
mmonagan@cecm.sfu.ca

Jürgen Gerhard
Ilias Kotsireas (Eds.)

Third Maple Conference, MC 2019
Waterloo, Ontario, Canada, October 15–17, 2019
Proceedings

Maple in Mathematics
Education and Research

Communications in Computer and Information Science 1125

mmonagan@cecm.sfu.ca

Communications
in Computer and Information Science 1125

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, Xiaokang Yang,
and Junsong Yuan

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-0044-503X
https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120

mmonagan@cecm.sfu.ca

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

mmonagan@cecm.sfu.ca

Jürgen Gerhard • Ilias Kotsireas (Eds.)

Maple in Mathematics
Education and Research
Third Maple Conference, MC 2019
Waterloo, Ontario, Canada, October 15–17, 2019
Proceedings

123

mmonagan@cecm.sfu.ca

Editors
Jürgen Gerhard
Maplesoft
Waterloo, ON, Canada

Ilias Kotsireas
Wilfrid Laurier University
Waterloo, ON, Canada

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-41257-9 ISBN 978-3-030-41258-6 (eBook)
https://doi.org/10.1007/978-3-030-41258-6

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2126-8383
https://doi.org/10.1007/978-3-030-41258-6

mmonagan@cecm.sfu.ca

Preface

The Maple Conference is a meeting of Maple enthusiasts and experts from around the
world, covering topics in education, algorithms, and applications of the mathematical
software Maple. This conference has existed in various forms on and off for over two
decades, permitting participants to benefit from the experiences and insights of both
leading researchers in mathematics and computer science, and of passionate educators.
It was a great pleasure to be part of its revival this year, and to welcome participants
from around the world, including Canada, the USA, France, China, Spain, Belgium,
and the UK.

In three decades, Maple has grown from a research project in symbolic computation
to a complete environment for mathematical problem solving and exploration that is
used by mathematicians, engineers, scientists, educators, and students around the
globe. Thousands of sophisticated algorithms are implemented in Maple today, and this
tremendous growth is due to both Maple visionaries and developers, but also to Maple
users. Maple has been used as a crucial ingredient in countless Master and PhD theses
in academia worldwide, as well as in commercial and government projects in robotics,
medicine, green energy, space exploration, and more.

The Maple Conference 2019 was held at the University of Waterloo in Waterloo,
Ontario, Canada, during October 15–17, 2019. This conference featured two keynote
speakers:

• Dr. Marvin Weinstein, physicist at the Stanford Linear Accelerator Center for 42
years and now CSO of Quantum Insights

• Dr. Laurent Bernardin, President and CEO of Maplesoft, the developers of Maple

This volume contains the contributed papers from the conference, as well as
extended abstracts of contributed talks. All submissions were reviewed by an inter-
national committee, and the quality of the accepted papers was very impressive.

We would like to thank the authors and presenters for making the conference both
interesting and useful. We thank the members of the Maple Conference 2019 Program
Committee and additional referees for their insightful comments and suggestions for
the authors. We also offer thanks to Kathleen McNichol, Eithne Murray, Stacey
Nichols, and Jennifer Iorgulescu from Maplesoft, for their tireless support of this
conference and the proceedings. Additionally, we thank the staff at Springer for their
help in completing this Maple Conference 2019 book of proceedings.

We are proud to recognize the invaluable patronage of the Maple Conference 2019
partners and sponsors, namely the Perimeter Institute for Theoretical Physics, the Fields
Institute for Mathematical Sciences, Springer, the University of Waterloo, and Wilfrid
Laurier University.

Finally, we are delighted to serve as Proceedings Editors for the present volume and
hope Maple users will refer to it in the future, to learn the latest algorithmic

mmonagan@cecm.sfu.ca

developments, be inspired to conduct further research in interesting topics using Maple,
and enlarge their outlook on how to use Maple effectively in educational contexts in
high school and university.

October 2019 Jürgen Gerhard
Ilias Kotsireas

vi Preface

mmonagan@cecm.sfu.ca

Organization

Scientific Program Committee

Alin Bostan Inria Saclay, France
Jacques Carette McMaster University, Canada
Bruce Char Drexel University, USA
Shaoshi Chen Chinese Academy of Sciences, China
Paulina Chin Maplesoft, Canada
Frédéric Chyzak Inria Saclay, France
Robert Corless Western University, Canada
Thierry Dana-Picard Jerusalem College of Technology, Israel
James Davenport University of Bath, UK
Paul DeMarco Maplesoft, Canada
Jürgen Gerhard Maplesoft, Canada
Mark Giesbrecht University of Waterloo, Canada
Laureano Gonzalez-Vega Universidad de Cantabria, Spain
Jonathan Hauenstein University of Notre Dame, USA
David Jeffrey Western University, Canada
Manuel Kauers Johannes Kepler University, Austria
Alexander Kobel Max Planck Institut für Informatik, Germany
George Labahn University of Waterloo, Canada
Victor Levandovskyy RWTH Aachen University, Germany
Robert Martin University of Manitoba, Canada
John May Maplesoft, USA
Michael Monagan Simon Fraser University, Canada
Guillaume Moroz Inria Nancy, France
Eithne Murray Maplesoft, Canada
Erik Postma Maplesoft, Canada
Clemens Raab Johannes Kepler University, Austria
Fabrice Rouillier Inria Paris, France
Sivabal Sivaloganathan University of Waterloo, Canada
Arne Storjohann University of Waterloo, Canada
Mark van Hoeij Florida State University, USA
Gilles Villard Université de Lyon, France
Stephen Watt University of Waterloo, Canada
Thomas Wolf Brock University, Canada

mmonagan@cecm.sfu.ca

Organizing Committee

Ilias S. Kotsireas (Chair) Wilfrid Laurier University, Canada
Kathleen McNichol Maplesoft, Canada
Jürgen Gerhard Maplesoft, Canada
Eithne Murray Maplesoft, Canada

viii Organization

mmonagan@cecm.sfu.ca

Contents

Keynote

Your Data Wants You to Ask Better Questions. Do It! 3
Marvin Weinstein

Full Papers – Research Stream

The LegendreSobolev Package and Its Applications
in Handwriting Recognition . 13

Parisa Alvandi and Stephen M. Watt

On the Effective Computation of Stabilizing Controllers of 2D Systems. 30
Yacine Bouzidi, Thomas Cluzeau, Alban Quadrat, and Fabrice Rouillier

Using Maple to Analyse Parallel Robots . 50
Damien Chablat, Guillaume Moroz, Fabrice Rouillier,
and Philippe Wenger

Studying Wythoff and Zometool Constructions Using Maple 65
Benoit Charbonneau and Spencer Whitehead

Approximate GCD in a Bernstein Basis . 77
Robert M. Corless and Leili Rafiee Sevyeri

Using Maple to Compute the Intersection Curve of Two Quadrics:
Improving the Intersectplot Command . 92

Laureano Gonzalez-Vega and Alexandre Trocado

Exact Parametric Solutions for the Intersections of Quadric
Surfaces Using MAPLE. 101

Samir Hamdi, David I. W. Levin, and Brian Morse

Decomposing the Parameter Space of Biological Networks via a Numerical
Discriminant Approach . 114

Heather A. Harrington, Dhagash Mehta, Helen M. Byrne,
and Jonathan D. Hauenstein

The Z_Polyhedra Library in MAPLE . 132
Rui-Juan Jing and Marc Moreno Maza

Detecting Singularities Using the PowerSeries Library 145
Mahsa Kazemi and Marc Moreno Maza

mmonagan@cecm.sfu.ca

AMaple Package for the Symbolic Computation of Drazin Inverse Matrices
with Multivariate Transcendental Functions Entries 156

Jorge Caravantes, J. Rafael Sendra, and Juana Sendra

A Poly-algorithmic Quantifier Elimination Package in Maple 171
Zak Tonks

Full Papers – Education/Applications Stream

The Creation of Animated Graphs to Develop Computational Thinking
and Support STEM Education . 189

Alice Barana, Alberto Conte, Cecilia Fissore, Francesco Floris,
Marina Marchisio, and Matteo Sacchet

Effective Problem Solving Using SAT Solvers . 205
Curtis Bright, Jürgen Gerhard, Ilias Kotsireas, and Vijay Ganesh

Using Maple to Make Manageable Matrices . 220
Ana C. Camargos Couto and David J. Jeffrey

Use of Maple and Möbius in an Undergraduate Course on Cryptography. . . . 230
Bruce Char and Jeremy R. Johnson

Enhance Faculty Experience and Skills Using Maple
in the 21st Century Classroom . 245

Lancelot Arthur Gooden

Undergraduate Upper Division Quantum Mechanics:
An Experiment in Maple® Immersion . 254

Scot A. C. Gould

The Fermat-Torricelli Problem of Triangles on the Sphere
with Euclidean Metric: A Symbolic Solution with Maple 263

Xiaofeng Guo, Tuo Leng, and Zhenbing Zeng

Using Leslie Matrices as the Application of Eigenvalues
and Eigenvectors in a First Course in Linear Algebra 279

Michael Monagan

Transforming Maple into an Intelligent Model-Tracing Math Tutor 292
Dimitrios Sklavakis

A Heilbronn Type Inequality for Plane Nonagons . 307
Zhenbing Zeng, Jian Lu, Lydia Dehbi, Liangyu Chen, and Jianlin Wang

x Contents

mmonagan@cecm.sfu.ca

Extended Abstracts – Research Stream

PseudoLinearSystems – A MAPLE Package for Studying Systems
of Pseudo-Linear Equations . 327

Moulay Barkatou, Thomas Cluzeau, and Ali El Hajj

Machine Learning to Improve Cylindrical Algebraic Decomposition
in Maple . 330

Matthew England and Dorian Florescu

Ball Arithmetic as a Tool in Computer Algebra . 334
Fredrik Johansson

The Lie Algebra of Vector Fields Package with Applications to Mappings
of Differential Equations . 337

Zahra Mohammadi, Gregory J. Reid, and S.-L. Tracy Huang

Polynomial Factorization in Maple 2019 . 341
Michael Monagan and Baris Tuncer

Extended Abstracts – Education/Applications Stream

Distributive Laws Between the Operads Lie and Com 349
Murray Bremner and Vladimir Dotsenko

Classifying Discrete Structures by Their Stabilizers 353
Gilbert Labelle

How Maple Has Improved Student Understanding in Differential Equations . . . 357
Douglas B. Meade

Author Index . 363

Contents xi

mmonagan@cecm.sfu.ca

Keynote

mmonagan@cecm.sfu.ca

Your Data Wants You to Ask Better Questions.
Do It!

Marvin Weinstein(&)

Quantum Insights Inc., Menlo Park, CA, USA
Mweinstein@quantuminsights.io

“Correlation is not causation”, or so the old trope goes.
This statement is true if we are talking about correlations revealed by familiar

methods that are used to analyze data. In this talk, I want to put a new spin on this
statement. I will argue that a new technology, quantum generated density maps,
changes the way we look at complex data. The main point is that visualizing all the
correlations hidden in a set of data, their shapes and their relationship to one another,
can force us to ask questions that strongly suggest causal relationships. To make this
point I will discuss the analysis of melanoma data provided to Quantum Insights Inc.
by Genentech.

The Data and What Our Client Wished to Know
The information studied consists of RNA-sequence data. Essentially, it is a spreadsheet
where each of the 550 rows of the spreadsheet contain RNA data for a single tumor.
The columns give the individual tumor expression levels for each of the 30,684 RNA-
transcripts.

The aim at the outset was to answer two questions. First, characterize the range of
variation in the data and how many clusters – or distinct types - of tumor behavior
would be revealed by our Dynamic Quantum Clustering (DQC) technology. Second,
would these clusters correlate with the presence or absence of a BRAF mutation and
the use of two drugs that had been administered to the patients. The simple answers to
these questions are: the data shows significant clustering; these clusters do not show a
positive relation between BRAF and drug administered.

The DQC Analysis
The results of a DQC analysis is usually shown as an animation. The first frame in the
animation displays the original data plotted in the space of features. The frames that
follow show the data moving towards the regions of higher density. The animation is
constructed for all data dimensions. But, since we can only display three dimensions at
a time, we use PCA (Principal Component Analysis) to rotate the data. This guarantees
that the first three dimensions show a view of the data that has the most variation.
Furthermore, in the next three dimensions the data will have somewhat less variation,
etc.

The initial plot of the data in the first three PCA components is shown in Fig. 1a.
The important points to know about this plot are:

1. Each point represents a single data entry in the 30,684-dimensional data space. This
plot shows the first 3 components of that entry in the coordinate system chosen by
the PCA transformation. As a result of applying DQC to this data we were see

© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 3–10, 2020.
https://doi.org/10.1007/978-3-030-41258-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_1

mmonagan@cecm.sfu.ca

structure that can be shown to be almost entirely due to a subset of 69 transcripts.
Figures 1b, c and d show the results of the DQC analysis done for the 550 � 69
data matrix restricted to just these 69 RNA-transcripts.

2. It is important to point out distance matters in DQC. In fact, the distance between
two datapoints directly measures the correlation between the corresponding rows in
the data matrix.

Figure 1a shows what are apparently two largish regions that are separated from
one another, but at this point, since this only shows what is going on in three of sixty-
nine dimensions, we can’t trust this conclusion. The next three images show how the
data evolves due to DQC evolution. What we see is that the rightmost region contacts
to a small, tight cluster (eventually it contracts to a point) and an extended curved
structure that never contracts to a point. It also shows outliers that never join either of
the two dominant clusters. Clearly, the picture shown in the first three PCA dimensions
does not explain why the outliers do not coalesce into the major structures, since they
don’t seem particularly far from the main clusters. The fact is that that they are further
away in the other PCA dimensions. The message is that DQC evolution in high
dimension is important, and using PCA to do strong dimensional reduction is
dangerous.

(a) (b)

(c) (d)

Fig. 1.

4 M. Weinstein

mmonagan@cecm.sfu.ca

Answering Genentech’s Question
The fully evolved data in Fig. 1d reveals the full set of clusters and outliers that appear
in all 69 dimensions of the melanoma data. The next step is to see if the clusters can
predict whether the melanomas have a BRAF mutation, or reveal the drug used to treat
the tumors. The simplest way to answer these questions is to simply re-color the points.
This coloring is shown below, in Figs. 2a to d. The patients that have a BRAF mutation
and took drug 1 are colored blue; patients who don’t have a BRAF mutation and took
drug 1 orange; the ones that took drug 2 are colored red.

Clearly these plots do not show separation of the colors between the clusters and
outliers. What we see is essentially “confetti”. This says that whatever the clustering of
tumors by RNA-expression levels is telling us, it has nothing to do with the BRAF
status of the tumors; nor, does it strongly reflect the drug given to the patient. This
cannot be the end of the story. Strong clusters do exist, and they must tell us something
about the melanomas.

The answer to the question of what the clusters tell us is answered when we color
by tumor stage.

(a) (b)

(c) (d)

Fig. 2.

Your Data Wants You to Ask Better Questions. Do It! 5

mmonagan@cecm.sfu.ca

Tumor Stage
Pathologists assign tumors a stage that reflects tumor’s morphology, whether it has
invaded distant tissues, etc. The table below tells how we color the data points
according to the known stage classification. The classifications range from IIB to IIC.
As we move from black to magenta the common wisdom is that we move from less
advanced tumors to more advanced – harder to treat – tumors. Figures 3a and b show
the original data and the DQC evolved data re-colored according to this information.

Stage Color
IIB Black
IIC Blue
IIIA Brown
IIIB Orange
IIIc Magenta

Figures 3a and b show a strong separation between the less advanced IIB, IIC and
IIIA tumors and the tumors classified as IIIB and above. The dominant clusters are at
some distance from one another, and this shows that the tumors in one cluster should
differ significantly in their RNA-expression levels from those in the other cluster. At
this point we have succeeded in showing how the RNA-data is distributed and
understand that this difference in expression levels is correlated with the stage of the
tumor. This answers our original questions. But, the shape and relationship of the two
main clusters to one another, raises a new question a question that is begging to be
asked.

Better Questions
In Fig. 3b we see an extended cluster on the left-hand side of the plot, and a much
tighter cluster that eventually collapses to a point in succeeding frames. Since the left-
hand cluster - or “hook” - never collapses, there must be some reason for this shape.
The fact that nearby datapoints have very similar RNA-expression levels implies that
for this subset of the data something about the RNA-expression levels varies

(a) (b)

Fig. 3.

6 M. Weinstein

mmonagan@cecm.sfu.ca

continuously along the hook. So better questions are “What is varying?” and “What is
it telling us?”.

To answer these questions, zoom in on the “hook” and divide it up into 22 con-
tiguous regions -as shown in Fig. 4. We will define a new feature - “severity” – as the
location along the hook, running from left to right.

NOTE: Severity is not correlated with stage, since the coloring by stage as we move
along the line shows a “confetti”-like behavior. Severity is something new and
unexpected! The reason for this name will become clear in a moment.

To understand what the “hook” is trying to tell us, we averaged the expression
levels for each of these 24 segments of the hook. We then compared these averages to
the average of the expression levels for the tight cluster of less advanced tumors. The
result of this process is shown for segments 2, 8 and 20 in Fig. 5.

The three plots show the expression level of each of the 69 RNA-transcripts in a
way that reveals how close the tumors in each segment of the hook are to the less
advanced tumors. The horizontal axis in each plot is a number - from 1 to 69 –

indicating the labels of the RNA-transcripts. The vertical axis in each plot runs from -3
to 3. If the value of a transcript lies on the horizontal axis, that indicates that the
expression value is the same as the average of the less advanced cluster for that
transcript. On the other hand, if it takes a negative value (many of the transcripts in
segment 2), it is less expressed than the average of the less advance cluster.

A value of 1 means that the expression level has the same value as the average of
the transcripts for all points in the “hook”. Finally, a value greater than 1 means that
transcript is more expressed than the average value for the more advanced tumors.

Going from left to right along the line we see that in segment 2, 19 out of the 69
transcripts are less expressed than the average of the more advanced tumors. In fact, 11
of these are even less expressed than the average of the less advanced tumors. By the
time we get to segment 8 the situation has changed dramatically. Now all of the
transcripts are being expressed in the same way as the average of the more advanced
tumors. Finally, by segment 20 we see that 15 transcripts have become much more
expressed than the average for the more advanced tumors. This strongly suggests that

8 20

severity

Fig. 4.

Your Data Wants You to Ask Better Questions. Do It! 7

mmonagan@cecm.sfu.ca

as we move from left to right along the line the tumors go from less serious tumors to
more serious tumors. This is why I invented the name “severity” for the distance from
the left hand side of the hook to the right hand side of the hook.

What Medical Outcome Is Related to Severity?
The only information we had that related to a medical outcome is whether a patient had
the tumor recur within a specified period of time. Since we didn’t have a lot of patients,
we divided the “severity” line into three equal segments and computed the number of
patients that had a recurrence in each segment divided by the total number of patients in
the same segment. The resulting values for each of the three segments is shown in
Fig. 6. There is a clear progression in the probability of recurrence as we go from left to
right along the “hook” from slightly more than 15%, to almost 50%.

Transcript Number

ex
pr

es
si

on
 le

ve
l

less expressed than average of less advanced tumors

further from less advanced tumors

All these genes dis nguish the line (more
advanced) from the point (less advanced)

ex
pr

es
si

on
 le

ve
l

ex
pr

es
si

on
 le

ve
l

Segment 8

Segment 2

Segment 20

Fig. 5.

8 M. Weinstein

mmonagan@cecm.sfu.ca

This is, of course, entirely consistent with our interpretation of the variation in
RNA-expression values as we go, segment-by-segment, from left to right. Another
piece of evidence that implies that “severity” is tied to recurrence is shown in the plot
of the time to recurrence. Figure 7 shows that the time to recurrence decreases linearly
with severity, going from 62 months to less than 48 months.

Why Do These Transcripts Move in Lockstep?
The DQC analysis of the melanoma data led us to identify a subset of 16 out of 69
transcripts that separate stage II from stage III melanoma that are prognostic for a
recurrence. This forces us to ask why the expression levels of these transcripts change
in lockstep as we move along the “severity” axis. This behavior strongly suggests that
they are all acting under the influence of some promoter that is controlling this
behavior. In effect, it suggests that these transcripts belong to a known biological
pathway, or perhaps something new? This suggests a new line of research.

There is more that can be extracted from this data; however I choose not to pursue
this further in this talk. I think I have said enough to make my initial point about how a
comprehensive density map of data changes how we look at the statement “Correlation
is not causation”.

pr
ob

ab
ili

ty
 o

f
re

cu
rr

en
ce

Fig. 6.

Ti
m

e
to

re

cu
rr

en
ce

Fig. 7.

Your Data Wants You to Ask Better Questions. Do It! 9

mmonagan@cecm.sfu.ca

Summing Up
I began with the quote “Correlation is not causation”. I then claimed that I would
show how knowing all the correlations in a dataset, the shape of these correlations and
their spatial relationship to one another could lead us to an understanding of causal
relationships hidden in the data.

In the case of the melanoma dataset we revealed the existence of two clusters, or
correlated subsets of RNA-expression data, that characterized the information con-
tained in the dataset. We then were able to show that these two clusters strongly
correlate with the stage of the tumors. Finally, we saw that the less advanced tumors
form a tight (eventually point-like) cluster, whereas the more advanced tumors formed
a one-dimensional “hook”. It was the surprising existence of the hook that suggested
there was more to learn.

Trying to extract the meaning of the hook led us to identify a biological fingerprint,
involving a small number of transcripts, that explained the shape of the hook. The
correlation of the changes of the transcripts along the hook led to the notion of severity,
which – contrary to expectations - was not correlated with the stage of the tumor.
However, it turned out that severity is directly correlated with the likelihood of – and
time to - recurrence. Finally, the fact that 16 transcripts vary in lockstep with changes in
severity led us to ask if these transcripts - and an unknown promoter – could define a
new biological pathway. Thus, we went from trying to simply characterize the data to
asking about a potential causal relationship. Obviously, we cannot, without doing
further experiments, nail down the validity of this conclusion. However, our discussion
has revealed what the next steps should be.

My takeaway from all of this is that complex data often contains a lot of infor-
mation. It is the appearance of unexpected structure in the data, the analysis of the
shape of these structures, and their relationship to one another, that allows us to build a
move complete picture of what the data has to say.

Maple’s Role in All of This
Since this is a Maple conference, I would be remiss if I didn’t point out that Maple
played an important role in the birth of DQC. The first implementation of the algorithm
upon which DQC is based was done in Maple. The virtue of using Maple to create this
software was that it provided an excellent GUI, an easy way to call special purpose
compiled libraries that implement the algorithm and good support for multi-threading.
We couldn’t have gotten up and running nearly as quickly without Maple.

10 M. Weinstein

mmonagan@cecm.sfu.ca

Full Papers – Research Stream

mmonagan@cecm.sfu.ca

The LegendreSobolev Package
and Its Applications in Handwriting

Recognition

Parisa Alvandi(B) and Stephen M. Watt(B)

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada

{palvandi,smwatt}@uwaterloo.ca

Abstract. The present work is motivated by the problem of mathe-
matical handwriting recognition where symbols are represented as para-
metric plane curves in a Legendre-Sobolev basis. An early work showed
that approximating the coordinate functions as truncated series in a
Legendre-Sobolev basis yields fast and effective recognition rates. Fur-
thermore, this representation allows one to study the geometrical fea-
tures of handwritten characters as a whole. These geometrical features
are equivalent to baselines, bounding boxes, loops, and cusps appearing
in handwritten characters. The study of these features becomes a crucial
task when dealing with two-dimensional math formulas and the large set
of math characters with different variations in style and size.

In an early paper, we proposed methods for computing the derivatives,
roots, and gcds of polynomials in Legendre-Sobolev bases to find such
features without needing to convert the approximations to the monomial
basis. Furthermore, in this paper, we propose a new formulation for the
conversion matrix for constructing Legendre-Sobolev representation of
the coordinate functions from their moment integrals.

Our findings in employing parametrized Legendre-Sobolev approxima-
tions for representing handwritten characters and studying the geometri-
cal features of such representation has led us to develop two Maple pack-
ages called LegendreSobolev and HandwritingRecognitionTesting.
The methods in these packages rely on Maple’s linear algebra routines.

1 Introduction

Orthogonal polynomials have many applications in different recognition prob-
lems such as face [15], speech [5], speech emotion [13], and gesture [14] recogni-
tion. We are particularly interested in using orthogonal polynomials to represent
handwritten characters for the purpose of mathematical handwriting recognition.
In fact, modelling handwritten characters as parametrized curves X(λ) and Y (λ)
on an orthogonal basis accurately captures the shape of handwritten mathemat-
ical characters using few parameters. This new representation of handwritten
characters turns the recognition into a writer and device independent problem
as one does not need to deal with the factors such as different device resolutions
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 13–29, 2020.
https://doi.org/10.1007/978-3-030-41258-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_2

mmonagan@cecm.sfu.ca

14 P. Alvandi and S. M. Watt

and the number of points in the sampling process of a handwritten character.
The authors of [6] have found that even without further similarity-processing,
the polynomial coefficients from the writing samples form clusters which often
contain the same characters written by different test users. This work uses the
Chebyshev basis to represent handwritten characters as parametrized curves.

The work [7] is inspired by a similar idea as [6] to represent handwritten
data, but uses a different functional basis. The basic idea of [7] is to compute
moments of the coordinate curves in real time as the character is being written
and then to construct the coefficients of the coordinate curves in the Legendre
basis from moments at the time pen is lifted. As a matter of fact, the Legendre
representation is just as suitable in practice for representation and analysis of
ink traces as the Chebyshev representation, but has the benefit that it can be
computed in a small, fixed number of arithmetic operations at the end when a
stroke is written, completely. This approach works for any inner product with a
linear weight function.

Representing handwritten characters with parametrized coordinate curves in
the Chebyshev and Legendre series yields low RMS error rates. However, low
RMS error rates do not guarantee the shape similarity of two characters, see
Fig. 1. In fact, the problem with the blue and red curves on the right side of
Fig. 1 is that the corners of these two curves are not in the right places, despite
the fact that they demonstrate a lower RMS error rate compared to the curves
on the left. One solution to this obstacle might be to work in a jet space to force
coordinate and derivative functions of the letters from the same class to have a
similar form.

Fig. 1. Despite the fact that the two curves on the right have lower RMS error compared
to the ones on the left, they do not have a similar shape. (Color figure online)

The work [7,9] use a special case of Legendre-Sobolev polynomials to rep-
resent handwritten characters based on the computation of moment integrals.
These special polynomials, which are also called Althammer polynomials, enables
us to work in a first jet space. The authors have reported experimental results
that demonstrate that representing coordinate curves in a Legendre-Sobolev
basis has higher detection rates compared to when these curves are represented
in the Legendre basis.

In [2], we have proposed an online method for computing Legendre-Sobolev
representations of handwritten characters from their moments by a matrix mul-
tiplication. Furthermore, we have presented methods in [3] for computing the

mmonagan@cecm.sfu.ca

The LegendreSobolev Package and Its Applications 15

derivatives, roots, and gcd of polynomials in Legendre-Sobolev bases by relying
on linear algebra arithmetic operations. The goal of the latter work is to study
the geometry and features of handwritten curves by relying on the Legendre-
Sobolev coefficients of the approximated parametrized curves corresponding to
handwritten characters. In [12], the authors proposed an algorithm to compute
some of the important features of the Legendre-Sobolev approximations of hand-
written characters by relying on the Newton method. Thus, conversion from a
Legendre-Sobolev basis to the monomial basis is required. But the work [3] avoids
this conversion because such conversion is known to be ill-conditioned.

In the present work, we give a new formulation for the matrix C in Propo-
sition 1, which is inspired by the work [2], to compute the Legendre-Sobolev
coefficients of the truncated parametrized curves of handwritten characters from
their moments. The results in [2,3] and Proposition 1 have led to the develop-
ment of a Maple package called LegendreSobolev1. This package has all the
necessary tools for representing handwritten characters as parametrized curves
in a Legendre-Sobolev basis for the purpose of handwriting recognition.

After giving the preliminaries and our new result on the construction of
the Legendre-Sobolev coefficients from moments, we explain the structure of
the package LegendreSobolev with demonstrative examples in Sect. 4. Finally,
we illustrate how to compute Legendre-Sobolev representations of handwritten
curves from their corresponding digital inks, by relying on LegendreSobolev
package, in Sect. 5.

2 Preliminaries

Digital ink is generated by sampling points from handwritten characters and
is a collection of points (x, y, t) with position (x, y) and timestamp t. We use
these points to compute moment integrals and from them, we approximate the
coefficients of the coordinate curves X(λ) and Y (λ) on an orthogonal basis,
where λ is either time or length of handwritten curves. In this paper, we assume
that sample values of X(λ) and Y (λ) are received as a real time signal and λ
corresponds to the length of handwritten curves. We assume the sample points
are equally spaced with Δt = 1.

The works [2,6,7] showed that the coordinate curves X(λ) and Y (λ) for
handwritten characters can be modelled by truncated Chebyshev, Legendre, and
Legendre-Sobolev series, respectively. The coefficients of such series can be used
for classification and recognition of characters. In this paper, we are interested
in Legendre-Sobolev approximations for representing handwritten characters.

For two functions f, g : [−1, 1] → R, consider the following inner product
which is given as

〈f(λ), g(λ)〉 =
∫ 1

−1

f(λ) g(λ)dλ + μ

∫ 1

−1

f ′(λ)g′(λ)dλ, (1)

1 This package is publicly available at www.maplesoft.com/applications/view.aspx?
SID=154553.

www.maplesoft.com/applications/view.aspx?SID=154553
www.maplesoft.com/applications/view.aspx?SID=154553

mmonagan@cecm.sfu.ca

16 P. Alvandi and S. M. Watt

where μ ∈ R≥0. This inner product is a special case of the Legendre-Sobolev
inner product. In fact, the Legendre-Sobolev inner product may involve terms
corresponding to higher order derivatives, but for the purpose of this paper we
restrict ourselves to the first order derivative. Systems of orthogonal polynomials
corresponding to the above inner product can be computed by applying the
Gram-Schmidt orthogonalization process to the monomial basis. We denote the
Legendre-Sobolev polynomials corresponding to the inner product given by Eq. 1
(which are also called Althammer polynomials, see [1]) of degree n by Sμ

n(λ).
When μ = 0 in Eq. 1, we denote the polynomial S0

n(λ) by Pn(λ), as well. In fact,
the polynomial Pn(λ) is the Legendre polynomial of degree n.

A function f : [−1, 1] → R, when the integrals involved in the inner product
are well-defined for f(λ), can be represented by an infinite linear combination
of orthogonal polynomials {Sμ

0 (λ), Sμ
1 (λ), . . .} as

f(λ) =
∞∑

i=0

αiS
μ
i (λ).

The coefficients of the series in the new basis can be computed by the formula

αi =
〈f(λ), Sμ

i (λ)〉
〈Sμ

i (λ), Sμ
i (λ)〉 , i = 0, 1, . . . ,

where 〈., .〉 stands for the Legendre-Sobolev inner product given by Eq. (1). For
representing handwritten characters, we use truncated linear combinations of
Legendre-Sobolev polynomials to represent the function f(λ). In fact, the closest
polynomial of degree d to function f(λ) with respect to Euclidean norm induced
by the given inner product is the following series

f(λ) �
d∑

i=0

αiS
μ
i (λ).

Such approximation allows to think of functions as points (α0, . . . , αd) in
(d+1)-dimensional vector space. That means that one can establish a method for
measuring how close two functions are to each other in such (d+1)-dimensional
vector space. In other words, for two functions f, g : [−1, 1] → R, if we approxi-
mate f(λ) and g(λ) as following

f(λ) �
d∑

i=0

αiS
μ
i (λ), g(λ) �

d∑
i=0

βiS
μ
i (λ),

then one can measure how close f(λ) and g(λ) are by computing the quantity

‖f(λ) − g(λ)‖ �
√√√√ d∑

i=0

(αi − βi)2.

This method of measuring the distance of two functions is the basic and impor-
tant rule in the handwriting recognition method used in [8].

mmonagan@cecm.sfu.ca

The LegendreSobolev Package and Its Applications 17

The moments of a function f(λ) defined on the interval [a, b] are the integrals:
∫ b

a

λk f(λ)dλ.

A key aspect of the approach used in [6] for the purpose of interpolating the coor-
dinate curves X(λ) and Y (λ) corresponding to handwritten strokes is to recover
these curves from their moments. This is the Hausdorff moment problem [10,11],
known to be ill-conditioned. For the purpose of this paper, the moments of a
function f are defined over an unbounded half-line since the curve may be traced
over an arbitrary length:

mk(f(λ), �) =
∫ �

0

λk f(λ)dλ.

In our application, we assume that discrete sample values of f(λ) are received
as a real-time signal. We use these values to compute approximate values for
the moment integrals. After a curve is traced out, we will have computed its
moments over some length L, with L known only at the time the pen is lifted.
The problem is now to scale L to a standard interval and compute the truncated
Legendre-Sobolev series coefficients for the scaled function from the moments of
the unscaled function, mk(f(λ), L).

Having represented handwritten characters as Legendre-Sobolev coefficients
of parametrized coordinate curves, we can study the geometrical features of
handwritten curves by means of linear algebra calculations, such as matrix mul-
tiplication, and solving Diophantine equations. The work [3] gives methods for
computing the derivatives, roots, and gcd of polynomials in Legendre-Sobolev
bases based on their coefficient matrix.

3 Construction of Handwritten Curves from Moments

The goal of this section is to present our new result on computing the repre-
sentations of handwritten characters as approximated parametrized curves in
Legendre-Sobolev bases from their corresponding digital inks, see Proposition 1.

To find such representation, one needs to compute moment integrals as
a curve is being traced out, first, and then use Proposition 1 to compute
the Legendre-Sobolev coefficients of the parametrized coordinate curves in a
Legendre-Sobolev basis. In Section V in [2], we have explained how to compute
moment integrals from the input digital ink.

Proposition 1. Suppose that mi(f(λ), L) is defined as
∫ L

0
f(λ)λidλ where L is

the length of a given curve and f(λ) is either X(λ) or Y (λ), for i = 0, . . . , d.
Let also f̂(λ) =

∑d
i=0 αiS

μ
i (λ) be the corresponding scaled function of f(λ) in

the interval [−1, 1]. Then for i = 0, . . . , d, one may compute αi as

αi =
d∑

j=0

1
Lj+1

Cij mj(f(λ), L),

mmonagan@cecm.sfu.ca

18 P. Alvandi and S. M. Watt

where

(−1)i+jCij =
1

2i!(i + 1)!

(
Bij

(
� d−j

2 �
) − Bij

(
max(0,� i−j

2 −1�))
))

(
1

aj(µ)
− 1

aj+2(µ)

)

+ (2j + 1)

(
j

i

)(
i + j

j

)
1

aj(µ)
,

Bij(k) =
(i + j + 2k + 2)!

(j − i + 2k)!
, taking

1

(−n)!
= 0, for k, n ∈ Z

+,

a0(μ) = 1, ai(μ) =
� i−1

2 	∑
k=0

(μ

4

)k (i + 2k − 1)!
(2k)!(i − 2k − 1)!

, for i ≥ 1. (2)

Proof. We have simplified the following summation as

k2∑
�=k1

(2 j + 1 + 4 �)
(

j + 2 �

i

)(
i + j + 2 �

j + 2 �

)
=

1
2i!(i + 1)!

(Bij(k2) − Bij(k1 − 1)) ,

for k1, k2 ∈ Z≥0, while taking 1
(−n)! = 0, for n ∈ Z

+. Then, the proof of this
proposition is followed by substituting the above simplified form in the counter-
part representation of matrix C in [2]. �

Note that the coefficients Cij are independent of the problem and may be
computed as constants, in advance.

We have developed the Maple’s package HandwritingRecognition
Testing2 which implements the idea of Proposition 1 for computing Legendre-
Sobolev approximations of handwritten curves. Section 5 explains how to use
this package to compute such representations.

4 LegendreSobolev Package

We have developed a Maple package for applying different mathematical oper-
ations in Legendre-Sobolev bases called LegendreSobolev (see Fig. 2). The
work [2,3] and Proposition 1 support the theory behind the commands in this
package. The operations in this package rely on linear algebra arithmetic oper-
ations such as matrix multiplication, and solving Diophantine equations.

In this section, we explain how one can use the commands in
LegendreSobolev package to compute Legendre-Sobolev polynomials of a given
degree and parameter μ, change the representation of polynomials with respect
to different bases, and find roots and gcds of polynomials in Legendre-Sobolev
bases.

2 This package is publicly available at www.maplesoft.com/applications/view.aspx?
SID=154553.

www.maplesoft.com/applications/view.aspx?SID=154553
www.maplesoft.com/applications/view.aspx?SID=154553

mmonagan@cecm.sfu.ca

The LegendreSobolev Package and Its Applications 19

> read“LS.mpl” :
with(LegendreSobolev);

[ComradeMatrix, DerivativeInLS, DerivativeMatrixInLS, GcdInLS,
LSToLegendreMatrix, LSToMonomialMatrix, LegendreToLSMatrix,
MomentsToLSMatrix, MonomialToLSMatrix, P, S, α]

Fig. 2. The functions of LegendreSobolev package.

4.1 Legendre-Sobolev Polynomials

As Fig. 3 demonstrates, one can use the command S in LegendreSobolev package
to compute a Legendre-Sobolev polynomial Sμ

n(λ). Furthermore, we can use both
S0

n(λ) and Pn(λ) to compute the Legendre polynomial of degree n, see Fig. 4.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> n := 20 :
µ := 0.125 :
S[n, µ](x);

5.8754582398620977895900768 1013 − 1.117724239719226929037416 1016 x2

+3.524380299973154119303874 1017 x4 − 4.3268454823302905511612081 1018 x6

+2.7061754002348252015842451 1019 x8 − 9.7480590243981247807226921 1019 x10

+2.1427243648177985254531152 1020 x12 − 2.9210697557111092015824162 1020 x14

+2.41083585404532176254424308 1020 x16 − 1.10338344683885758917477137 1020 x18

+2.14936627054372451057874677 1019 x20

Fig. 3. Legendre-Sobolev polynomial computation with LegendreSobolev package.

[
> S[5, 0](x);

15
8

x − 35
4

x3 + 63
8

x5

[
> P[5](x);

15
8

x − 35
4

x3 + 63
8

x5

Fig. 4. The Legendre polynomial computation with LegendreSobolev package with
two different functions.

Legendre-Sobolev polynomials of a given degree n can also be computed as
a function in μ (see Fig. 5). The function α in LegendreSobolev package gives a
polynomial with respect to degree n and parameter μ. In fact, the command α
is used to compute Legendre-Sobolev polynomials with respect to the Legendre
polynomials and implements an(μ) given by Eq. (2). The formula for computing
Legendre-Sobolev polynomials from an(μ) and the Legendre polynomials is given
by the relation: Sμ

n(λ) = Sμ
n−2(λ) + an(μ) (Pn(λ) − Pn−2(λ)).

mmonagan@cecm.sfu.ca

20 P. Alvandi and S. M. Watt

[
> S[5, μ](x);

x + (1 + 3 μ)(− 5
2
x + 5

2
x3) + (105μ2 + 45μ + 1)(27

8
x − 45

4
x3 + 63

8
x5)[

> alpha[5, μ];
105μ2 + 45μ + 1

Fig. 5. Legendre-Sobolev polynomial computation as a function in µ.

4.2 Changing a Polynomial Representation w.r.t Different Bases:
Legendre-Sobolev, Legendre, and Monomial

When a polynomial f(λ) is given in the monomial basis, one can compute the
coefficients of the polynomial in any Legendre-Sobolev basis, with parameter
μ, by using MonomialToLSMatrix command of LegendreSobolev package (see
Fig. 6). In fact, one needs to multiply the coefficient matrix of the given poly-
nomial in the monomial basis and the matrix in the output of the command
MonomialToLSMatrix(degree(f), μ).

⎡
⎢⎢⎢⎢⎢⎢⎣

> f := (x − 1)2(x + 2)3 :
fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
μ := 0.125 :
fcoeffsInLS := Multiply(fcoeffs, MonomialToLSMatrix(degree(f), μ));

fcoeffsInLS := [5.46666666666667 − 2.70649350661521 − 3.78467908902692
0.691130587508162 0.318012422360248 0.0153629189534213]

Fig. 6. Changing the representation of f from the monomial to Legendre-Sobolev basis
with µ = 0.125.

When a polynomial f(λ) is given in the monomial basis, it is possible to
convert this polynomial to the Legendre basis, as well, by a matrix multiplication.
In fact, to compute the Legendre representation of f(λ), one needs to multiply
the coefficient matrix of f(λ) in the monomial basis and the matrix in the output
of the command MonomialToLSMatrix(degree(f), μ), where μ = 0 (see Fig. 7).

⎡
⎢⎢⎣

> f := (x − 1)2(x + 2)3 :
fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
fcoeffsInL := Multiply(fcoeffs, MonomialToLSMatrix(degree(f), 0));

fcoeffsInL := [82
15

− 104
35

− 92
21

38
45

32
35

8
63

]

Fig. 7. Changing the representation of f from the monomial to Legendre basis.

mmonagan@cecm.sfu.ca

The LegendreSobolev Package and Its Applications 21

Furthermore, when a polynomial f(λ) is given in the Legendre basis, one
can change its representation to a Legendre-Sobolev one by multiplying the
coefficient matrix of f(λ) in the Legendre basis and the matrix from the output of
the command LegendreToLSMatrix(degree(f), μ), where μ is given (see Fig. 8a).

⎡
⎢⎢⎢⎢⎣

> fcoeffsInL := Matrix([[1, 1, 1, 1, 1, 1]]) :
μ := 1

5
:

fcoeffsInLS := Multiply(fcoeffsInL,
LegendreToLSMatrix(5, μ))
fcoeffsInLS := [1 7

4
7
4

335
284

1
4

5
71

]

(a)

⎡
⎢⎢⎢⎢⎣

> fcoeffsInLS := Matrix([[1, 1, 1, 1, 1, 1]]) :
μ := 1

5
:

fcoeffsInL := Multiply(fcoeffsInLS,
LSToLegendreMatrix(5, μ))
fcoeffsInLS := [1 − 1

5
− 2 − 11 4 71

5
]

(b)

Fig. 8. Changing the representation of f from (a) the Legendre to Legendre-Sobolev
and (b) Legendre-Sobolev to Legendre basis with µ = 1

5
.

Finally, for a polynomial f(λ) in a Legendre-Sobolev basis, we can compute
the Legendre representation of this polynomial by multiplying the corresponding
coefficients in the Legendre-Sobolev basis and the matrix in the output of the
command LSToLegendreMatrix(degree(f), μ), where μ is the same parameter
as the one in the Legendre-Sobolev representation of f(λ), see Fig. 8b.

4.3 Computing the Derivates of Polynomials in Legendre-Sobolev
Bases

When a polynomial is given in a Legendre-Sobolev basis, one can compute the
derivative of such polynomial by a matrix multiplication (see [3]). Figure 9
shows how to compute the derivative of a polynomial by using the command
DerivativeInLS of LegendreSobolev package.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> f := (x − 1)2 · (x + 2)3;
fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
μ := .125 :
fcoeffsInLS := fcoeffsInL · LegendreToLSMatrix(degree(f), μ);
der := DerivativeInLS(μ, convert(fcoeffsInLS, list))
fcoeffsInLS := [5.46666666666667 − 2.70649350661521
−3.78467908902692 .691130587508162 .318012422360248

0.0153629189534213]
der := [−2.00000000015363,−8.65454545474783, 5.60248447177297
4.65454545570186, .397515527919776]

Fig. 9. Computing the derivative of the polynomial f by a matrix multiplication.

mmonagan@cecm.sfu.ca

22 P. Alvandi and S. M. Watt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> f := randpoly(x, degree = 12, terms = 10);
fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
μ := 0.125 :
fcoeffsInLS := Multiply(fcoeffs, MonomialToLSMatrix(degree(f), μ)) :
C := ComradeMatrix(degree(f), μ, convert(fcoeffsInLS, list)) :
LinearAlgebra : −Eigenvalues(C) :
rootList := [seq(%[i], i = 1..degree(f))]
f := 75 x12 − 92 x10 + 6 x9 + 74 x8 + 72 x7 + 37 x6 − 23 x5 + 87 x4 + 44 x3 + 29 x
rootList := [1.141014116 + 0.529676826 I, 1.141014116 − 0.529676826 I,
−1.471711477 10−8 + 0 I, 0.563935206 + 0.629828559 I, 0.563935206 − 0.629828559 I,
−0.4044380673 + 0.900856959 I,−0.404438067 − 0.900856959 I,
0.1365209364 + 0.583947922 I, 0.136520936 − 0.583947922 I,
−1.0327465955 + 0.373007812 I, −1.0327465955 + 0.373007812 I,
−0.808571018 + 0 I][

> ResidualError := norm(eval(f, x = rootList[1]), 2);
ResidualError := 0.0129507410089049

Fig. 10. Computation of the roots of the polynomial f by finding the eigenvalues of
the corresponding comrade matrix.

4.4 Computing the Roots of Polynomials in Legendre-Sobolev
Bases

Here, we have computed the roots of a polynomial f(λ) of degree 12, which is
randomly created by using the command randpoly. We have first computed the
coefficient matrix corresponding to f(λ) in the Legendre-Sobolev basis corre-
sponding to μ = 0.125; then we have used this matrix to compute the comrade
matrix C of f(λ) in the Legendre-Sobolev basis (see [4]), and the roots of f(λ)
by computing the eigenvalues of matrix C (see Fig. 10).

4.5 Computing Gcds of Polynomials in Legendre-Sobolev Bases

When two polynomials f(λ) and h(λ) are given in a Legendre-Sobolev basis,
then one can find the monic gcd of these polynomials in the same basis by using
the command GcdInLS as illustrated in Fig. 11. The work [3] explains the theory
behind GcdInLS command which is essentially based on solving Diophantine
equations arising from a comrade matrix.

5 Handwriting Recognition with LegendreSobolev
Package

In this section, we explain how to compute the parametrized approximations of
handwritten curves in a Legendre-Sobolev basis using LegendreSobolev pack-
age. To compute such approximations, we have implemented a package called
HandwritingRecognitionTesting (see Fig. 12). The functions in the latter
package are implemented based on Sect. 3 and [2].

mmonagan@cecm.sfu.ca

The LegendreSobolev Package and Its Applications 23

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> Digits := 17 :
μ := 0.125 :
f1 := randpoly(x, degree = 10);
g := randpoly(x, degree = 9);
h1 := randpoly(x, degree = 8);

f1 := 40 x9 − 81 x7 + 91 x3 + 68 x2 − 10 x + 31
g := 55 x8 − 28 x6 + 16 x4 + 30 x3 − 27 x2 − 15 x
h1 := 72 x8 − 87 x7 + 47 x6 − 90 x4 + 43 x3 + 92 x⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> f := f1 g :
fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
fcoeffsInLS := Multiply(fcoeffs, MonomialToLSMatrix(degree(f), mu)) :
h := h1 g :
hcoeffs := Matrix([seq(coeff(h, x, i), i = 0..degree(h))]) :
hcoeffsInLS := Multiply(hcoeffs, MonomialToLSMatrix(degree(h), mu)) :
gcdLS := GcdInLS(convert(fcoeffsInLS, list), convert(hcoeffsInLS, list), μ);

gcdLS := [−0.67070707067873429, 0.11404958676877247, 0.23366585106067264,
0.15867768593779621, 0.12037071477726489,−7.6571048185969832 10−13,
0.0039091068982669860,−4.9471370550988164 10−17, 0.000034125246982815868]⎡

⎢⎢⎢⎢⎢⎣

> gcoeffs := Matrix([seq(gcdLS[i], i = 1..nops(gcdLS))]) :
gcoeffsInMonomial := Multiply(gcoeffs, LSToMonomialMatrix(nops(gcdLS) − 1, μ)) :
computedGcd := add(gcoeffsInMonomial[1][i] · xi−1, i = 1..nops(gcdLS)) :

RelativePolynomialError := evalf(
norm(simplify(%− g

lcoeff(g) ,2))

norm(g
lcoeff(g) ,2)

)

RelativePolynomialError := 4.8855925361391707 10−11

Fig. 11. Monic gcd computation using LegendreSobolev package.

Handwritten curves are presented as points (x, y, t) with coordinates (x, y)
and timestamp t. To compute the parametrized approximation of a handwritten
curve in a Legendre-Sobolev basis, we first compute the arc-lengths at each
time for which a data point (x, y) is collected. To do so, we use the command
NormalizeArcLength(x, y,m), where x and y are the tables containing all xi

and yi, respectively, which are sampled at ti, for i = 0, . . . , m, where m is the
number of times a data point is collected (see Fig. 13).

The next step is to compute the matrix of moment integrals correspond-
ing to the points which are given by x and y. To do so, we use the command
MomentIntegrals(x, y,ArcLength, L, numSteps), where ArcLength is the table

⎡
⎢⎢⎣

> read“HandwrittingRectesting.mpl” :
with(HandwritingRecognitionTesting);
[ApproximateCurveFromCurves, ApproximateCurveFromPoints,
BoundingBox, MomentIntegrals, NormalizeArcLength]

Fig. 12. The functions of HandwritingRecognitionTesting package.

mmonagan@cecm.sfu.ca

24 P. Alvandi and S. M. Watt

⎡
⎢⎢⎣

> read“m inkml” :
ArcLength := NormalizeArcLength(xValues,

yValues, nVals);
ArcLength := Ltable

(a)

[
> L := ArcLength[nVals];

L := 748.28709093397816

(b)

Fig. 13. (a) Arc-lengths computation of handwritten characters at each time a point
is collected; (b) computing the total arc-length of a handwritten character.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> numSteps := 400 :
d := 18 :
xmoments := MomentIntegrals(
xValues,ArcLength, d,L, numSteps) :
xmomentsVec := Matrix(
[seq(xmoments[i], i = 0..d)]);

xmomentsVec :=

⎡
⎢⎣

1 x 19 Matrix
DataType : anything
Storage : rectangular
Order : Frotran order

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> ymoments := MomentIntegrals(
yValues,ArcLength, d,L, numSteps) :
ymomentsVec := Matrix(
[seq(ymoments[i], i = 0..d)]);

ymomentsVec :=

⎡
⎢⎣

1 x 19 Matrix
DataType : anything
Storage : rectangular
Order : Frotran order

⎤
⎥⎦

Fig. 14. Moments computation with HandwritingRecognitionTesting package.

of arc lengths corresponding to the data points given by x and y at a time, L the
total arc length, and numSteps the number of steps in numerical integration for
computing moment integrals (see Fig. 14).

Figure 15a illustrates how to compute coefficients of an approximated curve
in the Legendre-Sobolev basis with μ = 0.125 from moments. The matrix which
is computed by the command MomentsToLSMatrix is given by Proposition 1.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> μ := 0.125 :
C := MomentsToLSMatrix(d, μ);

C :=

⎡
⎢⎢⎢⎢⎢⎣

19 x 19 (Matrix)

Data Type: anything

Storage: rectangular

Order: Fortran order

⎤
⎥⎥⎥⎥⎥⎦

(a)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> N := Matrix([seq([seq(0, i = 1..j − 1), 1/Lj,
seq(0, i = j + 1..d + 1)], j = 1..d + 1)])
M := N · C;

N :=

⎡
⎢⎢⎢⎢⎢⎣

19 x 19 (Matrix)

Data Type: anything

Storage: rectangular

Order: Fortran order

⎤
⎥⎥⎥⎥⎥⎦

(b)

Fig. 15. (a) Matrix C computation with LegendreSobolev package. (b) Computation
of matrix N to rescale the parametrized curves from [0, L] to [−1, 1].

Figure 15b shows how to compute matrix N which scales a handwritten curve
to be defined over [−1, 1] instead of [0, L]. To scale the approximations to be
defined over the interval [−1, 1], we multiply two matrices N and C and compute
the conversion matrix M . Note that the matrix C is independent of the problem

mmonagan@cecm.sfu.ca

The LegendreSobolev Package and Its Applications 25

and can be computed, in advance, but the matrix N is only known at the time
a handwritten curve is completely written and pen is lifted up.

⎡
⎢⎢⎢⎢⎣

> xCoeffsVec := xmomentsVec · M

xCoeffsVec :=

⎡
⎢⎢⎣

1 x 19 Matrix
DataType : anything
Storage : rectangular
Order : Frotran order

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

> yCoeffsVec := ymomentsVec · M

yCoeffsVec :=

⎡
⎢⎢⎣

1 x 19 Matrix
DataType : anything
Storage : rectangular
Order : Frotran order

⎤
⎥⎥⎦

Fig. 16. Computing the Legendre-Sobolev coefficients of the coordinate curves from
moment integrals.

Now one can compute the coefficients of parametrized approximations of
handwritten characters in the Legendre-Sobolev basis, with μ = 0.125, by mul-
tiplying the moment integral matrices and conversion matrix M , see Fig. 16.

After the coefficient matrices corresponding to Legendre-Sobolev approxi-
mations of the given handwritten curve are computed, we can recover the cor-
responding monomial representation and then plot the handwritten curve, see
Figs. 17 and 18, respectively.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> xCoeffs := convert(xCoeffsVec, list);
yCoeffs := convert(yCoeffsVec, list);
XLS := add(xCoeffs[kk] · S[kk − 1, mu](x), kk = 1..d + 1);
YLS := add(yCoeffs[kk] · S[kk − 1, mu](x), kk = 1..d + 1);
XLS :=189.73347007344971 − 43174.6127062900 x17 + 195134.26543686008 x15

−372294.97257625631 x13 + 392139.51651262814 x11 − 253289.82060430780 x9

+107985.69508828471 x7 + 259085.21825307995 x18

−1124537.0937011107000000 x16 + 2009145.0748245059000000 x14

−1899073.9014249837000000 x12 + 1016510.0846958727000000 x10

−309032.67958172588 x8 − 32230.336065891532 x5 + 54268.035000655102 x6

+6111.3437078230404 x3 − 7124.1885409608675 x4 + 788.36849480813250 x2

−440.31476515699463 x
YLS := 287.64746656757988 − 41062.137598260 x17 + 188484.7429259304 x15

−356524.0808428460 x13 + 357612.16332286471 x11 − 204629.82886696718 x9

+67770.765572894417 x7 + 285020.31716937217 x18 − 1270274.4758773500000000 x16

+2379548.2831858383000000 x14 − 2430565.7566198024000000 x12

+1463461.9788810968000000 x10 − 519221.25154222754 x8 − 12983.274033705085 x5

+99749.532330325308 x6 + 1403.1811689782580 x3 − 7549.097513537004 x4

−151.99583336566333 x2 + 39.1334243192727 x

Fig. 17. Recovering the monomial representation of the coordinate curves.

mmonagan@cecm.sfu.ca

26 P. Alvandi and S. M. Watt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> plt := plot([XLS, YLS, x = −1..1], color = black,
legend = “The approximated handwritten curve in LS basis with d = 18, μ = 1

8
”) :

200 250 300 350 400

150

200

250

X(λ)

Y (λ)

The approximated handwritten curve in LS basis with d = 18, μ = 1
8

Fig. 18. The approximated curve which is constructed from moment integrals.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> Digits := 35;
yder := DerivativeInLS(μ, yCoeffs)
yder := [−57.80172489055115070, 241.95681501221907573147241310639816,
−72.00758972940440400672553544459, 492.0013447597806202877345138244,
63.7542342851214904179706460385, 58.99816519068351673720139527266,
7.111923250708757655710051038617, 1.596854836569582519033512096538,
−0.9026117960067772627343255882512, 0.1575927482284098282158739019031,
0.00493824811802938845646294027403, 0.0013812349976958496416992079236,
−0.00011054971636315838410370568755, 0.000023176474143126036638876816426,
−2.034462810502421113042576637 × 10−8, 4.297271281792456037911192695 × 10−7,
−8.208638506248138496817994088 × 10−9, 2.150421156817197978999224152 × 10−9]

Fig. 19. Derivative computation using LegendreSobolev package.

5.1 Baselines and Cusps

One can compute the cusps and baselines of handwritten characters by comput-
ing the critical points of the parametrized approximations of the handwritten
curves in a Legendre-Sobolev basis. The experimental results in [3], suggests
to use quadruple precision for the calculations. To do so, one can compute the
points corresponding to values of λ for which either X ′(λ) = 0 or Y ′(λ) = 0,
but here we restrict ourselves to the latter case. We apply our calculations for
the example which is given in Sect. 5 for the handwritten letter “m”, where the
degree of the approximation is d = 18 and μ = 0.125. To do so, we first com-
pute the coefficients of Y ′(λ) in the given Legendre-Sobolev basis. The command
DerivativeInLS implements this functionality, see Fig. 19.

Then, we need to compute the comrade matrix corresponding to Y ′(λ). In
fact, the roots of the system {Y ′(λ) = 0} are equivalent to the eigenvalues of
the comrade matrix corresponding to Y ′(λ), Fig. 20. Now, we can compute the
critical points on the handwritten curve as given in Fig. 21.

mmonagan@cecm.sfu.ca

The LegendreSobolev Package and Its Applications 27

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> C := ComradeMatrix(d − 1, μ, yder);
evalf(LinearAlgebra : −Eigenvalues(C));
yroots := [seq(%[i], i = 1..d − 1)];
realyroots := [];
for i to d − 1 do

if Im(yroots[i]) = 0 and Re(yroots[i]) > −1 and Re(yroots[i]) < 1 then
realyroots := [op(realyroots), Re(yroots[i])]

end if
end do;
realyroots
[0.8972284851500363926929570653160, 0.4794661941107668225997865145204,
0.1356368739064478593469426001940,−0.2265522866205856397528476347307,
−0.6290657031696375888060499900325]

Fig. 20. Critical point computation using LegendreSobolev package.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

> pnts := [seq(eval([XLS, YLS], x = realyroots[i]), i = 1..nops(realyroots))] :
b := plots : −pointplot(pnts, symbol = solidbox, color = red,
legend = “Points on the approximated curve in LS basis with Y′(λ) = 0”) :
a1 := plot([XLS, YLS, x = −1..1], color = black,
legend = “The approximated handwritten curve in LS basis with d = 18, μ = 1

8
”) :

plots : −display([b, a1]);

200 250 300 350 400

150

200

250

X(λ)

Y (λ)

The approximated handwritten curve in Legendre-Sobolev basis with d = 18, μ = 1
8

Points on the approximated curve in Legendre-Sovolev basis with Y ′(λ) = 0

Fig. 21. Critical points corresponding to the approximated curve in Legendre-Sobolev
basis constructed from moment integrals, with µ = 0.125.

5.2 Regions of the Characters in a Handwritten Math Expression

Using the coefficients of the Legendre-Sobolev approximations of handwritten
characters, one can find the corresponding regions of individual characters, auto-
matically, by relying on computation of critical points of the corresponding
parametrized approximations. In Fig. 22, we have approximated the individ-
ual characters in a handwritten math expression by degree 10 polynomials in
the Legendre-Sobolev basis with μ = 1

5 . The command BoundingBox(Cx,Cy, μ)
implements this method, where Cx and Cy are the X(λ) and Y (λ) coordinate
approximation coefficients in the Legendre-Sobolev basis.

mmonagan@cecm.sfu.ca

28 P. Alvandi and S. M. Watt

Fig. 22. Finding the regions of the characters in a math expression.

6 Concluding Remarks

The new Maple package LegendreSobolev performs various operations on poly-
nomials in Legendre-Sobolev bases. All these operations rely on linear algebra
arithmetic operations.

The package LegendreSobolev offers a command for recovering the coeffi-
cients of polynomials in Legendre-Sobolev bases from their moment integrals.
This functionality is very useful in the problem of on-line handwriting recogni-
tion, when having the ability of real-time encoding of handwritten characters
from their digital inks is crucial. It is also possible to study the geometrical
features of handwritten characters by relying on computations of critical and
singular points in Legendre-Sobolev bases.

Investigation of how these features might improve the mathematical hand-
writing recognition rates is a work in progress.

References

1. Althammer, P.: Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und
deren Anwendung auf die beste approximation. J. Reine Ang. Math. 211, 192–204
(1962)

2. Alvandi, P., Watt, S.M.: Real-time computation of Legendre-Sobolev approxima-
tions. In: SYNASC, pp. 67–74 (2018)

3. Alvandi, P., Watt, S.M.: Handwriting feature extraction via Legendre-Sobolev
matrix representation (2019, preprint)

4. Barnett, S.: A companion matrix analogue for orthogonal polynomials. Linear
Algebr. Appl. 12(3), 197–202 (1975)

5. Carballo, G., Álvarez Nodarse, R., Dehesa, J.S.: Chebychev polynomials in a speech
recognition model. Appl. Math. Lett. 14(5), 581–585 (2001)

6. Char, B.W., Watt, S.M.: Representing and characterizing handwritten mathemat-
ical symbols through succinct functional approximation. In: ICDAR, vol. 2, pp.
1198–1202 (2007)

7. Golubitsky, O., Watt, S.M.: Online stroke modeling for handwriting recognition.
In: CASCON, pp. 72–80 (2008)

8. Golubitsky, O., Watt, S.M.: Online computation of similarity between handwritten
characters. In: Document Recognition and Retrieval XVI, Part of the IS&T-SPIE
Electronic Imaging Symposium, pp. C1–C10 (2009)

mmonagan@cecm.sfu.ca

The LegendreSobolev Package and Its Applications 29

9. Golubitsky, O., Watt, S.M.: Online recognition of multi-stroke symbols with
orthogonal series. In: ICDAR, pp. 1265–1269 (2009)

10. Hausdorff, F.: Summationsmethoden und Momentfolgen. I. Math. Z. 9, 74–109
(1921)

11. Hausdorff, F.: Summationsmethoden und Momentfolgen. II. Math. Z. 9, 280–299
(1921)

12. Hu, R., Watt, S.M.: Identifying features via homotopy on handwritten mathemat-
ical symbols. In: SYNASC, pp. 61–67 (2013)

13. Wang, K., An, N., Li, B.N., Zhang, Y., Li, L.: Speech emotion recognition using
Fourier parameters. IEEE Trans. Affect. Comput. 6(1), 69–75 (2015)

14. Zhiqi, Y.: Gesture learning and recognition based on the Chebyshev polynomial
neural network. In: 2016 IEEE Information Technology, Networking, Electronic
and Automation Control Conference, pp. 931–934 (2016)

15. Zhu, L., Zhu, S.: Face recognition based on orthogonal discriminant locality pre-
serving projections. Neurocomputing 70(7), 1543–1546 (2007). Advances in Com-
putational Intelligence and Learning

mmonagan@cecm.sfu.ca

On the Effective Computation
of Stabilizing Controllers of 2D Systems

Yacine Bouzidi1, Thomas Cluzeau2, Alban Quadrat3(B), and Fabrice Rouillier3

1 Inria Lille - Nord Europe, 40 Avenue Halley, 59650 Villeneuve d’Ascq, France
yacine.bouzidi@inria.fr

2 CNRS, XLIM UMR 7252, 87060 Limoges Cedex, France
thomas.cluzeau@unilim.fr

3 Inria Paris, Institut de Mathématiques de Jussieu Paris-Rive Gauche,
Sorbonne Université, Paris Université, Paris, France

{alban.quadrat,fabrice.rouillier}@inria.fr

Abstract. In this paper, we show how stabilizing controllers for 2D sys-
tems can effectively be computed based on computer algebra methods
dedicated to polynomial systems, module theory and homological alge-
bra. The complete chain of algorithms for the computation of stabilizing
controllers, implemented in Maple, is illustrated with an explicit example.

Keywords: Multidimensional systems theory · 2D systems · Stability
analysis · Stabilization · Computation of stabilizing controllers ·
Polynomial systems · Module theory · Homological algebra

1 Introduction

In the eighties, the fractional representation approach to analysis and syn-
thesis problems was introduced by Vidyasagar, Desoer, etc., to unify dif-
ferent problems studied in the control theory community (e.g., inter-
nal/strong/simultaneous/optimal/robust stabilizability) within a unique math-
ematical framework [12,27]. Within this approach, different classes of linear sys-
tems (e.g., discrete, continuous, finite-dimensional systems, infinite-dimensional
systems, multidimensional systems) can be studied by means of a common math-
ematical formulation.

The main idea of this approach is to reformulate the concept of stability −
central in control theory − as a membership problem. More precisely, a single-
input single-output (SISO) linear system, also called plant, is defined as an ele-
ment p of the quotient field (field of fractions) Q(A) =

{
n
d | 0 �= d, n ∈ A

}
of an

integral domain A of SISO stable plants [27]. Hence, if p ∈ A, then p is A-stable
(simply stable when the reference to A is clear) and unstable if p ∈ Q(A)\A.
More generally, a multi-input multi-output (MIMO) plant can be defined by a
matrix P ∈ Q(A)q×r. Hence, it is stable if P ∈ Aq×r, unstable otherwise.

Different integral domains A of SISO stable plants are considered in the con-
trol theory literature depending on the class of systems which is studied. For
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 30–49, 2020.
https://doi.org/10.1007/978-3-030-41258-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_3

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 31

instance, the Hardy (Banach) algebra H∞(C+) formed by all the holomorphic
functions in the open-right half plane C+ = {s ∈ C | �(s) > 0} which are
bounded for the norm ‖f‖∞ = sups∈C+

|f(s)| plays a fundamental role in sta-
bilization problems of infinite-dimensional linear time-invariant systems (e.g.,
differential time-delay systems, partial differential systems) since its elements
can be interpreted as the Laplace transform of L2(R+) − L2(R+)-stable plant
(i.e., any input u of the system in L2(R+) yields an output y in L2(R+)) [10].
Similarly, the integral domain RH∞ of proper and stable rational functions, i.e.,
the ring of all rational functions in H∞(C+), corresponds to the ring of exponen-
tially stable finite-dimensional linear time-invariant systems (i.e., exponentially
stable ordinary differential systems with constant coefficients) [27].

In this paper, we shall focus on the class of discrete multidimensional systems
which are defined by multivariate recurrence relations with constant coefficients
or, using the standard Z-transform, by elements of the field R(z1, . . . , zn) of real
rational functions in z1, . . . , zn. The latter is the field of fractions Q(A) of the
integral domain A of SISO structurally stable plants defined by

R(z1, . . . , zn)S :=
{n

d
| 0 �= d, n ∈ B, gcd(d, n) = 1, V (〈d〉) ∩ U

n = ∅
}

,

where B := R[z1, . . . , zn] denotes the polynomial ring in z1, . . . , zn with coeffi-
cients in R, gcd(d, n) the greatest common divisor of d, n ∈ B, and

V (〈d〉) = {z = (z1, . . . , zn) ∈ C
n | d(z) = 0}

the affine algebraic set defined by d ∈ B, i.e., the complex zeros of d, and finally

U
n = {z = (z1, . . . , zn) ∈ C

n | |zi| ≤ 1, i = 1, . . . , n}
the closed unit polydisc of Cn. It can be shown that p ∈ R(z1, . . . , zn)S implies
that the plant p is bounded-input bounded-output stable in the sense that an input
u in l∞(Zn

+) yields an output y in l∞(Zn
+). See, e.g., [15,16].

Despite the simplicity of the main idea of the fractional representation
approach, i.e., to express stability as a membership problem, many problems
studied in control theory were reformulated as algebraic (analysis) problems.
For instance, internal/strong/simultaneous/optimal/robust stabilizability can be
reformulated within this mathematical approach and solved for particular inte-
gral domains A such as RH∞ [27]. But these problems are still open for the class
of infinite-dimensional systems [10] and multidimensional systems [15,16].

The goal of this article is to combine results obtained in [2,4–6,20,21] to
obtain a complete algorithmic approach to the computation of stabilizing con-
trollers for 2D stabilizable MIMO systems. In [5], the problem was solved for
SISO systems. To handle the class of MIMO systems, we use the module-
theoretic approach to the fractional representation approach [20,21]. More pre-
cisely, in [6], the main steps towards an algorithmic computation of stabilizing
controllers for general nD systems are explained based on computer algebra
methods. In this paper, we focus on 2D MIMO systems for which the so-called
Polydisk Nullstellensatz [7] has received an effective version in [5] (which is not

mmonagan@cecm.sfu.ca

32 Y. Bouzidi et al.

the case for general nD systems), which yields a complete algorithmic approach
to the computation of stabilizing controllers for 2D stabilizable MIMO systems.

Our algorithms were implemented in the computer algebra system Maple,
based on both the package nDStab − dedicated to stability and stabilizability of
nD systems − and on the OreModules package [9] which aims to study linear
systems theory based on effective module theory and homological algebra.

2 The Fractional Representation Approach

In what follows, we shall use the following notations. A will denote an integral
domain of SISO plants, K := Q(A) =

{
n
d | 0 �= d, n ∈ A

}
its quotient field,

P ∈ Kq×r a plant, C ∈ Kr×q a controller, and p = q + r.

u1 +

+

e1
C

e2 u2+
+

y2

y1

P

Fig. 1. Closed-loop system

With the notations of Fig. 1 defining the closed-loop system formed by the
plant P and the controller C, we get (eT

1 eT
2)T = H(P, C) (uT

1 uT
2)T , where

the transfer matrix H(P,C) ∈ Kp×p is defined by:

H(P, C) :=
(

Iq −P
−C Ir

)−1

=
(

(Iq − P C)−1 (Iq − P C)−1 P
C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)

=
(

Iq + P (Ir − C P)−1 C P (Ir − C P)−1

(Ir − C P)−1 C (Ir − C P)−1

)
.

Definition 1 ([27]). A plant P ∈ Kq×r is internally stabilizable if there exists
C ∈ Kr×q such that H(P,C) ∈ Ap×p. Then, C is a stabilizing controller of P .

If H(P,C) ∈ Ap×p, then we can easily prove that all the entries of any
transfer matrix between two signals appearing in Fig. 1 are A-stable (see, e.g.,
[27]).

A fundamental issue in control theory is to first test if a given plant P is
internally stabilizable and if so, to explicitly compute a stabilizing controller of
P , and by extension the family Stab(P) of all its stabilizing controllers.

To do that and to study other stabilization problems such as robust control,
the fractional approach to systems was introduced in control theory [12,27].

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 33

Definition 2. A fractional representation of P ∈ Kq×p is defined by P =
D−1 N = Ñ D̃−1, where R := (D −N) ∈ Aq×p and R̃ = (ÑT D̃T)T ∈ Ap×r.

A plant P ∈ Kq×r always admits a fractional representation since we can
always consider D = d Iq, D̃ = d Ir, where d is the product of all the denomina-
tors of the entries of P , which yields N = D P ∈ Aq×r and Ñ = P D̃ ∈ Aq×r.

3 Testing Stability of Multidimensional Systems

3.1 Stability Tests for nD Systems

A fundamental issue in the fractional representation approach is to be able to
solve the following membership problem: let p ∈ K := Q(A), check whether or
not p ∈ A. The answer to this problem depends on A.

In this paper, we shall focus on the case A := Q(z1, . . . , zn)S defined in
the introduction, and mainly on 2D systems for the stabilization issue, i.e., on
A = Q(z1, z2)S . Since we shall only consider exact computation methods based
on computer algebra techniques, in what follows, we consider the ground field to
be Q instead of R. Tests for stability of multidimensional systems have largely
been investigated in both the control theory and signal processing literatures.
For more details, see the surveys [15,16] and the references therein.

Let B := Q[z1, . . . , zn] be the commutative polynomial ring over Q. We first
note that K := Q(A) = Q(z1, . . . , zn) = Q(B). Moreover, A = Q(z1, . . . , zn)S is
the localization BS := S−1 B = {b/s | b ∈ B, s ∈ S} of the polynomial ring B
with respect to the (saturated) multiplicatively closed subset of B defined by:

S := {b ∈ B | V (〈b〉) ∩ U
n = ∅}.

Any element p ∈ K can be written as p = n/d with 0 �= d, n ∈ B. Moreover, we
can always assume that the greatest common divisor gcd(d, n) is reduced to 1.
Hence, given an element p = n/d ∈ K, gcd(d, n) = 1, we get that p ∈ A = BS iff
d ∈ S. The membership problem is reduced to checking whether or not d ∈ S.
Let us study how this problem, i.e., the stability test, can be effectively checked.

Setting zk = uk + i vk, where uk, vk ∈ R, for k = 1, . . . , n, and writing
b(z1, . . . , zn) = c1(u1, . . . , un, v1, . . . , vn) + i c2(u1, . . . , un, v1, . . . , vn), where the
ci’s are two real polynomials in the real variables uk’s and vk’s, V (〈b〉) ∩ U

n

yields the following semi-algebraic set:
⎧
⎨

⎩

c1(u1, . . . , un, v1, . . . , vn) = 0,
c2(u1, . . . , un, v1, . . . , vn) = 0,
u2

k + v2
k ≤ 1, k = 1, . . . , n.

(1)

Real algebraic methods such as CAD [1] can then be used to solve this problem
for small n. But they quickly become impracticable in practice for nD systems,
even for n ≥ 2, since the number of unknowns has been doubled in (1). Hence, an
algebraic formulation, more tractable for explicit computation, must be found.

The next theorem gives a mathematical characterization of V (〈b〉) ∩U
n = ∅.

mmonagan@cecm.sfu.ca

34 Y. Bouzidi et al.

Theorem 1 ([11]). Let b ∈ R[z1, . . . , zn] and T
n =

∏n
i=1{zi ∈ C | |zi| = 1}.

Then, the following assertions are equivalent:

1. V (〈b(z1, . . . , zn)〉) ∩ U
n = ∅.

2. ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V (〈b(z1, 1, . . . , 1)〉) ∩ U = ∅,
V (〈b(1, z2, 1, . . . , 1)〉) ∩ U = ∅,

...
V (〈b(1, . . . , 1, zn)〉) ∩ U = ∅,
V (〈b(z1, . . . , zn)〉) ∩ T

n = ∅.

