ,m
(g) = xα′

λβ′

ej

are reduced to 0 with respect to
(

S(1), S(2)
)

modulo Ei in
the end of Algorithm 4. This proves the correctness.

Second, we prove that Algorithms 2-4 terminate in Ąnite
steps. The computation of comprehensive standard system
of N in line 2 of Algorithm 2 terminates in Ąnite steps.

The recursion in line 7 of Algorithm 3 terminates in Ą-
nite steps. It can be shown as follows: Every time CSSMain
is called at least one of the leading terms of the elements
in S(2) is made zero but the number of the terms in the
elements in S(2) that can be made zero is Ąnite because
the K-codimension of σt (N) is Ąnite for any t ∈ Kna , the
number of the terms appearing in the reduced normal form
with respect to S(1) in

(

K (a) [x, λ]⟨x,λ⟩

)n
is Ąnite. Therefore,

the recursion cannot continue in inĄnitely many steps and
terminates either in the situation that no more leading terms

430

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Teramoto and Nabeshima

of the elements in S(2) can be made zero or all the elements
in S(2) are zero.

Algorithm 4 terminates in Ąnite steps because the two
while loops in lines 2-18 and in lines 7-15 terminate in Ąnite
step and the recursion in line 11 terminates in Ąnite steps
because every time CSSSub is called the number of the ele-
ments in LM≺x,λ,m

(

S(2)
)

increases by one but the number
cannot exceed the K (a) codimension of ⟨S(1)⟩K(a)[x,λ]⟨x,λ⟩

.
This proves that Algorithms 2-4 terminate in Ąnite steps. □

3.1 Example

Consider

f : (x1, x2) 7→
(

y1 = x1, y2 = x2
1x2 + x1x3

2 + αx5
2 + x6

2 + βx7
2

)

(4)
(Type 18 in Table 1 in [12]). Its A-codimension depends on
the moduli parameters α, β ∈ R. We would like to detect
exceptional values of the moduli parameters (In the generic
case, it has A-codimension 8 [12].). In this example, the
degree of determinacy also depends on the moduli parameters.
By applying a result of du Plessis [18], Lemma 2.6, f is
k-A-determined if

Mk+1
2 E2

2 ⊂ TA1 (f) + ⟨x1
∂f

∂x2
⟩R + f∗⟨y2e1⟩R

+Mk+1
2 f∗ (M2) E2

2 +M2k+2
2 E2

2 (5)

holds. This condition is equivalent to ⟨x1, x2⟩k+1
(

R [x, y]⟨x,y⟩

)2

is contained in the (x, y)-mixed module M = N + Q where

N = ⟨x1, x2⟩ · ⟨ ∂f

∂x1
,

∂f

∂x2
⟩R[x,y]⟨x,y⟩

+ ⟨x1
∂f

∂x2
⟩R[x,y]⟨x,y⟩

+ ⟨y1 − f1 (x) , y2 − f2 (x)⟩ ·
(

R [x, y]⟨x,y⟩

)2

+ ⟨x1, x2⟩k+1 · ⟨y1, y2⟩ ·
(

R [x, y]⟨x,y⟩

)2

+ ⟨x1, x2⟩2k+2 ·
(

R [x, y]⟨x,y⟩

)2

and Q = ⟨y1, y2⟩2 ·
(

R [y]⟨y⟩

)2
+ ⟨y2e1⟩R[x,y]⟨y⟩

.
By computing CSS for the (x, y)-mixed module for k = 7

by using the same module ordering in Example 2.1, the param-
eter space C

2 is decomposed into 12 locally closed sets. Note
that C is the algebraic closure of R and thus Algorithms 2-4
provide a decomposition of C2 instead of R2. However, Algo-
rithms 2-4 are based upon arithmetic operations in the ground
Ąeld only. This means that if the scalars in the input data
are contained in R, then all scalars in the output also lie in R.
This guarantees that the decomposition restricted to R

2 pro-
vides a semi-algebraic decomposition of R2 such that the pair
(

S(1), S(2)
)

corresponding to each semi-algebraic set special-
ized at any element in the semi-algebraic set is an (x, y)-mixed
standard basis of ⟨σt (N)⟩R[x,y]⟨x,y⟩

+ ⟨σt (Q)⟩R[y]⟨y⟩
for t ∈ R.

By reducing the generators of ⟨x1, x2⟩k+1
(

R [x, y]⟨x,y⟩

)2
by

the mixed standard basis for each locally closed set, Eq. (5)
holds for parameter values in the locally closed set

V (⟨0⟩) \ V
(

⟨4000α5β − 8600α4β − 2500α4

+4260α3β + 7825α3 − 540α2β − 2574α2 + 81α⟩
)

(6)

and thus f is 7-A-determined for the parameter values in the
locally closed set in Eq. (6). For the two parameter values,
higher jets need to be investigated.

In a similar manner as in Example 2.1, for these parameter
values, we can compute the A-codimension of f as follows:
We compute CSS for a pair of Ąnite sets of generators of
Eq. (2) and Eq. (3) by using the same module ordering in
Example 2.1. The output is too complicated to be shown
here but the locally closed set in Eq. (6) is decomposed
into 4 locally closed sets and the A-codimension of M =
⟨σt (N)⟩K[x,y]⟨x,y⟩

+ ⟨σt (Q)⟩K[y]⟨y⟩
is 8 for all t in the locally

closed set in Eq. (6).

4 APPLICATION TO SINGULARITY
THEORY

In this section, we apply CSS for a mixed module to classiĄ-
cation of singularities relative to A. In Example 3.1, we show
that the map-germ in Eq. (4) is 7-A-determined if the param-
eters are in the locally closed set in Eq. (6). To demonstrate
CSS for a mixed module, we proceed the classiĄcation further
than [12] up to A-codimension 9. The result is summarized
in Table 1. Let us introduce some terminology. Let H be the
unipotent subgroup of A whose tangent space at f is deĄned
as

TH (f) =M2
2⟨

∂f

∂x1
,

∂f

∂x2
⟩E2

+ f∗
(

M2
2E2

2

)

+ ⟨x1
∂f

∂x2
, f2e1⟩R.

Let Mr,s (H) be Ąltration of M2E2
2 deĄned as

Mr,s (H) =
∑

i≥s

(TH)i ·
(

Mr
2E2

2

)

+Mr+1
2 E2

2

for integers r ≥ 1 and s ≥ 0 and M0,0 (H) = M2E2
2 [9].

The associated (r, s)-jet space Jr,s (2, 2) is then deĄned to be
M2E2

2 /Mr,s (H) and jr,s : M2E2
2 → Jr,s (2, 2) be the canoni-

cal projection. Let Hr,s (H) = jr,s (Mr,s−1 (H)) be the image
of Mr,s−1 (H) in Jr,s (2, 2). For example, the list of a basis of
Hr,s (H) regarded as a vector space over R for r = 8 is shown
in Table 2. For H and its compatible Ąltration Mr,s (H), the

(r, s) Basis for Hr,s (H)
(8, 0) ¶(0, 0)♢
(8, 1)

{(

0, x8
2

)}

(8, 2)
{(

0, x1x7
2

)

,
(

x8
2, 0
)}

(8, 3)
{(

0, x2
1x6

2

)

,
(

x1x7
2, 0
)}

(8, 4)
{(

0, x3
1x5

2

)

,
(

x2
1x6

2, 0
)}

(8, 5)
{(

0, x4
1x4

2

)

,
(

x3
1x5

2, 0
)}

(8, 6)
{(

0, x5
1x3

2

)

,
(

x4
1x4

2, 0
)}

(8, 7)
{(

0, x6
1x2

2

)

,
(

x5
1x3

2, 0
)}

(8, 8)
{(

0, x7
1x2

)

,
(

x6
1x2

2, 0
)}

(8, 9)
{(

0, x8
1

)

,
(

x7
1x2, 0

)}

(8, 10)
{(

x8
1, 0
)}

Table 2: List of basis of Hr,s (H)

following holds true.

431

Parametric Standard System for Mixed Module
and its Application to Singularity Theory ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Type Representative Range A-codimension

1
(

x1, x2
1x2 + x1x3

2 + αx5
2 + x6

2 + βx7
2

)

(α, β) is in Eq. (6) 8
2

(

x1, x2
1x2 + x1x3

2 + αx5
2 + x6

2 + βx7
2 + γx9

2

)

(α, β) is in Eq. (8), (α, β) ̸=
(

9
11

, 1111
36

)

9
(α, β, γ) ̸=

(

1
4
, 9,−1080

)

,
(

9
5
,− 4

3
, 1072

729

)

3
(

x1, x2
1x2 + x1x3

2 + 9
11

x5
2 + x6

2 + 1111
306

x7
2 + γx1x7

2

)

γ ∈ R 9

Table 1: List of representatives of a map-germ having the same 7 jet as Type 18 in [12] of A-codimension less
than 10

Theorem 4.1 (Theorem 2.9 in [10]). Let f :
(

R
2, 0
)

→
(

R
2, 0
)

be a smooth map-germ and let T be a vector subspace

of Mr,s (H) such that

Mr,s (H) ⊂ T + TH (f) + Mr,s+1 (H) (7)

holds true. Then any map-germ g :
(

R
2, 0
)

→
(

R
2, 0
)

with

g − f ∈Mr,s (H) is H-equivalent to a map-germ of the form
f + τ + ϕ with τ ∈ T and ϕ ∈Mr,s+1 (H).

We call T complete transversal by following [10]. By using
Theorem 4.1, we investigate the higher order jets of the map-
germ in Eq. (4) for the parameter values in the locally closed
set

V
(

⟨4000α5β − 8600α4β − 2500α4 + 4260α3β

+7825α3 − 540α2β − 2574α2 + 81α⟩
)

\ V (⟨1⟩) . (8)

To apply Theorem 4.1, we need to Ąnd T such that Eq. (7)
holds true for (r, s) = (8, 0). Once we Ąnd such a vector
subspace T , all the map-germs g having the same 7-jet as f
are H-equivalent to a map-germ of the form f + τ + ϕ with
τ ∈ T and ϕ ∈M8,1 (H) and thus we get an exhaustive list
of representatives of H-equivalence in (8, 1)-jet space having
the same (8, 0)-jet (7-jet) as f .

As a candidate for T , it is enough to consider a basis for
H8,1, that is,

(

0, x8
2

)

in Table 2. Given the candidate for T ,
a basis for T can be computed by using CSS for a mixed
module as follows: Let us consider an (x, y)-mixed module
M = N + Q where r = 8,

N = ⟨x1, x2⟩2 · ⟨ ∂f

∂x1
,

∂f

∂x2
⟩R[x,y]⟨x,y⟩

+ ⟨x1
∂f

∂x2
⟩R

+ ⟨y1 − f1 (x) , y2 − f2 (x)⟩ ·
(

R [x, y]⟨x,y⟩

)2

+ ⟨
r+2
∑

s=2

Hr,s (H)⟩R + ⟨x1, x2⟩r+1 ·
(

R [x, y]⟨x,y⟩

)2

and Q = ⟨y1, y2⟩2 ·
(

R [y]⟨y⟩

)2
+ ⟨(y2, 0)⟩R. CSS for Ąnite sets

of generators of N and Q over the locally closed set in Eq. (8)
is computed as :

(1) V (⟨4α− 5, 4200β − 16829⟩) \ V (⟨1⟩):

S
(1)
1 =

{(

0, y2 − x2
1x2 − x1x3

2 − αx5
2 − x6

2 − βx7
2

)

,
(

y2, (−8α + 10)x1x6
2 + 16αx8

2

)

, (0, y1 − x1) , (y1 − x1, 0) ,
(

x2
2, 2x1x3

2 + x5
2

)

,
(

x1x2,−5x1x4
2 − 10αx6

2 − 12x7
2 − 14βx8

2

)

,
(

x2
1, (−10α + 15)x1x5

2 + 25αx7
2 − 12x1x6

2 + 30x8
2

)

,
(

0, x1x7
2

)

,
(

0, x3
1 + (5α− 9)x1x4

2 − 15αx6
2 + 6x1x5

2 − 18x7
2 + 7βx1x6

2 − 21βx8
2

)

,
(

0, x2
1x2

2 + 3x1x4
2 + 5αx6

2 + 6x7
2 + 7βx8

2

)

,
(

0, x9
2

)}

,

S
(2)
1 =

{(

0,−1/4x1x5
2 − 25/8x7

2 + 6/5x1x6
2 − 3x8

2

)

,
(

0, x2
1

)

,
(

0,−1/4x1x5
2 − 25/8x7

2 + 5/4x1x6
2 − 3x8

2

)

,
(

0,−5/2x8
2

)

,
(

0, x1x6
2

)

,
(

0, x1x4
2 + 75/11x6

2 + 372/11x7
2

)}

(2) V
(

⟨4000α4β − 8600α3β − 2500α3 + 4260α2β + 7825α2

−540αβ − 2574α + 81⟩)\V
(

⟨α
(

40α3 − 182α2 + 273α− 135
)

⟩
)

:

In the following cases, S
(1)
j is the same as S

(1)
1 for

j = 2, 3, 4,

S
(2)
2 =

{(

0, (2α− 3)/2x1x5
2 − 5α/2x7

2 + 6/5x1x6
2 − 3x8

2

)

,
(

0, (2α− 3)/2x1x5
2 + (−5α)/2x7

2 + 5/4x1x6
2 − 3x8

2

)

,
(

0, (4α− 5)/4x1x6
2 + (−2α)x8

2

)

,
(

0, x8
2

)

,
(

0, x2
1

)

,
(

0, (10α2 − 33α + 27)/10x1x4
2+

(−6α2 + 9α)/2x6
2 + (−3α + 27)/5x7

2

)}

(3) V (⟨5α− 9, 3β + 4⟩) \ V (⟨1⟩): S
(1)
3 = S

(1)
1 ,

S
(2)
3 =

{(

0, (2α− 3)/2x1x5
2 + (−5α)/2x7

2 + 6/5x1x6
2 − 3x8

2

)

,
(

0, x2
1

)

,
(

0, (2α− 3)/2x1x5
2 + (−5α)/2x7

2 + 5/4x1x6
2 − 3x8

2

)

,
(

0, (4α− 5)/4x1x6
2 + (−2α)x8

2

)

,
(

0, x8
2

)

,
(

0, (2α2 − 3α)/2x6
2 + (α− 9)/5x7

2

)}

(4) V (⟨a⟩) \ V (⟨1⟩): S
(1)
4 = S

(1)
1 ,

S
(2)
4 =

{(

0, (2α− 3)/2x1x5
2 + (−5α)/2x7

2 + 6/5x1x6
2 − 3x8

2

)

,
(

0, x2
1

)

,
(

0, (2α− 3)/2x1x5
2 + (−5α)/2x7

2 + 5/4x1x6
2 − 3x8

2

)

,
(

0, (4α− 5)/4x1x6
2 + (−2α)x8

2

)

,
(

0, x1x4
2 + 2x7

2 + (7β + 4)/3x8
2

)}

(

0, x8
2

)

is reduced to 0 by CSS in (1-3) and T can be set to
⟨0⟩R whereas that cannot be reduced to 0 by CSS in (4) and
T needs to be set to ⟨

(

0, x8
2

)

⟩R. By Theorem 4.1, we conclude

432

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Teramoto and Nabeshima

that any map-germ g having the same (8, 0)-jet as f is H(and
thus A)-equivalent to f + ϕ where ϕ ∈ M8,1 (H) except for
α = 0, whereas such a g is A-equivalent to f + γ

(

0, x8
2

)

+ ϕ

where γ ∈ R and ϕ ∈M8,1 (H) for α = 0.
Case (1) α ≠ 0: The next non-zero complete transversal in
Eq. (7) appears for (r, s) = (8, 2) if (α, β) = (9/11, 1111/306).
In that case, the map germ is A-equivalent to

(x1, x2) 7→

x1, x2
1x2 + x1x3

2 +
9
11

x5
2 + x6

2 +
1111
306

x7
2 + γx1x7

2

where γ ∈ R, is 8-A-determined and has A-codimension
9. If (α, β) ̸= (9/11, 1111/306), the next non-zero complete
transversal in Eq. (7) appears for (r, s) = (9, 0). In that case,
the map germ is A-equivalent to

(x1, x2) 7→
(

x1, x2
1x2 + x1x3

2 + αx5
2 + x6

2 + βx7
2 + γx9

2

)

where γ ∈ R, is 9-A-determined and has A-codimension 9 ex-
cept for (α, β, γ) = (1/4, 9,−1080) , (9/5,−4/3, 1072/729) .
Case (2) α = 0: In this case, the next non-zero complete
transversal in Eq. (7) appears for (r, s) = (10, 0) for param-
eters in the set V (⟨α, β + 4⟩) \ V (⟨1⟩), whereas it does not
appear for parameters in the set V (⟨α⟩) \ V (⟨β + 4⟩). By
using the approximation lemma (Lemma 1.3B in [19]), it
can be shown that the A-codimension of f is equal to or
greater than 10 in all the cases.

5 CONCLUSION AND REMARKS

We have provided a concrete computational algorithm (Al-
gorithm 1) of standard basis for a mixed module proposed
by Gatermann and Hosten [1]. We have extended it to para-
metric standard system for a mixed module and provided an
algorithm to compute it (Algorithms 2-4). We have demon-
strated our algorithm in classiĄcation of map -germs relative
to A in which complicated moduli structures appear. To get
geometrical interpretation of the exceptional moduli param-
eters, computation of invariants such as ones listed in [12]
may be helpful. However, we did not put the information
of these invariants in this paper because the main purpose
of this paper is to develop an algorithm for comprehensive
standard system for a mixed-module and its application to
singularity theory. Based on our algorithm, we will report
new classiĄcation of map-germs relative to KB, A, and A [G]
for some Lie group G in the forthcoming paper.

ACKNOWLEDGMENTS

H. T. thanks Prof. Shinichi Tajima for his kind instruction
on algebraic local cohomology and Prof. Shyūichi Izumiya
and Prof. Yutaro Kabata for their fruitful comments on
classiĄcation in singularity theory. H. T. was supported by
JSPS KAKENHI Grant Number JP19K03484, JST PRESTO
Grant Number JPMJPR16E8, Institute for Chemical Reac-
tion Design and Discovery (ICReDD) sponsored by World
Premier International Research Center Initiative (WPI Initia-
tive), MEXT, Japan, the Research Institute for Mathematical
Sciences, an International Joint Usage/Research Center lo-
cated in Kyoto University. K. N. was supported by JSPS
Grant-in-Aid for ScientiĄc Research (C) (No 18K03214).

REFERENCES
[1] K. Gatermann and S. Hosten. Computational algebra for bifurca-

tion theory. J. Symb. Comput., 40:1180, 2005.
[2] J. Mather. Stability of C∞-mappings III. Finitely determined

map-germs. Publications Mathématiques, Institute des Hautes

Études Scientifiques (IHES), 35:127, 1968.
[3] M. Golubitsky and D. G. Schaeffer. Singularities and Groups in

Bifurcation Theory, volume I of Applied Mathematical Science.
Springer, 1985.

[4] M. Golubitsky and D. G. Schaeffer. Singularities and Groups in
Bifurcation Theory, volume II of Applied Mathematical Science.
Springer, 1985.

[5] S. Izumiya, M. Takahashi, and H. Teramoto. Geometric equiva-
lence among smooth map germs. Methods and Applications of
Analysis, 25:337, 2018.

[6] J. N. Mather. Stability of C∞ mappings, IV: Classification of
stable germs by R algebras. Publ. Math. I. H. E. S., 37:223, 1969.

[7] N. P. Kirk. Transversal, A Maple Package For Singularity Theory,
Version 3.1. 1998.

[8] N. P. Kirk. Computational Aspects of Singularity Theory. Doctor
Thesis, 1993.

[9] N. P. Kirk. Computational aspects of classifying singularities.
LMS J. Comput. Math., 3:207, 2000.

[10] J. W. Bruce, N. P. Kirk, and A. A. du Plessis. Complete transver-
sals and the classification of singularities. Nonlinearity, 10:253,
1997.

[11] D. Ratcliffe. Stems and series in A-classification. Proc. London
Math. Soc., 70:183, 1995.

[12] J. H. Rieger. Families of maps from the plane to the plane. J.
London Math. Soc., 36:351, 1987.

[13] W. Decker, G.-M. Gruel, G. Pfister, and H. Schönemann. Singular
4-0-2 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de, 2015.

[14] S. Tajima, Y. Nakamura, and K. Nabeshima. Standard bases and
algebraic local cohomology for zero dimensional ideals. Advanced
Studies in Pure Mathematics, 56:341, 2009.

[15] K. Nabeshima and S. Tajima. Algebraic local cohomology with
parameters and parametric standard basis for zero-dimensional
ideals. J. Symb. Comp., 82:91, 2017.

[16] A. Hashemi and M. Kazemi. Parametric standard bases and their
applications. International Workshop on Computer Algebra
in Scientific Computing, CASC 2019: Computer Algebra in
Scientific Computing, page 179, 2019.

[17] A. Montes. A new algorithm for discussing Gröbner bases with
parameters. J. Symb. Comput., 33:183, 2002.

[18] J. W. Bruce, A. A. DU Plessis, and C. T. C. Wall. Determinacy
and unipotency. Invent. Math., 88:521, 1987.

[19] C. T. C. Wall. Finite Determinacy of Smooth Map-Germs. Bull.
Lond. Math. Soc., 13:481, 1981.

433

http://www.singular.uni-kl.de

Condition Numbers for the Cube.
I: Univariate Polynomials and Hypersurfaces

Josué Tonelli-Cueto
Inria Paris & IMJ-PRG
Sorbonne Université

Paris, France
josue.tonelli.cueto@bizkaia.eu

Elias Tsigaridas
Inria Paris & IMJ-PRG
Sorbonne Université

Paris, France
elias.tsigaridas@inria.fr

ABSTRACT

The condition-based complexity analysis framework is one of the

gems of modern numerical algebraic geometry and theoretical com-

puter science. One of the challenges that it poses is to expand the

currently limited range of random polynomials that we can handle.

Despite important recent progress, the available tools cannot han-

dle random sparse polynomials and Gaussian polynomials, that is

polynomials whose coefficients are i.i.d. Gaussian random variables.

We initiate a condition-based complexity framework based on

the norm of the cube, that is a step in this direction. We present

this framework for real hypersurfaces. We demonstrate its capa-

bilities by providing a new probabilistic complexity analysis for

the Plantinga-Vegter algorithm, which covers both random sparse

(alas a restricted sparseness structure) polynomials and random

Gaussian polynomials. We present explicit results with structured

random polynomials for problems with two or more dimensions.

Additionally, we provide some estimates of the separation bound

of a univariate polynomial in our current framework.

CCS CONCEPTS

· Theory of computation → Computational geometry; De-

sign and analysis of algorithms; · Mathematics of comput-

ing → Numerical analysis; Computations on polynomials.

KEYWORDS

condition number; probabilistic complexity; sparse polynomials;

subdivision methods; numerical algebraic geometry

ACM Reference Format:

Josué Tonelli-Cueto and Elias Tsigaridas. 2020. Condition Numbers for

the Cube. I: Univariate Polynomials and Hypersurfaces. In International

Symposium on Symbolic and Algebraic Computation (ISSAC ’20), July 20ś23,

2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/

10.1145/3373207.3404054

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404054

1 INTRODUCTION

The complexity of numerical algorithms is not uniform. It depends

on a measure of the numerical sensitivity of the output with re-

spect to perturbations of the input, called condition number. This

motivates the condition-based complexity analysis of numerical

algorithms. As this analysis is not input-independent, a usual tech-

nique is to randomize the input to obtain a probabilistic complexity

analysis that reflects the behaviour of the algorithm in practice.

We refer the reader to [3] for more details about this paradigm of

complexity for numerical algorithms.

After the complete solution of Smale’s 17th problem [17], the

main challenge in numerical algebraic geometry is to extend the cur-

rent algorithms and their analysis tomore general inputs, sparse and

structured polynomials. Regarding the solution of sparse polyno-

mial systems over the complex numbers, there is the groundbreak-

ing work of Malajovich [19, 20] and Malajovich and Rojas [21, 22].

Additionally, there is significant progress in the probabilistic analy-

sis of the condition number for solving some structured polynomial

systems by Armentano and Beltrán [1], by Beltrán and Kozhasov [2],

and by Ergür, Paouris and Rojas [13, 14].

A common problem with many of the current techniques is that

they rely on unitary/orthogonal invariance. Developing techniques

that do not rely on this invariance is therefore a central task in the

goal of being able to deal with sparse/structured polynomials and

more general probability distributions. We make another step in

this research direction by developing a condition-based complexity

framework that relies on the ∞-norm of the cube, and so it does

not rely on the above invariance.

In this paper, we develop the above framework for univariate

polynomials and hypersurfaces.We hope to extend it for polynomial

systems in future work. To illustrate its advantages we apply it to

the study of the complexity of the Plantinga-Vegter algorithm [6,

23] and the separation bounds for the roots of a real univariate

polynomials.

In the case of the Plantinga-Vegter algorithm, we are able to

show that this algorithm is efficient (i.e., takes polynomial time

on the average) for a wide class of random sparse polynomials

(Theorem 2.10). This significantly extends the results of [7] (cf. [9]).

Additionally, we also cover Gaussian polynomials, in which all

coefficients have the same variance.

We note that our aim is not to show that the Plantinga-Vegter

is the most efficient algorithm for random sparse polynomials, but

that it remains efficient whenwe restrict it to a wide class of random

sparse polynomials. A similar approach was employed in [13] for

the algorithm for finding real zeros of real polynomial systems

from [10]. However, unlike [13], our analysis applies to structured

434

https://doi.org/10.1145/3373207.3404054
https://doi.org/10.1145/3373207.3404054
https://doi.org/10.1145/3373207.3404054

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Josué Tonelli-Cueto and Elias Tsigaridas

polynomials that are sparse, but with a combinatorial restriction on

the support. We note that our condition is similar to that in [24] and

so is the bound we obtain; the latter is polynomial in the degree and

the size of the support and exponential in the number of variables.

We also note that our bounds depend polynomially on the degree

and not logarithmically. The latter would be ideal in view of the

results of Khovanskiĭ [16] and Kushnirenko’s hypothesis, which

bound the size of the Betti numbers of zero sets of sparse polynomi-

als independently of the degree. However, few progress have been

made in this direction beyond the univariate case [15]. Moreover,

many computational problems in real algebraic geometry lack algo-

rithms that are polynomial in the degree, so such bounds contribute

to the state-of-the-art.

In the case of univariate polynomials, our results imply that

the complex roots of a random real univariate sparse polynomial

around the unit interval are well-separated with high probability.

Given than the logarithm of the separation bound is an important

parameter that controls the complexity of many univariate solvers,

this will lead to interesting probabilistic complexity bounds for

these solvers.

Our framework is based on variational properties of the poly-

nomials and considered condition numbers and probabilistic tech-

niques from geometric functional analysis. The former follows

the variational approach to condition numbers of [27, 2ğ2] and

extends [8] to new norms. The latter has been already applied

in [13, 14] and [7], but our applications these methods takes them

to the maximum development.

The 1-norm on the space of polynomials behaves as the łdualžnorm

to the∞-norm on the cube. This norm is naturally suited for subdi-

vision methods on the cube. The analysis of the Plantinga-Vegter

subdivision process using our framework serves the purpose to

convince the reader of the advantages of the new framework for

the analysis of algorithms. It also has the ambition to bring new

insights in the study of algorithms in numerical algebraic geometry.

Our approach continues the trend started by [7] of bringing fur-

ther interactions between the communities of numerical algebraic

geometry and symbolic computation.

Notation. Let P𝑛,𝑑 be the space of polynomials in 𝑛 variables

of total degree at most 𝑑 , 𝐼𝑛 := [−1, 1]𝑛 ⊂ R𝑛 the unit cube and

𝐵C (𝑥, 𝑟) complex disk centered at 𝑥 of radius 𝑟 . A polynomial 𝑓 ∈
P𝑛,𝑑 , is 𝑓 =

∑
|𝛼 | ≤𝑑 𝑓𝛼𝑋

𝛼 , even though we commonly omit the

summation index. For 𝑋 ⊆ R𝑛 , we denote by B(𝑋) the set of

boxes (i.e., cubes) contained in 𝑋 . For any 𝐵 ∈ B(R𝑛), we denote
by 𝑚(𝐵) its midpoint and by 𝑤 (𝐼) its width, so that 𝐵 = 𝑚(𝐵) +
𝑤 (𝐵)/2[−1, 1]𝑛 .

Organization. In the next section, we introduce the randomness

model that we will consider, zintzo random polynomials, and how

our framework applies to the subdivision routine of the Plantinga-

Vegter algorithm. In Section 3, we introduce the norms with which

we will be working and their main properties. In Section 4, we intro-

duce a new condition number adapted to the introduced norms and

we prove its main properties. In Section 5, we develop a probabilis-

tic analysis of the introduced condition number for zintzo random

polynomials. Finally, in Section 6, we perform the complexity anal-

ysis of the subdivision routine of the Plantinga-Vegter algorithm;

and in Section 7, we introduce the separation bound.

2 MAIN RESULTS

In this paper, the main result is a different condition-based frame-

work that allows to control the probability of numerical algorithms

with respect random polynomials that are sparse and don’t have

any scaling in their coefficients, as it has been usual with the so-

called KSS or dobro random polynomials introduced in [7]. We

showcase our techniques with the Plantinga-Vegter algorithm.

2.1 Randomness model

We introduce a new class of random polynomials that is similar to

the class of dobro random polynomials [7]. The main difference

is that we require a scaling in the coefficients of the random poly-

nomials. In this way, the new class is a more natural model of

random polynomials. Moreover, we explicitly include sparseness in

the model of randomness.

Let us recall some basic definitions.

(SG) We call a random variable 𝑋 subgaussian, if there exist a

𝐾 > 0 such that for all 𝑡 ≥ 𝐾 ,

P(|𝑋 | > 𝑡) ≤ 2 exp(−𝑡2/𝐾2) .

The smallest such 𝐾 is the subgaussian constant of 𝑋 .

(AC) A random variable 𝑋 has the anti-concentration property, if

there exists a 𝜌 > 0, such that for all 𝜀 > 0,

max{P (|𝑋 − 𝑢 | ≤ 𝜀) | 𝑢 ∈ R} ≤ 2𝜌𝜀.

The smallest such 𝜌 is the anti-concentration constant of 𝑋 .

Definition 2.1. Let𝑀 ⊆ N𝑛 be a finite set such that 0, 𝑒1, . . . , 𝑒𝑛 ∈
𝑀 . A zintzo random polynomial supported on𝑀 is a random polyno-

mial 𝔣 =
∑
𝛼 ∈𝑀 𝔣𝛼𝑋

𝛼 ∈ P𝑛,𝑑 such that the coefficients 𝔣𝛼 are inde-

pendent subgaussian random variables with the anti-concentration

property.

Remark 2.2. The word łzintzož is a Basque word that means honest,

upright, righteous. We use this word instead of a variation of dobro

to emphasize that this class of random polynomials is different from

the class of dobro polynomials.

Remark 2.3. The technical condition 0, 𝑒1, . . . , 𝑒𝑛 ∈ 𝑀 is there

because is needed in our proofs. In layman’s terms, this technical

condition states that all the terms of the first order approximation of

𝔣 at 0, 𝔣0 + 𝔣𝑒1𝑋1 + · · · + 𝔣𝑒𝑛𝑋𝑛 , appear with probability one. In terms

of the Newton polytope, this condition implies that the tangent

cone of the Newton polytope at 0 is a simple cone.

Given a zintzo random polynomial, the complexity estimates that

we present in the sequel depend on the product of the following

two parameters:

(1) the subgaussian constant of 𝔣 which is given by

𝐾𝔣 :=
∑

𝛼 ∈𝑀 𝐾𝛼 , (2.1)

where 𝐾𝛼 is the subgaussian constant of 𝔣𝛼 , and

(2) the anti-concentration constants of 𝔣 which is given by

𝜌𝔣 := 𝑛+1√𝜌0𝜌𝑒1 · · · 𝜌𝑒𝑛 , (2.2)

where 𝜌0 is the anti-concentration constant of 𝔣0 and for

each 𝑖 , 𝜌𝑒𝑖 is the anti-concentration constant of 𝔣𝑒𝑖 .

435

Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

We note that the product 𝐾𝔣𝜌𝔣 that will appear in our estimates

is invariant under multiplication of 𝔣 by non-zero scalars. It also

satisfies the following inequality, which we will prove in Section 5.

Proposition 2.4. Let 𝔣 be a zintzo random polynomial supported

on𝑀 . Then 𝐾𝔣𝜌𝔣 > (𝑛 + 1)/4 ≥ 1/2.
Let𝑀 ⊆ N𝑛 be such that it contains 0, 𝑒1, . . . , 𝑒𝑛 . The following

are the two most important examples of our randomness model.

G A Gaussian polynomial supported on 𝑀 is a zintzo random

polynomial 𝔣 supported on𝑀 , the coefficients of which are

i.i.d. Gaussian random variables. In this case, it holds that

𝜌𝔣 = 1/
√
2𝜋 and 𝐾𝔣 ≤ |𝑀 |.

U A uniform random polynomial supported on 𝑀 is a zintzo

random polynomial 𝔣 supported on 𝑀 , the coefficients of

which are i.i.d. uniform random variables on [−1, 1]. In this

case, 𝜌𝔣 = 1/2 and 𝐾𝔣 ≤ |𝑀 |.
An important feature of our randomness model is that it includes

the smoothed analysis inside the probabilistic analysis. We recall

that the smoothed case, as introduced by Spielman and Teng [26],

considers a fixed polynomial on which we perform a random per-

turbation. Recall that ∥ 𝑓 ∥1 :=
∑
𝛼 |𝑓𝛼 |. The presence of the norm in

the following statement is to make the random perturbation of size

proportional to the size of the polynomial.

Proposition 2.5. Let 𝔣 be a zintzo random polynomial supported

on 𝑀 , 𝑓 ∈ P𝑛,𝑑 a polynomial supported on 𝑀 , and 𝜎 > 0. Then,

𝔣𝜎 := 𝑓 +𝜎 ∥ 𝑓 ∥1𝔣 is a zintzo random polynomial supported on𝑀 such

that 𝐾𝔣𝜎 ≤ ∥ 𝑓 ∥1 (1 + 𝜎𝐾𝔣) and 𝜌𝔣𝜎 ≤ 𝜌𝔣/(𝜎 ∥ 𝑓 ∥1). In particular,

𝐾𝔣𝜎 𝜌𝔣𝜎 = (𝐾𝔣 + 1/𝜎)𝜌𝔣 .
The proof of the proposition appears in Section 5. Note that

lim
𝜎→0

𝐾𝔣𝜎 𝜌𝔣𝜎 = ∞ and lim
𝜎→∞

𝐾𝔣𝜎 𝜌𝔣𝜎 = 𝐾𝔣𝜌𝔣,

so that we have that the smoothed case recovers both the worst

and the average case. In particular, the worst case emerges as the

perturbation becomes zero and the average case as the perturbation

becomes of infinite magnitude.

Remark 2.6. We use the term subgaussian constant instead of the

𝜓2-norm since our choice may not agree with the usual definition

of𝜓2-norm which is

∥𝑋 ∥𝜓2
:= inf{𝑡 > 0 | E exp(−𝑋 2/𝑡2) ≤ 2},

see [28, Definition 2.5.6]. However, one can see that what we call

subgaussian constant is always bounded from above by the 𝜓2-

norm.

Remark 2.7. Our methods also apply if we replace the subgaussian

property by the more general subexponential property [28, 2.7] or

by probability distributions having stronger tail decays (see [28,

Exercise 2.7.3]).

Remark 2.8. Saying that 𝑋 has the anti-concentration property

with anti-concentration constant 𝜌 is the same as saying that 𝑋

has a density (with respect the Lebesgue measure) bounded almost

everywhere by 𝜌 . See [25] for more details on this.

Remark 2.9. By Proposition 2.5, any probabilistic average complex-

ity analysis includes the smoothed complexity analysis. Because of

this, we will only provide complexity estimates in the average case.

2.2 Complexity results

Ourmain complexity result is the following probabilistic complexity

analysis for the subdivision routine of the Plantinga-Vegter, PV-

Subdivsion, that we prove in Section 6.

Theorem 2.10. Let 𝔣 ∈ P𝑛,𝑑 be a zintzo random polynomial

supported on𝑀 . The average number of boxes of the final subdivision

of PV-Subdivsion using the interval approximations (6.1) and (6.2)

on input 𝔣 is at most

𝑛
3
2𝑑2𝑛 |𝑀 |

(
80

√
𝑛(𝑛 + 1)𝐾𝔣𝜌𝔣

)𝑛+1
.

Let us particularize the result for the twomain examples of zintzo

random polynomials.

Corollary 2.11. Let 𝔣 ∈ P𝑛,𝑑 be a random polynomial supported

on 𝑀 . The average number of boxes of the final subdivision of PV-

Subdivsion using the interval approximations (6.1) and (6.2) on input

𝔣 is at most

𝑛
3
2

(
40

√
𝑛(𝑛 + 1)

)𝑛+1
𝑑2𝑛 |𝑀 |𝑛+2

if 𝔣 is Gaussian or uniform.

We observe that in all these results the bound is polynomial in

the degree, as in [7], providing further theoretical justification of

the practical success of the Plantinga-Vegter algorithm. However,

unlike the estimates in [7], the above results justify the success

of the Plantinga-Vegter algorithm for sparse random polynomi-

als. As mentioned in the introduction, this is one of the first such

probabilistic complexity estimates in numerical algebraic geometry.