In [2], it is shown how 2 of Theorem 1 can be effectively tested by means of
computer algebra methods. Let us shortly state again the main idea. The first
n conditions of 2 of Theorem1 can be efficiently checked by means of standard
stability tests for 1D systems such as [26]. The only remaining difficulty is the
last condition, which must be transformed into a more tractable algorithmic
formulation. To do that, we can introduce the Möbius transformation

ϕ : R
n −→ T

n
◦ ,

t := (t1, . . . , tn) −→ z := (z1, . . . , zn) =
(

t1 − i

t1 + i
, . . . ,

tn − i

tn + i

)
,

with the notations R = R ∪ {∞} and T◦ = T\{1}. Note that we have:

zk = uk + i vk =
tk − i

tk + i
=

t2k − 1
t2k + 1

− i
2 tk

t2k + 1
.

We can easily check that ϕ is bijective and that t = ϕ−1(z) is defined by:

t =
(

i
1 + z1
1 − z1

, . . . , i
1 + zn

1 − zn

)
.

Now, substituting z = ϕ(t) into b(z), we get b(ϕ(t)) = c1(t) + i c2(t), where
the ci’s are two real rational functions of the real vector t. Writing cj = nj/dj ,
where nj , dj ∈ Q[t] and gcd(dj , nj) = 1, then b(z) = 0 is equivalent to c1(t) = 0
and c2(t) = 0, i.e., to n1(t) = 0 and n2(t) = 0. Hence, the problem of computing
V (〈b〉)∩T

n
◦ is equivalent to the problem of computing V (〈n1, n2〉)∩R

n. In partic-
ular, we get V (〈b〉)∩T

n
◦ = ∅ iff V (〈n1, n2〉)∩R

n = ∅. Critical point methods (see
[1]) can be used to check the last condition. Indeed, they characterize a real point
on every connected component of V (〈n1, n2〉) ∩R

n. Finally, while working over
T

n
◦ and not over Tn, we are missing to test the stability criterion on the particu-

lar set of points {(1, z2, . . . , zn), . . . , (z1, . . . , zn−1, 1)} of Tn\Tn
◦ . Hence, we have

to study the stability of the polynomials b(1, z2, . . . , zn), . . . , b(z1, . . . , zn−1, 1)
separately based on the same method. This can be studied inductively on the
dimension. The corresponding algorithm [2] is given in Algorithm 1 (see below).

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 35

Algorithm 1. IsStable
1: procedure IsStable(b(z1, . . . , zn)) � Return true if V (〈b〉) ∩ U

n = ∅
2: for k = 0 to n − 1 do
3: Compute the set Sk of polynomials obtained by substituting k variables by

1 into b(z1, . . . , zn)
4: for each element b in Sk do
5: {n1, n2} = Möbius transform(b)
6: if V (〈n1, n2〉) ∩ R

n �= ∅ then
7: return False
8: end if
9: end for

10: end for
11: return True
12: end procedure

3.2 An Efficient Stability Test for 2D Systems

For n = 2, with the notations of (1), the last condition of 2 of Theorem1, i.e.,
checking whether or not V (〈b〉) ∩ T

2 is empty, amounts to search for the real
solutions (u1, v1, u2, v2) of the following zero-dimensional polynomial system

c1(u1, u2, v1, v2) = 0, c2(u1, u2, v1, v2) = 0, u2
1 + v2

1 = 1, u2
2 + v2

2 = 1,

i.e., for the real solutions of a polynomial system which only has a finite number
of complex solutions. Hence, the problem is reduced to deciding if a polynomial
system in two variables, which has finitely many complex solutions, admits real
ones. Based on this idea, an efficient algorithm for testing stability of 2D systems
is given in [3,4]. Let us explain it. According to the end of Sect. 3.1, using the
Möbius transformation ϕ, V (〈b(z1, z2)〉) ∩ T

2 = ∅ is equivalent to:
⎧
⎨

⎩

V (〈n1, n2〉) ∩ R
2 = ∅,

b(1, z2) �= 0, |z2| = 1,
b(z1, 1) �= 0, |z1| = 1.

Since the last two conditions of the above system can be efficiently checked
by means of, e.g., [26], let us concentrate on the first condition, i.e., on the prob-
lem of deciding when a zero-dimensional polynomial system V (〈n1, n2〉) in two
variables t1 and t2 has real solutions. The main idea is to reduce the problem of
checking the existence of real solutions of such a polynomial system to the prob-
lem of checking the existence of real roots of a well-chosen univariate polynomial.
A convenient method to do that is the so-called univariate representation of the
solutions [24,25]. Let us recall this concept. Given a zero-dimensional polynomial
ideal I in Q[t1, t2], a univariate representation consists in the datum of a linear
form s = a1 t1 + a2 t2, with a1, a2 ∈ Q, and three polynomials h, ht1 , ht2 ∈ Q[s]
such that the applications

φ : V (I) −→ V (〈h〉) = {s ∈ C | h(s) = 0}
t = (t1, t2) −→ s = a1 t1 + a2 t2,

ψ : V (〈h〉) −→ V (I)
s −→ t = (ht1(s), ht2(s)),

mmonagan@cecm.sfu.ca

36 Y. Bouzidi et al.

provide a one-to-one correspondence between the zeros of I and the roots of h.
In that case, the linear form s = a1 t1 + a2 t2 is said to be separating.

A key property of the 1–1 correspondence φ = ψ−1 is that it preserves the
real zeros of V (I) in the sense that any real zero of V (I) corresponds a real
root of h and conversely. As a consequence, deciding if V (I) has real zeros is
equivalent to deciding if the univariate polynomial h has real roots.

From a computational viewpoint, to conclude on the existence of real zeros
of V (I), it is sufficient to compute a separating linear form for V (I) and the
corresponding univariate polynomial h. In [3,4], an efficient algorithm based on
resultants and subresultant sequences [1] is used to perform these computations
and, then to conclude about the stability of 2D systems.

4 Testing Stabilizability of 2D Systems

4.1 Module-Theoretic Conditions for Stabilizability

As explained in Sect. 2, a fractional representation of a plant P ∈ Kq×p is defined
by P = D−1 N , where R = (D − N) ∈ Aq×(q+r). See Definition 2. Let us set
p = q + r. Since A is an integral domain and R is a matrix, we are naturally in
the realm of module theory [13,23], which is the extension of linear algebra for
rings. Given R ∈ Aq×p, we shall consider the following A-modules:

⎧
⎨

⎩

kerA(.R) := {μ ∈ A1×q | μR = 0},
imA(.R) = A1×q R := {λ ∈ A1×p | ∃ ν ∈ A1×q : λ = ν R},
cokerA(.R) = A1×p/(A1×q R).

We recall that factor A-module M := cokerA(.R) = A1×p/(A1×q R) is defined
by the generators {yj = π(fj)}j=1,...,p, where {fj}j=1,...,p denotes the standard
basis of the free A-module A1×p, namely, the basis formed by the standard basis
vectors fj ’s (i.e., the row vectors of length p with 1 at the jth position and 0
elsewhere), and π : A1×p −→ M is the A-homomorphism (i.e., A-linear map)
which sends λ ∈ A1×p onto its residue class π(λ) in M (i.e., π(λ′) = π(λ) if there
exists μ ∈ A1×q such that λ′ = λ + μR). One can prove that the generators yj ’s
satisfy the A-linear relations

∑p
j=1 Rij yj = 0, i = 1, . . . , q, where Rij stands

for the (i, j) entry of R. For more details, see, e.g., [8,20,22]. Hence, if we
note by y = (y1, . . . , yp)T , then the above relation can formally be rewritten as
Ry = 0, which explains why the A-module M is used to study the linear system
Ry = 0. Using module theory, a characterization of stabilizability, namely, of the
existence of a stabilizing controller C for a given plant P , was obtained.

Theorem 2 ([21]). Let P ∈ Kq×r, p = q + r, P = D−1 N be a fractional
representation of P , where R = (D − N) ∈ Aq×p, and M = A1×p/(A1×q R)
the A-module finitely presented by R. Then, P is internally stabilizable iff the A-
module M/t(M) is projective, where t(M) := {m ∈ M | ∃ a ∈ A\{0} : am = 0}
is the torsion submodule of M . In other words, P is internally stabilizable iff
there exist an A-module L and s ∈ Z≥0 such that L ⊕ M/t(M) ∼= A1×s.

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 37

According to Theorem 2, we have to study the following two problems:

1. Explicitly characterize t(M), and thus M/t(M).
2. Check whether or not M/t(M) is a projective A-module.

Both problems can be solved by homological algebra methods [23]. In the rest
of the paper, we shall suppose that A is a coherent ring [20,23]. For instance,
we can consider the coherent but non-noetherian integral domain H∞(C+) (see
Introduction) or any noetherian ring such as R(z1, . . . , zn)S or RH∞. The cat-
egory of finitely presented modules over a coherent integral domain is a natural
framework for mathematical systems theory [20].

Let us introduce the definition of an extension module [13,23]. Let us consider
a finitely presented A-module L := A1×q0/(A1×q1 S1), where S1 ∈ Aq1×q0 . Since
A is coherent, kerA(.S1) is a finitely generated A-module, and thus there exists a
finite family of generators of kerA(.S1). Stacking these row vectors of A1×q1 , we
obtain S2 ∈ Aq2×q1 such that kerA(.S1) = imA(.S2) = A1×q2 S2. Repeating the
same process with S2, etc., we get the following exact sequence of A-modules

. . .
.S3 �� A1×q2

.S2 �� A1×q1
.S1 �� A1×q0 κ �� L �� 0, (2)

i.e., kerA(.Si) = imA(.Si+1) for i ≥ 1, where κ is the epimorphism which maps
η ∈ A1×q0 onto its residue class κ(η) in L. This exact sequence is called free
resolution of L [13,23]. “Transposing” (2), i.e., applying the contravariant left
exact functor RhomA(· , A) to (2), we get the following complex of A-modules

. . . A1×q2
.ST

3�� A1×q1
.ST

2�� A1×q0
.ST

1�� 0,��

i.e., imA

(
.ST

i

) ⊆ kerA

(
.ST

i+1

)
for i ≥ 1. We introduce the following A-modules:

{
ext0A(L,A) ∼= kerA

(
.ST

1

)
,

exti
A(L,A) ∼= kerA

(
.ST

i+1

)
/imA

(
.ST

i

)
, i ≥ 1.

It can be shown that, up to isomorphism, the A-modules exti
A(L,A)’s depend

only on L and not on the choice of the free resolution (2) of L, i.e., on the choice
of the matrices Si’s. It explains the notation exti

A(L,A). See [13,23].

Theorem 3 ([20]). With the notations of Theorem2, we have:

1. t(M) ∼= ext1A(T (M), A), where T (M) := A1×q/
(
A1×p RT

)
is the so-called

Auslander transpose of M (i.e., the A-module finitely presented by RT).
2. Let us suppose that the weak global dimension of A is finite and is equal to

n. Then, the obstruction for M/t(M) to be projective is defined by

I =
n⋂

i=2

annA

(
exti

A(T (M/t(M)), A
)
,

where annA(L) := {a ∈ A | aL = 0} is the annihilator of a A-module L.
Hence, M is projective iff we have I = A.

mmonagan@cecm.sfu.ca

38 Y. Bouzidi et al.

Let us now show how Theorem 3 can be used to check whether or not a
nD system P is stabilizable. Let A = Q(z1, . . . , zn)S , B = Q[z1, . . . , zn], K =
Q(A) = Q(z1, . . . , zn), and P ∈ Kq×r. Since K = Q(B), we can write each entry
Pij of P as Pij = nij/dij , where 0 �= dij , nij ∈ B, and gcd(dij , nij) = 1. Let us
denote by d the least common multiple of all the dij ’s and set D = d Iq ∈ Bq×q,
N = D P ∈ Bq×p, and R = (D − N) ∈ Bq×p. Let us also consider the finitely
presented B-module L := B1×p/(B1×q R). Since A = S−1 B is a localization
(see Sect. 3), A is a flat B-module [13,23], we then get that

A ⊗B L ∼= A1×p/(A1×q R) = M,

where ⊗B stands for the tensor product of B-modules [13,23]. Note that A⊗B L
can be understood as the A-module obtained by extending the coefficients of the
B-module L to A. Using elimination theory over B (e.g., Gröbner bases, Janet
bases), given the matrix RT , we can compute kerB

(
.RT

)
, i.e., the second syzygy

module of T (L) = B1×q/
(
B1×p RT

)
[13,23]. For more details, see [8,13,22] and

[9] for the OreModules package which handles such computations. Hence, we
can compute the beginning of a free resolution of the B-module T (L):

0 T (L)�� B1×qσ�� B1×p.RT
�� B1×m.

.QT

��

Applying the functor RhomB(· , B) to it, we obtain the complex of B-modules:

0 �� B1×q .R �� B1×p .Q �� B1×m.

Therefore, we get t(L) = ext1B(T (L), B) = kerB(.Q)/imB(.R) and since we can
also compute a matrix R′ ∈ Bq′×p such that kerB(.Q) = imB(.R′), we obtain:

t(L) = (B1×q′
R′)/(B1×q R) ⇒ L/t(L) = B1×p/(B1×q′

R′).

The corresponding computations can be handled by the OreModules package
[9]. Hence, based, e.g., on Gröbner basis techniques, we can find an explicit
presentation R′ ∈ Bq′×p of the B-module L/t(L). Since A = S−1 B, we get [23]

A ⊗B t(L) ∼= A ⊗B ext1B(T (L), B) ∼= ext1A(A ⊗B T (L), A) ∼= ext1A(T (M), A) ∼= t(M),

which yields A⊗B (L/t(L)) ∼= (A⊗B L)/(A⊗B t(L)) ∼= M/t(M). Thus, we have

M/t(M) ∼= A ⊗B

(
B1×p/(B1×q′

R′)
) ∼= A1×p/(A1×q′

R′),

which shows that R′ ∈ Bq′×p is a presentation matrix of the A-module M/t(M),
which explicitly solves the first point.

Let us now consider the second one, i.e., the problem of testing whether or
not M/t(M) is a projective A-module. Clearly, we have:

A ⊗B T (L/t(L)) = A ⊗B

(
B1×q′

/
(
B1×p R′T

)) ∼= A1×q′
/

(
A1×p R′T

)
= T (M/t(M)).

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 39

Moreover, since the localization A = S−1 B commutes with the intersection
of ideals and S−1 annB(P) = annS−1 B(S−1 P) for a finitely generated B-module
P (see, e.g., [13,23]), using the fact that the B-modules exti

B(T (L/t(L)), B)’s
are finitely generated, we then obtain:

A ⊗B

(
n⋂

i=2

annB(exti
B(T (L/t(L)), B)

)
∼=

n⋂

i=2

annA

(
exti

A(T (M/t(M)), A
)
.

Hence, if we denote by I =
⋂n

i=2 annA

(
exti

A(T (M/t(M)), A
)

the obstruction for
the A-module M/t(M) to be projective (see 2 of Theorem 3) and similarly by J =⋂n

i=2 annB(exti
B(T (L/t(L)), B) the obstruction for the B-module L/t(L) to be

projective, then I ∼= A⊗B J . We note that the ideal J can be explicitly computed
by means of elimination theory (e.g., Gröbner/Janet bases) and implemented in
a computer algebra system (see the OreModules [9]). For more details, see [8].
Hence, M/t(M) is a projective A-module iff I = A, i.e., iff S−1 J = S−1 B, i.e.,
iff J ∩ S �= ∅, i.e., iff there exists b ∈ J such that V (〈b〉) ∩ U

n = ∅.

4.2 Towards an Effective Version of the Polydisc Nullstellensatz

The condition J ∩ S �= ∅ yields the so-called Polydisc Nullstellensatz.

Theorem 4 (PolydiscNullstellensatz, [7]). Let J be a finitely generated
ideal of B = Q[z1, . . . , zn]. Then, the two assertions are equivalent:

1. V (J) ∩ U
n = ∅.

2. There exists b ∈ J such that V (〈b〉) ∩ U
n = ∅.

To our knowledge, there is no effective version of the Polydisc Nullstellensatz
for a general ideal J . But, in [5], it is shown how the first condition of Theorem4
can be effectively tested for a zero-dimensional polynomial system J , i.e., when
B/J is a finite-dimensional Q-vector space, or equivalently when V (J) is defined
by a finite number of complex points. Given a zero-dimensional polynomial ideal
J in Q[z1, . . . , zn], a first step consists in computing a univariate representation
of V (J). Such a representation characterizes the zeros (z1, . . . , zn) of V (J) as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h(t) = 0,
z1 = h1(t),

...
zn = hn(t).

(3)

Using (3), we now have to check whether or not |z1| ≤ 1, . . . , |zn| ≤ 1. To do,
at the solutions zk = uk +i vk of (3), where uk, vk ∈ R, we have to study the sign
of the n polynomials u2

k+v2
k−1 for k = 1, . . . , n. From a computational viewpoint,

a problem occurs when one of these polynomials vanishes. In that case, numerical
computations are not sufficient to conclude. The algorithm, proposed in [5],
proceeds by following the following three main steps:

mmonagan@cecm.sfu.ca

40 Y. Bouzidi et al.

1. Compute a set of hypercubes in R
2n isolating the zeros of V (J). Each coordi-

nate is represented by a box B in R
2 obtained from the intervals containing

its real and imaginary parts.
2. For each zk, compute the number lk of zeros of J satisfying |zk| = 1. This

can be obtained by using classical stability test for 1D systems applied to the
elimination polynomial pk of J with respect to zk, i.e., J ∩ Q[zk] = 〈pk〉.

3. For each zk, refine the isolating boxes of the solutions until exactly lk intervals
obtained from the evaluation of u2

k + v2
k − 1 at these boxes contains zero. The

boxes that yield strictly positive evaluation are discarded.

At the end of these three steps, if all the isolating boxes were discarded, then
V (J) ∩ U

n = ∅, and thus the plant P is stabilizable. Otherwise, the remaining
boxes correspond to elements of V (J)∩U

n, which shows that V (J)∩U
n �= ∅ and

the plant P is not stabilizable. The algorithm testing 1 of Theorem4 in the case
of a zero-dimensional ideal J is given in Algorithm 2. It should be stressed that
the symbol �f(B) used in this algorithm denotes the interval resulting from the
evaluation of the polynomial f at the box B using interval arithmetic.

Based on Algorithm 2, we can effectively check whether or not a 2D system is
stabilizable since when n = 2, J = annB(ext2B(T (L/t(L)), B)), and B/J is either
B, which corresponds to L/t(L) is a projective B-module, or zero-dimensional
which corresponds to L/t(L) is torsion-free but not projective. More generally,
the method developed in [5] can be applied to a B-module L/t(L) satisfying
exti

B(T (L/t(L)), B) = 0 for i = 1, . . . , n − 1. For instance, if n = 3, the last
conditions mean that L/t(L) is a reflexive B-module [8].

Algorithm 2. IsStabilizable
Input: A set of r polynomials {p1, . . . , pr} ⊂ Q[z1, . . . , zn] defining a zero-dimensional
ideal J = 〈p1, . . . , pr〉.
Output: True if V (〈p1, . . . , pr〉) ∩ U

n = ∅, and False otherwise.
Begin

 {h, hz1 , . . . , hzn} := Univ R({p1, . . . , pr});

 {B1, . . . , Bd} := Isolate(f);

 LB := {B1, . . . , Bd} and ε := mini=1,...,d{w(Bi)};
For k from 1 to n do

 lk := �{z ∈ V (I) | |zk| = 1};
While �{i | 0 ∈ �(�(hzk)2 + (hzk)2 − 1)(Bi)} > lk do

 ε := ε/2;

 For i = 1, . . . , d, set Bi :=Isolate(f, Bi, ε);

End While

 LB := LB \ {Bi | �(�(hzk)2 + (hzk)2 − 1)(Bi) ⊂ R+};

 If LB = {}, then Return True End If;

End For
Return False.
End

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 41

5 Computing Stabilizing Controllers of 2D Systems

For a zero-dimensional ideal J = 〈p1, . . . , pr〉, an algorithm is given in [5] for the
computation b ∈ J satisfying 2 of Theorem 4. In the following, we briefly outline
the algorithm for n = 2. The method is an effective variant of the approach
proposed in [14] which consists in considering the elimination polynomials rzk

with respect to the variable zk defined by J ∩ Q[zk] = 〈rzk
〉 and to factorize

them into stable and unstable factors, i.e., rzk
= rzk,s rzk,u, where the roots of

rzk,s (resp., rzk,u) are outside (resp., inside) the closed unit disc U for k = 1, 2.
Then, we can define a stable polynomial b = rz1,s(z1) rz2,s(z2) and Gröbner basis
methods are finally used to get the cofactors ui’s defined by b =

∑r
k=1 uk pk.

Since the factorizations of the polynomials rz1 and rz2 are performed in C,
the resulting factors rzk,s do not have usually their coefficients in Q. This pre-
vents the polynomial b (and the ui’s) from being computed exactly in Q[z1, z2].
To overcome this issue, the method developed in [5] uses an univariate repre-
sentation of the solutions of V (J) to compute approximate factorizations of rzi

over Q and construct a Nullstelenstaz relation on the corresponding approxi-
mated ideal. For a suitable approximation, the main result in [5] shows that the
obtained cofactors ui’s for the approximated ideal hold for the initial ideal J ,
which yields a stable polynomial b ∈ J , i.e., b ∈ J ∩ S.

More precisely, given an ideal J ⊂ Q[z1, z2], the method proceeds by first
computing a univariate representation {h(t) = 0, z1 = h1(t), z2 = h2(t)} of the
zeros of J with respect to a separating form t = a1 z1 + a2 z2. Then, we consider
the ideal Jr = 〈h(t), z1 −h1(t), z2 −h2(t)〉 ⊂ Q[t, z1, z2] which is the intersection
of the ideal J and 〈t−a1 z1−a2 z2〉. Using the univariate representation, approx-
imations of the polynomials rz1,s, rz2,s, and b, respectively denoted by r̃1,s, r̃2,s

and b̃, are then computed as follows:

1. We approximate the complex roots γ1, . . . , γn of h(t) so that their real and
imaginary parts are given by rational numbers. The resulting approximations
are denoted by γ̃1, . . . , γ̃n.

2. For each approximation γ̃k, if |hzi
(γ̃k)| > 1, add the factor zi −hzi

(γ̃k) to the
polynomial r̃k,s.

3. Compute b̃ =
∏n

k=1 r̃k,s.

Finally, using the polynomial b̃, a Nullstellensatz relation is computed for
the ideal J̃r = 〈h̃(t), z1 − hz1(t), z2 − gz2(t)〉, where h̃(t) =

∏d
i=1 (t − γ̃i) ∈ Q[t],

which yields three cofactors u1, u2 and u3 in Q[t, z1, z2]. Moreover, in [8], it is
shown that for close-enough approximations of the γk’s, using these cofactors
with the exact ideal Jr yields a stable polynomial b in J , i.e., b ∈ J ∩ S.

The main algorithm, which can be generalized for zero-dimensional ideals J ,
is presented in Algorithm 3.

Now, given a 2D plant P ∈ Q(z1, z2)q×p, we have shown that we can effec-
tively test whether or not P is internally stabilizable. If so, an important issue
is then to explicitly compute a stabilizing controller C (see Definition 1).

mmonagan@cecm.sfu.ca

42 Y. Bouzidi et al.

Algorithm 3. StabilizingPolynomial
Input: J := 〈p1, . . . , pr〉 such that J is zero-dimensional and V (J) ∩ U

n = ∅.
Output: b ∈ J such that V (〈b〉) ∩ U

n = ∅.
Begin

 {h, hz1 , . . . , gz2} := Univ R({p1, . . . , pr});

 {B1, . . . , Bd} := Isolate(h);

 LB := {B1, . . . , Bd} and ε := mini=1,...,d{w(Bi)};
Do

 [r1, . . . , rn] := [1, . . . , 1] and f̃ := 1;

 outside := False;
For each B in LB do
While (outside=False) do
For i from 1 to n do
If �(�(hzi)

2 + (hzi)
2 − 1)(B) ⊂ R+ then

 γ := midpoint(B);

 ri := ri (zi − hzi(γ));

 outside := True and Break For;

End If
End For

 ε := ε/2;

 B :=Isolate(h, B, ε); (isolate the real roots of h inside B up to a precision ε)

End While

 h̃ := h̃ (t − γ);

 outside := False;

End ForEach

 b̃ :=

∏n
i=1 ri;

 b̃t := b̃ evaluated at zi = hzi(t);

 h0 := quo(b̃t,h̃) in Q[t];

 b := b̃ − h0 (h̃ − h) evaluated at t =

∑n
k=1 ak zk;

While (IsStable(s)=False)

 Return b.
End

Theorem 5 ([4]). Let A = Q(z1, . . . , zn)S, B = Q[z1, . . . , zn], K =
Q(z1, . . . , zn), and P ∈ Kq×p be a stabilizable plant. Moreover, let P =
D−1 N a fractional representation of P , where R = (D − N) ∈ Bq×p,
L = B1×p/(B1×q R) the B-module finitely presented by R, and L/t(L) =
B1×p/(B1×q′

R′). Finally, let J =
⋂n

i=2 annB(exti
B(T (L/t(L)), B) and π ∈

J ∩ S �= ∅.
Then, there exists a generalized inverse S′ ∈ Bp×q′

π of R′, i.e., R′ S′ R′ = R′,
where Bπ = S−1

π B and Sπ = {1, π, π2, . . .}. Writing R′ = (D′ − N ′), where
D′ ∈ Bq′×q′

and N ′ ∈ Bq′×r, and noting S = S′ D′ D−1 ∈ Kp×q, then a
stabilizing controller C of P is defined by C = Y X−1, where:

S = (XT Y T)T , X ∈ Aq×q, Y ∈ Ar×q.

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 43

According to Theorem 5, if π ∈ J ∩ S is known, then a stabilizing controller
C of P can obtained by means of the computation of a generalized inverse S′ of
R′ over Bπ. Effective methods exist for solving this last point [8,13,22].

6 A Maple illustrating example

In this section, we demonstrate the results explained in the above sections on
an explicit example first considered in [14]. To do that, we first load the nDStab
package dedicated to the stability and stabilizability of multidimensional sys-
tems, as well as the OreModules package [9] dedicated to the study multidi-
mensional linear systems theory based on algebraic analysis methods.

> with(LinearAlgebra):

> with(nDStab):

> with(OreModules):

We consider the plant P ∈ Q(z1, z2)2×2 defined by the transfer matrix:

We can check that some entries of P are unstable using the command
IsStable:

> map(a->IsStable(denom(a)),P);
[

true false

true false

]

Let us introduce the polynomial ring B = Q[z1, z2]:

> B := DefineOreAlgebra(diff=[z[1],s[1]], diff=[z[2],s[2]],
> polynom=[s[1],s[2]]):

Now, we consider the fractional representation of P defined by R = (d −N),
where d ∈ B2×2 is the diagonal matrix defined by the polynomial den which is
the least common multiple of all the denominators of the entries of P , i.e.:

mmonagan@cecm.sfu.ca

44 Y. Bouzidi et al.

> den := lcm(op(convert(map(denom,P),set)));

den := 3 (2 z1 − 5) (2 z1 − 1) (8 z2 + 6 z1 − 15)
> d := DiagonalMatrix([den,den]);

d :=

[
3 (2 z1 − 5) (2 z1 − 1) (8 z2 + 6 z1 − 15) 0

0 3 (2 z1 − 5) (2 z1 − 1) (8 z2 + 6 z1 − 15)

]

and the matrix N = dP ∈ B2×2 is defined by:

> N := simplify(d.P);

N :=

[
3 (2 z1 − 1) (8 z2 + 6 z1 − 15) (−z2 + 3 z1) (8 z2 + 6 z1 − 15) (2 z1 − 5)2

3 (2 z1 − 5) (2 z1 − 1)2 3 (2 z1 − 5) (8 z2 + 6 z1 − 15) z2
2

]

Since the notation D is prohibited by Maple, we use here d instead of D as it was
done in the above sections. Then, we can define the matrix R = (d −N) ∈ B2×4

> R := Matrix([d, -N]):

and the finitely presented B-module L = B1×4/(B1×2 R). We first have to com-
pute a presentation matrix for the B-module L/t(L). Using the OreModules
package, this can be done as follows:

> Ext1 := Exti(Involution(R,B),B,1):

The command Exti returns different matrices. Since the first matrix Ext1[1]

> Ext1[1];
⎡
⎢⎢⎣

8 z2 + 6 z1 − 15 0 0

0 24 z1
3 + 32 z1

2z2 − 132 z1
2 − 96 z2z1 + 210 z1 + 40 z2 − 75 0

0 0 2 z1 − 5

⎤
⎥⎥⎦

is not reduced to an identity matrix, we deduce that the torsion submodule
t(L) = {l ∈ L | ∃ 0 �= b ∈ B : b l = 0} of L is not reduced to zero, i.e., t(L) �= 0.

The second matrix Ext1[2] of Ext1, denoted by Rp in Maple,

> Rp := Ext1[2]:

is a presentation matrix of L/t(L), i.e., L/t(L) = B1×4/(B1×3 R′), where R′ =
Rp ∈ B3×4. For an easy display of Rp, we print it by means of its columns:

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 45

> SubMatrix(Rp,1..3,1..2);
⎡
⎢⎢⎢⎢⎣

12 z1
2 − 36 z1 + 15 0

36 z1z2
3 − 54 z1z2

2 − 90 z2
3 + 135 z2

2 −24 z1
2z2 − 32 z1z2

2 + 36 z1
2 + 120 z2z1 + 16 z2

2 − 180 z1 − 150 z2 + 225

0 −12 z1
2 − 16 z2z1 + 36 z1 + 8 z2 − 15

⎤
⎥⎥⎥⎥⎦

> SubMatrix(Rp,1..3,3..3);
⎡

⎢
⎢
⎣

−18 z12 + 6 z2z1 + 9 z1 − 3 z2

−54 z1z23 + 18 z24 + 8 z12z2 + 81 z1z22 − 27 z23 − 12 z12 − 8 z2z1 + 36 z1 + 2 z2 − 15

4 z12 − 4 z1 + 1

⎤

⎥
⎥
⎦

> SubMatrix(Rp,1..3,4..4);
⎡

⎢
⎢
⎣

−4 z12 + 20 z1 − 25

16 z24

6 z22z1 + 8 z23 − 15 z22

⎤

⎥
⎥
⎦

If di denotes the ith diagonal element of the matrix d, R′
i• the ith row of

R′, and li the residue class of R′
i• in the B-module L = B1×4/(B1×3 R′), then

we have di li = 0. Moreover, {li}i=1,2,3 is a generating set of the torsion B-
submodule t(L) = (B1×3 R′)/(B1×2 R) of L.

By construction, the B-module L/t(L) = B1×4/(B1×3 R′) is torsion-free.
Since P is a 2D system, i.e., n = 2, the obstruction to projectivity for L/t(L)
is only defined by the B-module ext2B(N ′, B), where N ′ = B1×3/

(
B1×4 R′T

)
is

the so-called Auslander transpose of L/t(L). For more details, see [8,22]. More
precisely, one can prove that L/t(L) is a projective B-module iff ext2B(N ′, B) = 0.
If ext2B(N ′, B) �= 0, then ext2B(N ′, B) is 0-dimensional B-module, i.e., it defines
a finite-dimensional Q-vector space. In particular, the following ideal J of B

J = annB(ext2B(N ′, B)) =
{
b ∈ B | ∀ e ∈ ext2B(N ′, B), b e = 0

}

is zero-dimensional, i.e., B/J is a finite-dimensional Q-vector space. The ideal
J can be directly computed by the OreModules command PiPolynomial:

> pi := map(factor,PiPolynomial(Rp,B));

π := [4 z2
2 − 18 z1 − 30 z2 + 45, (2 z2 − 3) (2 z1 − 5) , (2 z1 − 5) (2 z1 − 1)]

Since J �= B, we obtain that L/t(L) is not a projective B-module.
According to our result on stabilizability, P is internally stabilizable iff the

A = Q(z1, z2)S = S−1 B-module A ⊗B (L/t(L)) ∼= A1×4/(A1×3 R′) is projective
of rank 2, i.e., iff S−1 J = A, i.e., iff J ∩ S �= ∅, where

S = {b ∈ B | V (〈b〉) ∩ U
2 = ∅}

is the multiplicatively closed subset of B formed by all the stable polynomials of
B. Equivalently, by the Polydisk Nullstellensatz, P is internally stabilizable iff

mmonagan@cecm.sfu.ca

46 Y. Bouzidi et al.

V (J)∩U
2 = ∅. Since V (J) is zero-dimensional, i.e., is formed by a finite number

of complex points of C
2, we can effectively test the Polydisk Nullstellensatz

condition as follows:

> IsStabilizable(pi);

true

Hence, we obtain that P is internally stabilizable.
Let us now construct a stabilizing controller C of P . To do that, we must

find an element s ∈ J ∩ S. We can first try to test whether or not one of the
generators of J belongs to S:

> map(IsStable,pi);

[true, true, false]

The first two generators of J belong to S. Let us denote them by π1, resp. π2.
Since the condition J ∩ S �= ∅ does not necessarily imply that at least one of

the generators of J belongs to S, the algorithm which computes an element of J
in S has to be used. This can be done by the command StabilizingPolynomial:

> factor(StabilizingPolynomial(pi));

(2 z2 − 3) (2 z2 − 15) (2 z1 − 5)

Since we have found elements in J ∩S, let us compute a stabilizing controller
C of P . We note that R′ has not full row rank since kerB(.R′) is defined by:

> Rp2 := SyzygyModule(Rp,B);

Rp2 :=
[
6 z2

3 − 9 z2
2 −2 z1 + 1 4 z2z1 − 6 z1 − 2 z2 + 15

]

Hence, R′
2 = Rp2 is such that R′

2 R′ = 0, which shows that the rows {R′
i•}i=1,...,4

of R′ satisfy
∑4

i=1 Rp2[i]R
′
i• = 0.

We consider π = π2, i.e., π = (2 z2 − 3) (2 z1 − 5). Similar results can be
obtained by choosing π = π1 instead of π2 (but the outputs are larger to display).

We now have to find a generalized inverse S′ ∈ B4×3
π of R′, i.e., R′ S′ R′ = R′,

where Bπ = S−1
π B is the localization of B with respect to the multiplicatively

closed set Sπ = {1, π, π2, . . .}. This can be done by first computing a right inverse
of R′

2 over Bπ. Using the OreModules package, we obtain that

> Sp2:= Transpose(LocalLeftInverse(Transpose(Rp2),[pi[2]],B));

Sp2 :=

⎡

⎢
⎢
⎢
⎣

0

− 1
12

(−4 z2
2+18 z1+30 z2−45)(2 z2−3)

4 z22−18 z1−30 z2+45

1
4 z22−18 z1−30 z2+45

(
1
3 z2

2 − 3
2 z1 − 5

2 z2 + 15
4

)

⎤

⎥
⎥
⎥
⎦

is a right inverse of R′
2, i.e., R′

2 S′
2 = 1. Then, defining Π = I3 − S′

2 R′
2, we get

that Π2 = Π, and thus there exists S′ ∈ B4×3
π such that Π = R′ S′. Using the

OreModules package, this matrix can be obtained by factorization as follows:

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 47

> Proj := Transpose(simplify(1-Sp2.Rp2)):
> Sp := simplify(Transpose(Factorize(pi[2]*Proj,
> Transpose(Rp),B))/pi[2]);

Sp :=

⎡

⎢
⎢
⎢
⎢
⎣

− 243 z1z2
2−81 z2

3+84 z1z2−16 z2
2+18 z1−186 z2+99

(1152 z2−1728)(2 z1−5) − 1
16

−z2+3 z1
(2 z2−3)(2 z1−5)

1
16

−z2+3 z1
2 z1−5

− 2 z1−1
576 z2−864 − 1

48
1

2 z2−3
1
48

− 81 z2
2+12 z1+16 z2−30
1152 z2−1728 − 1

16
1

2 z2−3
1
16

6 z1−8 z2+9
128 z2−192 0 0

⎤

⎥
⎥
⎥
⎥
⎦

S′ = Sp satisfies R′ S′ R′ = R′, i.e., S′ is a generalized inverse of R′ over Bπ.

> simplify(Rp.Sp.Rp-Rp);
⎡

⎢
⎢
⎣

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎦

If we set S := S′ d′ d−1, where R′ = (d′ − N ′), d′ ∈ B2×2 and N ′ ∈ B2×2, and
split S′ as S′ = (XT Y T)T , where X ∈ K2×2, Y ∈ K2×2, and K = Q(z1, z2)

> S := simplify(Sp.dp.MatrixInverse(d)):

> X := SubMatrix(Sp, 1..2,1..2):

> SubMatrix(X, 1..2,1..1):
⎡
⎣− 486 z1

2z2
2+486 z1z2

3−216 z2
4+168 z1

2z2−1247 z1z2
2+405 z2

3+36 z1
2−456 z1z2+16 z2

2+180 z1+186 z2−99
(1152 z2−1728)(2 z1−5)(2 z1−1)(8 z2+6 z1−15)

− 36 z2
3+4 z1

2−54 z2
2−4 z1+1

(2304 z2+1728 z1−4320)(2 z1−1)(2 z2−3)

⎤
⎦

> SubMatrix(X, 1..2,2..2):
⎡

⎣
1
4

−z2+3 z1
(2 z1−1)(2 z1−5)2(2 z2−3)

1
12

1
(2 z1−1)(2 z2−3)(2 z1−5)

⎤

⎦

> Y := SubMatrix(S,3..4,1..2);

Y :=

⎡

⎣
− 27 z2

2+4 z1−2
(1152 z1−576)(2 z2−3)

1
4

1
(2 z1−1)(2 z2−3)(2 z1−5)

6 z1−8 z2+9
(512 z2+384 z1−960)(2 z2−3) 0

⎤

⎦

> dp := SubMatrix(Rp, 1..3,1..2):

then, the controller C = Y X−1 internally stabilizes P . Hence, we obtain the
following stabilizing controller of P

> C := map(factor,simplify(Y.MatrixInverse(X))):

C :=⎡
⎣− (81 z2

2+16 z2−24)(2 z1−5)

−243 z1z22+81 z23+36 z12−96 z1z2+16 z22−36 z1+192 z2−99
9 12 z1

2−16 z1z2−36 z1+72 z2−33
−243 z1z22+81 z23+36 z12−96 z1z2+16 z22−36 z1+192 z2−99

9 (6 z1−8 z2+9)(2 z1−5)

−243 z1z22+81 z23+36 z12−96 z1z2+16 z22−36 z1+192 z2−99
−27 (6 z1−8 z2+9)(−z2+3 z1)

−243 z1z22+81 z23+36 z12−96 z1z2+16 z22−36 z1+192 z2−99

⎤
⎦

Finally, we check again that C stabilizes P . To do that, we can check again that
all the entries of the matrix H(P,C) belong to A = Q(z1, z2)S , i.e., are stable:

mmonagan@cecm.sfu.ca

48 Y. Bouzidi et al.

> H := MatrixInverse(Matrix([[DiagonalMatrix([1,1],2,2),-P],
> [-C,DiagonalMatrix([1,1],2,2)]])):
> denomH := convert(map(denom,H),set):
> map(IsStable,denomH);

{true}

References

1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

2. Bouzidi, Y., Quadrat, A., Rouillier, F.: Computer algebra methods for testing the
structural stability of multidimensional systems. In: Proceedings of the IEEE 9th
International Workshop on Multidimensional (nD) Systems (2015)

3. Bouzidi, Y., Rouillier, F.: Certified Algorithms for proving the structural stabil-
ity of two-dimensional systems possibly with parameters. In: Proceedings of the
22nd International Symposium on Mathematical Theory of Networks and Systems
(MTNS 2016) (2016)

4. Bouzidi, Y., Quadrat, A., Rouillier, F.: Certified non-conservative tests for the
structural stability of discrete multidimensional systems. Multidimens. Syst. Sig.
Process. 30(3), 1205–1235 (2019)

5. Bouzidi, Y., Cluzeau, T., Moroz, G., Quadrat, A.: Computing effectively stabilizing
controllers for a class of nD systems. In: Proceedings of IFAC 2017 Workshop
Congress (2017)

6. Bouzidi, Y., Cluzeau, T., Quadrat, A.: On the computation of stabilizing controllers
of multidimensional systems. In: Proceedings of Joint IFAC Conference 7th SSSC
2019 and 15th TDS 2019 (2019)

7. Bridges, D., Mines, R., Richman, F., Schuster, P.: The polydisk Nullstellensatz.
Proc. Am. Math. Soc. 132(7), 2133–2140 (2004)

8. Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear
control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput. 16, 319–
376 (2005)

9. Chyzak, F., Quadrat, A., Robertz, D.: OreModules: a symbolic package for the
study of multidimensional linear systems. In: Chiasson, J., Loiseau, J.J. (eds.)
Applications of Time Delay Systems. LNCIS, vol. 352, pp. 233–264. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-49556-7 15

10. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems
Theory. TAM, vol. 21. Springer, New York (1995). https://doi.org/10.1007/978-1-
4612-4224-6

11. Decarlo, R.A., Murray, J., Saeks, R.: Multivariable Nyquist theory. Int. J. Control
25(5), 657–675 (1977)

12. Desoer, C.A., Liu, R.W., Murray, J., Saeks, R.: Feedback system design: the frac-
tional representation approach to analysis and synthesis. IEEE Trans. Automat.
Control 25, 399–412 (1980)

13. Eisenbud, D.: Commutative Algebra: with a View Toward Algebraic Geometry.
GTM, vol. 150. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-
5350-1

14. Li, X., Saito, O., Abe, K.: Output feedback stabilizability and stabilization algo-
rithms for 2D systems. Multidimension. Syst. Sig. Process. 5, 41–60 (1994)

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/978-3-540-49556-7_15
https://doi.org/10.1007/978-1-4612-4224-6
https://doi.org/10.1007/978-1-4612-4224-6
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1007/978-1-4612-5350-1

mmonagan@cecm.sfu.ca

On the Effective Computation of Stabilizing Controllers of 2D Systems 49

15. Li, L., Lin, Z.: Stability and stabilisation of linear multidimensional discrete sys-
tems in the frequency domain. Int. J. Control 86(11), 1969–1989 (2013)

16. Lin, Z.: Output feedback stabilizability and stabilization of linear nD systems. In:
Galkowski, K., Wood, J. (eds.) Multidimensional Signals, Circuits and Systems,
pp. 59–76. Taylor & Francis

17. Lin, Z., Lam, J., Galkowski, K., Xu, S.: A constructive approach to stabilizability
and stabilization of a class of nD systems. Multidimension. Syst. Sig. Process. 12,
329–343 (2001)

18. Lin, Z.: Feedback stabilizability of MIMO nD linear systems. Multidimension. Syst.
Sig. Process. 9, 149–172 (1998)

19. Lin, Z.: Feedback stabilization of MIMO nD linear systems. IEEE Trans. Autom.
Control 45, 2419–2424 (2000)

20. Quadrat, A.: The fractional representation approach to synthesis problems: an
algebraic analysis viewpoint. Part I: (weakly) doubly coprime factorizations. SIAM
J. Control Optim. 42, 266–299 (2003)

21. Quadrat, A.: The fractional representation approach to synthesis problems: an alge-
braic analysis viewpoint. Part II: internal stabilization. SIAM J. Control. Optim.
42, 300–320 (2003)

22. Quadrat, A.: An introduction to constructive algebraic analysis and its applica-
tions. Les cours du CIRM 1(2), 281–471 (2010). Journées Nationales de Calcul
Formel. INRIA Research Report n. 7354

23. Rotman, J.J.: An Introduction to Homological Algebra, 2nd edn. Springer, New
York (2009). https://doi.org/10.1007/b98977

24. Rouillier, F.: Solving zero-dimensional systems through the rational univariate rep-
resentation. Appl. Algebra Eng. Commun. Comput. 9, 433–461 (1999)

25. Rouillier, F.: Algorithmes pour l’étude des solutions réelles des systèmes polyno-
miaux. Habilitation, University of Paris 6 (2007)

26. Strintzis, M.: Tests of stability of multidimensional filters. IEEE Trans. Circ. Syst,
24, 432–437 (1977)

27. Vidyasagar, M.: Control System Synthesis: A Factorization Approach. MIT Press,
Cambridge (1985)

https://doi.org/10.1007/b98977

mmonagan@cecm.sfu.ca

Using Maple to Analyse Parallel Robots

Damien Chablat1, Guillaume Moroz2, Fabrice Rouillier3(B),
and Philippe Wenger1

1 Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004,
Nantes, France

2 INRIA Nancy-Grand Est & LORIA, Nancy, France
3 INRIA Paris, Institut de Mathématiques de Jussieu Paris-Rive Gauche,

Sorbonne Université, Paris Université, Paris, France
Fabrice.Rouillier@inria.fr

Abstract. We present the SIROPA Maple Library which has been
designed to study serial and parallel manipulators at the conception
level. We show how modern algorithms in Computer Algebra can be
used to study the workspace, the joint space but also the existence of
some physical capabilities w.r.t. to some design parameters left as degree
of freedom for the designer of the robot.

1 Introduction

Compared to classical numerical computations, algebraic computations make it
possible to work with formal parameters and equalities. In particular, this allows
to study singularities exactly. One major drawback when using exact strategies is
the cost of the computations which often limit the range of reachable problems.

For illustrating the article, we choose to study 3-PPPS mechanisms because
these are 6-degree-of-freedom parallel robots but where projections with respect
to 3 of the coordinates can be combined to get the full information (thus we can
have explicit plots to give the right intuition).

2 Manipulators and Kinematics Problems

A serial robot (see [9]) consists of a number of rigid links connected with joints.
In general the joints are active revolute or prismatic while the links are passive,
parallel or intersecting.

A parallel robot (see [12]) consists of several simple serial chains that sup-
port a single platform. A well know parallel robot is the Gough-Stewart platform
where the serial chains are made of 6 active actuators connected to the ground
and to the platform using passive spherical joints.

The (active) joint values (positions of the prismatic joints, angles of the rev-
olute joints) and the end effector positions are linked by the so called kinematic
equations which can be turned into an equivalent system of algebraic equations.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 50–64, 2020.
https://doi.org/10.1007/978-3-030-41258-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_4

mmonagan@cecm.sfu.ca

Using Maple to Analyse Parallel Robots 51

Fig. 1. Serial (left) and Parallel (right) manipulators

The solution set of the kinematic equations will be called the kinematic variety
in this paper.

The direct kinematic problem is the computation of the possible positions
of the end effector of the robot knowing the joint values (Fig. 1).

The inverse kinematic problem is the computation of the possible joint
values knowing the position of the end-effector. It is used, for example, to com-
pute the theoretical instructions to give to the actuators in order to follow a
given trajectory.

These problems might have several solutions. For example, for a generic
Gough-Stewart platform, the direct kinematics problem might have up to 40
solutions [7].

A posture is associated with one solution to the inverse geometric problem of
a robot while a position is associated with one solution to the direct kinematics
problem. The set of points that can be reached by the end-effector is named the
workspace.

Mathematically, studying the direct or the inverse kinematics problem
reduces to study the same system of kinematics equations but with unknowns
playing different roles.

For the direct kinematics problem, the joint’s unknowns play the role of
parameters while the position unknowns play the role of variables: we study the
structure (existence, number, multiplicity, etc.) of the positions w.r.t. the joint’s
values. For the inverse kinematics problem, the position unknowns play the role
of parameters while the joint’s unknowns play the role of variables: we study the
structure (existence, number, multiplicity, etc.) of the joints w.r.t. the positions
values.

In both cases, one has to consider an algebraic variety living in some ambiant
space of dimension n = d + k with a variable subspace of dimension d and a
parameter subspace of dimension k. The goal is then to decompose the parameter
space into regions above which the variables describe regular regions where, in
short, the implicit function theorem could apply, and regions where something
bad happens (solutions collaps, go to infinity, etc.). This means that, above the

mmonagan@cecm.sfu.ca

52 D. Chablat et al.

favorable regions, the direct (or the inverse) kinematics problem has a finite and
constant number of solutions and each solution can easily be followed when the
parameters vary.

3 The SIROPA Maple Library

SIROPA is a MAPLE library (see [8] for an eshaustive description) developed to
analyze the singularities, workspace and joint space of serial and parallel manip-
ulators as well as tensegrity structures [14]. There are two main parts of the
library shown in Fig. 2, the first one provides the algebraic tools to solve the
kinematic equations, including conversions of trigonometric equations into alge-
braic form. The other one, SIROPA, provides modeling, analyzing and plotting
functions for different manipulators, shown in Fig. 3.

Fig. 2. Architecture of library

The main algebraic tools we need for our work are related to the study of
parametric systems of polynomial equations with rational (or floating point)
coefficients with generically finitely many complex solutions.

mmonagan@cecm.sfu.ca

Using Maple to Analyse Parallel Robots 53

Fig. 3. List of all the defined functions in SIROPA library

One key point is to be able to provide a partition of the parameter space in
regions/subsets over which a given parametric system has a constant number of
real solutions and tools to characterize each region: computing the constant num-
ber of solutions over a given region, drawing the region when possible, deciding
if two points are in the same region, etc.

Such a partition is naturally given by the so called (minimal) Discriminant
Variety [10] associated with the projection onto the parameter space.

Let us denote by S = {f1(T,X) = 0, . . . , fl(T,X) = 0} the system we want
to study, where T = T1, . . . , Td is the set of parameters, X = X1, . . . , Xn is the
set of unknowns, the fi, i = 1 . . . l being polynomials in the indeterminates T,X,
with rational coefficients.

We suppose that S = {f1(T,X) = 0, . . . , fl(T,X) = 0} has generically
finitely many complex solutions, which is the case for our studies, that is to
say, for almost all the d-uples (t1, . . . , td) ∈ C

d, the system S|T=t = {f1(t,X) =
0, . . . , fl(t,X) = 0} has finitely many complex solutions. The complex solutions
of S thus define an algebraic variety denoted by V (I), with I being the ideal
of Q[T,X] generated by the polynomials f1, . . . , fl, such that ΠT (V (I)) = C

d,
where ΠT denotes the projection onto the parameter space and where W denotes
the closure of any subset W ⊂ Cd.

mmonagan@cecm.sfu.ca

54 D. Chablat et al.

Let’s consider the following definition (adapted from [10]). The (minimal)
Discriminant Variety of V (I) wrt ΠT , denoted WD in the sequel, is the
smallest algebraic variety of Cd such that given any simply connected subset U
of Rd \ WD, the number of real solutions of S is constant over U .

In our context, the minimal Discriminant Variety of V (I) wrt ΠT , will always
be the union of

– Wsd: the closure of the projection by ΠT of the components of V (I) of dimen-
sion < d

– Wc: the union of the closure of the critical values of ΠT in restriction to V (I)
and of the projection of the singular values of V (I)

– W∞: the set of u = (u1, . . . , ud) such that Π−1
T (U) ∩ V (I) is not compact for

any compact neighborhood U of u in ΠT (V (I)).

An important remark is that if l = n (say if the system has as many polynomials
as unknowns), then Wsd = ∅.

DiscriminantVariety (sys, vars, pars)
DiscriminantVariety (eqs, ineqs, vars, pars)
sys list of equations and strict inequalities between

polynomials with rational coefficient
vars list of names; the indeterminates
pars (optional) list of names; the parameters
eqs list of polynomials f with rational coefficients

representing equations of the form f = 0
ineqs list of polynomials g with rational coefficients

representing constraint inequalities of the form 0 < g

The function DiscriminantVariety(eqs, ineqs, vars, pars) available through
the SIROPA Package computes a discriminant variety of the system

[f = 0, 0 < g]f∈eqs, g∈ineqs (1)

of equations and inequalities with respect to the indeterminates vars and the
parameters pars.

The input system must satisfy the following properties:

– There are at least as many equations as indeterminates.
– At least one and at most finitely many complex solutions exist for almost all

complex parameter values (the system is generically solvable and generically
zero-dimensional).

mmonagan@cecm.sfu.ca

Using Maple to Analyse Parallel Robots 55

– For almost all complex parameter values, there are no solutions of multiplicity
greater than one (the system is generically radical or, in other words, its
Jacobian determinant with respect to the indeterminates does not vanish
for almost all the parameter values). In particular, the input equations are
square-free.

An error occurs if one of these three previous conditions is violated.

– The result is returned as a list of lists of polynomials in pars such that the
discriminant variety is the union of the set of solutions of the polynomials in
each inner list.

– If pars is not specified, it defaults to all the names in sys that are not inde-
terminates.

– This function attempts to find a minimal discriminant variety, but it may
return a proper superset in the case that it does not succeed.

– The discriminant variety is computed using Gröbner basis techniques and
thus, the choice of ordering of the variables might be critical for efficiency,
some intermediate objects could be huge.

A cylindrical algebraic decomposition (CAD) of the n-dimensional real
space is a partition of the whole space into connected semi-algebraic subsets such
that the cells in the partition are cylindrically arranged, that is, the projection
of any two cells onto any lower dimensional real space is either equal or dis-
joint. This decomposition is called F-invariant if, for any given cell, the sign of
each polynomial in F does not change over the cell. CylindricalAlgebraicDecom-
pose(F, R) returns an F-invariant CAD of the n-dimensional real space, where
n is the number of variables in R. This assumes that R has characteristic zero
and no parameters, such that the base field of R is the field of rational numbers
[1].

In our case, we make use of a partial CAD sometimes named Open CAD
to decompose the parameter space of a parametric polynomial system into the
union of the discriminant variety and a collection of cells in which the original
system has a constant number of solutions (see [6] and [11] for similar contexts).
The open CAD is thus the union of the discriminant variety and of the cells of
maximum dimension of the CAD associated to the discriminant variety.

CellDecomposition (sys, vars, pars, options)
CellDecomposition (eqs, posineqs, vars, pars, options)
CellDecomposition (eqs, posineqs, nzineqs, vars,

pars, options)

mmonagan@cecm.sfu.ca

56 D. Chablat et al.

sys list of equations and strict inequalities between
polynomials with rational coefficients

vars list of names; the indeterminates
pars (optional) list of names; the parameters
eqs list of polynomials f with rational coefficients

representing equations of the form f = 0
posineqs list of polynomials g with rational coefficients

representing constraint inequalities of the form 0 < g
nzineqs list of polynomials g with rational coefficients

representing constraint inequations of the form g �= 0
options sequence of optional equations of the form

keyword=value where keyword is either
output or method

The function returns a data structure that can be used for (examples):

– Plotting the regions of the parameter space for which the system has a given
number of solutions.

– Extracting sample points in the parameter space for which the system has a
given number of solutions.

– Extracting boxes in the parameter space in which the system has a given
number of solutions.

The record returned captures information about the solutions of the system
depending on the parameter values, including:

– a discriminant variety;
– for each full-dimensional open cell, a sample point strictly in the interior of

the cell; if possible, the coordinates of the sample point are chosen to be
integers.

The input system must satisfy the same properties as for the discrimant
variety.

4 Case Studies on Some 3-PPPS Manipulators

For illustrating this contribution, we will study some 3-PPPS manipulators: each
leg is composed of three orthogonal prismatic joints (P) and one spherical joint
(S), the first two prismatic joints being actuated. These 6-degree-of-freedom
robots have the particularity to have independent sets of freedom motions i.e.
3 translations and 3 rotations and thus allows us to have 3 dimensional plots
illustrating various kinds of singularities.

4.1 Joint Space and Workspace Analysis

For illustrating the way the SIROPA Library can be used for studying the
workspace of a given manipulator, we chose a 3-PPPS parallel robot derived

mmonagan@cecm.sfu.ca

Using Maple to Analyse Parallel Robots 57

from [4] with an equilateral mobile platform and a U-shape base and use quater-
nion parameters to represent the aspects [3], i.e. the singularity free regions of
the workspace. The three legs are identical and made with two actuated pris-
matic joints plus one passive prismatic joint and a spherical joint. The axes of
first three joints form an orthogonal reference frame.

x

y
z

A1

P

B1

C1

A3

B3

C3

A2

B2

C2

1x

1z

1y

2x

3x

2z

3z

2y

3y

x

y
z

Fig. 4. The 3-PPPS parallel robot and its parameters in its “home” pose with the
actuated prismatic joints in blue, the passive joints in white and the mobile platform
in green (Color figure online)

The coordinates of the moving platform in the fixed reference frame can be
expressed using a general rotation matrix as W i = RVi + P , where (V i)i=1...3

are the 3 points describing the moving frame, P = [x, y, z]T is a translation

vector, and R =

⎡
⎣

ux vx wx

uy vy wy

uz vz wz

⎤
⎦ is a rotation which can be parametrized by unit

quaternions as follows:

R =

⎡
⎣

2q21 + 2q22 − 1 −2q1q4 + 2q2q3 2q1q3 + 2q2q4
2q1q4 + 2q2q3 2q21 + 2q23 − 1 −2q1q2 + 2q3q4

−2q1q3 + 2q2q4 2q1q2 + 2q3q4 2q21 + 2q24 − 1

⎤
⎦ (2)

with q1 ≥ 0. We choose for V 1 and V 2 one corner and the median of the triangle
modelling the moving platform, (V 3 is then fixed by the two other points), say
V 1 = [0, 0, 0]T , V 2 = [

√
3/2, 1/2, 0]T and V 3 = [

√
3/2,−1/2, 0]T appeared to

be the best choice.

mmonagan@cecm.sfu.ca

58 D. Chablat et al.

Obviously, one then has to consider additional constraints equations in order
to describe the links and the geometry of the moving platform. The points
Ai and Ci can be expressed w.r.t. to the joint variables

A1 = [2, ρ1y, ρ1z]T C1 = [ρ1x, ρ1y, ρ1z]T

A2 = [−ρ2y, 2, ρ2z]T C2 = [−ρ2y, ρ2x, ρ2z]T

A3 = [ρ3y,−2, ρ3z]T C3 = [ρ3y,−ρ3x, ρ3z]T

and the fact that there are 3 passive joints (ρ1,x, ρ2,x, ρ3,x) leads also to additional
simple algebraic rules: ρ1x = x, ρ2x = uy

√
3/2 + vy/2 + y and ρ3x = −uy

√
3/2 +

vy/2−y. We finally obtain the following kinematic equations which are algebraic
when adding the formal equation

(√
3
)2 − 3 = 0, considering

√
3 as a symbol:

ρ1y − y = 0
ρ1z − z = 0
(−2q21 − 2q22 + 1)

√
3/2 + q1q4 − q2q3 − x − ρ2y = 0√

3(q1q3 − q2q4) − q1q2 − q3q4 + ρ2z − z = 0
(−2q21 − 2q22 + 1)

√
3/2 − q1q4 + q2q3 − x + ρ3y = 0√

3(q1q3 − q2q4) + q1q2 + q3q4 + ρ3z − z = 0

Joint Space Analysis
Analyzing the joint space consists of computing a partition of this space in
regions above which the DKP (Direct Kinematics Problem) has a fixed number
of solutions. In fact, we are not interested in regions of dimension less than 3,
so that we compute the discriminant variety of the kinematics variety w.r.t. the
projection onto the joint space and then describe the complement of this variety
using an open CAD (Fig. 5).

3z

2z

3y

-2 -1 0
1

2

-2

-1

0

1

2

-2-10

1 2

Fig. 5. Joint space of the 3-PPPS robot

In the present case we first make the following change of variables in order
to reduce the joint space to a 3-dimensional subspace:

mmonagan@cecm.sfu.ca

Using Maple to Analyse Parallel Robots 59

μ1x = ρ1x − ρ2y

μ1y = ρ1y − ρ1y = 0
μ1z = ρ1z − ρ1z = 0

μ2x = ρ2x − ρ1y

μ2y = ρ2y − ρ2y = 0
μ2z = ρ2z − ρ1z

μ3x = ρ3x + ρ2y

μ3y = ρ3y − ρ2y

μ3z = ρ3z − ρ1z

Then, the discriminant variety of the kinematic system w.r.t. the projection
onto the joint space is given by the union of the following equations

μ2z − μ3z = 1
μ2z − μ3z = −1

4(μ2
2z − μ2zμ3z + μ2

3z) = 3
(μ2z − μ3z)2 + μ2

3y = 1

The cell description of the complement of the discriminant variety from the
next table comes from [13]. For one variable, [P, n, μ,Q,m] means that the min-
imum value of μ is the nth root of P and the maximum value is mth root of
Q.

μ2z μ3z μ3y

[P1R2Z
, 1, μ2z,P2R2Z

, 1] [P3R3Z
, 1, μ3z,P3R3Z

, 2] [P1R3Y
, 1, μ3y,P1R3Y

, 2]
[P2R2Z

, 1, μ2z,P3R2Z
, 1] [P3R3Z

, 1, μ3z,P3R3Z
, 2] [P1R3Y

, 1, μ3y,P1R3Y
, 2]

[P3R2Z
, 1, μ2z,P4R2Z

, 1] [P3R3Z
, 1, μ3z,P3R3Z

, 2] [P1R3Y
, 1, μ3y,P1R3Y

, 2]

where

P1R2Z
: μ2z + 1 = 0

P2R2Z
: 2μ2z + 1 = 0

P3R2Z
: 2μ2z − 1 = 0

P4R2Z
: μ2z − 1 = 0

P1R3Z
: μ2z − μ3z − 1 = 0

P2R3Z
: μ2z − μ3z + 1 = 0

P3R3Z
: 4(μ2

2z − μ2zμ3z + μ2
3z) − 3 = 0

P1R3Y
: (μ2z − μ3z)2 + μ2

3y − 1 = 0

Taking one point in each of the cells and solving the related zero-dimensional
system, it turns out that for the present example, the DKP (Direct Kinematics
Problem) always admits 16 real roots which corresponds to eight assembly modes
for the robot. This result is valid if there is no limit on the passive joints.

Workspace Analysis
Analyzing the workspace consists of computing a partition of this space in regions
where the IKP (Inverse Kinematics Problem) has a fixed number of solutions.
As for the joint space analysis, we are only interested in regions of maximal
dimension: we can compute the discriminant variety of the kinematics variety
w.r.t. the projection onto the position space and then describe the complement
of this variety using an open CAD.

mmonagan@cecm.sfu.ca

60 D. Chablat et al.

The aim of the analysis is to determine the maximum regions without any
singularities, i.e. the aspects of the robot. In these regions, the robot can per-
form any continuous trajectories. As the Jacobian w.r.t. the joints variables of
the kinematic system can be factorized into two components, the discriminant
variety splits the orientation space into four regions by using the sign of two
components.

– Let PP be the regions where q22 + q23 − 1/2 > 0 and q22 + q24 − 1/2 > 0.
– Let NN be the regions where q22 + q23 − 1/2 < 0 and q22 + q24 − 1/2 < 0.
– Let PN be the regions where q22 + q23 − 1/2 > 0 and q22 + q24 − 1/2 < 0.
– Let NP be the regions where q22 + q23 − 1/2 < 0 and q22 + q24 − 1/2 > 0.

Each region can be defined by a set of cells (Fig. 6).

q3 q3

q3 q3q2 q2

q2 q2

q4 q4

q4 q4

q3 q2

PP NP

NN PN

Fig. 6. Workspace of the 3-PPPS robot

mmonagan@cecm.sfu.ca

Using Maple to Analyse Parallel Robots 61

4.2 Cuspidal Robots

The cuspidal character of a mechanism has a different meaning depending on its
structure. For a serial mechanism, it is the capability to pass from one solution
of the inverse kinematic problem to another one without crossing a singularity
in the joint space (the Jacobian determinant of the kinematic system w.r.t. the
joint variables does not vanish) while for a parallel mechanism it is the capability
to pass from a solution of the direct kinematic problem to another one without
crossing a singularity in the workspace (the Jacobian of the kinematic system
w.r.t. the position variables does not vanish).

The term “cuspidal” is due to the fact that this capability is linked to the
existence of a triple solution to the inverse kinematic problem in the case of a
serial mechanism and to the existence of a triple solution to the direct kinematic
problem in the case of a parallel mechanism.

For illustrating the way such a property is studied using the SIROPA library,
we chose the following 3-PPPS Robot, which is a simplified kinematic version
of the manipulator proposed in [5] (Fig. 7).

Fig. 7. A 3-PPPS robot with 3 orthogonal prismatic joints.

Let B1, B2 and B3 be the corners of the moving platform (MP) of side length
r. Let Fp (P,Xp, Yp, Zp) be the frame attached to the moving platform, its origin
P being the centroid of the MP. Yp is parallel to line (B1B3) and Zp is normal
to the MP. Accordingly,

b1p =
[
−r

√
3/6,−r/2, 0

]
, b2p =

[
2r

√
3/6, 0, 0

]
, b3p =

[
−r

√
3/6, r/2, 0

]
(3)

mmonagan@cecm.sfu.ca

62 D. Chablat et al.

are the Cartesian coordinate vectors of points B1, B2 and B3 expressed in Fp.
Likewise, let Fb (O,X, Y, Z) be the frame attached to the base and

a1b = [x1,y1,0], a2b = [0, y2,z2], a3b = [x3, 0, z3] (4)

be the Cartesian coordinate vectors of points A1, A2 and A3 expressed in Fb.
Let p =

[
px, py, pz

]T be the Cartesian coordinate vector of point P , the
centroid of the MP, expressed in Fb and let r be equal to 1. The orientation
space of the moving platform is fully represented with the variables (φ, θ, σ),
namely, the azimuth, tilt and torsion angles defined in [2]. The rotation matrix
bQp from Fb to Fp is expressed as follows:

bQp =

⎡
⎣

CφCψ − SφCθSψ −CφSψ − SφCθCψ SφSθ

SφCψ + CφCθSψ −SφSψ + CφCθCψ −CφSθ

SθSψ SθCψ Cθ

⎤
⎦ (5)

C and S denoting the cosine and sine functions, respectively. Note that φ ∈
[−π, π], θ ∈ [0, π] and σ ∈ [−π, π].

As a consequence, the following constraint equations characterize the geo-
metric model of the 3-PPPS-manipulator and are obtained by considering the
projection of the coordinates of points Bi in the plane motion of the two actuated
prismatic joints of the ith leg, i = 1, . . . , 3:

px − x1 = 0
py − y1 = 0

3py − 3y2 − 2
√

3CθSσ + 2
√

3C2
φCθSσ + 2

√
3CφCσSφ

−
√

6SθCσCφ −
√

6SθSσSφ − 2
√

3SφCθCσCφ − 2
√

3C2
φSσ = 0

3pz − 3z2 +
√

3CθSσ −
√

3C2
φCθSσ −

√
3CφCσSφ

−
√

6SθCσCφ −
√

6SθSσSφ +
√

3SφCθCσCφ − 3CφSσSφ

+3C2
φCθCσ + 3Cσ − 3C2

φCσ +
√

3C2
φSσ + 3SφCθSσCφ = 0

6px − 6x3 +
√

3CθSσ + 2
√

3C2
φCθSσ + 2

√
3CφCσSφ −

√
6SθCσCφ

−
√

6SθSσSφ + 3
√

2SθSσCφ − 3
√

2SθCσSφ − 2
√

3SφCθCσCφ

+3CθCσ − 6C2
φCθCσ + 6CφSσSφ − 3Cσ + 6C2

φCσ − 2
√

3C2
φSσ

−6SφCθSσCφ + 3
√

3Sσ = 0

6pz − 6z3 +
√

3CθSσ − 4
√

3C2
φCθSσ − 4

√
3CφCσSφ

−
√

6SθCσCφ −
√

6SθSσSφ + 3
√

2SθSσCφ − 3
√

2SθCσSφ

+4
√

3SφCθCσCφ + 3CθCσ + 3Cσ + 4
√

3C2
φSσ − 3

√
3Sσ = 0

It is noteworthy that the translational and rotational motions of the moving
platform of the 3-PPPS manipulator shown in Fig. 4 can be decoupled. In order
to highlight this decoupling, the following change of variables is made:

mmonagan@cecm.sfu.ca

Using Maple to Analyse Parallel Robots 63

X1 = x1+x3
2 Y1 = y2 − y1 Z2 = z2 − z3

X3 = x3 − x1 Y2 = y1+y2
2 Z3 = z2+z3

2

It is apparent that the translational motions of the MP depend only on
variables X1, Y2 and Z3, whereas its rotational motions depend only on variables
X3, Y1 and Z2. Due to the decoupling of the translational and rotational motions,
one can, for example compute (and draw) the singularity surface in the joint
space defined by the translational variables (Fig. 8).

Fig. 8. Singularity surface and CAD-partition of the joint space

In the present case, the projection of this singularity surface onto the trans-
lational variables is equal to the discriminant variety of the kinematics equations
w.r.t. the projection onto the translational variables and thus defines a parti-
tion of this space in region where the direct kinematic problem has a constant
number of solutions.

References

1. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I:
the basic algorithm. SIAM J. Comput. 13(4), 865–877 (1984)

2. Bonev, I.A., Ryu, J.: Orientation workspace analysis of 6-DOF parallel manipula-
tors. In: Proceedings of the ASME (1999)

3. Chablat, D., Wenger, P.: Working modes and aspects in fully parallel manipula-
tors. In: Proceedings of the 1998 IEEE International Conference on Robotics and
Automation (Cat. No. 98CH36146), vol. 3, pp. 1964–1969. IEEE (1998)

4. Chen, C., Gayral, T., Caro, S., Chablat, D., Moroz, G., Abeywardena, S.: A
six degree of freedom epicyclic-parallel manipulator. J. Mech. Robot. 4(4), 41011
(2012)

mmonagan@cecm.sfu.ca

64 D. Chablat et al.

5. Chen, C., Heyne, W.J., Jackson, D.: A new 6-DOF 3-legged parallel mechanism
for force-feedback interface. In: Proceedings of 2010 IEEE/ASME International
Conference on Mechatronic and Embedded Systems and Applications, pp. 539–
544. IEEE (2010)

6. Corvez, S., Rouillier, F.: Using computer algebra tools to classify serial manipula-
tors. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 31–43. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24616-9 3

7. Husty, M.L.: An algorithm for solving the direct kinematics of general Stewart-
Gough platforms. Mech. Mach. Theory 31(4), 365–379 (1996)

8. Jha, R., Chablat, D., Baron, L., Rouillier, F., Moroz, G.: Workspace, joint space
and singularities of a family of delta-like robot. Mech. Mach. Theory 127, 73–95
(2018)

9. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots.
Butterworth-Heinemann (2004)

10. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symbolic Com-
put. 42(6), 636–667 (2007)

11. Manubens, M., Moroz, G., Chablat, D., Wenger, P., Rouillier, F.: Cusp points in
the parameter space of degenerate 3-RPR planar parallel manipulators. J. Mech.
Robot. 4(4), 41003 (2012)

12. Merlet, J.-P.: Parallel Robots. Springer, Cham (2006). https://doi.org/10.1007/1-
4020-4133-0

13. Moroz, G., Rouiller, F., Chablat, D., Wenger, P.: On the determination of cusp
points of 3-RPR parallel manipulators. Mech. Mach. Theory 45(11), 1555–1567
(2010)

14. Wenger, P., Chablat, D.: Kinetostatic analysis and solution classification of a class
of planar tensegrity mechanisms. Robotica 37(7), 1214–1224 (2019)

https://doi.org/10.1007/978-3-540-24616-9_3
https://doi.org/10.1007/1-4020-4133-0
https://doi.org/10.1007/1-4020-4133-0

mmonagan@cecm.sfu.ca

Studying Wythoff and Zometool
Constructions Using Maple

Benoit Charbonneau(B) and Spencer Whitehead

Department of Pure Mathematics, University of Waterloo,
200 University Avenue West, Waterloo, ON N2L 3G1, Canada

benoit@alum.mit.edu, snwhiteh@edu.uwaterloo.ca,

http://www.math.uwaterloo.ca/~bcharbon

Abstract. We describe a Maple package that serves at least four pur-
poses. First, one can use it to compute whether or not a given polyhedral
structure is Zometool constructible. Second, one can use it to manip-
ulate Zometool objects, for example to determine how to best build
a given structure. Third, the package allows for an easy computation
of the polytopes obtained by the kaleiodoscopic construction called the
Wythoff construction. This feature provides a source of multiple exam-
ples. Fourth, the package allows the projection on Coxeter planes.

Keywords: Geometry · Polytopes · Wythoff construction · 120-cell ·
Coxeter plane · Zome system · Zometool · Maple

1 Introduction

As geometry is a very visual field of mathematics, many have found it useful
to construct geometric objects, simple and complex, either physically or with
the help of a computer. The Maple package we present today allows for both.
First, the package allows for the automatic construction of many of the convex
uniform polytopes in any dimension by the kaleidoscopic construction known
as the Wythoff construction. Combined with the plotting capabilities of Maple
exploited by our package, we therefore provide an extension of Jeff Weeks’s
KaleidoTile software [19] to higher dimensions. This construction provides an
impressive zoo of examples with which one can experiment on the second and
most important aspect of our package, Zometool constructability.

The Zometool System as it currently exists was first released in 1992 by Marc
Pelletier, Paul Hildebrant, and Bob Nickerson, based on the ideas of Steve Baer
some twenty years earlier; see [1]. It is marketed by the company Zometool Inc.
As a geometric building block with icosahedral symmetry and lengths based on
the golden ratio, it is able to construct incredibly rich structures with a very small
set of pieces (see a pictorial description of the system in Fig. 1, and examples in
Fig. 2). The Zometool System finds use today in many of the sciences: modeling

BC supported by NSERC Discovery Grant. SW supported by NSERC USRA.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 65–76, 2020.
https://doi.org/10.1007/978-3-030-41258-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_5&domain=pdf
http://orcid.org/0000-0001-7978-4466
http://orcid.org/0000-0001-8747-8186
https://doi.org/10.1007/978-3-030-41258-6_5

mmonagan@cecm.sfu.ca

66 B. Charbonneau and S. Whitehead

Fig. 1. Left are the pieces in the Zome system: the traditional red, blue, and yellow
pieces, plus the newer green pieces that fit in the same holes as the reds. On the right
is a construction showing the angles at which Zome pieces can meet: the endpoints of
red struts form an icosahedron, while the yellow struts form the dual dodecahedron.
Blue struts pass through the common midpoints of edges. (Color figure online)

of DNA [17], construction of Sierpiński superfullerenes [3], building models of
quasicrystals (notably in the work of Nobel laureate Dan Shectman). Countless
other mathematicians use the Zometool System for visualizing nuanced geomet-
ric structures easily (see for instance [11,15,16]). A notable example is Hall’s
companion [10] to the Lie algebra textbook [9]. Many have used Zometool to
teach or raise interest in mathematics [12,13]. Zometool is also an invaluable
tool for educators, who find great success in using it to teach geometry in a
hands-on fashion.

Fig. 2. A projection of the 24-cell, a close-up picture of the omnitruncated 120-cell
along a 4-fold symmetry axis, and the root system of B3.

Hart and Picciotto’s book Zome Geometry [12] allows one to learn about
geometric objects, polygons, polyhedra, and polytopes and their projections in a
hands-on fashion. It contains instructions allowing one to build many projections.
However, it can be difficult to verify that one is building the claimed structure
from such instructions. Moreover, not all possible structures one might like to
construct are included in [12], even when restricted to convex uniform polytopes.
A list available from David Richter’s website [14], shows real-world constructions

mmonagan@cecm.sfu.ca

Studying Wythoff and Zometool Constructions Using Maple 67

of all the H4 polytopes. At the time of writing, only the bitruncated 120/600-cell
has not been constructed according to this page.

This issue highlights the need for a good computational framework. The only
existing tool known to the authors for working with Zometool on a computer
is Scott Vorthmann’s vZome software [18], which can be used to construct and
render models. vZome is very effective at constructing brand new solids from
scratch, and at working with smaller projects, such as the regular polyhedra. For
larger tasks, such as projections of 4-dimensional polytopes, it is more difficult
to create a vZome construction. While vZome does support its own scripting
language, Zomic, it does not possess all the analytic capabilities offered by Maple,
and we found some operations we wanted to perform were not supported.

Another problem we concern ourselves with is the case when structures are
not constructible in Zometool. When constructing things by hand or in the
vZome software, it can be difficult to discern when a structure simply cannot be
represented in Zometool, or if we are missing an idea in our construction.

A final issue with existing techniques is the need to be able to zoom in on
parts of a model, and look at them in isolation. The approach used to construct a
cube using 20 Zometool pieces is necessarily different from the one used to build
the projection of an omnitruncated 120-cell, requiring 21,360 Zometool pieces.
What is needed is a setting in which models can be broken into small workable
components, and assembled easily from them, for example in layers.

When deciding constructability, Maple’s symbolic nature is desirable, as it
allows the output of our program to be taken as a formal proof in either case.
Maple objects can be manipulated and broken apart easily, allowing one to con-
struct a polytope by its individual cells. In this fashion, “recipes” for Zometool
constructions can be designed in Maple, streamlining the real-world building
process.

One additional note regarding the Wythoffian zoo of examples provided by
our package is warranted before we end this introduction. The routines provided
allows one to construct all the Wythoffian polytopes, excluding snub polytopes.
The mathematical details of these polytopes are explained in Sect. 2. Thus 11
of the 13 Archimedean solids and 45 of the 47 non-prismatic convex uniform
4-dimensional polytopes described in [4] can be generated in this package and
tested for Zometool constructability; missing are the snub cube and snub dodec-
ahedron in the Archimedean case, and the snub 24-cell and grand antiprism in
the 4-dimensional case. Finally, for this class of polytopes, we provide functions
to perform projections onto Coxeter planes (see Fig. 3 for example).

In Sect. 2, the Wythoff construction is quickly described. In Sect. 3, the pos-
sibilities of our package related to Zometool constructions and constructibility
are explored. In Sect. 5, the various projections provided by our package are
explained and illustrated. The package is available at https://git.uwaterloo.ca/
Zome-Maple/Zome-Maple.

https://git.uwaterloo.ca/Zome-Maple/Zome-Maple
https://git.uwaterloo.ca/Zome-Maple/Zome-Maple

mmonagan@cecm.sfu.ca

68 B. Charbonneau and S. Whitehead

Fig. 3. The 120-cell projected on the H3 Coxeter plane.

2 Wythoff Construction

To properly discuss this material, a few definitions must be given upfront. A
convex polytope is a bounded region of Rn bounded by hyperplanes. The simplest
polytopes are thus polygons (in R

2) and polyhedra (in R
3). The intersection

of the polytope and its bounding hyperplanes are called facets. Hence facets of
polygons are edges and facets of polyhedra are faces. A polygon is called uniform
if it is regular, and a polytope in n ≥ 3 dimensions is called uniform if all of its
facets are uniform and the group of symmetries acts transitively on the vertices.

Wythoff had the brilliant idea in his 1918 paper [20] to construct uniform
polytopes by first considering a finite group of reflections acting on R

n, and then
considering the polytopes obtained as the convex hull of the orbit of a point
under the action of that group. If the initial point is equidistant to all reflecting
hyperplanes in which it is not contained, the resulting polytope is uniform. This
construction was polished by Coxeter’s 1935 paper [7], following his observation
that every finite group of reflections is (what we now call) a Coxeter group:

Theorem 1 (Coxeter [5], Theorem 8). Every finite group of reflections has
a presentation of the form 〈r1, . . . , rn | (rirj)mij = 1〉 for a symmetric matrix m
with mii = 1.

Coxeter groups are conveniently expressed using Coxeter diagrams: labelled
graphs whose vertices are the generating reflections {r1, . . . , rn} and where the
edge {ri, rj} is labelled mij and exists only when mij ≥ 3. The label 3 is the
most common, and so it is usually omitted.

Theorem 2 (Coxeter [6]). Every Coxeter diagram is a finite disjoint union of
the Coxeter diagrams for the Coxeter groups An, Bn,Dn, E6, E7, E8, F4,H3,H4,
and I2(p).

In this short paper, we won’t describe all these graphs. They are classic and
easily found. The upshot of this construction is that it is very easy to describe a
polytope using a diagram. The recipe is easy, and one can compute easily the cor-
responding sub-objects recursively by following the simple algorithm explained
in [2]. We defer the full explanation to this paper or to Coxeter’s book [8] and
simply illustrate it by few example.

mmonagan@cecm.sfu.ca

Studying Wythoff and Zometool Constructions Using Maple 69

In dimension three, imagine 3 mirrors passing through the origin and with
dihedral angles π

2 ,
π
3 ,

π
5 . Reflections in this mirror generate a finite group called

H3. This configuration is illustrated by the Coxeter diagram 5 .
The point chosen is encoded by crossing boxes corresponding to mirror fixing
the point. For instance, 5× × is the polyhedra obtained by taking the
convex hull of the orbit under the group H3 of a point at distance 1 from the
origin and on the intersection line of the first and second mirror: the icosahedron.
This construction is implemented in Jeff Weeks’s KaleidoTile software [19] with
a visual interface allowing the choice of the point being reflected.

KaleidoTile does not allow one to compute the corresponding Wythoffian
polytopes in higher dimension. Our package does, and allows one, for example,
to compute vertices and edges of the 120-cell 5 × × ×, the 600-

cell 5× × × , and the more complicated omnitruncated 120-cell
5 .
An alteration to Wythoff’s construction enables creation of the so-called snub

polytopes. As before, their vertices are the orbit of a point under the action of
a group. However, now the group is taken to be the rotary subgroup of a real
reflection group. That is, the subgroup of any real reflection group consisting of
the elements that are the product of an even number of reflections. Generally,
the point chosen will not be the same as the points in Wythoff’s construction.

3 Zometool Models

The package uses Maple’s module system to work at three distinct levels of
abstraction. The most basic data that is used is the vertices, provided as a list
of n-tuples, and the edges, a list of unordered pairs of vertices. One level higher
is the cell data: Maple’s ComputationalGeometry package is used to convert the
given skeleton into a list of 4-dimensional cells, which may be projected into

Fig. 4. The 120-cell (left) and 600-cell (right) projected cell-first and modeled in Maple.
The view is from the B3 and H3 Coxeter planes respectively, and offset slightly to
show 3D structure. A dashed line indicates a blue strut, a solid line a yellow strut, and
alternating dashes and dots a red strut. (Color figure online)

mmonagan@cecm.sfu.ca

70 B. Charbonneau and S. Whitehead

3-dimensional space via a function in the package. Finally, cells are organized
into Zometool models, which contain information describing how a set of cells
can be physically realized in the Zometool system.

One feature is used to determine whether or not a model is Zometool con-
structible. For instance, taking the 120-cell and projecting vertex-first to R

3, one
finds a set of (normalized) edge lengths not compatible with the Zometool sys-
tem. This set provides a certificate that this particular projection is not Zometool
constructible. Regardless of constructibility, our package provides the ability to
manipulate the object and display it if desired; see for instance Fig. 10.

Assuming the object is Zometool constructible, a list of projected cells can
be assembled into a model. Figure 4 shows the 120-cell and 600-cell drawn as
Zometool models, each projected into three dimensions cell-first. On its own,
these image are too complicated to be of any use, although one point of interest
is that they certify the fact that the 120-cell and 600-cell are constructible by
Zometool. We can break apart the image by levels, for example to view the
“core” of the model, or only the outermost cells, as in Fig. 5.

Fig. 5. Various components of the (cell-first projected) 120-cell. The core (left), and
the upper half of the boundary (right).

After constructing the core, we can begin using some of the packaged utilities
to determine what ought to be built next. For small models such as the 120-cell,
building radially outwards is a standard strategy. Breaking by levels, we will
show the model with its next layer of cells added. For convenience, the central

Fig. 6. The second layer of cells in a (cell-first projected) 120-cell. The type of cell
added around the core is shown in the center. The right is the core with only one cell
added.

mmonagan@cecm.sfu.ca

Studying Wythoff and Zometool Constructions Using Maple 71

part is drawn dotted, so the coloured edges are exactly the ones that must be
added to the model. The cell can also be broken off entirely, so that it may
be constructed on its own, or shown as the only cell in its layer adjoined to
the previous layers. This makes the picture much less cluttered. An example is
shown in Fig. 6.

We can continue this process for two more steps to get the full model. One
useful feature is the ability to pass a filter function; for example, to cut away the
cells in all but the positive orthant. When loaded in Maple, rotating the models
is possible, making it somewhat easier to work with than static images. Using
these two tools judiciously together allows one to effectively work with otherwise
complicated models. The next step of the process looks like, with and without
a filter function applied, is shown in Fig. 7.

Fig. 7. The third layer of cells in a 120-cell. In the center is a piece cut from the left
model using a filter. The right shows the previous step with only one cell added.

Since the 120-cell is uniform, if we understand how to build one part of
the layer, we can repeat the construction elsewhere to finish it. Otherwise, we
would have to be more careful with our filters, and handle each part of the layer
individually. Finally, we can close up the last cells to get the full model, as seen
in Fig. 8.

Fig. 8. Closing off the remaining cells with blue and red pieces completes the model of
the 120-cell (Color figure online)

When considering large models such as the omnitruncated 120-cell, this sort
of manipulation is quite helpful. Since it is impossible to build small-scale phys-
ical copies of the model that can be disassembled and investigated (even the

mmonagan@cecm.sfu.ca

72 B. Charbonneau and S. Whitehead

smallest incarnation possible in Zometool measures roughly 1.9 m in diameter
and requires 21,360 pieces), the ability provided by this package to pick apart
local features of the overall model is valuable for understanding how it should be
constructed. For example, in order to understand how to suspend the model of
the omnitruncated 120-cell from strings, we need to understand what the bottom
half of the exterior looks like, to decide where strings should be placed. Some
special paths formed by blue edges make good candidates for these string paths,
and one could want to be able to isolate this feature. The results of both of these
computations are shown in Fig. 9.

Fig. 9. Half of the boundary cells of the omnitruncated 120-cell (left), and the four
“blue paths” in the omnitruncated 120-cell that occur on circles of constant longitude
(right). (Color figure online)

These are not all the operations supported by the library, and generally it is
easy to extend it to perform any other specific manipulations you might need.
What we are trying to show is that by casting the question of Zometool modelling
in the established framework of Maple, we get access to a powerful set of tools
that can help in many aspects of a large-scale Zometool project.

One final use of this package that we shall point out is the ability to generate
parts lists for a model. This is a rather long computation to run by hand, but
simple to compute in Maple. Here is the list generated for the omnitruncated
120-cell, projected through a great rhombicosidodecahedral cell.

Balls = 7200
R2 = 2880
R1 = 2880
B2 = 3600
Y2 = 4800

Computations of this sort allow us to verify entries in Richter’s list [15], for
example.

mmonagan@cecm.sfu.ca

Studying Wythoff and Zometool Constructions Using Maple 73

Fig. 10. Vertex-first and edge-first projections of the 120-cell

4 Computational Cost

Most operations on the package are performed fast enough that they will run
on a desktop workstation with little issue. One of the most expensive operations
is generating the reflection groups from which Wythoffian polytopes are con-
structed. All the 3 dimenisonal groups can be computed within a minute, and
the four dimensional groups other than H4 take no more than 10 min. On the
other hand, H4, which is of order 14400, takes approximately 12 h to generate on
a desktop computer. After initial computation, groups can be saved and reused.
Included with the project is the generated copy of H4.

With the group H4 available, to construct the 700 vertices of a 120-cell takes
12 s; the data has a size of 2 MB. The truncated 120-cell, having 2400 vertices,
requires 2 min to compute, and has a size of 5 MB. The increase in time is largely
due to the increased complexity of the symbolic expressions, as the generic point
of the truncated 120-cell is more complicated than that of the 120-cell. If symbolic
accuracy is not required, the corresponding floating point computation can be
done in a much shorter time.

It is difficult to precisely analyse the complexity of constructing a Zome
model, as this depends largely on the combinatorial structure of the vertices and
edges. If a model is known to be constructible, it is possible to instantaneously
create the model by providing the type of piece that the longest edge should
be represented by in the construction. Otherwise, it will verify that the edge
lengths are compatible with the edge length ratios of the Zometool system, and
then verify that the neighbour configuration about each point is a possible one
in the Zometool system. For smaller models, this process is very fast: the 4-
hypercube (having 16 vertices) and 120-cell (having 700 vertices) both finished
well within a minute. For the truncated 120-cell, this took 3 min.

5 Projections

In addition to constructing Zometool models, once cell data is constructed, it
can be projected into three or two dimensional space and drawn, regardless of

mmonagan@cecm.sfu.ca

74 B. Charbonneau and S. Whitehead

Fig. 11. A north pole stereographic projection of the truncated 16-cell and truncated
hypercube.

Zometool constructability. The projections included in this package are orthog-
onal projections onto arbitrary bases, stereographic projections, and projections
onto Coxeter planes. When creating Zometool constructions of 4-dimensional
polytopes, the most useful of these is the orthogonal projection—stereographic
projections distort distances too much, and Coxeter plane projections are two-
dimensional. We include the other projections, as in many cases they are not
available elsewhere, in some cases are very nice looking, and in general are use-
ful to get a good grasp of the objects; see for instance in Fig. 11 the stereographic
projections of the truncated 16-cell (4× ×) and truncated hyper-

cube (4 × ×).
Of particular interest are the vertex-first, edge-first, face-first, cell-first pro-

jections, see for instance Fig. 10. Shown in Fig. 12 are the F4 and H4 projections
of the omnitruncated 120-cell computed by our package.

Fig. 12. The F4 and H4 Coxeter plane projection of the omnitruncated 120-cell

mmonagan@cecm.sfu.ca

Studying Wythoff and Zometool Constructions Using Maple 75

These projections do not occur as projections of the Zometool model of the
omnitruncated 120-cell. So, in addition to allowing us to study Zometool mod-
els of Wythoffian polytopes, the Coxeter plane projections in this package can
be used to enjoy some of the higher dimensional structure that is lost when
projecting into three dimensions for the purposes of Zometool construction.

References

1. A (not so brief) history of Zometool. https://www.zometool.com/about-us/
2. Champagne, B., Kjiri, M., Patera, J., Sharp, R.T.: Description of reflection-

generated polytopes using decorated Coxeter diagrams. Canadian J. Phys. 73,
566–584 (1995). https://doi.org/10.1139/p95-084

3. Chuang, C., Jin, B.Y.: Construction of Sierpiński superfullerenes with the aid
of Zome geometry: application to beaded molecules. In: Hart, G.W., Sarhangi,
R. (eds.) Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture,
Culture, pp. 495–498. Tessellations Publishing, Phoenix (2013). http://archive.
bridgesmathart.org/2013/bridges2013-495.html

4. Conway, J.H., Guy, M.J.T.: Four-dimensional Archimedean polytopes. In: Pro-
ceedings of the Colloquium on Convexity, Copenhagen. Københavns Universitets
Matematiske Institut, Copenhagen (1965)

5. Coxeter, H.S.M.: Discrete groups generated by reflections. Ann. Math. 35(3), 588–
621 (1934). http://www.jstor.org/stable/1968753

6. Coxeter, H.S.M.: The complete enumeration of finite groups of the form r2i =
(rirj)

kij = 1. J. Lond. Math. Soc. 10(1), 21–25 (1935). https://doi.org/10.1112/
jlms/s1-10.37.21

7. Coxeter, H.S.M.: Wythoff’s construction for uniform polytopes. Proc. Lond. Math.
Soc. 2(38), 327–339 (1935). https://doi.org/10.1112/plms/s2-38.1.327

8. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover Publications Inc., New York
(1973)

9. Hall, B.C.: Lie Groups, Lie Algebras, and Representations. GTM, vol. 222.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13467-3

10. Hall, B.C.: The geometry of root systems: an exploration in the Zometool system.
https://www3.nd.edu/∼bhall/book/lie.htm

11. Hart, G.W.: Barn raisings of four-dimensional polytope projections. In: Proceed-
ings of International Society of Art, Math, and Architecture (2007). http://www.
georgehart.com/zome-polytopes-ISAMA07/hart-zome-polytopes.pdf

12. Hart, G.W., Picciotto, H.: Zome Geometry: Hands-On Learning with Zome Models.
Key Curriculum Press (2001)

13. Hildebrandt, P.: Zome workshop. In: Sarhangi, R., Barrallo, J. (eds.) Bridges
Donostia: Mathematics, Music, Art, Architecture, Culture, pp. 459–464.
Tarquin Publications, London (2007). http://archive.bridgesmathart.org/2007/
bridges2007-459.html

14. Richter, D.A.: H(4)-polychora with Zome. http://homepages.wmich.edu/∼drichter/
h4polychorazome.htm

15. Richter, D.A.: Two results concerning the Zome model of the 600-cell. In:
Sarhangi, R., Moody, R.V. (eds.) Renaissance Banff: Mathematics, Music, Art,
Culture, pp. 419–426. Bridges Conference, Southwestern College, Winfield (2005).
http://archive.bridgesmathart.org/2005/bridges2005-419.html

https://www.zometool.com/about-us/
https://doi.org/10.1139/p95-084
http://archive.bridgesmathart.org/2013/bridges2013-495.html
http://archive.bridgesmathart.org/2013/bridges2013-495.html
http://www.jstor.org/stable/1968753
https://doi.org/10.1112/jlms/s1-10.37.21
https://doi.org/10.1112/jlms/s1-10.37.21
https://doi.org/10.1112/plms/s2-38.1.327
https://doi.org/10.1007/978-3-319-13467-3
https://www3.nd.edu/~bhall/book/lie.htm
http://www.georgehart.com/zome-polytopes-ISAMA07/hart-zome-polytopes.pdf
http://www.georgehart.com/zome-polytopes-ISAMA07/hart-zome-polytopes.pdf
http://archive.bridgesmathart.org/2007/bridges2007-459.html
http://archive.bridgesmathart.org/2007/bridges2007-459.html
http://homepages.wmich.edu/~drichter/h4polychorazome.htm
http://homepages.wmich.edu/~drichter/h4polychorazome.htm
http://archive.bridgesmathart.org/2005/bridges2005-419.html

mmonagan@cecm.sfu.ca

76 B. Charbonneau and S. Whitehead

16. Richter, D.A., Vorthmann, S.: Green quaternions, tenacious symmetry, and octa-
hedreal Zome. In: Sarhangi, R., Sharp, J. (eds.) Bridges London: Mathematics,
Music, Art, Architecture, Culture, pp. 429–436. Tarquin Publications, London
(2006). http://archive.bridgesmathart.org/2006/bridges2006-429.html

17. Vörös, L.: A Zometool model of the B-DNA. In: Torrence, E., Torrence, B., Séquin,
C., McKenna, D., Fenyvesi, K., Sarhangi, R. (eds.) Proceedings of Bridges 2016:
Mathematics, Music, Art, Architecture, Education, Culture, pp. 435–438. Tes-
sellations Publishing, Phoenix (2016). http://archive.bridgesmathart.org/2016/
bridges2016-435.html

18. Vorthmann, S.: vZome, software. http://vzome.com/home/
19. Weeks, J.: KaleidoTile, software. http://geometrygames.org/KaleidoTile/index.

html.en
20. Wijthoff, W.A.: A relation between the polytopes of the C600-family. Koninklijke

Nederlandse Akademie van Wetenschappen Proc. Ser. B Phys. Sci. 20, 966–970
(1918)

http://archive.bridgesmathart.org/2006/bridges2006-429.html
http://archive.bridgesmathart.org/2016/bridges2016-435.html
http://archive.bridgesmathart.org/2016/bridges2016-435.html
http://vzome.com/home/
http://geometrygames.org/KaleidoTile/index.html.en
http://geometrygames.org/KaleidoTile/index.html.en

mmonagan@cecm.sfu.ca

Approximate GCD in a Bernstein Basis

Robert M. Corless and Leili Rafiee Sevyeri(B)

Ontario Research Centre for Computer Algebra, School of Mathematical
and Statistical Sciences, Western University, London, Canada

{rcorless,lrafiees}@uwo.ca

Abstract. We adapt Victor Y. Pan’s root-based algorithm for find-
ing approximate GCD to the case where the polynomials are expressed
in Bernstein bases. We use the numerically stable companion pencil of
Guðbjörn Jónsson to compute the roots, and the Hopcroft-Karp bipar-
tite matching method to find the degree of the approximate GCD. We offer
some refinements to improve the process.

Keywords: Bernstein basis · Approximate GCD · Maximum matching ·
Bipartite graph · Root clustering · Companion pencil

1 Introduction

In general, finding the Greatest Common Divisor (GCD) of two exactly-known
univariate polynomials is a well understood problem. However, it is also known
that the GCD problem for noisy polynomials (polynomials with errors in their
coefficients) is an ill-posed problem. More precisely, a small error in coefficients of
polynomials P and Q with a non-trivial GCD generically leads to a trivial GCD. As
an example of such a situation, suppose P and Q are non constant polynomials
such that P |Q, then gcd(P, Q) = P . Now for any ε > 0, gcd(P, Q + ε) is a
constant, since if gcd(P, Q + ε) = g, then g|Q + ε − Q = ε. This clearly shows
that the GCD problem is an ill-posed one. We note that the choice of polynomial
basis makes no difference to this difficulty.

At this point we have a good motivation to define something which can
play a similar role to the GCD of two given polynomials which is instead well-
conditioned. The idea is to define an approximate GCD [5]. There are various
definitions for approximate GCD which are used by different authors. All these
definitions respect “closeness” and “divisibility” in some sense.

In this paper an approximate GCD of a pair of polynomials P and Q is the
exact GCD of a corresponding pair of polynomials P̃ and Q̃ where P and P̃
are “close” with respect to a specific metric, and similarly for Q and Q̃ (see
Definition 1).

Finding the GCD of two given polynomials is an elementary operation needed
for many algebraic computations. Although in most applications the polynomials
are given in the power basis, there are cases where the input is given in other
bases such as the Bernstein basis. One important example of such a problem
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 77–91, 2020.
https://doi.org/10.1007/978-3-030-41258-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_6

mmonagan@cecm.sfu.ca

78 R. M. Corless and L. Rafiee Sevyeri

is finding intersection points of Bézier curves, which are usually presented in a
Bernstein basis. For computing the intersections of Bézier curves and surfaces
the Bernstein resultant and GCD in the Bernstein basis comes in handy (see [3]).

One way to deal with polynomials in Bernstein bases is to convert them into
the power basis. In practice poor stability of conversion from one basis to another
and poor conditioning of the power basis essentially cancel the benefit one might
get by using conversion to the simpler basis (see [10]).

The Bernstein basis is an interesting one for various algebraic computations,
for instance, see [19,21]. There are many interesting results in approximate GCD
including but not limited to [1,2,5,8,17,18,20,26] and [16]. In [27], the author
has introduced a modification of the algorithm given by Corless, Gianni, Trager
and Watt in [7], to compute the approximate GCD in the power basis.

Winkler and Yang in [25] give an estimate of the degree of an approximate
GCD of two polynomials in a Bernstein basis. Their approach is based on com-
putations using resultant matrices. More precisely, they use the singular value
decomposition of Sylvester and Bézout resultant matrices. We do not follow the
approach of Winkler and Yang here, because they essentially convert to a power
basis. Owing to this difference we do not give a comparison of our algorithm
with the results of [25].

Our approach is mainly to follow the ideas introduced by Pan in [21], working
in the power basis. In distinction to the other known algorithms for approximate
GCD, Pan’s method does not algebraically compute a degree for an approximate
GCD first. Instead it works in a reverse way. In [21] the author assumes the
roots of polynomials P and Q are given as inputs. Having the roots in hand the
algorithm generates a bipartite graph where one set of nodes contains the roots
of P and the other contains the roots of Q. The criterion for defining the set
of edges is based on Euclidean distances of roots. When the graph is defined
completely, a matching algorithm will be applied. Using the obtained matching,
a polynomial D with roots as averages of paired close roots will be produced
which is considered to be an approximate GCD. The last step is to use the roots
of D to replace the corresponding roots in P and Q to get P̃ and Q̃ as close
polynomials.

In this paper we introduce an algorithm for computing approximate GCD
in the Bernstein basis which relies on the above idea. For us the inputs are the
coefficient vectors of P and Q. We use the correspondence between the roots of a
polynomial f in a Bernstein basis and generalized eigenvalues of a corresponding
matrix pencil (Af , Bf). This idea for finding the roots of f was first used in [14].
Then by finding the generalized eigenvalues we get the roots of P and Q (see [14,
Section 2.3]). Using the roots and similar methods to [21], we form a bipartite
graph and then we apply the maximum matching algorithm by Hopcroft and
Karp [13] to get a maximum matching. Having the matching, the algorithm
forms a polynomial which is considered as an approximate GCD of P and Q. The
last step is to construct P̃ and Q̃ for which we apply a generalization of the
method used in [6, Example 6.10] (see Sect. 3).

mmonagan@cecm.sfu.ca

Approximate GCD in a Bernstein Basis 79

Note that our algorithm, like that of Pan, does almost the reverse of the
well-known algorithms for approximate GCD. Usually the algebraic methods do
not try to find the roots. In [21] Pan assumes the polynomials are represented
by their roots. In our case we do not start with this assumption. Instead, by
computing the roots we can then apply Pan’s method.

The second section of this paper is provided some background for concrete
computations with polynomials in Bernstein bases which is needed for our pur-
poses. The third section presents a method to construct a corresponding pair of
polynomials to a given pair (P, Q). More precisely, this section generalizes the
method mentioned in [6, Example 6.10] (which is introduced for power basis) in
the Bernstein basis. The fourth section introduces a new algorithm for finding
an approximate GCD. In the final section we present numerical results based on
our method.

2 Preliminaries

The Bernstein polynomials on the interval 0 ≤ x ≤ 1 are defined as

Bn
k (x) =

(
n

k

)
xk(1 − x)n−k (1)

for k = 0, . . . , n, where the binomial coefficient is as usual
(

n

k

)
= n!

k!(n − k)! . (2)

More generally, in the interval a ≤ x ≤ b (where a < b) we define

Bn
a,b,k(x) :=

(
n

k

)
(x − a)k(b − x)n−k

(b − a)n
. (3)

When there is no risk of confusion we may simply write Bn
k ’s for the 0 ≤ x ≤ 1

case. We suppose henceforth that P (x) and Q(x) are given in a Bernstein basis.
There are various definitions for approximate GCD. The main idea behind all

of them is to find “interesting” polynomials P̃ and Q̃ close to P and Q and
use gcd(P̃ , Q̃) as the approximate GCD of P and Q. However, there are multiple
ways of defining both “interest” and “closeness”. To be more formal, consider
the following weighted norm, for a vector v

‖v‖α,r =
(

n∑
k=1

|αkvk|r
)1/r

(4)

for a given weight vector α �= 0 and a positive integer r or ∞. The map ρ(u, v) =
‖u − v‖α,r is a metric and we use this metric to compare the coefficient vectors
of P and Q.

mmonagan@cecm.sfu.ca

80 R. M. Corless and L. Rafiee Sevyeri

In this paper we define an approximate GCD using the above metric or indeed
any fixed semimetric. More precisely, we define the pseudogcd set for the pair P
and Q as

Aρ =
{

g(x) | ∃P̃ , Q̃ with ρ(P, P̃) ≤ σ, ρ(Q, Q̃) ≤ σ and g(x) = gcd(P̃ , Q̃)
}

.

Let
d = max

g∈Aρ

deg(g(x)) . (5)

Definition 1. An approximate GCD for P, Q which is denoted by agcdσ
ρ (P, Q),

is G(x) ∈ Aρ where deg(G) = d and ρ(P, P̃) and ρ(Q, Q̃) are simultaneously
minimal in some sense. For definiteness, we suppose that the maximum of these
two quantities is minimized.

In Sect. 2.3 we will define another (semi) metric, that uses roots. In Sect. 4
we will see that the parameter σ helps us to find approximate polynomials such
that the common roots of P̃ and Q̃ have at most distance (for a specific metric)
σ to the associated roots of P and Q (see Sect. 4 for more details).

2.1 Finding Roots of a Polynomial in a Bernstein Basis

In this section we recount the numerically stable method introduced by Guðbjörn
Jónsson for finding roots of a given polynomial in a Bernstein basis. We only
state the method without discussing in detail its stability and we refer the reader
to [14] and [15] for more details.

Consider a polynomial

P (x) =
n∑

i=0
aiB

n
i (x) (6)

in a Bernstein basis where the ai’s are real scalars. We want to find the roots
of P (x) by constructing its companion pencil. In [14] Jónsson showed that this
problem is equivalent to solving the following generalized eigenvalue problem.
That is, the roots of P (x) are the generalized eigenvalues of the corresponding
companion pencil to the pair

AP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an−1 −an−2 · · · −a1 −a0

1 0

1 0

.

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, BP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an−1 + an
n

−an−2 · · · −a1 −a0

1 2
n−1

1 3
n−2

.

1 n
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

That is, P (x) = det(xBP − AP). In [14], the author showed that the above
method is numerically stable.

mmonagan@cecm.sfu.ca

Approximate GCD in a Bernstein Basis 81

Theorem 1. [14, Section 2.3] Assume P (x),AP and BP are defined as above.
z is a root of P (x) if and only if it is a generalized eigenvalue for the pair
(AP ,BP).

Proof. We show

P (z) = 0 ⇔ (zBP − AP)

⎡
⎢⎢⎢⎣

Bn
n−1(z)(1

1−z)
...

Bn
1 (z)(1

1−z)
Bn

0 (z)(1
1−z)

⎤
⎥⎥⎥⎦ = 0 . (7)

We will show that all the entries of

(zBP − AP)

⎡
⎢⎢⎢⎣

Bn
n−1(z)(1

1−z)
...

Bn
1 (z)(1

1−z)
Bn

0 (z)(1
1−z)

⎤
⎥⎥⎥⎦ (8)

are zero except for possibly the first entry:

(z − 1)Bn
1 (z)(1

z − 1) + nzBn
0 (z)(1

z − 1) (9)

since Bn
1 (z) = nz(1 − z)n−1 and Bn

0 (z) = z0(1 − z)n if n ≥ 1, so Eq. (9) can be
written as

− nz(1 − z)n−1 + nz
(1 − z)n

(1 − z) = −nz(1 − z)n−1 + nz(1 − z)n−1 = 0 . (10)

Now for k-th entry:

(z − 1)
(1 − z)Bn

n−k(z) + k + 1
n − k

z

(1 − z)Bn
n−k−1(z) (11)

Again we can replace Bn
n−k(z) and Bn

n−k−1(z) by their definitions. We find that
Eq. (11) can be written as

(z − 1)
(1− z)

(n

n− k

)
zn−k(1− z)n−n+k + k + 1

n− k

z

(1− z)
(n

n− (k + 1)
)
zn−k−1(1− z)n−(n−k−1)

= −
(n

n− k

)
zn−k(1− z)k + k + 1

n− k

n!
(n− (k + 1))!(k + 1)!

zn−k(1− z)k

= n!
(n− k)!k!

zn−k(1− z)k + n!
(n− k)(n− (k + 1))!k!

zn−k(1− z)k = 0 . (12)

Finally, the first entry of Eq. (8) is

zan

n(1 − z)Bn
n−1(z) + an−1(z − 1)

(1 − z) Bn
n−1(z) +

n−2∑
i=0

aiB
n
n−1(z) (13)

mmonagan@cecm.sfu.ca

82 R. M. Corless and L. Rafiee Sevyeri

In order to simplify the Eq. (13), we use the definition of Bn
n−1(z) as follows:

zan

n(1 − z)Bn
n−1(z) = z

n

(
n

n − 1

)
zn−1 1 − z

1 − z
= znan

n

(
n

n − 1

)
= anBn

n(z) (14)

So the Eq. (13) can be written as:

anBn
n(z) + (an−1)Bn

n−1(z) +
n−2∑
i=0

aiB
n
n−1(z) (15)

This is just P (z) and so

(zBP − AP)

⎡
⎢⎢⎢⎣

Bn
n−1(z)(1

1−z)
...

Bn
1 (z)(1

1−z)
Bn

0 (z)(1
1−z)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
...
0
0

⎤
⎥⎥⎥⎦ (16)

if and only if P (z) = 0.

�

This pencil (or rather its transpose) has been implemented in MAPLE since
2004.

Example 1. Suppose P (x) is given by its list of coefficients

[42.336, 23.058, 11.730, 5.377, 2.024] (17)

Then by using Theorem 1, we can find the roots of P (x) by finding the eigenvalues
of its corresponding companion pencil namely:

AP :=

⎡
⎢⎢⎢⎢⎢⎣

−5.377 −11.73 −23.058 −42.336

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

(18)

and

BP :=

⎡
⎢⎢⎢⎢⎢⎣

−4.871 −11.73 −23.058 −42.336

1 .6666666666 0 0

0 1 1.5 0

0 0 1 4

⎤
⎥⎥⎥⎥⎥⎦

(19)

Now if we solve the generalized eigenvalue problem using MAPLE for pair of
(AP ,BP) we get:

[
5.59999999999989, 3.00000000000002, 2.1, 1.2

]
(20)

mmonagan@cecm.sfu.ca

Approximate GCD in a Bernstein Basis 83

Computing residuals, we have exactly1 P (1.2) = 0, P (2.1) = 0, P (3) = 0, and
P (5.6) = 0 using de Casteljau’s algorithm (see Sect. 2.4).

2.2 Clustering the Roots

In this brief section we discuss the problem of having multiplicities greater than
1 for roots of our polynomials. Since we are dealing with approximate roots, for
an specific root r of multiplicity m, we get r1, . . . , rm where |r − ri| ≤ σ for
σ ≥ 0. Our goal in this section is to recognize the cluster, {r1, . . . , rm}, for a
root r as r̃m where |r̃ − r| ≤ σ in a constructive way.

Assume a polynomial f is given by its roots as f(x) =
∏n

i=1(x − ri). Our
goal is to write f(x) =

∏s
i=1(x − ti)di such that (x − ti) � f(x)/(x − ti)di . In

other words, di’s are multiplicities of ti’s. In order to do so we need a parameter
σ to compare the roots. If |ri − rj | ≤ σ then we replace both ri and rj with their
average.

For our purposes, even the naive method, i.e. computing distances of all
roots, works. This idea is presented as Algorithm 1. It is worth mentioning that
for practical purposes a slightly better way might be a modification of the well
known divide and conquer algorithm for solving the closest pair problem in
plane [28, Section 33.4].

Algorithm 1. ClusterRoots(P, σ)
Input: P is a list of roots
Output: [(α1, d1), . . . , (αm, dm)] where αi is considered as a root with multiplicity di

temp ← EmptyList
C ← EmptyList
p ← size(P)
i ← 1
while i ≤ p do

append(temp, P [i])
j ← i + 1
while j ≤ p do

if |P [i] − P [j]| ≤ s then
append(temp, P [j])
remove(P, j)
p ← p − 1

else
j ← j + 1

i ← i + 1
append(C, [Mean(temp), size(temp)])

return C

1 In some sense the exactness is accidental; the computed residual is itself subject to
rounding errors. See [6] for a backward error explanation of how this can happen.

mmonagan@cecm.sfu.ca

84 R. M. Corless and L. Rafiee Sevyeri

2.3 The Root Marriage Problem

The goal of this section is to provide an algorithmic solution for solving the
following problem:
The Root Marriage Problem (RMP): Assume P and Q are polynomials
given by their roots. For a given σ > 0, for each root r of P , (if it is possible)
find a unique root of Q, say s, such that |r − s| ≤ σ.

A solution to the RMP can be achieved by means of graph theory algorithms.
We recall that a maximum matching for a bipartite graph (V, E), is M ⊆ E with
two properties:

– every node v ∈ V appears as an end point of an edge in E′ at most once.
– E′ has the maximum size among the subsets of E satisfying the previous

condition.

We invite the reader to consult [4] and [24] for more details on maximum
matching.

There are various algorithms for solving the maximum matching problem in
a graph. Micali and Vazirani’s matching algorithm is probably the most well-
known. However there are more specific algorithms for different classes of graphs.
In this paper, as in [21], we use the Hopcroft-Karp algorithm for solving the
maximum matching problem in a bipartite graph which has a complexity of
O((m + n)

√
n) operations.

Now we have enough tools for solving the RMP. The idea is to reduce the
RMP to a maximum matching problem. In order to do so we have to associate
a bipartite graph to a pair of polynomials P and Q. For a positive real number
σ, let Gσ

P,Q = (Gσ
P ∪ Gσ

Q, Eσ
P,Q) where

– GP = ClusterRoots(the set of roots of P, σ),
– GQ = ClusterRoots(the set of roots of Q, σ),
– Eσ

P,Q =
{

({r, s}, min(dt, ds)) : r ∈ GP , with multiplicity dr, s ∈
GQ with multiplicity ds,

∣∣∣r[1] − s[1]
∣∣∣ ≤ σ

}

Assuming we have access to the roots of polynomials, it is not hard to see
that there is a naive algorithm to construct Gσ

P,Q for a given σ > 0. Indeed it can
be done by performing O(n2) operations to check the distances of roots where
n is the larger degree of the given pair of polynomials.

The last step to solve the RMP is to apply the Hopcroft-Karp algorithm on
Gσ

P,Q to get a maximum matching. The complexity of this algorithm is O(n 5
2)

which is the dominant term in the total cost. Hence we can solve RMP in time
O(n 5

2).
As was stated in Sect. 2, we present a semi-metric which works with poly-

nomial roots in this section. For two polynomials R and T , assume m ≤ n
and {r1, . . . , rm} and {t1, . . . , tn} are respectively the sets of roots of R and T .
Moreover assume Sn is the set of all permutations of {1, . . . , n}. We define

ρ(R, T) = min
τ∈Sn

‖[r1 − tτ(1), . . . , rm − tτ(m)]‖α,r,

mmonagan@cecm.sfu.ca

Approximate GCD in a Bernstein Basis 85

where α and r are as before.

Remark 1. The cost of computing this semi-metric by this definition is O(n!),
and therefore prohibitive. However, once a matching has been found then

ρ(R, T) = ‖[r1 − smatch(1), r2 − smatch(2), . . . , rm − smatch(m)]‖α,r

where the notation smatch(k) indicates the root found by the matching algorithm
that matches rk.

2.4 de Casteljau’s Algorithm

Another component of our algorithm is a method which enables us to evaluate
a given polynomial in a Bernstein basis at a given point. There are various
methods for doing that. One of the most popular algorithms, for its convenience
in Computer Aided Geometric Design (CAGD) applications and its numerical
stability [9], is de Casteljau’s algorithm which for convenience here is presented
as Algorithm 2.

Algorithm 2. de Casteljau’s Algorithm
Input: C: a list of coefficients of a polynomial P (x) of degree n in a Bernstein basis

of size n + 1
α: a point

Output: P (α)
1: c0,j ← Cj for j = 0 . . . n.
2: recursively define

ci,j ← (1 − α) · ci−1,j + α · ci−1,j+1.
for i = 1 . . . n and j = 1 . . . n − i.

3: return cn,0.

We note that the above algorithm uses O(n2) operations for computing P (α).
In contrast, Horner’s algorithm for the power basis, Taylor polynomials, or the
Newton basis, and the Clenshaw algorithm for orthogonal polynomials, and the
barycentric forms2 for Lagrange and Hermite interpolational basis cost O(n)
operations.

3 Computing Approximate Polynomials

This section is a generalization of [6, Example 6.10] in Bernstein bases. The idea
behind the algorithm is to create a linear system from coefficients of a given
polynomial and the values of the polynomial at the approximate roots.

2 Assuming that the barycentric weights are precomputed.

mmonagan@cecm.sfu.ca

86 R. M. Corless and L. Rafiee Sevyeri

Now assume

P (x) =
n∑

i=0
piB

n
i (x) (21)

is given with α1, . . . , αt as its approximate roots with multiplicities di. Our aim
is to find

P̃ (x) = (P + ΔP)(x) (22)
where

ΔP (x) =
n∑

i=0
(Δpi)Bn

i (x) (23)

so that the set {α1, . . . , αt} appears as exact roots of P̃ with multiplicities di

respectively. On the other hand, we do want to have some control on the coef-
ficients in the sense that the new coefficients are related to the previous ones.
Defining Δpi = piδpi (which assumes pi’s are non-zero) yields

P̃ (x) =
n∑

i=0
(pi + piδpi)Bn

i (x) (24)

Representing P as above, we want to find {δpi}n
i=0. It is worth mentioning

that with our assumptions, since perturbations of each coefficient, pi of P are
proportional to itself, if pi = 0 then Δpi = 0. In other words we have assumed
zero coefficients in P will not be perturbed.

In order to satisfy the conditions of our problem we have

P̃ (αj) =
n∑

i=0
(pi + piδpi)Bn

i (αj) = 0 , (25)

for j = 1, . . . , t. Hence

P̃ (αj) =
n∑

i=0
piB

n
i (αj) +

n−1∑
i=0

piδpiB
n
i (αj) = 0 , (26)

or equivalently
n−1∑
i=0

piδpiB
n
i (αj) = −P (αj) . (27)

Having the multiplicities, we also want the approximate polynomial P̃ to
respect multiplicities. More precisely, for αj , a root of P of multiplicity dj , we
expect that αj has multiplicity dj as a root of P̃ . As usual we can state this fact
by means of derivatives of P̃ . We want

P̃ (k)(αj) = 0 for 0 ≤ k ≤ d (28)

More precisely, we can use the derivatives of Eq. (27) to write
(

n−1∑
i=0

piδpiB
n
i

)(k)

(αj) = −P (k)(αj) . (29)

mmonagan@cecm.sfu.ca

Approximate GCD in a Bernstein Basis 87

In order to find the derivatives in (29), we can use the differentiation matrix
DB in the Bernstein basis which is introduced in [29]. We note that it is a
sparse matrix with only 3 nonzero elements in each column [29, Section 1.4.3].
So for each root αi, we get di equations of the type (29). This gives us a linear
system in the δpi’s. Solving the above linear system using the Singular Value
Decomposition (SVD) one gets the desired solution.

Algorithm 3 gives a numerical solution to the problem. For an analytic solu-
tion for one single root see [12,22,23] and [11].

Algorithm 3. Approximate-Polynomial(P, L)
Input: P : list of coefficients of a polynomial of degree n in a Bernstein basis

L : list of pairs of roots with their multiplicities.
Output: P̃ such that for any (α, d) ∈ L, (x − α)d|P̃ .
1: Sys ← EmptyList
2: DB ← Differentiation matrix in the Bernstein basis of size n + 1
3: X ←

[
x1 . . . xn+1

]t

4: T ← EntrywiseProduct(Vector(P), X)
5: for (α, d) ∈ L do

A ← In+1
for i from 0 to d − 1 do

A ← DB · A
eq ← DeCasteljau(A · T, α) = −DeCasteljau(A · Vector(P), α)
append(Sys, eq)

6: Solve Sys using SVD to get a solution with minimal norm (such as 4), and return
the result.

Although Algorithm 3 is written for one polynomial, in practice we apply
it to both P and Q separately with the appropriate lists of roots with their
multiplicities to get P̃ and Q̃.

4 Computing Approximate GCD

Assume the polynomials P (x) =
∑n

i=0 aiB
n
i (x) and Q(x) =

∑m
i=0 biB

m
i (x) are

given by their lists of coefficients and suppose α ≥ 0 and σ > 0 are given. Our
goal here is to compute an approximate GCD of P and Q with respect to the
given σ. Following Pan [21] as mentioned earlier, the idea behind our algorithm
is to match the close roots of P and Q and then based on this matching find
approximate polynomials P̃ and Q̃ such that their GCD is easy to compute. The
parameter σ is our main tool for constructing the approximate polynomials.
More precisely, P̃ and Q̃ will be constructed such that their roots are respectively
approximations of roots of P and Q with σ as their error bound. In other words,
for any root x0 of P , P̃ (similarly for Q) has a root x̃0 such that |x0 − x̃0| ≤ σ.

For computing approximate GCD we apply graph theory techniques. In fact
the parameter σ helps us to define a bipartite graph as well, which is used to
construct the approximate GCD before finding P̃ and Q̃.

mmonagan@cecm.sfu.ca

88 R. M. Corless and L. Rafiee Sevyeri

We can compute an approximate GCD of the pair P and Q, which we denote
by agcdσ

ρ (P (x), Q(x)), in the following 5 steps.

Step 1. Finding the roots: Apply the method of Sect. 2.1 to get X =
[x1, x2, . . . , xn], the set of all roots of P and Y = [y1, y2, . . . , ym], the set of
all roots of Q.
Step 2. Forming the graph of roots GP,Q: With the sets X and Y we form a
bipartite graph, G, similar to [21] which depends on parameter σ in the following
way:
If |xi − yj | ≤ 2σ for i = 1, . . . , n and j = 1, . . . , m, then we can store that pair
of xi and yj .
Step 3. Find a maximum matching in GP,Q: Apply the Hopcroft-Karp
algorithm [13] to get a maximum matching {(xi1 , yj1), . . . , (xir

, yjr
)} where 1 ≤

k ≤ r, ik ∈ {1, . . . , n} and jk ∈ {1, . . . , m}.
Step 4. Forming the approximate GCD:

agcdσ
ρ (P (x), Q(x)) =

r∏
s=1

(x − zs)ts (30)

where zs = 1
2(xis

+ yjs
) and ts is the minimum of multiplicities of xs and ys for

1 ≤ s ≤ r .
Step 5. Finding approximate polynomials P̃ (x) and Q̃(x): Apply Algo-
rithm 2 with {z1, . . . , zr, xr+1, . . . , xn} for P (x) and {z1, . . . , zr, yr+1, . . . , ym} for
Q(x).

For steps 2 and 3 one can use the tools provided in Sect. 2.3. We also note
that the output of the above algorithm is directly related to the parameter σ
and an inappropriate σ may result in an unexpected result.

5 Numerical Results

In this section we show small examples of the effectiveness of our algorithm
(using an implementation in MAPLE) with two low degree polynomials in a
Bernstein basis, given by their list of coefficients:

P := [5.887134, 1.341879, 0.080590, 0.000769, −0.000086]

and

Q := [−17.88416, −9.503893, −4.226960, −1.05336]

defined in MAPLE using Digits := 30 (we have presented the coefficients with
fewer than 30 digits for readability). So P (x) and Q(x) are seen to be

P (x) := 5.887134 (1 − x)4 + 5.367516 x (1 − x)3

+ 0.483544 x2 (1 − x)2 + 0.003076 x3 (1 − x)
− 0.000086 x4

mmonagan@cecm.sfu.ca

Approximate GCD in a Bernstein Basis 89

and
Q(x) := − 17.88416 (1 − x)3 − 28.51168 x (1 − x)2

− 12.68088 x2 (1 − x) − 1.05336 x3

Moreover, the following computations is done using parameter σ = 0.7, and
unweighted norm-2 as a simple example of Eq. (4), with r = 2 and α = (1, . . . , 1).

Using Theorem 1, the roots of P are, printed to two decimals for brevity,[
5.3 + 0.0 i, 1.09 + 0.0 i, 0.99 + 0.0 i, 1.02 + 0.0 i

]
This in turn is passed to ClusterRoots (Algorithm 1) to get

PClusterRoots := [[1.036 + 0.0 i, 3], [5.3 + 0.0 i, 1]]
where 3 and 1 are the multiplicities of the corresponding roots.

Similarly for Q we have:[
1.12 + 0.0 i, 4.99 + 0.0 i, 3.19 + 0.0 i

]
which leads to

QClusterRoots := [[3.19 + 0.0 i, 1], [4.99 + 0.0 i, 1], [1.12 + 0.0 i, 1]]
Again the 1’s are the multiplicities of the corresponding roots.

Applying the implemented maximum matching algorithm in MAPLE (see
Sect. 2.3), a maximum matching for the clustered sets of roots is

TMaximumMatching :=[[{4.99, 5.30} , 1], [{1.03, 1.12} , 1]]
This clearly implies we can define (see Step 4 of our algorithm in Sect. 4)

agcd0.7
ρ (P, Q) :=(x − 5.145)(x − 1.078)

Now the last step of our algorithm is to compute the approximate polynomials
having these roots, namely P̃ and Q̃. This is done using Algorithm 3 which gives

P̃ :=[6.204827, 1.381210, 0.071293, 0.000777, −0.000086]
and

Q̃ :=[−17.202067, −10.003156, −4.698063, −0.872077]
Note that

‖P − P̃‖α,2 ≈ 0.32 ≤ 0.7 and ‖Q − Q̃‖α,2 ≈ 0.68 ≤ 0.7
We remark that in the above computations we used the built-in function

LeastSquares in MAPLE to solve the linear system to get P̃ and Q̃, instead
of using the SVD ourselves. This equivalent method returns a solution to the
system which is minimal according to norm-2. This can be replaced with any
other solver which uses SVD to get a minimal solution with the desired norm.

As the last part of experiments we have tested our algorithm on several
random inputs of two polynomials of various degrees. The resulting polynomials
P̃ and Q̃ are compared to P and Q with respect to 2-norm (as a simple example
of our weighted norm) and the root semi-metric which is defined in Sect. 2.3.
Some of the results are displayed in Table 1.

mmonagan@cecm.sfu.ca

90 R. M. Corless and L. Rafiee Sevyeri

Table 1. Distance comparison of outputs and inputs of our approximate GCD algorithm
on randomly chosen inputs.

maxdeg{P, Q} deg(agcdσ
ρ (P, Q)) ‖P − P̃ ‖2 ρ(P, P̃) ‖Q − Q̃‖2 ρ(Q, Q̃)

2 1 0.00473 0.11619 0.01199 0.05820
4 3 1.08900 1.04012 0.15880 0.15761
6 2 0.80923 0.75634 0.21062 0.31073
7 2 0.02573 0.04832 0.12336 0.02672

10 5 0.165979 0.22737 0.71190 0.64593

6 Concluding Remarks

In this paper we have explored the computation of approximate GCD of polyno-
mials given in a Bernstein basis, by using a method similar to that of Pan [21].
We first use the companion pencil of Jónsson to find the roots; we cluster the
roots as Zeng does to find the so-called pejorative manifold. We then algorith-
mically match the clustered roots in an attempt to find agcdσ

ρ where ρ is the
root distance semi-metric. We believe that this will give a reasonable solution
in the Bernstein coefficient metric; in future work we hope to present analytical
results connecting the two.

References

1. Beckermann, B., Labahn, G.: When are two numerical polynomials relatively
prime? J. Symb. Comput. 26(6), 677–689 (1998)

2. Beckermann, B., Labahn, G., Matos, A.C.: On rational functions without Froissart
doublets. Numerische Mathematik 138(3), 615–633 (2018)

3. Bini, D.A., Marco, A.: Computing curve intersection by means of simultaneous
iterations. Numer. Algorithms 43(2), 151–175 (2006)

4. Bondy, J.A., Murty, U.S.R.: Graph Theory (Graduate Texts in Mathematics 244).
Springer, New York (2008)

5. Botting, B., Giesbrecht, M., May, J.: Using Riemannian SVD for problems in
approximate algebra. In: Proceedings of the International Workshop of Symbolic-
Numeric Computation, pp. 209–219 (2005)

6. Corless, R.M., Fillion, N.: A Graduate Introduction to Numerical Methods: From
the Viewpoint of Backward Error Analysis. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-8453-0

7. Corless, R.M., Gianni, P.M., Trager, B.M., Watt, S.M.: The singular value decom-
position for polynomial systems. In: Proceedings of the 1995 International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 1995, pp. 195–207. ACM,
New York (1995)

8. Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis.
Math. Comput. 65, 1553–1566 (1996)

9. Farouki, R.T., Rajan, V.T.: On the numerical condition of polynomials in Bernstein
form. Comput. Aided Geom. Des. 4(3), 191–216 (1987)

10. Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Com-
put. Aided Geom. Des. 5(1), 1–26 (1988)

https://doi.org/10.1007/978-1-4614-8453-0
https://doi.org/10.1007/978-1-4614-8453-0

mmonagan@cecm.sfu.ca

Approximate GCD in a Bernstein Basis 91

11. Hitz, M.A., Kaltofen, E., Flaherty, J.E.: Efficient algorithms for computing the
nearest polynomial with constrained roots. In: Proceedings of the 1998 Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC 1998, pp. 236–
243. ACM (1998)

12. Hitz, M.A., Kaltofen, E., Lakshman, Y.N.: Efficient algorithms for computing the
nearest polynomial with a real root and related problems. In: Proceedings of the
1999 International Symposium on Symbolic and Algebraic Computation, ISSAC
1999, pp. 205–212. ACM (1999)

13. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matching in bipartite
graphs. SIAM J. Comput. 2, 225–231 (1973)

14. Jónsson, G.F.: Eigenvalue methods for accurate solution of polynomial equations.
Ph.D. dissertation, Center for Applied Mathematics, Cornell University, Ithaca,
NY (2001)

15. Jónsson, G.F., Vavasis, S.: Solving polynomials with small leading coefficients.
SIAM J. Matrix Anal. Appl. 26(2), 400–414 (2004)

16. Kaltofen, E., Yang, Z., Zhi, L.: Structured low rank approximation of a Sylvester
matrix. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation. TM, pp.
69–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-7643-7984-1_5

17. Karmarkar, N.K., Lakshman, Y.N.: Approximate polynomial greatest common
divisors and nearest singular polynomials. In: Proceedings of the 1996 Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC 1996, pp. 35–
39. ACM, New York (1996)

18. Karmarkar, N.K., Lakshman, Y.N.: On approximate gcds of univariate polynomi-
als. J. Symb. Comput. 26(6), 653–666 (1998)

19. Mackey, D.S., Perović, V.: Linearizations of matrix polynomials in Bernstein bases.
Linear Algebra Appl. 501, 162–197 (2016)

20. Nakatsukasa, Y., Sàte, O., Trefethen, L.: The AAA algorithm for rational approx-
imation. SIAM J. Sci. Comput. 40(3), A1494–A1522 (2018)

21. Pan, V.Y.: Numerical computation of a polynomial gcd and extensions. Inf. Com-
put. 167, 71–85 (2001)

22. Rezvani, N., Corless, R.M.: The nearest polynomial with a given zero, revisited.
ACM SIGSAM Bull. 39(3), 73–79 (2005)

23. Stetter, H.J.: The nearest polynomial with a given zero, and similar problems.
ACM SIGSAM Bull. 33(4), 2–4 (1999)

24. West, D.B.: Introduction to Graph Theory. Prentice Hall Inc., Upper Saddle River
(1996)

25. Winkler, J.R., Yang, N.: Resultant matrices and the computation of the degree of
an approximate greatest common divisor of two inexact Bernstein basis polynomi-
als. Comput. Aided Geom. Des. 30(4), 410–429 (2013)

26. Zeng, Z.: The numerical greatest common divisor of univariate polynomials. In:
Randomization, Relaxation, and Complexity in Polynomial Equation Solving, vol.
556, pp. 187–217 (2011)

27. Zeng, Z.: The approximate GCD of inexact polynomials. Part I: a univariate algo-
rithm. In: Proceedings of the 2004 International Symposium on Symbolic and Alge-
braic Computation, ISSAC 2004, pp. 320–327. ACM (2004)

28. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: The Knuth-Morris-Pratt
Algorithm. In: Introduction to Algorithms, 2nd edn., pp. 923–932 (2001). Chap.
32.4

29. Amiraslani, A., Corless, R.M., Gunasingam, M.: Differentiation matrices for uni-
variate polynomials. Numer. Algorithms 83, 1–31 (2018)

https://doi.org/10.1007/978-3-7643-7984-1_5

mmonagan@cecm.sfu.ca

Using Maple to Compute the Intersection
Curve of Two Quadrics: Improving

the Intersectplot Command

Laureano Gonzalez-Vega1(B) and Alexandre Trocado2

1 Universidad de Cantabria, Santander, Spain
laureano.gonzalez@unican.es

2 Universidade Aberta, Lisbon, Portugal
mail@alexandretrocado.com

Abstract. The Maple intersectplot command plots the intersection
curve in three-dimensional space between a pair of two-dimensional sur-
faces. We will present the implementation in Maple of a new algo-
rithm computing the intersection curve between two quadrics in 3D that
improves the results produced by the intersectplot command.

Keywords: Quadrics · Intersection curve · Resultant · Maple

1 Introduction

We present here the implementation in Maple of a new method to determine the
intersection curve of two quadrics through projection onto a plane and lifting.
In some cases, it will be possible to determine the exact parameterisation of
the intersection curve (involving radicals if needed) and, in others, the output
(topologically correct) will be presented as the lifting of the discretisation of
the branches of the projection curve once its singular points have been fully
determined. The way the lifting will be made is the main criteria followed to
analyse the cutcurve, the projection of the intersection curve to be computed.

The introduction of algorithms for computing the intersection of two quadrics
dates back to the late 1970s. The representation and the definition of quadrics’
intersection has been a relevant problem to solve over the last decades. Levin
in 1976 and 1979 [6,7] introduced a method failing when the intersection curve
is singular and even generates results that are not topologically correct. Levin’s
method was improved by Wang et al. [12] making it capable of computing geo-
metric and structural information; besides, Dupont et al. (see [2]) succeeded in
finding parameterizations that overcame the fact that Levin’s method generated
formulas that were not suited for further symbolic processing. On the other hand,

First author is partially supported by the Spanish Ministerio de Economı́a y Competi-
tividad and by the European Regional Development Fund (ERDF), under the project
MTM2017-88796-P.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 92–100, 2020.
https://doi.org/10.1007/978-3-030-41258-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_7&domain=pdf
http://orcid.org/0000-0002-3934-3890
http://orcid.org/0000-0001-5589-8100
https://doi.org/10.1007/978-3-030-41258-6_7

mmonagan@cecm.sfu.ca

Intersecting Two Quadrics with Maple 93

Mourrain et al. [8] studied a sweeping algorithm for computing the arrange-
ment of a set of quadrics in R

3 that reduces the intersection of two quadrics to
a dynamic two-dimensional problem. Dupont et al. [3–5] proposed algorithms
that enable to compute in practice an exact form of the parameterization of
two arbitrary quadrics with rational coefficients. These algorithms represented a
substantial improvement over Levin’s pencil method and its subsequent refine-
ments. A different approach is based on the analysis of the projection of the
intersection curve by using resultants [9,10]. It is the algorithm in Trocado and
Gonzalez-Vega [10] the one we have used to analyse the behaviour of the Maple
intersectplot command plotting the intersection curve in three-dimensional
space of a pair of two-dimensional surfaces when these two surfaces are quadrics.

This paper is organised as follows: Sect. 2 describes briefly the algorithm
implemented in Maple, Sect. 3 compares this implementation with the Maple
intersectplot command and the last section draws several conclusions.

2 The Algorithm

We introduce here a brief presentation of the algorithm in [10] that we have
implemented in Maple in order to analyse the efficiency and accuracy of the
Maple intersectplot command plotting the intersections in three-dimensional
space of a pair of two-dimensional surfaces when these two surfaces are quadrics.
The algorithm in [10] performs a very efficient Cylindrical Algebraic Decomposi-
tion [1] for the particular case of two quadrics since, in this case, the projection
of the intersection curve has several properties making its analysis easier than
expected.

Let f and g be the two polynomials in R[x, y, z]

f(x, y, z) = z2 + p1(x, y)z + p0(x, y) g(x, y, z) = z2 + q1(x, y)z + q0(x, y)

with deg(p1) ≤ 1, deg(p0) ≤ 2, deg(q1) ≤ 1 and deg(q0) ≤ 2.
Let ΔE1(x, y) = p1(x, y)2 − 4p0(x, y) and ΔE2(x, y) = q1(x, y)2 − 4q0(x, y) be

the discriminants of f(x, y, z) and g(x, y, z) (respectively) with respect to z. Let
S0(x, y) the resultant of f and g, with respect to z.

Computing the intersection of the two quadrics defined by f and g is equiv-
alent to solving in R

3 the polynomial system of equations

f(x, y, z) = 0, g(x, y, z) = 0.

The solution set to be computed, when non empty, may include curves and
isolated points. Analyzing S0(x, y) = 0 in R

2 will be called the projection step
and moving the information obtained in R

2 to R
3 will be called the lifting step.

The curve in R
2 defined by S0(x, y) = 0 is called the cutcurve of E1 and E2

and the curve in R
2 defined by ΔEi

(x, y) = 0 the silhouette of Ei.
Let E1 and E2 be two quadrics in R

3 defined by f(x, y, z) = 0 and g(x, y, z) =
0 respectively. The cutcurve of E1 and E2 is the set

{
(x, y) ∈ R

2 : S0(x, y) = 0,ΔE1(x, y) ≥ 0,ΔE2(x, y) ≥ 0
}

.

mmonagan@cecm.sfu.ca

94 L. Gonzalez-Vega and A. Trocado

The main ingredients of this approach are a detailed analysis of the cutcurve,
its singular points and of its relation with the silhouette curves together with the
using of an uniform way to perform the lifting of the cutcurve to the intersection
curve of the two considered quadrics.

Concerning the analysis of the cutcurve we classify its singular points in two
different types depending on how they will be lifted. Those belonging to the
line p1(x, y) = q1(x, y) are easy to compute and difficult to lift (but just solving
a degree two equation) and those not in that line are more complicated to be
determined but easier to lift.

This approach is not intended to classify the intersection curve between the
two considered quadrics. Its main goal is to produce in a very direct way a
description of the intersection curve which is topologically correct. This is the
reason why we allow in the lifting of the cutcurve, when possible, the use of
radicals or we rely on the discretisation of the branches of the cutcurve (easily
to determine by knowing the points computed in that curve). Next example
shows one case where the intersection curve is presented by a parameterisation
involving radicals.

Example 1. Let f and g be the polynomials

f(x, y, z) = z2 + xz + y g(x, y, z) = z2 + yz + x

defining two hyperbolic paraboloids, E1 and E2, whose intersection curve is to be
computed. To characterise the intersection curve of E1 and E2 we must analyse
the cutcurve

S0(x, y) = (x − y)2(x + y + 1) = 0

and its lifting. Lifting the line x+y +1 = 0 is easy since these points are regular
points of the cutcurve and it is enough to solve the equation f − g = 0 with
respect to z (which, in this case, is the subresultant of index 1 of f and g with
respect to z). Lifting the line x − y = 0, requires to solve f = 0 or g = 0 with
respect to z.

By using the following functions:

– For x ∈ R, we define:

h1(x) = x h2(x) = −x − 1

– Let e1 and e2 be the functions defined by:

e1 (x, y) = −y

2
+

√
y2 − 4x

2
e2 (x, y) = −y

2
−

√
y2 − 4x

2
the parameterisation of the intersection curve is given by the following three
components:

– For x ∈]−∞, 0] ∪ [4,+∞[: (x, h1(x), e1(x, h1(x)).
– For x ∈]−∞, 0] ∪ [4,+∞[: (x, h1(x), e2(x, h1(x)).
– For x ∈ R: (x, h2(x), 1) (the lifting the line x + y + 1 = 0).

mmonagan@cecm.sfu.ca

Intersecting Two Quadrics with Maple 95

In Fig. 1 it is shown, both, the cutcurve and the intersection curve of the two
considered quadrics. It is worth to remark here that the cutcurve contains two
half-lines and that the intersection curve shows two connected components and
one self-intersection point.

Fig. 1. (Left) The cutcurve contains two half-lines. (Right) Intersection curve of f = 0
and g = 0: in red the lifting of the singular points of the cutcurve (including one
complete line) and in gray those points where the parameterisation equations change.
(Color figure online)

3 The Implementation and the Comparison with the
Intersectplot Command

The algorithm introduced in [10] and presented in the previous section has
been implemented in Maple and its performance has been compared with the
intersectplot command. We show next the advantages of our algorithm when
compared with the intersectplot command.

First issue to mention is that intersectplot command works locally requir-
ing to decide in advance the region where the intersection curve is to be com-
puted. This means that some connected components of the intersection curve
may be missing. Our algorithm does not miss any connected component of the
intersection curve. Figure 2 shows how the intersectplot command needs to
be applied several times in order to recover all the connected components of
the intersection curve of the quadrics in Example 1 but with no guarantee that
more connected components are missing (Fig. 1 shows the intersection curve as
produced by the implementation of our algorithm).

Second issue to mention is that the intersectplot command may miss some
points when the intersection curve is a finite set of isolated points. For example
the quadrics defined by

4z2 + 4x2 − 4xy − 8xz + 3y2 − 8y + 8z + 8 = 0

6z2 + 4x2 + 4xy − 8xz − 3y2 − 16x + 8y + 16z + 8 = 0

mmonagan@cecm.sfu.ca

96 L. Gonzalez-Vega and A. Trocado

Fig. 2. Computing the intersection curve of z2+xz+y = 0 and z2+xz+y = 0 by using
the intersectplot command. Left: in the box [−3, 3]3. Right: in the box [−5, 5]3.

only intersect at the points (−1,−2/3,−2) and (−1, 2,−2). Using the
intersectplot command in the boxes [−3, 3]3 and [−1.5,−0.5] × [−1, 2.5] ×
[−2.5,−1.5] produces the empty plot in both cases while our implementation
produces the only two points in the intersection curve.

Third issue to mention concerns the quality of the output produced by the
intersectplot command when the box does not fit adequately with the inter-
section curve. Figure 3 shows the output produced by the intersectplot com-
mand when computing the intersection curve of the quadrics

p(x, y, z) = −16xy + 24xz + 4y2 + 8yz − 16z2 + 16x + 16y − 40z − 32 = 0

q(x, y, z) = −8xy + 4xz + 2y2 + 8yz − 8z2 − 8x + 16y − 20z − 16 = 0

considering different boxes. We can conclude here that, depending on the size of
the box, the quality and accuracy of the output change drastically.

Fig. 3. Computing the intersection curve of p(x, y, z) = 0 and q(x, y, z) = 0 by using
the intersectplot command in three different boxes.

The output of our Maple implementation when computing the intersection
curve of p(x, y, z) = 0 and q(x, y, z) = 0 in shown in Fig. 4. Procedure par
tries to compute a closed form for some of the components of the intersection

mmonagan@cecm.sfu.ca

Intersecting Two Quadrics with Maple 97

curve and, when involving radicals, determines the those intervals where such
a description can be evaluated. Procedure sing computes three lists of points:
the first one contains, if any, the tangential intersection points, the second one
the lifting to the intersection curve of the singular points of the cutcurve, if any,
and the third one a discretisation for the components of the intersection curve
without a parameterisation in closed form available.

Fig. 4. Maple output when computing the intersection curve of p(x, y, z) = 0 and
q(x, y, z) = 0 by using our Maple implementation.

Figure 5 plots the intersection curve of p(x, y, z) = 0 and q(x, y, z) = 0 by
using as input the information presented in Fig. 4 together with two different
views placing the intersection curve onto the two considered quadrics.

Fig. 5. The intersection curve of p(x, y, z) = 0 and q(x, y, z) = 0 by using our Maple
implementation together with the two quadrics (two views).

Finally, Fig. 6 presents the output of our Maple implementation when com-
puting the intersection curve for three pairs of quadrics. Last example shows a
concrete case where the intersection curve is discretised.

Figure 7 shows, for two concrete examples, the shape of the intersection curve
when some (or all) of the components of the cutcurve have been discretised.

mmonagan@cecm.sfu.ca

98 L. Gonzalez-Vega and A. Trocado

Fig. 6. Three examples of using Maple to compute the intersection curve of two
quadrics.

Fig. 7. Plotting the intersection curve with our Maple implementation when the com-
ponents are discretised. Red points: lifting of the singular points of the cutcurve. (Color
figure online)

mmonagan@cecm.sfu.ca

Intersecting Two Quadrics with Maple 99

4 Conclusions

We have presented our Maple implementation of the algorithm in [10] for
computing the intersection curve of two quadrics. Compared with the Maple
intersectplot command it brings, for this particular case, several advantages
concerning the accuracy of the result. Its output brings more information since
the cutcurve is completely characterised allowing for example to identify the tan-
gential intersection points among many other things. Regarding efficiency our
algorithm is slower than the Maple intersectplot command but in most cases
our implementation requires less than one second when computing the intersec-
tion curve of the two considered quadrics. It is worth to remark here that there
are lot of potential improvements in the implementation we have reported here.

We think that the Maple intersectplot command should improve its accu-
racy by adding several particular cases where the intersection curve is determined
by an ad-hoc algorithm and the case of two quadrics is one of these possibilities.

In [11] we have reported our implementation in GeoGebra of the algorithm
in [10]. Compared with the implementation in Maple reported here it is worth
to mention that Maple is clearly more adequate that GeoGebra thanks to how
easy is to perform the symbolic and numerical analysis of the cutcurve which
is the cornerstone of the algorithm we are dealing with. The only point where
GeoGebra outperforms Maple concerns the lifting of the branches of the cutcurve
around a tangential intersection point: the determination of these points is quite
complicated but they are very easy to lift in GeoGebra without computing them
explicitly (in Maple this is needed): by continuity the lifting of the points pro-
duced by the Locus GeoGebra function around these singular points produces
automatically their lifting to the intersection curve (and it is not necessary to
compute them explicitly).

References

1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

2. Dupont, L., Lazard, S., Lazard, D., Petitjean, S.: Near-optimal parameterization
of the intersection of quadrics. In: Proceedings of the Annual Symposium on Com-
putational Geometry (2003). https://doi.org/10.1145/777829.777830

3. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization
of the intersection of quadrics: I. The generic algorithm. J. Symb. Comput. (2008).
https://doi.org/10.1016/j.jsc.2007.10.006

4. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization
of the intersection of quadrics: II. A classification of pencils. J. Symb. Comput.
(2008). https://doi.org/10.1016/j.jsc.2007.10.012

5. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization
of the intersection of quadrics: III. Parameterizing singular intersections. J. Symb.
Comput. (2008). https://doi.org/10.1016/j.jsc.2007.10.007

6. Levin, J.: A parametric algorithm for drawing pictures of solid objects composed of
quadric surfaces. Commun. ACM (1976). https://doi.org/10.1145/360349.360355

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1145/777829.777830
https://doi.org/10.1016/j.jsc.2007.10.006
https://doi.org/10.1016/j.jsc.2007.10.012
https://doi.org/10.1016/j.jsc.2007.10.007
https://doi.org/10.1145/360349.360355

mmonagan@cecm.sfu.ca

100 L. Gonzalez-Vega and A. Trocado

7. Levin, J.Z.: Mathematical models for determining the intersections of quadric
surfaces. Comput. Graph. Image Process. (1979). https://doi.org/10.1016/0146-
664X(79)90077-7

8. Mourrain, B., Técourt, J.P., Teillaud, M.: On the computation of an arrangement
of quadrics in 3D. Comput. Geom. Theory Appl. (2005). https://doi.org/10.1016/
j.comgeo.2004.05.003

9. Schömer, E., Wolpert, N.: An exact and efficient approach for computing a cell
in an arrangement of quadrics. Comput. Geom. Theory Appl. (2006). https://doi.
org/10.1016/j.comgeo.2004.02.007

10. Trocado, A., Gonzalez-Vega, L.: On the intersection of two quadrics (2018, sub-
mitted). arXiv:1903.06983v2

11. Trocado, A., Gonzalez-Vega, L., Dos Santos, J.M.: Intersecting two quadrics with
GeoGebra. In: Ćirić, M., Droste, M., Pin, J.É. (eds.) CAI 2019. LNCS, vol. 11545,
pp. 237–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-
3 20

12. Wang, W., Goldman, R., Tu, C.: Enhancing Levin’s method for computing quadric-
surface intersections. Comput. Aided Geom. Des. (2003). https://doi.org/10.1016/
S0167-8396(03)00081-5

https://doi.org/10.1016/0146-664X(79)90077-7
https://doi.org/10.1016/0146-664X(79)90077-7
https://doi.org/10.1016/j.comgeo.2004.05.003
https://doi.org/10.1016/j.comgeo.2004.05.003
https://doi.org/10.1016/j.comgeo.2004.02.007
https://doi.org/10.1016/j.comgeo.2004.02.007
http://arxiv.org/abs/1903.06983v2
https://doi.org/10.1007/978-3-030-21363-3_20
https://doi.org/10.1007/978-3-030-21363-3_20
https://doi.org/10.1016/S0167-8396(03)00081-5
https://doi.org/10.1016/S0167-8396(03)00081-5

mmonagan@cecm.sfu.ca

Exact Parametric Solutions
for the Intersections of Quadric

Surfaces Using MAPLE

Samir Hamdi1,2(B), David I. W. Levin1, and Brian Morse3

1 Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

samir.hamdi@utoronto.ca
2 Department of Mathematical and Computational Sciences,

University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
3 Department of Civil and Water Engineering, Laval University,

Quebec G1V 0A6, Canada

Abstract. Quadric surfaces play a very important role in solid geomet-
ric modeling and in the design and fabrication of mechanical and indus-
trial parts. Solving the intersection curve between two quadrics is a fun-
damental problem in computer graphics and solid modeling. We present
a new analytical method for parameterizing the intersection curve of two
quadrics, which are represented by implicit quadratic equations in 3D.
The method is based on the observation that the intersection curve of
two quadrics comprises all the points that satisfy a parametric second
order polynomial system. We show that the computation of the intersec-
tion problem of two general quadrics can be reduced to the solution of
quartic polynomials. In particular, we show that the intersection prob-
lem of two quadric surfaces that are expressed in canonical forms can be
reduced to the solution of quadratic polynomials. All the exact paramet-
ric solutions for the intersections of quadric surfaces are implemented
in the Computer Algebra System MAPLE. Several previously published
test problems of the intersection of quadric surfaces are presented and
discussed.