3 A NORM TO WORK IN THE CUBE

To work in the cube 𝐼𝑛 , we will use the∞-norm which is

∥𝑥 ∥∞ := max
𝑖
|𝑥𝑖 |,

for 𝑥 ∈ R𝑛 . Motivated by duality, we will consider the following

norm on P𝑛,𝑑 , the space of affine polynomials of degree at most 𝑑

in 𝑛 variables:

∥ 𝑓 ∥1 :=
∑
𝛼

|𝑓𝛼 |, (3.1)

for 𝑓 :=
∑
|𝛼 | ≤𝑑 𝑓𝛼𝑋

𝛼 ∈ P𝑛,𝑑 .
The motivation to choose the 1-norm emanates from the follow-

ing proposition which shows that we can control the evaluation of

𝑓 at 𝑥 ∈ 𝐼𝑛 , that is 𝑓 (𝑥), using 1-norm for 𝑓 .

Proposition 3.1. Let 𝑓 ∈ P𝑛,𝑑 and 𝑥 ∈ 𝐼𝑛 . Then |𝑓 (𝑥) | ≤ ∥ 𝑓 ∥1.

Proof. It holds |𝑓 (𝑥) | = |∑𝛼 𝑓𝛼𝑥
𝛼 | ≤ ∑

𝛼 |𝑓𝛼 | ∥𝑥 ∥
|𝛼 |
∞ ≤ ∥ 𝑓 ∥1; as

𝑥 ∈ 𝐼𝑛 implies that ∥𝑥 ∥∞ ≤ 1. □

Remark 3.2. A reader might wonder why we do not choose another

norm. For example, if we choose ∥ 𝑓 ∥2 :=
√∑

𝛼 |𝑓𝛼 |2, then we can

prove that for all 𝑥 ∈ 𝐼𝑛 , it holds |𝑓 (𝑥) | ≤
√
𝑁 ∥ 𝑓 ∥2. Unfortunately,

the inequality depends on
√
𝑁 . This

√
𝑁 factor will spread through-

out the analysis and it will take away any gain we obtain from

choosing the Euclidean norm. Because of this, we pick the norm

that makes our analysis as simple as possible, that is the 1-norm.

An important feature of the 1-norm is that, using the norm of

a polynomial, we can control the norm of its derivative. Proposi-

tion 3.4 and its Corollary 3.5 quantify this feature.

436

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Josué Tonelli-Cueto and Elias Tsigaridas

Remark 3.3. We use the convention of writing ∇𝑓 to refer to the

formal gradient vector, whose entries are the formal partial deriva-

tives of 𝑓 . We write ∇𝑥 𝑓 to refer to the gradient vector of 𝑓 at 𝑥 ,

whose entries are the partial derivatives of 𝑓 evaluated at 𝑥 . In

this way, for 𝑣 ∈ R𝑛 , ⟨∇𝑓 , 𝑣⟩ = ∑
𝑖 𝑣𝑖 𝜕𝑖 𝑓 is a polynomial, while

⟨∇𝑥 𝑓 , 𝑣⟩ =
∑
𝑖 𝑣𝑖 𝜕𝑖 𝑓 (𝑥) is a number.

Proposition 3.4. Let 𝑓 ∈ P𝑛,𝑑 , 𝑥 ∈ 𝐼𝑛 , and 𝑣 ∈ R𝑛 . Then, it
holds ∥⟨∇𝑓 , 𝑣⟩∥1 ≤ 𝑑 ∥ 𝑓 ∥1∥𝑣 ∥∞.

Proof. We have 𝑑 ∥ 𝑓 ∥1∥𝑣 ∥∞ =
∑
𝛼 𝑑 |𝑓𝛼 | ∥𝑣 ∥∞ and ∥⟨∇𝑓 , 𝑣⟩∥1 ≤∑

𝛼 |𝑓𝛼 | ∥⟨∇(𝑋𝛼 , 𝑣⟩∥1. Therefore, it is enough to prove the claim for

𝑋𝛼 . But then ⟨∇𝑋𝛼 , 𝑣⟩ = ∑𝑛
𝑖=1 𝛼𝑖𝑣𝑖𝑋

𝛼/𝑋𝑖 and so ∥⟨∇𝑋𝛼 , 𝑣⟩∥1 ≤(∑𝑛
𝑖=1 𝛼𝑖

)
∥𝑣 ∥∞ ≤ 𝑑 ∥𝑣 ∥∞. □

Corollary 3.5. The map 𝑓 : 𝐼𝑛 → R, given by 𝑥 ↦→ 𝑓 (𝑥) =
𝑓 (𝑥)/∥ 𝑓 ∥1, is 𝑑-Lipschitz with respect the∞-norm.

Proof. By the fundamental theorem of calculus, |𝑓 (𝑥) − 𝑓 (𝑦) | ≤∫ 1

0
|⟨∇𝑥+𝑡 (𝑥−𝑦) 𝑓 , 𝑥 −𝑦⟩| 𝑑𝑡 . Now, by Proposition 3.1, the integrand

is bounded from above by 𝑑 ∥ 𝑓 ∥1∥𝑥 − 𝑦∥∞. Hence |𝑓 (𝑥) − 𝑓 (𝑦) | ≤
𝑑 ∥ 𝑓 ∥1∥𝑥 − 𝑦∥∞, as desired. □

Recall that, by duality, it is natural to measure the gradient of 𝑓

with the 1-norm, which, for 𝑦 ∈ R𝑛 is

∥𝑦∥1 :=
∑𝑛

𝑖=1
|𝑦𝑖 |.

This is so, because this norm is the optimal norm satisfying the

condition that for all 𝑥,𝑦 ∈ R𝑛 ,

⟨𝑦, 𝑥⟩ ≤ ∥𝑦∥1∥𝑥 ∥∞ .

This motivates the choice of norms in corollary below.

Corollary 3.6. The map ∇̂𝑓 : 𝐼𝑛 → R, given by 𝑥 ↦→ ∇̂𝑓 (𝑥) :=
∇𝑥 𝑓 /(𝑑 ∥ 𝑓 ∥1), is (𝑑 − 1)-Lipschitz with respect the ∞-norm in the

domain and the 1-norm on the codomain.

Proof. By Proposition 3.4 and Corollary 3.5, the map 𝑥 ↦→
⟨∇𝑥 𝑓 , 𝑣⟩/(𝑑 ∥ 𝑓 ∥1∥𝑣 ∥∞) is (𝑑−1)-Lipschitz with respect the∞-norm.

Hence for all 𝑣 ∈ R𝑛 \ 0, it holds
1

∥𝑣 ∥∞

����
〈
∇𝑥 𝑓
𝑑 ∥ 𝑓 ∥1

−
∇𝑦 𝑓
𝑑 ∥ 𝑓 ∥1

, 𝑣

〉���� ≤ (𝑑 − 1)∥𝑥 − 𝑦∥∞ .
If we maximize the left hand side, then we obtain the 1-norm (as it

is the dual norm of the∞-norm) and so ∇𝑥 𝑓𝑑 ∥ 𝑓 ∥1
−
∇𝑦 𝑓
𝑑 ∥ 𝑓 ∥1

1
≤ (𝑑 − 1)∥𝑥 − 𝑦∥∞,

which concludes the proof. □

4 CONDITION AND ITS PROPERTIES

The following definition adapts the real local condition number [3,

Chapter 19] to our setting.

Definition 4.1. Let 𝑓 ∈ P𝑛,𝑑 and 𝑥 ∈ 𝐼𝑛 , the local condition

number of 𝑓 at 𝑥 is the quantity

C(𝑓 , 𝑥) := ∥ 𝑓 ∥1
max

{
|𝑓 (𝑥) |, 1

𝑑
∥∇𝑥 𝑓 ∥1

} .

Remark 4.2. We note that C(𝑓 , 𝑥) is infinity only when 𝑓 has a

singular zero at 𝑥 . In all the other cases, it is finite and it measures

how close is 𝑓 to having a singularity at 𝑥 .

Following [27, 2ğ2], a condition number should satisfy the follow-

ing properties: regularity inequality, the 1st and the 2nd Lipschitz

property, and the Higher Derivative Estimate. These properties are

the ones that we usually need to bound the various quantities when

we analyze algorithms in real numerical algebraic geometry.

Proposition 4.3 (Regularity ineqality). Let 𝑓 ∈ P𝑛,𝑑 and

𝑥 ∈ 𝐼𝑛 . Then,
either |𝑓 (𝑥) |/∥ 𝑓 ∥1 ≥ 1/C(𝑓 , 𝑥) or ∥∇𝑥 𝑓 ∥1/(𝑑 ∥ 𝑓 ∥1) ≥ 1/C(𝑓 , 𝑥).

Proof. This follows from the observation that 1/C(𝑓 , 𝑥) is the
maximum of |𝑓 (𝑥) |/∥ 𝑓 ∥1 and ∥∇𝑥 𝑓 ∥1/(𝑑 ∥ 𝑓 ∥1). □

Proposition 4.4 (1st Lipschitz property). The map P𝑛,𝑑 ∋
𝑓 ↦→ ∥ 𝑓 ∥1/C(𝑓 , 𝑥) is 1-Lipschitz.

Proof. If we apply the reverse triangle inequality several times,

we get

| ∥ 𝑓 ∥1/C(𝑓 , 𝑥) − ∥𝑔∥1/C(𝑔, 𝑥) |
≤ |max {|𝑓 (𝑥) | − |𝑔(𝑥) |, ∥∇𝑥 𝑓 ∥1/𝑑 − ∥∇𝑥𝑔∥1/𝑑}|
≤ |max {|𝑓 (𝑥) − 𝑔(𝑥) |, ∥∇𝑥 𝑓 − ∇𝑥𝑔∥1/𝑑}|
≤ |max {|(𝑓 − 𝑔) (𝑥) |, ∥∇𝑥 (𝑓 − 𝑔)∥1/𝑑}| .

Finally, Propositions 3.1 and 3.4 conclude the proof. □

Let Σ𝑥 ≤ P𝑛,𝑑 be the subspace of polynomials that are singular at

0, that is

Σ𝑥 := {𝑔 ∈ P𝑛,𝑑 | 𝑔(𝑥) = 0, ∇𝑥𝑔 = 0}.
We cannot prove a Condition Number Theorem where the con-

dition number is (the inverse of) the distance to the discriminantal

variety. However, bound the condition number, in both directions,

with this distance.

Corollary 4.5 (ConditionNumber Theorem). For all 𝑓 ∈ P𝑛,𝑑
and 𝑥 ∈ 𝐼𝑛 ,

∥ 𝑓 ∥1/dist1 (𝑓 , Σ𝑥) ≤ C(𝑓 , 𝑥) ≤ 2𝑑 ∥ 𝑓 ∥1/dist1 (𝑓 , Σ𝑥)
where dist1 is the distance induced by the 1-norm.

Proof. The left hand side follows from Proposition 4.4. For the

right hand side, consider the polynomial

𝑔 := 𝑓 − 𝑓 (𝑥) −∑𝑛
𝑖=1 𝜕𝑖 𝑓 (𝑥)𝑋𝑖 .

It is clear that 𝑔 ∈ Σ𝑥 and that ∥ 𝑓 − 𝑔∥1 ≤ |𝑓 (𝑥) | + ∥∇𝑥 𝑓 ∥1.
Hence dist1 (𝑓 , Σ𝑥) ≤ ∥ 𝑓 − 𝑔∥1 ≤ 2𝑑 max{|𝑓 (𝑥) |, ∥∇𝑥 𝑓 ∥1/𝑑} =

2𝑑 ∥ 𝑓 ∥1/C(𝑓 , 𝑥), as desired. □

Proposition 4.6 (2nd Lipschitz property). The map 𝐼𝑛 ∋ 𝑥 ↦→
1/C(𝑓 , 𝑥) is 𝑑-Lipschitz.

Proof. Without loss of generality, we can assume that ∥ 𝑓 ∥1 = 1.

The proof is analogous, mutatis mutandis, to the proof of Proposi-

tion 4.4. By using the reverse triangular inequality, we have���� 1

C(𝑓 , 𝑥) −
1

C(𝑓 , 𝑦)

���� ≤ max

{
|𝑓 (𝑥) − 𝑓 (𝑦) |, 1

𝑑
∥∇𝑥 𝑓 − ∇𝑦 𝑓 ∥

}
.

Now, Corollaries 3.5 and 3.6 conclude the proof. □

437

Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

We recall that Smale’s gamma, 𝛾 , is the invariant given by

𝛾 (𝑓 , 𝑥) := sup
𝑘≥2

 1

𝑘!
D𝑥 𝑓

† D𝑘
𝑥 𝑓

1

𝑘−1

= sup
𝑘≥2

(
1

∥∇𝑥 𝑓 ∥22

 1

𝑘!
(∇𝑥 𝑓)∗ D𝑘

𝑥 𝑓

) 1
𝑘−1

,

where the † is the pseudoinverse, and the norm the operator norm

with respect the Euclidean norm. We also notice that the second

equality follows from computing the pseudoinverse for a covec-

tor. The following proposition serves the purpose of the Higher

Derivative Estimate [3, Prop. 16.45] in our setting.

Proposition 4.7 (Higher Derivative Estimate). Let 𝑥 ∈ 𝐼𝑛 be

such that C(𝑓 , 𝑥) 𝑓 (𝑥) < 1. Then

𝛾 (𝑓 , 𝑥) ≤ 1

2
(𝑑 − 1)

√
𝑛 C(𝑓 , 𝑥).

Proof. Let D𝑘
𝑋
𝑓 (𝑣1, . . . , 𝑣𝑘) stand for the polynomial obtained

by evaluating the formal 𝑘th derivative of 𝑓 evaluated at 𝑣1, . . . ,

𝑣𝑘 ∈ R𝑛 . Then, by Proposition 3.4 and induction, we have 1

𝑘!
D𝑋 𝑓 (𝑣1, . . . , 𝑣𝑘)

1
≤

(
𝑑

𝑘

)
∥ 𝑓 ∥1∥𝑣1∥∞ · · · ∥𝑣𝑘 ∥∞ .

Now, by the above inequality, ∥𝑣 ∥∞ ≤ ∥𝑣 ∥2 and submultiplicativity

of operator norms, we have that

1

∥∇𝑥 𝑓 ∥22

 1

𝑘!
(∇𝑥 𝑓)∗ D𝑘

𝑥 𝑓

 ≤ ∥ 𝑓 ∥1
∥∇𝑥 𝑓 ∥2

(
𝑑

𝑘

)
.

Since ∥∇𝑥 𝑓 ∥2 ≥ ∥∇𝑥 𝑓 ∥1/
√
𝑛, we deduce that can bound the previ-

ous inequality by(
𝑑

𝑘

)√
𝑛
∥ 𝑓 ∥1
∥∇𝑥 𝑓 ∥1

≤ 1

𝑑

(
𝑑

𝑘

)√
𝑛 C(𝑓 , 𝑥),

where the inequality follows from the Regularity Inequality (Propo-

sition 4.3). Finally, we observe that 1
𝑑

(𝑑
𝑘

)
≤ (𝑑 − 1)𝑘−1/2𝑘−1; then,

the claim follows by taking the (𝑘−1)th root and the supremum. □

5 PROBABILITY ESTIMATES

We refine the techniques of [7] to obtain explicit constants in the

bounds and to deal with a restricted class of sparse polynomials.

5.1 Probabilistic toolbox

Our probabilistic toolbox should control, on the one hand, the norm

and, on the other hand, the size of the projection. For the former

we need a variant of the Hoeffding inequality, and for latter we

need a bound on small ball probabilities.

Proposition 5.1. Let 𝔵 ∈ R𝑀 be a random vector such that for

each 𝛼 ∈ 𝑀 , 𝔵𝛼 is subgaussian with subgaaussian constant 𝐾𝛼 . Then

for all 𝑡 ≥ ∑
𝛼 𝐾𝛼 , it have

P(∥𝔵∥1 ≥ 𝑡) ≤ 2|𝑀 | exp ©«
−𝑡2/

(∑
𝛼 ∈𝑀

𝐾𝛼

)2ª®¬
.

Proof. We have that

P (∑𝛼 ∈𝑀 |𝔵𝛼 | ≥ 𝑡) = P (
∑
𝛼 ∈𝑀 |𝔵𝛼 | ≥

∑
𝛼 ∈𝑀 𝐾𝛼 𝑡/(

∑
𝛼 ∈𝑀 𝐾𝛼))

≤ P (∃𝛼 ∈ 𝑀 | |𝔵𝛼 | ≥ 𝐾𝛼 𝑡/(
∑
𝛼 ∈𝑀 𝐾𝛼))

≤ |𝑀 |max
𝛼 ∈𝑀
P (|𝔵𝛼 | ≥ 𝐾𝛼 𝑡/(

∑
𝛼 ∈𝑀 𝐾𝛼))

≤ 2|𝑀 | exp
(
−𝑡2/(∑𝛼 ∈𝑀 𝐾𝛼)2

)
,

where the first inequality follows from the implication bound śnote

that for 𝑥,𝑦 ∈ R𝑛+, we have that if
∑𝑛
𝑖=1 𝑥𝑖 ≥

∑𝑛
𝑖=1 𝑦𝑖 , then for some

𝑖 , 𝑥𝑖 ≥ 𝑦𝑖 , as otherwise the first claim would be falseś the second

one from the union bound, and the third one by hypothesis. □

Proposition 5.2. Let 𝐴 ∈ R𝑘×𝑁 be a surjective linear map and

𝔵 ∈ R𝑁 be a random vector such that the 𝔵𝑖 ’s are independent random

variables with densities (with respect the Lebesgue measure) bounded

almost everywhere by 𝜌 . Then, for all measurable𝑈 ⊆ R𝑘 ,

P(𝐴𝔵 ∈ 𝑈) ≤ vol(𝑈)
(√

2𝜌
)𝑘
/
√
det𝐴𝐴∗ .

Proof. Using SVD, write 𝐴 = 𝑄𝑆𝑃 where, 𝑃 ∈ R𝑘×𝑁 is an

orthogonal projection, 𝑆 a diagonal matrix containing the singular

values of 𝐴, and 𝑄 an orthogonal matrix.

By [25, Theorem 1.1], see also [18, Theorem 1.1] for the explicit

constant, we have that 𝑃𝔵 ∈ R𝑘 is a random vector with density

bounded, almost everywhere, by (
√
2𝜌)𝑘 . Hence

P(𝐴𝔵 ∈ 𝑈) = P(𝑃𝔵 ∈ (𝑄𝑆)−1𝑈) ≤ vol
(
(𝑄𝑆)−1𝑈

)
(
√
2𝜌)𝑘 .

This suffices to conclude the proof, since we have vol
(
(𝑄𝑆)−1𝑈

)
=

vol(𝑈)/det(𝑄𝑆) and det(𝑄𝑆) =
√
det𝐴𝐴∗. □

5.2 Condition of zintzo random polynomials

We apply our probabilistic toolbox to zintzo random polynomials.

Theorem 5.3. Let 𝔣 ∈ P𝑛,𝑑 a zintzo random polynomial supported

on𝑀 . Then for all 𝑡 ≥ 𝑒 ,

P(C(𝔣, 𝑥) ≥ 𝑡) ≤
√
𝑛𝑑𝑛 |𝑀 |

(
8𝐾𝔣𝜌𝔣

)𝑛+1 ln
𝑛+1
2 𝑡

𝑡𝑛+1
.

Lemma 5.4. Let𝑀 ⊆ N𝑛 as in Definition 2.1 and P𝑛,𝑑 (𝑀) the set
of polynomials in P𝑛,𝑑 supported on 𝑀 . Let 𝑅𝑥 : P𝑛,𝑑 (𝑀) → R𝑛+1
be the linear map given by

𝑅𝑥 : 𝑓 ↦→
(
𝑓 (𝑥) 1

𝑑
𝜕1 𝑓 (𝑥) · · · 1

𝑑
𝜕𝑛 𝑓 (𝑥)

)∗
,

and 𝑆 : P𝑛,𝑑 (𝑀) → P𝑛,𝑑 (𝑀) be the linear map given by

𝑆 : 𝑓 =
∑
𝛼 ∈𝑀

𝑓𝛼𝑋
𝛼 ↦→

∑
𝛼 ∈𝑀

𝜌𝛼 𝑓𝛼𝑋
𝛼 ,

where 𝜌 ∈ R𝑀+ . Then for �̃�𝑥 := 𝑅𝑥𝑆
−1 we have that√

det �̃�𝑥 �̃�
∗
𝑥 ≥

1

𝑑𝑛𝜌0𝜌𝑒1 · · · 𝜌𝑒𝑛
,

with respect to coordinates induced by the standard monomial basis.

Proof of Theorem 5.3. We write C(𝔣, 𝑥) = ∥ 𝑓 ∥1/∥𝑅𝑥 𝔣∥, where
𝑅𝑥 is as in Lemma 5.4 and the norm ∥ · ∥ in the denominator is

438

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Josué Tonelli-Cueto and Elias Tsigaridas

given by ∥𝑦∥ = max{|𝑦1 |, |𝑦2 | + · · · + |𝑦𝑛+1 |}. By the union bound,

we have that for 𝑢, 𝑠 > 0, it holds

P(C(𝔣, 𝑥) ≥ 𝑡) ≤ P(∥𝔣∥ ≥ 𝑢) + P(∥𝐴𝑥 𝔣∥ ≤ 𝑢/𝑡). (5.1)

By Propositions 5.1, we have that for 𝑢 ≥ 𝐾𝔣 ,

P(∥𝔣∥ ≥ 𝑢) ≤ 2|𝑀 | exp
(
−𝑢2/𝐾2

𝔣

)
. (5.2)

Let 𝑆 : P𝑛,𝑑 (𝑀) → P𝑛,𝑑 (𝑀) be as in Lemma 5.4 with 𝜌𝛼 the anti-

concentration constant of 𝔣𝛼 . Then, we have that 𝑆𝔣 has independent

random coefficients with densities bounded (almost everywhere)

by 1 and so we can apply to it to the Proposition 5.2. We do so with

the help of Lemma 5.4, so that we obtain

P(∥𝑅𝑥 𝔣∥ ≤ 𝑢/𝑡) = P(∥�̃�𝑥 (𝑆𝔣)∥ ≤ 𝑢/𝑡) ≤
2𝑛+1

𝑛!
𝑑𝑛 (
√
2𝜌𝔣𝑢/𝑡)𝑛+1,

(5.3)

where �̃�𝑥 is as in Lemma 5.4.

Combining (5.1), (5.2), and (5.3) with 𝑢 = 𝐾𝔣
√
(𝑛 + 1) ln 𝑡 , we get

P(C(𝔣, 𝑥) ≥ 𝑡) ≤ 2|𝑀 |
𝑡𝑛+1

+ 2𝑛+1

𝑛!
𝑑𝑛 (
√
2𝐾𝔣𝜌𝔣 (𝑛 + 1))𝑛+1

ln
𝑛+1
2 𝑡

𝑡𝑛+1
.

By Stirling’s formula,

(𝑛 + 1)𝑛+1/𝑛! ≤
√
𝑛𝑒𝑛 (1 + 1/𝑛)𝑛+1/

√
2𝜋 ≤

√
𝑛𝑒𝑛+1,

and so the desired claim follows for 𝑡 ≥ 𝑒 , by Proposition 2.4. □

Proof of Lemma 5.4. The maximal minor of 𝐴𝑥 is given by(
1 𝑥∗

0 1
𝑑
I

)
.

This is precisely the minor associated to the subset {1, 𝑋1, . . . , 𝑋𝑛}
of the standard monomial basis of P𝑛,𝑑 (𝑀). Note that at this point
we require the assumption that 0, 𝑒1, . . . , 𝑒𝑛 ∈ 𝑀 .

By the Cauchy-Binet identity,
√
det𝐴𝑥𝐴

∗
𝑥 is lower-bounded by

the absolute value of the determinant of the given maximal minor.

Hence the lemma follows. □

Proof of Proposition 2.4. Using the positivity of the subgaus-

sian constants, 𝐾𝛼 , of the coefficients of the zintzo polynomial 𝔣

and the arithmetic-geometric inequality,

𝐾𝔣𝜌𝔣 ≥ (𝑛 + 1) 𝑛+1
√
(𝐾0𝜌0) (𝐾𝑒1𝜌𝑒1) · · · (𝐾𝑒𝑛𝜌𝑒𝑛).

Hence, it suffices to show that for a random variable with 𝑋 with

subgaussian constant 𝐾 and anti-concentration constant 𝜌 , 𝐾𝜌 ≥
1/4. Now, by definition,

3𝐾𝜌 ≥ P (|𝑋 | ≤ 1.5𝐾) = 1 − P (|𝑋 | > 1.5𝐾) ≥ 1 − exp (−2.25) .

Calculating we get 𝐾𝜌 ≥ 1/4, as desired. □

Corollary 5.5. Let 𝔣 ∈ P𝑛,𝑑 be a zintzo random polynomial

supported on𝑀 . Then,

E𝔣E𝔣∈𝐼𝑛 C(𝑓 , 𝑥)𝑛 ≤ 2𝑛2𝑑𝑛 |𝑀 |
(
10
√
𝑛 + 1)𝐾𝔣𝜌𝔣

)𝑛+1
.

Proof. By the Fubini-Tonelli theorem, we have

E𝔣E𝔣∈𝐼𝑛 C(𝑓 , 𝑥)𝑛 = E𝔣∈𝐼𝑛E𝔣 C(𝑓 , 𝑥)𝑛,

so it is enough to compute E𝔣 C(𝑓 , 𝑥)𝑛 =
∫ ∞
1
P(C(𝔣, 𝑥)𝑛 ≥ 𝑡). The

latter, by Theorem 5.3, is bounded from above by

𝑒𝑛
√
𝑛𝑑𝑛 |𝑀 |

(
8𝐾𝔣𝜌𝔣√
𝑛

)𝑛+1 ∫ ∞

1

ln
𝑛+1
2 𝑡

𝑡1+
1
𝑛

d𝑡 .

After straightforward calculations, we obtain∫ ∞

1

ln
𝑛+1
2 𝑡

𝑡1+
1
𝑛

d𝑡 = 𝑛
𝑛+3
2 Γ

(
𝑛 + 3
2

)
≤ 𝑒
√
𝜋𝑛

𝑛+4
2

(
𝑛 + 1
2𝑒

) 𝑛+1
2

,

where Γ is Euler’s Gamma function and the second inequality fol-

lows from Striling’s approximation. Hence, the bound follows. □

We can also bound the global condition number, that is

C(𝑓) := max{C(𝑓 , 𝑥) | 𝑥 ∈ 𝐼𝑛}. (5.4)

Corollary 5.6. Let 𝔣 ∈ P𝑛,𝑑 be a zintzo random polynomial

supported on𝑀 . Then, for all 𝑡 > 2𝑒 ,

P(C(𝔣) ≥ 𝑡) ≤ 1

4

√
𝑛𝑑2𝑛 |𝑀 |

(
64𝐾𝔣𝜌𝔣

)𝑛+1 ln
𝑛+1
2 𝑡

𝑡
.

Proof. The idea is to use an efficient 𝜀-net of 𝐼𝑛 and the 2nd

Lipschitz property to turn our local estimates into global ones, as

is done in [27, Theorem 1ğ219]. Recall, that an 𝜀-net of 𝐼𝑛 (with

respect to the∞-norm) is a finite subset G ⊆ 𝐼𝑛 such that, for all

𝑦 ∈ 𝐼𝑛 , dist∞ (𝑦,G) ≤ 𝜀.
Note that for every 𝜀 > 0, we have an 𝜀-net G𝜀 ⊆ 𝐼𝑛 of size

≤ 2𝑛𝜀−𝑛 . To construct it, we take the uniform grid in the cube.

Now, we notice that if C(𝔣) ≥ 𝑡 , then
max{C(𝔣, 𝑥) | 𝑥 ∈ G1/(2𝑑𝑡) } ≥ 𝑡/2

by the 2nd Lipschitz property (Proposition 4.6). In this way, by the

implication and the union bound, we obtain

P(C(𝔣) ≥ 𝑡) ≤
��G1/(2𝑑𝑡) ��max{P(C(𝔣, 𝑥) ≥ 𝑡/2) | 𝑥 ∈ 𝐼𝑛}.

By Theorem 5.3 and the bound on
��G1/(2𝑑𝑡) ��, we conclude. □

Now we have all the tools to prove Proposition 2.5 which shows

that the smoothed case is included in the above average cases.

Proof of Proposition 2.5. It is enough to show that for 𝑥, 𝑠 ∈
R and a random variable 𝔵 with subgaussian constant 𝐾 and anti-

concentration constant 𝜌 , 𝑥 + 𝑠𝔵 is a random variable with subgaus-

sian constant ≤ |𝑥 | + 𝑠𝐾 and anti-concentration constant ≤ 𝜌/𝑠 .
We note that the latter follows directly from the definition, so we

only prove the former.

Now, for all 𝑡 ≥ |𝑥 | + 𝑠𝐾 ,
P(|𝑥 + 𝑠𝔵 | ≥ 𝑡) ≤ P(|𝔵 | ≥ (𝑡 − |𝑥 |)/𝑠) ≤ 2 exp(−(𝑡 − |𝑥 |)2/(𝑠𝐾)2) .
We can easily check that 𝑡 ≥ |𝑥 | + 𝑠𝐾 implies (𝑡 − |𝑥 |)/(𝑠𝐾) ≥
𝑡/(|𝑥 | + 𝑠𝐾). Hence, the claim follows. □

6 PLANTINGA-VEGTER ALGORITHM

The Plantinga-Vegter algorithm [23] is a subdivision-based algo-

rithm that computes an isotopically correct approximation of the

zeros of a univariate polynomial in an interval, of a curve in the

plane, or of a surface in 3-dimensional space. Following [6] and [7],

we will focus on the subdivision procedure, which is extended for

an arbitrary number of variables, and bound the complexity by

bounding the number of boxes that the algorithm produces. We

439

Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 1: PV-Subdivsion

Input : 𝑓 ∈ P𝑛,𝑑 which is non-singular in 𝐼𝑛

Output :A subdivision S of 𝐼𝑛 into boxes

such that for all 𝐵 ∈ S, 𝐶𝑓 (𝐵) holds

1 S0 ← {𝐼𝑛}, S ← ∅ ;

2 while S0 ≠ ∅ do

3 Take 𝐵 ∈ S0;
4 if 𝐶𝑓 (𝐵) holds then
5 S ← S ∪ {𝐵}, S0 ← S0 \ {𝐵};
6 else

7 S0 ← S0 \ {𝐵} ∪ StandardSubdivsion(𝐵);

8 return S ;

refer to [6], [7] and [27, 5ğ2] for further justification of the approach

taken here.

Remark 6.1. Even though we present our results for the unit cube

𝐼𝑛 , we note that our tools apply for a cube of arbitrary size (up

to the technical assumption on the support). To do so, we need to

normalize evaluations appropiately by a power of max{1, ∥𝑥 ∥∞}
for ∥𝑥 ∥∞ > 1. However, this would obfuscate many of the ideas

presented in this paper. Hence, for the sake of simplicity, we analyze

Algorithm PV-Subdivsion only in the unit cube.

6.1 PV Algorithm and its interval version

The subdivision routine of the PV algorithm, PV-Subdivsion, relies

on subdividing the unit cube 𝐼𝑛 until each box 𝐵 in the subdivision

satisfies the condition

𝐶𝑓 (𝐵) : either 0 ∉ 𝑓 (𝐵) or 0 ∉ {⟨∇𝑥 𝑓 ,∇𝑦 𝑓 ⟩ | 𝑥,𝑦 ∈ 𝐵}.

To implement this algorithm one uses interval arithmetic. Recall

that an interval approximation of a map 𝑔 : 𝐼𝑛 → R𝑞 is a map

□[𝑔] : B(𝐼𝑛) → B(R𝑞), where B(𝑋) is the set of (coordinate)

boxes contained in 𝑋 , such that for all 𝐵 ∈ B(𝐼𝑛), we have

𝑔(𝐵) ⊆ □[𝑔] (𝐵).

Using the language of Xu and Yap [29], we will consider only the

interval level of the algorithm, leaving the effective version to an

extended version of this work.

We note that Corollaries 3.5 and 3.6 establish Lipschitz properties

for both 𝑓 and ∇𝑓 , with respect the∞-norm. This is ideal for con-

structing interval approximations to implement PV-Subdivsion. In

our case, our interval approximations will be:

□[𝑓] (𝐵) := 𝑓 (𝑚(𝐵)) + 𝑑 ∥ 𝑓 ∥1𝑤 (𝐵)/2[−1, 1] (6.1)

and

□[∥∇𝑓 ∥1] (𝐵) := ∥∇𝑚 (𝐵) 𝑓 ∥1+
√
2𝑛𝑑 (𝑑−1)∥ 𝑓 ∥1𝑤 (𝐵) [−1, 1] . (6.2)

For these interval approximations, we can interpret the stopping

criterion as follows:

Proposition 6.2. The condition𝐶𝑓 (𝐵) is implied by the condition

𝐶 ′
𝑓
(𝐵) :

{
|𝑓 (𝑚(𝐵)) | > 𝑑 ∥ 𝑓 ∥1𝑤 (𝐵)/2

or ∥∇𝑚 (𝐵) 𝑓 ∥1 >

√
2𝑛𝑑 (𝑑 − 1)∥ 𝑓 ∥1𝑤 (𝐵)

.

Hence, PV-Subdivsion with the interval approximations given in (6.1)

and (6.2) is correct if we substitute the condition 𝐶𝑓 (𝐵) by

𝐶□
𝑓
(𝐵) : either 0 ∉ □[𝑓] (𝐵) or 0 ∉ □[∥∇𝑓 ∥1] (𝐵).

Proof. The statement follows from Corollaries 3.5 and 3.6, [7,

Lemma 4.4] and the fact that for 𝑦 ∈ R𝑛 , ∥𝑦∥1/
√
𝑛 ≤ ∥𝑦∥2. □

For now on, the interval version of PV-Subdivsion will be a

variant that exploits the interval approximations in (6.1) and (6.2).

6.2 Complexity analysis

As in [6] and [7], our complexity analysis relies on the construction

of a local size bound for PV-Subdivsion and the application of the

continuous amortization developed by Burr, Krahmer and Yap [4, 5].

We recall the definition of the local size bound and the result

that we will exploit in our complexity analysis.

Definition 6.3. A local size bound for the interval version of PV-

Subdivsion on input 𝑓 is a function 𝑏 𝑓 : 𝐼𝑛 → [0, 1] such that for

all 𝑥 ∈ R𝑛 ,
𝑏 𝑓 (𝑥) ≤ inf{vol(𝐵) | 𝑥 ∈ 𝐵 ∈ B(𝐼𝑛) and 𝐶□

𝑓
(𝐵) false}.

Theorem 6.4. [4ś6] The number of boxes of the final subdivision

of the interval version of PV-Subdivsion on input 𝑓 is at most

4𝑛E𝔵∈𝐼𝑛
(
𝑏 𝑓 (𝑥)−1

)
.

Also, the bound is finite if and only if PV-Subdivsion terminates. □

Theorem 6.5. The function

𝑥 ↦→
(
2𝑑
√
𝑛 C(𝑓 , 𝑥)

)−𝑛
is a local size bound for PV-Subdivsion on input 𝑓 .

Proof. Let 𝑥 ∈ 𝐵 ∈ B(𝐼𝑛). Then ∥𝑚(𝐵) − 𝑥 ∥∞ ≤ 𝑤 (𝐵)/2
and so, by Corollaries 3.5 and 3.6 and the regularity inequality

(Propsoition 4.3), we have that

|𝑓 (𝑚(𝐵)) | > ∥ 𝑓 ∥1
(
C(𝑓 , 𝑥)−1 − 𝑑𝑤 (𝐵)/2

)
, (6.3)

and

∥∇𝑚 (𝐵) 𝑓 ∥1 > 𝑑 ∥ 𝑓 ∥1
(
C(𝑓 , 𝑥)−1 − (𝑑 − 1)𝑤 (𝐵)/2

)
. (6.4)

Hence, 𝐶𝑓 (𝐵) is true as long as, either C(𝑓 , 𝑥)−1 ≥ 𝑑𝑤 (𝐵), or
C(𝑓 , 𝑥)−1 > 2

√
𝑛𝑑𝑤 (𝐵). The result follows, since vol(𝐵) = 𝑤 (𝐵)𝑛 .

□

Theorem 6.4 and Theorem 6.5 result the following corollary:

Corollary 6.6. The number of boxes of the final subdivision of

the interval version of PV-Subdivsion on input 𝑓 is at most

8𝑛𝑛
𝑛

2 𝑑𝑛E𝔵∈𝐼𝑛 C(𝑓 , 𝔵)𝑛 .

Theorem 2.10 follows now from Corollaries 5.5 and 6.6.

Remark 6.7. A similar argument as in the proof of [7, Theorem 6.4]

shows that we can bound the local size bound of [6] in terms of

1/C(𝑓 , 𝑥)𝑛 . Since the interval approximation of the analyzed ver-

sion is simpler, requiring a single evaluation, we only analyze the

complexity of this.

440

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Josué Tonelli-Cueto and Elias Tsigaridas

Remark 6.8. Our tools apply for a cube of arbitrary size (up to

the technical assumption on the support). To do so, we need to

normalize evaluations by a power of max{1, ∥𝑥 ∥∞} for ∥𝑥 ∥∞ > 1.

However, this would obfuscate many of the ideas presented. Hence,

for the sake of simplicity, we restrict our analysis to the unit cube.

7 CONDITION AND SEPARATION BOUNDS

The following theorem is a variation of a result due to Dedieu [11,

Theorem 3.2 and Theorem 5.1]. It relates the condition number with

the separation bound, that is the minimum distance between the

roots, in the univariate case.

Theorem 7.1. Let 𝑓 ∈ P1,𝑑 be a univariate polynomial and 𝑥 ∈ 𝐼 .
Then, for any two distinct and non-singular roots, 𝛼 and 𝛼 , such that

𝛼, 𝛼 ∈ 𝐵C (𝑥, 1/(2(𝑑 − 1) C(𝑓 , 𝑥))),
|𝛼 − 𝛼 | ≥ 1/(16(𝑑 − 1) C(𝑓 , 𝑥)).

Proof. By [12, Théorème 91], the Newton method converges for

any point in 𝐵C (𝛼, 1/(6𝛾 (𝑓 , 𝛼)), where 𝛾 is Smale’s gamma. This

means that for any two roots 𝛼 and 𝛼 of 𝑓 , we must have

|𝛼 − 𝛼 | ≥ 1/max{3𝛾 (𝑓 , 𝛼), 3𝛾 (𝑓 , 𝛼)}.
Now, by [12, Lemme 98], for any 𝑦 ∈ 𝐵C (𝑥, 1/(4𝛾 (𝑓 , 𝑥))),

𝛾 (𝑓 , 𝑦) ≤ 32𝛾 (𝑓 , 𝑥)/3.
Hence, for any distinct roots 𝛼, 𝛼 ∈ 𝐵C (𝑥, 1/(4𝛾 (𝑓 , 𝑥))) that are not
singular, and because Smale’s gamma is finite at them, we have

|𝛼 − 𝛼 | ≥ 1/(32𝛾 (𝑓 , 𝑥)) .
Using the Higher Derivative Estimate (Prop. 4.7) we conclude. □

Recall that the local separation at a root 𝛼 is given by Δ𝛼 :=

min𝛽∈𝑓 −1 (0)\{𝛼 } |𝛼 − 𝛽 |. The following corollary controls the local

separation of the roots near an interval 𝐼 .

Corollary 7.2. Let 𝑓 ∈ P1,𝑑 . Then, for every complex 𝛼 ∈ 𝑓 −1 (0)
such that dist(𝛼, 𝐼) ≤ 1/(3(𝑑 − 1) C(𝑓)),

Δ𝛼 ≥ 1/(16(𝑑 − 1) C(𝑓)) .

Corollary 7.2 together with Corollary 5.6 allows us to give prob-

abilistic estimates of the separation bound for roots that lie near

the unit interval.

Acknowledgements. Both authors are grateful to Alperen Ergür for

various discussions and suggestions. The first author is grateful

to Evgenia Lagoda for moral support. Both authors are partially

supported by ANR JCJC GALOP (ANR-17-CE40-0009), the PGMO

grant ALMA, and the PHC GRAPE.

REFERENCES
[1] Diego Armentano and Carlos Beltrán. 2019. The polynomial eigenvalue problem

is well conditioned for random inputs. SIAM J. Matrix Anal. Appl. 40, 1 (2019),
175ś193. https://doi.org/10.1137/17M1139941

[2] Carlos Beltrán and Khazhgali Kozhasov. 2019. The Real Polynomial Eigenvalue
Problem is Well Conditioned on the Average. Foundations of Computational
Mathematics On-line First (2019), 19. https://doi.org/10.1007/s10208-019-09414-2

[3] Peter Bürgisser and Felipe Cucker. 2013. Condition. Grundlehren der mathematis-
chen Wissenschaften, Vol. 349. Springer-Verlag, Berlin. https://doi.org/10.1007/
978-3-642-38896-5

[4] Michael Burr, Felix Krahmer, and Chee Yap. 2009. Continuous amortization: A
non-probabilistic adaptive analysis technique. Electronic Colloquium on Compu-
tational Complexity 16, Report. No. 136 (Dec. 2009), 22.

[5] Michael A. Burr. 2016. Continuous amortization and extensions: with applications
to bisection-based root isolation. J. Symbolic Comput. 77 (2016), 78ś126. https:
//doi.org/10.1016/j.jsc.2016.01.007

[6] Michael A. Burr, Shuhong Gao, and Elias P. Tsigaridas. 2017. The complexity
of an adaptive subdivision method for approximating real curves. In ISSAC’17Ð
Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic
Computation. ACM, New York, 61ś68. https://doi.org/10.1145/3087604.3087654

[7] Felipe Cucker, Alperen A. Ergür, and Josué Tonelli-Cueto. 2019. Plantinga-Vegter
Algorithm Takes Average Polynomial Time. In Proceedings of the 2019 on Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC ’19). ACM,
New York, Beijing, China, 114ś121. https://doi.org/10.1145/3326229.3326252

[8] Felipe Cucker, Alperen A. Ergür, and Josué Tonelli-Cueto. 2020. Functional norms,
condition numbers and numerical algorithms in algebraic geometry. Manuscript.

[9] Felipe Cucker, Alperen A. Ergür, and Josué Tonelli-Cueto. 2020. On the Complex-
ity of the Plantinga-Vegter Algorithm. arXiv:2004.06879.

[10] Felipe Cucker, Teresa Krick, Gregorio Malajovich, and Mario Wschebor. 2008. A
numerical algorithm for zero counting. I: Complexity and accuracy. J. Complexity
24 (2008), 582ś605. https://doi.org/10.1016/j.jco.2008.03.001

[11] Jean-Pierre Dedieu. 1997. Estimations for the Separation Number of a Polynomial
System. Journal of Symbolic Computation 24, 6 (Dec. 1997), 683ś693.

[12] Jean-Pierre Dedieu. 2006. Points fixes, zéros et la méthode de Newton. Mathéma-
tiques & Applications (Berlin) [Mathematics & Applications], Vol. 54. Springer,
Berlin. xii+196 pages.

[13] Alperen A. Ergür, Grigoris Paouris, and J. Maurice Rojas. 2018. Probabilistic
Condition Number Estimates for Real Polynomial Systems II: Structure and
Smoothed Analysis. (Sept. 2018), 22 pages. arXiv:1809.03626.

[14] Alperen A. Ergür, Grigoris Paouris, and J. Maurice Rojas. 2019. Probabilistic
Condition Number Estimates for Real Polynomial Systems I: A Broader Family
of Distributions. Found. Comput. Math. 19, 1 (2019), 131ś157. https://doi.org/10.
1007/s10208-018-9380-5

[15] Gorav Jindal and Michael Sagraloff. 2017. Efficiently computing real roots of
sparse polynomials. In ISSAC’17ÐProceedings of the 2017 ACM International
Symposium on Symbolic and Algebraic Computation. ACM, New York, 229ś236.
https://doi.org/10.1145/3087604.3087652

[16] Askold G. Khovanskiı̆. 1991. Fewnomials. Translations of Mathematical Mono-
graphs, Vol. 88. American Mathematical Society, Providence, RI. viii+139 pages.
Trans. from the Russian by S. Zdravkovska.

[17] Pierre Lairez. 2017. A deterministic algorithm to compute approximate roots
of polynomial systems in polynomial average time. Found. Comput. Math. 17, 5
(2017), 1265ś1292. https://doi.org/10.1007/s10208-016-9319-7

[18] Galyna Livshyts, Grigoris Paouris, and Peter Pivovarov. 2016. On sharp bounds
for marginal densities of product measures. Israel Journal of Mathematics 216, 2
(2016), 877ś889. https://doi.org/10.1007/s11856-016-1431-5

[19] Gregorio Malajovich. 2019. Complexity of sparse polynomial solving: homotopy
on toric varieties and the condition metric. Found. Comput. Math. 19, 1 (2019),
1ś53. https://doi.org/10.1007/s10208-018-9375-2

[20] Gregorio Malajovich. 2020. Complexity of Sparse Polynomial Solving 2: Renor-
malization. (May 2020), 84 pages. arXiv:2005.01223.

[21] Gregorio Malajovich and J. Maurice Rojas. 2002. Polynomial systems and the
momentum map. In Foundations of computational mathematics (Hong Kong, 2000).
World Sci. Publ., River Edge, NJ, 251ś266.

[22] Gregorio Malajovich and J. Maurice Rojas. 2004. High probability analysis of the
condition number of sparse polynomial systems. Theoret. Comput. Sci. 315, 2-3
(2004), 524ś555. https://doi.org/10.1016/j.tcs.2004.01.006

[23] Simon Plantinga and Gert Vegter. 2004. Isotopic Approximation of Implicit
Curves and Surfaces. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing (SGP ’04). ACM, New York, NY, USA, 245ś254.
https://doi.org/10.1145/1057432.1057465

[24] J. Renegar. 1987. On the efficiency of Newton’s method in approximating all
zeros of a system of complex polynomials. Math. Oper. Res. 12, 1 (1987), 121ś148.
https://doi.org/10.1287/moor.12.1.121

[25] Mark Rudelson and Roman Vershynin. 2015. Small ball probabilities for linear
images of high-dimensional distributions. Int. Math. Res. Not. IMRN 19 (2015),
9594ś9617. https://doi.org/10.1093/imrn/rnu243

[26] Daniel A. Spielman and Shang-Hua Teng. 2002. Smoothed Analysis of Algorithms.
In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002).
Higher Ed. Press, Beijing, 597ś606.

[27] Josué Tonelli-Cueto. 2019. Condition and Homology in Semialgebraic Geometry.
Doctoral Thesis. Technische Universität Berlin, DepositOnce Repository. https:
//doi.org/10.14279/depositonce-9453

[28] Roman Vershynin. 2018. High-dimensional probability: An introduction with
applications in data science. Cambridge Series in Statistical and Probabilistic
Mathematics, Vol. 47. Cambridge University Press, Cambridge. https://doi.org/
10.1017/9781108231596

[29] Juan Xu and Chee Yap. 2019. Effective subdivision algorithm for isolating zeros
of real systems of equations, with complexity analysis. In ISSAC’19ÐProceedings
of the 2019 ACM International Symposium on Symbolic and Algebraic Computation.
ACM, New York, 355ś362.

441

https://doi.org/10.1137/17M1139941
https://doi.org/10.1007/s10208-019-09414-2
https://doi.org/10.1007/978-3-642-38896-5
https://doi.org/10.1007/978-3-642-38896-5
https://doi.org/10.1016/j.jsc.2016.01.007
https://doi.org/10.1016/j.jsc.2016.01.007
https://doi.org/10.1145/3087604.3087654
https://doi.org/10.1145/3326229.3326252
https://doi.org/10.1016/j.jco.2008.03.001
https://doi.org/10.1007/s10208-018-9380-5
https://doi.org/10.1007/s10208-018-9380-5
https://doi.org/10.1145/3087604.3087652
https://doi.org/10.1007/s10208-016-9319-7
https://doi.org/10.1007/s11856-016-1431-5
https://doi.org/10.1007/s10208-018-9375-2
https://doi.org/10.1016/j.tcs.2004.01.006
https://doi.org/10.1145/1057432.1057465
https://doi.org/10.1287/moor.12.1.121
https://doi.org/10.1093/imrn/rnu243
https://doi.org/10.14279/depositonce-9453
https://doi.org/10.14279/depositonce-9453
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108231596

An Extended GCD Algorithm for Parametric Univariate
Polynomials and Application to Parametric Smith Normal Form

Dingkang Wang
1KLMM, Academy of Mathematics
and Systems Science, Chinese

Academy of Sciences
Beijing 100190, China

2School of Mathematical Sciences,
University of Chinese Academy of

Sciences
Beijing, China

dwang@mmrc.iss.ac.cn

Hesong Wang
1KLMM, Academy of Mathematics
and Systems Science, Chinese

Academy of Sciences
Beijing 100190, China

2School of Mathematical Sciences,
University of Chinese Academy of

Sciences
Beijing, China

wanghesong2021@gmail.com

Fanghui Xiao
1KLMM, Academy of Mathematics
and Systems Science, Chinese

Academy of Sciences
Beijing 100190, China

2School of Mathematical Sciences,
University of Chinese Academy of

Sciences
Beijing, China

xiaofanghui@amss.ac.cn

ABSTRACT

An extended greatest common divisor (GCD) algorithm for paramet-

ric univariate polynomials is presented in this paper. This algorithm

computes not only the GCD of parametric univariate polynomials

in each constructible set but also the corresponding representa-

tion coefficients (or multipliers) for the GCD expressed as a linear

combination of these parametric univariate polynomials. The key

idea of our algorithm is that for non-parametric case the GCD of

arbitrary finite number of univariate polynomials can be obtained

by computing the minimal Gröbner basis of the ideal generated by

those polynomials. But instead of computing the Gröbner basis of

the ideal generated by those polynomials directly, we construct a

special module by adding the unit vectors which can record the

representation coefficients, then obtain the GCD and representa-

tion coefficients by computing a Gröbner basis of the module. This

method can be naturally generalized to the parametric case be-

cause of the comprehensive Gröbner systems for modules. As a

consequence, we obtain an extended GCD algorithm for parametric

univariate polynomials. More importantly, we apply the proposed

extended GCD algorithm to the computation of Smith normal form,

and give the first algorithm for reducing a univariate polynomial

matrix with parameters to its Smith normal form.

CCS CONCEPTS

·Computingmethodologies→ Symbolic and algebraic algo-

rithms; Algebraic algorithms;

KEYWORDS

Extended greatest common divisor, Parametric univariate polyno-

mial, Comprehensive Gröbner system, Smith normal form

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404019

ACM Reference Format:

Dingkang Wang, Hesong Wang, and Fanghui Xiao. 2020. An Extended

GCD Algorithm for Parametric Univariate Polynomials and Application to

Parametric Smith Normal Form. In International Symposium on Symbolic

and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404019

1 INTRODUCTION

The computation of polynomial greatest common divisor (GCD)

is one of the most primitive computations in computer algebra

with a wide range of applications that include simplifying rational

expressions, partial fraction expansions, canonical transformations,

mechanical geometry theorem proving, hybrid rational function

approximation, and decoder implementation for error-correction;

see [7, 10, 15, 17, 38]. It has been extensively studied and a crowd

of algorithms have been constructed [8, 16, 23, 37]. Among them

Euclidean algorithm which is the oldest algorithm for computing

the GCD of two univariate polynomials and its variants are the

most common algorithms. As an extension of polynomial GCD,

parametric GCDs came into being. That is, the parameters space is

decomposed into a finite number of constructible sets such that a

GCD of the parametric polynomials is given uniformly in each con-

structible set. Abramov and Kvashenko [1] proposed an algorithm

for computing the parametric GCD of two univariate polynomials

with one parameter using sub-resultant chain. Ayad [2] studied

the parametric GCD of several univariate polynomials with many

parameters and mainly introduced two algorithms to compute the

parametric GCD. Also with the idea of the comprehensive Gröb-

ner system (CGS) introduced by Weispfenning [36], Nagasaka [27]

extended the theories of Gianni and Trager [16], and Sasaki and

Suzuki [31] which compute the GCD by Gröbner bases method to

multivariate polynomials with parameters. Kapur et al. [19] pro-

posed another algorithm for computing the parametric GCD of

parametric multivariate polynomials. Besides, based on triangular

set methods, Chen and Maza [9], and Bächler et al. [3] used subre-

sultant chains and regular chains to compute parametric GCDs.

As for the extended polynomial GCD computation, of course it

is also an important problem in symbolic algebraic computation

and applications. To our knowledge, for non-parametric univariate

polynomials, there are two kinds of algorithms to compute the ex-

tended GCD. One is the well-known extended Euclidean algorithm,

442

https://doi.org/10.1145/3373207.3404019
https://doi.org/10.1145/3373207.3404019

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Dingkang Wang, Hesong Wang, and Fanghui Xiao

and the other is the algorithm for solving the extended GCD prob-

lem by means of Hankel matrix techniques which was proposed by

Sendra and Llovet [32]. However, there is currently no algorithm

for computing the extended parametric polynomial GCD.

In this paper, we present an algorithm for computing the ex-

tended GCD of parametric univariate polynomials. We begin to

present our key idea from non-parametric case, then extend the

method for computing the extended GCD of univariate polynomials

to the parametric case.

As we known, the GCD d of univariate polynomials f1, . . . , fs
can be obtained by computing the minimal Gröbner basis of the

ideal ⟨f1, . . . , fs ⟩. To get the representation coefficients (or multi-

pliers) a1, . . . ,as for the GCD expressed as a linear combination:

d = a1 f1 + · · · + as fs , we construct a module generated by s col-

umn vectors (f1, ϵ1)
T
, . . . , (fs , ϵs)

T , where {ϵ1, . . . , ϵs } is a stan-

dard basis for s-dimensional vector space. Under the proper posi-

tion over term (POT) monomial order, one computes a minimal

Gröbner basis of this module in which there exists only one el-

ement (d ′,a′1, . . . ,a
′
s) such that d ′ is nonzero. These are exactly

what we want, i.e. d = d ′ and ai = a′i for i = 1, . . . , s . Most impor-

tantly, using comprehensive Gröbner systems for modules which

presented by Nabeshima [26] as the generalization of comprehen-

sive Gröbner systems for polynomial rings studied byWeispfenning

[36], this method can be naturally extended to the parametric case.

Meanwhile, we also get a free basis for the syzygy module of given

polynomials f1, . . . , fs as a by-product.

In the rest of this paper, we will apply the proposed extended

GCD algorithm to the computation of the Smith normal form to-

gether with transforming matrices, which is different from the

method presented by Storjohann in [33] for computing the Smith

normal form and transforming matrices of an integer matrix using

the modulo N extended GCD algorithm. The reduction of univari-

ate polynomial matrices to the Smith normal form is very useful in

many areas of system theory, for instance, the analysis and minimal

realization of transfer function matrices of time-invariant linear dy-

namical systems [7, 30], and the existence of a solution to an integer

programming problem [4]. A constructive proof of the uniqueness

of the Smith form is given by Gantmakher [14]. This construction

gives a basic algorithm for Smith form reduction and many other

algorithms [6, 29] based on this have been proposed with the view

to improving efficiency.

An essential step in the calculation of the Smith normal form

is the calculation of the GCD and multipliers for each of its rows

and columns. In order to get the GCD of each column (row), the

algorithms in [6, 29] have to subtract multiples of the least de-

gree polynomial in the corresponding column (row) of matrices, at

any instant, from the others, until only one non-zero polynomial

remains. The proposed extended GCD algorithm in this paper, how-

ever, can give the GCD and multipliers directly. What’s more, our

algorithm can be extended to parametric case naturally, which is,

to our knowledge, the first algorithm for computing the Smith nor-

mal form of polynomial matrices with parameters. Also, it’s worth

mentioning that Corless et al. [11] presented an algorithm for com-

puting the Jordan canonical form of a matrix in Frobenius (rational)

canonical form where entries are polynomials with parameters.

This paper is organized as follows. In Section 2, we introduce

some notations and definitions. The main results is presented in

Section 3, where we start from the non-parametric case, giving the

method for computing the extended GCD of univariate polynomials

and extending this result to the parametric case. Consequently the

extended GCD algorithm for parametric univariate polynomials is

presented. In Section 4, we apply the proposed algorithm to the

computation of Smith normal form. We end with some concluding

remarks in Section 5.

2 PRELIMINARIES

In this section we will introduce some notations and definitions to

prepare for the discussion of this article.

Let k be a field, L be an algebraic closed field containing k , R =

k[x] be the polynomial ring in the variable x (or R = k[U][x] be the

parametric polynomial ring with the parametersU = {u1, . . . ,um }

and variable x). Generally, we use the letters f ,д,h for single poly-

nomials (or elements of the ring k[x]) and boldface letters e, f, g, h

for column vectors (that is, elements of the module k[x]s).

In practice, we frequently consider such a very important class

of modules as follows.

Definition 2.1. Let (f1, . . . , fs) be an ordered s−tuple with fi ∈ R.

The set of all (a1, . . . ,as)
T ∈ Rs such that a1 f1 + · · · + as fs = 0 is

an R-submodule of Rs , called the syzygy module of (f1, . . . , fs),

and denoted by Syz(f1, . . . , fs).

Unlike vector spaces, modules need not have any generating set

which is linearly independent. If a R-module have a module basis,

that is, a generating set that is R-linearly independent, it is given a

special name, free module.

For example, the R-module Rs is free. Let ϵ1 = (1, 0, · · · , 0)T ,

ϵ2 = (0, 1, · · · , 0)T , · · · , ϵs = (0, 0, · · · , 1)T , then {ϵ1, · · · , ϵs } is a

free basis of Rs .

Next, we introduce Gröbner bases and comprehensive Gröbner

systems for modules.

Let ≻ be a monomial order on k[x], and ≻s be a module order

by extending ≻ in a position over term (POT) fashion to k[x]s , that

is, for α, β ∈ N, xαϵi ≻s xβϵj if i > j, or i = j and xα ≻ xβ .

For f ∈ k[x], g ∈ k[x]s , the leading term, leading coefficient, and

leading monomial of f and g with respect to ≻ and ≻s respectively

are conveniently denoted by LT(f), LC(f), LM(f), LT(g), LC(g),

and LM(g).

The definition of Gröbner bases for submodules is as follows.

Definition 2.2. Let R = k[x] andM be a submodule of Rs , and let

≻s be a monomial order on k[x]s .

(1) We will denote by ⟨LT(M)⟩ the monomial submodule gener-

ated by the leading terms of all g ∈ M w.r.t. ≻s .

(2) A finite collectionG = {g1, . . . , gt } ⊂ M is called aGröbner

basis forM if ⟨LT(M)⟩ = ⟨LT(g1), · · · , LT(gt)⟩.

The following are about the definitions of minimal and reduced

Gröbner bases for modules.

Definition 2.3. Let G = {g1, . . . , gt } be a Gröbner basis forM ⊂

k[x]s with respect to a monomial order ≻s .

(1) G is said to be minimal, if LM(g) < ⟨LM(G\ {g})⟩ for all

g ∈ G.

443

Parametric Extended GCD Algorithm and Its Application to SNF ISSAC ’20, July 20–23, 2020, Kalamata, Greece

(2) G is said to be reduced, if LC(g) = 1 and no monomial of g

lies in ⟨LM(G\{g})⟩.

Now we introduce some definitions for parametric univariate

polynomials. For g ∈ k[U][x]s , LCx (g) denotes the leading coeffi-

cient of g with respect to the variable x under the order ≻s .

A specialization of k[U] is a homomorphism σ : k[U] → L.

In this paper, we only consider the specializations induced by the

elements in Lm . That is, for α = (α1, . . . ,αm) ∈ Lm , the induced

specialization σα is defined as

σα : f → f (α),

where f ∈ k[U]. Every specialization σ : k[U] → L extends canoni-

cally to a specializationσ :k[U][x]s → L[x]s by applyingσ coefficient-

wise.

For an ideal E ⊂ k[U], the variety defined by E in Lm is denoted

by V(E) = {α ∈ Lm | f (α) = 0 for all f ∈ E}. A = V(E) \ V(N) is

an algebraically constructible set, where E,N are ideals in k[U].

For parametric systems, the definitions of comprehensive Gröb-

ner systems and minimal comprehensive Gröbner systems for mod-

ules are given below.

Definition 2.4. Let F be a subset of k[U][x]s , S be a subset of Lm ,

G1, . . . ,Gl be subsets of k[U][x]s , and A1, . . . ,Al be algebraically

constructible subsets of Lm such that S =
⋃l
i=1Ai . A finite set

G = {(A1,G1), . . . , (Al ,Gl)} is called a comprehensive Gröbner

system (CGS) on S for F if σα (Gi) is a Gröbner basis of the sub-

module ⟨σα (F)⟩ ⊂ L[x]s for α ∈ Ai and i = 1, . . . , l . Each (Ai ,Gi)

is called a branch of G. In particular, if S = Lm , then G is called a

comprehensive Gröbner system for F .

Definition 2.5. A comprehensive Gröbner system G = {(A1,G1),

· · · , (Al ,Gl)} on S for M ⊂ k[U][x]s is said to be minimal (re-

duced) under some monomial order ≻s , if for each i = 1, . . . , l ,

(1) Ai , ∅, and furthermore, for each i, j = 1, · · · , l ,Ai ∩Aj = ∅

whenever i , j, and

(2) σα (Gi) is a minimal (reduced) Gröbner basis of ⟨σα (F)⟩ ⊂

L[x]m for α ∈ Ai , and

(3) for each g ∈ Gi , {0}, σα (LCx (g)) , 0 for α ∈ Ai .

Remark 1. For the computation of CGSs for modules, there ex-

ists an algorithm given by Nabeshima[26] which is based on the

results proposed by Suzuki and Sato [35]. Moreover, there exist various

algorithms to compute the minimal CGS for polynomial rings; see

[18, 22, 24, 25, 34, 35] and so on. These algorithms can be extended

to the case of modules. In this paper, we extend the KSW algorithm

for computing CGSs over polynomial rings presented by Kapur et al.

[20, 21] to the case of modules and then compute CGSs for modules

since the KSW algorithm generates fewer branches and is the most

efficient algorithm so far.

Finally, we introduce the GCD systems for parametric univariate

polynomials.

Definition 2.6. Let F = { f1, · · · , fs } be a subset of k[U][x], S be

a subset of Lm and d1, . . . ,dl be parametric univariate polynomials

in k[U][x], and A1, . . . ,Al be algebraically constructible subsets

of Lm such that S =
⋃l
i=1Ai and Ai ∩ Aj = ∅ for i , j. A finite

set D = {(A1,d1), . . . , (Al ,dl)} is called a GCD system on S for

F if σα (di) is a GCD of σα (F) ⊂ L[x] for α ∈ Ai and i = 1, . . . , l .

Moreover, for each di , 0, σα (LCx (di)) , 0 for α ∈ Ai . Each

(Ai ,di) is regarded as a branch of D. In particular, D is simply

called a GCD system for F if S = Lm .

3 THE PROPOSED ALGORITHM

As stated in the introduction, there is currently no algorithm for

computing extended GCD of parametric univariate polynomials.

In this section, we are devoted to giving an extended GCD algo-

rithm for parametric univariate polynomials. Since the algorithm

based on Gröbner bases is more suitable to be generalized to the

parametric case because of the CGS, by means of structural features

of the module and by constructing a special module we compute

the GCD and obtain an extended GCD algorithm based on the

computation of Gröbner bases for modules, which can be naturally

generalized to the parametric case.

Now, let us introduce what is to be stated in this section. We

first present the key idea for computing the extended GCD of any

finite number of non-parametric univariate polynomials, and then

generalize it to the parametric case. As a consequence, we propose

an algorithm based on CGSs for modules to compute the extended

GCD system for a set of parametric univariate polynomials.

3.1 Extended GCD for univariate polynomials

Let R = k[x] and f1, · · · , fs ∈ R. Assume d = GCD(f1, · · · , fs).

Since R is a principal ideal domain (PID), then there are a1, . . . ,as ∈

R such that a1 f1 + · · · + as fs = d , and we call a1, . . . ,as represen-

tation coefficients for the GCD (not unique).

As we all know, one can obtain a GCD d by computing a Gröbner

basis of the ideal generated by f1, · · · , fs . Nevertheless, in many

case we have to solve the problem: how can we get a1, . . . ,as and

d simultaneously? Next, we share our approach.

Before presenting the main theorem, there are several lemmas

to be rendered. For the first lemma below, we can refer to [13].

Lemma 3.1. Let R = k[x] and suppose that f1, . . . , fs ∈ R are

polynomials that are not all zero. Then Syz(f1, . . . , fs) is a free module

with s − 1 generators.

Therefore, the syzygy moduleM over R = k[x] as a free module

has two sets of bases: the free basis and the Gröbner basis under

some monomial order, denoted by F and G respectively. Generally

speaking, |G | ≥ |F |, where ł| · |” represents the number of elements

in the set. The proof is as follows.

Lemma 3.2. Let M ⊂ Rs be a free R-module, F and G be a free

basis and a minimal Gröbner basis under some monomial order ≻s
forM . Then |G | ≥ |F |.

Here we construct a moduleM and let’s take a look at some of

the properties of this module, which is from Exercise 15 of Chapter

5, Section 3 in [12].

Proposition 3.3. Let R′
= k[x1, . . . , xn] be a polynomial ring

with a monomial order ≻, and for any integer s ≥ 1, we denote

the standard basis of R′s+1 by e1, e2, . . . , es+1. Let ≻s+1 denote the

POT extension of ≻ to R′s+1 with e1 ≻ ei for 2 ≤ i ≤ s + 1. Given

f1, . . . , fs ∈ R′, without loss of generality, assume that f1, . . . , fs are

not all zero. Then consider the submoduleM ⊂ R′s+1 generated by

mi = fie1 + ei+1 = (fi , 0, · · · , 0, 1, 0, · · · , 0)
T
, i = 1, · · · , s .

444

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Dingkang Wang, Hesong Wang, and Fanghui Xiao

LetG be a minimal Gröbner basis ofM with respect to ≻s+1, then the

following conclusions hold:

(1) If (д,h1, . . . ,hs)
T ∈ M , then д = h1 f1 + · · · + hs fs .

(2) M ∩ ({0} × R′s) = {0} × Syz(f1, . . . , fs).

(3) The set G ′
= {д ∈ R′ | д , 0 ∧ ∃ h1, . . . ,hs ∈ R′ s .t .

(д,h1, . . . ,hs)
T ∈ G} is a minimal Gröbner basis with respect

to ≻ for the ideal ⟨f1, . . . , fs ⟩.

(4) The setG ′′ defined by {0}×G ′′
= G∩({0}×R′s) is a minimal

Gröbner basis with respect to ≻s being the restriction of ≻s+1
to R′s for the syzygy module Syz(f1, . . . , fs).

Proof. According to the construction ofM , (1) and (2) are obvi-

ous. Besides, (3) and (4) are also obtained by the definition of G ′,

G ′′, and Gröbner bases for modules w.r.t. ≻s+1. □

In particular, for the case of univariate, there are better results.

Theorem 3.4. With the above notations. If R′
= R = k[x] is a

univariate polynomial ring, then |G ′ | = 1 and |G ′′ | = s−1. Therefore,

|G | = s . Note that s is the number of these given polynomials.

Proof. First, it follows from (3) of Proposition 3.3 and the uni-

variate polynomial ring R′ that |G ′ | = 1.

Nowwe prove that |G ′′ | = s−1. By Lemma 3.1 and Lemma 3.2, we

have |G ′′ | ≥ s −1. In the following all we need to do is to prove that

|G ′′ | > s − 1 is impossible. Let |G ′′ | = t and G ′′
= {g′′1 , . . . , g

′′
t }

where g′′1 ≻s · · · ≻s g′′t . Suppose that t > s − 1, i.e. t ≥ s . By

Proposition 3.3 we know that G ′′ is the minimal Gröbner basis for

Syz(f1, . . . , fs), hence g
′′
t must be in the form: g′′t = (0, · · · , 0,д)T

where д ∈ k[x] and д , 0 because R′ is a univariate polynomial

ring. This contradicts g′′t ∈ Syz(f1, . . . , fs), so |G ′′ | = s − 1. □

Combining Lemma 3.1 and Theorem 3.4, it is easy to know that

G ′′ is a free basis for the syzygy module Syz(f1, . . . , fs) where

f1, . . . , fs ∈ k[x].

Theorem 3.5. As above, assume G = {g1, . . . , gs } is a minimal

Gröbner basis forM ⊂ k[x]s+1 under the order ≻s+1 with e1 ≻ ei for

2 ≤ i ≤ s + 1, and g1 = (d,u11, . . . ,u1s)
T , gj = (0,uj1, . . . ,ujs)

T ,
2 ≤ j ≤ s . Then d is a GCD of f1, . . . , fs and u11, . . . ,u1s are the cor-
responding representation coefficients for d as a linear combination of
f1, . . . , fs . Further, the matrixU =

(
ui j

)
s×s ∈ k[x]s×s is unimodular,

that is, det(U) ∈ k \ {0}, and Uf = d, where

U =

©«

u11 . . . u1s
u21 . . . u2s

.

.

. . . .

.

.

.

us1 . . . uss

ª®®®®¬
, f =

©«

f1
f2

.

.

.

fs

ª®®®®¬
, d =

©«

d
0

.

.

.

0

ª®®®®¬
.

Proof. According to Proposition 3.3 and Theorem 3.4,G ′
= {d}

is a Gröbner basis of the ideal ⟨f1, . . . , fs ⟩, then d is a GCD of
f1, . . . , fs and u11, . . . ,u1s are the corresponding representation
coefficients. Moreover, by the construction of the matrix U, it’s
obvious that Uf = d. Now let’s prove that U is a unimodular ma-
trix. Since G = {g1, . . . , gs } is the minimal Gröbner basis for M ,
hence these generators m1, . . . ,ms of M can be represented by
g1, . . . , gs . In other words, there exists matrix V ∈ k[x]s×s such

that (m1, . . . ,ms)
T
= V(g1, . . . , gs)

T . To make things clearer, let’s

write out (m1, . . . ,ms)
T and (g1, . . . , gs)

T concretely.

©«

mT1
mT2
.

.

.

mTs

ª®®®®®¬
=

©«

f1 1 0 . . . 0
f2 0 1 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

fs 0 0 . . . 1

ª®®®®¬
,

©«

gT1
gT2
.

.

.

gTs

ª®®®®®¬
=

©«

d u11 . . . u1s
0 u21 . . . u2s

.

.

.

.

.

.

.

.

.

.

.

.

0 us1 . . . uss

ª®®®®¬
.

By (m1, . . . ,ms)
T
= V(g1, . . . , gs)

T , we have Es = VU, where Es
is the s × s unit matrix. So U is unimodular. □

Based on the results of Theorem 3.4 and 3.5, we can design an

algorithm to compute the GCD of f1, . . . , fs and unimodular matrix

U, where the first rowu11, . . . ,u1s ofU are the representation coeffi-

cients. That is, we only need to construct the moduleM by inputting

polynomials f1, . . . , fs and then compute a minimal Gröbner basis

forM with respect to ≻s+1.

3.2 Extended GCD systems for parametric

univariate polynomials

Nowwe are ready to generalize the above method to the parametric

case by means of the CGS for modules, and get the following result.

Theorem 3.6. Given f1, . . . , fs ∈ k[U][x] and a subset S ⊂ Lm .

Let G = {(Ai ,Gi)}
l
i=1 be a minimal comprehensive Gröbner system

of the module M = ⟨f1e1 + e2, . . . , fse1 + es+1⟩ ⊂ k[U][x]s+1 on

S with respect to an order ≻s+1 extended from ≻ in a position over

term fashion with e1 ≻ ei for 2 ≤ i ≤ s + 1. For each branch (Ai ,Gi)

where Gi , {0} we have the following results.

(1) Let G ′
i = {д ∈ k[U][x]| д , 0 ∧ ∃ h1, . . . ,hs ∈ k[U][x] s .t .

(д,h1, . . . ,hs)
T ∈ Gi }, then σα (G

′
i) is a minimal Gröbner

basis of the ideal ⟨σα (f1), . . . ,σα (fs)⟩ with respect to ≻ for

any α ∈ Ai , and |G ′
i | = 1.

(2) LetG ′′
i be a set defined by {0} ×G ′′

i = Gi ∩ ({0} × k[U][x]s),

then σα (G
′′
i) is a minimal Gröbner basis of the syzygy module

Syz(σα (f1), . . . ,σα (fs)) with respect to ≻s for any α ∈ Ai ,

and |G ′′
i | = s − 1. Thus, σα (G

′′
i) is a free basis of the syzygy

module Syz(σα (f1), . . . ,σα (fs)).

(3) Assume Gi = {g1, · · · , gs } and g1 = (di ,u11, · · · ,u1s)
T ,

gj = (0,uj1, · · · ,ujs)
T for 2 ≤ j ≤ s . Then σα (di) is a GCD

of σα (f1), . . . ,σα (fs) and σα (u11), . . . ,σα (u1s) are the rep-
resentation coefficients for σα (di) as a linear combination
of σα (f1), . . . ,σα (fs). Moreover, assume the matrix Ui =(
uk j

)
s×s , then σα (Ui)σα (f) = σα (di) and σα (Ui) is unimod-

ular for any α ∈ Ai , where

Ui =

©«

u11 . . . u1s
u21 . . . u2s

.

.

. . . .

.

.

.

us1 . . . uss

ª®®®®¬
, f =

©«

f1
f2

.

.

.

fs

ª®®®®¬
, di =

©«

di
0

.

.

.

0

ª®®®®¬
.

Particularly, for the branch (Ai ,Gi) where Gi = {0}, σα (di) = 0

and σα (Ui) = Es for α ∈ Ai . In this case, the corresponding syzygy

module Syz(σα (f1), . . . ,σα (fs)) is k[x]
s .

Proof. Since G is a minimal comprehensive Gröbner system, in

each branch (Ai ,Gi) where Gi , {0}, the set σα (Gi) is a minimal

Gröbner basis of σα (M) for any α ∈ Ai . Besides, there is no ele-

ment in Gi specializing to 0 because the leading coefficients of all

elements inGi are non-zero under specialization. Thus, it is easy

to derive the results from Proposition 3.3, Theorem 3.4 and 3.5. □

3.3 Parametric extended GCD algorithm

Based on Theorem 3.6, we are ready to give an algorithm to compute

the extended GCD system for parametric univariate polynomials.

Theorem 3.7. Algorithm 1 works correctly and terminates.

445

Parametric Extended GCD Algorithm and Its Application to SNF ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 1: Parametric extended GCD algorithm

Input : f1, . . . , fs ∈ k[U][x], a constructible set A ⊂ Lm ,

and a POT order ≻s+1 with e1 ≻ ei , i ≥ 2.

Output :an extended GCD system {(Ai ,Ui ,di)
l
i=1}, where

GCD(σα (f1), . . . ,σα (fs) = σα (di) and σα (Ui) is

unimodular for any α ∈ Ai .