Keywords: Quadric surface · Intersection · Parametric polynomial
system · Quartic polynomial · Exact solution · Computer Algebra
System

1 Introduction

Computing the intersection curve of two surfaces is a fundamental problem in
solid modeling and computer graphics. Solving the intersection problem is essen-
tial for computing convex hulls of patches, the representation of complex objects,
computer animation and numerical control machining for trimming off the region
bounded by the self-intersection curves of offset surfaces [15]. It is also useful for
Boolean operations in constructive solid modeling [15].
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 101–113, 2020.
https://doi.org/10.1007/978-3-030-41258-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_8

mmonagan@cecm.sfu.ca

102 S. Hamdi et al.

Quadric surfaces play a very important role in solid geometric modeling, the
design and fabrication of mechanical and industrial parts. Patches of quadrics
(planes, cones, spheres, and cylinders) and tori represent 95% of all mechanical
and industrial parts [8,15].

Parametric solutions for the intersections of quadric surfaces were pioneered
by Levin [9,10] and further developed by Sarraga [16]. An enhanced Levin’s
method for computing quadric-surface intersections was presented in [18,19].
Near-optimal parametrization of the intersection of quadrics was studied by
Dupont et al. [2–4]. Efficient and exact implementations for determining the
intersection of quadrics were developed by [8,17]. A sweeping algorithm for com-
puting the arrangement of a set of quadrics in 3D was studied by Mourrain et
al. [13]. Fioravanti et al. [5] introduced a new algebraic approach for computing
the intersection of two ruled surfaces in implicit/parametric form by finding the
zero set of a bivariate equation which represents the parameter values of the
intersection curve, as a subset of the other surface.

In this study, we present a new and simple analytical method for parameter-
izing the intersection curve of two quadrics, which are represented by implicit
quadratic equations in 3D.

The method is based on the observation that the intersection curve of two
quadrics comprises all the points that satisfy a parametric second order polyno-
mial system. In particular, we show that the intersection problem of two quadric
surfaces that are expressed in canonical forms can be reduced to the solution of
quadratic polynomials.

Several previously published test problems of the intersection of quadric sur-
faces such as spheres, ellipsoids, cylinders, cones and hyperboloids are presented
and discussed. All the exact parametric solutions for the intersections of quadric
surfaces are implemented in the Computer Algebra System MAPLE.

2 Problem Statement of the Intersection of Quadric
Surfaces

We consider the intersection of two quadratic surfaces specified implicitly in
general form as

S1 : F (X) ≡ a1x
2 + b1y

2 + c1z
2 + 2f1yz + 2g1xz + 2h1xy

+ 2p1x + 2q1y + 2r1z + d1 = 0
(1)

and
S2 : G(X) ≡ a2x

2 + b2y
2 + c2z

2 + 2f2yz + 2g2xz + 2h2xy

+ 2p2x + 2q2y + 2r2z + d2 = 0
(2)

The intersection curve of the two quadrics S1 and S2 comprises all the points
that satisfy both Eqs. (1) and (2). If we consider one of the independent variables
x, y or z as a parameter, the intersection curve can be determined by solving the
parametric polynomial system (1) and (2). It is a quadratic system, which can
be solved analytically to obtain a parametric representation of the intersection
curve.

mmonagan@cecm.sfu.ca

Exact Solutions of Intersections of Quadric Surfaces Using MAPLE 103

3 Exact Solutions for the Intersection of Quadric Surfaces
in General Forms

In this section, we will present a simple elimination method for finding exact
real roots of the quadratic system (1) and (2) in the case of general quadrics.
If we consider one of the independent variables x, y or z as a parameter, the
intersection curve can be determined by solving the resulting parametric poly-
nomial system [6]. The choice of the parameter is arbitrary, but in practice, we
should consider a parametrisation that leads to a simple solution. For simplic-
ity and without loss of generality, we set the coefficients of y2 equal to unity
(b1 = b2 = 1), such that

S1 : F (X) ≡ a1x
2 + y2 + c1z

2 + 2f1yz + 2g1xz + 2h1xy

+ 2p1x + 2q1y + 2r1z + d1 = 0
(3)

and
S2 : G(X) ≡ a2x

2 + y2 + c2z
2 + 2f2yz + 2g2xz + 2h2xy

+ 2p2x + 2q2y + 2r2z + d2 = 0
(4)

which are quadratic polynomials for the unknowns x and y and parameter z.
First, we solve for y2 using Eq. (3)

y2 = − a1x
2 − c1z

2 − 2f1yz − 2g1xz − 2h1xy

− 2p1x − 2q1y − 2r1z − d1
(5)

substituting the expression of y2 in (4), we obtain an equation that is first order
in y.

−2(f12z + h12x + q12) y = (a12x
2 + c12z

2 + 2g12xz + 2p12x + 2r12z + d12) (6)

if (f12z + h12x + q12) = 0, we obtain

a12x
2 + (2g12z + 2p12)x + c12z

2 + 2r12z + d12 = 0 (7)

which is a quadratic equation that can be easily solved for the unknown x(z) as
a function of the parameter z.

If (f12z + h12x + q12) �= 0, it follows that

y =
−(a12x

2 + c12z
2 + 2g12xz + 2p12x + 2r12z + d12)

2(f12z + h12x + q12)
(8)

in which
a12 = a1 − a2, c12 = c1 − c2, g12 = g1 − g2,

p12 = p1 − p2, r12 = r1 − r2, d12 = d1 − d2,

f12 = f1 − f2, h12 = h1 − h2, q12 = q1 − q2

(9)

A back substitution of the expression (8) of y in (4), and after clearing the
denominators, leads to a quartic polynomial Q(x) for the unknown x that is
parameterized by z.

Q(x) = ax4 + bx3 + cx2 + dx + e = 0 (10)

mmonagan@cecm.sfu.ca

104 S. Hamdi et al.

The coefficient a is a constant. The coefficients b, c, d and e are polynomials that
depend continuously on z, with increasing degrees ranging from one to four. The
expression of the coefficient a is explicitly given by

a = −a12h12h2 + a2h
2
12 +

1
4
a2
12 (11)

The coefficient b(z) is a first order polynomial in z. It is expressed as

b(z) = β1z + β0 (12)

where
β1 = 2g2h

2
12 + (−a12f2 + 2a2f12 − 2g12h2)h12

+ a12(−f12h2 + g12)
(13)

and
β0 = 2p2h

2
12 + (−a12q2 + 2a2q12 − 2h2p12)h12

+ a12(−h2q12 + p12)
(14)

The coefficient c(z) is a second order polynomial in z. It is given by

c(z) = γ2z
2 + γ1z + γ0 (15)

where
γ2 = c2h

2
12 + (

1
2
(−2c12h2 + 8f12g2 − 4f2g12))h12

+ a2f
2
12(

1
2
(−2a12f2 − 4g12h2))f12 +

1
2
a12c12 + g212

(16)

γ1 = (
1
2
(8f12p2 − 4f2p12 − 4g12q2 + 8g2q12 − 4h2r12))h12

+ 2r2h
2
12 + (

1
2
(−2a12q2 + 4a2q12 − 4h2p12))f12

+ (
1
2
(−2a12f2 − 4g12h2))q12 + a12r12 + 2g12p12

(17)

γ0 = h2
12d2 + (

1
2
(−2d12h2 − 4p12q2 + 8p2q12))h12 + q212a2

− (
1
2
(2a12q2 + 4h2p12))q12 +

1
2
a12d12 + p212

(18)

The coefficient d(z) is a third order polynomial in z. It is given by

d(z) = δ3z
3 + δ2z

2 + δ1z + δ0 (19)

where
δ3 = 2g2f

2
12 + (−c12h2 + 2c2h12

− 2f2g12)f12 + c12(−f2h12 + g12)
(20)

δ2 = (−2f2p12 − 2g12q2 + 4g2q12 + 4h12r2 − 2h2r12)f12
+ 2p2f

2
12 + (−c12h2 + 2c2h12 − 2f2g12)q12

− (c12q2 + 2f2r12)h12 + c12p12 + 2g12r12

(21)

mmonagan@cecm.sfu.ca

Exact Solutions of Intersections of Quadric Surfaces Using MAPLE 105

δ1 = (−d12h2 + 2d2h12 − 2p12q2 + 4p2q12)f12
+ 2q212g2 + (−2f2p12 − 2g12q2 + 4h12r2 − 2h2r12)q12
+ (−d12f2 − 2q2r12)h12 + d12g12 + 2p12r12

(22)

δ0 = 2q212p2 + (−d12h2 + 2d2h12 − 2p12q2)q12
− d12(h12q2 − p12)

(23)

The coefficient e(z) is a fourth order polynomial in z. It is given by

e(z) = ε4z
4 + ε3z

3 + ε2z
2 + ε1z + ε0 (24)

where
ε4 =

1
4
(−4c12f12f2 + 4c2f

2
12 + c212) (25)

ε3 =
[
(2r2f

2
12 + (2c2q12 − c12q2 − 2f2r12)f12

+ c12(r12 − f2q12))]
(26)

ε2 =
[
f2
12d2 + (4q12r2 − d12f2 − 2q2r12)f12

+ q212c2 + (r212 − c12q2 − 2f2r12)q12 +
1
2
c12d12

] (27)

ε1 =
[
(2d2q12 − d12q2)f12 + 2r2q

2
12

+ d12r12 − (d12f2 + 2q2r12)q12]
(28)

ε0 =
1
4
d212 − d12q12q2 + d2q

2
12 (29)

Once all the five coefficients a, b, c, d and e of the quartic polynomial Q(x) are
computed using the previous relations it is possible to compute, in closed–form,
its real roots, which depend continuously on the parameter z. The classical
formulae for the four exact roots of the quartic are expressed analytically in
radicals as

x1,2 = − b

4a
− S ± 1

2

√
−4S2 − 2p +

q

S
(30)

and

x2,4 = − b

4a
+ S ± 1

2

√
−4S2 − 2p − q

S
(31)

where p and q are given by the rational expressions

p =
8ac − 3b2

8a2
and q =

b3 − 4abc + 8a2d

8a3
(32)

and where S is given by

S =
1
2

√

−2
3
p +

1
3a

(
Δ2

2 + Δ0

Δ2

)
(33)

mmonagan@cecm.sfu.ca

106 S. Hamdi et al.

in which

Δ2 =
3

√
Δ1 +

√
Δ2

1 − 4Δ3
0

2
(34)

with
Δ0 = c2 − 3bd + 12ae (35)

and
Δ1 = 2c3 − 9bcd + 27b2e + 27ad2 − 72ace (36)

Once the exact solution x(z) of the quartic equation Q(x) is computed using
the previous analytical formulae (30) and (31), the exact solution for y(z) is
determined using a back substitution of x(z) in the expression (8). Explicit
classical quartic expressions such as (30) and (31) are already built in MAPLE
and available in the solver solve.

The discriminant Δ of the quartic polynomial Q(x) is given by

Δ =
4Δ3

0 − Δ2
1

27
(37)

The nature of the roots (real or complex) is mainly determined by the sign of the
discriminant Δ as outlined by Rees and Lazard [7,14]. Only real values of x(z)
and y(z) correspond to solution points of the intersection curve. Using MAPLE
with regular chains library for polynomial rings [1,11,20–23], it is possible to
determine the conditions for obtaining real solutions for the quartic as follows:

R := PolynomialRing([x, a, b, c, d, e]);
F := [a*x^4+b*x^3+c*x^2 + d*x + e];N := [];P := [];H := [];
rrc := RealRootClassification(F, N, P, H, 5, 1 .. k, R);

As a result of real root classification, it follows that the quartic equation (10)
has given number of real solution(s) if and only if

Δ > 0 ∧ D ≥ 0 ∧ P ≤ 0 (38)

or
Δ < 0 ∧ D ≤ 0 ∧ P ≥ 0 (39)

or
Δ < 0 ∧ P ≤ 0 (40)

where the polynomials P and D are defined by

P = 8ac − 3b2 (41)

and
D = 16a2ce − 18a2d2 − 6ab2e + 14abcd − 4ac3 − 3b3d + b2c2 (42)

The discriminants Δ, D and P are polynomials in z of constant coefficients.
The polynomial Δ is of order 12. The polynomial D is a sextic polynomial in
z and the polynomial P is a quadratic polynomial in z. Their signs can be

mmonagan@cecm.sfu.ca

Exact Solutions of Intersections of Quadric Surfaces Using MAPLE 107

easily determined from the locations of their real roots. Alternately, using the
inequality solver solve in MAPLE, it is possible to find the range of values for z
for which the solutions x(z), and y(z) have real values.

The range of variation for the parameter z is defined by the interval Iz, which
is determined by identifying the intervals IΔ, IP , and ID over which the sign
of the discriminant Δ and the signs of P and D give rise to real points. The
parametric curve is constructed piecewise by combining all the segments of the
solutions.

Iz = IΔ ∩ IP ∩ ID (43)

An easier and direct approach for determining the range of values for z consists
of solving real root classification problem for the system of polynomial equations
F and G for the quadrics (1) and (2):

R := PolynomialRing([x, y, z]);
N := [];P := [];H := [];
rrc := RealRootClassification([F,G], N, P, H, 5, 1 .. k, R);

where the coefficients for the quadrics (1) and (2) have given numerical values.
The resulting polynomial inequality in z can be easily solved in MAPLE using
the solver solve to determine the interval Iz, for which the solutions x(z), and
y(z) have real values. More implementation details for real root classification for
parametric polynomials with the regularchains library in MAPLE can be found
in [1,11,20–23].

4 Exact Solutions for the Intersection of Quadric Surfaces
in Canonical Forms

When the quadratic system (1) and (2) of the quadric surfaces is in canonical
form, the elimination method for finding exact real roots of the system is greatly
simplified. As in the previous section, we will consider one of the independent
variables x, y or z as a parameter, so that the intersection curve can be deter-
mined by solving the resulting parametric polynomial system. We will consider
z as parameter, but we could also choose x or y for parameterizing the system.
In practice, we should consider a parametrisation that leads to a simple solution
of the system. As previously, in order to simplify the elimination procedure and
without loss of generality, we will also set the coefficients of y2 equal to unity
(b1 = b2 = 1), such that

S1 : F (X) ≡ a1x
2 + y2 + c1z

2 + d1 = 0 (44)

and
S2 : G(X) ≡ a2x

2 + y2 + c2z
2 + d2 = 0 (45)

which is a quadratic polynomial system that is parameterised by z for the
unknowns x and y.

mmonagan@cecm.sfu.ca

108 S. Hamdi et al.

Similarly, as in the case of general quadrics, we first solve for y2 using Eq. (44)

y2 = − a1x
2 − c1z

2 − d1 (46)

substituting the expression of y2 in (45), we obtain a parametric equation in z
that is second order for the unknown x.

(a1 − a2)x2 + (c1 − c2)z2 + d1 − d2 = 0 (47)

The exact solution of this quadratic equation is given by

x1,2 = ±
√

(c1 − c2)z2 + (d1 − d2)
a2 − a1

(48)

The exact solution y(z) is obtained using a back substitution of x(z) in (46),

y1,2 = ±
√

a2(c1z2 + d1) − a1(c2z2 + d2)
a1 − a2

(49)

Only real values of x(z) and y(z) will be considered as solution points of the
intersection curve. The range of variation for the parameter z is defined by the
interval Iz, which is determined by identifying the intervals Ix and Iy for which
the expressions (48) and (49) give rise to real solutions.

Iz = Ix ∩ Iy (50)

The parametric curve is constructed piecewise by combining all the segments of
the solutions.

The interval Iz is also determined by solving a real root classification problem
for the system of polynomial equations F and G for the quadrics (44) and (45):

R := PolynomialRing([x, y, z, a1, c1, d1, a2, c2, d2]);
N := [];P := [];H := [];
rrc := RealRootClassification([F,G], N, P, H, 7, 1 .. k, R);

To obtain real solutions for x(z) and y(z), the parameter z should satisfy the
following conditions

R1 < 0 ∧ R2 > 0 ∧ R3 > 0 (51)

or
R1 > 0 ∧ R2 < 0 ∧ R3 < 0 (52)

where

R1 = a12, R2 = c12z
2 + d12 and R3 = (a1c2 − a2c1)z2 + a1d2 − a2d1 (53)

These systems of polynomial inequalities (51) and (52) can be easily solved
for z using solve in MAPLE.

mmonagan@cecm.sfu.ca

Exact Solutions of Intersections of Quadric Surfaces Using MAPLE 109

5 Implementation and Examples

In this section, several illustrative examples will be presented to demonstrate
the application of the analytical solutions for solving the intersection problem of
two quadrics. These examples correspond to test problems that are taken from
[8,12,18,19,24], for the intersection of quadric surfaces such as spheres, ellip-
soids, cylinders, cones and hyperboloids. A plethora of additional test problems
can be found at https://gamble.loria.fr/qi/server/, which allows the online com-
putation of the intersection curve of two quadrics and also the comparison with
our proposed MAPLE implementation.

We consider first the intersection of two ellipsoids defined by

S1 : F (X) ≡ x2 + y2 + 3z2 + 2yz − 2xz − 1 = 0 (54)

and

S2 : G(X) ≡ x2 + 12y2 + 17z2 + 24yz − 2xz + 2x − 2z − 3 = 0 (55)

First, we solve for y2 using Eq. (3), and we substitute y2 in (4),

Y2 := solve(F, y^2);
F2 := subs(y^2 = Y2, G);

Since (f12z + h12x + q12) = 0, we use the quadratic equation (7)

Qx := F2;
solution_x := solve(Qx, x); solution_y := solve(Y2-y^2, y);

Only real values of x(z) and y(z) will be considered as solution points of the
intersection curve. The interval Iz is computed by solving a real root classification
problem for the system of polynomial equations F and G for the two ellipsoids

R := PolynomialRing([x, y, z]);
rrc := RealRootClassification([F,G], [], [], [], 1, 1 .. k, R);
R[1] := 9*z^2-8;
Iz := solve({R[1]<=0}, {z});
Intersection_Curve_Range := lhs(Iz[2])..rhs(Iz[1]);

The intersection curve for these two ellipsoids is represented in Fig. 1. The com-
plete MAPLE implementation for solutions is provided in the next page.

The intersection of two very similar ellipsoids are represented in Fig. 2. The
intersection of a sphere and an ellipsoid and the intersection of a sphere and a
cone with a cusp are illustrated in Figs. 3 and 4 respectively.

The graphical representations of singular and nonsingular intersections of a
sphere and a cylinder are given in Figs. 5 and 6 respectively.

https://gamble.loria.fr/qi/server/

mmonagan@cecm.sfu.ca

110 S. Hamdi et al.

Similar examples for the intersection of an elliptical cylinder and an ellipsoid
and the intersection of an elliptical cylinder and a hyperboloid of one sheet are
depicted in Figs. 7 and 8 respectively.

Intersection of two ellipsoids (Figure 1)

with(plots): with(plots,intersectplot): with(RegularChains):

with(ParametricSystemTools): with(SemiAlgebraicSetTools):

with(SolveTools):

F := x^2-2*x*z+y^2+2*y*z+3*z^2-1;

G := x^2-2*x*z+12*y^2+24*y*z+17*z^2+2*x-2*z-3;

Solving for y^2 using (5) and substituting y^2 in (4)

Y2 := solve(F,y^2);

F2 := subs(y^2=Y2,G);

Since (f12#z + h12*x + q12)=0, we use quadratic equation (7)

Qx := F2;

solution_x := solve(Qx, x);

x1 := solution_x[1]; x2 := solution_x[2];

solution_y := solve(Y2-y^2, y):

y1_1 := simplify(subs(x=x1,solution_y[1]));

y1_2 := simplify(subs(x=x1,solution_y[2]));

y2_1 := simplify(subs(x=x2,solution_y[1]));

y2_2 := simplify(subs(x=x2,solution_y[2]));

R := PolynomialRing([x, y, z]);

infolevel[RegularChains] := 1;

rrc := RealRootClassification([F,G], [], [], [], 1, 1 .. k, R);

R[1] := 9*z^2-8;

Iz := solve({R[1]<=0}, {z});

Intersection_Curve_Range := lhs(Iz[2])..rhs(Iz[1]);

Only solutions x2, y2_1 and y2_2 are real for the range Iz

Intersection_Curve := spacecurve({ [x2, y2_1,z], [x2, y2_2,z] },

z=Intersection_Curve_Range,color=red,thickness=3,transparency=0,

labels=["x","y","z"], labelfont = ["TimesNewRoman", 26] ,

axesfont = ["TimesNewRoman", 22]):

plot_ellipsoid1 := implicitplot3d(F =0, x=-1.5..1.5,y=-1.5..1.5,

z=-1.5..1.5 , grid=[50,50,50] ,axes=boxed, labels=["x","y","z"],

scaling=constrained, style=surface,color=blue,transparency=0.7,

lightmodel=light1,labels=["x","y","z"],

labelfont=["TimesNewRoman",26], axesfont=["TimesNewRoman", 22]):

plot_ellipsoid2 := implicitplot3d(G =0, x=-3.5..2.0,y=-1.5..1.5,

z=-1.5..1.5, grid=[50,50,50], axes=boxed, labels=["x","y","z"],

scaling=constrained, style=surface,color=green,transparency=0.7,

lightmodel=light1,labels=["x","y","z"],

labelfont=["TimesNewRoman",26], axesfont=["TimesNewRoman", 22]):

plots[display](plot_ellipsoid1,plot_ellipsoid2,Intersection_Curve):

mmonagan@cecm.sfu.ca

Exact Solutions of Intersections of Quadric Surfaces Using MAPLE 111

Fig. 1. Intersection of two ellipsoids Fig. 2. Intersection of two very similar
ellipsoids

Fig. 3. Intersection of a sphere and an
ellipsoid

Fig. 4. Intersection of a sphere and a
cone with a cusp

Fig. 5. Singular intersection of a sphere
and a cylinder

Fig. 6. Nonsingular intersection of a
sphere and a cylinder

mmonagan@cecm.sfu.ca

112 S. Hamdi et al.

Fig. 7. Intersection of an elliptical
cylinder and an ellipsoid

Fig. 8. Intersection of an elliptical
cylinder and a hyperboloid of one sheet

6 Concluding Remarks

The primary contribution of this research work is the new derivation of simple,
analytical and parametric solutions for the intersection of quadric surfaces. The
solution procedure that we devised for finding the intersections curves was based
on classical exact roots of quadratic polynomials and quartic polynomials. The
parametric representation of the intersection curves is compact, resolution inde-
pendent, efficient and exact up to the precision of the machine floating point
arithmetic.

The implementation of the analytical representation of the intersection curves
is based on the particular capabilities of the computer algebra system MAPLE.
The illustrative examples of the solution method, that were presented in the
previous section, were implemented in MAPLE and are available from the first
author upon request.

Acknowledgements. This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC). The first author would like to
thank Professor Ken Jackson, Dr. Joanne Dunstall, Julia Martyn and Andrew Wang
of the University of Toronto for their assistance.

References

1. Chen, C., et al.: Computing the real solutions of polynomial systems with the
regularchains library in maple. ACM Commun. Comput. Algebra 45(3/4), 166–
168 (2012)

2. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization
of the intersection of quadrics: I. The generic algorithm. J. Symb. Comput. 43(3),
168–191 (2008)

3. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization
of the intersection of quadrics: II. A classification of pencils. J. Symb. Comput.
43(3), 192–215 (2008)

mmonagan@cecm.sfu.ca

Exact Solutions of Intersections of Quadric Surfaces Using MAPLE 113

4. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization
of the intersection of quadrics: III. Parameterizing singular intersections. J. Symb.
Comput. 43(3), 216–232 (2008)

5. Fioravanti, M., Gonzalez-Vega, L., Necula, I.: Computing the intersection of two
ruled surfaces by using a new algebraic approach. J. Symb. Comput. 41(11), 1187–
1205 (2006)

6. Gerhard, J., Jeffrey, D.J., Moroz, G.: A package for solving parametric polynomial
systems. ACM Commun. Comput. Algebra 43(3/4), 61–72 (2010)

7. Lazard, D.: Quantifier elimination: optimal solution for two classical examples. J.
Symb. Comput. 5(1), 261–266 (1988)

8. Lazard, S., Peñanda, L.M., Petitjean, S.: Intersecting quadrics: an efficient and
exact implementation. Comput. Geom. 35(1), 74–99 (2006)

9. Levin, J.: A parametric algorithm for drawing pictures of solid objects composed
of quadric surfaces. Commun. ACM 19(10), 555–563 (1976)

10. Levin, J.Z.: Mathematical models for determining the intersections of quadric sur-
faces. Comput. Graph. Image Process. 11(1), 73–87 (1979)

11. Liang, S., Jeffrey, D.J.: An algorithm for computing the complete root classification
of a parametric polynomial. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006.
LNCS (LNAI), vol. 4120, pp. 116–130. Springer, Heidelberg (2006). https://doi.
org/10.1007/11856290 12

12. Maekawa, T.: Self-intersections of offsets of quadratic surfaces: Part II, implicit
surfaces. Eng. Comput. 14(1), 14–22 (1998)

13. Mourrain, B., Técourt, J.-P., Teillaud, M.: On the computation of an arrangement
of quadrics in 3D. Comput. Geom. 30(2), 145–164 (2005). Special Issue on the
19th European Workshop on Computational Geometry

14. Rees, E.L.: Graphical discussion of the roots of a quartic equation. Am. Math.
Mon. 29(2), 51–55 (1922)

15. Requicha, A.A.G., Voelcker, H.B.: Solid modeling: a historical summary and con-
temporary assessment. IEEE Comput. Graph. Appl. 2(2), 9–24 (1982)

16. Sarraga, R.F.: Algebraic methods for intersections of quadric surfaces in
GMSOLID. Comput. Vis. Graph. Image Process. 22(2), 222–238 (1983)

17. Schömer, E., Wolpert, N.: An exact and efficient approach for computing a cell in an
arrangement of quadrics. Comput. Geom. 33(1), 65–97 (2006). Robust Geometric
Applications and their Implementations

18. Wang, W., Goldman, R., Changhe, T.: Enhancing Levin’s method for computing
quadric-surface intersections. Comput. Aided Geom. Des. 20(7), 401–422 (2003)

19. Wang, W., Joe, B., Goldman, R.: Computing quadric surface intersections based
on an analysis of plane cubic curves. Graph. Models 64(6), 335–367 (2002)

20. Xia, B., Yang, L.: Automated Inequality Proving and Discovering. World Scientific,
Singapore (2016)

21. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a
class of inequality-type theorems. Sci. China Ser. F Inf. Sci. 44(1), 33–49 (2001)

22. Yang, L., Xia, B.: Quantifier elimination for quartics. In: Calmet, J., Ida, T., Wang,
D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 131–145. Springer, Heidelberg
(2006). https://doi.org/10.1007/11856290 13

23. Yang, L., Xia, B.: Deciding nonnegativity of polynomials by MAPLE (2013).
CoRR, abs/1306.4059

24. Ye, X., Maekawa, T.: Differential geometry of intersection curves of two surfaces.
Comput. Aided Geom. Des. 16(8), 767–788 (1999)

https://doi.org/10.1007/11856290_12
https://doi.org/10.1007/11856290_12
https://doi.org/10.1007/11856290_13

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space
of Biological Networks via a Numerical

Discriminant Approach

Heather A. Harrington1, Dhagash Mehta2, Helen M. Byrne1,
and Jonathan D. Hauenstein2(B)

1 Mathematical Institute, The University of Oxford, Oxford OX2 6GG, UK
{harrington,helen.byrne}@maths.ox.ac.uk

https://www.maths.ox.ac.uk/people/{heather.harrington,helen.byrne}
2 Department of Applied and Computational Mathematics and Statistics,

University of Notre Dame, Notre Dame, IN 46556, USA
{dmehta,hauenstein}@nd.edu

https://www.nd.edu/~{dmehta,jhauenst}

Abstract. Many systems in biology (as well as other physical and engi-
neering systems) can be described by systems of ordinary differential
equation containing large numbers of parameters. When studying the
dynamic behavior of these large, nonlinear systems, it is useful to iden-
tify and characterize the steady-state solutions as the model parameters
vary, a technically challenging problem in a high-dimensional parame-
ter landscape. Rather than simply determining the number and stabil-
ity of steady-states at distinct points in parameter space, we decom-
pose the parameter space into finitely many regions, the number and
structure of the steady-state solutions being consistent within each dis-
tinct region. From a computational algebraic viewpoint, the boundary of
these regions is contained in the discriminant locus. We develop global
and local numerical algorithms for constructing the discriminant locus
and classifying the parameter landscape. We showcase our numerical
approaches by applying them to molecular and cell-network models.

Keywords: Parameter landscape · Numerical algebraic geometry ·
Discriminant locus · Cellular networks

1 Introduction

The dynamic behavior of many biophysical systems can be mathematically mod-
eled with systems of differential equations that describe how the state variables
interact and evolve over time. The differential equations typically include param-
eters that represent physical processes such as kinetic rate constants, the strength
of cell-cell interactions, and external stimuli. The qualitative behavior of the state
variables may change as the parameters vary. Typically, determining and clas-
sifying all steady-state solutions of such nonlinear systems, as a function of the
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 114–131, 2020.
https://doi.org/10.1007/978-3-030-41258-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_9

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 115

parameters, is a difficult problem. However, when the equations are polynomial,
or can be translated into polynomials (e.g, rational functions), which is the case
for many biological systems (as well as other physical and engineering systems),
computing the steady-state solutions becomes a problem in computational alge-
braic geometry. Thus, it is possible to compute the regions of the parameter
space that give rise to different numbers of steady-state solutions.

1.1 Previous Work

Due to the ubiquity of such problems, many methods have been proposed for
identifying and characterizing steady-state solutions over a parameter space. A
standard approach to understand changes in qualitative behavior of differential
equations as a parameter is varied is to study bifurcations (singularities). Many
standard bifurcation techniques focus on local behavior in the phase space near
a structurally unstable object (e.g., fixed point) and the analysis is algebraic
by focusing on the normal form [20,22]. Numerical bifurcation techniques as
implemented in, for example, AUTO [15] and MATCONT [14], require an initial
starting point, use a root finding solver to find a fixed point, and then continue
along a branch (e.g., via arc-length continuation). However, these methods are
nearly all local in the phase space in that one “continues” (or “sweeps” [37]) from
a given initial point. Thus, studying a larger phase space requires sampling of
different initial conditions and parameter values. In recent years, computation of
bifurcation diagrams of disconnected branches, so-called deflation continuation
methods, have been developed [16], however, these do not guarantee finding all
solutions at a particular parameter value.

We take a geometric approach and do not restrict ourselves to a local area of
the phase space (e.g., no initial condition or guess) nor do we start our analysis
by solving (e.g., using Newton’s method) for a single fixed point. We focus on
where the discriminant vanishes – called the discriminant locus – in which roots
merge along the discriminant as a parameter varied. Recall that when solving
the equation ax2 + bx + c = 0, where a, b, and c are parameters, and x is the
variable, the discriminant locus defined by Δ := b2 − 4ac = 0 is the boundary
separating regions in which the two distinct solutions for x are real (Δ > 0) and
nonreal (Δ < 0). The discriminant locus, when arising from a system of ODEs,
is often called the bifurcation variety [1]. A parametrization of the discriminant
set (variety) can sometimes be computed explicitly, e.g., [8], but this is gener-
ally a difficult problem for systems with more than a handful of variables and
parameters. Moreover, most of these methods, even those that can systemati-
cally ‘globally’ divide the parameter plane are local in the sense of the phase
space [38]. Other symbolic methods are global in terms of phase space include
using a cylindrical algebraic decomposition [12] with related variants [9,32,46]
and computing the ideal of the discriminant locus using resultants or Gröbner
basis methods, e.g., see [13,18,34,42]. Unfortunately, each of these methods has
potential drawbacks due to their algorithmic complexity, symbolic expression
swell, and inherent sequential nature.

mmonagan@cecm.sfu.ca

116 H. A. Harrington et al.

By using homotopy continuation and, more generally, numerical algebraic
geometry (see [5,39,45]), all solutions over the complex numbers C to a system
of polynomial equations can be computed. In this sense, numerical algebraic
geometry permits the computation, with probability one, of all real steady-state
solutions over a chosen region of parameter space effectively capturing the global
behavior of the dynamical system and even detecting disconnected branches of
solutions. Such methods have been implemented in software packages including
Bertini [6], HOM4PS-3 [10], and PHCpack [43] with Paramtopy [3] extending
Bertini to study the solutions at many points in parameter space. Typically,
these methods work over C while the solutions of interest in biological models
are in a subset of the real numbers R, e.g., one is interested in steady-states in
the positive orthant where the variables are biologically meaningful.

1.2 Problem Setup

The general framework of problems under consideration are autonomous systems
of differential equations of the form

d

dt
x = f(x,p) (1)

where x = (x1, . . . , xN) denotes the state variables, p = (p1, . . . , ps) denotes the
system parameters, and f(x,p) is a system of N functions. For p ∈ R

s, since we
aim to compute the steady-state solutions to Eq. 1, which are x ∈ R

N such that
f(x,p) = 0. By using numerical algebraic geometry, we additionally require that
f(x,p) = 0 can be translated into solving polynomial equations, e.g., f(x,p)
consists of polynomial or rational functions. Moreover, we are particularly inter-
ested in the typical situation for biological networks where, for almost all p, the
system f(x,p) = 0 has finitely many distinct (isolated) solutions, all of which
are nonsingular, i.e., every eigenvalue of the Jacobian matrix Jxf(x,p) of f with
respect to the state variables is nonzero. Therefore, certified techniques are used
to distinguish between real and nonreal solutions [29].

We consider the parameter space P ⊂ R
s for Eq. 1 to consist of those param-

eter values p that are biologically meaningful, e.g., Rs or positive orthant in R
s.

The quantitative behavior of the steady-state solutions, that is, the number of
them, not necessarily the value of the steady-state, is constant on subregions
in P, e.g., the number of physically realistic steady-state solutions is the same
for all parameter values in a region. One can also refine the quantitative behav-
ior, by restricting, for example, to only positive steady-state solutions that are
locally stable. The points forming the boundaries of these regions are called
critical points and collectively form the discriminant locus, which is called the
minimal discriminant variety in [32]. The discriminant locus is contained in a
hypersurface in P.

Suppose that p ∈ P is such that f(x,p) = 0 is in the interior of a subregion in
the complement of the discriminant locus. The implicit function theorem yields
that the solutions can be extended to an open neighborhood containing p. One

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 117

Algorithm 1. Perturbed sweeping
Input: Parameterized equations f (x, p) = 0 which can be translated into solving polynomial

equations with parameter space P ⊂ R, perturbation ε ∈ R \ {0}, and description of
the discriminant Δ associated with quantitative behavior of interest.

Output: Description of the intervals in the parameter space P with the same quantitative
behavior.

Randomly select p∗ ∈ P and compute the solution set S ⊂ C
N of f (x, p∗ + ε

√−1) = 0.
Track each smooth solution path parameterized by p ∈ P defined by f (x, p + ε

√−1) = 0
with start points S at p = p∗.

Use the solution paths to approximate all values of p ∈ P where a solution path becomes
ill-conditioned and refine, e.g., using [21, 23], to identify the critical points C ⊂ P where
the quantitative behavior of interest changes.

Return the set of intervals of P whose endpoints are consecutive points in C.

can keep increasing the size of this neighborhood in the parameter space until
it touches the discriminant locus.

1.3 Contribution and Organization of Paper

In Sect. 2, we present a numerical discriminant locus method for decomposing the
parameter space into distinct solution regions effectively stratifying the parame-
ter space. We propose three methods for decomposing the parameter space that
build upon advances in real numerical algebraic geometry. A schematic is given
in Fig. 1. The first (Algorithm 1) is for one-dimensional parameter spaces in
which case the discriminant locus consists of finitely many points. We enhance
sweeping approaches such as [27,37] with a perturbation and use all solutions
simultaneously to locate the finitely many regions, which are open intervals in
this case, where the number of steady-state solutions is consistent. The second
(Algorithm 2) is for low-dimensional parameter spaces and provides a complete
decomposition of the parameter space into finitely many regions after decom-
posing the discriminant locus. Since computing and decomposing the discrimi-
nant locus may be impractical for high-dimensional parameter spaces, our third
method (Algorithm 3) uses the sweeping approach to compute a local decompo-
sition of the parameter space near a given point in the parameter space. When
decomposing a high-dimensional parameter space is desirable, one could boot-
strap together local analyses to generate a more complete, or global, view of the
parameter space.

In Sect. 3, we apply these algorithms to two biological models. The first is a
detailed ODE model involving rational functions of gene and protein signaling
network that induces long-term memory proposed in [36]. We demonstrate our
method goes beyond singularity theory results in [40]. The second is a new
network model of cell fate specification in a population of interacting stem cells
where the algorithms provide insight into the qualitative behaviors that the
model can exhibit.

The paper concludes in Sect. 4.

mmonagan@cecm.sfu.ca

118 H. A. Harrington et al.

A B

Dimension of parameter space?

HighOne Low

f(x, p) = 0

Perturbed
sweeping

Global region
decomposition

Local region
decomposition

C

f(x, a) = x2 + ax+
a

4

Perturbed
sweeping

Local region
decomposition

Global region
decomposition

x

a
-3 0 3

4

0

-3

Two real sol’ns

Singularities

Perturb parameter a

1

a

Re
(x

) 4

0

-3
0.4

-0.4
0

-3 0 31Im(x)

f(x, a, b) = x2 + ax+
b

4

3-3 0
-1

3

0

a

b

0
real

solns 2
neg

solns

2
pos
solns

1 pos, 1 neg soln

Ex: Molecular
network model

Ex: Stem cell
network model

Fig. 1. Flow chart of methods. (A) Perturbed sweeping. (B) Global method for decom-
posing (a, b) parameter space into regions based on number of real steady-states. (C)
Local method for high dimensional parameter space analysis.

Algorithm 2. Global decomposition of 2-dimensional parameter space
Input: Parameterized equations f (x, p) = 0 which can be translated into solving

polynomial equations, parameter space P ⊂ R
2, and description of the discriminant

Δ associated with quantitative behavior of interest.
Output: Description of regions in the parameter space P with the same quantitative

behavior.
Randomly select α ∈ R

2 and μ∗ ∈ R, and compute the simultaneous solution set
S ⊂ C

N × C
2 of f (x, p) = 0, α · p = μ∗, and the discriminant locus Δ = 0.

Use isosingular deflation [30] as needed to permit tracking on the discriminant locus
intersected with the line α · p = μ parameterized by μ.

Apply perturbed sweeping where μ ∈ R is the parameter to compute the critical points
C ⊂ R of the discriminant locus intersected with the line α · p = μ.

If P has a boundary, append to C the values of α · p such that p lies at the intersection of
the discriminant locus and the boundary of P.

Between two consecutive values in C, say μ1 < μ2, pick μ = (μ1 + μ2)/2 and use perturbed
sweeping to compute a decomposition into intervals along the line α · p = μ inside of P.
Connect the boundaries of these intervals to the endpoints μ1 and μ2 to create a region
decomposition between critical points. Optionally, merge regions across slices α · p = μj

for j = 1, 2 which have the same quantitative behavior.
Return the regions of P.

2 Decomposition Using Numerical Algebraic Geometry

This section reviews the required ingredients from numerical algebraic geom-
etry with expanded details provided in, e.g., [5,39,45]. Traditionally, symbolic
approaches such as [12,32] describe the regions using both equations that vanish
on the discriminant locus and inequalities, e.g., see [24,26,31,35] for applications

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 119

Algorithm 3. Local decomposition of parameter space
Input: Parameterized equations f (x, p) = 0 which can be translated into solving

polynomial equations, parameter space P ⊂ R
s, description of the discriminant Δ

associated with quantitative behavior of interest, and point p∗ ∈ P that is not
contained in the discriminant locus.

Output: Description of some regions of the parameter space P with the same quantitative
behavior.

Randomly select a direction α∗ ∈ R
s and apply perturbed sweeping to the system

f (x, p∗ + μα∗) = 0 parameterized by μ.
Use isosingular deflation [30] as needed to permit tracking on the discriminant locus

intersected with the linear space parameterized by p∗ + μα as α varies.
Apply path tracking to vary α to trace out boundaries of regions inside of P with the same

quantitative behavior.
Return the regions of P whose boundaries were traced out.

to biology. The key observation from numerical algebraic geometry is to replace
computing equations and inequalities with geometric descriptions as described
below. We can use numerical algebraic geometry techniques presented in Sect. 2.4
to compute every point in the intersection of a line with the discriminant locus
and then compute the boundary of the region. Finding sample points in the
interior of the regions (which is not on the discriminant locus) has been sug-
gested, e.g., [2,7,33,34]. Isosingular deflation developed in [30] allows one to
construct a system for tracking along the discriminant locus thereby tracing out
the corresponding boundary. Adaptive multiprecision path tracking [4] is used to
ensure reliable numerical computations, especially near the discriminant locus.
The computations described in Sect. 3 adaptively changed between double, 64-
bit, and 96-bit precision.

2.1 Computing All Solutions

From algebraic geometry, a parameterized system of equations f(x,p) = 0 which
are polynomial or can be translated into polynomials has a generic behavior for
parameters p over the complex numbers. For example, the number of distinct
solutions of f(x,p) = 0 for almost all p ∈ C

s are equal. Therefore, a random
choice of p ∈ C

s, say p∗, will have the generic behavior with probability one. Clas-
sical homotopy continuation, e.g., see [5,39], permits one to compute all distinct
solutions of f(x,p∗) = 0. One can then continue the solutions of f(x,p∗) = 0
via a parameter homotopy to solve f(x,p) = 0 for any other parameter value p.
This improves computational efficiency since solving at other parameter values
is typically much faster than the ab initio solving of f(x,p∗) = 0.

2.2 Perturbed Sweeping

For one-dimensional parameter spaces, i.e., s = 1, the discriminant locus consists
of at most finitely many points. Thus, the parameter p parameterizes solutions
paths x(p) defined by f(x(p), p) = 0 which can be tracked. In particular, one
can sweep [27,37] as p varies and locate all values of p where a solution path is

mmonagan@cecm.sfu.ca

120 H. A. Harrington et al.

not smooth, i.e., where Jxf(x(p), p) has a zero eigenvalue. Since each solution
path x(p) satisfies

dx

dp
= −Jxf(x, p)−1 · Jpf(x, p), (2)

numerical ill-conditioning will occur near the discriminant locus. In fact, Eq. 2
will become stiff since Jxf(x, p) is not invertible on the discriminant locus.

Rather than attempting to track through the discriminant locus, we propose
a perturbed sweeping approach that guarantees smoothness of the path for easier
tracking while still observing some ill-conditioning for identifying the discrimi-
nant locus. An example of this is shown in Fig. 2 in Sect. 2.5.

Theorem 1. For i =
√−1 and ε ∈ R, we consider the perturbed solution paths

xε(p) defined by f(xε(p), p + εi) = 0. With the setup described above, for all but
finitely many ε ∈ R, all perturbed solution curves are smooth.

Proof. Since there are only finitely many points in the discriminant locus over
the complex numbers, there can be only finitely many values of ε ∈ R such that
there exists δ ∈ R with δ + εi in the discriminant locus.

Since xε(p) → x(p) as ε → 0, we can recover information about the actual
solution curves by monitoring the condition number as in [27] with the distinct
numerical advantage of tracking smooth solution curves. If further refinement is
needed, additional efficient local computations can be employed, e.g., [21,23].

2.3 Global Region Decomposition

We now build upon the perturbed sweeping approach to decompose parame-
ter spaces which are not one-dimensional. This approach, called a global region
decomposition, is applicable for low-dimensional parameter spaces which mixes
projections, critical sets, and perturbed sweeping. For illustration, we start in the
two-dimensional case, i.e., s = 2, for which the discriminant locus is contained
in a curve. Given α ∈ R

2 and μ ∈ R, we consider intersecting the discriminant
locus with the line πα (p) := α ·p = μ. For almost all choices of (α, μ) ∈ R

2 ×R,
i.e., with probability one for randomly selected (α, μ) ∈ R

2 × R, there are at
most finitely many values of p such that the line πα (p) = μ intersects the dis-
criminant locus. Hence, we can use the perturbed sweeping approach along this
line to compute these values. For example, an initial plot of the global region
decomposition can be made by simply selecting various values of α and μ and
plotting the various regions along the various lines πα (p) = μ.

To create a complete global region decomposition, we follow a modification
of [33]. First, we compute all p ∈ C

2 such that the line defined by πα (p) = μ
intersects the discriminant locus via homotopy continuation. We solve in C

2 here
since the number of real intersection points need not be constant whereas the
complex numbers ensures that we will locate every real component. One then
uses isosingular deflation [30] as needed to construct a system which permits
the tracking along the discriminant locus intersected with the line πα (p) = μ.

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 121

Perturbed sweeping viewing μ as a parameter moves the line in parallel sweeping
out the entire plane yielding critical points of the discriminant locus with respect
to μ. Hence, if μ1 < μ2 are two consecutive critical points, we know that the
topology of the global region decomposition along the line πα (p) = μ for μ ∈
(μ1, μ2) is equivalent, e.g., same number of intervals which connect up to form
regions. Hence, one simply connects the regions across the critical points to form
the global regions. An example of this is presented below in Sect. 2.5.

For higher-dimensional spaces, a global region decomposition is computed by
applying global region decomposition to smaller-dimensional spaces. For exam-
ple, one can compute a global region decomposition on a plane inside of a high-
dimensional parameter space using the two-dimensional method described above.
By selecting various planes, one obtains an initial plot of the global region decom-
position. To have a complete picture, one can utilize projections into lower-
dimensional spaces computing critical sets of the discriminant locus to locate
all areas where the quantitative behavior can change. For example, in the three-
dimensional case, s = 3, with linear map πα ,β (p) = (α·p,β ·p) where α,β ∈ R

3,
one first considers the parameter space of μ ∈ R

2 where πα ,β (p) = μ. By com-
puting a global region decomposition for μ ∈ R

2 with respect to the critical
curve of the original discriminant locus, one can then stitch together a global
region decomposition in the original three-dimensional space as follows. Upon
fixing μ ∈ R

2 inside of a region, one obtains a curve in the original three-
dimensional parameter space where the finitely many points on the discriminant
locus can be found using perturbed sweeping. Then, applying isosingular defla-
tion [30] as needed permits the tracking of the original discriminant locus as one
moves μ ∈ R

2 inside of its corresponding region to connect neighboring regions
at the critical points.

2.4 Local Region Decomposition

Since a global region decomposition is not practical for high-dimensional param-
eter spaces, we propose a local region decomposition method by combining per-
turbed sweeping with the classical approach of ray tracing, e.g., see [19]. Given
a point p ∈ P not contained in the discriminant locus, which happens for a
random point with probability one, the codimension-one components of the dis-
criminant locus can be obtained by using the perturbed sweeping approach along
lines emanating from p, say in the direction α, yielding the real values of μ for
which the corresponding line parameterized by p + μα intersects the discrimi-
nant locus. As above, once points on the discriminant locus are found, applying
isosingular deflation [30] as needed permits the tracking along the discriminant
locus tracing the region boundaries as one changes α.

This method is local in the sense that one is only tracing along the real points
obtained by the intersection of the codimension one components of the discrim-
inant locus with the line parameterized by p + μα. As mentioned in Sect. 2.3,
the number of such real points can change as one changes α. To overcome this,
one could first compute all such complex intersection points and track all of
the corresponding paths as one changes α. Thus, one can be sure to obtain all

mmonagan@cecm.sfu.ca

122 H. A. Harrington et al.

real points of intersection along any other direction emanating from p. Even
though lower-dimensional boundaries of the regions could be missed with such
an approach, it avoids the expense of computing critical points of projections.
Nonetheless, local decompositions starting from various p with various α can
provide a reasonable plot of the main features of a global decomposition of the
parameter space.

2.5 Quadratic Example

To illustrate the perturbed sweeping and global region decomposition approach,
we consider two examples of a parameterized quadratic equation. The first has
one parameter, namely f(x, a) = x2 + ax + a/4. The classical discriminant for
quadratic polynomials yields Δ = a2 − a with discriminant locus {0, 1}. In
particular, f = 0 has two distinct real solutions when a < 0 or a > 1, two
distinct complex (i.e., nonreal) solutions when 0 < a < 1, and a multiplicity 2
real solution when a = 0 or a = 1. The perturbed sweeping method avoids
tracking through the the singularities to have two smooth paths xε(a) defined
by f(xε(a), a+εi) = 0 for any ε ∈ R\{0} and a ∈ R. For example, with ε = 10−6,
we sweep along the smooth xε(a) and observe the expected solution behavior as
shown in Fig. 1A where the number of real solutions changes at the singularities
a = 0 and a = 1, which are clearly observed in Fig. 2.

Fig. 2. Illustration of using perturbed sweeping to locate singularities at a = 0, 1.

The second example is f(x, a, b) = x2 + ax + b/4 which has two parameters
and is shown in Fig. 1B. We aim to decompose the parameter space where the
quantitative behavior of interest is the number of real and positive solutions,
which is typical in biological problems. The discriminant locus for this situa-
tion corresponds with the closure of (a, b) such that there exists x such that
f(x, a, b) = 0 and x(2x + a) = 0. In particular, the corresponding discriminant
locus consists of two irreducible curves, defined by b = 0 and a2 = b, which cut
the parameter space (a, b) ∈ R

2 into four regions where the number of real, pos-
itive, and negative solutions are constant on these regions as shown in Fig. 1B.
The following describes the essence of computing a global region decomposition.

Consider taking α = (1, 0) so that πα (a, b) = a. Fixing, say, μ∗ = 0.5, we
use perturbed sweeping along the line defined by πα (a, b) = a = μ∗ = 0.5. This

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 123

locates the two real points on the discriminant locus, namely b = 0 and b = 0.25.
We do not need to apply isosingular deflation since both are nonsingular solutions
with respect to the discriminant system f(x, a, b) = 0 and x(2x + a) = 0.

Next, we use perturbed sweeping with these two solutions parameterized
by μ starting at μ∗ = 0.5 to locate critical points of the discriminant locus. This
locates the critical point of the discriminant locus when πα (a, b) = a = μ = 0.

Finally, we simply need to put everything together. At the critical point of
the discriminant locus at a = 0, there are two regions in terms of b, namely b < 0
and b > 0. For any a < 0 or a > 0, there are three regions in terms of b, namely
b < 0, 0 < b < a2, and b > a2. Hence, can merge together the regions b < 0 and
b > a2 for a < 0 and a > 0 at the critical point a = 0. Therefore, this yields a
global region decomposition consisting of 4 distinct regions shown in Fig. 1B.

3 Results from Biological Models

We showcase our methods by applying them to two biological models. First, we
analyze a detailed ODE model of the gene and protein signaling network that
induces long-term memory proposed by Pettigrew et al. [36]. We demonstrate
that our method can be applied to rational functions and reproduce known
bifurcation results. Moreover, we find an additional, disconnected branch solu-
tion using our method. The second model is a network of cell fate specification in
a population of interacting stem cells with complicated dynamics. Since cellular
decision making often depends on the number of accessible (stable) steady-states
that a system exhibits, we seek to identify distinct regions of parameter space
that can elicit different system behavior.

3.1 Molecular Network Model

A gene and protein network for long-term memory was proposed by Petti-
grew et al. [36] and investigated using bifurcation and singularity analysis by
Song et al. [40]. The model is of the form of Eq. 1 where f consists of 15 rational
functions, x ∈ R

15 is the vector of model variables, and p ∈ R
40 is the vector of

parameters. The following summarizes the structure of the 15 rational functions:

numerator degree denominator degree number of functions in f

1 0 2
2 0 2
2 1 1
3 1 4
3 2 2
4 2 3
5 4 1

For a random choice of parameters p, the system of equations f(x,p) = 0 has
432 isolated nonsingular solutions.

We demonstrate that our discriminant method can (1) reproduce their results
as a proof-of-principle, (2) handle rational functions, and (3) we find an addi-
tional solution branch not previously located. For this system, the denominators
do not vanish near the regions of interest so they do not have any impact on

mmonagan@cecm.sfu.ca

124 H. A. Harrington et al.

the behavior of the solutions. If the denominator also vanished when finding a
solution to the system of equations from the numerators, then the parameter
values for which this occurs would be added into the discriminant locus.

We fix the model parameters using the values from [40]. This leaves two
parameters to investigate, namely λ which represents the extracellular stimu-
lus [5-HT] and kApSyn. The variable of biological interest required for long-
term facilitation is the steady-state of protein kinase A (PKA) in response to
the extracellular stimulus parameter λ. Our aim is to demonstrate the perturbed
sweeping method on a large model to reproduce results from Fig. 5 of [40]. In
particular, we verify all of their solution branches but also find another solution
not reported, which is the top branch shown in Fig. 3. This demonstrates the
power of this method to ensure all real solutions are computed. On inspection,
this additional steady-state is not on the same branch, but is not biologically
feasible so we can reject it as nonphysical. However, by using such an exhaustive
first step, we can identify all steady-states, and then systematically characterize
and check each solution.

A B

C D

0 0
0

0

4.5

4.5

0.6 0.3

0.3 0.3

PK
A

 a
ct

iv
ity

PK
A

 a
ct

iv
ity

λ λ

00

Fig. 3. Results of perturbed sweeping method applied to molecular network model of
long-term memory that plots the behavior of protein kinase A (PKA) in response to
changes in λ, which is the extracellular stimulus [5-HT], for elected values of kApSyn
as in [40, Fig. 5]. Solid lines denote a stable steady-state while dashed lines denote an
unstable steady-state. (A) Parameter kApSyn = 0.0022. (B) Parameter kApSyn =

0.015. (C) Parameter kApSyn = 0.03. (D) Parameter kApSyn = 0.1.

3.2 Cellular Network Model

Most multicellular organisms emerge from a small number of stem-like cells
which become increasingly specialized as they proliferate until they transition
to one of a finite number of differentiated states [11]. We propose a caricature
model of cell fate specification for a ring of cells, and investigate how cell-cell
interactions, mediated by diffusive exchange of a key growth factor, may affect
the number of (stable) configurations or patterns that the differentiated cells may
adopt. The model serves as a good test case for these discriminant locus methods

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 125

since, by construction, there is an upper bound on the number of feasible steady-
states (2N stable solutions for a ring of N cells) and some of these patterns are
equivalent due to symmetries inherent in the governing equations.

We consider a ring of N interacting cells and denote by xi(t) ≥ 0 the con-
centration within cell i of a growth factor or protein (e.g., notch), whose value
determines that cell’s differentiation status [17,25,41,44,47]. For 0 < ε < a < 1,
the subcellular dynamics of xi are represented by a phenomenological function
q(xi) = (x − ε)(x − a)(1 − x). This function guarantees bistability of each cell
in the absence of cell-cell communication. The bistability represents two distinct
cell fates, e.g., high and low levels of notch, which may be associated with differ-
entiation of intestinal epithelial cells into secretory and absorptive phenotypes
[11,17,41]. We assume further that cell i communicates with its nearest neigh-
bors (cells i ± 1) via diffusive exchange of xi and denote by a parameter g ≥ 0
that describes the coupling strength. Thus, our cell-network model is

dxi

dt
= q(xi) + g ·

i+1∑

j=i−1

(xj − xi), for all i = 1, . . . , N. (3)

This model assumes uniform coupling g for all nearest neighbors as well as
periodic boundary conditions (xN+1 ≡ x1 and x0 ≡ xN), as shown in Fig. 4A.

We analyze the model by using the global region decomposition method
for N = 3, 4, 5 cells and construct classification diagrams in (a, g) parameter
space (Fig. 4B). In addition to decomposing the parameter space into regions
based on the number of steady-state solutions, the method also provides valuable
information about how solution structure and stability changes as the system
parameters vary. For example, in Fig. 4C for the N = 3 cell-network, we show
how the values and stability of the steady-states for (x1, x2, x3) change as a
varies with g = 0.025 and as g varies with a = 0.4 where ε = 0.01. In Fig. 4D, we
plot bifurcation diagrams as a and g vary as before for the N = 4 cell-network.
In this plot, instead of presenting particular components xi (i = 1, 2, 3, 4), we
plot the 2-norm (‖x‖2 = (x2

1 + x2
2 + x2

3 + x2
4)

1/2) to capture the multiplicity of
solutions. We note that for N = 3 and N = 4 there are always two stable and
one unstable steady-states, independent of (a, g) parameter values (as shown by
the black and red points in Fig. 4C, and by the solid blue lines in Fig. 4D).

For N = 4, the classical discriminant locus for this model can be shown to
have degree 72 using homotopy continuation. That is, there is a degree 72 polyno-
mial Δ(a, g) such that the classical discriminant locus is defined by Δ = 0. Even
though we were unable to compute this polynomial explicitly, the advantage
of using numerical algebraic geometry, as first described in [28], is that com-
putations can be performed on this discriminant locus without having explicit
defining equations. In particular, with a = 0.4 as in Fig. 4D, the univariate poly-
nomial equation Δ(0.4, g) = 0 has 45 complex solutions, 25 of which are real.
Of these 25 real solutions, 15 are positive with only 4 of them corresponding to
where change in the number of stable steady-state solutions occur. The regions
(intervals) for g ≥ 0 when a = 0.4 are approximately:

mmonagan@cecm.sfu.ca

126 H. A. Harrington et al.

0 0.5 1

0.1

0
a

gg

xN

x1

x2x3

x4

g

g

g g

0 0.5 1
a

0 0.5 1
a

Three cells Four cells Five cells
0.1

0

g 6
8

2
5
8

0.1

0

g 7
12

10
12

17
22

32

x1
x2

x3

0 1

1

0
0
1

a
0 1

x1
x2

x3

0 1

1

0

0
1

g
0 .08

Steady state solutions as a and g vary

g0 .08 .12.04

#solns. #solns.#solns.

multiplicity
of solns

8

2

a
0

0
.5 1

2

1

||x||

A Bi Bii Biii

C D

Fig. 4. Global region decomposition applied to coupled cell-network model. (A) Ring
of cell-network. Each cell xi has bistable dynamics at stable states at 0 and 1, and
unstable state given by a. The cells are coupled to neighbour cells by a coupling strength
parameter g. (B) Region decomposition with parameters a, g, similar to a classification
diagram, with the number of real stable steady-stages denoted by different colors. The
number of stable real steady-states is given for each network where N = 3, 4, and 5. (C)
Steady-state values in state space for N = 3 cell-network are plotted as parameter a is
varied between [ε, 1] or g is varied. The two black dots are stable steady-states, the red
is an unstable steady-state, these steady-states are independent of parameter values
a and g. (D) Bifurcation diagram showing ‖x‖2 as the parameters are varied. (Color
figure online)

region # stable steady-state solns
[0, 0.0197) 16

(0.0197, 0.0206) 12
(0.0206, 0.0411) 10
(0.0411, 0.0533) 6

(0.0533, ∞) 2

We now interpret the results in the context of cell-cell communication. We
notice that intermediate values of a generate the largest number of real stable
steady-states; small and high values of a yield fewer real stable steady-states.
Interestingly, all cells synchronize for intermediate to strong values of the cou-
pling parameter g (two stable states in blue region in Fig. 4B). We conclude that
strong cell-cell communication reduces the number of stable steady-state config-
urations that a population of cells can adopt and, thus, cell-cell communication
could be used robustly to drive the cells to a small number of specific states.
When coupling is weak (0 < g < 0.1), the interacting cells have more flexibility
in terms of their final states, with the 5-cell network admitting up to 32 stable
steady-states (Fig. 4B(iii)). Weaker cell-cell communication allows more patterns
to emerge and may be appropriate when it is less important that neighboring
cells share the same phenotype. We find that the regions of (a, g) parameter
space that give rise to more than two (synchronized) steady-states also increase
in size as the number of cells increases.

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 127

3.3 Chain of Cells

We next consider a chain of cells rather than a ring. We demonstrate the ability
of the local region decomposition method to analyze a generalization of Eq. 3
in which the coupling strength between two cells is not constant. For this cari-
cature stem-cell model, we have classified the number of stable steady-states as
the cell-cell coupling parameters are varied, and this increases the dimension of
the parameter space. Visualization of the decomposition of higher dimensional
parameter spaces is difficult, therefore we created a movie which we describe
below. This movie along with code dependent on Bertini [6] and Matlab used to
generate it is available at the repository http://dx.doi.org/10.7274/R0P848V0.

To that end, we consider a generalization of the model given in Eq. 3 which
uses coupling strengths gi,i+1 = gi+1,i ≥ 0 between cell i and i + 1 with cyclic
ordering (N + 1 ≡ 1), namely

dxi

dt
= q(xi) +

i+1∑

j=i−1

gi,j · (xj − xi), for all i = 1, . . . , N. (4)

With N = 4, the classical discriminant locus for this generalized model has
degree 486. We consider the case with ε = 0.01, a = 0.4, and g4,1 = g1,4 = 0
leaving three free parameters: g1,2, g2,3, and g3,4.

First, we consider the perturbed sweeping approach along the ray defined by
gi,i+1 = i · μ for i = 1, 2, 3 and μ ≥ 0. This decomposes the space μ ≥ 0 into 15
regions, approximately

regions # stable steady-state solns
[0, 0.0079) 16

(0.0079, 0.0080) 15
(0.0080, 0.0132) 14
(0.0132, 0.0136) 13
(0.0136, 0.0137) 12
(0.0137, 0.0142) 11
(0.0142, 0.0153) 10
(0.0153, 0.0161) 9
(0.0161, 0.0171) 8
(0.0171, 0.0237) 7
(0.0237, 0.0352 6
(0.0352, 0.0360) 5
(0.0360, 0.0407) 4
(0.0407, 0.1264) 3

(0.1264, ∞) 2

As a comparison, the classical discriminant with respect to μ ∈ C consists of 312
distinct points of which 84 are real. Of these, 42 are positive with 14 correspond-
ing to a change in the number stable steady-state solutions.

Next, we vary g1,2 and g3,4 for a fixed g2,3 (see Fig. 5). As this is a chain of
cells, we observe a natural symmetry as g1,2 and g3,4 vary for fixed values of g2,3.
Additionally, as the strength of the cell-cell coupling is increased, the number of
stable steady-states decreases monotonically from a maximum value of 16 when
coupling is weak down to the minimum value of 2 when coupling is strong where
the rate of decline depending on the choice of parameter values.

Finally, we determine how the how the number of stable steady-state solu-
tions change as we move through the three-dimensional parameter using a movie.
Each frame of the movie is based on a fixed value of g1,2 and shows the decom-
position of the plane involving g2,3 and g3,4. Figure 6 contains four frames from

http://dx.doi.org/10.7274/R0P848V0

mmonagan@cecm.sfu.ca

128 H. A. Harrington et al.

Fig. 5. Frame showing how, when N = 4 and g2,3 = 0.025, the number of stable
steady-state solutions for Eq. 4 changes as g1,2 and g3,4 vary.

this movie. In particular, as the coupling g1,2 increases, the maximum number
of stable steady-states decreases (from 16 when g1,2 = 0 to 8 when g1,2 = 0.1).
We note that when g1,2 > 0, the frames in the parameter space (g2,3, g3,4) are
no longer symmetric. We note also the appearance of regions of parameter space
in which, for fixed values of g1,2, the number of stable steady-states no longer
decreases monotonically with g2,3 or g3,4. These results, which would not easily
be accessible using standard analytical tools, highlight the rich structure of the
cell-network model and the power of the local region decomposition method for
identifying these solutions.

Fig. 6. Series of frames showing how, for fixed values of the parameter g1,2 = 0.0,
0.0325, 0.0675, 0.1 and N = 4, the number of stable steady-state solutions for Eq. 4
changes as g2,3 and g3,4 are varied.

4 Conclusion

We have presented a suite of numerical algebraic geometric methods for decom-
posing the parameter space associated with a dynamical system into distinct
regions based on the multiplicity and stability of its steady-state solutions. The

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 129

methods enable us to understand the parameter landscape of high-dimensional,
ordinary differential models with large numbers of parameters. These methods
have considerable potential: they could be used to analyze differential equation
models associated with a wide range of real-world problems in biology, science,
and engineering which cannot easily be tackled with existing approaches.

We have demonstrated that coupling the dynamics of cells, which individually
exhibit bistable internal dynamics, can increase markedly the number of real
stable steady-states that population exhibits. We considered different network
topologies (rings and chains of cells) as well as heterogeneity of cell-cell coupling
strengths using the local region decomposition. This methodology may help us
to understand how stem cells within the intestinal crypt are able to generate
differentiated cells with an array of absorptive and secretory phenotypes, just
by considering the interaction of the cells as a network.

Acknowledgement. We thank J. Byrne and G. Moroz for helpful discussions. JDH
was supported in part by NSF ACI 1460032 and CCF 1812746, Sloan Research Fellow-
ship, and Army Young Investigator Program (YIP). HAH acknowledges funding from
EPSRC Fellowship EP/K041096/1, Royal Society University Research Fellowship, and
AMS Simons Travel Grant.

References

1. Arnol’d, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity theory
II classification and applications. In: Arnol’d, V.I. (ed.) Dynamical Systems VIII.
Encyclopaedia of Mathematical Sciences, vol. 39, pp. 1–235. Springer, Heidelberg
(1993). https://doi.org/10.1007/978-3-662-06798-7 1

2. Bates, D.J., Brake, D.A., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: On
computing a cell decomposition of a real surface containing infinitely many singu-
larities. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 246–252.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 39

3. Bates, D.J., Brake, D.A., Niemerg, M.E.: Paramotopy: parameter homotopies in
parallel (2015). http://paramotopy.com/

4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multi-
precision pathtracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)

5. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solv-
ing Polynomial Systems with Bertini, vol. 25. SIAM, Philadelphia (2013)

6. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler II, C.W.: Software for
numerical algebraic geometry: a paradigm and progress towards its implementa-
tion. In: Stillman, M., Verschelde, J., Takayama, N. (eds.) Software for Algebraic
Geometry, vol. 148, pp. 1–14. Springer, New York (2008). https://doi.org/10.1007/
978-0-387-78133-4 1

7. Besana, G.M., Di Rocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.:
Cell decomposition of almost smooth real algebraic surfaces. Numer. Algorithms
63(4), 645–678 (2013)

8. Broer, H.W., Golubitsky, M., Vegter, G.: The geometry of resonance tongues: a
singularity theory approach. Nonlinearity 16(4), 1511–1538 (2003)

9. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)

https://doi.org/10.1007/978-3-662-06798-7_1
https://doi.org/10.1007/978-3-662-44199-2_39
http://paramotopy.com/
https://doi.org/10.1007/978-0-387-78133-4_1
https://doi.org/10.1007/978-0-387-78133-4_1

mmonagan@cecm.sfu.ca

130 H. A. Harrington et al.

10. Chen, T., Lee, T.-L., Li, T.-Y.: Hom4PS-3: a parallel numerical solver for systems
of polynomial equations based on polyhedral homotopy continuation methods. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 183–190. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 30

11. Clevers, H.: Stem Cells. What is an adult stem cell? Science 350(6266), 1319–1320
(2015)

12. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

13. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in
Mathematics, vol. 185, 2nd edn. Springer, New York (2005). https://doi.org/10.
1007/b138611

14. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a Matlab package for
numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2),
141–164 (2003)

15. Doedel, E.J.: AUTO: a program for the automatic bifurcation analysis of
autonomous systems. Congr. Numer 30, 265–284 (1981)

16. Farrell, P.E., Beentjes, C.H.L., Birkisson, A.: The computation of disconnected
bifurcation diagrams (2016). arXiv:1603.00809

17. Fre, S., Huyghe, M., Mourikis, P., Robine, S., Louvard, D., Artavanis-Tsakonas, S.:
Notch signals control the fate of immature progenitor cells in the intestine. Nature
435(7044), 964–968 (2005)

18. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants,
and Multidimensional Determinants. Mathematics: Theory & Applications.
Birkhäuser, Boston (1994). https://doi.org/10.1007/978-0-8176-4771-1

19. Glassner, A.S. (ed.): An Introduction to Ray Tracing. Academic Press Ltd., London
(1989)

20. Glendinning, P.: Stability, Instability and Chaos: An Introduction to the Theory of
Nonlinear Differential Equations. Cambridge University Press, Cambridge (1994)

21. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory,
Volume I. Applied Mathematical Sciences, vol. 51. Springer, New York (1985).
https://doi.org/10.1007/978-1-4612-5034-0

22. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurca-
tion Theory, Volume II. Applied Mathematical Sciences, vol. 69. Springer, New
York (1988). https://doi.org/10.1007/978-1-4612-4574-2

23. Griffin, Z.A., Hauenstein, J.D.: Real solutions to systems of polynomial equations
and parameter continuation. Adv. Geom. 15(2), 173–187 (2015)

24. Gross, E., Harrington, H.A., Rosen, Z., Sturmfels, B.: Algebraic systems biology:
a case study for the Wnt pathway. Bull. Math. Biol. 78(1), 21–51 (2016)

25. Grün, D., et al.: Single-cell messenger RNA sequencing reveals rare intestinal cell
types. Nature 525(7568), 251–255 (2015)

26. Hanan, W., Mehta, D., Moroz, G., Pouryahya, S.: Stability and bifurcation analysis
of coupled Fitzhugh-Nagumo oscillators. Extended Abstract Published in the Joint
Conference of ASCM 2009 and MACIS 2009, Japan (2009). arXiv:1001.5420 (2010)

27. Hao, W., Hauenstein, J.D., Hu, B., Sommese, A.J.: A three-dimensional steady-
state tumor system. Appl. Math. Comput. 218(6), 2661–2669 (2011)

28. Hauenstein, J.D., Sommese, A.J.: Witness sets of projections. Appl. Math. Com-
put. 217(7), 3349–3354 (2010)

29. Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to
polynomial systems. ACM Trans. Math. Softw. 38(4), 28 (2012)

https://doi.org/10.1007/978-3-662-44199-2_30
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/b138611
https://doi.org/10.1007/b138611
http://arxiv.org/abs/1603.00809
https://doi.org/10.1007/978-0-8176-4771-1
https://doi.org/10.1007/978-1-4612-5034-0
https://doi.org/10.1007/978-1-4612-4574-2
http://arxiv.org/abs/1001.5420

mmonagan@cecm.sfu.ca

Decomposing the Parameter Space 131

30. Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comput.
Math. 13(3), 371–403 (2013)

31. Hernandez-Vargas, E.A., Mehta, D., Middleton, R.H.: Towards modeling HIV long
term behavior. IFAC Proc. Vol. 44(1), 581–586 (2011)

32. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Com-
put. 42(6), 636–667 (2007)

33. Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of
a complex curve. Contemp. Math. 448, 183–205 (2007). Algebra, Geometry and
Their Interactions

34. Montaldi, J.: The path formulation of bifurcation theory. In: Chossat, P. (ed.)
Dynamics, Bifurcation and Symmetry. NATO ASI Series (Series C: Mathematical
and Physical Sciences), vol. 437, pp. 259–278. Kluwer, Dordrecht (1994). https://
doi.org/10.1007/978-94-011-0956-7 21

35. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems.
Math. Comput. Sci. 1(3), 507–539 (2008)

36. Pettigrew, D.B., Smolen, P., Baxter, D.A., Byrne, J.H.: Dynamic properties of
regulatory motifs associated with induction of three temporal domains of memory
in Aplysia. J. Comput. Neuro. 18(2), 163–181 (2005)

37. Piret, K., Verschelde, J.: Sweeping algebraic curves for singular solutions. J. Com-
put. Appl. Math. 234(4), 1228–1237 (2010)

38. Simon, P.L., Farkas, H., Wittmann, M.: Constructing global bifurcation diagrams
by the parametric representation method. J. Comput. Appl. Math. 108(1–2), 157–
176 (1999)

39. Sommese, A.J., Wampler II, C.W.: The Numerical Solution of Systems of Poly-
nomials Arising in Engineering and Science. World Scientific Publishing Co., Pte.
Ltd., Hackensack (2005)

40. Song, H., Smolen, P., Av-Ron, E., Baxter, D.A., Byrne, J.H.: Bifurcation and
singularity analysis of a molecular network for the induction of long-term memory.
Biophys. J. 90(7), 2309–2325 (2006)

41. Sprinzak, D., et al.: Cis-interactions between Notch and Delta generate mutually
exclusive signalling states. Nature 465(7294), 86–90 (2010)

42. Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Confer-
ence Series in Mathematics, vol. 97. Published for the Conference Board of the
Mathematical Sciences, Washington, DC. American Mathematical Society, Provi-
dence (2002)

43. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial
systems by homotopy continuation. ACM Trans. Math. Softw. (TOMS) 25(2),
251–276 (1999)

44. Visvader, J.E., Clevers, H.: Tissue-specific designs of stem cell hierarchies. Nat.
Cell Biol. 18(4), 349–355 (2016)

45. Wampler, C., Sommese, A., Morgan, A.: Numerical continuation methods for solv-
ing polynomial systems arising in kinematics. J. Mech. Des. 112(1), 59–68 (1990)

46. Xia, B.: Discoverer: a tool for solving semi-algebraic systems. ACM Commun.
Comput. Algebra 41(3), 102–103 (2007)

47. Yeung, T.M., Chia, L.A., Kosinski, C.M., Kuo, C.J.: Regulation of self-renewal
and differentiation by the intestinal stem cell niche. Cell. Mol. Life Sci. 68(15),
2513–2523 (2011)

https://doi.org/10.1007/978-94-011-0956-7_21
https://doi.org/10.1007/978-94-011-0956-7_21

mmonagan@cecm.sfu.ca

The Z Polyhedra Library in Maple

Rui-Juan Jing and Marc Moreno Maza(B)

University of Western Ontario, London, Canada
rjing8@uwo.ca, moreno@csd.uwo.ca

Abstract. The Z-Polyhedra is a library written in Maple and dedi-
cated to solving problems dealing with the integer points of polyhedral
sets. Those problems include decomposing the integer points of polyhe-
dral sets, solving parametric integer programs, performing dependence
analysis in for-loop nests and determining the validity of certain Pres-
burger formulas. This article discusses the design of the Z-Polyhedra
library and provides numerous illustrations of its usage.