1 begin

2 compute a minimal CGS {(Ai ,Gi)
l
i=1} for the module

M = ⟨f1e1 + e2, . . . , fse1 + es+1⟩ w.r.t. ≻s+1;

3 for i from 1 to l do

4 Gi := {u0e1 +
∑s
j=1 u1j ej+1,

∑s
j=1 u2j ej+1, . . . ,

∑s
j=1 us j ej+1 };

5 Ui :=
(
uk j

)
s×s , 1 ≤ k, j ≤ s;

6 di := u0;

7 return {(Ai ,Ui ,di)}
l
i=1;

Proof. The correctness of Algorithm 1 directly follows from

Theorem 3.6, and the termination of Algorithm 1 fully depends on

that of the algorithm for computing CGSs of the moduleM which

is obviously derived from the termination of KSW algorithm as

mentioned in Remark 1. □

Remark 2. For each (Ai ,Ui ,di), the components of the first row

vector in Ui are the representation coefficients of di .

We use the following simple example to illustrate the steps in

the above proposed algorithm.

Example 3.8. Let f1, f2, f3 ∈ C[U][x] be as follows:

f1 = (x − a)2, f2 = (x − b)2, f3 = x(x − b),

whereU = {a,b} and ≻ is a lexicographic order.

Step 1: we compute a minimal CGS G for the module M =

⟨f1e1 + e2, f2e1 + e3, f3e1 + e4⟩ ⊂ C[a,b][x]4 with respect to ≻4

where e1 ≻ e2 ≻ e3 ≻ e4, and the result is shown in Table 1 where

Table 1: a minimal CGS G for the moduleM

No. Ai Gi

1 C
2\V(b(b − a)) G1

2 V(b)\V(a2) G2

3 V(a − b)\V(b) G3

4 V(a,b) G4

G1 ={ b(a − b)2e1 + be2 + (−2a + b)e3 + (2a − 2b)e4,

(bx − b2)e2 + a
2e3 + (−bx − a2 + 2ab)e4, xe3 + (b − x)e4};

G2 ={ a
3e1 + (a + 2x)e2 + (3a − 2x)e4, x

2e2 − (a2 − 2ax + x2)e4,

e3 − e4};

G3 ={ (−b
2
+ bx)e1 − e3 + e4, e2 − e3, xe3 + (b − x)e4};

G4 ={ x
2e1 + e4, e2 − e4, e3 − e4}.

Step 2: according to Gi in the minimal CGS for moduleM , we

construct Ui and di , where

d1 = b(a − b)2, d2 = a3, d3 = −b2 + bx, d4 = x2.

U1 =
©«

b −2a + b 2a − 2b
bx − b2 a2 −bx − a2 + 2ab

0 x b − x

ª®¬
, U2 =

©«
a + 2x 0 3a − 2x
x2 0 −(a − x)2

0 1 −1

ª®¬
,

U3 =

(
0 −1 1
1 −1 0
0 x b − x

)
, U4 =

(
0 0 1
1 0 −1
0 1 −1

)
.

In summary, parametric GCDs are expressed as the linear repre-

sentations of f1, f2, f3 as follows.

i f a , b and b , 0, b f1 + (−2a + b)f2 + (2a − 2b)f3 = b(a − b)2;

i f a , b and b = 0, (a + 2x)f1 + 0 · f2 + (3a − 2x)f3 = a3;

i f a = b and b , 0, 0 · f1 − 1 · f2 + 1 · f3 = −b2 + bx ;

i f a = b and b = 0, 0 · f1 + 0 · f2 + 1 · f3 = x2.

4 APPLICATION TO SMITH NORMAL FORM

4.1 Notations and definitions

In this subsection, we give some definitions and notations related

to the Smith normal form. A matrix is called non-parametric (para-

metric) univariate polynomial matrix if its entries belong to k[x]

(k[U][x]).

Definition 4.1. Let D be an s × t matrix over k[x] such that

(1) all (i, j)-entries in D are zero for i , j , that is, D is a diagonal

matrix;

(2) each (i, i)−entry di in D is either monic or zero;

(3) di | di+1 for 1 ≤ i < min{s, t}.

Then D = diaд(d1, . . . ,dmin {s ,t }) is said to be in Smith normal

form, where "diag" stands for the diagonal matrix.

In addition, we give the following theorem appearing in [28]

which ensures the existence of the Smith normal form for any

univariate polynomial matrix B over k[x].

Theorem 4.2. Let B be an s × t matrix over k[x], then there is a

sequence of elementary operations over k[x] which changes B into

S(B) that is in Smith normal form, called the Smith normal form of

B.

That is, there exist unimodular matrices U ∈ k[x]s×s , V ∈

k[x]t×t such that UBV = S(B).

4.2 The Smith normal form of parametric

univariate polynomial matrix

For the non-parametric case, as stated in Theorem 4.2 any univari-

ate polynomial matrix can be reduced to its Smith normal form

under the elementary operations. As for the the parametric case,

corresponding to each algebraically constructible subset Ai ⊂ Lm ,

the parametric univariate polynomials matrix under the special-

ization σα can be reduced to its Smith normal form by elemen-

tary operations, i.e. there exist parametric unimodular matrices

U ∈ k[U][x]s×s , V ∈ k[U][x]t×t such that σα (U)σα (B)σα (V) =

S(σα (B)) for α ∈ Ai . Now we discuss how to reduce a univariate

polynomials matrix to its Smith normal form.

In the above section, we have proposed an extended GCD algo-

rithm which not only can output the GCD, but also gives a unimod-

ular matrix U. In particular, U(f1, . . . , fs)
T
= (d, 0, . . . , 0), where

f1, . . . , fs are given polynomials and d is the GCD of these poly-

nomials. Then, we can apply the extended GCD algorithm to the

calculation of the Smith normal form, and the actual practice is as

follows.

446

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Dingkang Wang, Hesong Wang, and Fanghui Xiao

Given B ∈ k[x]s×t (without loss of generality, assume s ≤ t), we

first call the extended GCD algorithm on the first column of B and

obtain the unimodular matrix U ∈ k[x]s×s . Then U acts on B, and

the first column of UB are zeros except for the first element. Next,

do the same operation for the first row of the UB, we still get a

unimodular matrix V ∈ k[x]t×t such that the first row in UBV are

zeros except for the first element, but note that the first column are

not necessarily zeros. So we repeatedly perform the above operation

in order to get a matrix in which the first column and row are zeros

except for the (1,1)-component. This is the first step. If all other

elements in the new obtained matrix can be divisible by the (1,1)-

element, then we only need to conduct the same step as the first

step on the lower right submatrix of this matrix. Otherwise, we

need an extra step to ensure the divisibility relation. Finally we will

get the Smith normal form of B. Most importantly, these can be

naturally extended to the parametric case.

Here we will give the algorithm for the parametric case. Before

discussing the algorithm, we would like to introduce some useful

propositions which are related to the termination of the algorithm.

As known to all, currently the algorithms are all computing the

minimal CGS, and the minimal CGS for modules over parametric

multivariate polynomial rings can’t always be reduced to the re-

duced CGS. Here we show that for univariate polynomial rings it

can be done.

Proposition 4.3. A minimal CGS G = {(A1,G1), . . . , (Al ,Gl)}

for module M ⊂ k[U][x]s with respect to the POT order ≻s can be

reduced to a reduced CGS.

Proof. By Definition 2.5, we only need to prove that for each

branch (Ak ,Gk) of G where k = 1, . . . , l , the parametric minimal

Gröbner basis Gk forM can be reduced to the parametric reduced

Gröbner basis on Ak . For any gi, gj ∈ Gk , suppose that LM(gi) =

д1ϵi and LM(gj) = дϵj . Without loss of generality, one can assume

ϵi ≻ ϵj and the j-th component of gi is f , then the i−th component

of gj must be zero. If f is reduced w.r.t. д (i.e. no monomial of f is

divisible by LM(д)), there is nothing to do. Otherwise do pseudo

division to f by д, then one get hf = qд+r where h is the power of

the leading coefficient of д w.r.t. the main variable x and σα (h) , 0

for any α ∈ Ak . Thus, hgi − qgj = g′i where g
′
i is reduced w.r.t gj.

Replacing gi with g′i and repeating the above process. Moreover,

according to the definition of minimal CGS, σα (LCx (g)) , 0 for

any g ∈ Gk and α ∈ Ak , then we can divide the coefficient such

that σα (LCx (g)) = 1, Thus, σα (Gk) is reduced. This proves the

proposition. □

By the above proposition, we can get a new version of Algorithm

1 by computing a reduced CGS instead of a minimal CGS for M ,

denoted by Algorithm 1∗.

Proposition 4.4. Given f1, · · · , fs ∈ k[U][x], a constructible set

A ⊂ Lm and a POT order ≻s+1 with e1 ≻ es+1 ≻ · · · ≻ e2. By Algo-

rithm 1∗ we will get a reduced CGS {(Ai ,Gi)}
l
i=1 and a GCD system

{(Ai ,Ui ,di)}
l
i=1, whereGi = {g1, . . . , gs }, g1 = (di ,u11, · · · ,u1s)

T ,

gj = (0,uj1, · · · ,ujs)
T for 2 ≤ j ≤ s . Then for any α ∈ Ai , under

the specialization σα , ui = (u11, . . . ,u1s)
T is the minimal element

inMi = {(h1, . . . ,hs)
T |h1 f1 + · · · + hs fs = di } under ≻s being the

restriction of ≻s+1 on k[x]
s .

Proof. Assume that under σα , ui is not minimal, then there

exists u′i ∈ Mi and σα (ui) ≻s σα (u
′
i). By the definition of Mi , we

have σα (ui − u′i) ∈ Syz(σα (f1), . . . ,σα (fs)). Thus LM(σα (ui)) =

LM(σα (ui −u
′
i)) ∈ LM(Syz(σα (f1), . . . ,σα (fs))). By Theorem 3.6, it

implies that some term of σα (g1) is divisible by one of LM(σα (g2)),

. . . , LM(σα (gs)), which contradicts that σα (Gi) is reduced. □

Now we give the algorithm for computing the Smith normal

form of univariate polynomial matrices with parameters, and prove

the termination of the algorithm.

Algorithm 2: Parametric Smith normal form algorithm

Input :B ∈ k[U][x]s×t , a constructible set A ⊂ Lm , and

a POT order ≻s+1 with e1 ≻ es+1 ≻ · · · ≻ e2.

Output : {[Ai ,Bi ,Ui ,Vi]}
l
i=1, where σα (Ui)σα (B)σα (Vi)

= σα (Bi) and σα (Bi) is in Smith normal form

for any α ∈ Ai .

1 begin

2 G := {}; G1 := {[A,B, Es , Et ,B]}; d := 0;

3 while G1 is not empty do

4 [A0,B0,U0,V0, S0]:=G1[1]; G1 := G1 \ {G1[1]};

5 H1 := Reduce2Zero(A0, S0);

6 for [Ai ,Bi ,Ui ,Vi] in H1 do

7 H2 := Divisible(Ai ,Bi);

8 for [Aj ,Bj ,Uj ,Vj] in H2 do

9 U1 := diag(Ed ,UjUi);

10 V1 := diag(Ed ,ViVj);

11 B1 := U1B0V1; U := U1U0; V := V0V1;

12 if d = s − 1 then

13 G := G ∪ {[Aj ,B1,U,V]};

14 else

15 d := d + 1;

16 G1 := G1 ∪ {[Aj , B1, U, V, SubMatrix(B1, d)]};

17 return G;

In Algorithm 2, Reduce2Zero(A0, S0) stands for repeatedly call-

ing Algorithm 1∗ on the first column and row of the matrix (ma-

trices) for each algebraically constructible subset and the details

is as follows. Divisible(Ai ,Bi) is used to check whether all other

elements in Bi can be divisible by (1,1)-element on Ai , if not, we

need the extra step: adding the corresponding column in which the

element which isn’t divisible by (1,1)-element of Bi is to the first

column of Bi and getting B
′
i , then performing Reduce2Zero(Ai ,B

′
i).

SubMatrix(B1, d) denotes the lower right submatrix of B1 which

consists of the last s − d rows and t − d columns.

In Algorithm 3, CEGCD(A,B) and REGCD(A,B) stand for call-

ing Algorithm 1∗ on the first column and row of matrix B on the

constructible set A, respectively. IsZero(Ai j ,Bi j) is a subroutine to

determine if the first column and row of Bi j are zeros except for

the (1,1)-element on algebraically constructible subset Ai j .

Proposition 4.5. Algorithm 2 terminates within finite steps.

Proof. According to the design of the algorithm and above ex-

plain, we only need to prove that Algorithm 3 (Reduce2Zero(A,B))

terminates within finite steps. Since the original (1,1)-element of

univariate polynomial matrix B has a definite degree and since

447

Parametric Extended GCD Algorithm and Its Application to SNF ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 3: Reduce2Zero

Input :B ∈ k[U][x]s×t , a constructible set A ⊂ Lm , and

a POT order ≻s+1 with e1 ≻ es+1 ≻ · · · ≻ e2.

Output : {[Ai ,Bi ,Ui ,Vi]}
l
i=1, where σα (Ui)σα (B)σα (Vi)

= σα (Bi) for any α ∈ Ai and the first column

and row of Bi are zeros except for the (1,1)-

element on Ai .

1 begin

2 G := {}; G1 := {[A,B, Es , Et]};

3 while G1 is not empty do

4 [A0,B0,U0,V0] := G1[1]; G1 := G1 \ {G1[1]};

5 H1 := CEGCD(A0,B0);

6 for [Ai ,Ui ,di] in H1 do

7 Bi := UiB0; Ui := UiU0;

8 H2 := REGCD(Ai ,Bi);

9 for [Ai j ,Vi j ,di j] in H2 do

10 Bi j := BiV
T
i j
; Vi j := V0V

T
i j
;

11 if IsZero(Ai j ,Bi j) then

12 G := G ∪ {[Ai j ,Bi j ,Ui ,Vi j]};

13 else

14 G1 := G1 ∪ {[Ai j ,Bi j ,Ui ,Vi j]};

15 return G;

the process of reducing the degree for the (1,1)-element cannot

be continued indefinitely, after a finite times of loops the degree

of (1,1)-element w.r.t. main variable x is stable and assume at the

moment we get Bi of which the first column of are zeros except for

the (1,1)-element on Ai . Then H2 := REGCD(Ai,Bi), and we get a

unimodular matrix VTi j which can reduce the first row of Bi to be

zeros on new algebraically constructible subset Ai j . Since under

the specialization, the degree of (b11) is stable, b11 is the GCD of

the first row elements of Bi . We claim that VTi j has the following

form:

VTi j =

v11 v12 . . . v1t
0 v11 . . . v2t
.
.
.

.

.

.

.

.

.

.

.

.

0 vt2 . . . vt t

.

Otherwise, assume that for some α ∈ Ai j , there exists at least one

σα (vl1) , 0, 2 ≤ l ≤ t . Obviously,σα (v1) = (σα (v11), . . . ,σα (vt1))
T

≻t (σα (v11), 0, . . . , 0)
T under the POT order ≻t being the restric-

tion of ≻t+1 with e1 ≻ et+1 ≻ · · · ≻ e2 on k[x]
t , which contradicts

that σα (v1) should be minimal by Proposition 4.4.

Thus, Bi j = BiV
T
i j
satisfies that the first column and row are

zeros except for the (1,1)-element on Ai j . Consequently, Algorithm

3 terminates. □

We use a simple example to illustrate Algorithm 2.

Example 4.6. Given a matrix B ∈ C[a][x]3×3 and a constructible

set A = C as follows:

B =

a − x 2x 0

0 0 x

x2 + 1 x3 + a + x −x2

.

Step 1: perform the routine Reduce2Zero(A,B), that is, repeat-

edly call Algorithm 1∗ on the first column and row of the matrix,

then we get the matrices in which the first column and row are

zeros except for the (1,1)-component.

Table 2: Output of Reduce2Zero(A,B)

No. Ai Bi Ui Vi

1 C\V(a2 + 1) B1 U1 V1

2 V(a2 + 1) B2 U2 V2

where (UiBVi = Bi , i = 1, 2.)

B1 =

1 0 0
0 x (a2 + 1) 0
0 (a2 + 1)(a − x)x2 b133

, B2 =

1 0 0
0 x 0
0 −2x2 b233

,

U1 =

[
a + x 0 1
u121 1 u123
u131 0 u133

]
, U2 =

−1 0 0
0 1 0

ax3 + 2ax2 + ax + 2a − 1 0 2

,

V1 =

−4x2 + 1 x2 v113

2ax − a + x 0 a2 + 1
v131 a2 + 1 0

, V2 =

[
a 0 2x
a/2 0 −a + x
0 1 0

]
,

b133 = − (a2 + 1)(ax3 − x4 − 2x3 + a2 − x2 − 2x),

b233 = − 2(a − x)(x3 + 2ax + 2x2 + a + x),

u121 = − x(a + x)(2ax2 + 3ax + x2 + 2a + 2x − 3),

u123 = − 2ax3 − 3ax2 − x3 − 2ax − 2x2 + 3x,

u131 =(a
2
+ 1)(−4ax3 − 4x4 + 2a2x − 2x3 − a2 + x2 + 1),

u133 =(a
2
+ 1)(−4x3 + 2ax − 2x2 − a + x),

v113 = − x3 − 2ax − 2x2 − a − x,

v131 =2ax
2
+ 3ax + x2 + 2a + 2x − 3.

Step 2: perform the subroutine Divisible(Ai ,Bi) to check if all

elements in Bi are divisible by the (1,1)-element.

Obviously, B1 and B2 satisfy the divisibility relation between the

(1,1)-element and other elements.

Step 3: repeat the Step 1 and Step 2 on the lower right submatri-

ces of B1 and B2. We obtain the following, where A′
1 ∪A′

2 = A1, B
′
1

and B′
2 come from SubMatrix(B1, 1).

Table 3: Output of SubMatrix(B1, 1) and SubMatrix(B2, 1)

No. A′
i B′

i U′
i V′

i

1 C\V(a(a2 + 1)) B′
1 U′

1 V′
1

2 V(a)\V(a2 + 1) B′
2 U′

2 V′
2

3 V(a2 + 1) B′
3 U′

3 V′
3

B′1 =

[
1 0
0 b′122

]
, B′2 =

[
x 0
0 b′222

]
, B′3 =

[
x 0
0 b′322

]
,

U′
1 =

[
u′111 −1/(a4 + a2)

u′121 x/(a4 + a2)

]
, U′

2 =

[
1 0

u′221 1/(a4 + a2)

]
, U′

3 =

[
1 0
x 1/2

]
,

V′1 =

[
1 v′

112
1 v′

122

]
, V′2 =

[
1 0
1 1

]
, V′3 =

[
1 0
x 1/2

]
,

448

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Dingkang Wang, Hesong Wang, and Fanghui Xiao

b ′122 = − x(ax3 − x4 − 2x3 + a2 − x2 − 2x),

b ′222 = − x(ax2 − x3 − 2x2 − x − 2),

b ′322 =(x − a)(x3 + 2ax + 2x2 + a + x),

u ′111 =(−ax
2
+ x3 + ax + x2 + x + 2)/(a4 + a2),

u ′121 =(ax
3 − x4 − ax2 − x3 + a2 − x2 − 2x)/(a4 + a2),

u ′221 =(ax
2 − x3 − ax − x2 − x − 2)/(a4 + a2),

v ′
112 = − ax3 + x4 + 2x3 − a2 + x2 + 2x,

v ′
122 = − ax3 + x4 + 2x3 + x2 + 2x .

Step 4: recover the Smith normal forms. Where

Table 4: recover Smith normal forms

No. A′′
i B′′

i U′′
i V′′

i

1 C\V(a(a2 + 1)) B′′
1 U′′

1 V′′
1

2 V(a)\V(a2 + 1) B′′
2 U′′

2 V′′
2

3 V(a2 + 1) B′′
3 U′′

3 V′′
3

U′′
1 =

[
1 0
0 U′

1

]
U1, U′′

2 =

[
1 0
0 U′

2

]
U1, U′′

3 =

[
1 0
0 U′

3

]
U2,

V′′1 = V1

[
1 0
0 V′1

]
, V′′2 = V1

[
1 0
0 V′2

]
, V′′3 = V2

[
1 0
0 V′3

]
,

B′′1 =

[
1 0 0
0 1 0
0 0 b′′133

]
, B′′2 =

[
1 0 0
0 x 0
0 0 b′′233

]
, B′′3 =

[
1 0 0
0 1 0
0 0 b′′333

]
,

b ′′133 =x
5
+ (−a + 2)x4 + x3 + 2x2 − a2x,

b ′′233 =x
4
+ 2x3 + x2 + 2x,

b ′′333 = − 2a2x2 − a2x + x3 + (−a + 2)x4 + x5.

5 CONCLUDING REMARKS

An algorithm for computing extended GCD systems of parametric

univariate polynomials has been proposed. We can see that this

algorithm simultaneously give the GCD and the representation

coefficients by computing the CGS of a constructed module, which

adds the unit vectors to record the representation coefficients (as

mentioned in [5]). Meanwhile, this CGS for M also gives a set of

free bases for the parametric syzygy module of input polynomials.

It is worth noting that we get a stronger result: the unimodular

matrixU. Therefore, we can apply the proposed extended GCD algo-

rithm to the computation of the Smith normal form and present the

first algorithm for computing the Smith normal form of univariate

polynomial matrices with parameters. In addition, the proposed

algorithms have been implemented on the computer algebra sys-

tem Maple, and the codes and examples are available on the web:

http://www.mmrc.iss.ac.cn/~dwang/software.html.

ACKNOWLEDGMENTS

This research was supported in part by CAS Project QYZDJ-SSW-

SYS022.

REFERENCES
[1] S.A. Abramov and K.Y. Kvashenko. 1993. On the Greatest Common Divisor

of Polynomials which Depend on a Parameter. In Proceedings of the 1993 ACM
International Symposium on Symbolic and Algebraic Computation. 152ś156.

[2] A. Ayad. 2010. Complexity of algorithms for computing greatest common divisors
of parametric univariate polynomials. International Journal of Algebra 4 (2010),
173ś188.

[3] T. Bächler, V. Gerdt, M. Lange-Hegermann, and D. Robertz. 2012. Algorithmic
Thomas decomposition of algebraic and differential systems. Journal of Symbolic
Computation 47, 10 (2012), 1233ś1266.

[4] S. Bamett. 1971. Matrices in control theory. Van Norstrand Reinhold (1971).
[5] B. Beckermann, G. Labahn, and G. Villard. 1999. Shifted normal forms of polyno-

mial matrices. In Proceedings of ISSAC’ 1999. 189ś196.
[6] G. Bradley. 1971. Algorithms for Hermite and Smith normal matrices and linear

diophantine equations. Math. Comp. 25, 116 (1971), 897ś907.
[7] R. P. Brent and H. T. Kung. 1984. Systolic VLSI Arrays for Polynomial GCD

Computation. IEEE Trans. Comput. 100, 8 (1984), 731ś736.
[8] W.S. Brown. 1971. On Euclid’s Algorithm And The Computation Of Polynomial

Greatest Common Divisors. J. ACM 18, 4 (1971), 478ś504.
[9] C. Chen and M. Maza. 2012. Algorithms for computing triangular decomposition

of polynomial systems. Journal of Symbolic Computation 47, 6 (2012), 610ś642.
[10] S.C. Chou. 1988. Mechanical geometry theorem proving. Vol. 41. Springer Science

and Business Media.
[11] R.M. Corless, M.M. Maza, and S.E. Thornton. 2017. Jordan Canonical Form with

Parameters from Frobenius Form with Parameters. In International Conference
on Mathematical Aspects of Computer and Information Sciences. 179ś194.

[12] D. Cox, J. Little, and D. O’shea. 2006. Using algebraic geometry. Vol. 185. Springer
Science & Business Media.

[13] D. Cox, T. Sederberg, and F.L. Chen. 1998. The moving line ideal basis of planar
rational curves. Computer Aided Geometric Design 15, 8 (1998), 803ś827.

[14] F. R. Gantmakher. 1959. The theory of matrices. American Mathematical Soc.
[15] K. Geddes, S. Czapor, and G. Labahn. 1992. Algorithms for computer algebra.

Springer Science and Business Media.
[16] P. Gianni and B. Trager. 1985. Gcd’s and factoring multivariate polynomials using

Grobner bases. In European Conference on Computer Algebra. Springer, 409ś410.
[17] H. Kai and M.-T. Noda. 2000. Hybrid rational approximation and its applications.

Reliable Computing 6 (2000), 429ś438.
[18] M. Kalkbrener. 1997. On the Stability of Gröbner Bases Under Specializations.

Journal of Symbolic Computation 24, 1 (1997), 51ś58.
[19] D. Kapur, D. Lu, M. Monagan, Y. Sun, and D.K.Wang. 2018. An Efficient Algorithm

for Computing Parametric Multivariate Polynomial GCD. In Proceedings of the
2018 International Symposium on Symbolic and Algebraic Computation. 239ś246.

[20] D. Kapur, Y. Sun, and D.K. Wang. 2010. A new algorithm for computing compre-
hensive Gröbner systems. In Proceedings of ISSAC’ 2010. 29ś36.

[21] D. Kapur, Y. Sun, and D.K. Wang. 2013. An efficient algorithm for computing a
comprehensive Gröbner system of a parametric polynomial system. Journal of
Symbolic Computation 49 (2013), 27ś44.

[22] A. Montes. 2002. A new algorithm for discussing Gröbner bases with parameters.
Journal of Symbolic Computation 33, 2 (2002), 183ś208.

[23] J. Moses and D. Yun. 1973. The ez gcd algorithm. In Proceedings of the ACM
annual conference. ACM, 159ś166.

[24] K. Nabeshima. 2007. PGB: a package for computing parametric Gröbner and
related objects. ACM Communications in Computer Algebra 41, 3 (2007), 104ś105.

[25] K. Nabeshima. 2007. A speed-up of the algorithm for computing comprehensive
Gröbner systems. In Proceedings of ISSAC’ 2007. 299ś306.

[26] K. Nabeshima. 2010. On the computation of parametric gröbner bases for modules
and syzygies. Japan Journal of Industrial and Applied Mathematics 27, 2 (2010),
217ś238.

[27] K. Nagasaka. 2017. Parametric Greatest Common Divisors using Comprehensive
Gröbner Systems. In Proceedings of ISSAC’ 2017. 341ś348.

[28] C. Norman. 2012. Finitely Generated Abelian Groups and Similarity of Matrices
over a Field. Springer Undergraduate Mathematics (2012).

[29] I.S. Pace and S. Barnett. 1974. Efficient algorithms for linear system calculations.
I: Smith form and common divisor of polynomial matrices. Internat.j.systems Sci
(1974), 403ś411.

[30] H.H. Rosenbrock. 1970. State-space and multivariable theory. (1970).
[31] T. Sasaki and M. Suzuki. 1992. Three new algorithms for multivariate polynomial

GCD. Journal of Symbolic Computation 13, 4 (1992), 395ś411.
[32] J. Sendra and J. Llovet. 1992. An extended polynomial GCD algorithm using

Hankel matrices. Journal of symbolic computation 13, 1 (1992), 25ś39.
[33] A. Storjohann. 1997. A solution to the extended GCD problem with applications.

In Proceedings of the 1997 international symposium on Symbolic and algebraic
computation. 109ś116.

[34] A. Suzuki and Y. Sato. 2002. An alternative approach to comprehensive Gröbner
bases. Journal of Symbolic Computation 36, 3 (2002), 649ś667.

[35] A. Suzuki and Y. Sato. 2006. A simple algorithm to compute comprehensive
Gröbner bases using Gröbner bases. In Proceedings of the 2006 ACM International
Symposium on Symbolic and Algebraic Computation. 326ś331.

[36] V. Weispfenning. 1992. Comprehensive Gröbner bases. Journal of Symbolic
Computation 14, 1 (1992), 1ś29.

[37] R. Zippel. 1979. Probabilistic algorithms for sparse polynomials. In Proceedings
of the EUROSAM’79. Springer-Verlag, 216ś226.

[38] R. Zippel. 1993. Effective Polynomial Computation. Vol. 241. Springer Science and
Business Media.

449

http://www.mmrc.iss.ac.cn/~dwang/software.html

A Second Order Cone Characterization for Sums of Nonnegative
Circuits

Jie Wang and Victor Magron
jwang,vmagron@laas.fr

Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)
Toulouse, France

ABSTRACT

The second-order cone (SOC) is a class of simple convex cones

and optimizing over them can be done more efficiently than with

semidefinite programming. It is interesting both in theory and in

practice to investigate which convex cones admit a representation

using SOCs, given that they have a strong expressive ability. In this

paper, we prove constructively that the cone of sums of nonnega-

tive circuits (SONC) admits an SOC representation. Based on this,

we give a new algorithm to compute SONC decompositions for

certain classes of nonnegative polynomials via SOC programming.

Numerical experiments demonstrate the efficiency of our algorithm

for polynomials with a fairly large size (both size of degree and

number of variables).

CCS CONCEPTS

·Mathematics of computing→ Semidefinite programming;

· Computing methodologies → Algebraic algorithms; Opti-

mization algorithms.

KEYWORDS

sum of nonnegative circuit polynomials, second-order cone repre-

sentation, second-order cone programming, polynomial optimiza-

tion, sum of binomial squares

ACM Reference Format:

Jie Wang and Victor Magron. 2020. A Second Order Cone Characterization

for Sums of Nonnegative Circuits. In International Symposium on Symbolic

and Algebraic Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404033

1 INTRODUCTION

A circuit polynomial is of the form
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 − 𝑑x𝜷 ∈ R[x] =

R[𝑥1, . . . , 𝑥𝑛], where 𝑐𝜶 > 0 for all 𝜶 ∈ A , A ⊆ (2N)𝑛 comprises

the vertices of a simplex and 𝜷 lies in the interior of this simplex.

The set of sums of nonnegative circuit polynomials (SONC)was intro-

duced by Iliman andWolff in [10] as a new certificate of nonnegativ-

ity for sparse polynomials, which is independent of the well-known

set of sums of squares (SOS). Another recently introduced alterna-

tive certificates [6] are sums of arithmetic-geometric-exponentials

(SAGE), which can be obtained via relative entropy programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404033

The connection between SONC and SAGE polynomials have been

recently studied in [13, 20, 27]. It happens that SONC polynomi-

als and SAGE polynomials are actually equivalent [20], and that

both have a cancellation-free representation in terms of generators

[20, 27].

One of the significant differences between SONC and SOS is that

SONC decompositions preserve sparsity of polynomials while SOS

decompositions do not in general [27]. The set of SONC polynomials

with a given support forms a convex cone, called a SONC cone.

Optimization problems over SONC cones can be formulated as

geometric programs or more generally relative entropy programs

(see [11] for the unconstrained case and [7] for the constrained

case). Numerical experiments for unconstrained POPs (polynomial

optimization problems) in [25] have demonstrated the advantage

of the SONC-based methods compared to the SOS-based methods,

especially in the high-degree but fairly sparse case.

In the SOS case, there have been several attempts to exploit spar-

sity occurring in (un-)constrained POPs. The sparse variant [26] of

the moment-SOS hierarchy exploits the correlative sparsity pattern

among the input variables to reduce the support of the resulting

SOS decompositions. Such sparse representation results have been

successfully applied inmany fields, such as optimal power-flow [12],

roundoff error bounds [15] and recently extended to the noncom-

mutative case [14]. Another way to exploit sparsity is to consider

patterns based on terms (rather than variables), yielding an alterna-

tive sparse variant of Lasserre’s hierarchy [28].

One of the similar features shared by SOS/SONC-based frame-

works is their intrinsic connections with conic programming: SOS

decompositions are computed via semidefinite programming and

SONC decompositions via geometric programming. In both cases,

the resulting optimization problems are solved with interior-point

algorithms, thus output approximate nonnegativity certificates.

However, one can still obtain an exact certificate from such output

via hybrid numerical-symbolic algorithms when the input polyno-

mial lies in the interior of the SOS/SONC cone. One way is to rely on

rounding-projection algorithms adapted to the SOS cone [22] and

the SONC cone [19], or alternatively on perturbation-compensation

schemes [16, 18] available within the RealCertify [17] library.

In this paper, we study the second-order cone representation of

SONC cones. An 𝑛-dimensional (rotated) second-order cone (SOC) is

defined as K𝑛 := {𝒂 ∈ R𝑛 | 2𝑎1𝑎2 ≥
∑𝑛
𝑖=3 𝑎

2
𝑖 , 𝑎1 ≥ 0, 𝑎2 ≥ 0}. The

SOC is well-studied and has mature solvers. Optimizing via second-

order cone programming (SOCP) can be handled more efficiently

than with semidefinite programming [1, 2]. On the other hand,

despite the simplicity of SOCs, they have a strong ability to express

other convex cones (many such examples can be found in [5, Section

3.3]). Therefore, it is interesting in theory and also important from

450

https://doi.org/10.1145/3373207.3404033
https://doi.org/10.1145/3373207.3404033

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Wang and Magron

the view of applications to investigate which convex cones can be

expressed by SOCs.

Given sets of lattice points A ⊆ (2N)𝑛 , B1 ⊆ conv(A) ∩ (2N)𝑛

and B2 ⊆ conv(A) ∩ (N𝑛\(2N)𝑛) (conv(A) is the convex hull

of A) with A ∩ B1 = ∅, let SONCA ,B1,B2
be the SONC cone

supported on A ,B1,B2 (see Definition 4.2). The first main result

of this paper is the following theorem.

Theorem 1.1. For A ⊆ (2N)𝑛 , B1 ⊆ conv(A) ∩ (2N)𝑛 and

B2 ⊆ conv(A) ∩ (N𝑛\(2N)𝑛) with A ∩ B1 = ∅, the convex cone

SONCA ,B1,B2
admits an SOC representation.

The fact that SONC cones admit an SOC characterization was

firstly proven by Averkov [4, Theorem 17]. However, Averkov’s

result is more theoretical. Even though Averkov’s proof theoreti-

cally allows one to construct an SOC representation for a SONC

cone, the construction is complicated and wasn’t explicitly given in

Averkov’s paper. Our proof of Theorem 1.1, which involves writing

a SONC polynomial as a sum of binomial squares with rational

exponents (Theorem 3.9), is totally different from Averkov’s and

leads to a more concise (hence more efficient) SOC representation

for SONC cones. This enables us to propose a new algorithm, based

on SOCP, providing SONC decompositions for a certain class of

nonnegative polynomials, which in turn yields lower bounds for

unconstrained POPs. We test the algorithm on various randomly

generated polynomials up to a fairly large size, involving 𝑛 ∼ 40

variables and of degree 𝑑 ∼ 60. The numerical results demonstrate

the efficiency of our algorithm.

2 PRELIMINARIES

Let R[x] = R[𝑥1, . . . , 𝑥𝑛] be the ring of real 𝑛-variate polynomials,

and let R+ be the set of positive real numbers. For a finite set A ⊆

N𝑛 , we denote by conv(A) the convex hull of A . Given a finite set

A ⊆ N𝑛 , we consider polynomials 𝑓 ∈ R[x] supported onA ⊆ N𝑛 ,

i.e., 𝑓 is of the form 𝑓 (x) =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 with 𝑐𝜶 ∈ R, x𝜶 =

𝑥
𝛼1
1 · · · 𝑥

𝛼𝑛
𝑛 . The support of 𝑓 is supp(𝑓) := {𝜶 ∈ A | 𝑐𝜶 ≠ 0} and

the Newton polytope of 𝑓 is defined as New(𝑓) := conv(supp(𝑓)).

For a polytope 𝑃 , we use𝑉 (𝑃) to denote the vertex set of 𝑃 and use

𝑃◦ to denote the interior of 𝑃 . For a set 𝐴, we use #𝐴 to denote the

cardinality of𝐴. A polynomial 𝑓 ∈ R[x] which is nonnegative over

R𝑛 is called a nonnegative polynomial, or a positive semi-definite

(PSD) polynomial. The following definition of circuit polynomials

was proposed by Iliman and De Wolff in [10].

Definition 2.1. A polynomial 𝑓 ∈ R[x] is called a circuit polyno-

mial if it is of the form 𝑓 (x) =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 − 𝑑x𝜷 and satisfies

the following conditions: (i) A ⊆ (2N)𝑛 comprises the vertices of

a simplex, (ii) 𝑐𝜶 > 0 for each 𝜶 ∈ A , (iii) 𝜷 ∈ conv(A)◦ ∩ N𝑛 .

If 𝑓 =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 − 𝑑x𝜷 is a circuit polynomial, then from

the definition we can uniquely write 𝜷 =
∑

𝜶 ∈A 𝜆𝜶𝜶 with 𝜆𝜶 >

0 and
∑

𝜶 ∈A 𝜆𝜶 = 1. We define the corresponding circuit num-

ber as Θ𝑓 :=
∏

𝜶 ∈A (𝑐𝜶 /𝜆𝜶)
𝜆𝜶 . The nonnegativity of the circuit

polynomial 𝑓 is decided by its circuit number alone, that is, 𝑓 is

nonnegative if and only if either 𝜷 ∉ (2N)𝑛 and |𝑑 | ≤ Θ𝑓 , or

𝜷 ∈ (2N)𝑛 and 𝑑 ≤ Θ𝑓 ([10, Theorem 3.8]). To provide a concise

narrative, we refer to a nonnegative circuit polynomial by a non-

negative circuit and also view a monomial square as a nonnegative

circuit. An explicit representation of a polynomial being a sum of

nonnegative circuits, or SONC for short, provides a certificate for

its nonnegativity. Such a certificate is called a SONC decomposition.

For simplicity, we denote the set of SONC polynomials by SONC.

For a polynomial 𝑓 ∈ R[x], let Λ(𝑓) := {𝜶 ∈ supp(𝑓) | 𝜶 ∈

(2N)𝑛 and 𝑐𝜶 > 0} and Γ(𝑓) := supp(𝑓)\Λ(𝑓). Then we can write

𝑓 as 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓) 𝑑𝜷x

𝜷 . For each 𝜷 ∈ Γ(𝑓), let

F (𝜷) := {Δ | Δ is a simplex, 𝜷 ∈ Δ
◦,𝑉 (Δ) ⊆ Λ(𝑓)}. (1)

By [27, Theorem 5.5], if 𝑓 ∈ SONC, then it has a decomposition

𝑓 =

∑

𝜷 ∈Γ (𝑓)

∑

Δ∈F (𝜷)

𝑓𝜷Δ +
∑

𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , (2)

where 𝑓𝜷Δ is a nonnegative circuit supported on 𝑉 (Δ) ∪ {𝜷} for

each Δ and ˜A = {𝜶 ∈ Λ(𝑓) | 𝜶 ∉ ∪𝜷 ∈Γ (𝑓) ∪Δ∈F (𝜷) 𝑉 (Δ)}.

3 SONC AND SUMS OF BINOMIAL SQUARES

In this section, we give a characterization of SONC polynomials in

terms of sums of binomial squares with rational exponents.

3.1 Rational mediated sets

A lattice point 𝜶 ∈ N𝑛 is even if it is in (2N)𝑛 . For a subset𝑀 ⊆ N𝑛 ,

define 𝐴(𝑀) := { 12 (𝒗 +𝒘) | 𝒗 ≠ 𝒘, 𝒗,𝒘 ∈ 𝑀 ∩ (2N)𝑛} as the set of

averages of distinct even points in𝑀 . A subset A ⊆ (2N)𝑛 is called

a trellis if A comprises the vertices of a simplex. For a trellis A ,

we call𝑀 an A -mediated set if A ⊆ 𝑀 ⊆ 𝐴(𝑀) ∪ A ([9, 23, 24]).

Theorem 3.1. Let 𝑓 =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 −𝑑x𝜷 ∈ R[x] with 𝑑 ≠ 0 be

a nonnegative circuit. Then 𝑓 is a sum of binomial squares iff there

exists an A -mediated set containing 𝜷 . Moreover, suppose that 𝜷

belongs to an A -mediated set𝑀 and for each 𝒖 ∈ 𝑀\A , let us write

𝒖 =
1
2 (𝒗𝒖 +𝒘𝒖) for some 𝒗𝒖 ≠ 𝒘𝒖 ∈ 𝑀 ∩ (2N)𝑛 . Then one has the

decomposition 𝑓 =
∑
𝒖∈𝑀\A (𝑎𝒖x

1
2 𝒗𝒖 −𝑏𝒖x

1
2𝒘𝒖)2, with 𝑎𝒖 , 𝑏𝒖 ∈ R.

Proof. It follows from Theorem 5.2 in [10]. □

By Theorem 3.1, if we want to represent a nonnegative circuit

polynomial as a sum of binomial squares, we need to first decide if

there exists an A -mediated set containing a given lattice point and

then to compute one if there exists. However, there are obstacles for

each of these two steps: (1) there may not exist such anA -mediated

set containing a given lattice point; (2) even if such a set exists, there

is no efficient algorithm to compute it. In order to overcome these

two difficulties, we introduce the concept of A -rational mediated

sets as a replacement of A -mediated sets by admitting rational

numbers in coordinates.

Concretely, for a subset𝑀 ⊆ Q𝑛 , let us define 𝐴(𝑀) := { 12 (𝒗 +

𝒘) | 𝒗 ≠ 𝒘, 𝒗,𝒘 ∈ 𝑀} as the set of averages of distinct rational

points in 𝑀 . Let us assume that A ⊆ Q𝑛 comprises the vertices

of a simplex. We say that𝑀 is an A -rational mediated set if A ⊆

𝑀 ⊆ 𝐴(𝑀) ∪A . We shall see that for a trellis A and a lattice point

𝜷 ∈ conv(A)◦, an A -rational mediated set containing 𝜷 always

exists and moreover, there is an effective algorithm to compute it.

First, let us consider the one dimensional case. For a sequence

of integer numbers 𝐴 = {𝑠, 𝑞1, . . . , 𝑞𝑚, 𝑝} (arranged from small to

large), if every 𝑞𝑖 is an average of two distinct numbers in 𝐴, then

we say 𝐴 is an (𝑠, 𝑝)-mediated sequence. Note that the property

of (𝑠, 𝑝)-mediated sequences is preserved under translations, that

451

A Second Order Cone Characterization for SONC ISSAC ’20, July 20–23, 2020, Kalamata, Greece

is, there is a one-to-one correspondence between (𝑠, 𝑝)-mediated

sequences and (𝑠 + 𝑟, 𝑝 + 𝑟)-mediated sequences for any integer

number 𝑟 . So it suffices to consider the case of 𝑠 = 0.

For a fixed 𝑝 and an integer 0 < 𝑞 < 𝑝 , aminimal (0, 𝑝)-mediated

sequence containing 𝑞 is a (0, 𝑝)-mediated sequence containing 𝑞

with the least number of elements. Denote the number of elements

in a minimal (0, 𝑝)-mediated sequence containing 𝑞 by 𝑁 (
𝑞
𝑝). One

can then easily show that 𝑁 (1𝑝) =
⌈
log2 (𝑝)

⌉
+ 2 by induction on 𝑝 .

We conjecture that this formula holds for general 𝑞, i.e.,

Conjecture 3.2. If gcd(𝑝, 𝑞) = 1, then 𝑁 (
𝑞
𝑝) =

⌈
log2 (𝑝)

⌉
+ 2.

Generally we do not know how to compute a minimal (0, 𝑝)-

mediated sequence containing a given 𝑞. However, we have an

algorithm to compute an approximately minimal (0, 𝑝)-mediated

sequence containing a given 𝑞 as the following lemma shows.

Lemma 3.3. For 0 < 𝑞 < 𝑝 ∈ N, there exists a (0, 𝑝)-mediated

sequence containing 𝑞 with the cardinality less than 1
2 (log2 (𝑝) +

3
2)

2.

Proof. We can assume gcd(𝑝, 𝑞) = 1 (otherwise one can con-

sider 𝑝/gcd(𝑝, 𝑞), 𝑞/gcd(𝑝, 𝑞) instead). Let us do induction on 𝑝 .

Assume that for any 𝑝 ′, 𝑞′ ∈ N, 0 < 𝑞′ < 𝑝 ′ < 𝑝 , there exists a

(0, 𝑝 ′)-mediated sequence containing 𝑞′ with the number of ele-

ments less than 1
2 (log2 (𝑝

′) + 3
2)

2.

Case 1: Suppose that 𝑝 is an even number. If 𝑞 =
𝑝
2 , then by

gcd(𝑝, 𝑞) = 1, we have 𝑞 = 1 and 𝐴 = {0, 1, 2} is a (0, 𝑝)-mediated

sequence containing 𝑞. Otherwise, we have either 0 < 𝑞 <
𝑝
2 or

𝑝
2 < 𝑞 < 𝑝 . For 0 < 𝑞 <

𝑝
2 , by the induction hypothesis, there exists

a (0,
𝑝
2)-mediated sequence 𝐴′ containing 𝑞. For

𝑝
2 < 𝑞 < 𝑝 , since

the property of mediated sequences is preserved under translations,

one can first subtract
𝑝
2 and obtain a (0,

𝑝
2)-mediated sequence

containing 𝑞 −
𝑝
2 by the induction hypothesis. Then by adding

𝑝
2 ,

one obtains a (
𝑝
2 , 𝑝)-mediated sequence 𝐴′ containing 𝑞. It follows

that 𝐴 = 𝐴′ ∪ {𝑝} or 𝐴 = {0} ∪ 𝐴′ is a (0, 𝑝)-mediated sequence

containing 𝑞.

0 𝑞
𝑝
2 (𝑞) 𝑝

Moreover, we have

#𝐴 = 1 + #𝐴′
< 1 +

1

2
(log2 (

𝑝

2
) +

3

2
)2 <

1

2
(log2 (𝑝) +

3

2
)2 .

Case 2: Suppose that 𝑝 is an odd number. Without loss of gener-

ality, assume that 𝑞 is an even number (otherwise one can consider

𝑝−𝑞 instead and then obtain a (0, 𝑝)-mediated sequence containing

𝑞 through the map 𝑥 ↦→ 𝑝 − 𝑥 which clearly preserves the property

of mediated sequences).

Let 𝑞 = 2𝑘𝑟 for some 𝑘, 𝑟 ∈ N\{0} and 2 ∤ 𝑟 . If 𝑞 = 𝑝 − 𝑟 ,

then 𝑞 =
𝑞−𝑟+𝑝

2 . Since gcd(𝑝, 𝑞) = 1, we have 𝑟 = 1. Let 𝐴 =

{0, 12𝑞,
3
4𝑞, . . . , (1 −

1
2𝑘
)𝑞, 𝑞, 𝑝}. For 1 ≤ 𝑖 ≤ 𝑘 , we have (1 − 1

2𝑖
)𝑞 =

1
2 (1 −

1
2𝑖−1

)𝑞 + 1
2𝑞. Therefore, 𝐴 is a (0, 𝑝)-mediated sequence con-

taining 𝑞.

0
1
2𝑞 · · ·

3
4𝑞

(1 − 1
2𝑘

)𝑞

𝑞 − 𝑟

𝑞 𝑝

#𝐴 = 𝑘 + 3 <

1

2
(log2 (2

𝑘 + 1) +
3

2
)2 =

1

2
(log2 (𝑝) +

3

2
)2 .

If 𝑞 < 𝑝 − 𝑟 , then 𝑞 lies on the line segment between 𝑞 − 𝑟

and
𝑞−𝑟+𝑝

2 . Since
𝑞−𝑟+𝑝

2 − (𝑞 − 𝑟) =
𝑝+𝑟−𝑞

2 < 𝑝 , then by the

induction hypothesis, there exists a (𝑞 − 𝑟,
𝑞−𝑟+𝑝

2)-mediated se-

quence 𝐴′ containing 𝑞 (using translations). It follows that 𝐴 =

{0, 12𝑞,
3
4𝑞, . . . , (1 − 1

2𝑘−1
)𝑞, 𝑝} ∪ 𝐴′ is a (0, 𝑝)-mediated sequence

containing 𝑞.

0
1
2𝑞 · · ·

3
4𝑞

(1 − 1
2𝑘

)𝑞

𝑞 − 𝑟

𝑞
𝑞−𝑟+𝑝

2 𝑝

#𝐴 = 𝑘 + 1 + #𝐴′
< log2 (

𝑞

𝑟
) + 1 +

1

2
(log2 (

𝑝 + 𝑟 − 𝑞

2
) +

3

2
)2

< log2 (𝑝) + 1 +
1

2
(log2 (

𝑝

2
) +

3

2
)2

=
1

2
(log2 (𝑝) +

3

2
)2 .

If 𝑞 > 𝑝 − 𝑟 , then 𝑞 lies on the line segment between
𝑞−𝑟+𝑝

2 and

𝑝 . Since 𝑝 −
𝑞−𝑟+𝑝

2 =
𝑝+𝑟−𝑞

2 < 𝑝 , then by the induction hypothesis,

there exists a (
𝑞−𝑟+𝑝

2 , 𝑝)-mediated sequence 𝐴′ containing 𝑞 (using

translations). It follows that the set𝐴 = {0, 12𝑞,
3
4𝑞, . . . , (1−

1
2𝑘
)𝑞} ∪

𝐴′ is a (0, 𝑝)-mediated sequence containing 𝑞.

0
1
2𝑞 · · ·

3
4𝑞

(1 − 1
2𝑘

)𝑞

𝑞 − 𝑟

𝑞−𝑟+𝑝
2 𝑞 𝑝

As previously, we have #𝐴 = 𝑘 + 1 + #𝐴′
<

1
2 (log2 (𝑝) +

3
2)

2. □

Lemma 3.4. Suppose that 𝜶 1 and 𝜶 2 are two rational points, and

𝜷 is any rational point on the line segment between 𝜶 1 and 𝜶 2.

Then there exists an {𝜶 1,𝜶 2}-rational mediated set 𝑀 containing

𝜷 . Furthermore, if the denominators of coordinates of 𝜶 1,𝜶 2, 𝜷 are

odd numbers, and the numerators of coordinates of 𝜶 1,𝜶 2 are even

numbers, then we can ensure that the denominators of coordinates of

points in 𝑀 are odd numbers and the numerators of coordinates of

points in𝑀\{𝜷} are even numbers.

Proof. Suppose 𝜷 = (1 −
𝑞
𝑝)𝜶 1 +

𝑞
𝑝 𝜶 2, 𝑝, 𝑞 ∈ N, 0 < 𝑞 <

𝑝 ,gcd(𝑝, 𝑞) = 1. We then construct a one-to-one correspondence

between the points on the one-dimensional number axis and the

points on the line across 𝜶 1 and 𝜶 2 via the map: 𝑠 ↦→ (1 − 𝑠
𝑝)𝜶 1 +

𝑠
𝑝 𝜶 2, such that 𝜶 1 corresponds to the origin, 𝜶 2 corresponds to

𝑝 and 𝜷 corresponds to 𝑞. Then it is clear that a (0, 𝑝)-mediated

sequence containing 𝑞 corresponds to a {𝜶 1,𝜶 2}-rational mediated

set containing 𝜷 . Hence by Lemma 3.3, there exists a {𝜶 1,𝜶 2}-

rational mediated set𝑀 containing 𝜷 with the number of elements

less than 1
2 (log2 (𝑝) +

3
2)

2. Moreover, we can see that if 𝜶 1,𝜶 2, 𝜷

are lattice points, then the elements in𝑀 are also lattice points.

If the denominators of coordinates of 𝜶 1,𝜶 2, 𝜷 are odd numbers,

and the numerators of coordinates of 𝜶 1,𝜶 2 are even numbers, as-

sume that the least common multiple of denominators appearing in

the coordinates of 𝜶 1,𝜶 2, 𝜷 is 𝑟 and then remove the denominators

by multiplying the coordinates of 𝜶 1,𝜶 2, 𝜷 by 𝑟 such that 𝑟𝜶 1, 𝑟𝜶 2

are even lattice points. If 𝑟𝜷 is even, let 𝑀 ′ be the { 𝑟2𝜶 1,
𝑟
2𝜶 2}-

rational mediated set containing 𝑟
2𝜷 obtained as above (the ele-

ments in 𝑀 ′ are lattice points). Then 𝑀 =
2
𝑟𝑀

′ := { 2𝑟 𝒖 | 𝒖 ∈ 𝑀 ′}

452

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Wang and Magron

is an {𝜶 1,𝜶 2}-rational mediated set containing 𝜷 such that the de-

nominators of coordinates of points in𝑀 are odd numbers and the

numerators of coordinates of points in𝑀\{𝜷} are even numbers.

If 𝑟𝜷 is not even, assume without loss of generality that 𝜷 lies on

the line segment between 𝜶 1 and
𝜶 1+𝜶 2

2 . Let 𝜷 ′
= 2𝜷−𝜶 1 with 𝑟𝜷

′

an even lattice point. Let𝑀 ′ be the { 𝑟2𝜶 1,
𝑟
2𝜶 2}-rational mediated

set containing 𝑟
2𝜷

′ obtained as above (note that the elements in𝑀 ′

are lattice points). Then𝑀 =
2
𝑟𝑀

′∪{𝜷} is an {𝜶 1,𝜶 2}-rational me-

diated set containing 𝜷 such that the denominators of coordinates

of points in𝑀 are odd numbers and the numerators of coordinates

of points in𝑀\{𝜷} are even numbers as desired. □

Lemma 3.5. For a trellis A = {𝜶 1, . . . ,𝜶𝑚} and a lattice point

𝜷 ∈ conv(A)◦, there exists an A -rational mediated set𝑀A 𝜷 con-

taining 𝜷 such that the denominators of coordinates of points in

𝑀A 𝜷 are odd numbers and the numerators of coordinates of points

in𝑀A 𝜷\{𝜷} are even numbers.

Proof. Suppose 𝜷 =
∑𝑚
𝑖=1

𝑞𝑖
𝑝 𝜶 𝑖 , where 𝑝 =

∑𝑚
𝑖=1 𝑞𝑖 , 𝑝, 𝑞𝑖 ∈

N\{0}, (𝑝, 𝑞1, . . . , 𝑞𝑚) = 1. If 𝑝 is an even number, then because

(𝑝, 𝑞1, . . . , 𝑞𝑚) = 1, there must exist an odd number among the 𝑞𝑖 ’s.

Without loss of generality assume 𝑞1 is an odd number. If 𝑝 is an

odd number and there exists an even number among the 𝑞𝑖 ’s, then

without loss of generality assume 𝑞1 is an even number. In any of

these two cases, we have

𝜷 =
𝑞1

𝑝
𝜶 1 +

𝑝 − 𝑞1

𝑝
(

𝑞2

𝑝 − 𝑞1
𝜶 2 + · · · +

𝑞𝑚

𝑝 − 𝑞1
𝜶𝑚).

Let 𝜷1 =
𝑞2

𝑝−𝑞1
𝜶 2 + · · · +

𝑞𝑚
𝑝−𝑞1

𝜶𝑚 . Then 𝜷 =
𝑞1
𝑝 𝜶 1 +

𝑝−𝑞1
𝑝 𝜷1.

If 𝑝 is an odd number and all 𝑞𝑖 ’s are odd numbers, then we have

𝜷 =
𝑞1

𝑞1 + 𝑞2
(
𝑞1 + 𝑞2

𝑝
𝜶 1 +

𝑞3

𝑝
𝜶 3 + · · · +

𝑞𝑚

𝑝
𝜶𝑚)

+
𝑞2

𝑞1 + 𝑞2
(
𝑞1 + 𝑞2

𝑝
𝜶 2 +

𝑞3

𝑝
𝜶 3 + · · · +

𝑞𝑚

𝑝
𝜶𝑚).

Let 𝜷1 =
𝑞1+𝑞2
𝑝 𝜶 1+

𝑞3
𝑝 𝜶 3+· · ·+

𝑞𝑚
𝑝 𝜶𝑚 and 𝜷2 =

𝑞1+𝑞2
𝑝 𝜶 2+

𝑞3
𝑝 𝜶 3+

· · · +
𝑞𝑚
𝑝 𝜶𝑚 . Then 𝜷 =

𝑞1
𝑞1+𝑞2

𝜷1 +
𝑞2

𝑞1+𝑞2
𝜷2.

Apply the same procedure for 𝜷1 (and 𝜷2), and continue itera-

tively. Eventually we obtain a set of points {𝜷𝑖 }
𝑙
𝑖=1 such that for

each 𝑖 , 𝜷𝑖 = 𝜆𝑖𝜷 𝑗 + 𝜇𝑖𝜷𝑘 or 𝜷𝑖 = 𝜆𝑖𝜷 𝑗 + 𝜇𝑖𝜶𝑘 or 𝜷𝑖 = 𝜆𝑖𝜶 𝑗 + 𝜇𝑖𝜶𝑘 ,

where 𝜆𝑖 + 𝜇𝑖 = 1, 𝜆𝑖 , 𝜇𝑖 > 0. We claim the denominators of coor-

dinates of 𝜷𝑖 are odd numbers, and the numerators of coordinates

of 𝜷𝑖 are even numbers. This is because for each 𝜷𝑖 , we have the

expression 𝜷𝑖 =
∑

𝑗
𝑠 𝑗
𝑟 𝜶 𝑗 , where 𝑟 is an odd number and all 𝜶 𝑗 ’s

are even lattice points. For 𝜷𝑖 = 𝜆𝜷 𝑗 + 𝜇𝜷𝑘 (or 𝜷𝑖 = 𝜆𝜷 𝑗 + 𝜇𝜶𝑘 ,

𝜷𝑖 = 𝜆𝜶 𝑗 + 𝜇𝜶𝑘 respectively), let𝑀𝑖 be the {𝜷 𝑗 , 𝜷𝑘 }- (or {𝜷 𝑗 ,𝜶𝑘 }-

, {𝜶 𝑗 ,𝜶𝑘 }- respectively) rational mediated set containing 𝜷𝑖 ob-

tained by Lemma 3.4 such that the denominators of coordinates of

points in𝑀𝑖 are odd numbers and the numerators of coordinates

of points in𝑀𝑖\{𝜷} are even numbers for 𝑖 = 0, . . . , 𝑙 (set 𝜷0 = 𝜷).

Let𝑀A 𝜷 = ∪𝑙𝑖=0𝑀𝑖 . Then𝑀A 𝜷 is clearly an A -rational mediated

set containing 𝜷 with the desired property. □

3.2 Decomposing SONC with binomial squares

For 𝑟 ∈ N and 𝑓 (x) ∈ R[x], let 𝑓 (x𝑟) := 𝑓 (𝑥𝑟1 , . . . , 𝑥
𝑟
𝑛). For any

odd 𝑟 ∈ N, 𝑓 (x) =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 − 𝑑x𝜷 is a nonnegative circuit iff

𝑓 (x𝑟) =
∑

𝜶 ∈A 𝑐𝜶 x
𝑟𝜶 − 𝑑x𝑟𝜷 is a nonnegative circuit.

Theorem 3.6. Let 𝑓 =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 −𝑑x𝜷 ∈ R[x] with 𝑑 ≠ 0 be

a circuit polynomial. Assume that𝑀A 𝜷 is the A -rational mediated

set containing 𝜷 provided by Lemma 3.5. and for each 𝒖 ∈ 𝑀A 𝜷\A ,

let 𝒖 =
1
2 (𝒗𝒖 +𝒘𝒖), 𝒗𝒖 ≠ 𝒘𝒖 ∈ 𝑀A 𝜷 . Then 𝑓 is nonnegative iff 𝑓 can

be written as 𝑓 =
∑
𝒖∈𝑀A𝜷 \A

(𝑎𝒖x
1
2 𝒗𝒖 − 𝑏𝒖x

1
2𝒘𝒖)2, 𝑎𝒖 , 𝑏𝒖 ∈ R.

Proof. Assume that the least common multiple of denomina-

tors appearing in the coordinates of points in 𝑀A 𝜷 is 𝑟 , which

is odd. Then 𝑓 (x) is nonnegative if and only if 𝑓 (x𝑟) is nonneg-

ative. Multiply all coordinates of points in 𝑀A 𝜷 by 𝑟 to remove

the denominators, and the obtained 𝑟𝑀A 𝜷 := {𝑟𝒖 | 𝒖 ∈ 𝑀A 𝜷 } is

an 𝑟A -mediated set containing 𝑟𝜷 . Hence by Theorem 3.1, 𝑓 (x𝑟)

is nonnegative if and only if 𝑓 (x𝑟) can be written as 𝑓 (x𝑟) =∑
𝒖∈𝑀A𝜷 \A

(𝑎𝒖x
𝑟
2 𝒗𝒖 −𝑏𝒖x

𝑟
2𝒘𝒖)2, 𝑎𝒖 , 𝑏𝒖 ∈ R, which is equivalent

to 𝑓 (x) =
∑
𝒖∈𝑀A𝜷 \A

(𝑎𝒖x
1
2 𝒗𝒖 − 𝑏𝒖x

1
2𝒘𝒖)2. □

Example 3.7. Let 𝑓 = 𝑥4𝑦2 + 𝑥2𝑦4 + 1 − 3𝑥2𝑦2 and A = {𝜶 1 =

(0, 0),𝜶 2 = (4, 2),𝜶 3 = (2, 4)}, 𝜷 = (2, 2). Let 𝜷1 =
1
3𝜶 1 +

2
3𝜶 2 and

𝜷2 =
1
3𝜶 1 +

2
3𝜶 3 such that 𝜷 =

1
2𝜷1 +

1
2𝜷2. Let 𝜷3 =

2
3𝜶 1 +

1
3𝜶 2

and 𝜷4 =
2
3𝜶 1 +

1
3𝜶 3. Then 𝑀 = {𝜶 1,𝜶 2,𝜶 3, 𝜷, 𝜷1, 𝜷2, 𝜷3, 𝜷4} is

an A -rational mediated set containing 𝜷 .

(0, 0)

𝜶 1

(2, 4)𝜶 3

(4, 2)

𝜶 2

(2, 2)

𝜷

(43 ,
8
3)

𝜷2

(83 ,
4
3)

𝜷1

(23 ,
4
3)

𝜷4
(43 ,

2
3)

𝜷3

By Theorem 3.6, one has 𝑓 = 𝑥4𝑦2+𝑥2𝑦4+1−3𝑥2𝑦2 = (𝑎1𝑥
2
3𝑦

4
3 −

𝑏1𝑥
4
3𝑦

2
3)2+(𝑎2𝑥𝑦

2−𝑏2𝑥
1
3𝑦

2
3)2+(𝑎3𝑥

2
3𝑦

4
3−𝑏3)

2+(𝑎4𝑥
2𝑦−𝑏4𝑥

2
3𝑦

1
3)2+

(𝑎5𝑥
4
3𝑦

2
3 − 𝑏5)

2. Comparing coefficients yields 𝑓 =
3
2 (𝑥

2
3𝑦

4
3 −

𝑥
4
3𝑦

2
3)2+(𝑥𝑦2−𝑥

1
3𝑦

2
3)2+ 1

2 (𝑥
2
3𝑦

4
3 −1)2+(𝑥2𝑦−𝑥

2
3𝑦

1
3)2+ 1

2 (𝑥
4
3𝑦

2
3 −

1)2, a sum of five binomial squares with rational exponents.

Lemma 3.8. Let 𝑓 (x) ∈ R[x]. For an odd number 𝑟 , 𝑓 (x) ∈ SONC

if and only if 𝑓 (x𝑟) ∈ SONC.

Proof. It comes from the fact that 𝑓 (x) is a nonnegative circuit

iff 𝑓 (x𝑟) is a nonnegative circuit for an odd number 𝑟 . □

Theorem 3.9. Let 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓) 𝑑𝜷x

𝜷 ∈ R[x].

Let F (𝜷) be as in (1). For every 𝜷 ∈ Γ(𝑓) and every Δ ∈ F (𝜷), let

𝑀𝜷Δ be the 𝑉 (Δ)-rational mediated set containing 𝜷 provided by

Lemma 3.5. Let𝑀 = ∪𝜷 ∈Γ (𝑓) ∪Δ∈F (𝜷) 𝑀𝜷Δ. For each 𝒖 ∈ 𝑀\Λ(𝑓),

let 𝒖 =
1
2 (𝒗𝒖 + 𝒘𝒖), 𝒗𝒖 ≠ 𝒘𝒖 ∈ 𝑀 . Let ˜A = {𝜶 ∈ Λ(𝑓) | 𝜶 ∉

∪𝜷 ∈Γ (𝑓) ∪Δ∈F (𝜷) 𝑉 (Δ)}. Then 𝑓 ∈ SONC iff 𝑓 can be written as

𝑓 =
∑
𝒖∈𝑀\Λ(𝑓) (𝑎𝒖x

1
2 𝒗𝒖 − 𝑏𝒖x

1
2𝒘𝒖)2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R.

Proof. Suppose 𝑓 ∈ SONC. By Theorem 5.5 in [27], we can

write 𝑓 as 𝑓 =
∑

𝜷 ∈Γ (𝑓)
∑

Δ∈F (𝜷) 𝑓𝜷Δ +
∑

𝜶 ∈ ˜A
𝑐𝜶 x

𝜶 such that ev-

ery 𝑓𝜷Δ =
∑

𝜶 ∈𝑉 (Δ) 𝑐𝜷Δ𝜶 x
𝜶 −𝑑𝜷Δx

𝜷 is a nonnegative circuit poly-

nomial. We have 𝑓𝜷Δ =
∑
𝒖∈𝑀A𝜷 \A

(𝑎𝒖x
1
2 𝒗𝒖 −𝑏𝒖x

1
2𝒘𝒖)2, 𝑎𝒖 , 𝑏𝒖 ∈

R by Theorem 3.6. Thus 𝑓 =
∑
𝒖∈𝑀\Λ(𝑓) (𝑎𝒖x

1
2 𝒗𝒖 − 𝑏𝒖x

1
2𝒘𝒖)2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R. Suppose 𝑓 =

∑
𝒖∈𝑀\Λ(𝑓) (𝑎𝒖x

1
2 𝒗𝒖 −

453

A Second Order Cone Characterization for SONC ISSAC ’20, July 20–23, 2020, Kalamata, Greece

𝑏𝒖x
1
2𝒘𝒖)2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R. Assume that the least com-

mon multiple of denominators appearing in the coordinates of

points in𝑀 is 𝑟 , which is odd. Then 𝑓 (x𝑟) =
∑
𝒖∈𝑀\Λ(𝑓) (𝑎𝒖x

𝑟
2 𝒗𝒖 −

𝑏𝒖x
𝑟
2𝒘𝒖)2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝑟𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R, which is a SONC since ev-

ery binomial square (and monomial square) is a nonnegative circuit.

Hence by Lemma 3.8, 𝑓 (x) ∈ SONC. □

4 SOC REPRESENTATIONS OF SONC CONES

SOCP plays an important role in convex optimization and can be

handled via very efficient algorithms. If an SOC representation

exists for a given convex cone, then it is possible to design efficient

algorithms for optimization problems over the convex cone. In [8],

Fawzi proved that PSD cones do not admit any SOC representa-

tions in general, which implies that SOS cones do not admit any

SOC representations in general. In this section, we prove that dra-

matically unlike the SOS cones, SONC cones always admit SOC

representations. Let Q𝑘 := Q × · · · × Q be the Cartesian product of

𝑘 copies of an SOC Q. A linear slice of Q𝑘 is an intersection of Q𝑘

with a linear subspace.

Definition 4.1. A convex cone 𝐶 ⊆ R𝑚 has a SOC lift of size

𝑘 (or simply a Q𝑘 -lift) if it can be written as the projection of a

slice of Q𝑘 , that is, there is a subspace 𝐿 of Q𝑘 and a linear map

𝜋 : Q𝑘 → R𝑚 such that 𝐶 = 𝜋 (Q𝑘 ∩ 𝐿).

Definition 4.2. Given sets of lattice points A ⊆ (2N)𝑛 , B1 ⊆

conv(A) ∩ (2N)𝑛 and B2 ⊆ conv(A) ∩ (N𝑛\(2N)𝑛) such that

A ∩ B1 = ∅, define the SONC cone supported on A ,B1,B2 as

SONCA ,B1,B2
:={(cA , dB1

, dB2
) ∈ R

|A |
+ × R

|B1 |
+ × R |B2 |

|
∑

𝜶 ∈A

𝑐𝜶 x
𝜶 −

∑

𝜷 ∈B1∪B2

𝑑𝜷x
𝜷 ∈ SONC},

where cA = (𝑐𝜶)𝜶 ∈A , dB1
= (𝑑𝜷)𝜷 ∈B1

and dB2
= (𝑑𝜷)𝜷 ∈B2

. It

is easy to check that SONCA ,B1,B2
is indeed a convex cone.

Let S2+ be the convex cone of 2× 2 positive semidefinite matrices

S2+ :=

{[
𝑎 𝑏

𝑏 𝑐

]
∈ R2×2 |

[
𝑎 𝑏

𝑏 𝑐

]
is positive semidefinite

}
.

Lemma 4.3. S2+ is a 3-dimensional rotated SOC.

Proof. It is immediate from the definition. □

Theorem 4.4. For A ⊆ (2N)𝑛 , B1 ⊆ conv(A) ∩ (2N)𝑛 and

B2 ⊆ conv(A) ∩ (N𝑛\(2N)𝑛) such that A ∩ B1 = ∅, the convex

cone SONCA ,B1,B2
has an (S2+)

𝑘 -lift for some 𝑘 ∈ N.

Proof. For every 𝜷 ∈ B1 ∪ B2, let F (𝜷) be as in (1). Then for

every 𝜷 ∈ B1 ∪ B2 and every Δ ∈ F (𝜷), let 𝑀𝜷Δ be the 𝑉 (Δ)-

rational mediated set containing 𝜷 provided by Lemma 3.5. Let

𝑀 = ∪𝜷 ∈B1∪B2
∪Δ∈F (𝜷) 𝑀𝜷Δ. For each 𝒖𝑖 ∈ 𝑀\A , let us write

𝒖𝑖 =
1
2 (𝒗𝑖 +𝒘𝑖). Let 𝐵 = ∪𝒖𝑖 ∈𝑀\A { 12𝒗𝑖 ,

1
2𝒘𝑖 }, ˜A = {𝜶 ∈ Λ(𝑓) |

𝜶 ∉ ∪𝜷 ∈Γ (𝑓) ∪Δ∈F (𝜷) 𝑉 (Δ)} and 𝑘 = #𝑀\A + # ˜A .

Then by Theorem 3.9, a polynomial 𝑓 is in SONCA ,B1,B2
if and

only if 𝑓 can be written as 𝑓 =
∑
𝒖𝑖 ∈𝑀\A (𝑎𝑖x

1
2 𝒗𝑖 − 𝑏𝑖x

1
2𝒘𝑖)2 +∑

𝜶 ∈ ˜A
𝑐𝜶 x

𝜶 , 𝑎𝑖 , 𝑏𝑖 ∈ R, which is equivalent to the existence of a

symmetric matrix𝑄 =
∑𝑘
𝑖=1𝑄𝑖 such that 𝑓 = (x𝐵)𝑇𝑄x𝐵 with x𝐵 :=

(x𝜷)𝜷 ∈𝐵 , where 𝑄𝑖 is a symmetric matrix with zeros everywhere

except either at the four positions corresponding to the monomials

x
1
2 𝒗𝑖 , x

1
2𝒘𝑖 or at the position corresponding to a monomial x

1
2𝜶 for

some 𝜶 ∈ ˜A . This leads respectively to either four entries forming

a 2 × 2 positive semidefinite submatrix or one single positive entry.

Let 𝜋 : (S2+)
𝑘 → SONCA ,B1,B2

be the linear map that maps an

element in 𝑄1 × · · · ×𝑄𝑘 to the coefficient vector of 𝑓 which is in

SONCA ,B1,B2
via the equality 𝑓 = (x𝐵)𝑇𝑄x𝐵 with 𝑄 =

∑𝑘
𝑖=1𝑄𝑖 .

So we obtain an (S2+)
𝑘 -lift for SONCA ,B1,B2

.

□

5 SONC OPTIMIZATION VIA SOCP

In this section, we tackle the following unconstrained polynomial

optimization problem via SOCP, based on the representation of

SONC cones derived in the previous section:

(P) : sup{𝜉 : 𝑓 (x) − 𝜉 ≥ 0, x ∈ R𝑛} . (3)

Let us denote by 𝜉∗ the optimal value of (3). Replace the nonneg-

ativity constraint in (3) by the following one to obtain a SONC

relaxation with optimal value 𝜉𝑠𝑜𝑛𝑐 :

(SONC) : sup{𝜉 : 𝑓 (x) − 𝜉 ∈ SONC} . (4)

5.1 Conversion to PN-polynomials

Suppose 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓) 𝑑𝜷x

𝜷 ∈ R[x]. If 𝑑𝜷 > 0

for all 𝜷 ∈ Γ(𝑓), then we call 𝑓 a PN-polynomial. The łPN" in

PN-polynomial is short for łpositive part plus negative part". For

a PN-polynomial 𝑓 (x), it is clear that 𝑓 (x) ≥ 0 for all x ∈ R𝑛 iff

𝑓 (x) ≥ 0 for all x ∈ R𝑛+.

Lemma 5.1. Let 𝑓 (x) ∈ R[x] be a PN-polynomial. Then for any

positive integer 𝑘 , 𝑓 (x) ∈ SONC if and only if 𝑓 (x𝑘) ∈ SONC.

Proof. It comes from the fact that a polynomial 𝑓 (x) with ex-

actly one negative term is a nonnegative circuit iff 𝑓 (x𝑘) is a non-

negative circuit for any positive integer 𝑘 ∈ N. □

Theorem 5.2. Let 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓) 𝑑𝜷x

𝜷 ∈ R[x]

be a PN-polynomial. Let F (𝜷) be as in (1). For every 𝜷 ∈ Γ(𝑓)

and every Δ ∈ F (𝜷), let 𝑀𝜷Δ be a 𝑉 (Δ)-rational mediated set

containing 𝜷 . Let 𝑀 = ∪𝜷 ∈Γ (𝑓) ∪Δ∈F (𝜷) 𝑀𝜷Δ and ˜A = {𝜶 ∈

Λ(𝑓) | 𝜶 ∉ ∪𝜷 ∈Γ (𝑓) ∪Δ∈F (𝜷) 𝑉 (Δ)}. For each 𝒖 ∈ 𝑀\Λ(𝑓), let

𝒖 =
1
2 (𝒗 + 𝒘). Then 𝑓 ∈ SONC if and only if 𝑓 can be written as

𝑓 =
∑
𝒖∈𝑀\Λ(𝑓) (𝑎𝒖x

1
2 𝒗 − 𝑏𝒖x

1
2𝒘)2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R.

Proof. It follows easily from Lemma 5.1 and Theorem 3.1. □

The significant difference between Theorem 3.9 and Theorem

5.2 is that to represent a SONC PN-polynomial as a sum of binomial

squares, we do not require the denominators of coordinates of

points in A -rational mediated sets to be odd. By virtue of this

fact, for given trellis A = {𝜶 1, . . . ,𝜶𝑚} and lattice point 𝜷 ∈

conv(A)◦, we can then construct anA -rational mediated set𝑀A 𝜷

containing 𝜷 which is smaller than that the one from Lemma 3.5.

Lemma 5.3. For a trellis A and a lattice point 𝜷 ∈ conv(A)◦,

there is an A -rational mediated set𝑀A 𝜷 containing 𝜷 .

454

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Wang and Magron

Proof. Suppose that 𝜷 =
∑𝑚
𝑖=1

𝑞𝑖
𝑝 𝜶 𝑖 , where 𝑝 =

∑𝑚
𝑖=1 𝑞𝑖 , 𝑝, 𝑞𝑖 ∈

N∗, (𝑝, 𝑞1, . . . , 𝑞𝑚) = 1. We can write

𝜷 =
𝑞1

𝑝
𝜶 1 +

𝑝 − 𝑞1

𝑝
(

𝑞2

𝑝 − 𝑞1
𝜶 2 + · · · +

𝑞𝑚

𝑝 − 𝑞1
𝜶𝑚).