1 Introduction

Solving systems of linear equations is a well-studied and fundamental problem
in mathematical sciences. When the input system includes equations as well as
inequalities, the algebraic complexity of this problem increases from polynomial
time to single exponential time with respect to the number of variables. When,
in addition, the solution points with integer coordinates are the only ones of
interest, the problem becomes even harder and is still actively investigated.

The integer points of polyhedral sets are, indeed, of interest in many areas of
mathematical sciences, see for instance the landmark textbooks of Schrijver [13]
and Barvinok [3], as well as the compilation of articles [4]. One of these areas
is the analysis and transformation of computer programs. For instance, integer
programming [5] is used by Feautrier in the scheduling of for-loop nests [6] while
Barvinok’s algorithm [2] (for counting integer points in polyhedra) is adapted
by Köppe and Verdoolaege in [10] to answer questions like how many memory
locations are touched by a for-loop nest. In [11], Pugh proposes an algorithm,
called the Omega Test, for testing whether a polyhedron has integer points. In the
same paper, Pugh shows how to use the Omega Test for performing dependence
analysis [11] in for-loop nests.

In [12], Pugh also suggests, without stating a formal algorithm, that the
Omega Test could be used for quantifier elimination on Presburger formulas. This
observation has motivated our papers [7,8], where we propose a new approach
for computing the integer points of systems of linear equations and inequalities.
Here, solving means decomposing the solution set into geometrically meaningful
components and providing compact representations of those components. More-
over, the proposed algorithm runs in polynomial time when the dimension of
the ambient space is fixed and the input system satisfies mild assumptions. This
work produced a Maple library, originally called Polyhedra and presented at
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 132–144, 2020.
https://doi.org/10.1007/978-3-030-41258-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_10

mmonagan@cecm.sfu.ca

The Z Polyhedra Library in Maple 133

ISSAC 2017 as a software demonstration. To emphasize the fact that this library
is primarily dedicated to the integer points of polyhedral sets, we re-baptized it
the Z-polyhedra library. Improved design, new features and a faster core-solver
(the command IntegerSolve) leads us to the present paper.

Section 2.1 discusses the implementation of the mathematical concepts
involved in the manipulation of Z-polyhedra. Section 3 gives an overview of the
user-interface and the main solvers implemented in the Z-polyhedra library.
Section 4 illustrates the usage of the library through examples taken from the
literature. We note that the new algorithm (to be reported in a soon coming
article) behind the command IntegerSolve has reduced the execution of some
problems from minutes to fractions of a second.

The Z-library is publicly available from the web site of the RegularChains
library at www.regularchains.org. A comparison with related software can be
found in the last section of [9].

2 Mathematical Concepts and Their Implementation

In this section, we review the basic concepts of polyhedral geometry that are
involved in the specifications of the commands of our Z Polyhedra library. We
also discuss the implementation of those concepts, in particular their adaptation
to the context of effective computations. Section 2.1 is dedicated to the notion
of a polyhedral set while Sects. 2.2, 2.3 and 2.4 focus on lattices, Z-Polyhedra
and parametric Z-Polyhedra.

Notation 1. We use bold letters, e.g. v, to denote vectors and we use capital
letters, e.g. A, to denote matrices. Also, we assume that vectors are column
vectors. For row vectors, we use the transposition notation, that is, At for the
transposition of a matrix A. As usual, we denote by Z, Q and R the ring of
integers, the field of rational numbers and the field of complex numbers. Unless
specified otherwise, all matrices and vectors have their coefficients in Z.

2.1 Polyhedra

A subset P ⊆ Q
n is called a convex polyhedron (or simply a polyhedron) if

P = {x | Ax ≤ b} holds, for a matrix A ∈ Q
m×n and a vector b ∈ Q

m, where
n,m are positive integers; we call the linear system {Ax ≤ b} a representation
of P . Hence, a polyhedron is the intersection of finitely many half-spaces.

An inequality of the system Ax ≤ b is redundant whenever it is implied by
all the other inequalities in Ax ≤ b. A representation of a polyhedron is minimal
if no inequality of that representation is redundant.

An inequality atx ≤ b (with a ∈ Q
n and b ∈ Q) is an implicit equation of the

inequality system Ax ≤ b if atx = b holds for all x ∈ P . The dimension of the
polyhedron P , denoted by dim(P), is n−r, where n is dimension1 of the ambient
1 Of course, this notion of dimension coincides with the topological one, that is, the

maximum dimension of a ball contained in P .

www.regularchains.org

mmonagan@cecm.sfu.ca

134 R.-J. Jing and M. Moreno Maza

space (that is, Qn) and r is the maximum number of implicit equations defined
by linearly independent vectors. We say that P is full-dimensional whenever
dim(P) = n holds. In other words, P is full-dimensional if and only if it does
not have any implicit equations.

The article [9] presents an efficient algorithm for computing a minimal
representation of the polyhedron P from any representation of P . This algo-
rithm builds upon ideas proposed by Balas in [1]; it is implemented in the
Z Polyhedra library by the command MinimalRepresentation of the module
PolyhedraTools.

Let p, q be two positive integers such that p + q = n holds. We rank the
coordinates (x1, . . . , xn) of an arbitrary point x as x1 > · · · > xn and we denote
by u (resp. v) the first p (last q) coordinates of x. We denote by proj(P ;v) the
projection of P on v, that is, the subset of Qq defined by:

proj(P ;v) = {v ∈ Q
q | ∃ u ∈ Q

p, (u,v) ∈ P}.

Fourier-Motzkin elimination (FME for short) is an algorithm computing the
projection proj(P ;v) of the polyhedron of P by successively eliminating the u-
variables from a representation of P .

Consider a representation R of P and a positive integer i such that 1 ≤ i ≤ n.
Denote by R(xi) the inequalities in R whose largest variable is xi. A projected
representation of P induced by R is a representation of P consisting of

1. R(x1), if n = 1,
2. R(x1) and a projected representation of proj(P ; (x2, . . . , xn)), otherwise.

The article [9] presents an efficient algorithm for computing a minimal pro-
jected representation of the polyhedron P from any R representation of P .
This algorithm is implemented in the Z Polyhedra library by the command
MinimalProjectedRepresentation of the module PolyhedraTools. In partic-
ular, this command provides a much more efficient way of performing FME than
the command Project of the PolyhedralSets library in Maple, as illustrated
by the comparative implementation reported in [9].

2.2 Lattices

The n-dimensional integer lattice, namely Z
n, is the lattice in the Euclidean space

R
n whose lattice points are all n-tuples of integers. More generally, a lattice of

R
n consists of all linear combinations with integer coefficients of a basis of Rn (as

a vector space). The data-type Lattice of the Z Polyhedra library implements
lattices in that latter sense, with some adaptation to support our purpose of
studying the integer points of polyhedra. This adaptation is actually taken from
the article [14]. To be precise,

1. we restrict the basis vectors, given by n× n matrix A, to have integer coeffi-
cients,

2. we allow a shift of the origin by a vector b ∈ Z
n.

mmonagan@cecm.sfu.ca

The Z Polyhedra Library in Maple 135

Therefore, we call an integer lattice of Zn any set of the form

{Ax + b | x ∈ Z
n}

where A ∈ Z
n×n is a full-rank matrix and b ∈ Z

n is a vector; such a set is
denoted by L(A,b).

2.3 Z-Polyhedra

Following [14] here again, we call a Z-Polyhedron the intersection of a polyhedron
with an integer lattice. The purpose of this notion is, for us, to support the
description of the integer points of a polyhedron P ⊆ Q

n, that is, the description
of the set P ∩ Z

n. This leads us to some preliminary remarks.
Consider first the problem of solving a Diophantine equation over Z, say in 2

variables x and y. For instance, consider 3x− 4y = 7; its solutions, as computed
by Maple, are of the form x = 5+4 Z1 , y = 2+3 Z1 , the description of which
requires the use of the auxiliary variable Z1. In his Omega test [11,12] Pugh
extended that idea for solving arbitrary systems of linear equations of Z. For
instance, for the system {

7x + 12y + 31z = 17
3x + 5y + 14z = 7

our implementation of the Omega test produces⎧⎨
⎩

z = −t0 − 1
y = −5t0 − 3
x = 13t0 + 12

Of course, the introduction of the parameter t0 can be avoided by re-writing x
and z as a function of z, leading to:{

x = −1 − 13z
y = 2 + 5z

Consider now this other polyhedron P of Q3:⎧⎪⎪⎨
⎪⎪⎩

x = 19
y = 25 + (1/2)z
z ≤ 18
z ≤ 0

Because of the presence of the rational number 1/2, the above input system
cannot be considered as a description of the set P ∩Z

3. Using our algorithm [7,8]
inspired by the Omega test, we obtain the following:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 19
y = 25 + t0
z = 2 t0

−t0 ≤ 0
t0 ≤ 9

mmonagan@cecm.sfu.ca

136 R.-J. Jing and M. Moreno Maza

Inspired by the work [14], we have substantially improved our algorithm in terms
of efficiency and in terms of output conciseness. In particular, for the above
example, we obtain in a Maple session, the result below: On the left-hand side
of Fig. 1, we retrieve our original polyhedron P and on the right-hand side, we
have the lattice L of Zn consisting of the points (x, y, z) where z/2 is integer.
The intersection P ∩ L is exactly P ∩Z

3. More generally, encoding the integer
points of a polyhedron using the above format, that we call the PL format, and
thus using lattices, allows us to totally avoid the recourse to auxiliary variables.
In addition, it is easy to convert any set of the form P ∩Z

n (where P ⊆ Q
n is a

polyhedron) from PL format, say P ∩ L(C,d), to the Omega test format, simply
by substituting x with Ct + d into the representation of P , say Ax ≤ b.

Fig. 1. A Z-Polyhedron in PL format.

2.4 Parametric Z-Polyhedra

A parametric Z-Polyhedron is a family of Z-polyhedra

– given by the representation of a Z-polyhedron where,
– the defining matrix or the defining vector depend linearly on parameters.

This notion is particularly useful in application problems, like parametric inte-
ger linear programming, where the feasible region, and thus optimal solutions,
depend on the values of parameters.

Fig. 2. Making a new object of type Parametric Z polyhedron.

mmonagan@cecm.sfu.ca

The Z Polyhedra Library in Maple 137

The Maple session on Fig. 2 shows how to create (command Parametric
Z polyhedron[new]) and display (command Parametric Z polyhedron
[Display]) a parametric Z-Polyhedron from a list of equations, a list of inequal-
ities, a list of the involved variables and a list of the involved parameters. In this
example, the parameters are theta 1 and theta 2 while the unknowns are x 1
and x 2. On can see that an object of type Parametric Z polyhedron is repre-
sented by a pair of Z-polyhedra in PL format:

– one in the parameter space,
– one the whole ambient space.

3 Core Algorithms and Their Implementation

The Z Polyhedra library in Maple implements commands to manipulate Z-
polyhedra and in particular the integer points of polyhedra defined over Q. To
this end, the Z Polyhedra library offers

1. 3 data-types in the form Maple modules: Z polyhedron, Lattice and
Parametric Z polyhedron,

2. a collection of solvers to compute the integer points of (parametric) Z-
polyhedra,

3. a fourth module gathering commands to operate on polyhedra and their ratio-
nal points.

Data-Types and solvers are further discussed below.

3.1 Data-Types

An object of the data-type Z polyhedron, encodes the integer points of a poly-
hedron, using the PL format, specified in Sect. 2.3. An object of the data-type
Lattice encodes a lattice as defined in Sect. 2.2. Finally, an object of the data-
type Parametric Z polyhedron encodes a parametric Z-polyhedron as defined
in Sect. 2.4.

Each of these data-types is implemented in an “object-oriented” fashion using
the Maple language construct of a module. Each of these three modules offers
“get” methods to access the different attributes of an object, see Fig. 3.

3.2 Solvers

The most commonly used solver is IntegerSolve. It takes as input a system of
linear equations and inequalities, that is, a representation of some polyhedron
P ⊆ Q

n. It returns finitely many Z-polyhedra

– either in PL format P1∩L1, . . . , Pe∩Le such that

P ∩Z
n = (P1∩L1) ∪ · · · ∪ Pe∩Le,

mmonagan@cecm.sfu.ca

138 R.-J. Jing and M. Moreno Maza

> with(Z_Polyhedra);

[EnumerateIntegerPoints, IntegerSolve, Lattice, LexicographicalMinimum,

ParametricIntegerSolve, Parametric_Z_polyhedron, PlotIntegerPoints3d,

PolyhedraTools, Z_polyhedron, hasIntegerPoints]

> with(Lattice);

[DefiningMatrix, DefiningVector, Display, IsPointInLattice]

> with(Z_polyhedron);

[Display, Equations, Inequalities, IsContained, Unknowns]

> with(Parametric_Z_polyhedron);

[ConstraintsOnParameters, ConstraintsOnUnknowns, Display, Parameters, Unknowns]

> with(PolyhedraTools);

[IsNegative, IsNonNegative, IsNonPositive, IsPositive, IsRedundant, IsZero,

MinimalProjectedRepresentation, MinimalRepresentation, hasRationalPoints]

Fig. 3. Maple session showing the commands and modules available to an end-user
of the Z Polyhedra library.

Fig. 4. Using IntegerSolve for decomposing the integer points of a polyhedron.

– or in Omega test format (thus using auxiliary variables) as on the example
shown on Fig. 4.

The core solver of the Z-Polyhedra library is ParametricIntegerSolve.
Its specifications are similar to those of IntegerSolve but using parametric
Z-polyhedra instead of Z-polyhedra. In fact, IntegerSolve is derived from
ParametricIntegerSolve by letting the list of parameters be empty. Figure 5

mmonagan@cecm.sfu.ca

The Z Polyhedra Library in Maple 139

shows what ParametricIntegerSolve does on the example of Sect. 2.4, that is,
computing its minimal projected representation.

Fig. 5. Using ParametricIntegerSolve.

While solving a system of constraints does not mean enumerating its solu-
tions, enumeration is sometimes what the user needs, in particular when plot-
ting is involved Figure 6 shows how the command EnumerateIntegerPoints
enumerates the integer points of a polyhedron, after computing a minimal
projected representation of that polyhedron. This is used by the command
PlotIntegerPoints3d for plotting the same polyhedron.

Fig. 6. Using EnumerateIntegerPoints.

mmonagan@cecm.sfu.ca

140 R.-J. Jing and M. Moreno Maza

4 Applications

4.1 Dependence Analysis

Consider the following for-loop nest:

for i = 1 to 5 do
for j = i to 5 do

A[i, j + 1] = A[5, j]

It is natural to ask whether two different iterations of the above for-loop nest can
access the same coefficient in the array A, with at least one of those iterations
writing that coefficient.

Consider first the case where one iteration (i, j) writes the same coefficient
in A that another iteration (i′, j′) reads. If such a couple of iterations exists then
the system below must have solutions for i′, j′, i, j ∈ Z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ≤ i ≤ j ≤ 5
1 ≤ i′ ≤ j′ ≤ 5

i = 5
j + 1 = j′

Fig. 7. Using IntegerSolve for dependence analysis.

The Maple session on Fig. 7 shows that the polyhedron defined by eqs and
ineqs has no integer points. Similarly, it can be shown that no two iterations
access the same coefficient in A both in writing. Consequently, each for-loop in
the above for-loop nest can be executed in a parallel fashion without any race
conditions.

We consider now a more difficult example used by Paul Feautrier in his
lectures, see Fig. 8. Here again, the IntegerSolve command can be used to
prove that none of these 3 statements yield dependence, see Fig. 9.

4.2 Cache Lines Accessed by a For-Loop Nest

The question considered here is counting the total number of cache lines accessed
by a for-loop nest (a 5-point stencil computation code) see Example 5 in [12].

mmonagan@cecm.sfu.ca

The Z Polyhedra Library in Maple 141

Fig. 8. On the right: pseudo-code for Choleski LU. on the left: dependence analysis of
3 statements of this pseudo-code.

The polyhedron studied in the Maple session on Fig. 10 is more general
than the one of William Pugh. Indeed, we have replaced the loop bound 500 by
a parameter N. What IntegerSolve computes in this case is a minimal projected
representation of that polyhedron. This essentially provides an enumeration of
its integer points. Focusing on the variables i and j leads to the desired answer.

4.3 Parametric Linear Programming

This last application presents work in progress. Consider the following for-loop
nest:

for i = 0 to m do
for j = 0 to n do

A[2 ∗ i + j] = i + j

Fig. 9. Using IntegerSolve for dependence analysis on Choleski LU.

mmonagan@cecm.sfu.ca

142 R.-J. Jing and M. Moreno Maza

Fig. 10. Using IntegerSolve for cache line accesses.

A natural question of concurrency is to determine, for a given k, what is the last
iteration (i, j) at which A[2 ∗ i+ j] receives the value k, see the driving problem
in [5] by Feautrier.

The command LexicographicalMinimum addresses a similar question with
maximum replaced by minimum. Hence, to answer the original question, we need
a natural change of coordinates where (i, j) is mapped to (m− i, n− j). We are
now looking at the following parametric Z-polyhedron P (k,m, n):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ≤ i
i ≤ m
0 ≤ j
j ≤ n

2i + j − k ≤ −k + 2m + n
−2i − j + k ≤ −k + 2m + n

In its current version, LexicographicalMinimum finds the lexicographical
minimum of (i, j) within P (k,m, n), viewing i, j, k,m, n as rational numbers
(instead of integers) which yields the solution shown on Fig. 11. The output
consists of 4 pairs; each pair gives a lexicographical minimum together with the
corresponding conditions on k,m, n under which this minimum is reached.

mmonagan@cecm.sfu.ca

The Z Polyhedra Library in Maple 143

Fig. 11. Using LexicographicalMinimum for parametric linear programming.

Acknowledgements. The authors would like to thank IBM Canada Ltd. (CAS
project 880) and NSERC of Canada (CRD grant CRDPJ500717-16), as well as the
Fields Institute of Canada for supporting their work.

References

1. Balas, E.: Projection with a minimal system of inequalities. Comput. Optim. Appl.
10(2), 189–193 (1998)

2. Barvinok, A.I.: A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

3. Barvinok, A.I.: Integer points in polyhedra. Contemporary mathematics. European
Mathematical Society, Zurich (2008)

4. Beck, M.: Integer Points in Polyhedra-Geometry, Number Theory, Representa-
tion Theory, Algebra, Optimization, Statistics: AMS-IMS-SIAM Joint Summer
Research Conference, 11–15 June 2006, Snowbird, Utah. Contemporary mathe-
matics - American Mathematical Society, American Mathematical Society (2008)

5. Feautrier, P.: Parametric integer programming. RAIRO Recherche Opérationnelle
22, 243–268 (1988). http://www.numdam.org/article/RO 1988 22 3 243 0.pdf

6. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R.,
Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp.
79–103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61736-1 44

7. Jing, R.-J., Moreno Maza, M.: Computing the integer points of a polyhedron, I:
algorithm. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC
2017. LNCS, vol. 10490, pp. 225–241. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66320-3 17

8. Jing, R.-J., Moreno Maza, M.: Computing the integer points of a polyhedron, II:
complexity estimates. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V.
(eds.) CASC 2017. LNCS, vol. 10490, pp. 242–256. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66320-3 18

http://www.numdam.org/article/RO_1988__22_3_243_0.pdf
https://doi.org/10.1007/3-540-61736-1_44
https://doi.org/10.1007/978-3-319-66320-3_17
https://doi.org/10.1007/978-3-319-66320-3_17
https://doi.org/10.1007/978-3-319-66320-3_18
https://doi.org/10.1007/978-3-319-66320-3_18

mmonagan@cecm.sfu.ca

144 R.-J. Jing and M. Moreno Maza

9. Jing, R.-J., Moreno Maza, M., Talaashrafi, D.: Complexity estimates for fourier-
motzkin elimination (2018). CoRR, abs/1811.01510

10. Köppe, M., Verdoolaege, S.: Computing parametric rational generating functions
with a primal barvinok algorithm. Electr. J. Comb. 15(1), R16 (2008)

11. Pugh, W.: The omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Martin, J.L. (ed.) Proceedings Supercomputing 1991,
Albuquerque, NM, USA, 18–22 November 1991, pp. 4–13. ACM (1991)

12. Pugh, W.: Counting solutions to presburger formulas: how and why. In: Sarkar, V.,
Ryder, B.G., Lou Soffa, M., (eds.) Proceedings of the ACM SIGPLAN 1994 Con-
ference on Programming Language Design and Implementation (PLDI), Orlando,
Florida, USA, 20–24 June 1994, pp. 121–134. ACM (1994)

13. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, New York
(1986)

14. Seghir, R., Loechner, V., Meister, B.: Integer affine transformations of paramet-
ric Z-polytopes and applications to loop nest optimization. TACO 9(2), 8:1–8:27
(2012)

mmonagan@cecm.sfu.ca

Detecting Singularities Using
the PowerSeries Library

Mahsa Kazemi(B) and Marc Moreno Maza

Department of Computer Science, University of Western Ontario,
London, ON, Canada

mkazemin@uwo.ca, moreno@csd.uwo.ca

Abstract. Local bifurcation analysis of singular smooth maps plays a
fundamental role in understanding the dynamics of real world prob-
lems. This analysis is accomplished in two steps: first performing the
Lyapunov-Schmidt reduction to reduce the dimension of the state vari-
ables in the original smooth map and then applying singularity the-
ory techniques to the resulting reduced smooth map. In this paper, we
address an important application of the so-called Extended Hensel Con-
struction (EHC) for computing the aforementioned reduced smooth map,
which, consequently, leads to detecting the type of singularities of the
original smooth map. Our approach is illustrated via two examples dis-
playing pitchfork and winged cusp bifurcations.

Keywords: Singularities · Smooth maps · Lyapunov-Schmidt
reduction · Extended Hensel Construction · PowerSeries library

1 Introduction

Consider the smooth map

Φ : Rn × R
m −→ R

n, Φi(x,α) = 0, i = 0, . . . , n (1)

where the vectors x = (x1, . . . , xn) and α = (α1, . . . , αm) represent state vari-
ables and parameters, respectively. We assume that Φi(0,0) = 0. The smooth
map Φ is called singular when det(dΦ)(0,0) = 0. The local zeros of a singular map
may experience qualitative changes when small perturbations are applied to the
parameters α. These changes are called bifurcation. Local bifurcation analysis
of zeros of the singular smooth map (1) plays a pivotal role in exploring the
behaviour of many real world problems [4,7,8,10]. Lyapunov-Schmidt reduction
is a fundamental tool converting the singular map (1) into g : Rp × R

m −→ R
p

with p = n − rank(dΦ0,0). The reduction is achieved through producing an
equivalent map to (1) made up of a pair of equations and making use of the
Implicit Function Theorem. This solves the n−1 variables of x in the first equa-
tion; thereafter, substituting the result into the second one gives an equation
for the remaining variable. It is proved that the local zeros of the map g are
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 145–155, 2020.
https://doi.org/10.1007/978-3-030-41258-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_11

mmonagan@cecm.sfu.ca

146 M. Kazemi and M. Moreno Maza

in one-to-one correspondence with the local zeros of Φ; for more details see [8,
pp. 25–34]. Hence, the study of local zeros of (1) is facilitated throught treating
their counterparts in g. Singularity theory is an approach providing a compre-
hensive framework equipped with effective tools for this study. The pioneering
work of René Thom established the original ideas of the theory which was then
extensively developed by John Mather and V. I. Arnold. The book series [8]
written by Marty Golubitsky, Ian Stewart and David G. Schaeffer is a collec-
tion of significant contributions of the authors in dealing with a wide range of
real world problems using singularity theory techniques as well as explaining the
underlying ideas of the theory in ways accessible to applied scientists and math-
ematicians particularly those dealing with bifurcation problems in the presence
of parameters and symmetries. The singularity theory tools are applied to the
problems that have emerged as an output of the Lyapunov-Schmidt reduction.
Following [8, p. 25], we focus on the reduction when rank(dΦ0,0) = n−1, m = 1
and refer to α1 = λ as the bifurcation parameter. In other words, we consider
the following map

g : R × R −→ R g(x, λ) = 0. (2)

Two smooth maps are regarded as germ-equivalent when they are identical on
some neighborhood of the origin. In fact, a germ-equivalence class of a smooth
map is called a germ. We denote by Ex,λ the space of all scalar smooth germs
which is a local ring with MEx,λ

= 〈x, λ〉Ex,λ
as the unique maximal ideal; see also

[8, p. 56] and [4, p. 3]. Due to the existence of germs with infinite Taylor series and
flat germs (whose Taylor series is zero), there does not exist a computational tool
to automatically study local bifurcations in Ex,λ. This has motivated the authors
of [4] to propose circumstances under which the computations supporting the
bifurcation analysis in Ex,λ are transferred to smaller local rings and verify that
the corresponding results are valid in Ex,λ. For instance, the following theorem
permits the use of formal power series K[[x, λ]] ring as a smaller computational
ring in computation of algebraic objects involved in the analysis of bifurcation.

Theorem 1 ([4, Theorem 4.3]). Suppose that {fi}m
i=1 ∈ Ex,λ. For k,N ∈ N

with k ≤ N ,

Mk
K[[x,λ]] ⊆ 〈JNf1, . . . , J

Nfm〉K[[x,λ]] iff Mk
Ex,λ

⊆ 〈f1, . . . , fm〉Ex,λ

where Mk = 〈xα1λα2 : α1 + α2 = k〉 and JNfi is the sum of terms of degree N
or less in the Taylor series of fi.

This, along with other criteria in [4,6], highlights the importance of alterna-
tive rings in performing automatic local bifurcation analysis of scalar and Z2-
equivariant singularities.

The work presented here addresses one of the applications of the so-called
Extended Hensel Construction (EHC) invented by Sasaki and Kako, see [12]. We
show that the EHC can be used in computing the reduced system g ∈ Ex,λ, which,
as a result, leads to determining the type of singularity hidden in system (1).

mmonagan@cecm.sfu.ca

Detecting Singularities Using the PowerSeries Library 147

This EHC has been studied and improved by many authors. In particular, the
papers [1–3] present algorithmic improvements (where the EHC relies only linear
algebra techniques and univariate polynomial arithmetic) together with applica-
tions of the EHC in deriving real branches of space curves and consecuently
computing limitis of real multivariate rational functions. The same authors
implemented their version of the EHC as the ExtendedHenselConstruction
command of the PowerSeries library1,

The EHC comes into two flavors. In the case of bivariate polynomials it
behaves as Newton-Puiseux algorithm while with multivariate polynomials it
acts as an effective version of Jung-Abhyankar Theorem. In both cases, it pro-
vides a factorization of the input object in the vicinity of the origin. We believe
that this capabiliy makes the EHC a desirable tool for an automatic derivation of
the zeros of a polynomial system locally near the origin. The rest of this paper
is organized as follows. In Sect. 2, some of the ideas in singularity theory are
reviewed. We then discuss the EHC procedure followed by an overview on the
PowerSeries Library. Finally, our proposed approach is illustrated through two
examples revealing pitchfork and winged cusp bifurcations.

2 Background

2.1 Concepts from Singularity Theory

In this section we explain the materials required for defining recognition problem
of a singular germ. These concepts are accompanied by examples. We skip the
technical details of singularity theory-related concepts as they are beyond the
scope of this paper. The interested readers are referred to [4,5,8] for the prin-
cipal ideas, algebraic formulations and automatic computation of the following
objects.

Contact Equivalence. We say that two smooth germs f, g ∈ Ex,λ are contact
equivalent when

g(x, λ) = S(x, λ)f(X(x, λ), Λ(λ)) (3)

is held for a smooth germ S(x, λ) ∈ Ex,λ and local diffeomorphisms ((x, λ) −→
(X(x, λ), Λ(λ))) : R2 −→ R

2 satisfying

S(x, λ),Xx(x, λ), Λ(λ) > 0

Normal Form. Bifurcation analysis of local zeros of g in (2) requires com-
puting a contact equivalent germ to g which has simpler structure and makes
the analysis efficient. Indeed, each step of this analysis, for instance recognition
problem, involves normal form computation. To be more precise, the simplest
representative of the class of g ∈ Ex,λ under contact equivalence is called a
normal form of g.

1 http://www.regularchains.org/downloads.html.

http://www.regularchains.org/downloads.html

mmonagan@cecm.sfu.ca

148 M. Kazemi and M. Moreno Maza

Example 1. Consider the smooth germ g(x, λ) = sin(x3) − λx + exp(λ3) − 1 ∈
Ex,λ. Note that g(0, 0) = ∂

∂xg(0, 0) = 0; therefore, the origin is the singular point
of g. The procedure in [4, Sect. 6] returns x3 − λx as the normal form of g
denoted by NF(g). The equation x3 − λx = 0 is called the pitchfork bifurcation
problem and the bifurcation diagram for pitchfork is defined by the local variety
{(x, λ) | x3 − xλ = 0}. When λ smoothly varies around the origin, the number
of solutions of the pitchfork bifurcation problem changes from one to three; see
Fig. 1.

(a) (b)

Fig. 1. Figures (a) and (b) depict the bifurcation diagrams of g and NF(g), respectively.

Now, modulo monomials of degree ≥5, we compute the transformation
(X(x, λ), S(x, λ), Λ(λ)) through which g is converted into NF(g) in (3).

X(x, λ) := x + λ2 + λx + λ2x + λx2 + x3,

S(x, λ) := 1 − λ + 2λx + x2,

Λ(λ) := λ.

Recognition Problem. Let g ∈ Ex,λ be a singular germ. Recognition prob-
lem for a normal form of g computes a list of zero and non-zero conditions on
derivatives of a singular germ f ∈ Ex,λ under which f is contact-equivalent to
g. The proposed algorithm in [8, pp. 86–93], divides monomials (in Ex,λ) into
three categories; low, intermediate and high order terms. Low order terms refer
to the monomials of the form xα1λα2 that do not participate in the representa-
tion of any germ equivalent to g. The high order terms consist of the monomials
xα1λα2 which do not change the structure of the local zeros of g when they
are present; that is, adding xα1λα2 to g creates a germ contact equivalent to g.
Due to the sophisticated structure of intermediate order terms we skip defining
them here and instead introduce intrinsic generators xα1λα2 which contribute to
every equivalent germ and provide information about intermediate order terms.

mmonagan@cecm.sfu.ca

Detecting Singularities Using the PowerSeries Library 149

Low order terms and intrinsic generators are identified through the following
theorem.

Theorem 2 [8, Theorems 8.3 and 8.4, p. 88]. Suppose that f, g ∈ Ex,λ and
there exists a positive integer k such that Mk

Ex,λ
⊂ 〈g, x ∂

∂xg, λ ∂
∂xg〉Ex,λ

.

(a) if f is equivalent to g and xα1λα2 belongs to low order terms of g then
∂α1

∂xα1
∂α2

∂λα2 f(0, 0) = 0.
(b) furthermore, assume that xα1λα2 belongs to intrinsic generators of g. If f is

equivalent to g then ∂α1

∂xα1
∂α2

∂αα2 f(0, 0)
= 0.

Example 2. For the smooth germ g given by Example 1, we deduce the vector
space R{1, λ, x, x2} as low order terms. It follows from Theorem 2(a) that any
germ f equivalent to g satisfies

f(0, 0) =
∂

∂λ
f(0, 0) =

∂

∂x
f(0, 0) =

∂2

∂x2
f(0, 0) = 0 (4)

Moreover, the higher order terms of g are determinded by the ideal

〈x4, λ4, x3λ, xλ3, x2λ2〉Ex,λ
+ 〈x2λ, λ3, xλ2〉Ex,λ

+ 〈λ2〉Ex,λ

which means that adding/removing any monomial, taken from this ideal, to/from
g gives a new germ equivalent to g. Finally, the corresponding intrinsic generators
of g are described via {x3, λx} verified by Theorem 2(b) that for any germ f
equivalent to g the following is valid

∂3

∂x3
f(0, 0)
= 0,

∂

∂λ

∂

∂x
f(0, 0)
= 0 (5)

To sum up, the recognition problem for a normal form of g is characterized by
(4) and (5).

2.2 The Extended Hensel Construction

This part is summarized from [1].

Notation 1. Suppose that K is an algebraic number field whose algebraic clo-
sure is denoted by K. Assume that F (X,Y) ∈ K[X,Y] is a bivariate polynomial
with complex number coefficients. Let also F be a univariate polynomial in X
which is monic and square-free. The partial degree of F w.r.t. X is represented
by d. We denote by K[[U∗]] =

⋃∞
�=1 K[[U

1
�]] the ring of formal Puiseux series.

Hence, given ϕ ∈ K[[U∗]], there exists � ∈ N>0 such that ϕ ∈ K[[U
1
�]] holds.

Thus, we can write ϕ =
∑∞

m=0 amU
m
� , for some a0, . . . , am, . . . ∈ K. We denote

by K((U∗)) the quotient field of K[[U∗]]. Let ϕ ∈ K[[U∗]] and � ∈ N such that
ϕ = f(U

1
�) holds for some f ∈ K[[U]]. We say that the Puiseux series ϕ is

convergent if we have f ∈ K〈U〉. We recall Puiseux’s theorem: if K is an alge-
braically closed field of characteristic zero, the field K((U∗)) of formal Puiseux
series over K is the algebraic closure of the field of formal Laurent series over K;
moreover, if K = C, then the field C(〈Y ∗〉) of convergent Puiseux series over C

is algebraically closed as well.

mmonagan@cecm.sfu.ca

150 M. Kazemi and M. Moreno Maza

The purpose of the EHC is to factorize F (X,Y) as F (X,Y) = G1(X,Y) · · ·
Gr(X,Y), with Gi(X,Y) ∈ K(〈Y ∗〉)[X] and degX (Gi) = mi, for 1 ≤ i ≤ r.
Thus, the EHC factorizes F (X,Y) over K(〈Y ∗〉), thus over C(〈Y ∗〉).
Newton Line. We plot each non-zero term cXexY ey of F (X,Y) to the point of
coordinates (ex, ey) in the Euclidean plane equipped with Cartesian coordinates.
We call Newton Line the straight line L passing through the point (d, 0) and
another point, such that no other points lie below L. The equation of L is
ex/d + ey/δ = 1 for some δ ∈ Q. We define δ̂, d̂ ∈ Z

>0 such that δ̂/d̂ = δ/d and
gcd δ̂, d̂ = 1 both hold.

Newton Polynomial. The sum of all the terms of F (X,Y) which are plotted
on the Newton line of F is called the Newton polynomial of F . We denote it
by F (0). Observe that the Newton polynomial is a homogeneous polynomial in
(X,Y δ/d). Let ζ1, . . . , ζr ∈ K be the distinct roots of F (0)(X, 1), for some r ≥ 2.
Hence we have ζi
= ζj for all 1 ≤ i < j ≤ r and there exist positive integers
m1 ≤ m2 ≤ · · · ≤ mr such that, using the homogeneity of F (0)(X,Y), we have

F (0)(X,Y) = (X − ζ1Y
δ/d)m1 · · · (X − ζrY

δ/d)mr .

The initial factors of F (0)(X,Y) are G
(0)
i (X,Y) := (X−ζiY

δ/d)mi , for 1 ≤ i ≤ r.

For simplicity, we put Ŷ = Y δ̂/d̂.

Theorem 3 (Extended Hensel Construction). We define the ideal

Sk = 〈XdY (k+0)/d̂, Xd−1Y (k+δ̂)/d̂, . . . , X0Y (k+dδ̂)/d̂〉, (6)

for k = 1, 2, Then, for all integer k > 0, we can construct G
(k)
i (X,Y) ∈

C〈Y 1/d̂〉[X], for i = 1, . . . , r, satisfying

F (X,Y) = G
(k)
1 (X,Y) · · · G(k)

r (X,Y) mod Sk+1, (7)

and G
(k)
i (X,Y) ≡ G

(0)
i (X,Y) mod S1, for all i = 1, . . . , r.

2.3 The PowerSeries Library

The PowerSeries library consists of two modules, dedicated respectively to mul-
tivariate power series over the algebraic closure of Q, and univariate polynomials
with multivariate power series coefficients. Figure 2 illustrates Weiertrass Prepa-
ration Factorization. The command PolynomialPart displays all the terms of
a power series (or a univariate polynomial over power series) up to a specified
degree. In fact, each power series is represented by its terms that have been com-
puted so far together with a program for computing the next ones. A command
like WeiertrassPreparation computes the terms of the factors p and α up to
the specified degree; moreover, the encoding of p and α contains a program for
computing their terms in higher degree. Figures 3 and 4 illustrate the Extended
Hensel Construction (EHC)2 For the case of an input bivariate polynomial, see
2 The factorization based on Hensel Lemma is in fact a weaker construction since: (1)

the input polynomial must be monic and (2) the output factors may not be linear.

mmonagan@cecm.sfu.ca

Detecting Singularities Using the PowerSeries Library 151

Fig. 2. Weierstrass Preparation Factorization for a univariate polynomial with multi-
variate power series coefficients.

Fig. 3. Extended Hensel construction applied to a trivariate polynomial for computing
its absolute factorization.

Fig. 4. Extended Hensel construction applied to a bivariate polynomial for computing
its Puiseux parametrizations around the origin.

mmonagan@cecm.sfu.ca

152 M. Kazemi and M. Moreno Maza

Fig. 4, this coincides with the Newton-Puiseux algorithm, thus computing the
Puiseux parametrizations of a plane curve about a point; this functionality is
at the core of the LimitPoints command. For the case of a univariate poly-
nomial with multivariate polynomial coefficients, the EHC is a weak version of
Jung-Abhyankar Theorem.

3 Applications

In this section we are concerned with two smooth maps Φ, Ψ : R2 × R → R
2

whose state variables and bifurcation parameter are denoted by (x, y) and λ,
respectively. Since the Jacobian matrix of each map is not full rank at the origin,
the Implicit Function Theorem fails at solving (x, y) as a function of λ locally
around the origin. This causes bifurcations to reside in local zeros of each singular
smooth map. We recall that these bifurcations are treated via first applying
the Lyapunov-Schmidt reduction to a singular smooth map ending up with a
reduced map of the form (2) and then passing the result through singularity
theory techniques. Here, we follow the same approach except that we employ
the ExtendedHenselConstruction command to compute the reduced map. The
latter factorizes one of the equations around the origin and the resulting real
branches that go through the origin are plugged in the other one to obtain the
desired map (2). Once the map is computed we use the concept of recognition
problem to identify the type of singularity.

3.1 The Pitchfork Bifurcation

In spite of simple structure, the pitchfork bifurcation is highly observed in phys-
ical phenomena mostly in the presence of symmetry breaking. For instance, [9]
reports on spontaneous mirror-symmetry breaking through a pitchfork bifurca-
tion in a photonic molecule made up of two coupled photonic-crystal nanolasers.
Furthemore, authors in [11] study the pitchfork bifurcation arising in Lugiato–
Lefever (LL) equation which is a model for a passive Kerr resonator in an optical
fiber ring cavity. Finally, [6, Example 4.1] captures pitchfork bifurcation while
analysing the local bifurcations of Chua’s circuit. Here, we consider the exercise

3.2 on [8, p. 34]. Suppose that Φ : R2 × R → R
2 is defined by

(
Φ1

Φ2

)

where

Φ1(x, y, λ) = 2x − 2y + 2x2 + 2y2 − λx (8)
Φ2(x, y, λ) = x − y + xy + y2 − 3λx.

To obtain the reduced system g in (2) we pass Φ1 to the ExtendedHensel
Construction giving rise to the branches in Fig. 5. Note that the second branch
is not of interest as it does not pass the origin. Substituting the first branch into
Φ2, modulo monomials of degree ≥4, results in (Fig. 6)

g(y, λ) = 2y3 − 5
2
yλ +

9
2
y2λ − 5

4
yλ2. (9)

mmonagan@cecm.sfu.ca

Detecting Singularities Using the PowerSeries Library 153

Fig. 5. EHC applied to Φ1(x, y, λ).

Fig. 6. Pitchfork bifurcation diagram associated with g in Eq. (9).

Given g in (9), the low order terms and the intrinsic generators are deter-
mined by R{1, y, λ, y2} and {yλ, y3}, respectively. Thus, Theorem 2 implies that
g satisfies the recognition problem for pitchfork

f(0, 0) =
∂

∂y
f(0, 0) =

∂

∂λ
f(0, 0) =

∂2

∂y2
f(0, 0) = 0

∂

∂y

∂

∂λ
f(0, 0)
= 0,

∂3

∂y3
f(0, 0)
= 0

This proves that the original system Φ has pitchfork singularity located at the
origin.

3.2 The Winged Cusp Bifurcation

The winged cusp bifurcation problem is defined by the equation x3+λ2 = 0 and its
corresponding bifurcation diagram {(x, λ) | x3 + λ2 = 0} is exhibited via Fig. 7.
Singularity theory tools have been utilized in the area of chemical engineering
with the aim of studying the solutions of the continuous flow stirred tank reactor
(CSTR) model. This study proves that the winged cusp bifurcation is the normal
form for describing the organizing center of the bifurcation diagrams of the model
produced by numerical methods. It, further, unravels more bifurcation diagrams
that have not been reported through these numerical methods; see [7,8,13,14].

Now assume that Ψ : R2 × R → R
2 is given by

(
Ψ1

Ψ2

)

where

mmonagan@cecm.sfu.ca

154 M. Kazemi and M. Moreno Maza

Fig. 7. The winged cusp bifurcation diagram.

Ψ1(x, y, λ) = −2x + 3y + λ2 + y3 + x4 (10)
Ψ2(x, y, λ) = 2x − 3y + y2λ + x3.

Applying the ExtendedHenselConstruction to Ψ2 leads to the branches in
Fig. 8.

Fig. 8. EHC applied to Ψ2(x, y, λ).

Substituting the first branch into Ψ1, modulo monomials of degree ≥4, yields

g(y, λ) =
35
8

y3 + λ2 + y2λ. (11)

As {1, y, λ, y2, yλ} spans the space of low order terms and intrinsic generators
are {λ2, y3}, Theorem 2 guarantees that g satisfies the recognition problem for
the winged cusp (Fig. 9)

f(0, 0) =
∂

∂y
f(0, 0) =

∂

∂λ
f(0, 0) =

∂2

∂y2
f(0, 0) =

∂

∂y

∂

∂λ
f(0, 0) = 0

∂2

∂λ2
f(0, 0)
= 0,

∂3

∂y3
f(0, 0)
= 0

mmonagan@cecm.sfu.ca

Detecting Singularities Using the PowerSeries Library 155

Fig. 9. Bifurcation diagram associated with g in 11.

References

1. Alvandi, P., Ataei, M., Kazemi, M., Moreno Maza, M.: On the extended hensel con-
struction and its application to the computation of limit points. J. Symb. Comput.
(2019, to appear)

2. Alvandi, P., Kazemi, M., Moreno Maza, M.: Computing limits of real multivariate
rational functions. In: Proceedings of ISSAC 2016, pp. 39–46. ACM, New York
(2016)

3. Alvandi, P., Ataei, M., Moreno Maza, M.: On the extended Hensel construction
and its application to the computation of limit points. In: Proceedings of ISSAC
2017, pp. 13–20. ACM, New York (2017)

4. Gazor, M., Kazemi, M.: Symbolic local bifurcation analysis of scalar smooth maps.
ArXiv:1507.06168 (2016)

5. Gazor, M., Kazemi, M.: A user guide for singularity. ArXiv:1601.00268 (2017)
6. Gazor, M., Kazemi, M.: Normal form analysis of Z2-equivariant singularities. Int.

J. Bifurcat. Chaos 29(2), 1950015-1–1950015-20 (2019)
7. Golubitsky, M., Keyfitz, B.L.: A qualitative study of the steady-state solutions

for a continuous flow stirred tank chemical reactor. SIAM J. Math. Anal. 11(2),
316–339 (1980)

8. Golubitsky, M., Stewart, I., Schaeffer, D. G.: Singularities and Groups in Bifur-
cation Theory, vol. 1–2. Springer, New York (1985 and 1988). https://doi.org/10.
1007/978-1-4612-5034-0

9. Hamel, P., et al.: Spontaneous mirror-symmetry breaking in coupled photonic-
crystal nanolasers. Nat. Photonics 9, 311–315 (2015)

10. Labouriau, I.: Applications of singularity theory to neurobiology. Ph.D. thesis,
Warwick University, (1984)

11. Rossi, J., Carretero-González, R., Kevrekidis, P.G., Haragus, M.: On the spon-
taneous time-reversal symmetry breaking in synchronously-pumped passive Kerr
resonators. J. Phys. A: Math. Theor. 49(45), 455201–455221 (2016)

12. Sasaki, T., Kako, F.: Solving multivariate algebraic equation by Hensel construc-
tion. Jpn. J. Ind. Appl. Math. 16, 257–285 (1999)

13. Uppal, A., Ray, W.H., Poore, A.B.: The classification of the dynamic behavior of
continuous stirred tank reactors-influence of reactor residence time. J. Chem. Eng.
Sci. 31(3), 205–214 (1976)

14. Zeldovich, Y.V., Zisin, U.A.: On the theory of thermal stress. Flow in an exothermic
stirred reactor, II. Study of heat loss in a flow reactor. J. Tech. Phys. 11(6), 501–508
(1941). (Russian)

http://arxiv.org/abs/1507.06168
http://arxiv.org/abs/1601.00268
https://doi.org/10.1007/978-1-4612-5034-0
https://doi.org/10.1007/978-1-4612-5034-0

mmonagan@cecm.sfu.ca

A Maple Package for the Symbolic
Computation of Drazin Inverse Matrices

with Multivariate Transcendental
Functions Entries

Jorge Caravantes1(B), J. Rafael Sendra1, and Juana Sendra2

1 Dpto. de F́ısica y Matemáticas, Universidad de Alcalá, Alcalá de Henares, Spain
jorge.caravantes@uah.es, rafael.sendra@uah.es

2 Dpto. de Matemática Aplicada a las TIC, Universidad Politécnica de Madrid,
Madrid, Spain

juana.sendra@upm.es

Abstract. The study of Drazin inverses is an active research area that
is developed, among others, in three directions: theory, applications and
computation. This paper is framed in the computational part.

Many authors have addressed the problem of computing Drazin
inverses of matrices whose entries belong to different domains: complex
numbers, polynomial entries, rational functions, formal Laurent series,
meromorphic functions. Furthermore, symbolic techniques have proven
to be a suitable tools for this goal.

In general terms, the main contribution of this paper is the implemen-
tation, in a package, of the algorithmic ideas presented in [10,11]. There-
fore, the package computes Drazin inverses of matrices whose entries are
elements of a finite transcendental field extension of a computable field.
The computation strategy consists in reducing the problem to the com-
putation of Drazin inverses, via Gröbner bases, of matrices with rational
functions entries.

More precisely, this paper presents a Maple computer algebra package,
named DrazinInverse, that computes Drazin inverses of matrices whose
entries are elements of a finite transcendental field extension of a com-
putable field. In particular, the implemented algorithm can be applied
to matrices over the field of meromorphic functions, in several complex
variables, on a connected domain.

Keywords: Maple · Drazin inverse · Gröbner bases · Symbolic
Computation · Meromorphic functions

The authors are partially supported by FEDER/Ministerio de Ciencia, Innovación y
Universidades - Agencia Estatal de Investigación/MTM2017-88796-P (Symbolic Com-
putation: new challenges in Algebra and Geometry together with its applications).
J. R. Sendra and J. Caravantes are members of the research group ASYNACS (REF.
CT-CE 2019/683).

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 156–170, 2020.
https://doi.org/10.1007/978-3-030-41258-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_12

mmonagan@cecm.sfu.ca

A Maple Package for the Symbolic Computation of Drazin Inverse Matrices 157

1 Introduction

The study of Drazin inverses is an active research area that is developed, among
others, in three directions: theory (see e.g. Chap. 4 in [2], Chap. 7 in [4,6,8]),
applications (see e.g. Chapter 4 in [2], Chap. 7 in [4,6,8]) and computation (see
e.g. [1,2,4,7–9,12]). This paper is framed in the computational part.

Many authors have addressed the problem of computing Drazin inverses of
matrices whose entries belong to different domains: complex numbers, polyno-
mial entries, rational functions, formal Laurent series, meromorphic functions
(see [3,6,7,10,11,13]). Furthermore, symbolic techniques have proven to be a
suitable tools for this goal.

In general terms, the main contribution of this paper is the implementation,
in a package, of the algorithmic ideas presented in [10,11]. Therefore, the pack-
age computes Drazin inverses of matrices whose entries are elements of a finite
transcendental field extension of a computable field. The computation strategy
consists in reducing the problem to the computation of Drazin inverses, via
Gröbner bases, of matrices with rational functions entries.

The structure of the paper is as follows. In Sect. 2 we fix the notation, we recall
the basic notions on Drazin inverses, and we summarize the main ideas, results
and algorithmic processes presented in [10,11]; for this purpose, the section is
structured in several subsections. The algorithms in [10] and [11] are summarized
here in Algorithms 1 and 3. In Sect. 3 we present the creation of a package in the
computer algebra system Maple, that we call DrazinInverse. We also describe
the different procedures in the package, and we illustrate them with a Maple
Worksheet as well as with several examples.

2 Theoretical and Algorithmic Framework

In this section we fix the notation, and we recall the main notions, results and
algorithmic processes that are used in our implementation; for further details we
refer to [10] and [11].

2.1 The Notion of Drazin Inverse

Let F be a field, and K a computable subfield of F. Let w = (w1 . . . , wr) be a
tuple of variables, and let t = (t1, . . . , tr) ∈ (F \ K)r be a fixed tuple of differ-
ent transcendental elements over K. For instance, K could be C (the complex
numbers field), F the meromorphic functions on a connected domain of C, and
t = (z, sin(z), e(z)). We will also consider the following rings

Rw = Mn×n(K(w)), and Rt = Mn×n(K(t))

of n × n matrices with entries in K(w) and K(t), respectively. In this situation,
the notions of Drazin index and Drazin inverse are defined as follows.

Definition 1. Let A be an n × n matrix with entries in a field; e.g. A ∈ Rw or
A ∈ Rt.

mmonagan@cecm.sfu.ca

158 J. Caravantes et al.

1. The Drazin index of A is the smallest non-negative integer k such that
rank(Ak) = rank(Ak+1); we denote the index by index(A).

2. The Drazin inverse of A is the unique matrix satisfying the following matrix
equations: ⎧

⎨

⎩

Aindex(A)+1 · X = Aindex(A)

A · X = X · A
X · A · X = X.

(1)

We denote by D(A) the Drazin inverse of A.

Next, we introduce the notion of denominator of A.

Definition 2. The denominator of a matrix A ∈ Rw, denoted by denom(A), is
the least common multiple of the denominators of all entries, taken in reduced
form, of A.

2.2 Gröbner Basis Computation of Drazin Inverses

Using that Drazin inverse computation can be translated into an elimination
theory question, in [10], we use Gröbner bases to determine it when the matrix
belongs to Rw. The strategy in [10] is as follows. We decompose the system of
Eq. (1) in two subsystems, one of them carrying the linear equations, and the
other the quadratic equations. More precisely, we consider the system

L =
{

Aindex(A)+1 · X − Aindex(A) = O
A · X − X · A = O

that is linear, and the subsystem {X ·A·X−X = O} that is an algebraic system of
quadratic polynomials. Solving the compatible system L, and substituting the
solution in the quadratic system we get a new (in general) quadratic system,
equivalent to (1), and having less variables. Let Q be the resulting system, and
F be the set of polynomials defining Q. The solution of a Gröbner basis of
F , w.r.t. a lexicographic order of its variables, jointly with the solution of L,
provides D(A). These ideas yield to the following algorithm.

Algorithm 1. Drazin inverse via Gröbner basis (see Fig. 1)

Given A ∈ Rw the algorithm computes its Drazin inverse D(A).

1: Compute k := index(A).
2: Solve the linear system L = {Ak+1X̂ − Ak = O, AX̂ − X̂A = O} and substitute

its solution S in X̂AX̂ − X̂ = O. Let XAX − X = O be the resulting system and
V the set of variables.

3: Compute a Gröbner basis G of the polynomials defining XAX − X = O with
respect to a lexicographic order of V .

4: Substitute the solution provided by G and S in X̂ to get D(A).

mmonagan@cecm.sfu.ca

A Maple Package for the Symbolic Computation of Drazin Inverse Matrices 159

A is a Matrix with
multivariate
rational functions
entries

Compute
k := Drazin index of A.

S:= Solution of the linear
system

Ak+1 Ẋ - Ak = O,
A Ẋ - Ẋ A = O

Substitute the solution
provided by G and S in Ẋ

substitute S in the
quadratic system
Ẋ A Ẋ - Ẋ = O.

Resulting evaluated system
X A X - X = O

Drazin Inverse
D(A)

INPUT

OUTPUT

Gröbner basis G

Fig. 1. Scheme of Algorithm 1

2.3 Drazin Inverses Under Specializations

In this subsection we summarize the ideas in [11] to compute the Drazin inverse
of matrices in Rt. The strategy consists in reducing the computation in Rt

to the computation in Rw. More precisely, we proved the existence, and actual
computation, of a multivariate polynomial in C[w] (that we call evaluation poly-
nomial, see Definition 4), such that if it does not vanish at t the computation of
the Drazin inverse over C(t) is reduced to C(w).

In this context, we define denom(A) to be the least common multiple of all
denominators in the entries of A. Then, we consider the map

Φt : {A ∈ Rw |denom(A)(t) �= 0} −→ Rt

A(w) = (ai,j(w))1≤i,j≤n �−→ A(t) = (ai,j(t))1≤i,j≤n

and we analyze the behavior of the Drazin inverse of matrices in Rt under the
action of Φt. More precisely, if A ∈ Rt, we study when there exists A∗ such that

Φt (D(A∗)) = D(Φt (A∗)),

that is, when
D(A∗)(t) = D(A(t)).

In this case, we compute the Drazin inverse D(A) specializing D(A∗). This moti-
vates the next definition.

Definition 3. We say that A ∈ Rt behaves properly under specialization if there
exists A∗ ∈ Rw such that Φt (D(A∗)) = D(A).

In order to certify that the proper behavior, under specialization, of a matrix in
Rt, we will use a polynomial in K[w].

mmonagan@cecm.sfu.ca

160 J. Caravantes et al.

Definition 4

1. Let A ∈ Rt and let A∗ ∈ Rw be such that Φt(A∗) = A.
2. For j ∈ {1, . . . , index(A∗)}, let PjA

∗
j = LjUj be the PA=LU factorization of

A∗
j , where Pj are permutation matrices and the diagonal entries of Lj are 1.

3. Let DUj
be the set consisting in the most left non-zero element in each row

of Uj

We define the evaluation polynomial of (A,A∗) as the square-free part of the
polynomial

index(A)∏

j=1

denom(Lj) denom(Uj) ·
∏

g∈DUj

numer(g) · denom(D(A∗))(w)

where numer denotes the numerator of a rational function in K(w). We denote
the evaluation polynomial by EvalPolA,A∗(w).

The following result, proved in [11], establishes the main property of the
evaluation polynomial.

Theorem 1. Let A ∈ Rt and let A∗ ∈ Rw be such that Φt(A∗) = A. If
EvalPolA,A∗(t) �= 0, then A specializes properly at (A∗, t).

In the sequel, using the previous ideas, we derive an algorithm. First of all,
we need to design a method that certifies the correctness of the output; this is
done in Algorithm 2. For this purpose we will use the evaluation polynomial.
Let A ∈ Rt and A∗ ∈ Rw such that Φt(A∗) = A. We have to check whether
EvalPolA,A∗(t) is zero. So, we need to check whether an algebraic expression
involving several transcendental elements is zero or not. This implies to simplify
expressions relating transcendental elements; this, in general, may be a compli-
cated task (see e.g. [5]). Algorithmically, we will proceed as follows; see Fig. 2.
First, we try to simplify EvalPolA,A∗(t). If we get zero, then the answer is clear.
If we get a non-zero element, it still may happen that a further simplification
yields to zero. In this situation, we iteratively evaluate the expression at differ-
ent, randomly chosen, real numbers, till either we get a non-zero quantity, in
which case we can ensure that EvalPolA,A∗(t) �= 0, or till 200 evaluations have
been performed, in which case, we cannot ensure that EvalPolA,A∗(t) �= 0. In
the later case, we will need to check whether the answer exists (see Remark 1)
and is correct by substituting in the Eq. (1). The next algorithm is derived from
the previous ideas.

mmonagan@cecm.sfu.ca

A Maple Package for the Symbolic Computation of Drazin Inverse Matrices 161

Algorithm 2. Evaluation Test (See Fig. 2)

Given A ∈ Rt and A∗ ∈ Rw such that Φt(A
∗) = A the algorithm checks whether A

specializes properly at (A∗, t).

1: Compute EvalPolA,A∗(w).
2: T (t(z)) := EvalPolA,A∗(t) � Let t depend on the variables z
3: if T (t(z)) = 0 then return 0.
4: else
5: k = 0.
6: K := T (t(zk)) � Let zk be a tuple of random numbers.
7: while k < 200 and K = 0 do
8: k = k + 1.
9: K := T (t(zk)) � Let zk be a tuple of random numbers.

10: end while
11: end if
12: if K = 0 then return 0
13: else
14: return 1
15: end if

A specializes properly at (A*, t)

EVALUATION POLYNOMIAL

EvalPolA,A*(w)

A Rt and A* Rw such that (A*) = AINPUT

OUTPUT

Evaluate it at w=t=t(z)
T(t(z)):=EvalPolA,A*(t)

Specialization Test

till either non
zero result

zero result
 Evaluation of T(t(z))

at 200 different,
random real numbers

Return 0:
Negative test Return 1

Fig. 2. Scheme of Algorithm 2

mmonagan@cecm.sfu.ca

162 J. Caravantes et al.

The next algorithm is the main one, and summarizes all previous ideas.

Algorithm 3. Drazin inverse via Specialization (see Fig. 3)

Given A ∈ Rt the algorithm computes its Drazin inverse D(A).

1: [Specialization] Replace t by w in A to get A∗ ∈ Rw. � note that Φt(A
∗) = A

2: [Inverse computation] Apply Algorithm 1 to A∗ to get D(A∗).
3: [Specialization test] Apply Algorithm 2 to get c.
4: [Specialization of the inverse] M := Φt (D(A∗)).
5: if c = 1 then return M
6: else
7: check whether M exists and the pair M, A satisfy the equations (1)
8: if yes then return M
9: else

10: return The method fails.
11: end if
12: end if

Remark 1

1. The evaluating polynomial contains all the denominators appearing in the
algorithm, included the output. If EvalPol(t) vanishes by an specialization,
it could happen that M contains a non existing entry (because of a division
by 0), but the simplification algorithms did not detect it. In this case, we
specialize the matrix at several real numbers to check whether the resulting
matrix is real; if not, we cannot guarantee the existence of M . This, however,
has not happened in any of the tests that have been done.

2. The vanishing of EvalPol(t) proves the existence of an algebraic relation
involving the entries of t. Let I the ideal in K[w] generated by the irre-
ducible factors of EvalPol(w) that vanish after specialization. If I is a prime
ideal, then K[w]/I is an integral domain and then we can run the algorithm
again considering the field of fractions of K[w]/I instead of K(w). Otherwise,
there would be zero divisors in K[w]/I, so perhaps there are zero divisors in
K[t] and the existence of Drazin inverse is not guaranteed. If the entries of t
are analytic functions, however, K[t] has no zero divisors.

2.4 An Illustrating Example

Let t = (cos (z) , ez) and w = (w1, w2). Let

A(t) =

⎛

⎝
0 0 2 ez cos (z)

2 cos (z) e−z 2 e−z 2 − e−z

3 cos (z) e−z 3 e−z 6 e−z

⎞

⎠ ∈ Rt.

mmonagan@cecm.sfu.ca

A Maple Package for the Symbolic Computation of Drazin Inverse Matrices 163

Specialization
Test

(eval. polynomial)

Compute the Drazin Inverse of A*(w)

A*(w):=Matrix with
multivariate rational
function entries w

Drazin Inverse of
A*(w) D(A)(w)

NegativePositive

A(t):= Matrix in
Rt

convert

Substitute w by t D(A)(t)

Returns c=0

INPUT

OUTPUT

Specialization
of the inverse

Algorithm 2

Inverse
Computation

Specialization
Step

Algorithm 1

Returns c=1

If c=1 return D(A)(W)
else
check equations (1)

if yes return D(A)(W)
else return “fails”

Fig. 3. Scheme of Algorithm 3

We want to compute the Drazin inverse D(A) of A. For this purpose, we first
associate to A a matrix A∗ ∈ Rw = M3×3(C(w)). In the following, we describe
the computations of the heart of the algorithm.
Step 1 in Algorithm 3. By replacing w1 := cos (z) , w2 := ez we get

A∗(w) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 2w2w1

2w1

w2

2
w2

2
w2

3w1

w2

3
w2

6
w2

⎞

⎟
⎟
⎟
⎟
⎠

∈ Rw.

Step 2 in Algorithm 3. Applying Algorithm 1 we get

D(A∗)(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4w2
3w1

2

3 (w1
4w2

4 − 2w1
2w2

2 + 1)

−4w2
3w1

3 (w1
2w2

2 − 1)2
3

(
w1

2w2
2 + 5

)
w2

3w1

9 (w1
2w2

2 − 1)2(
w1

2w2
2 + 3

)
w2w1

3 (w1
2w2

2 − 1)2

(
w1

2w2
2 + 3

)
w2

3 (w1
2w2

2 − 1)2
− (

5w1
2w2

2 + 3
)
w2

9 (w1
2w2

2 − 1)2

w2w1

2 (w1
2w2

2 − 1)
w2

2 (w1
2w2

2 − 1)
−w2

3 (w1
2w2

2 − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 3 in Algorithm 3. We execute Algorithm 2. First we get the evaluation poly-
nomial (see Step 1 in Algorithm 2)

EvalPolA,A∗(w) = 144w2w1(w2w1 − 1)(w1w2 + 1) ∈ C[w].

and we evaluate it at t (see Step 2 in 2) to get

T ((z)) = 144ez cos(z)(ez cos(z) − 1)(ez cos(z) + 1).

mmonagan@cecm.sfu.ca

164 J. Caravantes et al.

Taking z0 = π, we get that K = T (t(π)) = −144eπ(e2π − 1) �= 0, and hence
Algorithm 2 returns 1. Coming back to Algorithm 3, we get M = Φt (D(A∗))
(see Step 4 in Algorithm 3)

M =

⎛
⎜⎜⎜⎜⎜⎝

−4 (ez)3 cos(z)2

3 (cos(z)4(ez)4−2 cos(z)2(ez)2+1)

−4 (ez)3 cos(z)

3 (cos(z)2(ez)2−1)2
3 (cos(z)2(ez)2+5)(ez)3 cos(z)

9 (cos(z)2(ez)2−1)2

(cos(z)2(ez)2+3)ez cos(z)

3 (cos(z)2(ez)2−1)2
(cos(z)2(ez)2+3)ez

3 (cos(z)2(ez)2−1)2
−(5 cos(z)2(ez)2+3)ez

9 (cos(z)2(ez)2−1)2

ez cos(z)

2 (cos(z)2(ez)2−1)
ez

2 (cos(z)2(ez)2−1)
−ez

3 (cos(z)2(ez)2−1)

⎞
⎟⎟⎟⎟⎟⎠

Finally, since c = 1, Algorithm 3 returns D(A) = M ��.

3 The Package DrazinInverse

In this section, we present the creation of a package in the computer algebra sys-
tem Maple, that we call DrazinInverse that consists in several procedures that
are based and implement Algorithms 1, 2 and 3, described above. This package
computes the Drazin inverse of matrices whose entries are elements of a finite
transcendental field extension of a computable field. More precisely, matrices
whose coefficients are rational functions of finitely transcendental elements over
a computable subfield of the field C of the complex numbers.

3.1 Summary: Overview of the Software Structure

The created Maple package DrazinInverse is initialized by the command:

> with(DrazinInverse):
The main procedure in the package is DrazinInv, which determines the

Drazin inverse of a matrix. This command implements Algorithm 3 and invokes
the following sub-procedures based on the definitions and results introduces by
the authors in [10] and [11] and summarized in Sect. 2:

• TypeMatrixAlg: Checks whether a given matrix is in Rw.
• DrazinIndex: Determines the Drazin Index of an square matrix (see Definition

1).
• RationalDrazin: Computes the Drazin inverse of a matrix in Rw.
• MatrixDenom: Determines the denominator of a matrix (see Definition 2).
• FirstPivot: Determines the first non zero coefficient of a specific row of a

given matrix.
• EvaluationPol: Determines the evaluation polynomial of a matrix (see Defi-

nition 4).
• SpecializationTest: Checks whether a multivariate polynomial does not van-

ish for random values of the variables.
• CheckDarzinInverse: Checks whether two given matrices are the Drazin

inverse of each other.

In the following, we give a brief description of the procedures. The package
is available at http://www3.uah.es/rsendra/software.html.

http://www3.uah.es/rsendra/software.html

mmonagan@cecm.sfu.ca

A Maple Package for the Symbolic Computation of Drazin Inverse Matrices 165

3.2 Description of the Individual Software Components

> TypeMatrixAlg

(i) Feature: This procedure checks the algebraic character of a given matrix.
Briefly, the input and output of the procedure can be stated as follows:
� Input: Given a matrix A.
� Output: “true” if A has rational function entries otherwise “false”.

(ii) Calling Sequence: > TypeMatrixAlg(A);
(iii) Parameters: A is a matrix.
(iv) Synopsis: The procedure checks whether the input matrix A has rational

function entries, it is whether A is in the ring of matrices Mn×n(K(w)).
The procedure outputs the message “true” or “false”.

> DrazinIndex

(i) Feature: This procedure determines the Drazin Index of an square matrix.
Briefly, the input and output of the procedure can be stated as follows:
� Input: Given an square matrix A.
� Output: Compute the Drazin Index of A.

(ii) Calling Sequence: > DrazinIndex(A);
(iii) Parameters: A is an square matrix.
(iv) Synopsis: The procedure computes the Drazin Index of A (Definition 1).

> RationalDrazin

(i) Feature: This procedure computes the Drazin inverse of a matrix with mul-
tivariate rational functions as entries. Briefly, the input and output of the
procedure can be stated as follows:
� Input: Given an square matrix A with multivariate rational functions as

entries.
� Output: Compute the Drazin inverse of A.

(ii) Calling Sequence: > RationalDrazin(A);
(iii) Parameters: A ∈ Mn×n(K(w)).
(iv) Synopsis: Basically, the procedure computes the Drazin inverse of a matrix

with multivariate rational functions as entries using Gröbner basis. See
Algorithm 1. First, the procedure checks whether A ∈ Mn×n(K(w)) with
the above command TypeMatrixAlg. In the affirmative case, it outputs the
Drazin inverse and the Drazin Index of A. Otherwise, the procedure outputs
the message “A is not a Matrix with rational function elements”.

> MatrixDenom

(i) Feature: This procedure determines the denominator of a matrix A (see
Definition 2). Briefly, the input and output of the procedure can be stated
as follows:

mmonagan@cecm.sfu.ca

166 J. Caravantes et al.

� Input: Given a matrix A.
� Output: Compute the least common multiple of the denominators of all

entries, taken in reduced form, of A.
(ii) Calling Sequence: > MatrixDenom(A);
(iii) Parameters: A is a matrix.
(iv) Synopsis: First, the procedure checks whether A ∈ Mn×n(K(w)) with the

above command TypeMatrixAlg. If it succeeds, it computes the denomina-
tor of A, denom(A) (Definition 2). Otherwise, the procedure outputs the
message “A is not a Matrix with rational function elements”.

> FirstPivot

(i) Feature: This procedure determines the pivot of an specific row of a matrix.
Briefly, the input and output of the procedure can be stated as follows:
� Input: Given a matrix A and a natural number i.
� Output: Compute the first non zero coefficient of the i-th row of A.

(ii) Calling Sequence: > FirstPivot(A,i);
(iii) Parameters: A is a matrix, i ∈ N.
(iv) Synopsis: The procedure determines the first non zero coefficient of a specific

row of a matrix.

> EvaluationPol

(i) Feature: This procedure determines the evaluation polynomial of a matrix A
(Definition 4). Briefly, the input and output of the procedure can be stated
as follows:
� Input: Given an square matrix A and k = indexA.
� Output: Compute the evaluation polynomial of A.

(ii) Calling Sequence: > EvaluationPol(A,B,k);
(iii) Parameters: A ∈ Mn×n(K(w)), B is the Drazin inverse of A, and k ∈ N.
(iv) Synopsis: First, the procedure checks whether the input matrices A,B

belong to Mn×n(K(w)) with the above command TypeMatrixAlg. If it suc-
ceeds, it computes the evaluation polynomial of A (Definition 4) invoking
the command MatrixDenom.

> SpecializationTest

(i) Feature: This procedure checks whether a multivariate polynomial does not
vanish for random values of the variables. Briefly, the input and output of
the procedure can be stated as follows:
� Input: Given a multivariate polynomial P .
� Output: Check if P (α) = 0 for randomly chosen 200 values of α.

(ii) Calling Sequence: > SpecializationTest(P);
(iii) Parameters: P is a multivariate polynomial.

mmonagan@cecm.sfu.ca

A Maple Package for the Symbolic Computation of Drazin Inverse Matrices 167

(iv) Synopsis: Basically, the procedure tests whether the multivariate polynomial
P does not vanish for at most random 200 values, stoping either when a non-
zero value is reached or when the 200 specializations have been performed. It
outputs the messages “positive test” or “negative test”. This procedure will
be applied to check the specialization criterium described in Subsect. 2.3.

> DrazinInv

(i) Feature: This procedure determines the Drazin inverse of a matrix whose
entries are elements of a finite transcendental field extension of a computable
field. Briefly, the input and output of the procedure can be stated as follows:
� Input: Given an square martix A.
� Output: Compute the Drazin inverse, D(A), of A.

(ii) Calling Sequence: > DrazinInv(A);
(iii) Parameters: A ∈ Mn×n(K(t)).
(iv) Synopsis: Basically, the procedure computes Drazin inverse D(A) of A using

Algorithm 3. More precisely, first the procedure associates to A a matrix
A∗, whose entries are rational functions in several variables; secondly it
computes the Drazin inverse of A∗ using the RationalDrazin command. Fol-
lowing it checks the correctness of the method using the SpecializationTest
and CheckDrazinInverse commands.

> CheckDarzinInverse

(i) Feature: This procedure checks if two given matrices are the Drazin inverse
of each other. Briefly, the input and output of the procedure can be stated
as follows:
� Input: Given, two matrices A,B and the Drazin Index k of A.
� Output: Check if B is the Drazin inverse of A.

(ii) Calling Sequence: > CheckDarzinInverse(A,B,k);
(iii) Parameters: A,B ∈ Mn×n(K(t)) and k ∈ N (k = index(A)).
(iv) Synopsis: The procedure checks whether B is the Drazin inverse of A sub-

stituting the matrices in the system of Eq. (1).

3.3 Illustrative Examples of the Usage of the Package Commands

In order to use the package, download the file DrazinInverse.m from
http://www3.uah.es/rsendra/software.html and save it as your local folder. After
starting Maple you redefine the variable libname as

> libname:=libname,’path of user local folder’;
In this situation, after executing the command with(DrazinInverse), the pack-

age is ready to be used. In Fig. 4 we provide a Maple Worksheet illustrating the
usage of our package for the computation of an inverse Drazin matrix over the
field of meromorphic functions.