Let 𝜷1 =
𝑞2

𝑝−𝑞1
𝜶 2 + · · · +

𝑞𝑚
𝑝−𝑞1

𝜶𝑚 . Then 𝜷 =
𝑞1
𝑝 𝜶 1 +

𝑝−𝑞1
𝑝 𝜷1.

Apply the same procedure for 𝜷1, and continue like this. Eventually

we obtain a set of points {𝜷𝑖 }
𝑚−2
𝑖=0 (set 𝜷0 = 𝜷) such that 𝜷𝑖 =

𝜆𝑖𝜶 𝑖+1+𝜇𝑖𝜷𝑖+1, 𝑖 = 0, . . . ,𝑚−3 and 𝜷𝑚−2 = 𝜆𝑚−2𝜶𝑚−1+𝜇𝑚−2𝜶𝑚 ,

where 𝜆𝑖+𝜇𝑖 = 1, 𝜆𝑖 , 𝜇𝑖 > 0, 𝑖 = 0, . . . ,𝑚−2. For 𝜷𝑖 = 𝜆𝑖𝜶 𝑖+1+𝜇𝑖𝜷𝑖+1
(resp. 𝜷𝑚−2 = 𝜆𝑚−2𝜶𝑚−1 + 𝜇𝑚−2𝜶𝑚), let 𝑀𝑖 be the {𝜶 𝑖+1, 𝜷𝑖+1}-

(resp. {𝜶𝑚−1,𝜶𝑚}-) rational mediated set containing 𝜷𝑖 obtained

by Lemma 3.4, 𝑖 = 0, . . . ,𝑚 − 2. Let𝑀A 𝜷 = ∪𝑚−2
𝑖=0 𝑀𝑖 . Then clearly

𝑀A 𝜷 is an A -rational mediated set containing 𝜷 . □

Example 5.4. Let 𝑓 = 𝑥4𝑦2 + 𝑥2𝑦4 + 1 − 3𝑥2𝑦2 be the Motzkin’s

polynomial and A = {𝜶 1 = (4, 2),𝜶 2 = (2, 4),𝜶 3 = (0, 0)}, 𝜷 =

(2, 2). Then 𝜷 =
1
3𝜶 1 +

1
3𝜶 2 +

1
3𝜶 3 =

1
3𝜶 1 +

2
3 (

1
2𝜶 2 +

1
2𝜶 3). Let

𝜷1 =
1
2𝜶 2 +

1
2𝜶 3 such that 𝜷 =

1
3𝜶 1 +

2
3𝜷1. Let 𝜷2 =

2
3𝜶 1 +

1
3𝜷1.

Then it is easy to check that 𝑀 = {𝜶 1,𝜶 2,𝜶 3, 𝜷, 𝜷1, 𝜷2} is an

A -rational mediated set containing 𝜷 .

(0, 0)

𝜶 3

(2, 4)𝜶 2

(4, 2)

𝜶 1

(2, 2)

𝜷

(1, 2)

𝜷1

(3, 2)

𝜷2

By a simple computation, we have 𝑓 = (1−𝑥𝑦2)2+2(𝑥
1
2𝑦−𝑥

3
2𝑦)2+

(𝑥𝑦−𝑥2𝑦)2. Here we represent 𝑓 as a sum of three binomial squares

with rational exponents.

We associate to a polynomial 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶−

∑
𝜷 ∈Γ (𝑓) 𝑑𝜷x

𝜷 ,

the PN-polynomial 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓) |𝑑𝜷 |x

𝜷 .

Lemma 5.5. Suppose 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓) 𝑑𝜷x

𝜷 ∈

R[x]. If 𝑓 is nonnegative, then 𝑓 is nonnegative. Moreover, 𝑓 ∈ SONC

if and only if 𝑓 ∈ SONC.

Proof. For any x ∈ R𝑛 , we have

𝑓 (x) =
∑

𝜶 ∈Λ(𝑓)

𝑐𝜶 x
𝜶 −

∑

𝜷 ∈Γ (𝑓)

𝑑𝜷x
𝜷

≥
∑

𝜶 ∈Λ(𝑓)

𝑐𝜶 |x|𝜶 −
∑

𝜷 ∈Γ (𝑓)

|𝑑𝜷 | |x|
𝜷
= 𝑓 (|x|),

where |x| = (|𝑥1 |, . . . , |𝑥𝑛 |). It follows that the nonnegativity of 𝑓

implies the nonnegativity of 𝑓 .

For every 𝜷 ∈ Γ(𝑓), let F (𝜷) be as in (1). Let B = {𝜷 ∈

Γ(𝑓) | 𝜷 ∉ (2N)𝑛 and 𝑑𝜷 < 0} and ˜A = {𝜶 ∈ Λ(𝑓) | 𝜶 ∉

∪𝜷 ∈Γ (𝑓) ∪Δ∈F (𝜷) 𝑉 (Δ)}. Assume 𝑓 ∈ SONC. Then we can write

𝑓 =

∑

𝜷 ∈Γ (𝑓)\B

∑

Δ∈F (𝜷)

(
∑

𝜶 ∈𝑉 (Δ)

𝑐𝜷Δ𝜶 x
𝜶 − 𝑑𝜷Δx

𝜷)

+
∑

𝜷 ∈B

∑

Δ∈F (𝜷)

(
∑

𝜶 ∈𝑉 (Δ)

𝑐𝜷Δ𝜶 x
𝜶 − 𝑑𝜷Δx

𝜷) +
∑

𝜶 ∈ ˜A

𝑐𝜶 x
𝜶

s.t. each
∑

𝜶 ∈𝑉 (Δ) 𝑐𝜷Δ𝜶 x
𝜶 −𝑑𝜷Δx

𝜷 and each
∑

𝜶 ∈𝑉 (Δ) 𝑐𝜷Δ𝜶 x
𝜶 −

𝑑𝜷Δx
𝜷 are nonnegative circuit polynomials. Note that

∑
𝜶 ∈𝑉 (Δ) 𝑐𝜷Δ𝜶

x
𝜶 +𝑑𝜷Δx

𝜷 is also a nonnegative circuit polynomial and
∑

Δ∈Δ(𝜷) 𝑑𝜷Δ
= |𝑑𝜷 | = −𝑑𝜷 for any 𝜷 ∈ B. Hence,

𝑓 =

∑

𝜷 ∈Γ (𝑓)\B

∑

Δ∈F (𝜷)

(
∑

𝜶 ∈𝑉 (Δ)

𝑐𝜷Δ𝜶 x
𝜶 − 𝑑𝜷Δx

𝜷)

+
∑

𝜷 ∈B

∑

Δ∈F (𝜷)

(
∑

𝜶 ∈𝑉 (Δ)

𝑐𝜷Δ𝜶 x
𝜶 + 𝑑𝜷Δx

𝜷) +
∑

𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 ∈ SONC.

The inverse follows similarly. □

Hence by Lemma 5.5, if we replace the polynomial 𝑓 in (4) by its

associated PN-polynomial 𝑓 , then this does not affect the optimal

value of (4):

(SONC-PN) : sup{𝜉 : 𝑓 (x) − 𝜉 ∈ SONC} . (5)

5.2 Compute a simplex cover

Given a polynomial 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓) 𝑑𝜷x

𝜷 ∈ R[x],

in order to obtain a SONC decomposition of 𝑓 , we use all simplices

containing 𝜷 for each 𝜷 ∈ Γ(𝑓) in Theorem 3.9. In practice, we

do not need that many simplices. A recent study [21] proposes a

systematic method to compute an optimal simplex cover. It would

be worth trying to combine this framework with our SOC charac-

terization for SONC cones to achieve a more accurate algorithm.

Here we rely on a heuristics to compute a set of simplices with

vertices coming from Λ(𝑓) and that covers Γ(𝑓). For 𝜷 ∈ Γ(𝑓) and

𝜶 0 ∈ Λ(𝑓), define an auxiliary linear program:

SimSel(𝜷,Λ(𝑓),𝜶 0) = Argmax 𝜆𝜶 0

s.t.{
∑

𝜶 ∈Λ(𝑓)

𝜆𝜶 · 𝜶 = 𝜷,
∑

𝜶 ∈Λ(𝑓)

𝜆𝜶 = 1, 𝜆𝜶 ≥ 0,∀𝜶 ∈ Λ(𝑓)}.

Following [25], we can ensure the output of SimSel(𝜷,Λ(𝑓),𝜶 0)

corresponds to a trellis which contains 𝜶 0 and covers 𝜷 . The so-

called SimplexCover1 procedure computes such a simplex cover.

Let K be the 3-dimensional rotated SOC, i.e.,

K := {(𝑎, 𝑏, 𝑐) ∈ R3 | 2𝑎𝑏 ≥ 𝑐2, 𝑎 ≥ 0, 𝑏 ≥ 0}. (6)

Suppose 𝑓 =
∑

𝜶 ∈Λ(𝑓) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓) 𝑑𝜷x

𝜷 ∈ R[x]. By algo-

rithm SimplexCover, we compute a simplex cover {(A𝑘 , 𝜷𝑘)}
𝑙
𝑘=1

.

For each𝑘 , let𝑀𝑘 be anA𝑘 -rational mediated set containing 𝜷𝑘 and

𝑠𝑘 = #𝑀𝑘\A𝑘 . For each 𝒖𝑘𝑖 ∈ 𝑀𝑘\A𝑘 , let us write 𝒖
𝑘
𝑖 =

1
2 (𝒗

𝑘
𝑖 +𝒘

𝑘
𝑖).

Let ˜A = {𝜶 ∈ Λ(𝑓) | 𝜶 ∉ ∪𝜷 ∈Γ (𝑓) ∪Δ∈F (𝜷) 𝑉 (Δ)}. Then we can

relax (SONC-PN) to an SOCP problem (SONC-SOCP) as follows:

sup 𝜉

s.t. 𝑓 (x) − 𝜉 =
∑𝑙

𝑘=1

∑𝑠𝑘
𝑖=1 (2𝑎

𝑘
𝑖 x

𝒗𝑘𝑖 + 𝑏𝑘𝑖 x
𝒘𝑘
𝑖 − 2𝑐𝑘𝑖 x

𝒖𝑘𝑖) +
∑

𝜶 ∈ ˜A
𝑐𝜶 x

𝜶 ,

(𝑎𝑘𝑖 , 𝑏
𝑘
𝑖 , 𝑐

𝑘
𝑖) ∈ K, ∀𝑖, 𝑘.

(7)

Let us denote by 𝜉𝑠𝑜𝑐𝑝 the optimal value of (7). Then, we have

𝜉𝑠𝑜𝑐𝑝 ≤ 𝜉𝑠𝑜𝑛𝑐 ≤ 𝜉∗.

Remark 5.6. The quality of obtained SONC lower bounds de-

pends on two successive steps: the relaxation to the corresponding

PN-polynomial (from 𝜉∗ to 𝜉𝑠𝑜𝑛𝑐) and the relaxation to a specific

simplex cover (from 𝜉𝑠𝑜𝑛𝑐 to 𝜉𝑠𝑜𝑐𝑝). The loss of bound-quality at the

1Algorithm 4 in https://arxiv.org/abs/1906.06179

455

https://arxiv.org/abs/1906.06179

A Second Order Cone Characterization for SONC ISSAC ’20, July 20–23, 2020, Kalamata, Greece

second step can be improved by choosing a more optimal simplex cover.

Nevertheless, it may happen that the loss of bound-quality at the first

step is already big, as shown in Example 5.7, which indicates that the

gap between nonnegative polynomials and SONC PN-polynomials

may greatly affect the quality of SONC lower bounds.

Example 5.7. Let 𝑓 = 1 + 𝑥41 + 𝑥42 − 𝑥1𝑥
2
2 − 𝑥21𝑥2 + 5𝑥1𝑥2. Since

Λ(𝑓) forms a trellis, the simplex cover for 𝑓 is unique. One ob-

tains 𝜉𝑠𝑜𝑐𝑝 = 𝜉𝑠𝑜𝑛𝑐 ≈ −6.916501 while 𝜉∗ ≈ −2.203372. Hence the

relative optimality gap is near 214%.

6 NUMERICAL EXPERIMENTS

Here, we present numerical results of the proposed algorithms for

unconstrained POPs. Our tool, called SONCSOCP, implements the

simplex cover algorithm as well as a procedure MedSet2 computing

the rational mediated set and computes the optimal value 𝜉𝑠𝑜𝑐𝑝 of

the SOCP (7) with Mosek [3]. All experiments were performed on

an Intel Core i5-8265U@1.60GHz CPU with 8GB RAMmemory and

WINDOWS 10 system. SONCSOCP is available at github:SONCSOCP.

Our benchmarks are issued from the database of randomly gen-

erated polynomials provided by Seidler and de Wolff in [25]. De-

pending on the Newton polytope, these benchmarks are divided

into three classes: the ones with standard simplices, the ones with

general simplices and the ones with arbitrary Newton polytopes.

(We use 𝑛,𝑑, 𝑡, 𝑙 to denote the number of variables, the degree, the

number of terms and the lower bound on the number of inner terms

respectively. See [25] for the details on the construction of these

polynomials). We compare the performance of SONCSOCP with the

ones of POEM, which relies on the ECOS solver to solve geomet-

ric programs (see [25] for more details). To measure the quality

of a given lower bound 𝜉𝑙𝑏 , we rely on the ‘local_min’ function

available in POEM which computes an upper bound 𝜉𝑚𝑖𝑛 on the

minimum of a polynomial. The relative optimality gap is defined by
|𝜉𝑚𝑖𝑛−𝜉𝑙𝑏 |
|𝜉𝑚𝑖𝑛 |

. In the following tables, the column ‘time’ is the running

time in seconds and the column ‘opt’ the optimal value.

Standard simplex. For the standard simplex case, we take 10

polynomials of different types (labeled by 𝑁). Running time and

lower bounds obtained with SONCSOCP and POEM are displayed in

Table 1. Note that for polynomials with Λ(·) forming a trellis, the

simplex cover is unique, thus the bounds obtained by SONCSOCP

and POEM are the same theoretically, which is also reflected in Table

1. For each polynomial, the relative optimality gap is less than 1%

and for 8 out of 10 polynomials, it is less than 0.1% (see Figure 2).

𝑁 1 2 3 4 5 6 7 8 9 10
𝑛 10 10 10 20 20 20 30 30 40 40
𝑑 40 50 60 40 50 60 50 60 50 60
𝑡 20 20 20 30 30 30 50 50 100 100

time
SONCSOCP 0.04 0.04 0.04 0.14 0.14 0.13 0.43 0.40 2.23 2.21
POEM 0.26 0.27 0.26 0.43 0.44 0.42 1.78 1.79 2.20 2.25

opt
SONCSOCP 3.52 3.52 3.52 2.64 2.64 2.64 2.94 2.94 4.41 4.41
POEM 3.52 3.52 3.52 2.64 2.64 2.64 2.94 2.94 4.41 4.41

Table 1: Results for the standard simplex case

General simplex. Here, we take 10 polynomials of different

types (labeled by 𝑁). Running time and lower bounds obtained

with SONCSOCP and POEM are displayed in Table 2. As before, the

SONC lower bounds obtained by SONCSOCP and POEM are the same.

2Algorithm 3 in https://arxiv.org/abs/1906.06179

2 4 6 8 10
0

1

2

𝑁

ru
n
n
in
g
ti
m
e
(s
)

SONCSOCP

POEM

Figure 1: Running time for the standard simplex case

2 4 6 8 10

0

5 · 10−2

0.1

𝑁

R
el
at
iv
e
o
p
ti
m
al
it
y
g
ap

(%
)

SONCSOCP

POEM

Figure 2: Relative optimality gap for the standard simplex case

For each polynomial except for the one corresponding to 𝑁 =

7, the relative optimality gap is within 30%, and for 6 out of 10

polynomials, the gap is below 1% (see Figure 4). POEM fails to obtain

a lower bound for the instance 𝑁 = 10 by returning −Inf. Figure

3 shows that, overall, the running times of SONCSOCP and POEM

are close. SONCSOCP is faster than POEM for the instance 𝑁 = 6,

possibly because better performance are obtained when the degree

is relatively low.

𝑁 1 2 3 4 5 6 7 8 9 10
𝑛 10 10 10 10 10 10 10 10 10 10
𝑑 20 30 40 50 60 20 30 40 50 60
𝑡 20 20 20 20 20 30 30 30 30 30

time
SONCSOCP 0.32 0.29 0.36 0.48 0.54 0.56 0.73 0.88 1.04 1.04
POEM 0.28 0.31 0.31 0.31 0.43 0.74 0.75 0.74 0.72 0.76

opt
SONCSOCP 1.18 0.22 0.38 0.90 0.06 4.00 −4.64 1.62 2.95 5.40
POEM 1.18 0.22 0.38 0.90 0.06 4.00 −4.64 1.62 2.95 −Inf

Table 2: Results for the general simplex case

2 4 6 8 10

0.4

0.6

0.8

1

𝑁

ru
n
n
in
g
ti
m
e
(s
)

SONCSOCP

POEM

Figure 3: Running time for the general simplex case

Arbitrary polytope. We take 20 polynomials of different types

(labeled by 𝑁). POEM always throws an error łexpected square ma-

trixž. Running time and lower bounds obtained with SONCSOCP are

displayed in Table 3. The relative optimality gap is always within

25% and within 1% for 17 out of 20 polynomials (see Figure 5).

7 CONCLUSIONS

In this paper, we provide a constructive proof that each SONC

cone admits an SOC representation. Based on this, we propose an

456

https://github.com/wangjie212/SONCSOCP.
https://arxiv.org/abs/1906.06179

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Wang and Magron

2 4 6 8 10

0

100

200

300

𝑁

re
la
ti
v
e
o
p
ti
m
al
it
y
g
ap

(%
)

SONCSOCP

POEM

Figure 4: Relative optimality gap for the general simplex case

𝑁 1 2 3 4 5 6 7 8 9 10
𝑛 10 10 10 10 10 10 10 10 10 10
𝑑 20 20 20 30 30 30 40 40 40 50
𝑡 30 100 300 30 100 300 30 100 300 30
𝑙 15 71 231 15 71 231 15 71 231 15

SONCSOCP
time 0.38 1.75 6.86 0.64 3.13 11.3 0.72 4.01 14.6 0.76
opt 0.70 3.32 31.7 3.31 15.3 3.31 0.47 5.42 38.7 1.56

𝑁 11 12 13 14 15 16 17 18 19 20
𝑛 10 10 10 10 10 20 20 20 20 20
𝑑 50 50 60 60 60 30 30 40 40 40
𝑡 100 300 30 100 300 50 100 50 100 200
𝑙 71 231 15 71 231 5 15 5 15 35

SONCSOCP
time 4.41 16.8 1.84 11.2 42.4 3.20 8.84 2.60 10.5 38.7
opt 0.20 7.00 3.31 2.52 23.4 0.70 4.91 4.13 2.81 9.97

Table 3: Results for the arbitrary polytope case

0 5 10 15 20

0

10

20

𝑁

re
la
ti
v
e
o
p
ti
m
al
it
y
g
ap

(%
)

SONCSOCP

Figure 5: Relative optimality gap for the arbitrary polytope case

algorithm to compute a lower bound for unconstrained POPs via

SOCP. Numerical experiments demonstrate the efficiency of our

algorithm even when the number of variables and the degree are

fairly large. Even though the complexity of our algorithm depends

on the degree in theory, it turns out that this dependency is rather

mild. For all numerical examples tested in this paper, the running

time is below one minute even for polynomials of degree up to 60.

Since the running time is satisfactory, the main concern of SONC-

based algorithms for sparse polynomial optimization may be the

quality of obtained lower bounds. For many examples tested in

this paper, the relative optimality gap is within 1%. However, it can

happen that the SONC lower bound is not accurate and this can-

not be avoided by choosing an optimal simplex cover. To improve

the quality of such bounds, it is mandatory to find more complex

representations of nonnegative polynomials, which involve SONC

polynomials. We also plan to design a rounding-projection proce-

dure, in the spirit of [22], to obtain exact nonnegativity certificates

for polynomials lying in the interior of the SONC cone. A related

investigation track is the complexity analysis and software imple-

mentation of the resulting hybrid numeric-symbolic scheme, as

well as performance comparisons with concurrent methods based

on semidefinite programming [16] or geometric programming [19].

REFERENCES
[1] Amir Ali Ahmadi and Anirudha Majumdar. 2019. DSOS and SDSOS optimization:

more tractable alternatives to sum of squares and semidefinite optimization.
SIAM Journal on Applied Algebra and Geometry 3, 2 (2019), 193ś230.

[2] Farid Alizadeh and Donald Goldfarb. 2003. Second-order cone programming.
Mathematical programming 95, 1 (2003), 3ś51.

[3] E. D. Andersen and K. D. Andersen. 2000. The Mosek Interior Point Optimizer
for Linear Programming: An Implementation of the Homogeneous Algorithm.
In High Performance Optimization, Hans Frenk, Kees Roos, Tamás Terlaky, and
Shuzhong Zhang (Eds.). Applied Optimization, Vol. 33. Springer US, 197ś232.
https://doi.org/10.1007/978-1-4757-3216-0_8

[4] Gennadiy Averkov. 2019. Optimal size of linear matrix inequalities in semidefinite
approaches to polynomial optimization. SIAM Journal on Applied Algebra and
Geometry 3, 1 (2019), 128ś151.

[5] Ahron Ben-Tal and Arkadi Nemirovski. 2001. Lectures on modern convex opti-
mization: analysis, algorithms, and engineering applications. Vol. 2. Siam.

[6] V. Chandrasekaran and P. Shah. 2016. Relative Entropy Relaxations for Signomial
Optimization. SIAM J. Optim. 26, 2 (2016), 1147ś1173.

[7] Mareike Dressler, Sadik Iliman, and Timo De Wolff. 2019. An approach to
constrained polynomial optimization via nonnegative circuit polynomials and
geometric programming. Journal of Symbolic Computation 91 (2019), 149ś172.

[8] Hamza Fawzi. 2019. On representing the positive semidefinite cone using the
second-order cone. Mathematical Programming 175, 1-2 (2019), 109ś118.

[9] Jacob Hartzer, Olivia Röhrig, Timo de Wolff, and Oğuzhan Yürük. 2019. Ini-
tial Steps in the Classification of Maximal Mediated Sets. arXiv preprint
arXiv:1910.00502 (2019).

[10] Sadik Iliman and Timo De Wolff. 2016. Amoebas, nonnegative polynomials and
sums of squares supported on circuits. Research in the Mathematical Sciences 3, 1
(2016), 9.

[11] Sadik Iliman and Timo De Wolff. 2016. Lower bounds for polynomials with
simplex newton polytopes based on geometric programming. SIAM Journal on
Optimization 26, 2 (2016), 1128ś1146.

[12] C. Josz. 2016. Application of polynomial optimization to electricity transmission
networks. Theses. Université Pierre et Marie Curie - Paris VI. https://tel.archives-
ouvertes.fr/tel-01478431

[13] L. Katthan, H. Naumann, and T. Theobald. 2019. A Unified framework of SAGE
and SONC polynomials and its duality theory. arXiv preprint arXiv:1903.08966
(2019).

[14] I. Klep, V. Magron, and J. Povh. 2019. Sparse Noncommutative Polynomial
Optimization. arXiv preprint arXiv:1909.00569 (2019).

[15] V. Magron, G. Constantinides, and A. Donaldson. 2017. Certified Roundoff Error
Bounds Using Semidefinite Programming. ACM Trans. Math. Softw. 43, 4, Article
34 (2017), 34 pages.

[16] V. Magron and M. Safey El Din. 2018. On Exact Polya and Putinar’s Represen-
tations. In ISSAC’18: Proceedings of the 2018 ACM International Symposium on
Symbolic and Algebraic Computation. ACM, New York, NY, USA.

[17] V. Magron and M. Safey El Din. 2018. RealCertify: a Maple package for certifying
non-negativity. In ISSAC’18: Proceedings of the 2018 ACM International Symposium
on Symbolic and Algebraic Computation. ACM, New York, NY, USA.

[18] Victor Magron, Mohab Safey El Din, and Markus Schweighofer. 2019. Algo-
rithms for weighted sum of squares decomposition of non-negative univariate
polynomials. Journal of Symbolic Computation 93 (2019), 200ś220.

[19] Victor Magron, Henning Seidler, and Timo de Wolff. 2019. Exact Optimization
via Sums of Nonnegative Circuits and Arithmetic-Geometric-Mean-Exponentials.
In Proceedings of the 2019 on International Symposium on Symbolic and Algebraic
Computation (Beijing, China) (ISSAC ’19). New York, NY, USA, 291ś298.

[20] Riley Murray, Venkat Chandrasekaran, and Adam Wierman. 2018. Newton
polytopes and relative entropy optimization. arXiv preprint arXiv:1810.01614
(2018).

[21] Dávid Papp. 2019. Duality of sum of nonnegative circuit polynomials and optimal
SONC bounds. arXiv preprint arXiv:1912.04718 (2019).

[22] H. Peyrl and P.A. Parrilo. 2008. Computing sum of squares decompositions with
rational coefficients. Theoretical Computer Science 409, 2 (2008), 269ś281.

[23] Victoria Powers and Bruce Reznick. 2019. A note on mediated simplices. arXiv
preprint arXiv:1909.11008 (2019).

[24] Bruce Reznick. 1989. Forms derived from the arithmetic-geometric inequality.
Math. Ann. 283, 3 (1989), 431ś464.

[25] Henning Seidler and Timo de Wolff. 2018. An experimental comparison
of sonc and sos certificates for unconstrained optimization. arXiv preprint
arXiv:1808.08431 (2018).

[26] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. 2006. Sums of Squares and
Semidefinite Programming Relaxations for Polynomial Optimization Problems
with Structured Sparsity. SIAM Journal on Optimization 17, 1 (2006), 218ś242.

[27] J. Wang. 2018. Nonnegative polynomials and circuit polynomials. arXiv preprint
arXiv:1804.09455 (2018).

[28] J. Wang, V. Magron, and J.-B. Lasserre. 2019. TSSOS: a moment-SOS hierarchy
that exploits term sparsity. arXiv preprint arXiv:1912.08899 (2019).

457

https://doi.org/10.1007/978-1-4757-3216-0_8
https://tel.archives-ouvertes.fr/tel-01478431
https://tel.archives-ouvertes.fr/tel-01478431

Geometric Modeling and Regularization of Algebraic Problems

Zhonggang Zeng∗

zzeng@neiu.edu
Northeastern Illinois University
Chicago, Illinois, United States

ABSTRACT

Discontinuity with respect to data perturbations is common in al-

gebraic computation where solutions are often highly sensitive.

Such problems can be modeled as solving systems of equations at

given data parameters. By appending auxiliary equations, themod-

els can be formulated to satisfy four easily verifiable conditions so

that the data form complex analytic manifolds on which the solu-

tions maintain their structures and the Lipschitz continuity. When

such a problem is given with empirical data, solving the system be-

comes a least squares problem whose solution uniquely exists and

enjoys Lipschitz continuity as long as the data point is in a tubular

neighborhood of the manifold. As a result, the singular problem is

regularized as a well-posed computational problem.

CCS CONCEPTS

· Mathematics of computing → Nonlinear equations; Com-

putations on matrices; · Theory of computation→ Numeric

approximation algorithms.

KEYWORDS

system of equations, regularization, complex analytic manifold

ACM Reference Format:

Zhonggang Zeng. 2020. Geometric Modeling and Regularization of Alge-

braic Problems. In International Symposium on Symbolic and Algebraic Com-

putation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404066

1 INTRODUCTION

Computational problems with extremely high sensitivities beyond

finite bounds are known to be ill-posed. Such problems are abun-

dant in algebraic computation and also referred to as being singu-

lar. Some of the most basic algebraic problems are ill-posed, such

asmatrix ranks and subspaces, solutions of singular linear systems,

polynomial greatest common divisors and factorizations, defective

eigenvalues and Jordan Canonical Forms. Those are the problems

we inevitably encounter in symbolic, numeric and hybrid compu-

tation. Based on the current state of knowledge, however, it is in-

accurately believed by many that such problems are impossible to

∗Research is supported in part by NSF under grant DMS-1620337.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404066

solve from empirical data or using floating point arithmetic. Pes-

simistic outlooks are abundant in the literature (emphasis added):

łThe moral is to avoid floating point solutions of singular systemsž

[17, page 218]. łThe difficulty is that the JCF cannot be computed

using floating point arithmetic. A single rounding error may cause

some multiple eigenvalue to become distinct or vice versa, altering

the entire structurež [18]. łA dramatic deterioration of the accuracy

must therefore be expectedž[22, page 300]. ł[S]mall variations in

the [data] will result in large variations in the [solution]. There is

no hope of computing such an object in a stable wayž[14, page. 128].

ł[Although such an object] is of fundamental theoretical impor-

tance it is of little use in practical computations, being generally

very difficult to computež[3, page 52]. ł[So] that [it] is little used

in numerical applicationsž[14, page. 128].

Are the solutions of those problems really sensitive to data per-

turbations as alleged? In a legendary technical report [15], Kahan

argues that it is a łmisconceptionž to consider multiple roots of

polynomials hypersensitive, points out that polynomials and ma-

trices form heuristic łpejorative manifoldsž preserving root mul-

tiplicities and Jordan structures respectively, and proves that the

sensitivities of roots and eigenvalues are bounded if the perturba-

tion is constrained to preserve the multiplicity. This insight opens

a possible pathway for accurate solution of such singular problems.

In this paper, we establish conditions for modeling an algebraic

problem as a nonlinear system of equations in the form of solving

f (u, v) = 0 for the variable v at a fixed data value u so that we can

rigorously verify that the data form a complex analytic manifold

on which the solution maintains a certain algebraic structure and

enjoys Lipschitz continuity.

The data of a hypersensitive problem forming smoothmanifolds

is crucial in the analysis and regularization the problems since its

solution is of bounded sensitivity with respect to data on the mani-

fold. We further extend this inherent stability beyond the manifold

into its tubular neighborhood. When the problem data are given

as empirical, we have a data point near the manifold in the data

space. Assuming the data are reasonably accurate so that the point

remains in the tubular neighborhood, the Tubular Neighborhood

Theorem established in this paper ensures the projection from the

data point to themanifold uniquely exists and enjoys Lipschitz con-

tinuity. Consequently, the singular problem can be regularized as

a well-posed least squares problem that is accurately solvable from

empirical data.

The geometric modeling and regularization from this perspec-

tive lead to robust algorithms such as those in accurate compu-

tation of multiple roots [24], greatest common divisors [16, 26],

polynomial factorizations [23, 25], defective eigenvalue problems

[27] and singular linear systems [29]. These algorithms are imple-

mented in our software package NAClab [31].

458

https://doi.org/10.1145/3373207.3404066
https://doi.org/10.1145/3373207.3404066

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Zhonggang Zeng

Geometric theories and methods have been applied in algebraic

computing in many works such as [1, 5ś7, 9ś11, 19]. However, the

tremendous advantage of tubular neighborhoods has not yet been

harnessed partly because a general tubular neighborhood theorem

for complex analytic manifolds is apparently unavailable in the lit-

erature of differential topology. Specifically taylored to the applica-

tion of solving ill-posed algebraic problems in this paper, we prove

a weak but sufficient version of the tubular neighborhood theo-

rem for complex analytic manifolds in Euclidean spaces using the

techniques of nonlinear least squares. The theorem and the proof

fills a gap in the regularization theory of solving ill-posed alge-

braic problems and complete the works of numerical factorization

[23, 25] and numerical greatest common divisors of polynomials

[26, 30].

2 PRELIMINARIES

The space of𝑛-dimensional vectors of complex numbers is denoted

by C𝑛 with the Euclidean norm ∥ · ∥2. General vector spaces are de-
noted by, sayV ,W inwhich vectors are denoted by boldface lower

case letters while 0 is a zero vector. Any norm ∥v∥ is understood
as the specified norm in the space where v belongs.

For a holomorphic mapping 𝐹 : Ω ⊂ C𝑛 → C𝑚 , we may desig-

nate a variable name, say z, for 𝐹 and denote 𝐹 as z ↦→ 𝐹 (z). The
Jacobian matrix of 𝐹 at any z0 ∈ Ω is denoted by 𝐹z (z0). Let V
and W be vector spaces with isomorphisms 𝜙 : V → C𝑛 and 𝜓 :

W → C𝑚 . Assume g is a mapping from an open subset Σ ofV to

W with a representation z ↦→ 𝐺 (z) where 𝐺 : 𝜙 (Σ) ⊂ C𝑛 → C𝑚
such that g = 𝜓−1 ◦𝐺 ◦𝜙 . We say g is holomorphic in Σ if its repre-

sentation𝐺 is holomorphic in 𝜙 (Σ). Denoting the variable of g as,

say v, the Jacobian of g at any particular v0 ∈ Σ is defined as the

linear transformation gv (v0) : V → W in the form of

v ↦−→ gv (v0) (v) := 𝜓−1 (𝐺z (𝜙 (v0)) 𝜙 (v)
)
.

The Jacobian gv (v0) as a linear transformation is invariant under

change of bases. Let 𝐺z (z0)H and 𝐺z (z0)† be the Hermitian trans-

pose and the Moore-Penrose inverse of the Jacobian matrix𝐺z (z0)
respectively where z0 = 𝜙 (v0). If we further assume the isomor-

phisms 𝜙 and 𝜓 are isometric in the sense that ∥𝜙 (v)∥2 = ∥v∥
and ∥𝜓 (w)∥2 = ∥w∥ for all v ∈ V and w ∈ W, then gv (v0)H
and gv (v0)† are well-defined as gv (v0)H = 𝜙−1 ◦𝐺z (z0)H ◦𝜓 and

gv (v0)† = 𝜙−1 ◦𝐺z (z0)† ◦𝜓 that are invariant under isometric iso-

morphisms. A mapping f is holomorphic in a non-open domain

Π ⊂ V if there is an open subset Ω of V containing Π and a

holomorphic mapping g defined in Ω such that f (z) ≡ g(z) for
all z ∈ Π. For a holomorphic mapping (u, v) ↦→ f (u, v), its Jaco-
bian at (u0, v0) is denoted by fuv (u0, v0) and its partial Jacobian

with respect to, say v, is denoted by fv (u0, v0).

3 COMPLEX ANALYTIC MANIFOLDS

For our applications, we consider complex analytic manifolds in

normed vector spaces in the following definition.

Definition 3.1 (Complex Analytic Manifold). Let U be a finite-

dimensional normed vector space overC. A subsetΠ ofU is a com-

plex analytic manifold of dimension𝑚 if there is an𝑚-dimensional

normed vector space V over C and, for every u ∈ Π, there is an

open neighborhood Σ of u inU and a holomorphicmapping𝜙 from

Σ∩Π onto an open subset Λ ofV with a holomorphic inverse. The

dimension deficit dim(U) −𝑚 is called the codimension of Π inU
denoted by codim(Π).

The term manifold in this paper refers to a complex analytic

manifold in the sense of Definition 3.1. Aswe shall elaborate in case

studies in ğ4, algebraic problems whose solutions possess certain

algebraic structures can often be modeled as a system of nonlinear

equations in the form of solving f (u, v) = 0 for the variable v at the

given data parameter value u. The following theorem establishes

four basic conditions for such a model so that the data points form

a manifold. The theorem simplifies the tedious process of estab-

lishing a manifold to verifying the four conditions.

Theorem 3.2 (Geometric Modeling Theorem). A subset Π is

a complex analytic manifold in a normed vector space U over C if

and only if there are normed vector spaces V and W over C with

dim(V) ≤ dim(W) ≤ dim(U) + dim(V) < ∞ such that, at every

u0 ⊂ Π, there is a holomorphic mapping (u, v) ↦→ f (u, v) from an

open domain Ω ⊂ U ×V toW with the properties below:

(i) There is a v0 ∈ V such that f (u0, v0) = 0.

(ii) fuv (u0, v0) is surjective and fv (u0, v0) is injective.
(iii) f (u, v) = 0 implies u ∈ Π.

(iv) For every open neighborhood Δ of v0 in V , there is an open

neighborhood Σ of u0 in U such that every u ∈ Σ ∩ Π corre-

sponds to a unique v ∈ Δ with f (u, v) = 0.

Under these conditions, we have codim(Π) = dim(W) − dim(V).

Proof. Let Π be a manifold in U with W = U as in Defini-

tion 3.1, the mapping (u, v) ↦→ f (u, v) = u − 𝜙−1 (v) from Σ × Λ in

U ×V to W satisfies conditions (i)-(iv).

Conversely, assume f satisfies all the specified conditions and

we proceed to prove Π is a manifold in U. From property (ii), we

can writeU = Û ⊕ Ǔ with dim(Ǔ) + dim(V) = dim(W), regard
U as Û × Ǔ and consider f as (û, ǔ, v) ↦→ f (û + ǔ, v) from the

domain Ω ⊂ Û × Ǔ ×V toW so that fǔv (û0, ǔ0, v0) is invertible
where û0+ǔ0 = u0. By the Implicit Mapping Theorem [21], there is

a neighborhoodΛ×Δ of
(
û0, (ǔ0, v0)

)
in Û×(Ǔ×V), holomorphic

mappings g : Λ ⊂ Û → Ǔ and h : Λ ⊂ Û → V such that

(ǔ0, v0) = (g(û0), h(û0)) and f (û+ ǔ, v
)
= 0 for

(
û, (ǔ, v)

)
in Λ×Δ

if and only if (ǔ, v) = (g(û), h(û)). Without loss of generality, we

assumeΛ×Δ = Ω since we can redefine f with a restricted domain.