We also provide, at http://www3.uah.es/rsendra/software.html, several sam-
ple files with the results obtained applying the package to matrices with different
meromorphic functions entries. To read the sample files we only have to invoke:

> read(‘C:/user root saved file/sample.txt’);

http://www3.uah.es/rsendra/software.html
http://www3.uah.es/rsendra/software.html

mmonagan@cecm.sfu.ca

168 J. Caravantes et al.

>>

>>

>>

>>

(3)(3)

(1)(1)

(4)(4)

(2)(2)

with(DrazinInverse);
CheckDrazinInverse, DrazinIndex, DrazinInv, FirstPivot, MatrixDenom, RationalDrazin,

SpecializationTest, TypeMatrixAlg
A := Matrix(3, 3, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 2*exp(z)*cos
(z), (2, 1) = 2*cos(z)/exp(z), (2, 2) = 2/exp(z), (2, 3) = 2/exp
(z), (3, 1) = 3*cos(z)/exp(z), (3, 2) = 3/exp(z), (3, 3) = 6/exp
(z)});

A :=

0 0 2 ez cos z

2 cos z
ez

2
ez

2
ez

3 cos z
ez

3
ez

6
ez

DA:=DrazinInv(A);
The Drazin Index is

1
Positive test

The Inverse Drazin Matrix is

DA := 4
3

ez 3
 cos z 2

cos z 4 ez 4
2 cos z 2 ez 2

1
, 4

3
ez 3

 cos z

cos z 2 ez 2
1

2 ,

1
9

3 cos z 2 ez 2
5 ez 3

 cos z

cos z 2 ez 2
1

2 ,

1
3

cos z 2 ez 2
3 ez cos z

cos z 2 ez 2
1

2 , 1
3

cos z 2 ez 2
3 ez

cos z 2 ez 2
1

2 ,

1
9

5 cos z 2 ez 2
3 ez

cos z 2 ez 2
1

2 ,

1
2

ez cos z

cos z 2 ez 2
1

, 1
2

ez

cos z 2 ez 2
1

, 1
3

ez

cos z 2 ez 2
1

CheckDrazinInverse(A,DA,DrazinIndex(A));
YES

Fig. 4. Maple worksheet

mmonagan@cecm.sfu.ca

A Maple Package for the Symbolic Computation of Drazin Inverse Matrices 169

In the following we describe the data of the files. Each file contains the result
of applying the package to a matrix over the field of rational functions C(t)
where t = (t1, t2) for different selections of the transcendental elements t1, t2.
Moreover, In the five first cases the matrix is 3 × 3 while in the second to the
last is 5 × 5 and the last is 10 × 10.

1. In the sample file “sample1.text” we take t = (Γ (z), ζ(z)) with z independent
complex variable, where Γ (z) is the Gamma function, that is

Γ (z) =
∫ ∞

0

e−ttz−1dt,

and ζ(z) is the Riemann Zeta function defined for Re(z) > 1 by

ζ(z) =
∞∑

i=1

1
iz

.

2. In the sample file “sample2.text” we take t = (Γ (z),B(z1, z2)) with z, z1, z2
independent complex variables, where Γ (z) is the Gamma function and
B(z1, z2) is the Beta function, that is

B(z1, z2) =
Γ (z1)Γ (z2)
Γ (z1 + z2)

.

3. In the sample file “sample3.text” we take t = (Γ (z),HankelH2(v1, v2)) with
z, v1, v2 independent complex variables, where Γ (z) is the Gamma function
and HankelH2 is the Hankel function, also known as the Bessel function of
the third kind.

4. In the sample file “sample4.text” we take t = (Γ (z),Si(x)) with z, x indepen-
dent complex variables, where Γ (z) is the Gamma function and Si(x) is the
Sine Integral, that is

Si(z) =
∫ x

0

sin(t)
t

dt.

5. In the sample file “sample5.text” we take t = (FresnelC(x),Shi(z)) with
x, z independent complex variables, where FresnelC(x) is the Fresnel Cosine
Integral defined by:

FresnelC(x) =
∫ x

0

cos(
πt2

2
)dt,

and Shi(z) is the Hyperbolic Sine Integral defined as

Si(z) =
∫ z

0

sinh(t)
t

dt.

6. In the sample file “sample6.text” we take t = (ln(z),CoulombF(L, n, p)) with
z, L, n, p independent complex variables, where CoulombF(L, n, p) is the Reg-
ular Coulomb wave function satisfying the differential equation:

y
′′
(x) + (1 − 2n

x
− L(L + 1)

x2
)y(x) = 0.

7. In the sample file “sample7.text” we take (t1, t2) = (cos(z)2, e(z)).

mmonagan@cecm.sfu.ca

170 J. Caravantes et al.

References

1. Avrachenkov, K.E., Filar, J.A., Howlett, P.G.: Analytic Perturbation Theory and
Its Applications. SIAM (2013)

2. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications,
2nd edn. Springer, Heidelberg (2003). https://doi.org/10.1007/b97366

3. Bu, F., Wei, Y.: The algorithm for computing the Drazin inverses of two-variable
polynomial matrices. Appl. Math. Comput. 147, 805–836 (2004)

4. Campbell S.L., Meyer, C.D.: Generalized inverses of linear transformations series:
classics in applied mathematics. SIAM (2009)

5. Corless, R.M., Davenport, J.H., Jeffrey, D.J., Litt, G., Watt, S.M.: Reasoning about
the elementary functions of complex analysis. In: Campbell, J.A., Roanes-Lozano,
E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, pp. 115–126. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44990-6 9

6. Diao, H., Wei, Y., Qiao, S.: Displacement rank of the Drazin inverse. J. Comput.
Appl. Math. 167, 147–161 (2004)

7. Ji, J.: A finite algorithm for the Drazin inverse of a polynomial matrix. Appl. Math.
Comput. 130, 243–251 (2002)

8. Ljubisavljević, J., Cvetković-Ilić, D.S.: Additive results for the Drazin inverse of
block matrices and applications. J. Comput. Appl. Math. 235, 3683–3690 (2011)

9. Miljković, S., Miladinović, M., Stanimirović, P.S., Weib, Y.: Gradient methods
for computing the Drazin-inverse solution. J. Comput. Appl. Math. 253, 255–263
(2013)

10. Sendra, J., Sendra, J.R.: Gröbner basis computation of drazin inverses with mul-
tivariate rational function entries. Appl. Math. Comput. 259, 450–459 (2015)

11. Sendra, J.R., Sendra, J.: Symbolic computation of Drazin inverses by specializa-
tions. J. Comput. Appl. Math. 301, 201–212 (2016)

12. Stanimirović, P.S., Cvetković-Ilić, D.S.: Successive matrix squaring algorithm for
computing outer inverses. Appl. Math. Comput. 203, 19–29 (2008)

13. Stanimirović, P.S., Tasić, M.B., Vu, K.M.: Extensions of Faddeev’s algorithms to
polynomial matrices. Appl. Math. Comput. 214, 246–258 (2009)

https://doi.org/10.1007/b97366
https://doi.org/10.1007/3-540-44990-6_9

mmonagan@cecm.sfu.ca

A Poly-algorithmic Quantifier Elimination
Package in Maple

Zak Tonks(B)

University of Bath, Bath, Somerset BA2 7AY, UK
z.p.tonks@bath.ac.uk

Abstract. The problem of Quantifier Elimination (QE) in Computer
Algebra is that of eliminating all quantifiers from a statement featuring
polynomial constraints. This problem is known to be worst case time
complexity worst case doubly exponential in the number of variables. As
such implementations are sometimes seen as undesirable to use, despite
problems arising in algebraic geometry and even economics lending them-
selves to formulations as QE problems. This paper largely concerns dis-
cussion of current progress of a package QuantifierElimination written
using Maple that uses a poly-algorithm between two well known algo-
rithms to solve QE: Virtual Term Substitution (VTS), and Cylindrical
Algebraic Decomposition (CAD). While mitigation of efficiency concerns
is the main aim of the implementation, said implementation being built
in Maple reconciles with an aim of providing rich output to users to make
use of algorithms to solve QE valuable. We explore the challenges and
scope such an implementation gives in terms of the desires of the Satis-
fiability Modulo Theory (SMT) community, and other frequent uses of
QE, noting Maple’s status as a Mathematical toolbox.

Keywords: Quantifier Elimination · Virtual Term Substitution ·
Cylindrical Algebraic Decomposition · Symbolic computation

1 Introduction

Quantifier Elimination (QE) over the real numbers is a problem in Computer
Algebra with origins in Logic that concerns the elimination of quantifiers from
a boolean formula of polynomial constraints. We concisely define such formulae.

Definition 1. A Tarski Formula is a polynomial constraint, f ρ 0, where ρ ∈ {<
,≤, �=,=}, f ∈ Q[x1, . . . , xn], n ∈ IN, or a boolean formula of Tarski formulae,
where allowable boolean operators may include ∧,∨,⇒,¬,�.

A Quantified Tarski Formula is a Tarski formula which allows quantifiers
(∃,∀), and as such quantified variables preceding any subformula.

Thanks to my supervisor James Davenport.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 171–186, 2020.
https://doi.org/10.1007/978-3-030-41258-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_13&domain=pdf
http://orcid.org/0000-0001-6019-1775
https://doi.org/10.1007/978-3-030-41258-6_13

mmonagan@cecm.sfu.ca

172 Z. Tonks

A reader may be aware of the concept of a “Prenex” Tarski formula, where
there is precedence for all quantifiers to exist only at the beginning of such a
formula, and then in the remaining unquantified Tarski formula, only ∨,∧ are
allowable boolean operators. This includes pushing of ¬ to the leaves of a formula
such that relational operators get inverted (= to �=, < to ≥, etc.). We note that
any quantified Tarski formula can be converted to such a prenex form, and so
we can obtain

Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn) (1)

as a “Quantified Prenex Tarski Formula”, where each Qi ∈ {∀,∃}, i = n − m +
1 . . . n, n ≥ m ∈ IN, and Φ is a quantifier free Tarski formula featuring at most
boolean operators from {∧,∨}. Note that this means there are m quantified vari-
ables. Further, we will assume the input formula for QE is a prenex quantified
Tarski formula, given the available conversion. As such, the goal is to eliminate
Qn−m+1xn−m+1 . . . Qnxn from (1), and obtain the quantifier free equivalent for-
mula Ψ(x1, . . . , xn−m). A variable xi where i ∈ {1, . . . , n − m} is described as a
“free variable”. When m = n, i.e. there are no free variables, the formula is fully
quantified, and as such (1) is certainly equivalent to � or ⊥, which in Maple are
represented by true and false respectively. Considering the context of Maple, we
will use true and false in this paper to mean � or ⊥ respectively.

2 Background of Techniques and Other Software

Tarski (after whom Definition 1 is named) first suggested an algorithm to solve
QE problems in 1951 [16], but his method was essentially completely infeasible
for implementation. Later algorithms were feasible, but deduced to be doubly
exponential worst case complexity [7], hence the discussion surrounding mitiga-
tion of running times of such algorithms.

The Cylindrical Algebraic Decomposition (CAD) method for QE started with
Collins in 1975 [6]. This algorithm became a popular technique to solve QE
problems, with improvements such as “Partial CAD” [9] completely tailored to
QE, resulting in the software QEPCAD B [2]. Meanwhile, most research has focused
on optimisation of the projection operator intrinsic to the usual first stage of the
method, to which essentially all of the complexity can be attributed [4].

Weispfenning suggested the Virtual Term Substitution (VTS) method (some-
times known as just “Virtual Substitution” (VS)) in 1988 [17], at the time allow-
ing for elimination of quantified variables appearing at most quadratically in Φ.
A plethora of improvements to VTS can be attributed to Košta, who provided
an extension of the method to variables appearing in degree up to 3 in Φ [10].

We acknowledge the existence of packages engaging with QE publicly avail-
able for Maple thus far. RegularChains [1] provides an implementation of QE
via CAD, and is included in current editions of Maple. Similarly SyNRAC [18]
offers an implementation of QE via VTS. ProjectionCAD [8] is yet another
CAD based solution to QE. With the exception of RegularChains, the afore-
mentioned are publicly available online, but not included natively with Maple.
Outside of Maple, an implementation of QE exists in Mathematica [15], with this

mmonagan@cecm.sfu.ca

A Quantifier Elimination Package in Maple 173

implementation at least similar to this work in the sense that VTS (written as
“Virtual Substitution” in RealPolynomialSystems) and CAD cohabit (amongst
other Computer Algebra tools), and the implementation can use either of these
algorithms for QE depending on the degree of the variables existing in the QE
problem passed. However, it is not poly-algorithmic in the sense that there is
any intention to examine subproblems produced by VTS, but could use CAD on
the entire quantified result of VTS eliminating a subset of the original quanti-
fied variables. For the purposes of this work, subproblems produced by VTS are
meaningful to examine, and can be solved by incremental CAD.

3 Virtual Term Substitution

VTS offers a direct, but degree limited solution to QE. Referring to (1), to
eliminate Qixi, i ∈ {n − m + 1, . . . , n} VTS will attempt to substitute a
point from every interval of the real line according to those intervals formed
by the real roots of all polynomials contained in Φ in xi. Given that such
polynomials are multivariate (and indeed here we view them as elements of
Q[x1, . . . , xi−1, xi+1, . . . , xn][xi]), one may immediately realise that the roots of
such polynomials in xm will not, in general, be real numbers at this stage. Indeed,
this is one of the ways in which the term “virtual” arises, as substitutions of these
root expressions requires assertions on sign conditions of their coefficients, for
example at the very least to ensure that such a root will exist. These “guards”,
that contain such assertions are Tarski formulae (over all other variables) in
themselves, and the results of virtual substitution are similarly further Tarski
formulae.

Further problems give rise to the use of the term “virtual” here. One is that
(at least some) of the above mentioned intervals must be open if we are to cover
the real line. Hence, presence of other variables means that one cannot use an
exact root expression to represent substitution of a point from intervals where
at least one end is open. Another is that the end intervals must feature ±∞,
again such that we can cover the entire real line. Lastly, substitution of terms
arising exactly from the real root of a polynomial implies dealing with potentially
irrational expressions, potentially including other as yet uneliminated variables.
Recalling the claim that VTS is degree limited, usage of the latest techniques
from [10] allows us usage of test points arising from polynomials of up to degree
3, which implies the usage of irrational numbers at least on paper.

Solutions to these challenges are via the following:

– Technology to allow test points (those are the expressions used for substitu-
tion of any one variable) featuring the infinitesimals ε, ∞.

– Especially owing to [10], where one wishes to substitute a root of f in x
into g ρ 0, usage of pseudoremainder of g by f to ensure that one only
requires knowledge of how to substitute a root of a polynomial of degree
d into a polynomial of degree at most d − 1 (as if deg(g, x) = d then
deg(prem(g, f, x), x) ≤ d − 1). In this case, this is done via enumeration of
formulae schemes, which describe the resulting logic that ensures substitution

mmonagan@cecm.sfu.ca

174 Z. Tonks

of what would be an otherwise irrational root from f results in formulae over
polynomials in Q[x1, . . . , xn]. In other words, from data including the degrees
of f and g, the real index of the root to be substituted, and the real type of
f , one can directly look up the resulting formula for the virtual substitution.
If h := prem(g, f, x) is of degree at most 0 in x, then the virtual substitu-
tion (g ρ 0)[x//RootOf(f)] (ie. (virtual) substitution of a root of f in x of
some description into g ρ 0) returns h ρ 0. When virtually substituting into
a formula with boolean structure (that is a non atomic formula) the process
is defined recursively, with each constraint replaced with its virtual substi-
tution (which may expand as a non atomic formula). Note that the use of
pseudoremainder is justified by f being 0 at a root of f .

VTS can be seen as looking for valid “examples” (via test points) to solve
an existential question, and similarly valid counterexamples to solve a universal
one. As such, VTS aims to acquire truth out of a virtual substitution for an
existential quantifier, and likewise falsity out of a substitution for a universal
quantifier. In particular existential VTS acquires:

∃x Φ = G(t1) ∧ Φ[x//t1] ∨ · · · ∨ G(tk) ∧ Φ[x//tk] (2)

where t1, . . . , tk are the test points acquired from polynomials in Φ, and G is a
map from test points to their relevant guards. Given that VTS is by invention a
tool to tackle existential questions, one really acquires technology to deal with
universal quantifiers by the following equivalence:

∀x Φ ≡ ¬∃x ¬Φ (3)

leading to:

∀x Φ ≡ ¬(G(t1) ∧ ¬Φ[x//t1]) ∧ · · · ∧ ¬(G(tk) ∧ ¬Φ[x//tk]) (4)

Inspection of (2) or (4), and recollection of the prenex input (1) will lead
one to the understanding that using VTS to eliminate the innermost quantifier
will lead to a string of quantifiers preceding either a disjunction or conjunction
of results of virtual substitution on the input formula. Via distribution of such
quantifiers into this disjunction or conjunction, one receives (a choice!) of further
QE problems, of which one can use VTS or CAD to tackle. Beyond the choice
of which operand to propagate VTS on further, one may even have a choice of
which quantified variable to distribute in, due to commutativity of quantifiers of
the same type. That is, if Qj = Qn−m+1 for some j < n − m + 1, then one can
distribute in any Qixi, i ∈ {j . . . n−m+1}, albeit this requires some commitment,
as one has to distribute this into all operands of the disjunction/conjunction, and
so ideally one must be sure this choice of variable is a close to optimal choice
for all such QE problems formed further. Most improvements thus far for VTS
have focused on the univariate case, with the implications of the multivariate
case, and discussion of implementation left somewhat alone.

mmonagan@cecm.sfu.ca

A Quantifier Elimination Package in Maple 175

3.1 Implementation

Multivariate VTS defines a canonical tree structure (see Fig. 2), with edges of
the tree being structural test points from VTS, and nodes being formulae that
are the results of (perhaps successive) substitution of test points on Φ. Such
formulae exist within the implicit disjunction/conjunction formed by VTS. True
finished tree leaves are those that hold the formula true or false, and meaning-
ful leaves are those that imply termination of VTS in some way (due to the
implicit disjunction/conjunction evaluating to true or false). Such a tree struc-
ture is immediately amenable to an object based implementation of the VTS
nodes. Objects are supported in Maple using a special option for modules [11],
which enables inheritance. Given that such formulae for each node are really QE
problems in themselves, these objects are called IQERs (Intermediate Quantifier
Elimination Results), and past storage of the associated formula for the node,
offer support for storage of the preceding tree edge (in essence a VTS test point),
parent node, child nodes, and other information including information to allow
evolutionary computation.

As far as QuantifierElimination is concerned, QE input in Maple is defined
by usage of the inert operators forall, exists, Implies, And, Or, Xor, and
Not. QuantifierElimination accepts quantified input that is non prenex (it
is converted to prenex form upon input). forall and exists in Maple allow
for a string of similarly quantified variables via passing a list of variables to
either operator as their first operand, else any Maple name is allowable. Figure 1
shows an example of some QE input and output via QuantifierElimination
in Maple.

Maple’s inert boolean operators are ideal for usage as QE input, being inert
and typesetting well in the interface. However such operators make for formulae
that are poorly mutable, where if one were to add an extra operand to a conjunc-
tion/disjunction with, say, n ∈ IN operands, then appending the extra operand
actually requires rebuilding the entire formula, hence n + 1 ∈ O(n) operations
due to n intermediate objects to be discarded in garbage collection. Meanwhile,
Maple also provides the Array construct, a mutable storage solution that allows
for circumvention of this issue. As building of arbitrary formulae is vital to oper-
ation of VTS, usage of Arrays under the hood for intermediate Tarski formulae
arising in VTS is an obvious choice. Conversion back to formulae using Maple’s
inert constructs occurs just before output for the purpose of aesthetics.

4 Cylindrical Algebraic Decomposition

The perhaps more well known approach to QE, CAD, takes a more basic app-
roach to substitution of values to deduce a quantifier free equivalent to (1). That
being said, its methodology for finding meaningful polynomials defining intervals
to substitute from at each level requires far more computation than that of VTS.
While VTS does not directly attempt “back substitution” to solve the problem,
thanks to the virtual methodology, CAD can be seen as more analogous to back

mmonagan@cecm.sfu.ca

176 Z. Tonks

substitution. The usual first stage, projection, attempts to form bases of poly-
nomials (starting from the polynomials in Φ) in progressively fewer variables,
until one receives a basis of univariate polynomials. From here, one can begin
the second stage, lifting, where from the intervals defined by the univariate basis,
one need only perform real root isolation to be able to define “cells” on which
all polynomials in Φ will be sign invariant (with respect to the variable the cells
are created over). The sign invariance of all polynomials on a cell implies Φ is
truth invariant on that cell. Sample points (some candidate point from each cell)
can be substituted into polynomials in the basis above to propagate the process
further, forming “stacks” of cells which are arranged cylindrically. Cylindricity
implies that projections of any pair of cells onto some space corresponding to
x1, . . . , xk for some k < n − M (where M is the maximum of the levels of these
two cells) will either completely coincide, or be entirely disjoint. This condition is
not strictly necessary for unquantified variables, but is included algorithmically
in practice for simplicity.

In particular, the projection stage was stated to be the most time consuming
process here - indeed this stage requires taking operations such as resultants
between polynomials, and discriminants on each polynomial. Such objects may
be relevant to deducing critical points in real space to solve the QE problem.
However the nature of degree bloat in taking operations such as resultants implies
exponentially increasing time must be invested to perform this process. This is
why much research has taken place in optimising the projection process, includ-
ing a “reduced” projection operator in the presence of equational constraints in
Φ [12,13], which is of interest for the author’s QE implementation.

4.1 Implementation

In a similar manner to VTS, CAD lends itself to a tree structure, where nodes
are CAD cells, and node parenting is equivalent to the implication that a cell
is in the stack over another given cell. As such, the CAD implementation in
QuantifierElimination is also object based. With respect to ongoing research
on increasingly efficient projection operators, QuantifierElimination uses the
most contemporary operator currently available for CAD, the Lazard projection
operator [14]. The author keenly awaits ongoing research by colleagues into the
equivalent of [12] for the Lazard operator - equational constraints for CAD would
be of most use, as is discussed in Sect. 5.1. There are few other interesting nuances
to speak of for the implementation here - Maple’s RootFinding package offers
the real root isolation that CAD relies upon heavily, and Maple 2019’s update to
this isolator allows for usage of algebraic numbers (and in general, non rational)
coefficients in polynomials for isolation.

5 The QuantifierElimination Package

QuantifierElimination is a package being written using Maple in collab-
oration with Maplesoft, that is intended to be the first implementation of

mmonagan@cecm.sfu.ca

A Quantifier Elimination Package in Maple 177

a poly-algorithm between VTS and CAD in Maple to tackle QE problems.
QuantifierEliminate (Fig. 1) is the main procedure implementing the poly-
algorithm to achieve QE.

5.1 VTS and CAD

VTS attempts to make meaningful (virtual) substitutions for variables based
on the polynomials appearing in any one intermediate formula, while CAD will
make substitutions based off of polynomials obtained via repeated projection
on the polynomials from the initial input. In the latter case, polynomials in the
bases at intermediate levels may have roots meaningless to the original problem,
or even to real space. As such, VTS can loosely be seen to be “more concise”,
where meaningless substitutions only occur as a result of the boolean structure
of the input problem. One may expect a better average case for VTS as a result,
which is in itself an investigation, together with further complexity analysis of
VTS.

If this is the case, the main motivation behind using both VTS and CAD
consecutively is as a result of the limitations of VTS. As stated, VTS is entirely
degree limited, where with presently available techniques VTS will only be able
to eliminate quantifiers for variables appearing at most as cubics in Φ. In par-
ticular, there are two main conveniences if one is to consider a poly-algorithm
between VTS and CAD.

The first convenience is that, generically, one propagation of VTS pro-
duces additional QE problems. Propagation of VTS on a node of the VTS
tree implicitly forms a conjunction or disjunction (from a universal or exis-
tential quantifier respectively) of the results of virtual substitution via each
applicable test point from the node. More concisely, propagation of VTS on
Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn) (noting that we claim any node to
be a true prenex QE problem in itself) forms Qn−m+1xn−m+1 . . . Qn−1xn−1

B(Φ[xn//t1], . . . , Φ[xn//tk]), where using makeshift prefix notation B is either
And or Or depending on the quantifier. Henceforth, one can distribute Qn−1xn−1

(or a choice of quantified variable, considering commutativity of quantifiers to
be discussed below) into all operands of B, obtaining a choice of potential QE
problems. As long as we have such a choice, and we prefer to propagate VTS, we
can do whatever necessary to keep receiving intermediate QE problems amenable
to VTS, and then use CAD as a “last resort” when there is no choice due to
excessive degree of all quantified variables.

An immediate consequence that one may find concerning is that this, as stan-
dard, implies that one could build a (potentially exponential!) number of CADs
to solve ensuing intermediate QE problems that arrive, all of which of excessive
degree for VTS to traverse. Hence, we arrive at another potential convenience.
Note that a CAD for a set of polynomials arising from one QE problem can be
used to solve any QE problem featuring the same order of quantified variables,
and a subset of polynomials from the original problem. In the event that several
VTS nodes of excessive degree feature formulae involving similar polynomials

mmonagan@cecm.sfu.ca

178 Z. Tonks

(in terms of set theoretics), then one need only build one CAD from scratch for
the first non VTS-amenable problem. Further, one uses CAD incrementality to
add to this CAD to obtain a CAD that solves each successive IQER of exces-
sive degree for VTS encountered. Hence a “Master CAD” arises for any one QE
problem, which is empty for any problem solvable completely by VTS.

One notes that this assumes that the situation of “similar” VTS nodes arises
frequently, else in the worst case of completely disjoint sets of polynomials for
successive intermediate formulae to be traversed by CAD, we are essentially
building a CAD for each from scratch. The author aims to specify a definition of
“similar” for VTS nodes in terms of their associated formulae, and investigate
how prevalent examples are (or are not) that lend themselves to such a “Master
CAD” approach in the future.

The second convenience is that quantifiers of the same type commute. At the
very least this provides some freedom for choice-of-variable strategy, as above.
Most importantly for now, this provides opportunities to eliminate a quantifier
of a variable appearing of, say, lowest degree, before one appearing in excessive
degree. In terms of VTS, this excessive degree is currently degree 4. To be precise,
if we have Qn−m+1xn−m+1 . . . Qnxn Φ(x1, . . . , xn) where Qn = Qn−1, and xn

appears as a quartic in Φ, then VTS is at present unsuitable to work with
the formula, but one can swap Qnxn and Qn−1xn−1, and hence the innermost
problem is amenable to VTS.

In the best case, the poly-algorithm aims to avoid usage of CAD completely,
instead receiving a quantifier free answer purely via VTS, bypassing non VTS-
amenable nodes. This has implications with respect to output depending on
what the user requests - discussion of this can be found in Sect. 6. There is
significant scope for strategy in terms of VTS propagation, to attempt to avoid
high degree cases, and instead find a satisfying VTS leaf for QE (especially in
the fully quantified case) by doing the least work possible, in terms of selection
of test points to use, and selection of node to propagate upon. Indeed strategy
(in particular with respect to this implementation) is something the author is
highly interested in, but must engage with later.

A last potential convenience is that the “guards” mentioned for VTS - Tarski
formulae that assert that a substitution of a test point in VTS is valid, may
include equational constraints by nature. This could arise in the case where
we assume the leading coefficient of a quadratic vanishes in order to substi-
tute the linear root implied by the reductum, for example. Additionally, at
least in the case of regular test points not featuring ε or ∞, equational con-
straints from the original quantifier free Φ will be preserved by VTS in further
IQERs. As a result, optimisations in projection for CAD implied by existence
of equational constraints are certainly of use in the poly-algorithm this work
suggests. In particular, we may be able to guide strategy to attempt to hap-
pen upon IQERs as dense with equational constraints as possible. This, however,
assumes that the usage of such optimisations are valid for the Lazard operator
which QuantifierElimination currently uses.

mmonagan@cecm.sfu.ca

A Quantifier Elimination Package in Maple 179

The author is also in the process of developing evolutionary techniques for
QE. “Evolutionary” in this context refers to techniques that take data structures
from a previously computed QE problem, and recompute the same QE for a mod-
ification of the problem, such as addition or subtraction of a subformula from
the input (referred to as “incrementality” and “decrementality” further). The
intention is that such recomputation should be fast - at the very least, take signif-
icantly less work than recomputation of the new QE problem from scratch. While
full discussion of such techniques is out of the scope of this paper for the purposes
of brevity, such evolutionary operations included by QuantifierElimination,
InsertFormula and DeleteFormula allow incrementality and decrementality
for QE respectively. These procedures require a QEData object as an argument,
which can be requested as an output argument from QuantifierEliminate if
future evolutionary operations are desired. A QEData object contains various
data (including VTS and CAD results) from the previously computed problem
amenable to modification to enable incrementality or decrementality.

5.2 QuantifierTools

The QuantifierTools package is due to be included as a subpackage of
QuantifierElimination. QuantifierTools is designed to be a package that
will allow users to manipulate Tarski formulae in various ways, to enable Maple
as a toolbox for all mathematics. Additionally, QuantifierTools facilitates some
understanding of Tarski formulae, and hence attempts to make such formulae
more tractable. Current notable included functions include:

– A procedure to “alpha-convert” a Tarski formula, removing potential conflicts
between variables in subformulae of the given expression if it is non prenex

– A procedure to convert a Tarski formula to prenex form (and hence performs
alpha-conversion)

– A procedure to negate a Tarski formula
– A procedure to convert a formula with rational functions (of polynomials) in

constraints to a proper Tarski formula
– A procedure to get the set of all polynomials appearing in a Tarski formula,

possibly for the intent of performing full CAD on such a set.

6 Aims for QE Output

A main goal of the implementation is to mitigate the high running times of calls
to QE on large problems. One way that this can be achieved is by avoiding
unnecessary computation. In particular, as mentioned previously in this work,
avoiding usage of CAD completely on intermediate problems of high degree if
VTS can find a satisfactory answer alone. In terms of the author’s implementa-
tion, this corresponds to unfinished VTS tree leaves being left unused by termi-
nation of the algorithm. However, to meet the goal of providing richest output
and to enable understanding of how the algorithm was used, such unfinished

mmonagan@cecm.sfu.ca

180 Z. Tonks

leaves should be presented to the user if requested. Recall that an unfinished
VTS tree leaf represents a QE problem in itself, via appropriate distribution
of quantifiers amongst (at most) Qn−m+1xn−m+1 . . . Qnxn into the implicit dis-
junction/conjunction formed by operation of VTS.

Hence such unevaluated parts of the problem, while immutable in terms of
the quantifier free equivalent of (1) which is the main part of the output of
a call to QE, should be presented to the user as inert calls to an appropriate
QuantifierElimination procedure. Figure 1 is an example of such inertized
calls that could be presented to the user. The obvious precedent is that if they
are amenable to usage of VTS as per the variable ordering as was chosen at
the time by QE, then they are presented as inert calls to the poly-algorithmic
QuantiferEliminate procedure. Otherwise, in terms of the author’s package
they are only amenable to quantifier elimination as a result of CAD, and as such
they are presented as inert calls to CylindricalAlgebraicDecompose. The pur-
pose of evaluating such an inert call may be to understand a QE problem further,
else potentially acquiring a surplus of satisfying witnesses for the problem (see
Sect. 6.1).

6.1 Production of Meaningful Witnesses

While the main goal of quantifier elimination is to produce a quantifier free
equivalent to the input formula (1), such an output is completely without proof
- there is no substitution that can be done from the quantifier free equivalent that
easily proves the output is valid. Software for the not too distant Satisfiability
problem (SAT) will produce a satisfying assignment in the case that the input
problem is satisfiable, hence providing a proof of the satisfiability in some sense.

We are able to discuss an analogous concept to a satisfying assignment, “wit-
nesses”. These are equations featuring quantified variables that provide proof of
the equivalence of the input formula to some node of the VTS tree. Note that
operation of VTS is entirely based around finding valid examples for an exis-
tential quantifier, else valid counterexamples for a universal quantifier. The test
points used for this purpose entirely lend themselves to the purpose of witnesses,
except for the presence of non-standard infinitesimal symbols: ∞ and ε. Ignoring
this for a moment, we note that in the case of a fully quantified formula, at least
one set of assignments for all existentially quantified variables that makes the
input formula equivalent to true suffices as a proof of such an equivalence (and
by the nature of the universal quantifiers, any and every assignment of universal
quantifiers should do). Similarly, at least one set of assignments for all univer-
sally quantified variables can suffice as a proof of the quantifier free equivalent
false.

The nature of multivariate VTS is to eliminate one quantifier at a time,
receiving a set of prenex quantified Tarski formulae with one less quantifier, and
in particular one less variable than before. As such, considering VTS test points
may include expressions with uneliminated quantified variables, one can envisage
a “back-substitution” process here, where for any one VTS node, one follows the
path to the root, using previous test points to substitute into test points from

mmonagan@cecm.sfu.ca

A Quantifier Elimination Package in Maple 181

> QuantifierEliminate (∃ ([x, y, z], 0 < xyz) ,′ mode = breadth′)

[[true, z = 1
2
, y = 1

2
, x = 1

2
], [‘%QuantifierEliminate’ (∃ (x, − x < 0)) , z = −∞, y =

−∞], [‘%QuantifierEliminate’ (∃ (x, x < 0)) , z = −∞, y =
ε], [‘%QuantifierEliminate’ (∃ (x, x < 0)) , z = 1

2
, y = −∞]]

Fig. 1. Example output of QE in Maple where unevaluated QE problems belonging
to the VTS tree are presented to the user. Note for this rather trivial example, one
needs to traverse the tree breadthwise rather than depthwise (as would be default)
to get this situation to occur, but results in something closer to a comprehensive set
of (pre)witnesses that describe all possible proofs of equivalence of the input to true
(given that the inertized QE calls here are all equivalent to true).

lower levels, in order to receive equations featuring only real numbers, which will
fit the definition of “witnesses”. For a fully quantified input formula, there is the
potential to receive univariate problems one level below the leaves (which will
necessarily hold the formula true or false).

As a result, Algorithm 1 is the detailing of a back-substitution process to
produce a set of witnesses for any node of the VTS tree (assuming one started
with a maximum level leaf, i.e. full elimination on a fully quantified formula
occured). The difficulty of such a process is the handling of test points involving
ε and ∞, which so far we have neglected. The main ideas for these originate
with [10], but are made rigorous here. Further, we will refer to an unprocessed
witness expression, which may include ε or ∞, and other free/quantified variables
as a “prewitness”. See Fig. 1 for a coincidental example of both witnesses and
prewitnesses, where the first operand of the list corresponds to a maximum level
leaf which terminated further usage of VTS due to being a satisfactory answer
for the whole QE problem. That maximum level leaf was amenable to witness
processing, while the rest are presented as prewitnesses featuring ε and ∞.

Theorem 1. Algorithm GetWitnesses successfully produces a set of witnesses
for a maximum level leaf of the VTS tree representing full elimination of a fully
quantified problem (1), and in particular such witnesses are all equations featur-
ing real numbers.

Proof. First, due to assertion that the input formula is fully quantified, and
recollection of the nature of the VTS tree where every node is implicitly a QE
problem with quantifiers commensurate with its level, a true max level leaf node
of the VTS tree resulted from a univariate QE problem. Therefore as long as we
can find an appropriate witness for this QE problem, substitution of this witness
into appropriate objects the level above will result in univariate objects, hence
receiving an inductive claim on the back substitution’s validity.

– The handling of ∞ test points on line 9. If a test point used x = ±∞, then
this really implies that x should be large or small enough. Hence, it suffices
that we choose x such that x exceeds all real roots of Φ, in any variable.

mmonagan@cecm.sfu.ca

182 Z. Tonks

Algorithm 1. GetWitnesses(L,Q1x1 . . . Qnxn Φ(x1, . . . , xn))
Data: L, a leaf IQER, Q1x1 . . . Qnxn Φ(x1, . . . , xn) the original fully quantified

prenex quantified Tarski formula given to QE
Result: A list of processed witnesses x1 = r1, . . . , xn = rn, where ri ∈ IR,

i = 1, . . . , n, and Ψ evaluated at x1 = r1, . . . , xn = rn is equivalent to
the quantifier free formula associated with leaf

1 set temp = L;
2 set witnesses to be the empty list;
3 while temp has a parent IQER do
4 let F be the quantifier free formula associated to temp, and i be its level wrt

the VTS tree;
5 construct the prewitness associated to the IQER temp as xn−i+1 = t from

the test point of temp (essentially the edge above temp), where t may
feature ε or ∞;

6 t ← t evaluated at all current witnesses;
7 set temp as the parent IQER of temp;
8 if t = ±∞ then
9 add x = sgn(t) M to witnesses, where M is the maxima amongst

Cauchy root bounds of all polynomials appearing in Φ;

10 else if t contains ε then
11 Let Fparent be the quantifier free formula associated to temp, evaluated

at all current witnesses (and substitute 0 for any variables not used in
witnesses);

12 let rootList be a complete ordered list of sample points (via real root
isolation) at which the multiplication of all polynomials appearing in
Fparent is non zero;

13 let s be the sign of ε in t;
14 let r be t − sε;
15 if s = −1 then
16 reverse rootList ;
17 for y in rootList do
18 if y < r then
19 r ← y+r

2
;

20 break;

21

22 add x = r to witnesses;
23 else
24 add x = t to witnesses;
25

26 return witnesses;

The Cauchy root bound will achieve such a purpose - the maxima among
all Cauchy root bounds of all polynomials appearing in Φ (as usual, ignoring
boolean structure, in practice implemented recursively) exceeds all real roots
of every polynomial in Φ in all variables. This is prepended with ± depending
on the sign of ∞ used in the test point.

mmonagan@cecm.sfu.ca

A Quantifier Elimination Package in Maple 183

Q
n

−
m

+
1
x
n

−
m

+
1
..

.Q
n

−
2
x
n

−
2
∀x

n
−
1
∃x

n
Φ
(x

1
,.

..
,x

n
)

Q
n

−
m

+
1
x
n

−
m

+
1
. .

.Q
n

−
2
x
n

−
2
∀x

n
−
1
(G

(t
n
,1
)
∧

Φ
[x

n
/
/

t n
,1
]∨

..
.

Q
n

−
m

+
1
x
n

−
m

+
1
..

.Q
n

−
2
x
n

−
2
((

v 1
∧

..
.

. . .

[x
n

−
1
=

t n
−
1
,1
]

∧·
··

∧
··

·∧
v i
)

∨
..

.

. . .

[x
n

−
1
=

t n
−
1
,i
]

[x
n
=

t n
,1
]

. . .

..
.

··
·∨

G
(t

n
,k

n
)
∧

Φ
[x

n
/
/
t n

,k
n
])

··
·∨

(v
i+

j
∧

..
.

. . .

[x
n

−
1
=

t n
−
1
,i
+
j
]

∧
··

·∧
··

·∧
v k

n
−

1
))

. . .

[x
n

−
1
=

t n
−
1
,k

n
−

1
]

[x
n
=

t n
,k

n
]

W
he

re
v r

=

{ ¬(
G
(t

n
−
1
,r
)
∧

¬(
G
(t

n
,1
)
∧

Φ
[x

n
/
/

t n
,1
])
[x

n
−
1

/
/

t n
−
1
,r
])

r
∈

{1
,.

..
,i

}
¬(

G
(t

n
−
1
,r
)
∧

¬(
G
(t

n
,k

n
)
∧

Φ
[x

n
/
/

t n
,k

n
])
[x

n
−
1

/
/

t n
−
1
,r
])

r
∈

{i
+

j,
..

.,
k
n

−
1
}

F
ig
.
2
.

A
n

ex
a
m

p
le

o
f

th
e

V
T

S
tr

ee
,

w
h
er

e
h
er

e
w

e
a
ss

er
t

th
e

la
st

tw
o

q
u
a
n
ti

fi
er

s
a
re

∀
a
n
d

∃
to

d
em

o
n
st

ra
te

a
co

n
ju

n
ct

io
n

n
es

te
d

w
it

h
in

a
d
is

ju
n
ct

io
n

fo
rm

ed
b
y

V
T

S
.
T

h
is

T
a
rs

k
i
fo

rm
u
la

fo
rm

ed
b
y

th
e

tr
ee

n
ec

es
sa

ri
ly

ev
en

tu
a
ll
y

fo
rm

s
th

e
q
u
a
n
ti

fi
er

fr
ee

o
u
tp

u
t

o
f

Q
E

b
y

V
T

S
.

mmonagan@cecm.sfu.ca

184 Z. Tonks

– The handling of test points involving ε, the “elseif” associated to line 10.
Recollection of the motive that the usage of the test point t ± ε represents
usage of a term “just less/more than t”, and as such it suffices to find a real
number less/more than t, but more/less than the next root of the quantifier
free formula it arose from (after back substitution). Thanks to back substi-
tution, real root isolation can be performed on a univariate formula to find
a suitable point. Presently, this algorithm implies usage of root isolation on
a polynomial that is the multiple of all polynomials in the quantifier free
formula. This is sufficient such that one can isolate t from its relevant next
nearest root, but perhaps not necessary, and may be able to be optimised.

– Else (line 22), the test point used no such infinitesimals, and the valid com-
plete back substitution implies that all indeterminates are eliminated from
the term used for the right hand side of the test point, resulting in a real
number (possibly involving irrational terms).

7 Conclusions

7.1 Comparison to Other QE Implementations

The QuantifierElimination package is the first attempt to have an active
poly-algorithm between VTS and CAD. In contrast to QE software already
publicly available for Maple, the QuantifierElimination package is the first
to encapsulate both VTS and CAD in one package. Furthermore, the implemen-
tation of CAD in QuantifierElimination is the first of its kind in Maple to
use the Lazard projection, instead of the McCallum, Collins, or Brown projec-
tion operators. Tentatively, support for the reduced Lazard projection operator
in the presence of equational constraint(s) in Φ is included, in the event of the
appearance of the equivalent of [12,13] for the Lazard projection. Superficially,
QuantifierElimination is the first package implementing VTS to be included
with Maple as standard, the second to include native QE, and likewise the sec-
ond native implementation of CAD. Inclusion of QuantifierTools is intended at
least for the purposes of pedagogy - making the package even more user friendly,
and explore quantified Tarski formulae further.

7.2 Future and Further Aims

As a collaboration with Maplesoft, the aim is to include the
QuantifierElimination package in a future official Maple release. Full testing
is underway to ensure the implementation is suitable for inclusion. At the time
of writing, new implementations of both VTS and CAD exist in Maple, together
with new evolutionary methods for VTS. At present the interface between them
is rudimentary—an implementation of incremental CAD is required next to
realise the “Master CAD” idea in light of Sect. 5.1, and also enables a full evo-
lutionary QE system (extensive discussion of which is omitted here).

With a view to providing valuable output for users, one notes that the output
quantifier free formula is generally the most important part of output of any QE

mmonagan@cecm.sfu.ca

A Quantifier Elimination Package in Maple 185

call, but VTS and CAD alike do not necessarily form a “simple” formula by
default for output due to their natures. There has been some work done in this
area thanks to [3,5], but the nature of the implementation implies that such
a simplifier for QuantifierElimination could already feature a convolution of
techniques, given quantifier free output could come from either algorithm. In
contrast to CAD, VTS uses Tarski formulae extensively throughout. As such,
it is additionally of interest to be able to simplify intermediate formulae, but
the key here should be that one doesn’t expend so much computational effort
simplifying formulae that one doesn’t see the performance benefit of doing so,
or even sees a performance loss. An appropriate Tarski formula simplifier would
be appropriate for inclusion in the QuantifierTools package, while also being
used under the hood in QuantifierElimination.

The notion of UNSAT cores from the SAT & SMT communities extends
to the first order logic of Tarski formulae, and in particular quantified ones.
It is therefore of interest to be able to produce for any QE problem where
the answer obtained was false, the subformula(e) that were most pertinent in
obtaining such a false answer. A method to do so would not be out of place in the
QuantifierElimination package, presumably working from a QEData object.

References

1. Alvandi, P., Chen, C., Lemaire, F., Maza, M., Xie, Y.: The RegularChains Library.
http://www.regularchains.org/

2. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets
using CADs. SIGSAM Bull. 37(4), 97–108 (2003). https://doi.org/10.1145/968708.
968710

3. Brown, C.W.: Fast simplifications for Tarski formulas based on monomial inequal-
ities. J. Symb. Comput. 47(7), 859–882 (2012). https://doi.org/10.1016/j.jsc.2011.
12.012

4. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proceedings of the 2007 International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 2007, pp. 54–60. ACM, New
York, NY, USA (2007). https://doi.org/10.1145/1277548.1277557

5. Chen, C., Maza, M.M.: Simplification of cylindrical algebraic formulas. In: Gerdt,
V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol.
9301, pp. 119–134. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24021-3 9

6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

7. Davenport, J., Heintz, J.: Real quantifier elimination is doubly exponen-
tial. J. Symb. Comput. 5(1), 29–35 (1988). https://doi.org/10.1016/S0747-
7171(88)80004-X

8. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the regular chains
library to build cylindrical algebraic decompositions by projecting and lifting. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 458–465. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 69

http://www.regularchains.org/
https://doi.org/10.1145/968708.968710
https://doi.org/10.1145/968708.968710
https://doi.org/10.1016/j.jsc.2011.12.012
https://doi.org/10.1016/j.jsc.2011.12.012
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1007/978-3-319-24021-3_9
https://doi.org/10.1007/978-3-319-24021-3_9
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1007/978-3-662-44199-2_69

mmonagan@cecm.sfu.ca

186 Z. Tonks

9. Hong, H., Collins, G.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 299–328 (1991). https://doi.org/10.1016/S0747-
7171(08)80152-6

10. Košta, M.: New concepts for real quantifier elimination by virtual substitution.
Ph.D. thesis, Universität des Saarlandes (2016). https://doi.org/10.22028/D291-
26679

11. Maplesoft: Maple Programming Guide, pp. 360–372. https://www.maplesoft.com/
documentation center/maple2019/ProgrammingGuide.pdf

12. McCallum, S.: On projection in CAD-based quantifier elimination with equational
constraint. In: Proceedings ISSAC 1999, pp. 145–149 (1999). https://doi.org/10.
1145/309831.309892

13. McCallum, S.: On propagation of equational constraints in CAD-based quantifier
elimination. In: Proceedings ISSAC 2001, pp. 223–231 (2001). https://doi.org/10.
1145/384101.384132

14. McCallum, S., Parusiński, A., Paunescu, L.: Validity proof of Lazard’s method for
CAD construction. J. Symb. Comput. 92, 52–69 (2019). https://doi.org/10.1016/
j.jsc.2017.12.002

15. Strzebonski, A.: Real Polynomial Systems, Wolfram Mathematica. https://
reference.wolfram.com/language/tutorial/RealPolynomialSystems.html

16. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.
Univ. Cal. Press (1951). Reprinted in Quantifier Elimination and Cylindrical Alge-
braic Decomposition (ed. B.F. Caviness & J.R. Johnson), pp. 24–84. Springer,
Wein-New York (1998). https://doi.org/10.1007/978-3-7091-9459-1 3

17. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.
5(1), 3–27 (1988). https://doi.org/10.1016/S0747-7171(88)80003-8

18. Yanami, H., Anai, H.: SyNRAC: a maple toolbox for solving real algebraic con-
straints. ACM Commun. Comput. Algebra 41(3), 112–113 (2007). https://doi.org/
10.1145/1358190.1358205

https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.22028/D291-26679
https://doi.org/10.22028/D291-26679
https://www.maplesoft.com/documentation_center/maple2019/ProgrammingGuide.pdf
https://www.maplesoft.com/documentation_center/maple2019/ProgrammingGuide.pdf
https://doi.org/10.1145/309831.309892
https://doi.org/10.1145/309831.309892
https://doi.org/10.1145/384101.384132
https://doi.org/10.1145/384101.384132
https://doi.org/10.1016/j.jsc.2017.12.002
https://doi.org/10.1016/j.jsc.2017.12.002
https://reference.wolfram.com/language/tutorial/RealPolynomialSystems.html
https://reference.wolfram.com/language/tutorial/RealPolynomialSystems.html
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1145/1358190.1358205
https://doi.org/10.1145/1358190.1358205

mmonagan@cecm.sfu.ca

Full Papers – Education/Applications
Stream

mmonagan@cecm.sfu.ca

The Creation of Animated Graphs
to Develop Computational Thinking

and Support STEM Education

Alice Barana1 , Alberto Conte1, Cecilia Fissore1 ,
Francesco Floris1 , Marina Marchisio2 ,

and Matteo Sacchet1(&)

1 Department of Mathematics, University of Turin, Turin, Italy
{alice.barana,alberto.conte,cecilia.fissore,

francesco.floris,matteo.sacchet}@unito.it
2 Department of Molecular Biotechnology and Health Sciences,

University of Turin, Turin, Italy
marina.marchisio@unito.it

Abstract. Problem solving and computational thinking are the key compe-
tences that all individuals need for professional fulfillment, personal develop-
ment, active citizenship, social inclusion and employment. In mathematics,
during contextualized problem solving using Maple, the differences between
these two skills become thinner. A very important feature of Maple for problem
solving is the programming of animated graphs: an animation obtained by
generalizing a static graph, choosing the parameter to be varied and its interval
of variation. The first objective of this research is to analyze the computational
thinking processes behind the creation of animated graphs for the resolution of a
contextualized problem. To this end, we selected and analyzed some resolutions
of problems carried out by fourth-grade students of upper secondary schools in
Italy (grade 12). The paper shows some examples in which different processes of
computational thinking have emerged, which reflect resolutive strategies and
different generalization processes. From the analysis it emerged that all the
processes underlying the mental strategies of the computational thought useful
for solving problems are activated in the creation of animated graphs. In the
second part of the article we discuss examples of animations created during
training activities with secondary school teachers, and how animations can
support the learning of scientific concepts. It is very important to train the
teachers in this regard, both to understand the processes that the students would
activate during the creation of animated graphics and to enrich the theoretical or
practical explanations with animated representations.

Keywords: Advanced computing environment � Animated graphs �
Computational thinking � Problem solving � Animations � STEM education

© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 189–204, 2020.
https://doi.org/10.1007/978-3-030-41258-6_14

http://orcid.org/0000-0001-9947-5580
http://orcid.org/0000-0001-8398-265X
http://orcid.org/0000-0003-0856-2422
http://orcid.org/0000-0003-1007-5404
http://orcid.org/0000-0002-5630-0796
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_14

mmonagan@cecm.sfu.ca

1 Introduction

According to the recommendations of the Council of the European Union of 22 May
2018 [9] among the eight key competences for lifelong learning to achieve progress
and success are the mathematical competence, defined as “the ability to develop and
apply mathematical thinking and insight in order to solve a range of problems in
everyday situations” and the digital competence that “involves the confident, critical
and responsible use of, and engagement with, digital technologies for learning, at work,
and for participation in society. It includes information and data literacy, communi-
cation and collaboration, media literacy, digital content creation (including program-
ming), safety (including digital well-being and competences related to cybersecurity),
intellectual property related questions, problem solving and critical thinking”. The eight
key competences are linked to the development of skills such as: problem solving,
critical thinking, ability to cooperate, creativity and computational thinking. They allow
to exploit in real time what has been learned, in order to develop new ideas, new
theories and new knowledge [9]. Problem solving is an important aspect of mathe-
matics teaching and learning, it occurs in all mathematical curricula [14]. In recent
years the use of digital technologies in problem solving activities has allowed a pre-
cious variety of representation and exploration of mathematical tasks [18] extending the
ways of thinking about the strategies involved in problem solving [12]. One of the
technologies used for problem solving activities is Maple, which allows numerical and
symbolic calculations, static and animated graphical representations in 2 and 3
dimensions, writing procedures in simple language, programming and connecting all
these different registers representation in a single worksheet using verbal language, too
[2]. A very important aspect of Maple for problem solving is the design and pro-
gramming of animated graphs and interactive components. The user can explore
through the variation of a parameter and modify inputs.

The first objective of this research is to analyze the computational thinking at the
base of the creation of animated graphs for the resolution of a contextualized problem
with Maple. To this end, some examples of resolutions of a contextualized problem
carried out by fourth-grade students of upper secondary schools will be analyzed. The
second objective is to discuss some examples, arising from training activities with
secondary school teachers about the creation of animated graphics, to show how ani-
mations can support the teaching of STEM, in particular of Mathematics.

2 Theoretical Framework

The expression “computational thinking” was popularized by an article by Wing [19] in
which she supports the importance of teaching the fundamental concepts of computer
science in school, possibly from the first classes. Even today the teaching of Computer
Science, although frequently described as the systematic study of computational pro-
cesses that describe and transform information, is reduced in most cases to the use of

190 A. Barana et al.

mmonagan@cecm.sfu.ca

computers (consumer Computer Science) [6]. Initially, Wing [19] did not give a precise
definition of computational thinking but outlined its main features:

– a way in which human beings solve a problem;
– a base for conceptualizing, not programming, on multiple levels of abstraction;
– a base for ideas, not artifacts;
– an integration between mathematical and engineering thinking;
– a process open to everyone, all over the world.

The search for a precise and uniquely shared operational definition of the expres-
sion, which still does not exist, can create confusion on the topic, leading firstly to
mistakenly consider computational thinking as a new subject of teaching, conceptually
distinct from Computer Science, Lodi et al. [15]. The authors believe that it is more
important to use the expression “computational thinking” as a short way to refer to a
well-structured concept, the founding nucleus of Informatics. Therefore in [15] they
describe computational thinking as a mental process (or more generally a way of
thinking) to solve problems (problem solving) and define its constitutive elements:
mental strategies, methods, practices and transversal competences. Regarding the
mental strategies useful for solving problems, the authors describe the following mental
processes:

– algorithmic thinking: approach to the design of an ordered sequence of steps (in-
structions) to solve a problem;

– logical thinking: reasoning to establish and control facts;
– decomposition of problems: dividing and modularizing a complex problem into

simple sub-problems, which can be solved more easily;
– abstraction: getting rid of useless details to focus on relevant ideas;
– pattern recognition: identifying regularities and recurrent patterns in data and

problems;
– generalization: use the recognized patterns to foresee or to solve more general

problems.

These mental strategies recall in many aspects the phases of a problem solving
activity in teaching, for example, of Mathematics: understanding the problem,
designing the mathematical model, model resolution and interpretation of the results
obtained [17]. What distinguishes computational thinking from problem solving is the
conceptual paradigm shift constituted by the transition from solving problems to
making problem solving [15]. In fact, the first one does not concern a specific resolution
of problems: the formulation of the problem and of the solution must be expressed,
mainly through an algorithm in an appropriate language, so that an “information
processing agent” (human being or machine) can understand, interpret and execute the
instructions provided. In our opinion, this difference thins out when problem solving
activities are proposed through technologies and in particular Maple. In this case,
starting from mental thinking, the student must choose how to set the solution pro-
cedure using the available ways (words, graphs, numerical or symbolic calculations,
procedures, cycles, etc.) and at the same time write an algorithm in an appropriate

The Creation of Animated Graphs to Develop Computational Thinking 191

mmonagan@cecm.sfu.ca

language, so that the software processes the information and returns an output. In this
research we focus on the creation of animated graphs that involve the generalization of
a static graph by choosing the parameter to be varied and its range of variation.

According to Malara [16], the term “generalization process” includes a series of
acts of thought that lead a subject to recognize, by examining individual cases, the
occurrence of common characteristic elements; to shift attention from individual cases
to the totality of possible cases and to extend the identified common features to this
totality. The main actions of this process are pattern recognition, identification and
connection of similarities. They lead the student to consider all possibilities instead of a
single case, and to extend and adapt the identified model. This definition is not so far
from the mental processes of the computational recognition and generalization we
mentioned above. About the process of generalization, the author focuses on a
reflection by Dörfler [11] that considers the representation of the process to be crucial
through the use of perceptible objects, such as written signs, characteristic elements,
steps and results of actions. In this way a procedure is generated that allows a cognitive
reconstruction and conceptualization of the process itself. The interaction of students
with visual representations, in the form of static or animated images can greatly
enhance the learning of scientific concepts otherwise expressed only in verbal or
mathematical form. As Landriscina explains [13], when people are engaged in tasks
that require understanding and reasoning, they also create “mental models”, i.e. rep-
resentations of a dynamic nature close to a certain situation in the external world that
serve to make predictions or simulations. In producing or evaluating a “didactic
image” it is therefore important to consider not only to what extent it faithfully rep-
resents its object, but also which mental models the student will form by looking at the
image and which factors will influence this representation. The didactic potential of
images and animations is still largely unexplored, as evidenced, for example, by the
purely ornamental images that are still printed in many textbooks, and by the limited
use of images generated by students in teaching scientific disciplines and learning
assessment [13]. It is therefore important to train teachers to know the processes of
computational thinking and to understand how to use graphic visualizations and ani-
mations in teaching.

3 Animated Graphs Created with Maple

The creation of an animated graph with Maple20181 can be done through the use of the
“animate” command, which creates the animation of a graph in 2 or 3 dimensions when
a parameter changes. The use of the command can introduce processes that are acti-
vated in the generalization of a static graph by choosing the parameter to be varied and
its range of variation. The command uses the following syntax:

ð1Þ

1 https://www.maplesoft.com/.

192 A. Barana et al.

https://www.maplesoft.com/

mmonagan@cecm.sfu.ca

where:

– plotcommand: a Maple command or a procedure that returns a 2D or 3D graph;
– plotargs: list of arguments of plotcommand;
– t: name of the animation parameter;
– a, b: extremes of the interval in which the parameter varies.

Suppose, for example, that the user wants to create an animation to visualize how
the concavity of a parabola with a vertex varies in the origin in the Cartesian plane.
First, we create the static graph of a particular parabola, for example y ¼ 3x2, using the
following command:

plot(3*x^2,x=-15..15,color=blue)

By pressing Enter the user obtains the graph illustrated in Fig. 1.

We can do the same process to plot the parabola y ¼ �3x2, drawing a parabola with
the concavity facing down. Now suppose we want to visualize through an animation
how the concavity of the parabola between the first and the second situation varies. We
therefore use the command animate, where, as in (1), the plotcommand is plot and
all the rest into brackets is plotargs. In the animate command, plotargs is not
the same as the static graph, but it must be generalized recognizing common patterns
between the graphs of the first and second situation that we want to merge into a single
command. In particular, in this case we choose the coefficient of x2 as the parameter to
be changed, and the interval in which it varies is represented by the real numbers
between 3 and −3. We then get the following command:

animate(plot,[a*x^2,x=15..15,color=blue],a=3..-3)

In this way we have created the desired animation (Fig. 2) having an immediate
feed-back of the result of the generalization we have carried out.

Fig. 1. Static graph of the parabola y ¼ 3x2.

The Creation of Animated Graphs to Develop Computational Thinking 193

mmonagan@cecm.sfu.ca

A further feature of the use of Maple consists in the possibility to define new
commands, called “procedures”, through a specific programming language. Inside the
animate command it is possible to generalize any procedure that outputs a graph in two
or three dimensions. It is also possible to export the animated graphic obtained in GIF
format to be able to use it as teaching material on its own, to publish it in a Virtual
Learning Environment or to reproduce it on any web page [3, 5].

In light of the studied theoretical framework, we believe that the creation of the
animation of a graph using Maple is a process of computational thinking and the
immediate visualization as output of the result can strongly help the students in the
development of this competence. We also believe that the use of animations can greatly
support the teaching of STEM disciplines. In the following paragraphs we will analyze
some examples to demonstrate both aspects.

4 Methodology for the Analysis of Processes
of Computational Thinking in the Creation of Animated
Graphs

To analyze the processes of computational thinking behind the creation of animated
graphs, we analyzed the resolutions, using Maple, of a contextualized problem per-
formed by grade 12th students (corresponding to the fourth-grade of upper secondary
school in Italy) of different Italian regions in the frame of the Digital Math Training
project [1]. The problem, entitled “Ladybug”, deals with a ladybug resting on the rear
wheel of a bicycle, on the part of the rim closest to the ground. Thinking of the wheel
of the bike as a circumference centered in the origin, the position of the ladybug
corresponds to the point of tangency of the wheel with the ground, that is the angle of
amplitude 3

2 p. The total diameter of the wheels (including the inner tube) is 60 cm,
while the inner tube is 4 cm thick. The request of the problem we focused on is the
ladybug trajectory in a kilometer, supposing that it has never moved. This trajectory is
given by the combination of two motions: the circular one of the wheels and the
straight one of the bike. It is therefore represented by a cycloid, whose graph can
certainly be considered a correct answer to the request of the problem. However, the

Fig. 2. Animated graph of the parabola y ¼ a � x2, with a varying between 3 and −3.

194 A. Barana et al.

mmonagan@cecm.sfu.ca

static graph does not show how that result was achieved nor the process carried out to
arrive at the solution. Instead, through an animated graph it is possible to visualize the
motion of the wheel and the path traveled by the ladybug during the motion itself.
Moreover, it is possible to keep track of the frames of the animation and in this way the
trajectory is directly traced. For our research we have shown 80 solutions proposed by
as many students, among which we have selected and analyzed the 16 in which an
animation was used to visualize the trajectory.

5 Results

In all the 16 analyzed solutions in which an animation was used, we came across the
use of algorithmic thinking to construct the animated graph as a result of an ordered
sequence of commands. However, different processes of computational thinking have
emerged, some of them successful, reflecting different resolutive strategies. We have
classified the analyzed solutions into five categories:

1. animation as creation of a curve point by point (2 solutions);
2. animation as verification of the results (3 solutions);
3. animation as a union of animations (5 solutions);
4. animation of a procedure (1 solution);
5. animations with incorrect procedures (5 solutions).

Although the solutions classified in the same category are not identical, they show
analogous processes of computational thinking (as depicted in the theoretical frame-
work). We are going to present an example of a paradigmatic resolution for each
category mentioned above. In the solutions of the first category, the graph of the
cycloid was obtained through the command animatecurve which creates the ani-
mation of the trajectory of a curve in 2 dimensions, with the parametric equations of the
curve as input. The syntax used in an example of this category was the following:

animatecurve([30*sin(t)+30*t,30+30*cos(t),t=0..10*Pi],

color=black,frames=100,thickness=2)

We obtained as output a graph drawing the curve point by point (Fig. 3):

Fig. 3. Example of animation as creation of a curve point by point.

The Creation of Animated Graphs to Develop Computational Thinking 195

mmonagan@cecm.sfu.ca

In order to derive the parametric equations of the curve, the student who presented
this resolution studied the motions of translation and rotation of the wheel, using the
mental process of the decomposition of problems. Then the student used the process of
generalization and abstraction to combine the two motions and obtain, with the animate
command, the trajectory of the ladybug by calculating its punctual position corre-
sponding to time t, the parameter of the animation. The generalization and use of the
command in this case was carried out correctly, even though the solution is not correct
because of the wrong starting point.

In the second category we included the solutions in which the student drew the
static graph of the cycloid and then animated a point moving on it. In this case, the
graph of the cycloid was obtained using the parametric form of the curve with the
following command:

graf:=plot([0.3(t-sin(t)),0.3(1-cos(t)),t=0..8*Pi],

color=black)

The command used to create the animation is the following:

animate(pointplot,[[0.3(t-sin(t)),0.3(1-cos(t))],

color=red, symbol=solidcircle],t=0..8*Pi,

background=graf)

Figure 4 illustrates two frames of the animation.

This procedure was used to verify the static graph obtained by directly observing
how the ladybug moves. In this case the process of generalization concerns exclusively
the graph of the point and consequently its coordinates. The graph of the cycloid was
used as the background of the animation. The abstraction process took place in two
phases: in the first phase a generalization was carried out to create a static command
(the parametric curve), in the second phase the generalization was used to create the
animation. At the base of the creation of this animation there is the logical process to
check the correctness of the previously obtained results.

The third category concerns the solutions in which the animated graph contained:
the two circumferences to represent the wheel, the center of the wheel, the ladybug and
the radius of the bicycle that joins the ladybug to the center of the wheel. Five different
animated graphs were created and then displayed together using the display command.
In the following example, the student defined three procedures coccinel, R,
center to statically represent the ladybug, the radius and the center of the wheel
respectively. Then the student individually animated the graphs of these three elements

Fig. 4. Example of animation as verification of the results.

196 A. Barana et al.

mmonagan@cecm.sfu.ca

and of the two circumferences to represent the wheels and finally all the animations
were combined in a single graph through the following command:

display({

animate(R,[t],t=0..8*Pi,scaling=constrained,

frames=80),

animate(centro,[3*t,3],t=0..8*Pi,frames=80),

animate(implicitplot,

[x^2+y^2+9*t^2-6*t*x-6*y+2.24=0,x=0..80,

y=0..8, color=black], t=0..8*Pi, frames=80),

animate(implicitplot,[9*t^2-6*t*x+x^2+y^2-6*y=0,

x=0..80, y=0..10, color=black], t=0..8*Pi,

frames=80),

animate(coccinel,[3*t-2.6*sin(t),3-2.6*cos(t)],

t=0..8*Pi,frames=80,trace=90000)},

labels=[“x (dm)”,”y (dm)”])

In this command, the trace option allows you to select a set of frames to print while
the animation is being performed (Fig. 5). In this resolutive strategy, used by most of
the students, the mental process of decomposing problems was used to create anima-
tion: a complex animation was divided into different ones, solved in a simpler way. The
combination of the animations required the use of the same parameter with the same
range of variation, using the process of pattern recognition and generalization.

The second-last solution analyzed, even if it contains minor accounting errors, is
very interesting from the point of view of computational thinking in order to implement
it. The ladybug is represented on the left of the graph the ladybug while moving along
the wheel and on the right the trajectory is drawn point by point with a segment
(Fig. 7). Unlike the previous example, the creation of the animation did not require
different animations, but different graphical commands with the same parameter were
combined in a procedure, which was then animated. The procedure is the following:

F:=proc(t)

plots[display](

plottools[line]([-2,0],[sin(t)-2,-cos(t)],

color=blue),

plottools[line]([sin(t)-2,-cos(t)],

[t,abs(2*sin((1/2)*t))],color=blue),

plot(abs(2*sin((1/2)*x)),x=0..t,color=“Green”))

end proc

Fig. 5. Example of animation as a union of animations.

The Creation of Animated Graphs to Develop Computational Thinking 197

mmonagan@cecm.sfu.ca

This procedure, which requires as input the value of the parameter t, returns the
static graph of the radius of the wheel, the graph of the curve from 0 to t and the
segment that joins the position of the ladybug on the wheel to that on the trajectory. For
example, the value t = 3.14 generates the graph shown in Fig. 6.

Then the procedure was animated as the input parameter was changed, adding as a
background the static graph of the circumference representing the wheel (Fig. 7). The
resolutive strategy is different from the previous one because, instead of joining dif-
ferent animations in a single one, it appears as the creation of a sequence of different
snapshots of the same motion. From the point of view of computational thinking this
requires a more advanced abstraction process since the generalization through pattern
recognition is performed twice: one to define the procedure and one to animate it.

The remaining five solutions analyzed contain incorrect animations for different
aspects. The errors regard the use of the command (incorrect generalization process), the
scale chosen to display the graph (incorrect logical process) or the contextualization of
the graph (displayed in the negative semi-axis of the ordinates, arising from a wrong
process of abstraction). In the following example (Fig. 8) we can see how the student
correctly plotted the graph to illustrate the solution of the problem, to represent the
position of the ladybug on the wheel and on the trajectory at the same time. However,
already in the static graph, the trajectory of the ladybug on the wheel turns out to be in
the negative semi-axis of the ordinates, thus showing an incorrect logical process in the
reasoning. In fact, the contextualization of the problem was not considered since the
wheel proceeds tangent to the ground level (abscissa axis). The process of generalization

Fig. 6. Static graph for the animation of a procedure.

Fig. 7. Example of animation of a procedure.

198 A. Barana et al.

mmonagan@cecm.sfu.ca

was carried out correctly in the creation of the animated graph, but the abstraction
process was lacking, it did not check if the solution reflected the context and was
explanatory as a proposed solution. This confirms that aspects of computational
thinking, as well as of problem solving, are all equally important.

6 Animated Graphs for Didactics

Since the creation of animated graphs activate all the processes behind the mental
strategies of computational thinking, we believe that it can be very important to train the
teachers about this, and we add several reasons to support our belief. First, to understand
the processes that students will activate when creating animated graphs, for example for
problem solving (as shown in the previous paragraphs), but also to illustrate a theoretical
concept or build a simulation. Secondly, to enrich the theoretical or practical explana-
tions with animated representations. Thirdly, to enhance the learning of scientific
concepts otherwise expressed only in verbal or mathematical form. In the National
Project “PP&S - Problem Posing and Solving” [4, 7, 8, 10] during the online training
course “Didactics of STEM with Maple” the creation of animated graphs was discussed
in various online training meetings. In the case of more elaborate graphs, in which more
than one command is used, we explained to teachers how to construct a procedure with a
single input parameter, and a graph as output, and then how to animate it (as in the last
example of the previous paragraph). During the explanations, the tutor focused the
attention of the teachers on the computational thinking processes activated during the
creation of animated graphics. In particular, the tutor highlighted the process of pattern
recognition and problem decomposition to define a procedure that combines different
graphic commands to vary the same parameter and the process of generalization and
abstraction to create animation. Below the reader can find some examples divided into
two categories: animated problem solving charts, in which the focus is on training
teachers to teach their students how to use Maple for problem solving, and animated
graphics for illustration of theoretical concepts.

6.1 Animated Graphs for Problem Solving

The following example concerns a problem on geometric transformations in the
Cartesian plane that asks how a craftsman can draw a tile formed by rotated concentric
squares (Fig. 9), starting from the outermost square.

Fig. 8. Example of incorrect animation.

The Creation of Animated Graphs to Develop Computational Thinking 199

mmonagan@cecm.sfu.ca

The solution to the problem is obtained by rotating and expanding the outer square.
The static graph of the two transformations is a solution to the problem but it is possible
to use animations to illustrate the resolutive procedure step by step. The creation of
animated graphs was introduced gradually to the teachers, to underline the process of
decomposition of problems, showing how to obtain, in order: the static graph of the
dilated and subsequently rotated square; the animation of rotation and expansion; the
combination of the two animations to visualize the homothety. With Maple2018, the
extension and rotation of a planar figure are obtained respectively with the di-
latation and rotation commands of the geometry package. Both commands
need three input arguments: the name that the transformed figure must have, the name
of the figure to be transformed and the transformation coefficient. To create the ani-
mation of the extension and rotation of the square as the expansion coefficient or the
angle of rotation varies, the two commands have been generalized defining them as
procedures according to the transformation coefficient, indicated with k. Below are the
commands to define the two procedures (respectively f and g), where: quad2 is the
starting square, quadD is the dilated square and quadDR is the rotated dilated square.
The commands to display the two animations are also shown:

g:=proc (k)

options operator, arrow;

plots:-display(draw([quad2(color=blue),

(dilatation(quadD, quad2,k))(color=green)],

axes=none))

end proc;

plots:-animate(g,[‘k’],k=1..(1/2)*sqrt(2));

f:=proc (k)

options operator, arrow;

plots:-display(draw([quad2(color=blue),

(rotation(quadDR, quadD,k,

‘counterclockwise’))(color=green)]))

end proc;

plots:-animate(f,[‘k’],k=0..-(1/4)*Pi);

Fig. 9. Tile decoration to be reproduced in the problem.

200 A. Barana et al.

mmonagan@cecm.sfu.ca

Multiple strategies can be used to merge the two graphs into one. Since the ani-
mations extend over different intervals, teachers proposed to define a new procedure
that uses a function that for some times returns the expansion and in another the
rotation. In the following commands, the rotation interval was shifted to avoid the
pause between the two transformations:

gf:=proc (k)

options operator, arrow;

piecewise(k<(1/2)*sqrt(2),

plots:-display(draw([quad2(color=blue),

(rotation(quadDR2, quadD2,

k-(1/2)*sqrt(2),

‘counterclockwise’))

(color=green)],axes=none),

(1/2)*sqrt(2)<=k,

plots:-display(draw([quad2(color=blue),

(dilatation(quadD2,quad2,k))

(color=green)], axes=none))))

end proc;

plots:-animate(gf,[‘k’],k=1..(1/4)*Pi+(1/2)*sqrt(2))

Figure 10 shows the output of last command.

In this example the process of generalization for the creation of the two animations
and the process of abstraction for their union take on importance. This problem gives
the chance of multiple insights, addressed together with the teachers, always charac-
terized by the use of animated graphics: development of multiple strategies for the
creation of the drawing, iteration of the procedure to create the entire tile and creation
of the same type of drawing with other types of regular polygons. In this case, the
animations can be used by the teachers to illustrate the solution of the problem but also
to introduce or further study the theory on geometric transformations in the Cartesian
plane. The animations can be exported in GIF format and loaded into a Virtual
Learning Environment where the animation is maintained. In the example in Fig. 11,
the GIF of the in-depth problem with polygons was attached in a message from the
forum of the teacher training course. This type of teaching material can also be used to
involve students, to make them curious and passionate about mathematics.

Fig. 10. Animated graph to illustrate the combination of the two transformations.