Let𝜓 be the holomorphic mapping û ↦→ (û, g(û)) from Λ ⊂ Û
to Û×Ǔ. Then𝜓 (Λ) ⊂ Π since (𝜓 (û), h(û)) = (û, g(û), h(û)) is in
f−1 (0) for all û ∈ Λ. We also have 𝜓 (û0) = (û0, g(û0)) = (û0, ǔ0).
Let Δ̃ = {v ∈ V | (ǔ0, v) ∈ Δ} that is an open neighborhood v0
in V . By the condition (iv), there is an open neighborhood Σ of

(û0, ǔ0) in Û × Ǔ such that every (û, ǔ) ∈ Σ ∩ Π corresponds to

a unique v ∈ Δ̃ with f (û, ǔ, v) = 0. Denote Λ̃ = 𝜓−1 (Σ) that is
open in Û and define the holomorphic mapping 𝜙 : (û, ǔ) ↦→ û

from Σ ⊂ Û × Ǔ to Û. Clearly 𝜙 ◦𝜓 (û) = 𝜙 (û, g(û)) = û for all

û ∈ Λ̃ ⊂ Λ. Furthermore, for every (û, ǔ) ∈ Σ∩Π, there is a unique

v ∈ Δ̃ with f (û, ǔ, v) = 0 so that (ǔ, v) = (g(û), h(û)). Namely

𝜓 ◦ 𝜙 (û, ǔ) = 𝜓 (û) = (û, g(û)) = (û, ǔ). Consequently, the subset
Π is a manifold in U = Û × Ǔ of dimension dim(Û) that equals
to dim(U) + dim(V) − dim(W). □

459

Geometric Modeling and Regularization of Algebraic Problems ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Assuming themodel of solving f (u, v) = 0 for v at the given data

u is properly formulated so that the conditions of Theorem 3.2 are

satisfied, the solution v is locally Lipschitz continuous with respect

to the data u on the manifold.

Corollary 3.3. Using the notations in Theorem 3.2, assume f sat-

isfies the condition (i)-(iv). Further assumeU,V andW are normed

and the isomorphisms from V and W to Cdim(V) and Cdim(W) ,
respectively, are isometric. Then there is an open neighborhood Ω0

of u0 in U such that, for every fixed parameter u1 ∈ Ω0 ∩ Π, the

equation f (u1, v) = 0 has a unique solution v1 ∈ V and

∥v1−v0∥ ≤ ∥fv (u0, v0)†∥ ∥fu (u0, v0)∥ ∥u1−u0∥+𝑜 (∥u1−u0∥) . (1)

Proof. Using the notations in the proof of Theorem 3.2, we have

f (û + g(û), h(û)) ≡ 0 for û ∈ Λ, implying the linear transforma-

tion

fû (û0 + ǔ0, v0) + fǔ (û0 + ǔ0, v0) ◦ gû (û0) + fv (û0 + ǔ0, v0) ◦ hû (û0)

maps û1 − û0 to 0 from all û1 ∈ Û. Furthermore, from

v1 − v0 = hû (û0) (û1 − û0) + ℎ.𝑜.𝑡 and
ǔ1 − ǔ0 = gû (û0) (û1 − û0) + ℎ.𝑜.𝑡 .

whereℎ.𝑜.𝑡 . denotes the sum of higher order terms of û1−û0. Since
V and W are isometrically isomorphic to Cdim(V) and Cdim(W)

respectively so that fv (u0, v0)† is well-defined andwe have (1) from

v1 − v0 = −fv (û0 + ǔ0, v0)†
(
fû (û0 + ǔ0, v0) (û1 − û0)

+ fǔ (û0 + ǔ0, v0) (ǔ1 − ǔ0)
)
+ ℎ.𝑜.𝑡

= −fv (û0 + ǔ0, v0)† fûǔ (û0 + ǔ0, v0)
(
(û1, ǔ1) − (û0, ǔ0)

)
+ ℎ.𝑜.𝑡

= −fv (u0, v0)† fu (u0, v0) (u1 − u0) + ℎ.𝑜.𝑡 □

The solution of a singular problem is known to be infinitely sen-

sitive to arbitrary perturbations. In [15], Kahan discovers an inher-

ently bounded stability under perturbations constrained on certain

heuristically conceived łpejorative manifoldsž for the root-finding

and the eigenvalue problems. Theorem 3.2 rigorously establishes

the conditions formodeling general algebraic problems so that data

points indeed formmanifolds on which the solutions maintain cer-

tain structures. Corollary 3.3 further quantifies the bounded sensi-

tivity on those manifolds. More importantly, the bounded sensitiv-

ity can be extended beyond the manifold into its tubular neighbor-

hood, making it possible to harness the stability in practical com-

putation from empirical data as we shall elaborate in ğ6.

4 GEOMETRIC MODELING CASE STUDIES

Algebraic problems are often phrased in a pattern of finding a cer-

tain solution at a data point, such as łfind the kernel of a matrixž,

łfind the greatest common divisor of a polynomial pairž, łfind the

Jordan Canonical Form of a matrixž, łfind the factorization of a

polynomialž. The data point can usually be represented as a vector

u = û in a vector space U. The key to the geometric analysis and

the accurate solution of those problems is to model the solution as

a vector v in a vector spaceV in a zero-finding problem:

At û ∈ U, solve the equation f (û, v) = 0 for v ∈ V (2)

where f : (u, v) ↦→ f (u, v) is a holomorphic mapping from an open

domain Ω ⊂ U × V . By adding proper auxiliary equations, the

model can be set up so that the mapping f satisfies the conditions

(i)-(iv) in Theorem 3.2. Consequently, a collection of the data points

at which the solutions possess a specific algebraic structure can be

established as a structure-preserving manifold, making it possible

to apply the Tubular Neighborhood Theorem (Theorem 6.2). The

model (2) also enables computation of an approximate solution as

the least squares solution v = ṽ of the equation f (ũ, v) = 0. We

elaborate such geometric modeling in case studies in this section.

4.1 The matrix rank-revealing problem

In C𝑚×𝑛 of𝑚 × 𝑛 matrices of complex entries with the Frobenius

norm ∥ · ∥
𝐹
, the subset C𝑚×𝑛

𝑟 =
{
𝐴 ∈ C𝑚×𝑛 �� rank (𝐴) = 𝑟

}
is a

manifold of codimension (𝑚−𝑟) (𝑛−𝑟). This result is proved in [7]

and can be easily verified via using Theorem 3.2 as follows.

Let𝑂 and 𝐼 denote the zero and identitymatrices, respectively, in

C
𝑚×𝑛 . At amatrix𝐴 ∈ C𝑚×𝑛 of rank-𝑟 , consider the rank-revealing

problem as finding the kernel K(𝐴) of dimension 𝑛 − 𝑟 . The fun-

damental equation is 𝐺 𝑋 = 𝑂 for 𝑋 ∈ C𝑛×(𝑛−𝑟) at the data point
𝐺 = 𝐴. The crucial auxiliary equation that ensures proper model-

ing under Theorem 3.2 can be derived from the fact that, for almost

all 𝐶 ∈ C𝑛×(𝑛−𝑟) , there is an 𝑁 ∈ C𝑛×(𝑛−𝑟) whose columns form

a basis for K(𝐴) such that 𝐶H 𝑁 = 𝐼 . Finding the kernel of 𝐴 can

then be modeled as a zero-finding problem:

Solve f (𝐴,𝑋) = (𝑂,𝑂) for 𝑋 ∈ C𝑛×(𝑛−𝑟)

where, with a fixed parameter 𝐶 ∈ C𝑛×(𝑛−𝑟) , the mapping f from

Ω ⊂ C𝑚×𝑛 × C𝑛×(𝑛−𝑟) to C(𝑛−𝑟)×(𝑛−𝑟) × C𝑚×(𝑛−𝑟) is

f : (𝐺, 𝑋) ↦−→ (𝐶H𝑋 − 𝐼 , 𝐺 𝑋) . (3)

Here Ω is an open neighborhood of (𝐴, 𝑁) and, for every (𝐺,𝑋) ∈
Ω, we have ∥𝐴 − 𝐺 ∥

𝐹
< ∥𝐴†∥−12 . Clearly f (𝐴, 𝑁) = (𝑂,𝑂) and

(𝐺,𝑋) ∈ f−1 (𝑂,𝑂) implies 𝐺 has the desired algebraic structure

of rank 𝑟 , leading to the condition (i) and (iii) of Theorem 3.2. The

Jacobian f𝐺𝑋 (𝐴, 𝑁) : (𝐺,𝑋) ↦→ (𝐶H 𝑋,𝐺 𝑁 + 𝐴𝑋) is surjective
since both 𝐶 and 𝑁 are of full rank 𝑛 − 𝑟 . The partial Jacobian

f𝑋 (𝐴, 𝑁) : 𝑋 ↦→ (𝐶H 𝑋,𝐴𝑋) is injective since (𝐶H 𝑋,𝐴𝑋) = (𝑂,𝑂)
implies 𝑋 = 𝑁 𝑇 for a certain𝑇 ∈ C(𝑛−𝑟)×(𝑛−𝑟) ,𝑂 = 𝐶H 𝑋 = 𝑇 and

𝑋 = 𝑂 , leading to the condition (ii) of Theorem 3.2. Furthermore,

every matrix 𝐺 ∈ C𝑚×𝑛
𝑟 sufficiently close to 𝐴 corresponds to a

matrix 𝑋 ∈ C𝑛×(𝑛−𝑟) whose column span K(𝐺) and 𝐶H 𝑋 = 𝐼 so

f (𝐺,𝑋) = (𝑂,𝑂) and ∥𝑋 −𝑁 ∥
𝐹
can be as small as we wish, validat-

ing the condition (iv) of Theorem 3.2. As a result, the subset C𝑚×𝑛
𝑟

is a manifold of codimension

codim(C𝑚×𝑛
𝑟) = (𝑛 − 𝑟)2 +𝑚 (𝑛 − 𝑟) −𝑛 (𝑛 − 𝑟) = (𝑚 − 𝑟) (𝑛 − 𝑟) .

The subset C𝑚×𝑛
𝑟 for every 𝑟 is a structure-preserving manifold

for the rank-revealing problem and the desired solution (rank and

kernel) is modeled in the vector 𝑋 ∈ C𝑛×(𝑛−𝑟) as the zero of the

mapping 𝑋 ↦→ f (𝐺,𝑋) at 𝐺 ∈ C𝑚×𝑛
𝑟 .

4.2 The root-finding problem

A polynomial can be considered as a data vector in the vector space

P𝑛 of polynomials with degrees up to 𝑛 and the norm

∥𝑎0 + 𝑎1 𝑥 + · · · + 𝑎𝑛 𝑥
𝑛 ∥ := ∥(𝑎0, 𝑎1, . . . , 𝑎𝑛)∥2

thatmakesP𝑛 isometrically isomorphic toC𝑛+1. The complete root-

finding problem of a polynomial is equivalent to its factorization.

460

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Zhonggang Zeng

For any positive integers ℓ1 + · · · + ℓ𝑘 = 𝑛, denote

Fℓ1 · · ·ℓ𝑘 := (4){
𝛼 (𝑥 − 𝑧1)ℓ1 · · · (𝑥 − 𝑧𝑘)ℓ𝑘

�� 𝛼, 𝑧1, . . . , 𝑧𝑘 ∈ C, 𝑧𝑖 ≠ 𝑧 𝑗 , ∀𝑖 ≠ 𝑗
}
.

Every polynomial 𝑝 ∈ P𝑛 belongs to one of such a subset in which

the factorization structure is preserved. The root-finding problem

of 𝑝 becomes calculating the distinct roots z1, . . . , 𝑧𝑘 and multi-

plicities ℓ1, . . . , ℓ𝑘 . At any 𝑝 ∈ Fℓ1 · · ·ℓ𝑘 with leading coefficient 𝑢0
and distinct roots 𝑢1, . . . , 𝑢𝑘 of multiplicities ℓ1, . . . , ℓ𝑘 respectively,

the root-finding problem of 𝑝 can thus be modeled as identifying

Fℓ1 · · ·ℓ𝑘 and solving a zero-finding problem in the form of the mod-

ified Viet́e’s equation

𝜙 (z, 𝑝) = 0 for z = (𝑧0, 𝑧1, . . . , 𝑧𝑘) ∈ C𝑘+1 (5)

with the holomorphic mapping from Ω ⊂ C𝑘+1 × P𝑛 to P𝑛

𝜙 : (z, 𝑔) ↦−→ 𝑧0 (𝑥 − 𝑧1)ℓ1 · · · (𝑥 − 𝑧𝑘)ℓ𝑘 − 𝑔 (6)

where Ω is an open neighborhood of u = (𝑢0, 𝑢1, . . . , 𝑢𝑘) in C𝑘+1
in which every y = (𝑦0, 𝑦1, . . . , 𝑦𝑘) ∈ Ω implies (𝑦0, 𝑦𝑖1 , . . . , 𝑦𝑖𝑘)
∉ Ω whenever the permutation (𝑖1, . . . , 𝑖𝑘) ≠ (1, . . . , 𝑘). Such a

geometric modeling leads to the geometric insight in the following

theorem along with a proof that is made simple by Theorem 3.2.

The theorem sets the foundation for the accurate solution of root-

finding problem in the presence of multiple roots. The theorem is

proposed in [25] by this author with an incomplete proof due to

necessary abbreviation under the page limit.

Theorem 4.1. The subset Fℓ1 · · ·ℓ𝑘 is a complex analytic manifold

in P𝑛 of codimension 𝑛 − 𝑘 where 𝑛 = ℓ1 + · · · + ℓ𝑘 .

Proof. For any 𝑝 = 𝑢0 (𝑥 − 𝑢1)ℓ1 . . . (𝑥 − 𝑢𝑘)ℓ𝑘 ∈ Fℓ1 · · ·ℓ𝑘 with

distinct roots 𝑢1, . . . , 𝑢𝑘 , define 𝜙 as in (6) at 𝑝 so 𝜙 (u, 𝑝) = 0where

u = (𝑢0, . . . , 𝑢𝑘). For any 𝑔 ∈ P𝑛 , we have 𝜙z𝑔 (u, 𝑝) (0, 𝑔) ≡ −𝑔,
implying 𝜙z𝑔 (u, 𝑝) is surjective. With a proof nearly identical to

that of Theorem 3.3 in [24], the partial Jacobian𝜙z (u, 𝑝) is injective.
Moreover, the continuity of polynomial roots with respect to the

coefficients ensures the condition (iv) of Theorem 3.2 is satisfied,

concluding the proof. □

We callFℓ1 · · ·ℓ𝑘 a factorizationmanifold inP𝑛 . Factorizationman-

ifolds serve as structure-preserving manifolds for polynomials in

P𝑛 . The desired factorization is represented by the vector (𝑧0, 𝑧1, . . . , 𝑧𝑘)
in C𝑘+1 in the zero-finding model (5). The root-finding problem

is thus equivalent to identifying the factorization manifold Fℓ1 · · ·ℓ𝑘
along with the zero-finding problem (5).

Modeling the factorization problem for polynomials including

multivariate cases is given in [23] where the proof of the Factor-

ization Manifold Theorem can be substantially simplified by citing

Theorem 3.2 rather than essentially mirroring its proof.

4.3 The greatest common divisor problem

We say two polynomials are ∼-equivalent if they are constant mul-

tiples of each other. For every (𝑝, 𝑞) ∈ P𝑚×P𝑛 , let gcd(𝑝, 𝑞) denote
the greatest common divisor (GCD) of 𝑝 and 𝑞 as an equivalent

class under ∼. The subset P𝑘
𝑚,𝑛 defined as{

(𝑝, 𝑞) ∈ P𝑚 × P𝑛

�� deg(𝑝) =𝑚, deg(𝑞) = 𝑛, deg(gcd(𝑝, 𝑞)) = 𝑘
}

is a manifold of codimension 𝑘 in P𝑚 × P𝑛 where deg(·) is the

degree of any polynomial (·), as asserted in [26]. To establish this

result, we model the GCD computation as a zero-finding problem.

At any particular (𝑝, 𝑞) ∈ P𝑘
𝑚,𝑛 , there is a (𝑢, 𝑣,𝑤) = (𝑢, 𝑣, �̂�) sat-

isfying the quations 𝑢 𝑣 − 𝑝 = 𝑢𝑤 −𝑞 = 0 at the data (𝑝, 𝑞) = (𝑝, 𝑞)
with 𝑢 ∈ gcd(𝑝, 𝑞). To ensure proper modeling, we need an auxil-

iary equation 𝑟 ⊙ 𝑢 = 𝛽 ≠ 0 for almost all 𝑟 ∈ P𝑘 such as a random

polynomial where ⊙ is the dot-product between two polynomials

defined as the dot-product between the corresponding coefficient

vectors. Using such 𝑟 and 𝛽 as parameters, the GCD problem of the

pair (𝑝, 𝑞) can be modeled as identifying the GCD degree 𝑘 and

Solve 𝜓 (𝑢, 𝑣,𝑤, 𝑝, 𝑞) = (0, 0, 0) for (𝑢, 𝑣,𝑤) ∈ P𝑘 ×P𝑚−𝑘 ×P𝑛−𝑘

with the holomorphic mapping

𝜓 : Ω ⊂ P𝑘 × P𝑚−𝑘 × P𝑛−𝑘 × P𝑚 × P𝑛 −→ C × P𝑚 × P𝑛

(𝑢, 𝑣,𝑤, 𝑝, 𝑞) ↦−→ (𝑟 ⊙ 𝑢 − 𝛽, 𝑢 𝑣 − 𝑝, 𝑢 𝑤 − 𝑞) (7)

where Ω is a neighborhood of (𝑢, 𝑣, �̂�, 𝑝, 𝑞) in the product space

P𝑘 ×P𝑚−𝑘 ×P𝑛−𝑘 ×P𝑚 ×P𝑛 such that every (𝑢, 𝑣,𝑤, 𝑝, 𝑞) ∈ Ω sat-

isfies deg(𝑝) = 𝑚, deg(𝑞) = 𝑛 and deg(𝑢) = 𝑘 with the pair (𝑣,𝑤)
being coprime. Clearly𝜓 (𝑢, 𝑣, �̂�, 𝑝, 𝑞) = (0, 0, 0). The Jacobian

𝜓𝑢𝑣𝑤𝑝𝑞 (𝑢, 𝑣, �̂�, 𝑝, 𝑞) :

(𝑢, 𝑣,𝑤, 𝑝, 𝑞) ↦→ (𝑟 ⊙ 𝑢, 𝑢 𝑣 + 𝑢 𝑣 − 𝑝,𝑢 𝑤 + 𝑢 �̂� − 𝑞)
can be easily verified to be surjective. The injectivity of the partial

Jacobian𝜓𝑢𝑣𝑤 (𝑢, 𝑣, �̂�, 𝑝, 𝑞) is established by [26, Corollary 4.1]. At

every (𝑢, 𝑣,𝑤, 𝑝, 𝑞) ∈ Ω, the equality 𝜓 (𝑢, 𝑣,𝑤, 𝑝, 𝑞) = (0, 0, 0) im-

plies (𝑝, 𝑞) ∈ P𝑘
𝑚,𝑛 . It is also a straightforward verification that, for

every (𝑝, 𝑞) ∈ P𝑘
𝑚,𝑛 sufficiently close to (𝑝, 𝑞), there is a unique

(𝑢, 𝑣,𝑤) ∈ P𝑘 × P𝑚−𝑘 × P𝑛−𝑘 such that 𝜓 (𝑢, 𝑣,𝑤, 𝑝, 𝑞) = (0, 0, 0)
with ∥(𝑢, 𝑣,𝑤) − (𝑢, 𝑣, �̂�)∥ as small as we wish. By Theorem 3.2, the

subset P𝑘
𝑚,𝑛 is a manifold in P𝑚 × P𝑛 of the codimension

dim(C × P𝑚 × P𝑛) − dim(P𝑘 × P𝑚−𝑘 × P𝑛−𝑘) = 𝑘.

Eachmanifold amoungP0
𝑚,𝑛, P1

𝑚,𝑛, . . . , P
min{𝑚,𝑛}
𝑚,𝑛 preserves aGCD

structure (degree) for polynomial pairs on it.

4.4 The Jordan Canonical Form problem

The collection of 𝑛 × 𝑛 matrices with a fixed structure of Jordan

Canonical Form (JCF) in terms of the Segre characteristics is called

a bundle that is proved to be a manifold [2, 12] through differen-

tial geometry. Bundles can be established as manifolds using the

geometric modeling approach and Theorem 3.2 but the complete

proof is beyond the scope of this paper. We illustrate the geometric

modeling of a bundle using a specific JCF structure here. Let

Π =
{
𝑋 𝐽𝑛 (𝜆)𝑋−1 �� 𝜆 ∈ C, 𝑋 ∈ C𝑛×𝑛 is invertible

}
where 𝐽𝑛 (𝜆) denotes the 𝑛 × 𝑛 elementary Jordan block with the

eigenvalue 𝜆. Namely Π is the collection of all 𝑛 × 𝑛 matrices with

a single eigenvalue in a single Jordan block. The JCF problem with

respect to this Jordan structure can be modeled as follows. At any

𝐴 ∈ Π, pick a random vector c ∈ C𝑛 . For almost all such c, there is a

unique invertible matrix𝑋 ∈ C𝑛×𝑛 whose columns are eigenvector

and generalized eigenvectors such that 𝐴𝑋 = 𝑋 𝐽𝑛 (𝜆∗) along with
the auxiliary equation cH 𝑋 = [1, 0, · · · , 0].

Solve g(𝐴, 𝜆, 𝑍) = (0,𝑂) for (𝜆, 𝑍) ∈ C × C𝑛×𝑛

with the holomorphic mapping from Ω ⊂ C𝑛×𝑛 × C × C𝑛×𝑛 to

C
1×𝑛 ×C𝑛×𝑛 as g : (𝐺, 𝜆, 𝑍) ↦→

(
cH𝑍 − [1, 0, · · · , 0],𝐺 𝑍 −𝑍 𝐽𝑛 (𝜆)

)

461

Geometric Modeling and Regularization of Algebraic Problems ISSAC ’20, July 20–23, 2020, Kalamata, Greece

where Ω is a neighborhood of (𝐴, 𝜆∗, 𝑋) in which all (𝐺, 𝜆, 𝑍) has
an invertible 𝑍 and nonzero dot-product between c and the lone

eigenvector of 𝐺 . The fact that the subset Π is a manifold can be

established by verifying the four conditions in Theorem 3.2 on g

using common techniques in linear algebra, and

codim(Π) = dim(C1×𝑛 × C𝑛×𝑛) − dim(C × C𝑛×𝑛) = 𝑛 − 1.

5 THE LEAST SQUARES PROBLEM

As elaborated in ğ4, an algebraic problems can be modeled as a

zero-finding problem in the form of f (u, v) = 0 for the variable

v at a certain fixed parameter u, and the equation is often overde-

termined. In practical computation, the parameter u is expected to

be represented via empirical data ũ at which the exact solution v

generally does not exist for the perturbed equation f (ũ, v) = 0. The

resulting model becomes a least squares problem.

LetV andW be normed vector spaces isometrically isomorphic

to C𝑛 and C𝑚 respectively with𝑚 > 𝑛. Let x ↦→ f (x) be a mapping

from an open subset Ω of V to W. Since f (Ω) is of dimension at

most 𝑛 in W with dim(W) = 𝑚 > 𝑛, conventional solutions to

the equation f (x) = b do not exist in general. Instead, we seek a

least squares solution x∗ ∈ Λ of f (x) = b such thatf (x∗) − b
2 = min

x∈Λ

f (x) − b
2

where Λ ⊂ Ω is an open neighborhood of x∗. In other words, we

seek x∗ so that f (x∗) is the projection of b to the surface f (Ω),
minimizing the distance from b to f (Ω). Further assume V and

W are isometrically isomorphic to C𝑛 and C𝑚 respectively so that

fx (z)H and fx (z)† are well defined. Then a least squares solution is

a critical point for the equation f (x) = b, namely (c.f. [24])

fx (x∗)H
(
f (x∗) − b

)
= 0. (8)

The Gauss-Newton iteration1

x𝑘+1 = x𝑘 − fx (x𝑘)†
(
f (x𝑘) − b

)
for 𝑘 = 0, 1, . . . (9)

is effective in finding the least squares solution of f (x) = b and

is locally convergent. The following lemma provides detailed con-

vergence conditions in Kantorovich style.

Lemma 5.1. [25] LetV andW be finite-dimensional normed vec-

tor spaces isometrically isomorphic to C𝑛 and C𝑚 respectively. As-

sume x ↦→ f (x) is a holomorphic mapping from an open domain

Ω ⊂ V to W with a critical point x∗ ∈ Ω of the system f (x) = b

and fx (x∗) is injective. Then there is an open neighborhood Λ ⊂ Ω of

x∗ along with constants 𝜁 , 𝛾 > 0 such thatfx (z)† ≤ 𝜁 and
f (z) − f (z̃) − fx (z̃) (z − z̃)

 ≤ 𝛾
z − z̃

2 (10)

for all z, z̃ ∈ Λ. Further assume ∥f (x∗) − b∥ is small so that(fx (z)† − fx (x∗)†
) (
f (x∗) − b

) ≤ 𝜎
z − x∗

 (11)

for a constant 𝜎 < 1 at every z ∈ Λ. Then for all x0 ∈ Λ satisfyingx0 − x∗

<

1−𝜎
𝜁𝛾

and {x ∈ V | ∥x − x∗∥ < ∥x0 − x∗∥} ⊂ Λ,

the iteration (9) is well defined in Λ, converges to x∗, and satisfiesx𝑘+1 − x∗
 ≤ (

𝜎 + 𝜁𝛾
x𝑘 − x∗

) x𝑘 − x∗

for 𝑘 = 0, 1, . . . with 𝜎 + 𝜁𝛾
x0 − x∗

< 1.

1A general purpose MATLAB module GaussNewton is implemented in the package
NAClab [31] with an intuitive interface [28].

6 TUBULAR NEIGHBORHOOD THEOREM

The very reason we need to establish manifolds in regularizing ill-

posed algebraic problems lies in one of the fundamental theorems

in differential geometry: A smooth manifold is contained in an

open tubular neighborhood in which every point can be uniquely

projected onto the manifold following a normal line and the pro-

jection mapping possesses certain desired properties. The concept

of tubular neighborhood is also regarded as łone of the most useful

notions in the theory of differential manifoldsž [8]. Standard ver-

sions of the tubular neighborhood theorem for real smooth mani-

folds can be found in textbooks of differential geometry (see e.g.

[4]). Those versions are presented in abstract forms for general

purposes and do not appear to be applicable to our geometric mo-

dles involving complex analytic manifolds. For the applications in

regularization of ill-posed algebraic problems, the projection to the

manifold does not need to be holomorphic and it suffices to be Lips-

chitz continuous with the Lipschitz constant serving as a condition

number measuring the sensitivity of the underlying problem.

Lemma 6.1. Let U, V and W be normed vector spaces over C

that are isometrically isomorphic to C𝑙 , C𝑚 and C𝑛 respectively with

𝑚 ≤ 𝑛 ≤ 𝑙 +𝑚. Assume Π is a complex analytic manifold inU and,

for every u0 ∈ Π, there is a holomorphic mapping (u, v) ↦→ f (u, v)
from an open domain Ω ⊂ U × V to W satisfying the conditions

(i)-(iv) in Theorem 3.2. Then the following assertions hold:

(i) There are open neighborhoods Ψ of u0 in U and Φ of v0 in

V along with 𝜋 : Ψ ⊂ U → V whose image ṽ = 𝜋 (ũ) ∈ Π is the

unique least squares solution to the equation f (ũ, v) = 0 in Φ at every

ũ ∈ Ψ. Furthermore, for every open neighborhood Φ̌ ⊂ Φ of v0 inV ,

there is an open neighborhood Ψ̌ ⊂ Ψ of u0 such that 𝜋 (Ψ̌) ⊂ Φ̌.

(ii) The mapping 𝜋 is locally Lipschitz continuous in Ψ.

(iii) From every ũ ∈ Ψ serving as empirical data for u0, the least

squares solution 𝜋 (ũ) = ṽ satsifies

∥ṽ−v0∥ ≤ ∥fv (u0, v0)†∥ ∥fu (u0, v0)∥ ∥ũ−u0∥ +𝑜 (∥ũ−u0∥) (12)

Proof. Using the notations in the proof of Theorem 3.2, there

exists a bounded open neighborhood Σ of v0 in V such that the

subset {û0}×({ǔ0}×Σ) ⊂ Λ×Δ. For any 𝑟 > 0 and the subsetΦ𝑟 :=

{v ∈ Σ| ∥v−v0∥ < 𝑟 }, we claim there is an 𝑠 > 0 such that, at every

ũ ∈ Ψ𝑠 := {u ∈ U|∥u − u0∥ < 𝑟 }, the minimum min
v∈Φ𝑟

∥f (ũ, v)∥
occurs at a certain ṽ ∈ Φ𝑟 that is a least squares solution of f (ũ, v) =
0. Assume otherwise. Then there is a sequence {u𝑗 }∞𝑗=1 converging
to u0 such that min

v∈Φ𝑟
∥f (u𝑗 , v)∥ = ∥f (u𝑗 , v𝑗)∥ at v𝑗 ∈ Φ𝑟 \ Φ𝑟

for every 𝑗 = 1, 2, Since Φ𝑟 \ Φ𝑟 is compact, we can assume v𝑗
converges to a certain v̌. Thus

∥f (u0, v̌)∥ = lim
𝑗→∞

∥f (u𝑗 , v𝑗)∥ ≤ lim
𝑗→∞

∥f (u𝑗 , v0)∥ = 0,

implying v̌ = v0 that contradicts to v̌ ∈ Φ𝑟 \ Φ𝑟 .
We can assume 𝑟1 > 0 is sufficiently small so that, for every

v1, v2 ∈ Φ𝑟1 and u ∈ Ψ𝑠1 , there exist constants 𝜁 ,𝛾 > 0 such that

∥f (u, v2) − f (u, v1) − fv (u, v1) (v2 − v1)∥ < 𝛾 ∥v2 − v1∥2(fv (u, v2)† − fv (u, v1)†
)
f (u, v1)

<

1
2 ∥v2 − v1∥

∥fv (u, v1)†∥ < 𝜁 , ∥v2 − v1∥ < 1
2 𝜁 𝛾

.

462

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Zhonggang Zeng

Let 𝑟2 =
1
3 𝑟1, Φ = Φ𝑟2 and Ψ = Ψ𝑠1 ∩ Ψ𝑠2 . For every û ∈ Ψ, the

minimummin
v∈Φ ∥f (û, v)∥ is attainable at a certain v̂ ∈ Φ and, for

any initial iterate v1 ∈ Φ, we have ∥v1 − v̂∥ <
1

2 𝜁 𝛾
= (1− 1

2)
1
𝜁 𝛾

and the set Ω = {v ∈ V|∥v − v̂∥ < ∥v1 − v̂∥} is a subset of Φ𝑟1
since, for every v ∈ Ω, we have

∥v − v0∥ ≤ ∥v − v̂∥ + ∥v̂ − v0∥ < ∥v − v̂∥ + 𝑟2 < ∥v1 − v̂∥ + 𝑟2
≤ ∥v1 − v0∥ + ∥v0 − v̂∥ + 𝑟2 < 𝑟2 + 𝑟2 + 𝑟2 = 𝑟1

By Lemma 5.1, for every initial iterate v1 ∈ Φ, the Gauss-Newton

iteration on the equation f (û, v) = 0 converges to v̂. This local

minimum is unique in Φ because, assuming there is another min-

imum point v̌ ∈ Φ of ∥f (û, v)∥, the Gauss-Newton iteration con-

verges to v̂ from the initial iterate v̌. On the other hand, the Gauss-

Newton iteration from the local minimum point v̌ stays at v̌, imply-

ing v̌ = v̂ and thus the existence of themapping 𝜋 . Given any open

subset Φ̌ of Φ, there is an open subset Ψ̌ of Ψ for the same reason

that Ψ𝑠 exists such that the minimum min
v∈Φ̌

∥f (ũ, v)∥ is attain-

able at a certain ṽ ∈ Φ̌ for every fixed ũ ∈ Ψ̌. This ṽ is unique in

Φ since ũ ∈ Ψ, and thus ṽ is unique in Φ̌, implying ṽ = 𝜋 (ũ) so
that 𝜋 (Ψ̌) ⊂ Φ̌.

On the Lipschitz continuity the mapping 𝜋 , let ũ, û ∈ Ψ with

𝜋 (ũ) = ṽ and 𝜋 (û) = v̂. The one-step Gauss-Newton iteration

v1 = ṽ − fv (û, ṽ)† f (û, ṽ) from ṽ on the equation f (û, v) = 0

toward v̂ yields the iniquality ∥v1 − v̂∥ ≤ 𝜇 ∥ṽ − v̂∥ with 𝜇 < 1

by Lemma 5.1. Thus

∥ṽ − v̂∥ ≤ ∥v̂ − v1∥ + ∥v1 − ṽ∥ ≤ 𝜇 ∥ṽ − v̂∥ + ∥v1 − ṽ∥.
Using the identity fv (ũ, ṽ)† f (ũ, ṽ) = 0, the Lipschitz continuity of

f and fv along with

∥fv (û, ṽ)† − fv (ũ, ṽ)†∥

≤ 3 ∥fv (ũ, ṽ)†∥2 ∥fv (û, ṽ) − fv (ũ, ṽ)∥ (c.f. [20, Theorem 3.4])

≤ 3 ∥fv (ũ, ṽ)†∥2 ∥(fv)u (ũ, ṽ)∥ ∥û − ũ∥ +𝑂 (∥û − ũ∥2)
for sufficiently small ∥û − ũ∥ where (fv)u (ũ, ṽ) is the Jacobian of

the holomorphic mapping u ↦→ fv (u, ṽ) at ũ, we have
∥ṽ − v̂∥ ≤ 1

1−𝜇 ∥v1 − ṽ∥

=
1

1−𝜇 ∥fv (û, ṽ)† f (û, ṽ) − fv (ũ, ṽ)† f (ũ, ṽ)∥

≤ 1
1−𝜇

(
∥fv (ũ, ṽ)†∥ ∥f (û, ṽ) − f (ũ, ṽ)∥

+∥fv (û, ṽ)† − fv (ũ, ṽ)†∥ ∥f (û, ṽ)∥
)

≤ ∥fv (ũ,ṽ)† ∥
1−𝜇

(
∥fu (ũ, ṽ)∥ + 3 ∥fv (ũ, ṽ)†∥ ∥(fv)u (ũ, ṽ)∥ ∥f (ũ, ṽ∥

)
×∥û − ũ∥ +𝑂 (∥û − ũ∥2). (13)

As a result, there is a constant 𝜃 > 0 such that ∥ṽ− v̂∥ ≤ 𝜃 ∥ũ− û∥
when ∥ũ − û∥ is sufficiently small, leading to the assertion (ii). Set

(ũ, ṽ) = (u0, v0) and (û, v̂) = (u0 +Δu, v0 +Δv) in (13) and apply

f (u0, v0) = 0 and 𝜇 = 𝑂 (∥û − ũ∥). The inequality (12) holds. □

Based on Lemma 6.1, the following Theorem 6.2 is a version of

the Tubular Neighborhood Theorem for manifolds in normed vec-

tor spaces isometrically isomorphic to C𝑛 ’s. It is specifically tai-

lored for the application of solving ill-posed algebraic problems

from empirical data. There appears to be no such a version in the

literature of differential geometry since some analytic structures

can not be preserved in the tubular neighborhood and not needed

in our application. We provide a proof based on the Gauss-Newton

iteration and Lemma 6.1.

Theorem 6.2 (Tubular Neighborhood Theorem). Let Π be a

complex analytic manifold in a vector space U that is isometrically

isomorphic to C𝑛 . There is a tubular neighborhood, namely an open

subset Ω ⊃ Π of U such that every b ∈ Ω has a unique projection

xb ∈ Π of minimum distance to b, that isxb − b
 = inf

x∈Π

x − b
 =: dist (b, Π) . (14)

Furthermore, the projection b ↦→ xb from Ω to Π is locally Lipschitz

continuous.

Proof. Let u0 be any particular point in Π. Since Π is a complex

analytic manifold inU, there is an open neighborhoodM of u0 in

U, an open subsetN ofC𝑚 and a holomorphicmapping v ↦→ 𝜙 (v)
from N ⊂ C𝑚 onto M ∩ Π with a holomorphic inverse 𝜙−1 from
M∩Π ontoN . Let the holomorphic mapping f : (u, v) ↦→ 𝜙 (v)−
u fromM×N ⊂ U×C𝑚 toU. Then f satisfies all the conditions

of Lemma 6.1. As a result, there is an open neighborhood Ψ ⊂ M
of u0 in U such that, for every û ∈ Ψ, there exists a unique least

squares solution v = v̂ for the equation f (û, v) = 0 so that

∥f (û, v̂)∥ = min
v∈Φ

∥f (û, v)∥ = min
v∈Φ

∥𝜙 (v) − û∥.

We can assume Ψ is sufficiently small so that any û ∈ Ψ satisfies

∥û − u∥ > ∥𝜙 (v̂) − û∥ for all u ∈ Π \ 𝜙 (Φ), implying the local

minimum ∥𝜙 (v̂)−û∥ = minu∈Π ∥u−û∥ is the global minimum. □

From computational point of view, the desired solution v̂ ∈ V
at a data point û ∈ Umay bemodeled as the zero of a holomorphic

mapping v ↦→ f (û, v) with û in a structure-preserving manifold Π

inU. When û is not known exactly but represented by its empirical

data in ũ ≈ û, the Tubular Neighborhood Theorem ensures the

projection ǔ of ũ to Π uniquely exists, enjoys Lipschitz continuity

and is independent of choices of the mapping f in the model. As a

result, the solution v̌ at the parameter value ǔ can be defined as the

regularized solution at ũ. From Lemma 6.1, the regularized solution

v̌ can be accurately approximated by the least squares solution ṽ

of the equation f (ũ, v) = 0 as long as f is properly constructed

following the Geometric Modeling Theorem.