The Creation of Animated Graphs to Develop Computational Thinking 201

mmonagan@cecm.sfu.ca

6.2 Animated Graphics for Illustrating Theoretical Concepts

A second important aspect in the creation of animated graphs is the use of animations as
stand-alone teaching materials to illustrate or enrich the explanation of theoretical
concepts or to present simulations, in order to support the construction of mental models
by students. The following example concerns the generation of solids of revolution. In
addition to a theoretical explanation on the generation of solids of revolution, an
example describes how the solid is obtained by rotating a rectangular trapezoid around
its major base, minor base, height or oblique side. Graphic visualization is indeed very
important for learning because it enriches the theoretical one. In this case, the commands
of the plottools package are of help, in particular the polygon command to draw
the trapezoid in the space and the rotate command to rotate it by a given angle with
respect to a given segment in space. Together with the teachers, a procedure was
designed, defined and implemented in several training sessions. Taking as input a figure
in space and any segment in space, the procedure returns the animation of the rotation of
360° around the given segment. Following is the procedure:

rotaz:=proc (fig,l::list)

local gr,rot,fr;

gr:=plots:-display(fig,axes=none);

fr:=proc (k)

options operator, arrow;

plottools:-rotate(gr, k, l)

end proc;

return plots:-animate(fr,[‘k’],’k’=0..2*Pi,trace=100,

scaling=constrained, style=pointline,

orientation=[-96, 86, -10])

end proc;

As an example, Fig. 12 shows the animation of the trapezoid’s rotation around the
major side that generates a solid composed of a cylinder surmounted by a cone. Space
animations are even more effective because three-dimensional graphs are interactive
and have a nice manipulability. It is possible to rotate the figure in each angle, move it
and, as in two-dimensional graphics, modify it to study the solid of revolution.

Fig. 11. Example of animation loaded as GIF in a Virtual Learning Environment.

202 A. Barana et al.

mmonagan@cecm.sfu.ca

In this example, we used the process of decomposition of problems and the process
of generalization several times: to move from the representation of a trapezoid in the
plane to that in space, to create the trapezoid animation around one of its sides, to
generalize the animation to any segment in space and to generalize the animation to any
plane figure. The procedure is versatile and allows to create solids of revolution
(concave and convex) starting from any shape and segment in the space. The animation
in output, exportable in GIF format, is an effective educational tool to illustrate the
creation of rotational solids and to support students in understanding their generation,
which sometimes can be difficult to imagine. The animations can be a valid aid in the
construction of mental models, too, more than a simple static representation of the final
result of the rotation or a simply theoretical explanation.

7 Conclusions

The results show some examples of processes of computational thinking in the creation
of animated graphs for solving a contextualized problem using Maple. By analyzing the
animations created to derive the trajectory of the ladybug, four different processes of
computational thinking emerged, reflecting different resolution strategies and gener-
alization processes. From the results, it emerged that the creation of the animated
graphs activates all the processes behind the mental strategies of computational
thinking, useful for solving problems. It is therefore desirable, because of their addi-
tional playful component, to use these graphs in ordinary mathematics education. In the
examples we discussed about animations created during training activities with sec-
ondary school teachers, we have shown some examples of how animations can support
the learning of scientific concepts otherwise only expressed in verbal or mathematical
form. We therefore believe that it is very important to train the teachers, both because
they need to raise awareness of the processes that the students activate during the
creation of animated graphs and to enrich the theoretical or practical explanations with
animated representations.

References

1. Barana, A., Marchisio, M.: Dall’esperienza di digital mate training all’attività di Alternanza
Scuola Lavoro. Mondo Digitale 15(64), 63–82 (2016)

2. Barana, A., Fioravera, M., Marchisio, M.: Developing problem solving competences through
the resolution of contextualized problems with an advanced computing environment. In:
Proceedings of the 3rd International Conference on Higher Education Advances. Universitat
Politècnica València, pp. 1015–1023 (2017)

Fig. 12. Three-dimensional animated graph of the generation of a solid of revolution.

The Creation of Animated Graphs to Develop Computational Thinking 203

mmonagan@cecm.sfu.ca

3. Barana, A., Fioravera, M., Marchisio, M., Rabellino, S.: Adaptive teaching supported by
ICTs to reduce the school failure in the project “Scuola Dei Compiti”. In: Proceedings of
2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC).
Presented at the 2017 IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), pp. 432–437. IEEE (2017)

4. Barana, A., Conte, A., Fioravera, M., Marchisio, M., Rabellino, S.: A model of formative
automatic assessment and interactive feedback for STEM. In: Proceedings of 2018 IEEE
42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 1016–
1025. IEEE, Tokyo, Japan (2018)

5. Barana, A., Marchisio, M., Miori, R.: MATE-BOOSTER: design of an e-Learning course to
boost mathematical competence. In: Proceedings of the 11th International Conference on
Computer Supported Education (CSEDU 2019), pp. 280–291 (2019)

6. Bizzarri, G., Forlizzi, L., Proietti, G.: Informatica: didattica possibile e pensiero
computazionale 10 (2011)

7. Brancaccio, A., Marchisio, M., Palumbo, C., Pardini, C., Patrucco, A., Zich, R.: Problem
posing and solving: strategic italian key action to enhance teaching and learning mathematics
and informatics in the high school. In: Proceedings of 2015 39th Annual Computer Software
and Applications Conference, pp. 845–850. IEEE, Taichung, Taiwan (2015)

8. Brancaccio, A., Esposito, M., Marchisio, M., Pardini, C.: L’efficacia dell’apprendimento in
rete degli immigrati digitali. L’esperienza SMART per le discipline scientifiche. Mondo
Digitale 15(64), 803–821 (2016)

9. Council Recommendation of 22 May 2018 on key competences for lifelong learning. Off.
J. Eur. Union (2018)

10. Demartini, C.G., et al.: Problem posing (& solving) in the second grade higher secondary
school. Mondo Digitale 14, 418–422 (2015)

11. Dorfler, W.: Forms and means of generalization in mathematics. In: Mathematical
Knowledge: Its Growth Through Teaching. pp. 63–95. Kluver (1991)

12. Kuzniak, A., Parzysz, B., Vivier, L.: Trajectory of a problem: a study in teacher training.
Math. Enthus. 10, 407–440 (2013)

13. Landriscina, F.: Didattica delle immagini: dall’informazione ai modelli mentali 12, 27–34
(2013)

14. Liljedahl, P., Santos-Trigo, M., Malaspina, U., Bruder, R.: Problem Solving in Mathematics
Education. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-40730-2

15. Lodi, M., Martini, S., Nardelli, E.: Abbiamo davvero bisogno del pensiero computazionale?
15 (2017)

16. Malara, N.A.: Processi di generalizzazione nell’insegnamento/apprendimento dell’algebra.
Annali online formazione docente 4, 13–35 (2013)

17. Samo, D.D., Darhim, D., Kartasasmita, B.: Culture-based contextual learning to increase
problem-solving ability of first year university student. J. Math. Educ. 9 (2017). https://doi.
org/10.22342/jme.9.1.4125.81-94

18. Santos-Trigo, M., Moreno-Armella, L., Camacho-Machín, M.: Problem solving and the use
of digital technologies within the mathematical working space framework. ZDM 48, 827–
842 (2016)

19. Wing, J.: Computational thinking. Presented at the Communications of the ACM (2006)

204 A. Barana et al.

https://doi.org/10.1007/978-3-319-40730-2
https://doi.org/10.22342/jme.9.1.4125.81-94
https://doi.org/10.22342/jme.9.1.4125.81-94

mmonagan@cecm.sfu.ca

Effective Problem Solving Using SAT
Solvers

Curtis Bright1,2(B), Jürgen Gerhard2, Ilias Kotsireas3, and Vijay Ganesh1

1 University of Waterloo, Waterloo, Canada
cbright@uwaterloo.ca

2 Maplesoft, Waterloo, Canada
3 Wilfrid Laurier University, Waterloo, Canada

Abstract. In this article we demonstrate how to solve a variety of prob-
lems and puzzles using the built-in SAT solver of the computer algebra
system Maple. Once the problems have been encoded into Boolean logic,
solutions can be found (or shown to not exist) automatically, without
the need to implement any search algorithm. In particular, we describe
how to solve the n-queens problem, how to generate and solve Sudoku
puzzles, how to solve logic puzzles like the Einstein riddle, how to solve
the 15-puzzle, how to solve the maximum clique problem, and finding
Graeco-Latin squares.

Keywords: SAT solving · Maple · n-queens problem · Sudoku · Logic
puzzles · 15-puzzle · Maximum clique problem · Graeco-Latin squares

1 Introduction

“. . . it is a constant source of annoyance when you come up with a clever
special algorithm which then gets beaten by translation to SAT.”

—Chris Jefferson

The satisfiability (SAT) problem is to determine if a given Boolean expression
can be satisfied—is there some way of assigning true and false to its variables that
makes the whole formula true? Despite at first seeming disconnected from most of
the kinds of problems that mathematicians care about we argue in this paper that
it is in the interests of mathematicians to have a familiarity with SAT solving
and encoding problems in SAT. An immense amount of effort over the past
several decades has produced SAT solvers that are not only practical for many
problems but are actually the fastest known way of solving an impressive variety
of problems such as software and hardware verification problems [3]. They have
also recently been used to resolve long-standing mathematical conjectures [12]
and construct large combinatorial designs [7].

Since 2018, the computer algebra system Maple has included the award-
winning SAT solver MapleSAT [15] as its built-in SAT solver. This solver can be
used through the Satisfy command of the Logic package. Satisfy returns a
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 205–219, 2020.
https://doi.org/10.1007/978-3-030-41258-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_15

mmonagan@cecm.sfu.ca

206 C. Bright et al.

satisfying assignment of a given Boolean expression (if one exists) or NULL if no
satisfying assignment exists. In this paper we demonstrate through a number of
detailed examples how Satisfy can be an effective and efficient way of solving
a variety of problems and puzzles.

Very little prerequisites are necessary to understand this paper; the main
necessary background is a familiarity with Boolean logic which we outline in
Sect. 2. We then present effective solutions to the n-queens problem (Sect. 3),
logic puzzles like the Einstein riddle (Sect. 4), Sudoku puzzles (Sect. 5), Euler’s
Graeco-Latin square problem (Sect. 6), the maximum clique problem (Sect. 7),
and the 15-puzzle (Sect. 8). In each case we require no knowledge of any of
the special-purpose search algorithms that have been proposed to solve these
problems; once the problems have been encoded into Boolean logic they are
automatically solved using Maple’s Satisfy.

All of the examples discussed in this paper were implemented and run in
Maple 2018 and Maple 2019. Due to space constraints we have not included our
code in this paper, but Maple worksheets containing complete implementations
have been made available online through the Maple Application Center [6].

2 Background

A basic understanding of Boolean logic is the only prerequisite necessary to
understand the solutions described in this paper. One of the main advantages
of Boolean logic (but also one of its main disadvantages) is its simplicity: each
variable can assume only one of two values denoted by true and false. Boolean
expressions consist of variables joined by Boolean operators. The most common
Boolean operators (and the ones available in the Logic package of Maple) are
summarized in Table 1.

The ∨ (or), ∧ (and), and ¬ (not) operators have meanings based on their
everyday English meanings: x1 ∨ · · · ∨ xn is true exactly when at least one xi is
true, x1 ∧ · · · ∧ xn is true exactly when all xi are true, and ¬x is true exactly
when x is false. More generally, x ⇔ y is true exactly when x and y have the

Table 1. The Boolean logical operators available in Maple.

Name Symbol Arity Maple syntax

Negation ¬ 1 ¬

Conjunction ∧ n-ary &and

Disjunction ∨ n-ary &or

Implication ⇒ 2 &implies

Biconditional ⇔ 2 &iff

Alternative denial ↑ n-ary &nand

Joint denial ↓ n-ary &nor

Exclusive disjunction ∨ n-ary &xor

mmonagan@cecm.sfu.ca

Effective Problem Solving Using SAT Solvers 207

same truth values, x⇒y is false exactly when y is true and x is false, x1∨· · ·∨xn

is true exactly when an odd number of xi are true, x1 ↑ · · · ↑ xn is true exactly
when at least one xi is false, and x1 ↓ · · · ↓xn is true exactly when all xi are false.

A literal is an expression of the form x or ¬x where x is a Boolean variable.
A clause is an expression of the form l1 ∨ · · · ∨ ln where all li are literals. A con-
junctive normal form (CNF) expression is of the form c1 ∧ · · · ∧ cn where all ci
are clauses. A standard theorem of Boolean logic is that any expression can be
converted into an equivalent expression in conjunctive normal form where two
expressions are said to be equivalent if they assume the same truth values under
all variable assignments.

The current algorithms used in state-of-the-art SAT solvers require that the
input formula be given in conjunctive normal form. While this is convenient for
the purposes of designing efficient solvers it is not convenient for the mathemati-
cian who wants to express their problem in Boolean logic—not all expressions are
naturally expressed in conjunctive normal form. An advantage that Maple has
over most current state-of-the-art SAT solvers is that Maple does not require
the input to be given in conjunctive normal form. Since the algorithms used
by MapleSAT require CNF to work properly, Maple internally converts expres-
sions into CNF automatically. This is done by using a number of equivalence
transformations, e.g., the expression x ⇒ y is rewritten as the clause ¬x ∨ y.

Care has been taken to make the necessary conversion to CNF efficient.
This is important because conversions that use the most straightforward equiv-
alence rules generally require exponential time to complete. For example, the
Maple command Normalize from the Logic package can be used to convert an
expression into CNF. But watch out—many expressions explode in size following
this conversion. For example, the expression x1 ∨ · · · ∨ xn when converted into
CNF contains 2n−1 clauses. The main trick used to make the conversion into
CNF efficient is the Tseitin transformation [23]. This transformation avoids the
exponential blowup of the straightforward transformations by using additional
variables to derive a new formula that is satisfiable if and only if the original
formula is satisfiable. For example, the expression x1 ∨ · · · ∨ xn is rewritten as
(t ∨ x3 ∨ · · · ∨ xn) ∧ C where t is a new variable and C is a CNF encoding of the
formula t ⇔ (x1 ∨ x2), namely,

(¬x1 ∨ x2 ∨ t) ∧ (x1 ∨ ¬x2 ∨ t) ∧ (x1 ∨ x2 ∨ ¬t) ∧ (¬x1 ∨ ¬x2 ∨ ¬t).

The transformation is then recursively applied to t ∨ x3 ∨ · · · ∨ xn (the part of
the formula not in CNF) until the entire formula is in CNF. The Maple command
Tseitin of the Logic package can be applied to convert an arbitrary formula
into CNF using this translation. Thus, Maple offers us the convenience of not
requiring encodings to be in CNF while avoiding the inefficiencies associated
with a totally unrestricted encoding.

mmonagan@cecm.sfu.ca

208 C. Bright et al.

Q1,5 = true

Q2,7 = true

Q3,2 = true

Q4,6 = true

Q5,3 = true

Q6,1 = true

Q7,4 = true

Q8,8 = true

Fig. 1. A visual representation of a solution for the 8-queens problem (left) and the
variables assigned to true in this solution using our SAT encoding. Following traditional
chess convention, columns are indexed left to right and rows are indexed bottom to
top.

3 The n-queens Problem

The n-queens problem is to place n chess queens on an n × n chessboard such
that no two queens are mutually attacking (i.e., in the same row, column, or
diagonal). The problem was first proposed for n = 8 by Bezzel in 1848 and the
first solution for general n was given by Pauls in 1874 [2]. The problem is solvable
for all n ≥ 4; a solution for n = 8 (found in 0.015 s using Satisfy) is shown in
Fig. 1.

The n-queens problem is a standard example of a constraint satisfaction
problem [18]. The encoding that we use for this problem uses the n2 Boolean
variables Qx,y with 1 ≤ x, y ≤ n to denote if there is a queen on square (x, y).
There are two kinds of constraints necessary for this problem: positive constraints
that say that there are n queens on the board and negative constraints that say
that queens do not attack each other. A satisfying assignment of these constraints
exists exactly when the n-queens problem is solvable.

Since there are n rows and each row must contain a queen the positive con-
straints are of the form Q1,j ∨ · · · ∨ Qn,j for 1 ≤ j ≤ n. Similarly, each column
must contain a queen; these constraints are of the form Qi,1 ∨ · · · ∨ Qi,n for
1 ≤ i ≤ n. The negative constraints say that if (x, y) contains a queen then
all squares attacked by (x, y) do not contain a queen. These constraints are
represented in Boolean logic by Qx,y ⇒ ¬(A1 ∨ · · · ∨ Ak) where {A1, . . . , Ak}
are the variables “attacked” by a queen on (x, y). In general this encoding uses
Θ(n2) constraints in order n. Typically Satisfy is able to solve each order using
slightly more time than the previous order and the last order it can solve in
under a second is n = 32.

mmonagan@cecm.sfu.ca

Effective Problem Solving Using SAT Solvers 209

4 The Einstein Riddle

The Einstein riddle is a logic puzzle apocryphally attributed to Albert Einstein
and is often stated with the remark that it is only solvable by 2% of the world’s
population. The true source of the puzzle is unknown, but a version of it appeared
in the magazine Life International in 1962. In the puzzle there are five houses in
a row with each house a different colour and each house owned by a man of a
different nationality. Additionally, each of the owners have a different pet, prefer
a different kind of drink, and smoke a different brand of cigarette. Furthermore,
the following information is given:

1. The Brit lives in the red house.
2. The Swede keeps dogs as pets.
3. The Dane drinks tea.
4. The green house is next to the white house, on the left.
5. The owner of the green house drinks coffee.
6. The person who smokes Pall Mall rears birds.
7. The owner of the yellow house smokes Dunhill.
8. The man living in the centre house drinks milk.
9. The Norwegian lives in the first house.

10. The man who smokes Blends lives next to the one who keeps cats.
11. The man who keeps horses lives next to the man who smokes Dunhill.
12. The man who smokes Blue Master drinks beer.
13. The German smokes Prince.
14. The Norwegian lives next to the blue house.
15. The man who smokes Blends has a neighbour who drinks water.

The puzzle is: Who owns the fish?
To solve this riddle using Maple, we label the houses 1 to 5 and use the vari-

ables Si,a where 1 ≤ i ≤ 5 and a is an attribute (one of the colours, nationalities,
pets, drinks, or cigarette brands). For example, if a is a colour then a is in the set
C := {red, green,white, yellow,blue} and similarly for the other attribute types;
there are five distinct possible attributes for each type of attribute. In total there
are 52 = 25 possible values for a and 53 = 125 variables Si,a.

We know that each attribute is not shared among the five houses or their
owners. Since there are exactly five houses, each attribute must appear exactly
once among the five houses. The knowledge that each attribute appears at least
once can be encoded as the clauses

∨5
i=1 Si,a for each attribute a and the knowl-

edge that each attribute is not shared can be encoded as Si,a ⇒ ¬Sj,a where j
is a house index not equal to i and a is an attribute. Additionally, the fact
that each house has some colour is encoded as

∨
a∈C Si,a for each house index i

and the knowledge that each house cannot have two colours can be encoded as
Si,c ⇒ ¬Si,d where i is a house index and c and d are two distinct colours (and
similarly for the other kinds of attributes).

The known facts can be encoded into logic fairly straightforwardly; for exam-
ple, the first fact can be encoded into logic as Si,Brit ⇒ Si,red for house indices i

mmonagan@cecm.sfu.ca

210 C. Bright et al.

S1,1,8 S2,3,3 S2,4,6

S3,2,7 S3,5,9 S3,7,2

S4,2,5 S4,6,7 S5,5,4

S5,6,5 S5,7,7 S6,4,1

S6,8,3 S7,3,1 S7,8,6

S7,9,8 S8,3,8 S8,4,5

S8,8,1 S9,2,9 S9,7,4

Fig. 2. A Sudoku puzzle estimated to have a difficulty rating of 11 stars, whereas the
most challenging Sudoku puzzles that are usually published are given 5 stars. On the
right are the starting constraints (as unit clauses) of our encoding for this puzzle.

and the last fact can be encoded as Si,Blends ⇒ (Si−1,water ∨ Si+1,water) for
1 < i < 5 and (S1,Blends ⇒ S2,water) ∧ (S5,Blends ⇒ S4,water). Using Satisfy
on these constraints produces the unique satisfying solution (that includes the
equations S4,German = true and S4,fish = true, thereby solving the puzzle) in
under 0.01 s.

5 Sudoku Puzzles

Sudoku is a popular puzzle that appears in many puzzle books and newspapers.
Given a 9 by 9 grid whose squares are either blank or contain a number between 1
and 9, the objective is to fill in the blank squares in such a way that each row
and column contains exactly one digit between 1 and 9. Additionally, each of the
nine 3 by 3 subgrids which compose the grid (called blocks) must also contain
exactly one digit between 1 and 9. Figure 2 contains a Sudoku puzzle designed
by mathematician Arto Inkala and claimed to be the world’s hardest Sudoku [9].

It is known that Sudoku can be modelled as a SAT problem [16] or a con-
straint satisfaction problem [20]. A straightforward encoding uses 93 = 729 vari-
ables Si,j,k with 1 ≤ i, j, k ≤ 9 where Si,j,k is true exactly when the square (i, j)
contains the digit k. The rules of Sudoku state that each square must be filled
with a digit between 1 and 9 and that the same digit cannot appear twice in the
same row, column, or block. The first constraint has the form Si,j,1 ∨ · · · ∨ Si,j,9

for all 1 ≤ i, j ≤ 9 and the second constraint has the form Si,j,k ⇒ ¬Si′,j′,k for
all 1 ≤ i, j, i′, j′, k ≤ 9 where (i, j) does not equal (i′, j′) but is in the same row,
column, or block as (i, j).

One can also include the constraints Si,j,k ⇒ ¬Si,j,k′ for all 1 ≤ i, j, k, k′ ≤ 9
with k
= k′ that say that each square can contain at most one digit. However,
these constraints are unnecessary since they are logically implied by the first two
constraints. In our tests, including these additional constraints slightly decreased

mmonagan@cecm.sfu.ca

Effective Problem Solving Using SAT Solvers 211

the performance of Satisfy. Without the additional constraints the “world’s
hardest Sudoku” was solved in 0.25 s and with them it was solved in 0.33 s.

Additionally, we developed a method of generating Sudoku puzzles with a
unique solution using Satisfy. This allowed us to write an interactive Sudoku
game where random puzzles can automatically be generated on command. To
begin, Satisfy is used to find a solution to the above Sudoku constraints with
an empty grid (no starting clues) and the produced satisfying solution generates
a completed Sudoku grid R. A random seed is passed to the SAT solver so that a
different solution R is generated each time; this is done by passing the following
solveroptions in the call to Satisfy:

[rnd init act=true, random seed=floor(1000*time[real]())]

Let Ri,j denote the (i, j) the entry in the solution R where 1 ≤ i, j ≤ 9. The Ri,j

are randomly ordered and the first 50 entries Ri,j are selected as the potential
starting configuration of a Sudoku puzzle. This puzzle has the solution R by
construction, though other solutions may also exist.

To verify that the generated solution is unique, we re-run Satisfy with the
additional 50 unit clauses corresponding to the starting configuration along with
the constraint

∨
Ri,j=k ¬Si,j,k which blocks the solution R. If Satisfy returns

another solution then we start over and find a new R to try. Otherwise the
starting configuration forms a legal Sudoku puzzle.

Additionally, it may be the case that we can use fewer than 50 entries and still
obtain a Sudoku puzzle with a unique solution. To estimate how many entries
need to be assigned using only a few extra calls to the SAT solver we use a variant
of binary search, letting l := 20 and h := 50 be lower and upper bounds on how
many entries we will define in the puzzle. Next, we let m := round((l+h)/2) and
repeat the first step except using only the first m entries Ri,j . If the resulting SAT
instance is satisfiable then we need to use strictly more than m entries to ensure
that a unique solution exists and if the resulting SAT instance is unsatisfiable
then we can perhaps use strictly fewer than m entries. Either way, we improve
the bounds on how many entries to assign (in the former case we can update l
to m and in the latter case we can update h to m) and this step can be repeated
a few times to find more precise bounds on how many entries need to be assigned
to ensure a unique solution exists.

6 Euler’s Graeco-Latin Square Problem

A Latin square of order n is an n×n matrix containing integer entries between 1
and n such that every row and every column contains each entry exactly once.
Two Latin squares are orthogonal if the superposition of one over the other
produces all n2 distinct pairs of integers between 1 and n. A pair of orthogonal
Latin squares was called a Graeco-Latin square by the mathematician Leonhard
Euler who in 1782 used Latin characters to represent the entries of the first
square and Greek characters to represent the entries of the second square [11].
Figure 3 contains a visual representation of a Graeco-Latin square.

mmonagan@cecm.sfu.ca

212 C. Bright et al.

A1,1,1 = true B1,1,1 = true

A2,1,2 = true B2,1,10 = true

A3,1,3 = true B3,1,5 = true

A4,1,4 = true B4,1,2 = true

A5,1,5 = true B5,1,6 = true

A6,1,6 = true B6,1,9 = true

A7,1,7 = true B7,1,4 = true

A8,1,8 = true B8,1,7 = true

A9,1,9 = true B9,1,3 = true

A10,1,10 = true B10,1,8 = true

Fig. 3. On the left is a visual representation of a Graeco-Latin square of order 10
with each colour denoting a separate integer. The entries of the second Latin square
(represented by the small squares in the image) are superimposed onto the entries of
the first Latin square. On the right are the variables corresponding to the first column
of this Graeco-Latin square that are assigned to true using our encoding.

Euler studied the orders n for which Graeco-Latin squares exist and found
methods for constructing them when n was odd or a multiple of 4. Since such
squares do not exist for n = 2 and he was unable to find a solution for n = 6 he
conjectured that Graeco-Latin squares do not exist when n ≡ 2 (mod 4). Euler’s
conjecture became famous as he was not able to resolve it in his lifetime.

The first progress on the conjecture did not come until over a hundred years
later when in 1900 Tarry showed that Graeco-Latin squares of order 6 do not
exist [22]. This gave credence to Euler’s conjecture and many mathematicians
thought the conjecture was true—in fact, three independent proofs of the con-
jecture were published in the early 20th century [17,19,24]. In 1959–1960 Bose,
Shrikhande, and Parker [4,5] made explosive news (even appearing on the front
page of the New York Times) by showing that these proofs were invalid by giv-
ing explicit constructions for Graeco-Latin squares in all orders except two and
six. As it turns out, a lot of time could have been saved if Euler had a copy
of Maple—we now show that Euler’s conjecture can be automatically disproven
in Maple. With Satisfy we are able to construct small Graeco-Latin squares
without any knowledge of search algorithms or construction methods.

Our encoding for the Graeco-Latin square problem of order n uses the 2n3

variables Ai,j,k and Bi,j,k with 1 ≤ i, j, k ≤ n. The variables Ai,j,k will be true
exactly when the (i, j)th entry of the Latin square A is k and Bi,j,k will be true
exactly when the (i, j)th entry of the Graeco square B is k.

There are three kinds of constraints that specify that (A,B) is a Graeco-
Latin square: Those that specify that every entry of A and B is an integer
between 1 and n, those that specify that the rows and columns of A and B
contain no duplicate entries, and those that specify that A and B are orthogonal.
Additionally, there are constraints that are not logically necessary but help cut
down the search space. Some work has previously been done using SAT solvers

mmonagan@cecm.sfu.ca

Effective Problem Solving Using SAT Solvers 213

to search for special kinds of Graeco-Latin squares [25]. The encoding we use is
similar but takes advantage of the fact that Maple does not require constraints
to be specified in conjunctive normal form.

First, we specify that the entries of A are well-defined, i.e., consist of a single
integer between 1 and n. The constraints that say that each entry of A contains
at least one integer are of the form Ai,j,1 ∨ · · · ∨ Ai,j,n for each index pair (i, j)
and the constraints that say that each entry of A contains at most one integer
are of the form Ai,j,k⇒¬Ai,j,l for each index pair (i, j) and integer k
= l. Similar
constraints are also used to specify that the entries of B are well-defined.

Second, we specify that A is a Latin square, i.e., all columns and rows contain
distinct entries. These have the form Ai,j,k ⇒ ¬Ai′,j′,k where 1 ≤ k ≤ n and
(i, j)
= (i′, j′) but (i, j) is in the same column or row as (i′, j′). Similarly, we
also specify that B is a Latin square.

Third, we specify that A and B are orthogonal, i.e., for every pair (k, l) there
exists some pair (i, j) such that Ai,j,k ∧ Bi,j,l holds. These constraints are of the
form

∨n
i,j=1(Ai,j,k ∧ Bi,j,l) for each pair (k, l).

Lastly, we include some “symmetry breaking” constraints. These constraints
are not strictly necessary but they shrink the search space and thereby make the
search more efficient. In general, when a search space splits into symmetric sub-
spaces it is beneficial to add constraints that remove or “break” the symmetry.
Graeco-Latin squares (A,B) have a number of symmetries, in particular, a row
or column permutation simultaneously applied to A and B produces another
Graeco-Latin square. Also, any permutation of {1, . . . , n} may be applied to the
entries of either A or B.

The result of these symmetries is that any Graeco-Latin square can be trans-
formed into one where the first row and column of A has entries in ascending
order (by permuting rows/columns) and the first row of B has entries in ascend-
ing order (by renaming the entries of B). Thus, we can assume the constraint∧n

i=1(A1,i,i ∧ B1,i,i ∧ Ai,1,i). Altogether this encoding uses Θ(n4) constraints.
Using this encoding the orders up to eight can be solved in 25 total sec-

onds (including 14 s to show that no Graeco-Latin squares exist in order six), a
Graeco-Latin square of order nine can be found in about 45 min, and a Graeco-
Latin square of order ten can be found in about 23 h, thereby disproving Euler’s
Graeco-Latin square conjecture.

7 The Maximum Clique Problem

The maximum clique problem is to find a clique of maximum size in a given
graph. A clique of a graph is a subset of its vertices that are all mutually con-
nected (see Fig. 4). The decision version of this problem (does a graph contain
a clique of size k?) is in NP, meaning that it is easy to verify the correctness
of a solution if one can be found. By the Cook–Levin theorem [10] the problem
can be encoded into a SAT instance in polynomial time. However, the reduc-
tion involves simulating the computation of a machine that solves the maximum
clique problem and is therefore not very convenient to use in practice. Thus, we
provide a simpler encoding into Boolean logic.

mmonagan@cecm.sfu.ca

214 C. Bright et al.

x4 = true

x9 = true

x12 = true

x20 = true

s4,1 = true

s9,2 = true

s12,3 = true

s20,4 = true

Fig. 4. On the left is a visual representation of a graph with 20 vertices and a high-
lighted clique of size 4 that was found in 0.025 s. On the right are the important
variables assigned to true in the assignment returned by Satisfy for our encoding of
the maximum clique problem for this graph.

Suppose the given graph G has vertices labelled 1, . . . , n and we want to
find a clique of size k in G. Our encoding uses the variables x1, . . . , xn where xi

represents that the vertex i appears in the clique we are attempting to find. We
need to enforce a constraint that says that if xi and xj are true (for any distinct
vertices 1 ≤ i, j ≤ n) then the edge {i, j} exists in the graph G. Equivalently, if
the edge {i, j} does not exist in the graph G then the variables xi and xj cannot
both be true (for any vertices i, j). In other words, for every edge {i, j} in the
complement of G we use the clause ¬xi ∨ ¬xj .

Additionally, we need a way to enforce that the found clique is of size k. The
most naive way to encode this is as a disjunction over all

(
n
k

)
conjunctions of

length k on the variables x1, . . . , xn. However, this encoding is very inefficient
in practice. A cleverer encoding uses Boolean counter variables si,j (where 0 ≤
i ≤ n and 0 ≤ j ≤ k) that represent that at least j of the variables x1, . . . ,
xi are assigned to true. We know that s0,j will be false for 1 ≤ j ≤ k and that
si,0 will be true for 0 ≤ i ≤ n. Additionally, we know that si,j is true exactly
when si−1,j is true or xi is true and si−1,j−1 is true. This is represented by the
formulas

si,j ⇔ (si−1,j ∨ (xi ∧ si−1,j−1)) for 1 ≤ i ≤ n and 1 ≤ j ≤ k

or in conjunctive normal form by the clauses ¬si−1,j ∨si,j , ¬xi ∨¬si−1,j−1 ∨si,j ,
¬si,j ∨ si−1,j ∨ xi, and ¬si,j ∨ si−1,j ∨ si−1,j−1. To enforce that the found clique
contains at least k vertices we also assign sn,k to true.

To solve the maximum clique problem for a given graph G we initialize k
to 3 (assuming the graph has at least one edge, otherwise the problem is trivial)
and use the above encoding to search for a clique of size k. If such a clique exists
we increase k by 1 and repeat the search in this manner until a clique of size k
does not exist. The last satisfying assignment found then provides a maximum
clique of G using an encoding with Θ(nk) variables and Θ(n2) clauses.

mmonagan@cecm.sfu.ca

Effective Problem Solving Using SAT Solvers 215

Table 2. A comparison of the SAT method and the MaximumClique function of Maple
2018 on a collection of maximum clique benchmarks with a timeout of an hour.

Benchmark SAT time (sec) Maple 2018 (sec) Vertices Edges Clique size

brock200 2 23.52 22.19 200 9876 12

c-fat200-1 0.71 0.03 200 1534 12

c-fat200-2 2.32 0.13 200 3235 24

c-fat200-5 9.07 20.63 200 8473 58

c-fat500-1 4.78 0.13 500 4459 14

c-fat500-2 11.12 0.82 500 9139 26

c-fat500-5 42.46 132.84 500 23191 64

c-fat500-10 134.42 Timeout 500 46627 126

hamming6-2 0.64 51.10 64 1824 32

hamming6-4 0.04 0.02 64 704 4

hamming8-2 58.51 Timeout 256 31616 128

hamming8-4 7.96 3393.26 256 20864 16

johnson8-2-4 0.01 0.01 28 210 4

johnson8-4-4 0.23 7.80 70 1855 14

johnson16-2-4 5.62 642.24 120 5460 8

keller4 7.76 414.80 171 9435 11

MANN a9 0.13 226.18 45 918 16

p hat300-1 11.81 3.30 300 10933 8

p hat500-1 308.87 34.60 500 31569 9

p hat700-1 1281.62 169.68 700 60999 11

This implementation was tested on the maximum clique problems from the
second DIMACS implementation challenge [13]. Additionally, it was compared
with Maple’s MaximumClique function from the GraphTheory package that uses
a branch-and-bound backtracking algorithm [14]. Of the 80 benchmarks, the
SAT method solved 18 in under 3 min and the branch-and-bound method solved
15. The SAT approach was faster in over half of the solved benchmarks and in
one case solved a benchmark in 8 s that MaximumClique required 57 min to solve
(see Table 2).

The SAT method has been made available in Maple 2019 by using the
method=sat option of MaximumClique. By default the MaximumClique function
in Maple 2019 will run the previous method used by Maple and the SAT method
in parallel and return the answer of whichever method finishes first. This hybrid
approach is the method of choice especially when more than a single core is
available.

mmonagan@cecm.sfu.ca

216 C. Bright et al.

S1,1,5,0 S1,2,1,0 S1,3,7,0 S1,4,3,0

S2,1,9,0 S2,2,2,0 S2,3,11,0 S2,4,4,0

S3,1,13,0 S3,2,6,0 S3,3,15,0 S3,4,8,0

S4,1,16,0 S4,2,10,0 S4,3,14,0 S4,4,12,0

Fig. 5. On the left is a visual representation of one starting configuration of the 15-
puzzle and on the right are the starting constraints (as unit clauses) for this starting
configuration in our encoding.

8 The 15-Puzzle

The 15-puzzle is a classic “sliding tile” puzzle that was first designed in 1880 and
became very popular in the 1880s [21]. It consists of a 4× 4 grid containing tiles
numbered 1 through 15 along with one missing tile (see Fig. 5). The objective of
the puzzle is to arrange the tiles so that they are in ascending order when read
from left to right and top to bottom and to end with the blank tile in the lower
right. The only moves allowed are those that slide a tile adjacent to the blank
space into the blank space. Half of the possible starting positions are solvable [1]
and the hardest legal starting positions require eighty moves to complete [8].

Our encoding of the 15-puzzle is more complicated because unlike the other
problems we’ve considered, a solution to the 15-puzzle is not static. In other
words, our encoding must be able to deal with the state of the puzzle changing
over time. To do this we use the variables Si,j,n,t to denote that the entry at
(i, j) contains tile n at timestep t. Here 1 ≤ i, j ≤ 4, 1 ≤ n ≤ 16 (we let 16
denote the blank tile), and 0 ≤ t ≤ 80 since each instance requires at most 80
moves to complete.

The board does not permit two tiles to occupy the same location at the same
time; these constraints are of the form Si,j,n,t ⇒ ¬Si,j,m,t for each tile numbers
n
= m, valid indices i and j, and valid timesteps t. Next we need to generate
constraints that tell the SAT solver how the state of the board can change from
time t to time t + 1. There are two cases to consider, depending on if a square
(or an adjacent square) contains the blank tile.

The easier case is when a square (i, j) and none of the squares adjacent to
that square are blank. In that case, the rules of the puzzle imply that the tile
in square (i, j) does not change. We define the function doesNotChange(i, j, t)
to be the constraint that says that the tile in square (i, j) does not change
at time t; these constraints are of the form

∧16
n=1(Si,j,n,t ⇔ Si,j,n,t+1). We also

use the function adj(i, j) to denote the squares adjacent to (i, j) and define

mmonagan@cecm.sfu.ca

Effective Problem Solving Using SAT Solvers 217

notEqualOrAdjacentToBlank(i, j, t) to be ¬Si,j,16,t∧
∧

(k,l)∈adj(i,j) ¬Sk,l,16,t. The
static transition constraints are of the form

notEqualOrAdjacentToBlank(i, j, t) ⇒ doesNotChange(i, j, t)

for all valid squares (i, j) and timesteps t.
The harder transition case is when a square (i, j) contains the blank tile. In

this case we need to encode the fact that the blank tile will switch positions
with exactly one of the squares adjacent to square (i, j). If the tile on square
(i, j) switches positions with the square (k, l) at time t this can be encoded
as the constraint

∧16
n=1(Si,j,n,t ⇔ Sk,l,n,t+1). We also need to enforce that all

squares adjacent to (i, j) other than (k, l) do not change; these constraints are of
the form

∧
(x,y) doesNotChange(x, y, t) where (x, y) is adjacent to (i, j) but not

equal to (k, l). Let oneTileMoved(i, j, k, l, t) denote the conjunction of the above
two constraints. Then the slide transition constraints are of the form

Si,j,16,t ⇒
∨

(k,l)∈adj(i,j)

oneTileMoved(i, j, k, l, t)

for all valid squares (i, j) and timesteps t.
The constraint boardSolved(t) that says the board is solved at timestep t can

be encoded as
∧4

i,j=1 Si,j,4i+j−4,t. For efficiency reasons we only start looking for
solutions with at most 5 moves; if no solution is found then we look for solutions
using at most 10 moves and continue in this manner until a solution is found. In
other words, we call Satisfy with the given starting constraints, the constraints
of the puzzle as described above, and the constraint

∨m
t=m−4 boardSolved(t)

where m is initialized to 5 and then increased by 5 every time no solution is
found.

This method was applied to the starting configuration from Fig. 5. It found
that no solutions with at most 5 moves exist in 1.5 s, no solutions with at most
10 moves exist in 2.8 s, and found a solution with 15 moves in 6.3 s. It was
also able to solve puzzles requiring up to 40 moves in 20 min. While this is not
competitive with dedicated solvers for the 15-puzzle, it requires no knowledge
beyond the rules of the game and makes an interesting example of how to push
SAT solvers to their limits.

9 Conclusion

In this paper we’ve demonstrated how to solve a variety of problems and puzzles
using the computer algebra system Maple and its SAT solver MapleSAT [15]. We
discussed a number of encodings and ways for improving those encodings, e.g.,
by using symmetry breaking (as in Sect. 6) or by using auxiliary variables (as in
Sect. 7). We also took advantage of Maple’s ability to solve SAT problems not
encoded in conjunctive normal form in Sects. 3, 6, and 8. Maple code for all the
examples covered in this paper (including code to read the output of Satisfy

mmonagan@cecm.sfu.ca

218 C. Bright et al.

and generate the figures included in this paper) are available for download from
the Maple Application Center [6].

The implementations presented in this paper can be considered examples
of declarative programming where the programmer focuses on describing the
problem but not the solution—the computer automatically decides the best way
to solve the problem. This is in contrast to imperative programming where a
programmer needs to describe precisely how the computation is to take place.
An advantage of declarative programming is that the programmer does not need
to worry about specifying a potentially complicated search algorithm. However,
a disadvantage of declarative programming is that it lacks the kind of detailed
control over the method of solution that can be required for optimally efficient
solutions. Furthermore, not all problems are naturally expressed in a declarative
way.

As we saw in the maximum clique problem, sometimes declarative solutions
can outperform imperative solutions. This also occurs in the graph colouring (or
chromatic number) problem of colouring the vertices of a graph using the fewest
number of colours subject to the constraint that adjacent vertices are coloured
differently. For example, prior to Maple 2018 the ChromaticNumber function
required several hours to find a minimal colouring of the 8× 8 queens graph but
a SAT encoding can solve this problem in under 10 s [6]. The SAT approach is
available in Maple 2019 using the method=sat option of ChromaticNumber.

This somewhat unconventional manner of using Maple is not applicable to
all problems but we hope the examples in this paper have convinced the reader
that SAT solvers are more useful and powerful than they might at first appear.
With its extensive logic functionality and convenient method of expressing logical
constraints, Maple is an ideal tool for experimenting with SAT solvers and logical
programming.

References

1. Archer, A.F.: A modern treatment of the 15 puzzle. Am. Math. Mon. 106(9),
793–799 (1999)

2. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens.
Discret. Math. 309(1), 1–31 (2009)

3. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T.: Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

4. Bose, R.C., Shrikhande, S.S., Parker, E.T.: Further results on the construction of
mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Can. J.
Math. 12, 189–203 (1960)

5. Bose, R.C., Shrikhande, S.S.: On the falsity of Euler’s conjecture about the non-
existence of two orthogonal Latin squares of order 4t + 2. Proc. Natl. Acad. Sci.
U.S.A. 45(5), 734–737 (1959)

6. Bright, C.: Maple applications by Curtis Bright. https://www.maplesoft.com/
applications/Author.aspx?mid=345070

https://www.maplesoft.com/applications/Author.aspx?mid=345070
https://www.maplesoft.com/applications/Author.aspx?mid=345070

mmonagan@cecm.sfu.ca

Effective Problem Solving Using SAT Solvers 219

7. Bright, C., Kotsireas, I., Ganesh, V.: A SAT+CAS method for enumerating
Williamson matrices of even order. In: McIlraith, S., Weinberger, K. (eds.) Thirty-
Second AAAI Conference on Artificial Intelligence, pp. 6573–6580. AAAI Press
(2018)

8. Brüngger, A., Marzetta, A., Fukuda, K., Nievergelt, J.: The parallel search bench
ZRAM and its applications. Ann. Oper. Res. 90, 45–63 (1999)

9. Collins, N.: World’s hardest sudoku: can you crack it? (2012). https://www.
telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-
you-crack-it.html

10. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM
(1971)

11. Euler, L.: Recherches sur un nouvelle espéce de quarrés magiques. Verhandelingen
uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen, pp.
85–239 (1782)

12. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems: cube-
and-conquer, a hybrid SAT solving method. In: Sierra, C. (ed.) Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
pp. 4864–4868. IJCAI (2017)

13. Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, 11–13 October 1993, vol. 26. American Mathematical
Society (1996)

14. Kreher, D., Stinson, D.: Combinatorial Algorithms: Generation, Enumeration, and
Search. Discrete Mathematics and Its Applications. Taylor & Francis, Routledge
(1998)

15. Liang, J.H., Govind V.K., H., Poupart, P., Czarnecki, K., Ganesh, V.: An
empirical study of branching heuristics through the lens of global learning
rate. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
119–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 8.
https://ece.uwaterloo.ca/maplesat/

16. Lynce, I., Ouaknine, J.: Sudoku as a SAT problem. In: 9th International Sympo-
sium on Artificial Intelligence and Mathematics (2006)

17. MacNeish, H.F.: Euler squares. Ann. Math. 23(2), 221–227 (1922)
18. Nadel, B.A.: Representation selection for constraint satisfaction: a case study using

n-queens. IEEE Intell. Syst. 5(3), 16–23 (1990)
19. Peterson, J.: Les 36 officieurs. Annuaire des Mathématiciens, pp. 413–427 (1902)
20. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Edu-

cation, London (2010)
21. Slocum, J., Sonneveld, D.: The 15 Puzzle: How It Drove the World Crazy. Slocum

Puzzle Foundation, Beverly Hills (2006)
22. Tarry, G.: Le problème des 36 officiers. Association Française pour l’Avancement

des Sciences: Compte Rendu de la 29me session en Paris 1900, pp. 170–203 (1901)
23. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:

Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
pp. 115–125 (1970)

24. Wernicke, P.: Das Problem der 36 Offiziere. Jahresbericht der Deutschen
Mathematiker-Vereinigung 19, 264–267 (1910)

25. Zaikin, O., Kochemazov, S.: The search for systems of diagonal Latin squares using
the SAT@home project. Int. J. Open Inf. Technol. 3(11), 4–9 (2015)

https://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html
https://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html
https://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html
https://doi.org/10.1007/978-3-319-66263-3_8
https://ece.uwaterloo.ca/maplesat/

mmonagan@cecm.sfu.ca

Using Maple to Make Manageable
Matrices

Ana C. Camargos Couto and David J. Jeffrey(B)

Department of Applied Mathematics and ORCCA, The University
of Western Ontario, London, ON, Canada

{acamarg,djeffrey}@uwo.ca

Abstract. This paper describes an application of Maple in the teach-
ing of linear algebra. The topic is the construction of an orthogonal
basis for a set of vectors or a matrix using Householder transformations.
We present a method for generating matrices which, when subject to
using Householder transformations, require only rational computations
and give rational results. The pedagogical problem addressed is that
numerical examples in this topic will usually contain unsimplified square
roots, which add an extra layer of difficulty for students working exam-
ples.

1 Introduction

Maple is well known for its uses in education, where it is often used as an aid
in helping students understand important concepts through visualization and
computation. Here we consider a different role for Maple: the construction of
educational material, in particular exercises and examination questions. Our
focus is on constructing problems which avoid unnecessary arithmetic compli-
cations. One linear algebra topic where this has already been considered is in
the generation of problems requiring the calculation of eigenvalues and eigenvec-
tors, see, for example, [5,7]. Here we consider a different topic, a staple of first
courses in linear algebra, namely the construction of an orthonormal basis from
a given matrix or from a set of vectors. One of the most important methods for
constructing such bases uses Householder transformations [2, p. 185], [3, p. 119].

Let A be a full-rank n × n matrix. The standard Householder method finds
orthonormal matrices Qk such that

Qn−1Qn−2 . . . Q2Q1A = R , (1)

with R being an upper triangular matrix. Then, since Q−1
k = QT

k , we easily
transform this to A = QR. The Qk are built from Householder matrices H,
which are defined to operate on a vector z and reduce to zero all elements below
the first. Thus

Hz = ‖z‖e1 , (2)

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 220–229, 2020.
https://doi.org/10.1007/978-3-030-41258-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_16

mmonagan@cecm.sfu.ca

Using Maple to Make Manageable Matrices 221

where eT1 = [1, 0, . . . , 0], and the norm is the 2-norm. H is computed as follows:
introduce a vector v as

v = ‖z‖e1 − z . (3)

Then, with I as the identity matrix, we have

H = I − 2vvT

vT v
. (4)

Note that if z = e1, then v = 0, meaning there is nothing to do; in this case, (4)
is replaced by H = I.

We illustrate the procedure, and the pedagogical difficulty, with an example.
Courses in linear algebra mostly use integer matrices for their examples and
examination questions, but even with this restriction, it is usually the case that
calculations quickly become contaminated by awkward square-root calculations.
Even with a system such as Maple, such calculations are not straightforward.
For example, consider the matrix

A =

⎡
⎣

3 1 1
1 1 1
1 2 1

⎤
⎦ . (5)

The first target vector is the first column, thus z = [3, 1, 1]T and then from (3)

v =

⎡
⎣

√
11 − 3
−1
−1

⎤
⎦ . (6)

Substituting this into (2), we obtain

H1 =

⎡
⎢⎢⎢⎣

1 − 2(
√
11−3)2

2+(
√
11−3)2

− 2(−√
11+3)

2+(
√
11−3)2

− 2(−√
11+3)

2+(
√
11−3)2

− 2(−√
11+3)

2+(
√
11−3)2

1 − 2
2+(

√
11−3)2

− 2
2+(

√
11−3)2

− 2(−√
11+3)

2+(
√
11−3)2

− 2
2+(

√
11−3)2

1 − 2
2+(

√
11−3)2

⎤
⎥⎥⎥⎦ . (7)

Taking the (1, 1) element as typical, we must simplify

1 − 2(
√

11 − 3)2

2 + (
√

11 − 3)2
. (8)

Either working by hand, or using the Maple simplify command, a student
would obtain

9 − 3
√

11
−11 + 3

√
11

.

We can obtain a simpler form by rationalizing with 11 + 3
√

11.

(9 − 3
√

11)(11 + 3
√

11)
(−11 + 3

√
11)(11 + 3

√
11)

=
99 − 99 − 6

√
11

−121 + 99
=

3
√

11
11

,

mmonagan@cecm.sfu.ca

222 A. C. C. Couto and D. J. Jeffrey

which is achieved in Maple by using the command rationalize. (The command
rationalize does not invoke simplify, which is needed to obtain the above
result.) This demonstrates that, working manually, considerable computational
challenges arise immediately. We obtain

H1A =

⎡
⎢⎢⎢⎣

3
√
11

11

√
11
11

√
11
11

√
11
11

1
2 − 3

√
11

22 − 1
2 − 3

√
11

22
√
11
11 − 1

2 − 3
√
11

22
1
2 − 3

√
11

22

⎤
⎥⎥⎥⎦A =

⎡
⎢⎢⎣

√
11 6

√
11

11
5

√
11

11

0 − 1
2 − 7

√
11

22 − 2
√
11

11

0 1
2 − 7

√
11

22 − 2
√
11

11

⎤
⎥⎥⎦ . (9)

The second Householder reflection uses the 2 × 2 submatrix:
[

− 1
2 − 7

√
11

22 − 2
√
11

11

1
2 − 7

√
11

22 − 2
√
11

11

]
(10)

the first column of this submatrix becoming the next vector z. After a second
Householder matrix multiplication we arrive at the unsightly final answer.

A = QR =

⎡
⎢⎢⎣

3
√
11

11 − 7
√
330

330 −
√
30
30√

11
11

√
330
66

√
30
6√

11
11

8
√
330

165 −
√
30
15

⎤
⎥⎥⎦

⎡
⎢⎢⎣

√
11 6

√
11

11
5

√
11

11

0
√
330
11

7
√
330

165

0 0
√
30
15

⎤
⎥⎥⎦ .

If the instructor of Linear Algebra wishes to set non-computer exercises or
exams on this topic, the burden of simplifying complicated expressions of square
roots will almost certainly cause arithmetic errors which are peripheral to the
understanding of the procedure. Hence, it would be very useful if matrices could
be created easily that would not force students to work with square roots.

2 The Method

Rational orthonormal matrices have been of interest since Cayley [1,6], but here
we are interested not in the end result, namely, the orthonormal matrix Q in
A = QR, but in the process of obtaining it from a given matrix A by Householder
transformations. Our aim is to make all intermediate quantities encountered
be rational. To ensure this, we need that every z we choose has a rational 2-
norm, so then v has rational components and so does H. Then if A has rational
components, so will HA and eventually Q and R.

The obvious way to achieve this is to arrange for the target vectors z to
contain elements taken from Pythagorean n-tuples. A Pythagorean n-tuple is
defined [4] as a set of n positive integers, xk ∈ Z

+, with the property

x2
1 + x2

2 + . . . + x2
n−1 = x2

n . (11)

It is then obvious that a vector with Pythagorean elements [±x1, . . . ,±xn−1]
has 2-norm xn. We allow vectors to contain positive and negative Pythagorean

mmonagan@cecm.sfu.ca

Using Maple to Make Manageable Matrices 223

n-tuples, zero elements, and rational numbers, provided the 2-norm is integral.
For example, <3,4>, <–3,0,4> and <3,–4,12> are all Pythagorean vectors (we
are using Maple’s notation for vectors).

We can illustrate the general case by considering the following 3 × 3 matrix:

A =

⎡
⎣

1 a12 a13
2 a22 a23
2 a32 a33

⎤
⎦ . (12)

The first column of A is a Pythagorean quadruple: ||<1,2,2>|| = 3, and this is
also the first target vector z1. The first v vector is v1 =<2,–2,–2>. From this we
get the H1 matrix as

H1 =

⎡
⎣

1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3

⎤
⎦ .

The first transformation then results in

H1A =
1
3

⎡
⎣

1 a12 + 2a22 + 2a32 a13 + 2a23 + 2a33
0 2a12 + a22 − 2a32 2a13 + a23 − 2a33
0 2a12 − 2a22 + a32 2a13 − 2a23 + a33

⎤
⎦ .

The target vector for the next step of the process will use the target vector

z2 =
1
3

[
2a12 + a22 − 2a32
2a12 − 2a22 + a32

]
. (13)

To ensure that the next stage of the process is also rational, we must look for a
set of values {a12, a22, a32} that give z2 an integer norm. Usually there will be
multiple sets of values satisfying the conditions. To find such sets of values, we
implement a straightforward search.

2.1 Implementation

The search proceeds by building a matrix A column by column. As shown above,
the first column must be a Pythagorean vector; this is chosen by the user and
becomes the seed vector for the search. Next, a Maple procedure SearchAddCol
selects a random integer vector and adjoins it to the seed vector. Then a second
Maple procedure HouseholderTransform is called to construct a Householder
matrix based on the first column and applied to the two columns. The second
column is then tested to see whether it also contains a Pythagorean vector. If
the search is successful, then the process is repeated by adjoining a third column
to the two existing ones. This is repeated until the matrix A has the desired
dimensions.

We show first the procedure for constructing and applying a Householder
transform.

mmonagan@cecm.sfu.ca

224 A. C. C. Couto and D. J. Jeffrey

HouseholderTransform := proc(A::Matrix,TargetCol)
local n,TargetLength,zv,H,Q;
uses LinearAlgebra;
option ‘Copyright A.C. Camargos Couto and D.J. Jeffrey‘;

Transform calculates the Householder matrix for column
TargetCol of Matrix A. The intended use is to start with
a matrix A and successively transform the columns. That is
(Q1,R1):=HouseholderTransform(A,1);
(Q2,R2):=HouseholderTransform(R1,2), etc

n=rows of A
We should add error checking of arguments here.
n := RowDimension(A):
We want a Householder matrix for column TargetCol,
using rows TargetCol to end. Note we are looking down
TargetCol, so we index rows.
if TargetCol=n then

return(IdentityMatrix(n),A); # There is nothing to do
else

In the books, vector z and vector v are treated as
separate, but here we use one variable to hold both.
Also, the vector v here is the negative of the usual
textbook one, but it gives the same H.
zv := A[TargetCol .. -1,TargetCol]:
TargetLength:=n+1-TargetCol;
zv[1] := zv[1]-norm(zv,2); # Same as vector subtraction
if norm(zv,2)=0 then

H:=IdentityMatrix(TargetLength);
else

H:=IdentityMatrix(TargetLength)
-2*zv.Transpose(zv)/(Transpose(zv).zv):

end if;
Q := IdentityMatrix(n,compact=false): # allow overwrite
Q[TargetCol .. -1, TargetCol .. -1] := H ;
Note Q is n-by-n and H is a submatrix

end if;
return (Q,Q.A) ;

end proc;

The main procedure is SearchAddCol. It takes a partially calculated matrix
A and adds a symbolic column to it; then it successively applies Householder
transforms calculated for all the non-symbolic columns. Next, it calculates the
norm of the added (presently symbolic) target vector and begins a random search
for values that will give a rational norm. The number of attempts is determined
by the second argument to the procedure. The successful columns are collected
and presented to the user as a list. The user can choose which one to use for the
appended column. In this way, the desired matrix is built column by column.

mmonagan@cecm.sfu.ca

Using Maple to Make Manageable Matrices 225

SearchAddCol := proc(A::Matrix,SizeOfSearch)
local m,n,alpha,r,rsubs,target_norm,i,j,R,col,test_norm,

success,OutList;
uses LinearAlgebra;
n,m := Dimension(A):
col:=m+1;
the symbolic vector NewCol becomes an extra column
R := <A|Vector(n,symbol=a)>;
Performing Householder transformations until step m.
for i from 1 to m do

R := HouseholderTransform(R,i)[2]:
end do:
We need the target norm to be rational
target_norm := norm(R(col..-1,col),2):
success:=0;
OutList:=[];
j:=0;
while j<= SizeOfSearch and success<10 do

j:=j+1;
alpha := RandomVector(n,generator=rand(-3..3)):
r := RandomVector(n,generator=rand(-9..9)):
rsubs := alpha*~r:
test_norm := eval(target_norm,[seq(a[i]=rsubs(i),i=1..n)]);
test_norm := simplify(test_norm);
If test_norm is rational, the vector is added to
the output list.
if type(test_norm,rational) and test_norm > 0 then

success:=success+1;
Many successes are multiples of previous successes

rsubs:=rsubs/igcd(op(convert(rsubs,list)));
OutList:=[op(OutList),rsubs];

end if:
end do:
return(OutList):

end proc:

3 Usage

A Maple procedure BuildMatrix has been written as an interface to the two
main routines. The user selects a seed vector, which must be Pythagorean, i.e.
built from a Pythagorean n-tuple. This is because the seed vector becomes the
first z vector in (3). The length of the vector determines the size of the matrix.
The interface then asks the user interactively to choose subsequent columns from
a list. The code is given in the appendix.

As an example, we take as a seed z =<3,4,12>. THen BuildMatrix returns
(the output depends upon the state of the random number generator):

mmonagan@cecm.sfu.ca

226 A. C. C. Couto and D. J. Jeffrey

⎡
⎣

⎡
⎣

−5
−4
−18

⎤
⎦ ,

⎡
⎣

−3
0
1

⎤
⎦ ,

⎡
⎣

4
−1
0

⎤
⎦ ,

⎡
⎣

0
0

−1

⎤
⎦ ,

⎡
⎣

1
1
0

⎤
⎦ ,

⎡
⎣

0
0
1

⎤
⎦ ,

⎡
⎣

1
−6
−12

⎤
⎦ ,

⎡
⎣

0
0
1

⎤
⎦ ,

⎡
⎣

−2
1
0

⎤
⎦

⎤
⎦ .

Notice that there is no code to remove repetitions and equivalences. Suppose
the user chooses column 2, making the new matrix <<3,4,12>|<–3,0,1>>. The
procedure continues and offers choices for the third column. In this way, one
possible matrix could be

A :=

⎡
⎣

3 −3 0
4 0 1
12 1 0

⎤
⎦ .

Another procedure, RationalHouseholder, can now be used to check and sum-
marize the exercise that has been created.

"Step: ", 1

"H= ",

⎡
⎣

3/13 4/13 12/13
4/13 57/65 −24/65
12/13 −24/65 −7/65

⎤
⎦ , "R= ",

⎡
⎣

13 3/13 4/13
0 −84/65 57/65
0 −187/65 −24/65

⎤
⎦

"Step: ", 2

"H= ",

⎡
⎣

1 0 0
0 −84/205 −187/205
0 −187/205 84/205

⎤
⎦ , "R= ",

⎡
⎣

13 3/13 4/13
0 41/13 −12/533
0 0 −39/41

⎤
⎦

"Q= ",

⎡
⎣

3/13 −516/533 4/41
4/13 −12/533 −39/41
12/13 133/533 12/41

⎤
⎦

These results can be compared with results from Maple’s LinearAlgebra pack-
age, which has a QRDecomposition function. There are occasional minor differ-
ences in the distribution of negative signs, owing to different algorithms being
used.

4 Observations and Examples

The above example contains fractions that grow relatively large. Thus, from a
teaching point of view, we have simplified the arithmetic by removing square
roots, but still have difficult arithmetic owing to fractions with large numerators
or denominators. Some of the examples below show that this is not always the
case. At present, however, the best way to avoid large fractions is by trying
a number of seeds and different choices for the subsequent columns. Choosing
sparse matrices also helps keep the sizes of entries down.

Another observation is that the search method can fail to find a contin-
uation from a given seed and choices. Since the search choices that we have
programmed are restricted to trial vectors having small components (mostly
single digit entries) this is not a proof that a rational orthonormal matrix can-
not be found, but suggests that any successful search might be uninteresting as

mmonagan@cecm.sfu.ca

Using Maple to Make Manageable Matrices 227

requiring too large entries. For example, for the 5-dimensional seed <1,1,1,2,3>,
produces the following search results for continuation:

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

−6
0
0

−5
−12

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

−4
−3
3
4
0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0
0

−14
−15
16

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

5
−3
3
3
3

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0
0

−1
0

−1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

−10
−9
0

−6
1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0
0
0
1
2

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

.

If we choose the third vector for the second column, then the search for a third
column fails. A successful search is shown below.

We show some 3 × 3 examples.

A1 =

⎡
⎣

3 5 1
0 0 1
4 5 1

⎤
⎦ = QR =

⎡
⎢⎣

3
5

4
5 0

0 0 1
4
5 − 3

5 0

⎤
⎥⎦

⎡
⎢⎣

5 7 7
5

0 1 1
5

0 0 1

⎤
⎥⎦ . (14)

A2 =

⎡
⎣

1 3 1
4 0 1
8 3 1

⎤
⎦ = QR =

⎡
⎢⎣

1
9

8
9

4
9

4
9

4
9

7
9

8
9

1
9 − 4

9

⎤
⎥⎦

⎡
⎢⎣

9 3 13
9

0 3 5
9

0 0 7
9

⎤
⎥⎦ . (15)

A 4 × 4 example. Note the use of sparsity to keep the entries (fairly) small.

A3 =

⎡
⎢⎢⎣

3 0 0 1
4 1 4 1
0 0 4 1
12 4 3 1

⎤
⎥⎥⎦ = QR =

⎡
⎢⎢⎢⎣

3
13 − 12

13 − 12
65 − 16

65
4
13 − 3

13
36
65

48
65

0 0 4
5 − 3

5
12
13

4
13 − 9

65 − 12
65

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

13 4 4 19
13

0 1 0 − 11
13

0 0 5 67
65

0 0 0 − 19
65

⎤
⎥⎥⎥⎦ (16)

It should also be noted that it is a common observation that when performing
linear algebra with exact rational arithmetic, the size of entries is known to grow
through the computation. This is one reason for the complexity of standard linear
algebra operations being greater for exact computation than for floating-point
computation. Thus one way to reduce the arithmetic load is not to require the
QR decomposition of a full 4× 4 matrix , but to be content with a 4× 2 matrix,
which can test the approach, while finishing before the component growth has
become prohibitive.

Finally, to respond to a challenge from a referee, we show a 5×5 example. In
this case, we started with the seed <1,1,1,2,3> as above, but chose the seventh
possibility from the list above.

A4 =

⎡
⎢⎢⎢⎢⎣

1 0 3 −2 −6
1 0 1 0 0
1 0 1 7 3
2 1 1 5 9
3 2 3 3 8

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/4 −1/2 3/4 −1/20 7
20

1/4 −1/2 −1/4 − 13
20 − 9

20

1/4 −1/2 −1/4 3/4 −1/4
1/2 0 −1/2 −1/10 7

10

3/4 1/2 1/4 1/20 − 7
20

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

4 2 4 6 39
4

0 1 −1 −1 11/2
0 0 2 −5 − 31

4

0 0 0 5 41
20

0 0 0 0 13
20

⎤
⎥⎥⎥⎥⎥⎥⎦

mmonagan@cecm.sfu.ca

228 A. C. C. Couto and D. J. Jeffrey

A Appendix: Supplementary Code

BuildMatrix:=proc(FirstCol) local i,k,n,B,C;
uses LinearAlgebra;
if not type(FirstCol,Vector) then

error("Please give initial column as vector");
end if;
n:=Dimension(FirstCol);
B:=< FirstCol>;
for i from 2 to n do

C:= SearchAddCol(B, 200*n);
print(C);
k:=choice(nops(C));
B:=<B | C[k] >;

end do;
end proc:

choice:=proc(n) local m;
print("Which candidate out of ",n," to continue?");
m:=parse(readline(default));
if m<=n then

m ;
else

error("not a valid choice");
end if;

end proc:

RationalHouseholder := proc(A::Matrix)
local R,Q,n,m,i,H,Ht;
uses LinearAlgebra;
n,m := Dimension(A);
R := Copy(A):
H := IdentityMatrix(n,compact=false):
for i from 1 to n-1 do

(Ht,R) := HouseholderTransform(R,i);
H := Ht.H;
print("Step: ",i);
print("H=",Ht,"R = ",R);

end do:
Q := Transpose(H):
print("Q = ",Q);

end proc:

mmonagan@cecm.sfu.ca

Using Maple to Make Manageable Matrices 229

References

1. Cayley, A.: Sur quelques proprié tes des determinantes gauches. J. Reine Angew.
Math. 32, 119–123 (1846). Reprinted in the Collected Mathematical Papers of Cay-
ley, Cambridge University Press 1889–1898, vol. 1, pp. 332–336

2. Corless, R.M., Fillion, N.: A Graduate Introduction to Numerical Methods. From
the Viewpoint of Backward Error Analysis. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-8453-0

3. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM press, Philadelphia (1997)
4. Frisch, S., Vaserstein, L.: Polynomial parametrization of Pythagorean quadruples,

quintuples and sextuples. J. Pure Appl. Algebra 216, 184–191 (2012). https://doi.
org/10.1016/j.jpaa.2011.06.002

5. Gilbert, R.C.: Companion matrices with integer entries and integer eigenvalues and
eigenvectors. Am. Math. Mon. 95(10), 947–950 (1988)

6. Khattak, N., Jeffrey, D.J.: Rational Orthonormal Matrices. In: 2017 IEEE SYNASC,
p. 71 (2017). CPS, ISBN-13: 978-1-5386-2626-9

7. Renaud, J.-C.: Matrices with integer entries and integer eigenvalues. Am. Math.
Mon. 90, 202–203 (1983)

https://doi.org/10.1007/978-1-4614-8453-0
https://doi.org/10.1007/978-1-4614-8453-0
https://doi.org/10.1016/j.jpaa.2011.06.002
https://doi.org/10.1016/j.jpaa.2011.06.002

mmonagan@cecm.sfu.ca

Use of Maple and Möbius in an
Undergraduate Course on Cryptography

Bruce Char(B) and Jeremy R. Johnson

Drexel University, Philadelphia, PA 19104, USA
{charbw,johnsojr}@drexel.edu

http://www.cs.drexel.edu/~bchar

http://www.cs.drexel.edu/~jjohnson

Abstract. A senior undergraduate course on cryptography for com-
puter science majors that combines the use of conventional materials
with Maple worksheets and Möbius modules is in development. The
design intent and impact of the Maple-based materials on course con-
duct is discussed. Pedagogical and practical considerations are discussed
along and initial impressions given regarding benefits and difficulties in
using the tools.

Keywords: Computer science education · Cryptography · Symbolic
computation

1 Overview

CS 303 is a course for senior-level computer science undergraduates on the use
of algorithmic number theory in cryptography (www.cs.drexel.edu/∼jjohnson/
2017-18/cs303.html). It has been run yearly as a conventional, face-to-face course
during a ten-week term. This paper discusses the objectives of the course, and the
design intent in meeting those objectives through combined use of conventional
materials (a textbook, homework, slide presentations, and quizzes) with Maple
worksheets and Möbius presentations. We discuss how the instructor-developed
materials complement, replace, or extend the use of conventional materials. The
paper concludes with a discussion of pedagogical considerations along with a
summary of how the tools help to support these considerations.

2 Introduction

A primary course objective is for students to gain a working understanding the
roles that number theory, abstract algebra, and computational complexity play in
modern cryptography. A hands-on approach is taken where students gain experi-
ence in doing high-level programming of basic cryptographic computations, and

Supported by Department of Computer Science, College of Computing and Informatics,
Drexel University.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 230–244, 2020.
https://doi.org/10.1007/978-3-030-41258-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_17&domain=pdf
www.cs.drexel.edu/~jjohnson/2017-18/cs303.html
www.cs.drexel.edu/~jjohnson/2017-18/cs303.html
https://doi.org/10.1007/978-3-030-41258-6_17

mmonagan@cecm.sfu.ca

Use of Maple and Möbius in an Undergraduate Course on Cryptography 231

then are asked to reflect on and interpret their results and mathematical deriva-
tions. A secondary objective is to acquaint students with symbolic computation
in Maple so that they can do such programming expediently. Since our major
requires only four math courses and a CS-oriented course on logic and proof,
the course also needs to develop student capabilities in discovery and growth
of understanding through mathematical reasoning, and to better communicate
such discoveries in mathematical writing.

The course textbook is An Introduction to Mathematical Cryptography [7].
Initial offerings of the course supplemented this with a combination of presen-
tation slides (Powerpoint), and Maple worksheets for labs and homework. More
recently we converted most of the presentation to Möbius, and added additional
paper-and-pencil in-class exercises and quizzes to reflect the non-computational
aspects of the learning of this course. Figure 1 lists the topics covered.

Fig. 1. List of topics covered in the most recently offering of the cryptography course

The course has three hourly meetings weekly. A typical class meeting begins
with a short lecture based on assigned readings from the textbook or from Möbius
modules developed for the course. The ideas in the lecture are further explored
in a more active way during class by small-groups of students working on lab
problems, or through the administration of quizzes done individually. Periodic
homework assignments are given during the term to provide more lengthy work
with the course topics. There is a take-home programming project in lieu of a
written final exam.

In the remainder of this paper, we discuss our objectives in using, and tech-
niques for developing various components.

3 Learning from Reading and Lecturing

A good textbook provides a wealth of resources that is often hard for a busy
instructor to produce themselves: domain expertise, pedagogically astute selec-
tion and sequencing of topics, a rich collection of examples, and content format-
ted both for initial learning and for subsequent review and archival recall (tables

mmonagan@cecm.sfu.ca

232 B. Char and J. R. Johnson

of content, indexing, search). A book also provides a place for discussion of finer
details that are important to treat, even if time constraints prevent detailed
presentation in class.

A detailed treatment can trigger “TL:DR” [9] (too long; didn’t read) behavior
in students. The reasoning goes, “if it was important (examinable), the instructor
would have included it in what they said.” This can lead to lecture notes where
a subset of the content is presented in a form more suitable for “real-time”
learning. We have found that some students think they should use the lecture
notes as a substitute for reading the textbook depends on what information the
course activities and assessments depend on.

In Fall 2018 we used lecture notes in Möbius instead of the Powerpoint slides
we developed for previous versions of the course. Figure 2 lists the daily sequence
of modules given to the students to work through. Like Powerpoint slides, they
have a digest of important points being made in the textbook. They also include
a new feature: simple interactive automatically graded exercises (example in
Fig. 4). Since we have the textbook to organize information in archival, retro-
spective form, we used the Möbius modules in a “just in time order”, for example
scattering the definition of rings, groups, and fields throughout the course as they
were needed for the cryptography discussion.

We believe that an advantage of giving lecture notes in Möbius form is that
slide-sized chunks of information can be interleaved with exercises where the stu-
dent must recall or think through basic points of comprehension and understand-
ing before proceeding with the presentation. This is a kind of active learning,
well-known to have beneficial educational effects if the activities cause psycho-
logical processing that supports learning [5,11].

4 Active Learning in the Classroom: Labs and Quizzes

One could always run the in-class portion of the course in the traditional lecture-
oriented way, hoping that the students are paying attention and learning all that
the instructor is trying to tell them. We prefer to inject a more data or observa-
tion based approach – asking the students to work on problems individually or
in groups in the classroom, and studying their answers. This approach can lead
to peer instruction [10], or other small-group activities, where students work on
problems individually and then convene in small groups to agree (or agree to
disagree) on results and how to get them. Maple or paper-and-pencil worksheets
(as in-class “labs”), or Möbius exercises can be a way of causing engagement in
a kind of guided discovery process. An advantage of on-line Möbius autograded
materials is that simple analytics such as successful completion rates or the fre-
quency of wrong choices in selection problems are immediately available to the
instructor, if they are prepared to react on-the-fly.

In our post-course evaluations, we often receive comments to the effect that
the students believe that they learn more when there’s the pressure of a quiz
to study for. We have developed a number of quizzes on course topics, listed
in Fig. 5. Most of these are paper-and-pencil rather than Möbius because they

mmonagan@cecm.sfu.ca

Use of Maple and Möbius in an Undergraduate Course on Cryptography 233

Fig. 2. List of Möbius modules (slideshows + simple exercises)

require higher-level processing and feedback generation than is easily imple-
mented through Möbius autograding. Done in class, in-person feedback can be
informal. The instructor can make comments about solutions without the need
for formally scoring or recording grades for them, or use the quiz question to
spur small-group discussion.

We believe that students care enough about the results of quizzes to be
attentive of results even if feedback is not immediate but within a few days. The
needs of rapid manual grading leads to a “brief and simple” quiz style. Another
ploy to spur interest in delayed feedback is to make students aware that similar
questions will be asked in later quizzes or exams, generating a kind of spaced
practice [6].

Figure 6 lists a number of lab activities to be done in class after assigned
reading (textbook or Möbius modules) and a brief lecture-presentation by the
instructor.

mmonagan@cecm.sfu.ca

234 B. Char and J. R. Johnson

Fig. 3. Part of a presentation on elliptic curves (Color figure online)

Fig. 4. Simple Möbius exercises for elliptic curve computations

mmonagan@cecm.sfu.ca

Use of Maple and Möbius in an Undergraduate Course on Cryptography 235

Fig. 5. List of quiz topics

Fig. 6. List of lab activities

Fig. 7. List of homework assignments

5 Homework Assignments

Computer science students are used to assignments that ask them to write pro-
grams. Maple’s math libraries and built-in operations make it easy to require
fairly ambitious projects without too many lines of code, enhancing what can
be covered with hands-on experience. Figure 7 lists the assignments we used in

mmonagan@cecm.sfu.ca

236 B. Char and J. R. Johnson

Fig. 8. A portion of an exercise on Blum-coin flipping [4], part 1

Fig. 9. A portion of an exercise on Blum-coin flipping, part 2.

the last offering of the course. Further comments about the uses and abuses of
learning through such assignments are made in Sect. 6.