7 THE GEOMETRIC REGULARIZATION:

CONCLUDING REMARKS AND EXAMPLES

As a notion attributed to Hadamard, a mathematical model is a

well-posed problem if its solution satisfies existence, uniqueness and

Lipschitz continuitywith respect to data perturbations. Those prob-

lems may also be loosely referred to as being regular. Otherwise,

the problem is ill-posed or often called singular. In general, singu-

lar problems are difficult to solve accurately from empirical data

and require some form of regularization.

Algebraic problems such as the polynomial GCD/factorization,

thematrix rank/kernel and thematrix JordanCanonical Form (JCF)

are not all singular. For each problem, the data space is partitioned

bymanifolds and, on everymanifold, the solutionsmaintains a spe-

cific algebraic structure. Data associated with regular problems are

open dense in the data space, forming a manifold of codimension

zero. A problems is singular when the data point lies on a manifold

463

Geometric Modeling and Regularization of Algebraic Problems ISSAC ’20, July 20–23, 2020, Kalamata, Greece

of a positive codimension. Due to the dimension deficit, a pertur-

bation generically pushes the data away from the native manifold

and the alters the structure of the solution, implying the solution

is highly sensitive to arbitrary data perturbations.

However, the solutions of those singular problems are locally

Lipschitz continuous if the data are constrained on a structure-

preserving manifold. By the Geometric Modeling Theorem, alge-

braic problem on any such manifold Π can be modeled as a zero

finding problem f (u, v) = 0 for the variable v at u ∈ Π. If an un-

derlying data point û is known with limited accuracy through em-

pirical data ũ, Lemma 6.1 and the Tubular Neighborhood Theorem

(Theorem 6.2) ensure that solving for the least squares solution ṽ of

the equation f (ũ, v) = 0 is a well-posed problem. In other words, a

singular algebraic problem can be regularized if it can be properly

modeled following the GeometricModeling Theorem assuming the

structure of the solution is known.

Detailed elaboration on the identification of the solution struc-

ture is beyond the scope of this paper. In a nutshell, we can quan-

tify the singularity of each data point as the codimension of the

manifold onwhich the data point resides. The structure-preserving

manifolds are entangled to form a strata in which every manifold

is embedded in the closures of some manifolds of lower codimen-

sions. In other words, such an algebraic problem is highly sensitive

but the sensitivity is directional such that sufficiently small pertur-

bations can only reduce the singularity and never increase it.

At an underlying data point û on a structure-preserving man-

ifold Π, the given empirical data point ũ is a small perturbation

from û. Assuming the perturbation is sufficiently small so that ũ

stays in the tubular neighborhood, the underlying manifold Π is

of the highest singularity (codimension) among all the manifolds

intersect a small neighborhood of ũ. Identification of the solution

structure becomes a discrete optimization problem in maximizing

the codimension (singularity) of the manifolds within an error tol-

erance of the empirical data point ũ. Consequently, a natural strat-

egy for computing the regularized solution at an empirical data

parameter ũ is a two-staged process in either symbolic, numerical

or hybrid computation:

Stage I. Within an error tolerance of the data ũ, find the nearby

structure-preserving manifold of the highest singularity.

Stage II. Solve the equation f (ũ, v) = 0 that is properly formu-

lated based on the Geometric Modeling Theorem for its least

squares solution v = ṽ.

The least squares solution ṽ is a regularized solution at the empir-

ical data ũ within the error tolerance. It is not a solution at ũ in

conventioanl sense but accurately approximates the exact solution

at the underlying data û with an error bound proportional to the

data error ∥ũ − û∥.
This regularization strategy has been applied to many singu-

lar algebraic problems such as computing multiple roots of uni-

variate polynomials [25], approximate polynomial GCD [26, 30],

factorization of multivariate polynomials [23] from empirical data.

The resulting algorithms are implemented in the MATLAB pack-

age NAClab [31] including a preliminary module for computing

the Jordan Canonical Form from possibly perturbed matrices. We

illustrate the strategy the following examples.

Example 7.1. Let the polynomial pair (𝑝, 𝑞) ∈ P13 × P11 where

𝑝 = 1 − 0.333𝑥 + 0.667𝑥3 + 𝑥10 − 0.333𝑥11 + 0.666𝑥13

𝑞 = 1.429 + 3.571𝑥 + 1.429𝑥10 + 3.571𝑥11

serving as empirical data of the pair (𝑝, 𝑞) that equals(
1 − 1

3𝑥 + 2
3𝑥

3 + 𝑥10 − 1
3𝑥

11 + 2
3𝑥

13, 10
7 + 25

7 𝑥 + 10
7 𝑥

10 − 25
7 𝑥

11
)
.

In exact sense, we have gcd(𝑝, 𝑞) = 1+𝑥10 but gcd(𝑝, 𝑞) = 1 that are

far apart due to the singularity of the GCD even though the data

error is about 10−3. The computing objective is to find an approx-

imate GCD ≈ 1 + 𝑥10 from the empirical data (𝑝, 𝑞) by calculating

a regularized GCD within the data error bound 10−3.
At Stage I, the GCD degree (i.e. structure) is identified by com-

puting the numerical nullity of the Sylvester matrix 𝑆 (𝑝, 𝑞) within
the error tolerance 10−3. This numerical nullity is identical to the

degree 10 of gcd(𝑝, 𝑞). Therefore, the nativeGCDmanifold isP10
13,11.

Further more, initial approximation (𝑢0, 𝑣0,𝑤0) of the GCD and co-

factors can be obtained by solving two linear systems (c.f. [26]).

At Stage II, we formulate the geometric model by constructing

the mapping 𝜓 as in (7) for 𝑘 = 10,𝑚 = 13, 𝑛 = 11 and solve the

equation 𝜓 (𝑢, 𝑣,𝑤, 𝑝, 𝑞) = (0, 0, 0) for the least squares solution

(𝑢, 𝑣,𝑤) ∈ P2 × P11 × P9 with 𝑢 ∼ 1 + 0.9998𝑥10 with an accuracy

in the order of the data error bound. The regularized GCD compu-

tation is implemented in NAClab so that the above computation

can be carried out in simple MATLAB sequence:
>> p = '1-.333*x+0.667*x^3+x^10-0.333*x^11 + 0.666*x^13'; % enter polynomial p

>> q = '-1.429 - 3.571*x - 1.429*x^10 - 3.571*x^11'; % enter polynomial q

>> pgcd(p, q, 0.001) % regularized GCD of p and q within error tolerance 0.001

ans =

'-1.24459473398662 - 1.24432753501985*x^10'

The result is a multiple of 1 + 0.9998𝑥10.

Computing Jordan Canonical Forms of matrices from empirical

data is known to be a tremendous challenge. We conclude this pa-

per with two examples of the module RegularizedJCF inNAClab

based on the geometric modeling elaborated in this paper.

Example 7.2. There are applications where empirical data may

even be preferred over exact ones. Consider the matrix

𝐴(𝑟, 𝑠, 𝑡) =

2r-2s+t 1-s+t r-3-3s+2t r-1-2s+t -1 -1-s+t
r+4+s-2t 3r+2-2t 2r+10+2s-4t r+5+s-2t -r+s r+3+s-2t
1+4r-3s-t 1+3r-2s-t 1+7r-4s-2t 1+4r-3s-t -r-1+s 2r-s-t
7s-t-6r-2 4s-t-3r-3 10s-2t-8r+1 7s-t-5r-1 3+r-s 3s-t-2r+1
r+3+2s-3t 3r+1-3t 2r+9+4s-6t r+4+2s-3 t 1-r+2s r+3+2s-3t
-5r-4+5t s+5t-6r-2 10t-9r-10-s -5r-5+5t 2r-2s 5t -3r-3-s

whose JCF is known to be 𝐽3 (𝑟) ⊕ 𝐽2 (𝑠) ⊕ 𝐽1 (𝑡). When the param-

eter values 𝑟 , 𝑠 and 𝑡 are exact, say
√
𝑘 +

√
𝑘 +

√
𝑘 for 𝑘 = 2, 3, 5, test

on Maple 17 could not finish after hours of computation. We can

instead use approximation by rounding to, say 5 digits after deci-

mal and find the regularized JCF within the error tolerance 10−4.
The following is a demo of using RegularizedJCF inNAClab that

takes negligible elapsed time 0.03 second.
>> A = [214636 149815 -231707 -81521 -100000 -50185 % enter matrix data

269034 233854 738068 369034 31336 169034

-75161 -43824 8509 -75161 -68664 -112488

-061796 -255806 251061 234361 268664 112858

119219 -143454 538438 219219 358830 119219

5757 237093 -219823 -94243 -62673 270577]/100000;

>> [J,X] = RegularizedJCF(A,1e-4); % call the software module

>> single(J) % display JCF in single precision

ans =

1.9615549 0.4031104 0 0 0 0

0 1.9615549 3.7739313 0 0 0

0 0 1.9615549 0 0 0

0 0 0 2.2749500 -1.2751906 0

0 0 0 0 2.2749500 0

0 0 0 0 0 2.7730999

464

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Zhonggang Zeng

obtaining the exact JCF structure and eigenvalues of an accuracy

that is moderately proportional to that of the data.

Example 7.3. Godunov [13, page 10] uses the matrix

𝐺 =

©«

289 2064 336 128 80 32 16
1152 30 1312 512 288 128 32
−29 −2000 756 384 1008 224 48
512 128 640 0 640 512 128
1053 2256 −504 −384 −756 800 208
−287 −16 1712 −128 1968 −30 2032
−2176 −287 −1565 −512 −541 −1152 −289

ª®®®¬
to illustrate the difficulties in computing eigenvalues. The eigen-

values 0,±1,±2,±4 of 𝐺 are simple but extremely sensitive with

condition numbers arround 4 × 1012, implying𝐺 is a small pertur-

bation from a matrix on a singular bundle. Trying an error toler-

ance, say 10−9, the module RegularizedJCF in NAClab finds the

regularized JCF of 𝐺 within 10−9 as a direct sum of of a 4 × 4 and

a 3 × 3 elementary Jordan blocks

𝐽 = 𝐽4 (−2.121366210414752) ⊕ 𝐽3 (2.828488280553040).

This is the JCF of a nearby matrix𝐺 of singularity 5 with a distance

∥𝐺 −𝐺 ∥
𝐹
/∥𝐺 ∥

𝐹
≈ 3.13 × 10−10. The condition number of the JCF

of 𝐺 is much smaller at 3.6 × 106. There is another nearby bundle

of even higher singularity. Seting an error tolerance, say 0.005, the

regularized JCF of𝐺 becomes a single 7×7 elementary Jordan block

𝐽7 (0.000000000001459). with a moderate condition number 4268.5.

In 9-digit integer representation, there is a matrix �̃� = 𝑋 𝐽 𝑋−1

with an exact eigenvalue zero in a 7 × 7 elementary Jordan block

and a relative distance ∥𝐺 − �̃� ∥
𝐹
/∥𝐺 ∥

𝐹
≈ 5.3 × 10−7 where

𝑋 =

-500000494 499231619 475440501 550430216 249476819 344543097 244097
244296 39690036 305346098 418811015 245808894 229491349 499999756

499998993 -499191461 -425110651 -12743120 -32442421 -25936159 500000266
406 240 -293020 209706406 260079479 212082338 -33

-499998969 499191323 425111477 11515088 494926230 166312083 500000239
500001425 -499232519 -475441212 -550432966 -249025474 786194594 244019

-244271 -39689958 -305347057 -417583165 -708293582 -370419391 499999620

𝐽 = 1

106

0 -163589092 0 0 0 0 0
0 0 1279307109 0 0 0 0
0 0 0 2151028721 0 0 0
0 0 0 0 113025963 0 0
0 0 0 0 0 2502078868 0
0 0 0 0 0 0 3622414612
0 0 0 0 0 0 0

We now have a geometric interpretation on the sensitivity of 𝐺

in an eigenproblem. Let Π7, Π4 3 and Π1111111 be bundles corre-

sponding to Jordan structures 𝐽7 (𝜆), 𝐽4 (𝜆1) ⊕ 𝐽3 (𝜆2) and 𝐽1 (𝜆1) ⊕
· · · ⊕ 𝐽1 (𝜆7) respectively. The bundle Π7 is of the highest singular-

ity (i.e. codimension) 6 among all bundels in C7×7 and is embedded

in the closure of Π4 3 with a lower singularity 5 while both bundles

are in the closure of the open dense bundle Π1111111 of singularity

zero. Although 𝐺 ∈ Π1111111 is regular, its eigenproblem is highly

ill-conditioned because 𝐺 is a tiny distance 10−10 from the bundle

Π4 3 of singularity 5 and 10−7 from the most singular bundle Π7.

With proper geometric modeling, the regularized JCF problem of

𝐺 is not as ill-conditioned as the straightforward eigenproblem.

8 ACKNOWLEDGMENTS

The author is indebted to his former colleague Marian Gidea for

introducing the Tubular Neighborhood Theorem in a conversation

leading to this work.

REFERENCES
[1] P.-A. Absil, R. Mahony, and R. Sepulchre. 2008. Optimization Algorithms on Ma-

trix Manifolds. Princeton University Press, Princeton and Oxford.

[2] V. I. Arnold. 1971. On matrices depending on parameters. Russian Math. Surveys
26 (1971), 29ś43.

[3] Stephen Barnett and R. G. Cameron. 1985. Introduction to Mathematical Control
Theory. Oxford University Press, New York.

[4] Keith Burns and Marian Gidea. 2005. Differential Geometry and Topology: with a
view to dynamical systems. CRC Press.

[5] Robert M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt. 2002. A geometric-
numeric algorithm for factoring multivariate polynomials. (2002). Proc. IS-
SAC’02, ACM Press, pages 37-45.

[6] Jean-Pierre Dedieu. 1996. Approxiate solutions of Numerical Problems, condi-
tion number analysis and condition number theorems. In The Mathematics of
Numerical Analysis, Lectures in Applied Math., 32. Amer. Math.Soc., 263ś283.

[7] James W. Demmel and A. Edelman. 1995. The dimension of matrices (matrix
pencils) with given Jordan (Kronecker) Canonical Forms. Linear Alg. and its
Appl. 230 (1995), 61ś87.

[8] Jean Alexandre Dieudonné. 1989. A History of Algebraic and Differential Topol-
ogy, 1900-1960. Birkhäuser, Boston.

[9] A. Edelman, T. A. Arias, and S. T. Smith. 1998. The geometry of algorithms with
orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998), 303ś353.

[10] Alan Edelman, Erik Elmroth, and Bo Kågström. 1997. A geometric approach to
perturbation theory of matrices and and matrix pencils. Part I: Versal deforma-
tions. SIAM J. Matrix Anal. Appl. 18 (1997), 653ś692.

[11] Alan Edelman, Erik Elmroth, and Bo Kågström. 1999. A geometric approach to
perturbation theory of matrices and and matrix pencils. Part II: a stratification-
enhanced staircase algorithm. SIAM J. Matrix Anal. Appl. 20 (1999), 667ś699.

[12] C. G. Gibson. 1976. Regularity of the Segre stratification. Math. Proc. Cambridge
Phil. Soc 80 (1976), 91ś97.

[13] S. K. Godunov. 1998. Modern Aspects of Linear Algebra. Translations of Math.
Monographs, v. 175, Amer. Math. Soc., Providence, RI.

[14] R. A. Horn and C. R. Johnson. 1985. Matrix Analysis. Cambridge University
Press.

[15] W. Kahan. 1972. Conserving Confluence Curbs Ill-Condition. (1972). Technical
Report 6, Computer Science, University of California, Berkeley.

[16] E. Kaltofen, Z. Yang, and L. Zhi. 2006. Approximate greatest common divisor of
several polynomials with linearly constrained coefficients and singular polyno-
mials. (2006). Proc. ISSAC’06, ACM Press, pp 169ś176.

[17] Carl D.Meyer. 2000. Matrix Analysis andApplied Linear Algebra. SIAM, Philadel-
phia.

[18] CleveMoler and Charles Van Loan. 2003. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Review 45 (2003), 3ś49.

[19] A. J. Sommese, J. Verschelde, and C.W.Wampler. 2005. Introduction to numerical
algebraic geometry. In Solving Polynomial Equations, A. Dickenstein and Ioan-
nis Z. Emiris (Eds.). Springer-Verlag Berlin Heidelberg, 301ś337.

[20] G. W. Stewart. 1977. On the perturbation of pseudo-inverses, projections, and
linear least squares problems. SIAM Review 19 (1977), 634ś662.

[21] J.L. Taylor. 2000. Several Complex Variables with Connections to Algebraic Geom-
etry and Lie Groups. Amer. Math. Soc., Providence, Rhode Island.

[22] C. W. Ueberhuber. 1997. Numerical Computation 2. Springer-Verlag, Berlin, Hei-
delberg, New York.

[23] Wenyuan Wu and Zhonggang Zeng. 2017. The numerical factorization of poly-
nomials. J. Foundation of Computational Mathematics 17 (2017), 259ś286.

[24] Zhonggang Zeng. 2005. Computingmultiple roots of inexact polynomials. Math.
Comp. 74 (2005), 869ś903. DOI. 10.1090/S0025-5718-04-01692-8.

[25] Zhonggang Zeng. 2009. The approximate irreducible factorization of a univari-
ate polynomial. Revisited. (2009). Proc. of ISSAC ’09, ACM Press, pp. 367ś374.

[26] Zhonggang Zeng. 2011. The numerical greatest common divisor of univariate
polynomials. In Contemporary Mathematics Vol. 556, Amer. Math. Society, Ran-
domization, Relaxation andComplexity in Polynomial Equation Solving, J.M. Ro-
jas L. Gurvits, P. Pébay and D. Thompson (Eds.). Providence, RI, 187ś217.

[27] Zhonggang Zeng. 2016. Sensitivity and computation of a defective eigen-
value. SIAM J. Matrix Analysis and Applications 37, 2 (2016), 798ś817. DOI.
10.1137/15M1016266.

[28] Zhonggang Zeng. 2018. Intuitive interface for solving linear and nonlinear sys-
tem of equations. InMathematical Software Ð ICMS 2018 (LNCS 10931), J. H. Dav-
enport, M. Kauers, G. Labahn, and J. Urban (Eds.). Springer International AG,
495ś506.

[29] Zhonggang Zeng. 2019. On the sensitivity of singular and ill-conditioned
linear systems. SIAM J. Matrix Anal. Appl. 40, 3 (2019), 918ś942. DOI.
10.1137/18M1197990.

[30] Zhonggang Zeng and B.H. Dayton. 2004. The approximate GCD of inexact poly-
nomials. II: A multivariate algorithm. (2004). Proceedings of ISSAC’04, ACM
Press, pp 320-327.

[31] Zhonggang Zeng and Tien-Yien Li. 2013. NAClab: A Matlab toolbox for numeri-
cal algebraic computation. ACMCommunications in Computer Algebra 47 (2013),
170ś173. http://homepages.neiu.edu/∼naclab.

465

Author Index
A
Abelard, Simon 14
Abou Zeid, Karim 305, 312
Asadi, Mohammadali 22

B
Betten, Anton 30
Birmpilis, Stavros 38
Bostan, Alin 46
Boulier, Francois 178
Brandt, Alexander 22
Buchacher, Manfred 54

C
Capco, Jose 62
Caruso, Xavier 70
Charalambous, Hara 78
Chen, Shaoshi 91
Chenavier, Cyrille 83
Chyzak, Frédéric 99
Cortadellas Benitez, Teresa . . . 107
Couvreur, Alain 14
Cox, David A. 1
Cuyt, Annie 12

D
D’Andrea, Carlos 107
Dahan, Xavier 114
de Wolff, Timo 138, 297
Dickenstein, Alicia 5
Diekert, Volker 122
DiPasquale, Michael 130
Dressler, Mareike 138
Du, Hao . 146
Du, Lixin . 91
Duff, Timothy 154
Dumas, Jean-Guillaume 162
Dumas, Philippe 99

E
Elliott, Jesse 170
England, Matthew 13

F
Falkensteiner, Sebastian 178
Flores, Zachary 130

G
Garay-Lopez, Cristhian 178
Garg, Abhibhav 186
Giesbrecht, Mark 170, 194
Giorgi, Pascal 202, 210
Grenet, Bruno 202, 210
Groh, Friedemann 218
Guerrini, Eleonora 226
Guo, Jing 146

H
Haiech, Mercedes 178
Heuer, Janin 138
Hofstadler, Clemens 83
Hone, Andrew 234

Huang, Bo 241
Huang, Qiao-Long 194
Hubert, Evelyne 402

I
Imbach, Rémi 249
Ishihara, Yuki 257, 265

J
Jindal, Gorav 273

K
Karagiannis, Kostas 78
Karanikolopoulos, Sotiris 78
Katsamaki, Christina 281
Kauers, Manuel 54, 91
Kenison, George 289
Kontogeorgis, Aristides 78

L
Labahn, George 38
Le, Huu Phuoc 297
Lebreton, Romain 226
Lecerf, Grégoire 14
Levandovskyy, Viktor . . . 305, 312
Levin, Alexander 320
Li, Ziming 146
Lim, Lek-Heng 8
Lipton, Richard 289
Lu, Dong 328

M
Magron, Victor 450
Mantzaflaris, Angelos 336
Mathieu-Mahias, Axel 344
Melquiond, Guillaume 352
Metzlaff, Tobias 312
Miasnikov, Alexei 360
Moir, Robert 22
Montoro, Eulàlia 107
Moreno Maza, Marc 22
Mou, Chenqi 364
Mourrain, Bernard 336

N
Nabeshima, Katsusuke 426
Nagasaka, Kosaku 372
Naldi, Simone 380
Naumann, Helen 138
Neiger, Vincent 380, 388
Nikolaev, Andrey 360
Noordman, Marc Paul 178

O
Oliveira, Rafael 396
Ouaknine, Joël 289

P
Pan, Victor Y. 249
Pandey, Anurag 273
Pernet, Clément 162
Perret du Cray, Armelle 202

Peterson, Chris 130
Pogudin, Gleb 54
Potapov, Igor 122

Q
Quisquater, Michaël 344

R
Raab, Clemens G. 83
Regensburger, Georg 83
Rieu-Helft, Raphaël 352
Roche, Daniel S. 210
Rodriguez Bazan, Erick David 402
Rosenkilde, Johan 388
Rouillier, Fabrice 281
Ruddy, Michael 154

S
Safey El Din, Mohab 62, 297
Saxena, Nitin 186
Schicho, Josef 62
Schoenemann, Hans 305
Schost, Éric 170, 194
Sedoglavic, Alexandre 162
Semukhin, Pavel 122
Sharma, Vikram 410
Shukla, Himanshu 273
Solomatov, Grigory 388
Sottile, Frank 418
Storjohann, Arne 38
Szanto, Agnes 336

T
Teramoto, Hiroshi 426
Toghani, Zeinab 178
Tonelli-Cueto, Josué 434
Tsigaridas, Elias 281, 434

V
Vaccon, Tristan 70, 114, 257
Verron, Thibaut 70, 91

W
Wang, Dingkang 328, 442
Wang, Hesong 442
Wang, Jie 450
Wong, Elaine 146
Worrell, James 289

X
Xiao, Fanghui 328, 442
Xie, Yuzhen 22

Y
Ye, Ke . 8
Yokoyama, Kazuhiro 257

Z
Zafeirakopoulos, Zafeirakis . . . 281
Zappatore, Ilaria 226
Zeng, Zhonggang 458
Zisopoulos, Charilaos 273

466

	ISSAC 2020 Conference Organization
	ISSAC 2020 Sponsors and Supporters
	Invited talks
	• Reflections on Elimination Theory
	David A. Cox (Amherst College, Amherst MA, USA)
	• Positive Solutions of Sparse Polynomial Systems
	Alicia Dickenstein (Universidad de Buenos Aires, Buenos Aires, Argentina)
	• Ubiquity of the Exponent of Matrix Multiplication
	Lek-Heng Lim (The University of Chicago, Chicago IL, USA), Ke Ye (Chinese Academy of Sciences, Beijing, China)

	Tutorials
	• What do Sparse Interpolation, Padé Approximation, Gaussian Quadrature and Tensor Decomposition Have in Common?
	Annie Cuyt (University of Antwerp, Belgium, and Shenzhen University, China)
	• Real Quantifier Elimination by Cylindrical Algebraic Decomposition, and Improvements by Machine Learning
	Matthew England (Coventry University, UK)

	Contributed Papers
	• Sub-quadratic Time for Riemann-Roch Spaces
	Simon Abelard (Institut Polytechnique de Paris, France), Alain Couvreur (Inria Saclay, France), Grégoire Lecerf (CNRS, France)
	• On the Parallelization of Triangular Decompositions
	Mohammadali Asadi (University of Western Ontario, Canada), Alexander Brandt (University of Western Ontario, Canada), Robert H. C. Moir (University of Western Ontario, Canada), Marc Moreno Maza (University of Western Ontario, Canada), Yuzhen Xie (University of Western Ontario, Canada)
	• The Orbiter Ecosystem for Combinatorial Data
	Anton Betten (Colorado State University, USA)
	• A Las Vegas Algorithm for Computing the Smith Form of a Nonsingular Integer Matrix
	[height=0.4cm]badge.png Distinguished Student Author Award Stavros Birmpilis (University of Waterloo, Canada), George Labahn (University of Waterloo, Canada), Arne Storjohann (University of Waterloo, Canada)
	• Computing the -th Term of a -Holonomic Sequence
	Alin Bostan (Inria, France)
	• Separating Variables in Bivariate Polynomial Ideals
	Manfred Buchacher (Johannes Kepler University, Austria), Manuel Kauers (Johannes Kepler University, Austria), Gleb Pogudin (École Polytechnique, France and Higher School of Economics, Moscow, Russia)
	• Robots, Computer Algebra and Eight Connected Components
	Jose Capco (Innsbruck University, Austria), Mohab Safey El Din (Sorbonne University, France), Josef Schicho (Johannes Kepler University, Austria)
	• Signature-based Algorithms for Gröbner Bases over Tate Algebras
	Xavier Caruso (University of Bordeaux, France), Tristan Vaccon (University of Limoges, France), Thibaut Verron (Johannes Kepler University, Austria)
	• Syzygies of Ideals of Polynomial Rings over Principal Ideal Domains
	Hara Charalambous (Aristotle University of Thessaloniki, Greece), Kostas Karagiannis (Aristotle University of Thessaloniki, Greece), Sotiris Karanikolopoulos (National and Kapodistrian University of Athens, Greece), Aristides Kontogeorgis (National and Kapodistrian University of Athens, Greece)
	• Compatible Rewriting of Noncommutative Polynomials for Proving Operator Identities
	Cyrille Chenavier (Johannes Kepler University, Austria), Clemens Hofstadler (Johannes Kepler University, Austria), Clemens G. Raab (Johannes Kepler University, Austria), Georg Regensburger (Johannes Kepler University, Austria)
	• Integral Bases for P-Recursive Sequences
	Shaoshi Chen (Chinese Academy of Sciences, China), Lixin Du (Johannes Kepler University, Austria), Manuel Kauers (Johannes Kepler University, Austria), Thibaut Verron (Johannes Kepler University, Austria)
	• A Gröbner-Basis Theory for Divide-and-Conquer Recurrences
	Frédéric Chyzak (Inria Saclay, France), Philippe Dumas (Inria Saclay, France)
	• Bounds for Degrees of Minimal bases of Parametric Surfaces
	Teresa Cortadellas Benitez (Universitat de Barcelona, Spain), Carlos D'Andrea (Universitat de Barcelona, Spain), M. Eulàlia Montoro (Universitat de Barcelona, Spain)
	• On A Non-Archimedean Broyden Method
	Xavier Dahan (Tohoku University, Japan), Tristan Vaccon (University of Limoges, France)
	• Decidability of Membership Problems for Flat Rational Subsets of GL(2, Q) and Singular Matrices
	Volker Diekert (University of Stuttgart, Germany), Igor Potapov (University of Liverpool, UK), Pavel Semukhin (University of Oxford, UK)
	• On the Apolar Algebra of a Product of Linear Forms
	Michael DiPasquale (Colorado State University, USA), Zachary Flores (Colorado State University, USA), Chris Peterson (Colorado State University, USA)
	• Global Optimization via the Dual SONC Cone and Linear Programming
	Mareike Dressler (University of California San Diego, USA), Janin Heuer (Technische Universitat Braunschweig, Germany), Helen Naumann (Goethe Universität Frankfurt am Main, Germany), Timo de Wolff (Technische Universitat Braunschweig, Germany)
	• An Additive Decomposition in Logarithmic Towers and Beyond
	Hao Du (Austrian Academy of Sciences, Austria), Jing Guo (Chinese Academy of Sciences, China), Ziming Li (Chinese Academy of Sciences, China), Elaine Wong (Austrian Academy of Sciences, Austria)
	• Numerical Equality Tests for Rational Maps and Signatures of Curves
	Timothy Duff (Georgia Institute of Technology, USA), Michael Ruddy (Max Planck Institute for Mathematics in the Sciences, Germany)
	• On Fast Multiplication of a Matrix by its Transpose
	Jean-Guillaume Dumas (Université Grenoble Alpes, France), Clément Pernet (Université Grenoble Alpes, France), Alexandre Sedoglavic (Université de Lille, France)
	• On the Bit Complexity of Finding Points in Connected Components of a Smooth Real Hypersurface
	Jesse Elliott (University of Waterloo, Canada), Mark Giesbrecht (University of Waterloo, Canada), Éric Schost (University of Waterloo, Canada)
	• The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry
	[height=0.4cm]badge.png Distinguished Paper Award Sebastian Falkensteiner (Johannes Kepler University, Austria), Cristhian Garay-Lopez (Center for Research in Mathematics, Mexico), Mercedes Haiech (University of Rennes 1, France), Marc Paul Noordman (University of Groningen, The Netherlands), Zeinab Toghani (Queen Mary University of London, UK), Francois Boulier (University Lille, France)
	• Special-case Algorithms for Blackbox Radical Membership, Nullstellensatz and Transcendence Degree
	Abhibhav Garg (Indian Institute of Technology Kanpur, India), Nitin Saxena (Indian Institute of Technology Kanpur, India)
	• Sparse Multiplication for Skew Polynomials
	Mark Giesbrecht (University of Waterloo, Canada), Qiao-Long Huang (Shandong University, China), Éric Schost (University of Waterloo, Canada)
	• Essentially Optimal Sparse Polynomial Multiplication
	Pascal Giorgi (University of Montpellier, France), Bruno Grenet (University of Montpellier, France), Armelle Perret du Cray (University of Montpellier, France)
	• Fast In-place Algorithms for Polynomial Operations: Division, Evaluation, Interpolation
	Pascal Giorgi (Université de Montpellier, France), Bruno Grenet (Université de Montpellier, France), Daniel S. Roche (United States Naval Academy, USA)
	• Subdivisions for Macaulay Formulas of Sparse Systems
	Friedemann Groh (Industrielle Steuerungstechnik GmbH, Germany)
	• On the Uniqueness of Simultaneous Rational Function Reconstruction
	Eleonora Guerrini (Université de Montpellier, France), Romain Lebreton (Université de Montpellier, France), Ilaria Zappatore (Université de Montpellier, France)
	• Efficient ECM Factorization in Parallel with the Lyness Map
	Andrew Hone (University of Kent, UK)
	• Algorithmic Averaging for Studying Periodic Orbits of Planar Differential Systems
	Bo Huang (Beihang University, China)
	• New Progress in Univariate Polynomial Root Finding
	Rémi Imbach (New York University, USA), Victor Y. Pan (City University of New York, USA)
	• On FGLM Algorithms with Tropical Gröbner Bases
	Yuki Ishihara (Rikkyo University, Japan), Tristan Vaccon (University of Limoges, France), Kazuhiro Yokoyama (Rikkyo University, Japan)
	• Modular Techniques for Effective Localization and Double Ideal Quotient
	Yuki Ishihara (Rikkyo University, Japan)
	• How Many Zeros of Random Sparse Polynomials Are Real?
	Gorav Jindal (Aalto University, Finland), Anurag Pandey (Max Planck Institut für Informatik, Germany), Himanshu Shukla (Max Planck Institut für Informatik, Germany), Charilaos Zisopoulos (Saarland University, Germany)
	• On the Geometry and the Topology of Parametric Curves
	Christina Katsamaki (Inria Paris, Sorbonne Université, Paris Université), Fabrice Rouillier (Inria Paris, Sorbonne Université, Paris Université), Elias Tsigaridas (Inria Paris, Sorbonne Université, Paris Université), Zafeirakis Zafeirakopoulos (Gebze Technical University, Turkey)
	• On the Skolem Problem and Prime Powers
	George Kenison (University of Oxford, UK), Richard Lipton (Georgia Institute of Technology, USA), Joël Ouaknine (Max Planck Institute for Software Systems, Germany), James Worrell (University of Oxford, UK)
	• Computing the Real Isolated Points of an Algebraic Hypersurface
	Huu Phuoc Le (Sorbonne Université, France), Mohab Safey El Din (Sorbonne Université, France), Timo de Wolff (Technische Universitat Braunschweig, Germany)
	• Letterplace — a Subsystem of Singular for Computations with Free Algebras via Letterplace Embedding
	Viktor Levandovskyy (RWTH Aachen University, Germany), Hans Schoenemann (Technical University of Kaiserslautern, Germany), Karim Abou Zeid (RWTH Aachen University, Germany)
	• Computation of Free Non-commutative Gröbner Bases over with Singular:Letterplace
	Viktor Levandovskyy (RWTH Aachen University, Germany), Tobias Metzlaff (Inria Sophia Antipolis, France), Karim Abou Zeid (RWTH Aachen University, France)
	• Some Properties of Multivariate Differential Dimension Polynomials and their Invariants
	Alexander Levin (The Catholic University of America, USA)
	• Further Results on the Factorization and Equivalence for Multivariate Polynomial Matrices
	Dong Lu (Beihang University, China), Dingkang Wang (Chinese Academy of Sciences, China), Fanghui Xiao (Chinese Academy of Sciences, China)
	• Punctual Hilbert Scheme and Certified Approximate Singularities
	Angelos Mantzaflaris (Inria Sophia Antipolis, France), Bernard Mourrain (Inria Sophia Antipolis, France), Agnes Szanto (North Carolina State University, USA)
	• Fast Multipoint Evaluation and Interpolation of Polynomials in the LCH-basis over
	Axel Mathieu-Mahias (Université de Versailles Saint-Quentin-en-Yvelines, France), Michaël Quisquater (Université de Versailles Saint-Quentin-en-Yvelines, France)
	• WhyMP, a Formally Verified Arbitrary-Precision Integer Library
	[height=0.4cm]badge.png Distinguished Student Author Award Guillaume Melquiond (Inria, France), Raphaël Rieu-Helft (TrustInSoft/Inria, France)
	• On Parameterized Complexity of the Word Search Problem in the Baumslag–Gersten Group
	Alexei Miasnikov (Stevens Institute of Technology, USA), Andrey Nikolaev (Stevens Institute of Technology, USA)
	• On the Chordality of Ordinary Differential Triangular Decomposition in Top-down Style
	Chenqi Mou (Beihang University, China)
	• Approximate GCD by Bernstein Basis, and its Applications
	Kosaku Nagasaka (Kobe University, Japan)
	• A Divide-and-conquer Algorithm for Computing Gröbner Bases of Syzygies in Finite Dimension
	Simone Naldi (University of Limoges, France), Vincent Neiger (University of Limoges, France)
	• Generic Bivariate Multi-point Evaluation, Interpolation and Modular Composition with Precomputation
	Vincent Neiger (University of Limoges, France), Johan Rosenkilde (Technical University of Denmark, Denmark), Grigory Solomatov (Technical University of Denmark, Denmark)
	• Conditional Lower Bounds on the Spectrahedral Representation of Explicit Hyperbolicity Cones
	Rafael Oliveira (University of Waterloo, Canada)
	• Ideal Interpolation, H-Bases and Symmetry
	Erick David Rodriguez Bazan (Inria Sophia Antipolis, France), Evelyne Hubert (Inria Sophia Antipolis, France)
	• Generalizing The Davenport-Mahler-Mignotte Bound – The Weighted Case
	Vikram Sharma (The Institute of Mathematical Sciences, Chennai, India)
	• General Witness Sets for Numerical Algebraic Geometry
	Frank Sottile (Texas A&M University, USA)
	• Parametric Standard System for Mixed Module and its Application to Singularity Theory
	Hiroshi Teramoto (Hokkaido University, Japan), Katsusuke Nabeshima (Tokushima University, Japan)
	• Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces
	Josué Tonelli-Cueto (Inria Paris, France), Elias Tsigaridas (Inria Paris, Sorbonne Université, Paris Université)
	• An Extended GCD Algorithm for Parametric Univariate Polynomials and Application to Parametric Smith Normal Form
	Dingkang Wang (Chinese Academy of Sciences, China), Hesong Wang (Chinese Academy of Sciences, China), Fanghui Xiao (Chinese Academy of Sciences, China)
	• A Second Order Cone Characterization for Sums of Nonnegative Circuits
	Jie Wang (Laboratoire d’Analyse et d’Architecture des Systèmes, France), Victor Magron (Laboratoire d’Analyse et d’Architecture des Systèmes, France)
	• Geometric Modeling and Regularization of Algebraic Problems
	Zhonggang Zeng (Northeastern Illinois University, USA)
	Author Index