6 Pedagogical Considerations

In this section, we discuss the difficulties of achieving “good enough” program-
ming proficiency with Maple, pitfalls to avoid with computation-based learning,
and cultivating patterns of mathematical thought, work proficiency, and explo-
ration.

mmonagan@cecm.sfu.ca

Use of Maple and Möbius in an Undergraduate Course on Cryptography 237

6.1 Getting Started with Maple

Few of our students coming into the class have prior experience with Maple. We
find a week of orientation and practice needs to be spent on getting even our
programming-savvy CS majors up to speed conveying the following ideas that
appear novel to our majors:

1. Symbolic computation – operations on formulas that produce formulas
instead of “ints” or “floats”. Quotation and part-extraction need discussion.

2. Many of our majors lack experience with languages such as Matlab or R
practice using map, zip, reduce, or vector/list/matrix operations is needed
to get them to use such in lieu of using indexed iteration. While one could
downplay this because it is not impediment to correctness, a curriculum-wide
agenda is to cultivate the habit of avoiding egregious inefficiency (e.g. the
“quadratic-space” problem when iterating over immutable lists) and learning
the preferred notational idioms and shortcuts when learning a new language.
Getting

3. Learning that the linear order of results listed in the Maple worksheet does
not reflect the current internal state of variables in the Maple session – using
all the information in the worksheet GUI to see the current session state.

4. Using the Maple notebooks for exposition as well as computation. This is
more complicated than it would seem. The worksheet interface has dozens of
word processing-related features to learn. Furthermore, CS majors are often
not aware of the need for being a producer as well as a consumer of good
mathematical communication. The point is to make mathematical writing an
activity that can be summoned by habit rather than by external orders. This
latter point is discussed further in Sect. 6.3.

As usual, a combination of examples and demos building over several weeks
help to convey the ideas and direction far better than treating it in a single
lecture or exercise.

6.2 Going Beyond “Understanding Through Programming and
Problem-Solving”

Students that are engaged and active in and out of the classroom do not nec-
essarily extrapolate or properly extend their understanding so that it transfers
to other situations. We are experimenting with using reflective and explanatory
activities (with feedback) to have students engage in the higher level activities
of the Bloom or SOLO taxonomies: analysis, synthesis, judgment, awareness of
relations between ideas, and the ability to work with deeper abstraction [2,3].
For example, the assignment about implementing Blum coin-flipping (see Fig. 9)
also asked for a discussion of scenarios of use (crucial for understanding the
inclusion of certain features of the protocol) not fully fleshed out in the paper.

Practice in only one context can also hinder transfer. Research has found
that some discussion and practice with the terminology and programming con-
cepts that transfer to other kinds of problems produces better results than just

mmonagan@cecm.sfu.ca

238 B. Char and J. R. Johnson

Fig. 10. An in-class quiz question about the extended Euclidean algorithm

exposure to various situations that require that concept [8]. CS students should
experience how knowledge of abstract algebra and number theory provides the
conceptual reasoning framework and abstraction that allow knowledge transfer
between cryptographic situations.

6.3 Cultivating Habits of Mathematical Thought

Our CS major requires calculus, linear algebra, and discrete math, but does not
include abstract algebra. We “cultivate” in the following ways:

1. We ask students to find ways of exploiting consequences of mathematical
definitions. Students often can find useful information if given an explicit
order about what to explore. The goal is to make it a habit not needing
directions on where to look. For example, the statements implied by the
declaration of “a is divisible by b” that can be used to establish understanding
of the Euclidean algorithm for greatest common divisors.

2. Thinking and working at a high level of abstraction, such as when trying to
understand and use concepts of ring, group and field.

3. Gaining knowledge through explicit reasoning (proofs and counter-examples),
use of deeper abstraction (groups, rings, and fields). Making CS majors feel
comfortable with working math is in part getting used to the culture, and in
part getting accustomed to new expectations about what to do and what to
produce.

4. Being able to articulate and communicate understandings, in particular
understandings of proof. This is a matter of content creation, not mathe-
matical word-processing. CS majors do not necessarily have the background
to be strong at writing informal proofs despite some experience in a prereq-
uisite course. We view this as a creative writing problem to be solved once

mmonagan@cecm.sfu.ca

Use of Maple and Möbius in an Undergraduate Course on Cryptography 239

the student understands the objective and the starting point. This may lead
to less conventional requests for “proof”, such as in Fig. 10.

All things need to be habitual because the understanding happens when
these kinds of things happen spontaneously without the need for continuous
micromanagement. We try to design in opportunities for worked examples (with
discussion of “how it was done” as well as the technical justification), reflection
and for return encounters.

6.4 Learning the Experimental Paradigm

We have found that even CS majors, who do a lot of computation in their course-
work, do not often have the habits that allow them to be given an assignment
where they are told to use computation for discovery.

1. We find that our students sometimes have an assignment mentality when
working: “here are the specs, write a program to meet them”. Often there
are test cases given which are meant to aid the development of the various
conditions that must be built into the program to meet various specifications.
In using results to aid discovery, however, there are three additional things to
learn: how to use a computational result to confirm or disprove conjectures,
how to design the conjectures in the first place, how to design the experiments
to support the discovery process. An example of where computation is used
for “finding out” rather than as a derivational mechanism is in the use of the
index of coincidence to determine likely candidates for a substitution cypher,
as shown in an assignment worksheet in Fig. 11.

2. We find that some students sometimes behave as if they believe that the end-
point of a presentation of experimental results is a just a listing of particular
artifacts: – “show a graph of x vs. y”, “answer yes or no: are the results
increasing or decreasing?”, etc. Care must be taken to have the student real-
ize that they are responsible for finding and then describing a satisfactory
(complete and correct, with justification provided) interpretation of the result
and discussion of significance. This can be supported by providing similar in
instructor presentations. We have also found it useful to remind students that
they should not stop once they write down “the answer”, but to write enough
to convince the readers (graders, for example) that they understand what is
going on.

7 What Can a Busy Instructor Afford to Do?

If we were trying to establish the superiority of our ideas, conventional practice
would expect us to give a review of relevant literature, carefully evaluate out-
comes, and perhaps conduct student surveys and ethnographic observations. We
might also be expected to provide a cost-benefit analysis, etc. Of course, most
instructors cannot complete such a task list when they also have their instruc-
tional and other professional responsibilities to perform. While design efforts

mmonagan@cecm.sfu.ca

240 B. Char and J. R. Johnson

Fig. 11. Guided learning: an assignment question on the index of coincidence

should be evaluated carefully and objectively, course design experimentation
should occur concurrently with development. The first step is to realize design
ideas – what we are doing here. This is part of proceeding through “design sci-
ence” rather than “controlled experiment” educational research. By discussing
design possibilities (with usage reports establishing that the design is at least
approximately feasible in a classroom), it is possible to contribute to progress in
instructional practice without waiting until accumulating a complete picture.

Our experience suggests a few principles:

1. Use as much as you can that already exists. For example, high quality pub-
lished textbooks, existing Powerpoint slides, assignments, and exams.

2. Conversion of Powerpoint slides into Möbius is straightforward, if tedious.
(Compare Figs. 12 and 13.)

3. Use manual grading for handling situations that are hard to address with
autograded questions. Given the current state of technology this includes
many programming problems (since most platforms including Möbius have
difficulties testing student Maple submissions), as well as higher level ques-
tions that typically require essay-style responses. In lieu of complicated auto-
generated problems and autograding algorithms, start with Möbius autogen-
erated (“algorithmic”) simple multiple choice, true/false, and constructed

mmonagan@cecm.sfu.ca

Use of Maple and Möbius in an Undergraduate Course on Cryptography 241

answer problems. Once you learn which ones have significant instructional
value, consider scaling them up to more elaborate versions that take more
Möbius software development.

4. Be prepared to mix usage of Möbius work with Maple worksheet work or
paper-and-pencil exercises. This substitutes human intelligence for automa-
tion where there is substantial educational benefit. We observe: (a) Keyboard-
ing proofs or abstract algebra into Möbius or Maple worksheets requires more
effort than handwriting, (b) questions requiring proofs, derivations, explana-
tions, or judgment can be handled more adeptly through human intelligence
in small classes. Keep in mind that Möbius automation can be used for feed-
back immediately after an initial encounter, harder to pull off in the other
modes.

5. Use the in-class presence to cover any deficiencies in Möbius presentation
that you don’t have time to fix. For example, if you realize that more worked
examples are needed, you can create them (with the help of Maple worksheets)
and talk about them, live, rather needing a polished on-line presentation for
them. Since the worksheets can be posted on-line, you are counting on the
students to study some of the details that you didn’t have time to talk about
in their quest for “worked examples”. While this is not ideal, you can take
the stance that the students are better off than not getting the examples at
all.

7

Representation of Zn

The equivalence classes [a] mod n, are typically represented
by the representatives a.

Positive Representation: Choose the smallest positive
-

1}.

Symmetric Representation: Choose the integer with the
smallest absolute value in the class [a]. The representation
is {- (n-1)/2 n/2 }. When n is even, choose the
positive representative with absolute value n/2.
E.G. Z6 = {-2,-1,0,1,2,3}, Z5 = {-2,-1,0,1,2}

Fig. 12. Part of a presentation on modular numbers in Powerpoint

8 Iterative Refinement, Not “Waterfall” Development

The limited amount of time available for development means that courses should
be viewed as “releases” as part of an on-going development. In other words, the
development work should be viewed more as a design science activity [1] than
an implementation of a finalized design. One can start with Powerpoint and a

mmonagan@cecm.sfu.ca

242 B. Char and J. R. Johnson

Fig. 13. Part of a presentation on modular numbers in Möbius

textbook, and gradually introduce or revise labs, quizzes, and Möbius modules
as one discovers what benefits from a more active involvement by the student,
or a campaign for reducing common misconceptions.

Such practices lead to the following maxims for content-creation tool design-
ers:

– Support introductory use through allowing minimal change and the analytical
tools for understanding if they work. Then support expansion for those things
that are worthwhile.

– Default or easily produced idioms should be easy to implement and to reuse
and the system must make it easy to handle changes.

– The work of implementing changes should be automated with minimal effort
needed to propagate changes consistently.

– Busy instructors benefit from access to evaluation and assessment techniques
that are easy to carry out in normal operations, such as exam and quiz scores,
regularly scheduling pre- and post- course surveys, and personal observations
during class. Having a low-cost ways of building in assessment of Möbius
activities would enhance its value for course development.

9 Mashups and Integration

There is a cognitive and labor cost at making a course out of several different
kinds of things, both for the instructors (content creators), and for the students.
Instructors must know enough to use the four tools, possibly picking up new

mmonagan@cecm.sfu.ca

Use of Maple and Möbius in an Undergraduate Course on Cryptography 243

expertise incrementally. This “knowing” includes not only how to use each tool
for a task, but sequencing their use in a way consistent with the learning mission
and resource budget. Students in our course needed to become used to interaction
with four tools: paper, Maple worksheets, on-line file viewing over the Internet
or through course management system, and Möbius. It is a situation where
instructors must consider the prospects of cognitive overload and of classroom
tactics to avoid it. Sometimes we have found that students need to be explicitly
asked to do the thinking that integrates results across the tools.

Instructors have to contend with pulling and pushing content from and to
multiple sources and destinations. While making up lecture notes freshly in
Möbius may be no more difficult than doing it in Powerpoint or , some-
times the work involves importing work originally in Powerpoint into Möbius or
Maple slideshows. This common would-be workflow would benefit from “import
wizards” or “integration centers” which would help to automate the work in
moving content around.

Content management is another integration need. Should a question show
up in Möbius, in a Maple worksheet, or in an on-line or paper-and-pencil quiz?
What about the instructor’s side notes and commentary for the problem? What
if they decide in a later offering to change which tool is used to give the question?
What about recording the schedule for spaced practice with the question? The
repository for question content can exist independently of in what medium the
students actually see it. Autograding favors delivery platforms which can run
the custom programming to support it, but the alternative of human grading
would also benefit from a centralized repository for usage plans, design and
implementation notes, explicit answer keys and scoring rubrics.

Informal assessment of the delivery of course content is important in any
design-science based work. It helps illuminate what is working well and what
needs improvement. Assessment feedback has similar multi-mode integration
needs. After a student’s submission for a problem is evaluated, where does the
point award and feedback content live? An integrated way of handling it as well
as reasonable export methods could be significantly labor-saving.

Worked example libraries also benefit from multi-mode integration. Maple-
based “native” representation of worked examples are favored because of the
interweaving of presentation/explanation and computation. Möbius modules can
do similar interweaving, although the computation would happen in an algorithm
and so not be transparent to or mutable by to the student.

10 Conclusion

The intent of our course is to have CS students learn about essential ingredi-
ents of modern cryptographic work: symbolic computation, number theory, com-
plexity theory, and abstract algebra. The course is an opportunity to develop
student understanding of the nature of mathematical results, how to perform
scientific/mathematical computation in a high-level language, and how to com-
municate their own mathematical findings to an audience. Course learning is

mmonagan@cecm.sfu.ca

244 B. Char and J. R. Johnson

designed to be through construction and synthesis, through guided discovery
and experimentation, through practice at problem-solving and communication,
and through activities that aim to develop relational and reflective understand-
ing of the subject.

We have found it feasible to adopt a style of incremental refinement in course
development that includes student use of Maple worksheets and Möbius course
notes as well as use of small group lab work, and quizzes. The use of Maple
and Möbius allows for convenient construction and technical communication,
avoiding having to explain or work through some low-level details. Students can
benefit from multiple modes of active learning that include rapid feedback for
constructed or selected responses, and computational experimentation. However,
trying to reap the benefits from the use of multiple tech tools and a diverse set
of learning activities comes at a price. For students we see non-trivial additional
complexity in tool learning. For instructors, there is additional complexity of
developing and administering content across multiple platforms. We look for-
ward to further development and evaluation to better understand and refine
this approach. We also look forward to further support from the technology to
facilitate iterative course design.

References

1. Barab, S., Squire, K.: Design-based research: putting a stake in the ground. J.
Learn. Sci. 13(1), 1–14 (2004)

2. Biggs, J.B., Collis, K.F.: Evaluating the Quality of Learning: The SOLO Taxonomy
(Structure of the Observed Learning Outcome). Academic Press, Cambridge (2014)

3. Bloom, B.S., et al.: Taxonomy of Educational Objectives. Vol. 1: Cognitive Domain,
pp. 20–24 . McKay, New York (1956)

4. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News 15(1), 23–27 (1983)

5. Clark, R.C., Mayer, R.E.: E-learning and the Science of Instruction: Proven Guide-
lines for Consumers and Designers of Multimedia Learning. Wiley, Hoboken (2016)

6. Grote, M.G.: The effect of massed versus spaced practice on retention and problem-
solving in high school physics. Ohio J. Sci. 95(3), 243–247 (1995). https://
pdfs.semanticscholar.org/7289/4d1499b9f2089739808bfcf2b01c00f1e928.pdf

7. Hoffstein, J., Pipher, J., Silverman, J.H.: An Introduction to Mathematical Cryp-
tography. UTM. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-
1711-2

8. Klahr, D., Carver, S.M.: Cognitive objectives in a LOGO debugging curriculum:
instruction, learning, and transfer. Cogn. Psychol. 20(3), 362–404 (1988)

9. Kumar, D.: REFLECTIONS: TL; DR -: “best practices” of student learning (and
how to bust them). ACM Inroads 8(4), 21–22 (2017)

10. Lee, C.B., Garcia, S., Porter, L.: Can peer instruction be effective in upper-division
computer science courses? Trans. Comput. Educ. 13(3), 12:1–12:22 (2013)

11. Prince, M.: Does active learning work? A review of the research. J. Eng. Educ.
93(3), 223 (2004)

https://pdfs.semanticscholar.org/7289/4d1499b9f2089739808bfcf2b01c00f1e928.pdf
https://pdfs.semanticscholar.org/7289/4d1499b9f2089739808bfcf2b01c00f1e928.pdf
https://doi.org/10.1007/978-1-4939-1711-2
https://doi.org/10.1007/978-1-4939-1711-2

mmonagan@cecm.sfu.ca

Enhance Faculty Experience and Skills Using
Maple in the 21st Century Classroom

Lancelot Arthur Gooden(&)

Johnston Community College, Smithfield, NC 27577, USA
l_gooden@johnstoncc.edu

Abstract. What role does faculty confidence and skills play in the use of a
Computer Algebra System (CAS) play in increasing student success in college
calculus courses? Studies show that improving students’ spatial abilities in math
is a key indicator to improving their success in calculus Sorby et al. (2013). This
proposal discusses challenges faced while attempting to implement the use of
Maple within the classroom in the Calculus sequences, Linear Algebra and
Differential Equations at Johnston Community College as well as across North
Carolina Community Colleges.

Keywords: Maple classroom � Instruction � Faculty

1 Introduction

A 15 to 20-minute tutorial using Maple 9 at the beginning of the fall 2010 semester,
was all it took to transform my teaching as a Community College math instructor.
“Please continue to teach calculus using Maple, my students loved it!”, was what my
predecessor said to me after the brief tutorial. Maple 9 was the only version purchased
and installed in a single lab at our institution at the time. I knew I needed to devote time
working with Maple independently during open lab times. My goal at the time was to
introduce Maple labs in my calculus I class during the fall 2010 semester. I managed to
compute first derivatives and indefinite integrals during my first attempts. I felt
accomplished but exhausted as it took almost an hour to figure it out. While I was able
to successfully implement a few labs in my calculus I class during the fall 2010
semester, students were only tasked with evaluating limits, derivatives and integrals. In
some instances, students were required to plot 2-D functions and their derivatives. As I
increased the use of Maple in my calculus classes the preparation time doubled and
often quadrupled. Maple was only being used during scheduled in class labs to verify
problems students had already worked out by hand. Something was still missing. There
had to be more efficient and dynamic ways of teaching calculus using Maple.

Using Maple for computational and graphical exercises during scheduled labs only
had no noticeable positive impact on student performance. Even though I grew more
confident and excited using Maple, students grew increasingly frustrated and unin-
terested due to the limited scheduled lab times for practice. Furthermore, the activities

© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 245–253, 2020.
https://doi.org/10.1007/978-3-030-41258-6_18

http://orcid.org/0000-0001-9680-5177
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_18

mmonagan@cecm.sfu.ca

became repetitive to students. I needed to find ways to implement the use of Maple in
my weekly instruction as well as explore best practices to teach calculus using the
dynamic graphical, symbolic and numeric features of Maple. Philosophically, this was
challenging. Why allow students to use Maple to explore concepts in limits, derivatives
and anti-derivative. It makes perfect sense! Why shouldn’t they? Calculus is dynamic
in nature and often can be represented through three forms of registers of representa-
tions; 1Graphically, 2Numerically and 3Analytically. The latter approach is used most
often in many traditional calculus courses.

One of the most dynamic commands that I have found useful when teaching
Calculus I using Maple was the Explore command. In exploratory laboratory activities,
students drag sliders a and b shown below in Fig. 1 to investigate the absolute and
relative extrema on a closed interval. In Fig. 2 students drag sliders a and b to
investigate the Mean Value Theorem. As simple as this may seem, anyone who has
encountered the challenges calculus students typically face when learning these con-
cepts would understand the impact such a tool can have on their conceptual
understanding.

Fig. 1. Figure showing an interactive graph developed using Maple when studying absolute and
relative extrema in a Calculus I course in a laboratory setting.

246 L. A. Gooden

mmonagan@cecm.sfu.ca

Success rates have significantly increased in my calculus courses and subsequent
math courses since full implementation of Maple in my daily instruction. I wanted my
colleagues to experience similar successes, energy and excitement as I have since the
full integration of Maple my Calculus courses. I believed that if I conducted workshops
demonstrating uses of Maple in my calculus courses would be enough to convince
other math faculty to use Maple as an integral part of their instruction in calculus, just
as I have. Assuming the faculty have had some introduction to Maple during under-
graduate studies, the beginning sessions demonstrated various plotting commands for

Fig. 2. Figure showing an interactive graph developed using Maple when studying the Mean
Value Theorem in a Calculus I course in a laboratory setting.

Enhance Faculty Experience and Skills Using Maple 247

mmonagan@cecm.sfu.ca

2D graphs frequently studied in calculus I, specifically piecewise functions produced
by using the line commands below and displayed in Fig. 3.

with plotsð Þ: ð1Þ

f xð Þ :¼ piecewiceððx� � 3 and x\� 2; 2; x� � 2 and x\� 1; 1; x�
� 1 and x\0; 0; x� 0 and x\1;�1ÞÞ ð2Þ

p1 :¼ pointplot �2; 2½ �; �1; 1½ �; 0; 0½ �; 1;�1½ �½ �; symbolsize ¼ 30; symbol ¼ circleð Þ:
ð3Þ

p2 :¼ plotð½f ðxÞ�; x ¼ �3::0:99; discont ¼ ½showremovable�; symbolsize ¼ 30;

symbol ¼ solidcircleÞ: ð4Þ

display p1; p2f gð Þ ð5Þ

Fig. 3. Figure showing the graph of a piecewise function generated in Maple.

248 L. A. Gooden

mmonagan@cecm.sfu.ca

The sessions increased faculty awareness of the various Maple Math Applications
and Tutors available for use in all the math courses we offer at the college. A total of
five workshops were held, which much to my surprise seemed overwhelming even to a
group of passionate and experienced calculus instructors. Even though some progress
was made it was not as impactful as I expected it to be. While faculty use of Maple
within the calculus courses increased, their use was not what I envisioned it to be.
Having had various meetings and discussions with individual faculty, I came to the
realization that they had similar philosophical beliefs about the use of Maple during
instruction. In general, faculty felt the increased use of Maple within the classroom
would compromise the learning outcomes of their students. According to Kilicman
et al. (2010), CAS’s such as Maple can be used as a powerful assistant to perform the
symbol manipulations and computations in algebra as well as calculus. It has been
suggested that these systems will benefit undergraduates and postgraduates in mathe-
matics, engineering and physics by keeping track of the details in complicated
manipulations.

How does one effectively convey to college math faculty how critical it is to engage
students in the use of a CAS in calculus courses? First, faculty need to feel comfortable
and confident using a CAS. (Zehavi 2004) discussed the theoretical views on “symbol
sense,” and regarding the notion of “instrumentation” developed among the CAS in
education community in a paper consisting of a trilogy of high-school teachers solving
an algebraic problem while learning to use a CAS. It is difficult to define symbol sense
because it interacts with other senses like number sense, function sense, and graphical
sense in problem-solving situations (Zehavi 2004). Zehavi gave reference to (Arcavi
1994, p. 1) who characterizes symbol sense through a rich variety of examples and
illustrations of mathematical behaviors. Of the four characteristics mentioned in
Zehavi’s paper, two mention by (Arcavi 1994, p. 2), were associated with advanced
symbol sense.

• “The awareness that one can successfully engineer symbolic relationships which
express the verbal or graphical information needed to make progress in a problem,
and the ability to engineer those expressions.”

• “The ability to select a possible symbolic representation of the problem, and, if
necessary, to have the courage, first to recognize, and heed one’s dissatisfaction
with that choice, and second, to be resourceful in searching for a better one as a
replacement.”

When teachers are first exposed to CAS, they are impressed by its “magic” in
taking over the execution of routine techniques. At a later stage, however, they begin to
notice that there are instances when the software works in a different way than the way
they would ordinarily perform the same techniques by hand (Zehavi 2004). The fol-
lowing example illustrates the typical experience of faculty using a CAS, that may lead
to their dissatisfaction with the software. Figure 4 shows the stepped-out solutions
using the Limit Tutor approach or Show Solution Steps to analytically compute

lim
x!16

4� ffiffi

x
p

x�16 in a calculus I course. One issue faculty may find with this particular example

is the choice to apply L’Hôpital’s Rule as a technique in computing the limit when

Enhance Faculty Experience and Skills Using Maple 249

mmonagan@cecm.sfu.ca

students at this point in the course would not have been taught derivatives. Figure 5
shows that a faculty who is resourceful in searching for a better option would seek the
Rule Definitions to apply the preferred factoring technique first, which dictates con-
sequent steps more consistent with the typical techniques taught to calculus I students
when learning the analytical approach to calculating limits (Fig. 6).

Fig. 4. Figure showing the stepped-out solutions to a limit exercise using Tools-Tutors-Calculus
Single Variable-Limit Methods

Fig. 5. Figure showing a factoring technique using the Rewrite Rule to the denominator of the

limit expression lim
x!16

4� ffiffi

x
p

x�16 .

250 L. A. Gooden

mmonagan@cecm.sfu.ca

Also noticeable are the differences in the representations of the equivalent solutions

displayed using both approaches. �
ffiffiffiffi

16
p
32 and � 1

ffiffiffiffi

16
p þ 4

can be easily reduced to � 1
8.

While some faculty may argue the inconsistencies in the solutions may confuse stu-
dents, I believe the inconsistencies enhances their ability to recognize symbolic
relationships.

With the support of the Maple Product Management team, I guided to rethink my
approach to enhancing the individual faculty skills and confidence using the software
as well as increase support in and outside the classroom. The faculty at Johnston

Fig. 6. Figure showing the stepped-out solution to the lim
x!16

4� ffiffi

x
p

x�16 using step 1 shown in Fig. 5.

Enhance Faculty Experience and Skills Using Maple 251

mmonagan@cecm.sfu.ca

Community College along with participants from surrounding community colleges in
North Carolina engaged in a series of training sessions coordinated by the Maple
Product Management Team. The training sessions were conducted using zoom on
Friday afternoons from December 2018, with Johnston Community College Faculty
only, and then on four consecutive Fridays during the Months of January and February
2019. I invited all full-time and part-Mathematics faculty as well as Physics and
Engineering faculty at Johnston Community College to participate in the sessions. The
experience was a valuable professional development opportunity. The response has
been phenomenal among faculty. Faculty were in a computer lab with access to Maple
during each session so that they would be actively engaged in the activities. Session
one gave an overview for faculty demonstrating a variety of commands and applica-
tions ranging from calculus I through to differential equations as well as some engi-
neering applications. Faculty were also made aware of the wealth of resources available
in the Maple community. This was an eye-opening experience! The sessions were
recorded, produced and shared among the math faculty. The video recordings and
maple files are now stored in a math repository for faculty reference. Since the
beginning of this FA2019 semester, faculty have shown much more excitement and
receptiveness to using Maple in their weekly instruction. The faculty at Johnston
Community College schedule Bootcamps with the Maple support staff, who remote
into their courses via zoom to do various Maple demonstrations per their request. My
hope is to continue this effort and to assess the long-term impact on student learning
and success in calculus at participating community colleges.

Community Colleges in North Carolina received approval from the State Board of
Community Colleges to offer an Associates Degree in Engineering. Engineering
Pathways, which is the organization that launched this initiative, is a joint project of the
North Carolina Community College System and the University of North Carolina
engineering programs focused on developing the pathways for students to begin
engineering studies at a community college and then transfer as seamlessly as possible
to one of the University of North Carolina engineering programs. Over two-thirds of
North Carolina community colleges now offer the degree program, which lists Cal-
culus I as its first math. Success rates in Calculus I are vital to the sustainability of
engineering programs across our state; hence, fueling our economy with the next
generation of engineers. Figure 7 shows our current success rates in Calculus I over a
nine-year period. The success rates appear stable and above average in general from
FA2012-FA2018, indicating what I believe are successful gains in student
performance.

252 L. A. Gooden

mmonagan@cecm.sfu.ca

References

Arcavi, A.: Symbol sense: informal sense-making in formal mathematics. Learn. Math. 14(3), 24
(1994). https://search.proquest.com/docview/1309139402

Kilicman, A., Hassan, M.A., Husain, S.K.S.: Teaching and learning using mathematics software
“The new challenge”. Proc. - Soc. Behav. Sci. 8, 613–619 (2010). https://doi.org/10.1016/j.
sbspro.2010.12.085

Sorby, S., Casey, B., Veurink, N., Dulaney, A.: The role of spatial training in improving spatial
and calculus performance in engineering students (2013). https://www.lib.ncsu.edu/, https://
doi.org/10.1016/j.lindif.2013.03.010

Zehavi, N.: Symbol sense with a symbolic-graphical system: a story in three rounds (2004).
https://www.lib.ncsu.edu/, https://doi.org/10.1016/j.jmathb.2004.03.003

Fig. 7. Figure showing the passing rates, C’s and better, in Calculus I at Johnston Community
College from FA2011 to FA2018

Enhance Faculty Experience and Skills Using Maple 253

https://search.proquest.com/docview/1309139402
https://doi.org/10.1016/j.sbspro.2010.12.085
https://doi.org/10.1016/j.sbspro.2010.12.085
https://www.lib.ncsu.edu/
https://doi.org/10.1016/j.lindif.2013.03.010
https://doi.org/10.1016/j.lindif.2013.03.010
https://www.lib.ncsu.edu/
https://doi.org/10.1016/j.jmathb.2004.03.003

mmonagan@cecm.sfu.ca

Undergraduate Upper Division Quantum
Mechanics: An Experiment in Maple®

Immersion

Scot A. C. Gould(&)

W.M. Keck Science Department, Claremont McKenna, Pitzer, Scripps,
Claremont, CA 91711, USA

sgould@kecksci.claremont.edu

Abstract. Dirac-notation based upper division undergraduate quantum
mechanics was taught in the Spring semester of 2019 using Maple to present the
mathematics of the course and to solve all mathematical and computational
problems. In addition to step-by-step presentations on using Maple, students
were provided with numerous examples of solving quantum mechanical prob-
lems using Maple. Students were required to submit all homework and “take-
home” exam solutions as PDF documents, primarily generated from a Maple
worksheet. However, students were not required to solve all problems using
Maple. Through external evaluation and student survey, it was determined that
by the end of the semester, all students used Maple for solving over half the
problems; nearly three-quarters of the students developed sophisticated Maple
skill sets; and a third of the students used Maple to solve every type of problem –

completing assignments in a single worksheet. Maple was most frequently used
to solve problems involving single variable continuous functions, vectors and
matrices. Maple was least frequently used to solve problems involving Dirac-
notation based algebra. Maple was nearly universally appreciated by the students.

Keywords: Maple � Quantum mechanics � Education

1 Motivation and Objectives: Why Include Maple [6]?

Quantum mechanics at the undergraduate level [10–12] is a combination of philosophy
[1], science and mathematics [2]. Students are expected to suspend their inherent notion
of deterministic outcomes with absolute precision. Rather, they must adopt a philos-
ophy where particles are essentially everywhere until a quantum measurement is per-
formed. The theory is derived from interpreting experimental outcomes and building a
model for which a future outcome can be predicted as a probability – either as a set of
discrete values, or as a continuous function. In addition, the measurement of one
property of the system might affect the information about another property of the
system. With upper division undergraduate physics, the notation of Dirac is the primary
mathematical notation used to model the physical systems represented by an abstract
Hilbert space [2]. It is a notation for which most of the students have no experience
with, even though most have completed an undergraduate course in linear algebra.

© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 254–262, 2020.
https://doi.org/10.1007/978-3-030-41258-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_19

mmonagan@cecm.sfu.ca

In teaching the material, the instructor is faced with a dilemma. If the instructor
wants the students to learn how to apply the postulates of quantum mechanics to
physical systems without overwhelming the students with mathematical derivations or
calculations, the instructor is usually forced to select simplistic, synthetic systems.
Physics principle comprehension is the goal of the course. However, to make the
course more relevant, it is best if the instructor selects problems from physically
realistic systems, thus increasing the number of lines of algebra or numerical calcu-
lations. To accomplish both goals, the author chose to introduce a computer algebra
system (CAS) into the course. This choice helps achieve a balance and thereby create a
quantum mechanics course with more relevant content for which physical principles
can be covered, but not a course where the students are overwhelmed with mind-
numbing algebra or calculations.

In addition, by including a CAS in this standard upper division undergraduate
physics course, the hope was that the students would spend less time doing mathe-
matics and spend more time contemplating the underlying physical principles, gener-
ating physically viable mathematical models of physical systems, and interpreting both
analytic and numerical results calculated by the software platform. While both the
author and the students have been exposed to number of mathematical solving systems
such as Mathematica® [11] and MATLAB® [7], Maple was chosen because it is the
system with which the instructor has the most familiarity and because all the students
had completed a lower division physics course, Modern Physics, in which they
received a limited exposure to Maple. In that course, Maple was used primarily for
basic graphing and solving sets of equations with multiple knowns. While the author
notes the use of a CAS system for solving quantum mechanical problems is not novel,
he is unaware of other upper division quantum mechanics courses for which so much of
the material was presented and analyzed using Maple [3, 5, 9].

In an undergraduate quantum mechanics course, the students work with three main
mathematical representations of a physical system: (1) Dirac notation based linear
algebra, (2) vector and matrix based linear algebra, and (3) one involving differential
equations and/or partial differential equations. For nearly every problem solved in the
course, the goal is usually to generate an analytical or numerical prediction for an
outcome either in the form of a single value or a function. These solutions are often best
understood by the students when the solutions are presented in some graphical format.

The objective of this experiment was that, by the end of the course, all students
would have a strong understanding of quantum mechanics postulates, be able to apply
those postulates to physical systems and should be capable of presenting their answers
and mathematical derivations to all problems in a Maple worksheet. At no time should
the students need to generate handwritten work.

2 Implementation and Instructions to Class

Students were informed from the beginning of the course that the course would include
quantum theory using Dirac-notation and the mathematics of differential equations and
linear algebra. In addition, the mathematics for the physics and virtually every model or
problem would be presented to them using Maple. The style would be in the form of

Undergraduate Upper Division Quantum Mechanics 255

mmonagan@cecm.sfu.ca

“2D Input” - “2D Output” on a Maple worksheet. This format was chosen after polling
the students about which form of Maple input/output they found more understandable
and useful. Since most students have experience with both Python and Mathematica,
the majority find the “prompt and response” system easier to read, to compose and to
understand, when compared to the arrow-based system of Maple’s Document format.
In addition, the vast majority prefer the “near traditional representation of the mathe-
matics” style of the 2D-input/output to a 1-D courier font-based representation of the
input code.

The class met twice per week for 75 min each period. The first class period con-
sisted of a traditional lecture, or a set of class-time activities as needed. The second
class period consisted of a problem-solving session during which students were
required to present their initial attempts at solving the homework problems. Their final
solutions were then submitted a day after the second class period. In solving the
homework problems, students were encouraged first, to try solving the problems on
their own, and then work together. Homework solutions had to be self-generated.
Simply copying the work of another student is considered academic dishonesty at the
colleges.

To help the students become more familiar with the capabilities of Maple and to
encourage them to allow Maple to derive the messy algebra, the course included the
following:

• Line-by-line coding exercises by the students on their laptops during class-time.
Topics included, how to enter mathematical commands in execution groups and text
in text groups, how to include images in a Maple document, how to enter and
calculate using the Dirac notation in the Physics library, how to create matrices and
calculate results with them.

• “How to” documents, listing mathematical techniques that could be performed with
Maple code, were handed out. The philosophy of every “how-to” instruction
document was to employ the smallest number of Maple commands to solve the
largest number of problems.

• Top-down and bottom up examples of solving problem through Maple code were
provided.

• All solutions by the instructor were written in Maple in the form of a well-organized
Maple document that used headers and sub-headers. This included using the “title”
format and grouping solutions to problems by sections. Answers to all problems
were presented in a text-box. When complete line-by-line derivations were required,
a text-box with both “text mode” and “math mode” based text was used.

• All Maple worksheets and documents were available to the students only in a non-
editable, non-executable, PDF format. Consequently, if a student wanted to use a
handout as the basis for working on a problem, they had to type the code
themselves.

• Students had to attempt two open-book, open-note, open-internet, Maple allowed
exams. (In addition to these exams, there were two closed-note, closed-device
exams, for which Maple was not permitted.) Most of the calculations or derivations
in the Maple-permitted exams would be either extremely challenging to solve either

256 S. A. C. Gould

mmonagan@cecm.sfu.ca

algebraically or numerically or would contain many lines of algebra. Hence, stu-
dents would view Maple as a near necessity to perform well on the exams.

All homework and take-home exam solutions were submitted electronically to the
colleges’ course management platform, Sakai [8]. Each submission had to be in the
form of a single PDF document. While students were encouraged to try to use the
Maple’s capabilities to represent answers to all questions and to solve all problems,
hand-written solutions by the students were accepted. Solutions written by hand would
have to be “imaged” and added to their homework document.

At the end of the semester, the Maple-based capabilities of the students were
evaluated by noting the frequency with which each student used a Maple-based skillset
or one of the problem-solving capabilities of Maple on their last homework set sub-
mission and the “open book, open note, open internet, full computational calculation”
final exam submission. This evaluation was performed by the instructor. In addition,
the students were surveyed anonymously to measure their self-assessed Maple capa-
bilities and usage in the course both before and post course.

Importantly, during the course, the students were told that their Maple skillsets
would not be evaluated. Technically, all the problems could have been solved either by
traditional means or via another software package. Hence, their ability to use Maple, or
lack of, did not affect their grade. This allowed the instructor to ascertain the degree to
which the students found Maple to be an effective, implementable problem-solving
tool.

To separate a student’s understanding of quantum principles and their capabilities
to apply the principles to systems from their ability to use Maple, both a midterm exam
and an additional separate final exam were given for which all electronic devices were
disallowed. On this type of exam, students could bring in a single page “reference
sheet” to remind themselves of equations and functions. These type of exams were
monitored while the Maple-permitted exams were not. An honor code of having them
not share answers was applied for the computationally based exams.

Finally, the textbook was a relatively common textbook which was chosen because
it introduced Dirac notation early in the book [12]. It contains no code nor computational
type problems. Problems both from the textbook and those generated by the instructor
where used in the exams for the homework assignments.

3 Results

The course was taught in the Spring semester of 2019. There were 14 students enrolled
in the course. No student left the course. Of the 14 students, 11 self identified as female,
three as male.

3.1 Maple Skillsets and Problem-Solving Capabilities Evaluated

The formulism of quantum mechanics deals with states and operators that belong to an
abstract Hilbert space. Hence, in an undergraduate upper division level quantum
mechanics course, there are three forms of representation of a physical system: (1) a

Undergraduate Upper Division Quantum Mechanics 257

mmonagan@cecm.sfu.ca

meta-physical representation for which Dirac notation linear algebra is used; (2) a
discrete based outcome representation for which vectors, matrices and properties of
linear algebra are used; (3) a continuous based outcome representation for which
functions and differential equations are used. These representations, along with Maple
documentation and graphics presentation skillsets, formed the basis for the rubric used
to evaluate the capabilities of the students using Maple. See Table 1.

Table 1. Rubric for characterizing a student’s ability to use Maple, organized by Maple skillset
or mathematical representation of quantum mechanical systems.

Skillset,
mathematical
representation

Advanced Skilled Novice

Dirac notation
representation

Uses the Physics library, can
represent state, generate
orthonormal-sets, apply
operators such as
creation/annihilation, apply
commutation relationship
algebra, generate outcomes
using purely Dirac notation

Uses the Physics library, can
represent states, generate
orthonormal sets, generate some
outcomes using Dirac notation

Using instructor created
worksheets, can modify
worksheets to perform some of
the calculations

Vector & matrix
representation

Uses LinearAlgebra library to
create vectors, matrices, solve
eigenvalue/eigenvector
problems, normalize
eigenvectors, perform vector
and matrix multiplication to
create matrix-based operators

Uses LinearAlgebra library to
create matrices, solve for the
eigenvalue/eigenvectors of a
matrix and can show results are
eigenvectors and eigenvalues of
the matrix

Uses LinearAlgebra library to
create matrices, solve for the
eigenvalue/eigenvectors of a
matrix. Can read Maple output

Continuous
function
representation

Can solve ordinary differential
equations both algebraically and
numerically, demonstrate Maple
output is correct, plot output,
use solutions to determine
weighted mean values. Can use
“shooting method” and
“variational method” to
calculate numerical values for
both eigenfunctions and
eigenvalues

Can perform some substantial
subset of the advanced skillset
group

Can use Maple to calculate
outcomes for only a couple
types of problems

Graphics Regardless of the format of the
calculation, can generate a
physically justifiable graph or
type of animation. Can include
titles, vary line styles and colors,
and provide a legend. Near
publishable quality output

Can generate graphs of
continuous functions and some
numerically based data
(pointplot). Can include some
useful graphical attributes

Can generate graphs of
continuous functions

Document
format of Maple
text and math
usage

Document is nearly a paper
embedded with Maple code and
output. Problems are separated
for easy identification and
readability. Any derivation
requiring text plus mathematical
characters is typed in using the
math format in a text box. Page
numbers

Problems are clearly
identifiable. Can add text.
Uploads images of handwritten
solutions. No page numbers

Problems are barely labeled.
Minimal Maple calculation (or
placed at end.) Text + math
answers are nearly always added
as image of handwritten
solutions

258 S. A. C. Gould

mmonagan@cecm.sfu.ca

Any student who did not fall into one of the three categories was characterized as
having no skillset or capabilities in that area.

3.2 Fraction of Implementation

Using the rubric, the final exam and final homework submission, each student was
evaluated for Maple usage capabilities. Table 2 shows the number of students who
achieved a classification for each of the skillsets. Some students have been assessed as
falling somewhere between two of the classifications, hence a half-point was given to
each of the classifications.

3.3 Student Self-reporting on Their Use of Maple

After the in-class final exam was completed, students filled out an anonymous survey
about their use of Maple in the course. Outcomes of the survey are:

• After completing the lower division course, Modern Physics, where Maple was
used for presentations, but was not required, four of the students state they ended up
using Maple for virtually all the problems in that course. Two rarely used it. The
rest claim they used it about half the time, but not all the time.

• Nine of the 14 consider themselves strongly familiar with Maple coming into the
upper division course. The rest characterize themselves as somewhat familiar.

• Upon completing the upper division course, there are only a couple students who
feel they became even more comfortable with Maple.

• For the upper division course, the percentage of the problems where Maple was
used to perform the mathematics: three claim they used it 60–74% of the time, four
used it 75–89% of the time, three used it 90–94% of the time and four used it 95%
or more of the time.

• Of the possible mathematical areas, only the Dirac-notation based problems were
ones where the students say they were less likely to use Maple.

• Six of the 14 students say they used a Maple document as the lead document and
then imported images or text as necessary. This document was eventually exported
as a single PDF document that was submitted as their work. The remaining eight
created PDFs from several sources and then used a merging program or website to
create the single PDF document.

Table 2. Number of students in each classification based on the rubric, organized by Maple
skillset or mathematical representation of quantum mechanical system. N = 14.

Skillset, mathematical representation Advanced Skilled Novice None

Dirac notation representation 6 2.5 3.5 2
Vector & matrix representation 6.5 5 2.5 0
Continuous function representation 6 6.5 1.5 0
Graphics 4.5 4.5 5 0
Document format of Maple text and math usage 5.5 3.5 3.5 1

Undergraduate Upper Division Quantum Mechanics 259

mmonagan@cecm.sfu.ca

• How do they see Maple as part of the problem-solving process in quantum
mechanics? Nine of the 14 feel it was a natural part of executing the mathematical
calculations. Four feel Maple required an additional effort beyond what they
experience in most upper division quantitative courses, but it did solve problems
faster, with fewer errors, than they could solve by hand. Only one student feels
Maple is frustrating to use and thus an additional burden for the course.

• When asked to rank the value of Maple for learning quantum mechanics, eight of
the 14 characterize it as essential, the remaining six rank it as useful, but not
essential. None characterizes it as not useful.

• When compared to other mathematical software packages/platforms such as
Mathematica™, MATLAB™, Python, etc., none of the students recommends
switching away from Maple.

• Every student prefers the online submission method for submitting homework or
take-home exams to the “print out and submit a physical copy of your work”
method.

• The single most requested improvements of Maple by the students are more
examples in the Help and easier ways to search online for help or examples, similar
to what one experiences when learning and working with MATLAB™.

4 Analysis: Success and “Opportunities”

As the results show, by the end of the course, a minimum of five of the students (36%)
wrote all their solutions using Maple. This included using all problem solving, writing
out solutions where the problem required them to “solve by hand”, and organizing as a
logical document.

Between 60% to 75% of the students were able to use competently Maple to help
solve the mathematics associated with the quantum mechanics problems. Oddly, fewer
students than expected possessed strong graphics skills. Some could generate anima-
tions, but many were limited to one-line commands. This may be a consequence of the
instructor not emphasizing this skillset sufficiently. This deficiency will have to be
addressed for the next iteration of the course.

Not surprisingly, the students overstated their use of Maple in solving problems on
the homework. For example, based on the instructor’s knowledge of the students’
performance in the lower division course, coming into the upper division course, at
most two students could use Maple for all their homework assignment. Indeed, most
students did not use the software as often or as extensively as they claimed.

From the perspective of the students, the online submission process is a hit. Stu-
dents do not have to print out and run over to the instructor’s office to submit. In
addition, for the instructor, it provides a timestamp of when the document was sub-
mitted which is important since the course contains a no-late-homework-is-accepted
policy. However, it is clear the instructor needed to perform a better job of demon-
strating how to make the Maple document the key document and importing files or
images as required. One can create a highly organized and readable document with
embedded material even without using the Workbook system of Maple.

260 S. A. C. Gould

mmonagan@cecm.sfu.ca

Finally, based on the survey, the instructor sees no reason to move away from
Maple to another platform as the mathematical instructional tool in the physics courses.
This is true despite the popularity of some of the other systems, such as Mathematica,
with fellow colleagues and in other mathematics and physics courses.

5 Conclusion

I had taught this course two other times where I often used Maple to solve problems,
including Dirac-notation based problems. However, until this semester, I had never
explicitly required students to use it as a substitute for solving problems by hand. Of
the three groups of students, this one was probably the weakest academically. In
addition, while the goal was for them to understand the principles of quantum
mechanics and apply them, the reality is that I never expected them to become quantum
mechanics experts. Rather, the realistic hope was that they would appreciate the
experience of thinking through the abstract environment known as Hilbert space using
a new mathematical language, that of Dirac. Moreover, while I wanted them to be able
to present all material and solve all problems using Maple, I never expected them to be
Maple gurus. Rather, my more realistic goal was for them to come away from this
course with a greater appreciation of the power of a mathematical tool like Maple. To
this end, I believe the realistic goals were accomplished. The reason for the more
realistic goals is that upon graduation, most of the students in our classes do not plan to
enroll in physics graduate school. Rather, they move on to some type of health science,
life science or engineering graduate or medical school. Hence, they have no reason to
view quantum mechanics or Maple as knowledge that they will need to rely upon for
the remainder of their lives.

Based on an informal survey of colleagues who teach this type of course at other
institutions, including the textbook author himself, the Maple enhanced course con-
tained a greater number of problems and more physics content than found in a typical
upper division undergraduate quantum mechanics courses [13]. Overall, by using
Maple to complete the numerous mathematical calculations assigned, the vast majority
of the students developed a more reinforced understanding of the physical principles of
quantum mechanics. As one student said, Maple’s ability to simplify a complex
mathematical statement allowed her to understand better, which properties of the
system were important and how those properties affected the value of the measurement
of the system she was investigating. Yet, because Maple code is not a complete black
box, she could understand all the steps in the calculations. The enhanced pace was an
unexpected positive outcome of this experiment.

References

1. Baggott, J.: The Meaning of Quantum Theory. Oxford University Press, Oxford (1992)
2. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press,

Oxford (1981)
3. Feagin, J.M.: Quantum Methods with Mathematica. Springer, New York (1994)

Undergraduate Upper Division Quantum Mechanics 261

mmonagan@cecm.sfu.ca

4. Griffiths, D., Schroeter, D.: Introduction to Quantum Mechanics, 3rd edn. Cambridge
University Press, Cambridge (2018)

5. Horbatsch, M.: Quantum Mechanics Using Maple®. Springer, Heidelberg (1995). https://doi.
org/10.1007/978-3-642-79538-1

6. Maple™: Maplesoft, Waterloo, Ontario, Canada (2018)
7. MATLAB: Mathworks, Nantick, MA, USA (2018a)
8. Sakai. www.sakailms.org
9. Steeb, W.-H., Hardy, Y.: Quantum Mechanics Using Computer Algebra, 2nd edn. World

Scientific Publishing, Singapore (2010)
10. Townsend, J.: A Modern Approach to Quantum Mechanics, 2nd edn. University Science

Books, Sausalito (2012)
11. Wolfram, S.: Mathematica 12, Champaign, IL, USA (1999)
12. Zettili, N.: Quantum Mechanics, Concepts and Applications, 2nd edn. Wiley, West Sussex

(2010)
13. Zettili, N., et al.: Private conversations

262 S. A. C. Gould

https://doi.org/10.1007/978-3-642-79538-1
https://doi.org/10.1007/978-3-642-79538-1
http://www.sakailms.org

mmonagan@cecm.sfu.ca

The Fermat-Torricelli Problem
of Triangles on the Sphere with Euclidean
Metric: A Symbolic Solution with Maple

Xiaofeng Guo1,3, Tuo Leng2, and Zhenbing Zeng1(B)

1 Department of Mathematics, Shanghai University,
Shanghai 200444, China

{gxf16720010,zbzeng}@shu.edu.cn
2 School of Computer Engineering and Science, Shanghai University,

Shanghai 200444, China
tleng@shu.edu.cn

3 School of Mathematical Sciences, East China Normal University,
Shanghai 200062, China

52195500015@ecnu.edu.cn

Abstract. The Fermat-Torricelli problem of triangles on the sphere
under Euclidean metric asks to find the optimal point P on the sphere
S2 for three given points A, B, C on S2, so that the sum of the Euclidean
distances L = PA + PB + PC from that point P to the three vertices
is minimal (or maximal). In this paper we introduce a solution to this
problem done with help of the symbolic computation software Maple
and interpolation of implicit function, where the minimal and the maxi-
mal sum of the distances are expressed by same polynomial f(L, a, b, c)
of degree 12 with a = BC, b = CA, c = AB.

Keywords: Fermat-Torricelli problem · Elimination · Sylvester
resultant · Dixon resultant · Implicit function interpolation ·
Symbolic-Numeric hybrid computation

1 Introduction

On the plane, the Fermat point of a triangle, also called the Torricelli point or
Fermat-Torricelli point, is a point such that the total distance from the three
vertices of the triangle to the point is the minimum possible. The original ques-
tion was proposed by Pierre de Fermat in his book Methodus ad disquirendam
maximam et minimam (manuscript written in 1629, and published in 1636 and
1979, cf. [31]) as a challenge problem. This problem also appeared in Fermat’s
book Œuvres [11] (published in the 1890s). It is easily seen that the optimal point
must be contained in the interior or on the edges of the given triangle. Mersenne
had introduced the problem to Italy. Evangelista Torricelli gave the first solution

Support by the Chinese National Natural Science Foundation (11471209 and 11501352).

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 263–278, 2020.
https://doi.org/10.1007/978-3-030-41258-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_20&domain=pdf
http://orcid.org/0000-0002-9728-1114
https://doi.org/10.1007/978-3-030-41258-6_20

mmonagan@cecm.sfu.ca

264 X. Guo et al.

to Fermat’s problem in 1640 (published in 1659 by Viviani, cf. [16,31]). Some
literature said that Fermat told the optimal problem as a challenge to Torricelli
in private communication. Torricelli proved a nice property that if all angles
of the triangle are less than 2π/3, then the Fermat point P of ABC can be
constructed by drawing equilateral triangles on the outside of the given triangle
and connecting opposite vertices, and in this case, the intersection point P is
contained in the interior of ABC, and that from the point P , each side subtends
an angle of 2π/3, i.e.,

∠APB = ∠BPC = ∠CPA =
2π

3
,

In case that one of the angle of the triangle ABC is larger than 2π/3, Torricelli
proved that the point P that minimizes PA+PB+PC is one of the vertices of the
triangle. From this solution it is easy to derive that L = minP (PA + PB + PC)
satisfies

L2 =
1
2
(a2 + b2 + c2) + 2

√
3S�ABC ,

or
(L − a − b)(L − b − c)(L − c − a) = 0,

where the area S�ABC of the triangle can be found in terms of a, b, c through
Heron’s formula. Fasbender proved that the Fermat point problem is dual to
construction of the maximal regular triangle that circumscribes to the given
triangle ABC in 1846 [12]. More solutions of the Fermat-Torricelli problem can
be seen at the web page Cut The Knot of Alexander Bogomoly [6].

The Fermat-Torricelli problem has many application in economics and engi-
neering fields. In 1902, Weber [29] investigated the following allocation prob-
lem: Given n locations P1, P2, · · · , Pn and the price indices (products of the
transportation price and the quantity of products) w1, w2, · · · , wn, find the best
location X of the factory, so that the total transportation cost

W (X) =
n∑

i=1

wi‖X − Pi‖ (1)

is minimal. For n = 3, a general solution to this problem was given by Launhardt
in [24]. For n = 4 and w1 = w2 = · · · = w4 = 1, a solution was given by G.
Fagnano (cf. [23]).

Kupitz and Martini studied the isogonal property of the Fermat-Rorricelli
point of the four vertices of the simplex in R

3. They proved in [22] that likes to the
plane case, the Fermat-Torricelli point determined by any simplex must be inside
(or on the surface) of the vertex, and the four solid angles formed by the Fermat-
Rorricelli point with the four surfaces of the vertex are equal. Nevertheless, Dalla
[8] proved that this property is not valid anymore for n ≥ 4. Here, the solid
angle formed by a point P ∈ R

n with the n − 1 simplex A1A2 . . . An (with
P �∈ A2A2 . . . An) is defined as the volume of the geometry object intersected by
the cone(P,A1A2 . . . An) (spanned ny point P and the n − 1 simplex) and the
unit sphere Sn−1(P) in R

n (centered at P).

mmonagan@cecm.sfu.ca

The Fermat-Torricelli Problem on the Sphere 265

Alexandrescu proved in [1] that for any n points in a Hilbert space, W (X)
defined by (1) is a continuously differentiable function, and the set of points
that accesses the global minimum is the convex hull formed by n points when
w1 = w2 = · · · = wn = 1. In [35], Zuo and Lin investigated the existence and
the uniqueness of the Fermat-Torricelli point for finite points in general metric
space (including hyperbolic and Banach spaces).

For the numerical solution of the general form of the Fermat-Torricelli prob-
lem in R

n, Weiszfeld (named as Andrew Vázsonyi after 1936, and also called
Zepartzatt Gozinto in certain occasion since 1956) gave a gradient descent algo-
rithm in 1936 (cf. [9,30]), called as Weiszfeld Algorithm. More results related to
the distribution of the optimal solution to Eq. 1) can be found in [21].

The minimal Steiner tree problem is also connected with Fermat-Torricelli
problem. Given a set of finite points in the space, find the minimal network
that connects the all given points. It can be derived from the property of the
Fermat-Torricelli point that in the minimal Steiner tree, the degree of every
non-leaf vertex is 3, and that any two of the three edges associated to the non-
leaf vertex formed an angle of 2π/3. See [10,14] for more information. For this
reason, the Fermat-Torricelli problem is also called as Steiner-Weber problem in
some literatures.

Fermat problems regarding geometric manifolds have been studied by many
people. In 1979, Katz and Cooper studied the Fermat problem on a sphere with
spherical distance, Euclidean distance and squared Euclidean distance metric; in
addition, for N given points, the Weiszfeld algorithm and its convergence prop-
erty were given to compute their Fermat point [20]. Using this result, Ghalieh
and Hajja, studying the sphere with spherical distance metric, showed in [13]
that the Fermat point P of a spherical triangle ABC is unique when the length
of each side is less than π/2. This is the same as the case on the plane. In 2011,
Chen [4] proved that the above result also holds for any three points on a regular
surface with the geodesic metric. Furthermore, Zachos studied the Fermat prob-
lem on a surface of rotation and hyperbolic plane H2 with a negative constant
Gauss curvature; this was completed in [32] and [33].

In [15], the authors of this paper studied the Fermat-Torricelli problem on
the unit sphere with Euclidean metric: Given a triangle �ABC whose sides are
of length a = BC, b = CA, c = AB, find a point P on that sphere such that
PA+PB +PC reaches its minimum, where all distances between points on the
sphere are measured by the Euclidean metric. Let u = PA, v = PB, w = PC
and L = u + v + w (Fig. 1). Then, the problem there can be written into a
non-linear programming problem as below:

min L = u + v + w

s.t. u = PA, v = PB,w = PC,

u2 = (x − x1)2 + (y − y1)2 + (z − z1)2,
v2 = (x − x2)2 + (y − y2)2 + (z − z2)2,
w2 = (x − x3)2 + (y − y3)2 + (z − z3)2,
x2 + y2 + z2 = 1,

mmonagan@cecm.sfu.ca

266 X. Guo et al.

Fig. 1. A triangle ABC on the unit sphere S2 and the Fermat-Torricelli point P so that
PA + PB + PC is minimal. All distances a, b, c, u, v, w are measured in the Euclidean
metric space R

3.

x2
i + y2

i + z2i = 1 (i = 1, 2, 3),
a2 = (x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2,
b2 = (x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2,
c2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

It is natural that one expects that in the final result the minimal value L = u +
v +w would be a function determined by a, b, c. Applying the distance geometry
knowledge, Guo et al. transformed the above problem to an optimization problem
that involves only the lengths a, b, c, u, v, w as follows:

min L = u + v + w

s.t. V (a, b, c, u, v, w) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 u2 v2 w2 1
1 u2 0 c2 b2 1
1 v2 c2 0 a2 1
1 w2 b2 a2 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.
(2)

here the determinant V (a, b, c, u, v, w) is called the Cayley-Menger determinant
(cf. [2,3]). Let

G = u + v + w + λ · V (a, b, c, u, v, w).

mmonagan@cecm.sfu.ca

The Fermat-Torricelli Problem on the Sphere 267

Then applying the Lagrange multiplier method, it is easy to know that the
minimal value L is determined by the following polynomial equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L − u − v − w = 0
∂G

∂λ
= V (a, b, c, u, v, w) = 0,

∂G

∂u
= 1 + λ

∂V

∂u
= 0,

∂G

∂v
= 1 + λ

∂V

∂v
= 0,

∂G

∂w
= 1 + λ

∂V

∂w
= 0.

(3)

It is also clear that if we consider the maximal of L = u + v + w in (2), we
would obtained the same equation system as (3). With the combination of the
Sylvester resultant, Dixon resultant (cf. [19,25] and the interpolation of implicit
equation as developed in [27,28], Guo et al. conclude the following result.

Theorem 1. Suppose that ABC is a triangle on the unit sphere S such that
a = BC, b = CA, c = AB respective to the Euclidean metric. Assume that P is
a point on S. Let L = PA + PB + PC. Then, the inequality rmin ≤ L ≤ rmax

holds, where rmin and rmax are the minimal and maximal real root of the equation

f(L, a, b, c) = (L − a − b)(L − a − c)(L − b − c)g(L, a, b, c) = 0 (4)

where

g(L, a, b, c) = q12 · L12 + q10 · L10 + · · · + q2 · L2 + q0,

and the coefficients q12, q10, · · · , q0 are symmetric polynomials of a, b, c, expressed
in a compact form by

k = a2b2c2, m = a2 + b2 + c2, n = a2b2 + b2c2 + c2a2

as follows:

q12 = k − 4n + 16m − 64

q10 = − 32m2 + 4mn − 72k − 704m + 256n + 3072

q8 =16m3 + 48km + 1984m2 − 368mn − 4n2 + 1584k + 2560m − 4800n − 30720

q6 = − 1728m3 + 128m2n − 1728km − 14848m2 + 7040mn + 192n2 − 11520k

+ 18432m + 30720n + 114688

q4 = 512m4 + 768km2 + 16640m3 − 3712m2n − 128mn2 + 11520km − 1152kn

+ 14336m2 − 53760mn + 2688n2 + 34560k − 110592m − 15360n − 147456

+ 30720n + 114688

mmonagan@cecm.sfu.ca

268 X. Guo et al.

q2 = − 11264m4 + 1024m3n − 9216km2 − 29696m3 + 62464m2n − 3072mn2

− 46080km + 27648kn + 98304m2 + 82944mn − 70656n2 + 55296k
+ 147456m − 294912n

q0 = 4096m5 + 4096km3 + 23552m4 − 30720m3n − 1024m2n2 + 55296km2

− 18432kmn − 8192m3 − 141312m2n + 55296mn2 + 4096n3 + 27648k2

− 165888kn − 147456m2 + 36864mn + 211968n2 − 110592k + 442368n.

As [15] is written in Chinese, we will give a general description to the method
used in that paper in English for convenience of the non-Chinese-speaking read-
ers. For sake of the page limitation, we will not show the details of complicated
computation in the Dixon resultant elimination and the implicit interpolation as
done in [15]. In the introduction (Sect. 1) we add more materials on the history of
Fermat-Torrichelli problem. In the Sect. 2 the metric equation has been rewrit-
ten with emphasis on its application in algebraic representation for four points
on the unit sphere. The Sect. 3 shows the symbolic computation part we have
used in elimination. In Sect. 4 we will show the interpolation computation for
computing large determinant, namely, the Dixon resultant. Section 5 is added for
a brief discussion on some geometric properties of the Fermat-Torricelli points.

2 The Metric Equation and the Algebraic Representation
of Fermat-Torricelli Problem

It is well-known that in R
n the volume V of the simplex formed by n + 1 points

P0, P1, P2, · · · , Pn with di,j = PiPj = ‖Pi − Pj‖ in this space can be given by
the determinant (the Cayley-Menger determinant) of an (n+1)× (n+1) matrix
as below:

V 2 =
(−1)n+1

2n · (n !)2

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 · · · 1
1 0 d201 d202 · · · d20,n
1 d210 0 d212 · · · d21,n
1 d220 d221 0 · · · d22,n
...

...
...

...
. . .

...
1 d2n,0 d2n,1 d2n,2 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5)

Thus, for four points A,B,C, P on the unit sphere S2, centered on O, in the
three-dimension space R

3 with

a = BC, b = CA, c = AB, u = PA, v = PB, c = PC, (6)

the five points O,A,B,C, P , as a subset in R
3, form a degenerate simplex in R

4,
and therefore, its volume equals zero, which implies that

V (a, b, c, u, v, w) :=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 u2 v2 w2 1
1 u2 0 c2 b2 1
1 v2 c2 0 a2 1
1 w2 b2 a2 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (7)

mmonagan@cecm.sfu.ca

The Fermat-Torricelli Problem on the Sphere 269

Below we prove that this condition is also a sufficient condition for P,A,B,C
are on the same unit sphere. Namely, we have the following result.

Lemma 1. Assume that P,A,B,C are points in R
3, a, b, c, u, v, w are distances

shown as (6), so that the radius of the circumscribed circle of ABC is not greater
than 1. Then, (7) implies that P,A,B,C are contained in some unit sphere in
R

3.

Proof. Let O1 be the center of the circle that circumscribed ABC and O be the
point (any one of the two points) so that OO1 is perpendicular to the plane
determined by ABC and OA = OB = OC = 1. Let S2 be the unit sphere in R

3

with center at O. In the case that O,A,B,C are not coplanar, the existence of a
point P on S2 is guaranteed by the Lemma 42.1 in [2]. In the case that O,A,B,C
are coplanar, we may construct a sequence of points {An} that are not coplanar
with B, C with AnB = c, CAn = b, and An → A. Let Pn be the points on the
sphere S2 determined by AnBC. As the unit sphere in the Euclidean space is
compact, we conclude that Pn converges to a point on P that satisfies (6).
�

Lemma 1 guarantees that the searching of the point P on S2 with minimal
PA + PB + PC for given points A,B,C ∈ S2 can be transformed to the non-
linear programming problem (2) as claimed in the Sect. 1. Furthermore, it is
easily seen that λ �= 0 in the equation system (3) and therefore, the equation
can be simplified to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 := L − u − v − w = 0

f2 := V (a, b, c, u, v, w) = −a4u4 + 2a2b2u2v2 + · · · + 4c4w2 + 4a2b2c2
︸ ︷︷ ︸

28 terms

= 0,

f3 :=
1

4

(
∂f2
∂u

− ∂f2
∂v

)

= −a4u3 − a2b2u2v + · · · − 2b4v + 2b2c2v
︸ ︷︷ ︸

26 terms

= 0,

f4 :=
1

4

(
∂f2
∂u

− ∂f2
∂w

)

= −a4u3 + a2b2uv2 + · · · − 2b2c2w − 2c4w
︸ ︷︷ ︸

26 terms

= 0.

(8)

With Maple it is easy to check that f2, f3, f4 are irreducible polynomials.
Now the task of computing the optimal point P becomes to elimination. The

best result would be a triangular form of equations (called as an ascending chain)
as follows.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1(a, b, c, u) = 0,
g2(a, b, c, u, v) = 0,
g3(a, b, c, u, v, w) = 0,
g4 = −u − v − w + L = 0,

(9)

where g1 is a polynomial which takes u as the variable and a, b, c as parameters
in its coefficients, and g2 a polynomial which takes v as the main variable and
a, b, c, u as parameters, and so on in g3. It is clear that (9) can be considered as

mmonagan@cecm.sfu.ca

270 X. Guo et al.

a symbolic solution of the Fermat-Torricelli problem. However, the computation
with Maple shows that when taking a, b, c as symbolic parameters, both the
time complexity and the space complexity for getting the ascending chain are
too high. If taking a, b, c as specific rational numbers, there is no difficulty to do
elimination. For example, if we take

a =
1
2
, b =

3
10

, c =
2
5
,

then, we would have

hh1 := factor(resultant(resultant(f2, f3, w), resultant(f2, f4, w), v));
hh1 := primpart(hh1, u)

= u32(2 − 5u)8(2 + 5u)8(3 − 10u)16(3 + 10u)16 · h20,1(u)2 · h12(u)2,

and

hh2 := factor(resultant(resultant(f2, f3, v), resultant(f2, f4, v), w));
hh2 := primpart(hh2, u)

= u32(2 − 5u)8(2 + 5u)8(3 − 10u)8(3 + 10u)8 · h20,2(u)2 · h12(u)2,

where h20,1(u), h20,2(u) are irreducible polynomials of degree 20, with

gcd (h20,1(u), h20,2(u)) = 1

and

h12(u) = 9636074153000000000u12 − 147976745320250000000u10 + · · ·
−256923876528228240000u2 + 2261669941382971392

This experiment indicates that the final result of L is possibly a polynomial of
degree 12 in L with a, b, c as parameters, or

(L − a − b)(L − b − c)(L − c − a) = 0

for certain situation, and we may do further computation via accurate numeric
computation with Maple and then recover the final result. As we have not found
successful work on interpolation for a system likes the ascending chain, we will
show how to recover the final relation that connects L and a, b, c in the next
section.

3 Symbolic Elimination via Sylvester Resultant and
Dixon Resultant

In this section we describe the symbolic computation we have done with Maple
for eliminating variables u, v, w from the equation system (8). As the Sylvester
resultant has been used for eliminating one variable from two polynomials, we

mmonagan@cecm.sfu.ca

The Fermat-Torricelli Problem on the Sphere 271

will not display its definition here. It worths to indicate that immediately after
using the built-in Maple command resultant(f, g, x), we always use a sub-
procedure that factorize the result of the resultant computation, and remove all
duplicate factors:

resultant(f, g, x) factor−→ hd1
1 · hd2

2 · · · hdj

j

square−free−→ h1 · h2 · · · hj .

Next is the procedure that we designed to eliminate variables u, v, w with the
Sylvester resultant.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = resultant(f1, f2, u), (86, [4, 4, 4, 4, 0, 4, 4])

P2 = resultant(f1, f3, u), (56, [3, 4, 4, 2, 0, 3, 3]),

P3 = resultant(f1, f4, u), (56, [3, 4, 2, 4, 0, 3, 3]);

P4 = primpart(factor(resultant(P1, P2, v)), w), (2133, [12, 14, 14, 10, 0, 0, 12]),

P5 = primpart(factor(resultant(P1, P3, v)), w); (4354, [12, 18, 12, 14, 0, 0, 12]),

P6 = resultant(P4, P5, w).

(10)

The numbers shown after each result are the number of terms in the result, and
the degree of the result respect to a, b, c, u, v, w. Thus, P4 has 2133 monomials,
in which the degrees of L, p, q, r, w of P4, P5 are [12, 14, 14, 10, 12], while P5 has
4354 monomials, the degrees are [12, 18, 12, 14, 12]. The computation was imple-
mented with Maple 18 on a personal computer with Inter(R)Core(TM)i7CPU
and 8 GB memory. The total time used for P1, P2, P3, P4, P5 is 0.422 s in the
above mentioned machine. And for computing P6, the allocated memory had
been exceeded after 5970 s, so it failed to return any result.

While there are many alternative ways, including Gröbner base and the
pseudo-remainder (i.e., prem), could be used for elimination, we have selected
the Dixon resultant for further experiment according to the practical experi-
ence from past works. Before explaining our computation, we shall give a brief
introduction to the definition and the basic property of the Dixon result.

Consider the polynomial equation system

F = {p1(x1, . . . , xn), . . . , pn+1(x1, . . . , xn)} ⊂ K[x1, . . . , xn].

For 1 ≤ i ≤ n, denote

di = max{deg(p1, xi),deg(p2, xi), · · · ,deg(pn+1, xi)}
Now construct the (n + 1) × (n + 1) determinant as follows:

Δ(x1, . . . , xn, α1, . . . , αn) =

∣∣∣∣∣∣∣∣

p1(x1, x2, . . . , xn) . . . pn+1(x1, x2, . . . , xn)
p1(α1, x2, . . . , xn) . . . pn+1(α1, x2, . . . , xn)

.
p1(α1, α2, . . . , αn) . . . pn+1(α1, α2, . . . , αn)

∣∣∣∣∣∣∣∣
(11)

where α1, · · · , αn represent the new variables and pi(α1, · · · , αk, xk+1, · · · , xn)
stands for xj in pi being substituted by αj for all 1 ≤ j ≤ k. Next, Δ can be

mmonagan@cecm.sfu.ca

272 X. Guo et al.

divided by
∏n

i=1(xi − αi), therefore, we have

δ(x1, . . . , xn, α1, . . . , αn) =
Δ(x1, . . . , xn, α1, . . . , αn)
(x1 − α1) · · · (xn − αn)

. (12)

and call δ as the Dixon polynomial of F .
We may view δ as a polynomial of α1 · · · αn and denote different coefficients

of power products of α1, · · · , αn by

ci(x1, x2, · · · , xn) (i = 1, 2, . . . , s1). (13)

Since δ vanishes at all common zero of F , we conclude that

ci(x1, x2, · · · , xn) = 0 (14)

for all 1 ≤ i ≤ s1. We call (14) as the derived equations of the original system
F . Furthermore, we may use v1, · · · , vk to represent all different power products
of x1, x2, · · · , xn

v1 = 1, v2 = x1, · · · , vk =
n∏

i=1

xi·di−1
i , (15)

and assume that there are s2 variables among v1, · · · , vk appearing in (14),
without loss of generality, we may denote them as v1, · · · , vs2 . Then, (14) can
be rewritten as the following linear equation systems:

D(v1, · · · , vs2)
T = 0, (16)

where D is the coefficient matrix of (14), related to the power product
v1, · · · , vs2 , and called as the Dixon matrix of F .

It is apparent that if the Dixon matrix is nonsingular, that is, det(D) is
not a zero polynomial, then the expression det(D) = 0 could be taken as a
necessary condition for the existence of a nontrivial common zero of F . And
therefore, det(D) is called as the Dixon resultant of the equation system F . For
fast computation of the Dixon resultant, see [5].

In case that the Dixon matrix is singular, i.e., det(D) ≡ 0, we cannot acquire
any useful information then. Moreover, when the original polynomial system F is
sparse, s1 in (13) may not equals to s2 in (16), so that the obtained Dixon matrix
D is not a square one, and the Dixon resultant is not well-defined anymore. To
overcome the above problems, Kapur et al. (see [19,25]) proposed the following
KSY method.

Denote r = rank(D) and mi the i-th column of D. Let monom(mi) be the
power product vi corresponding to mi. In addition, let

R = {Y : r × r nonsingular submatrix},

nvcol(C) = {mi : C =⇒ monom(mi) �= 0, 1 ≤ i ≤ s2},

mmonagan@cecm.sfu.ca

The Fermat-Torricelli Problem on the Sphere 273

for given constraints C, and D1 be the set of all s1×(s2−1) sub-matrices obtained
by deleting all columns from nvcol(C).

Now we may view the coefficients of the system F as parameters a1, · · · , am,
and define the map

φ : {a1, · · · , am} �→ K̄
in which the values a1, · · · , am are given from K̄, and the values φ(F), φ(D),
φ(X) are obtained by substituting the parameters in F , D, X by the particular
values in K̄, here φ(D1) is obtained by mapping all elements X in D1 to φ(X).
Then, we have the following theorem.

Theorem 2. If the following KSY condition

∃X ∈ D1 such that rank(X) < rank(D), (17)

holds, then φ(det(Y)) = 0 for all Y ∈ R, provides that φ(F) has common affine
zero that satisfies C.

It is easy to see that the essentials of the KSY condition in the Theorem 2 is
the existence of a column in the Dixon matrix D that is linear independent to all
other columns in D. The theorem implies that if the KSY-condition is verified,
then the determinant of any maximal non-singular square-matrix can be taken
as a necessary condition for the original equations to have a common affine zero.
A practical way of checking the KSY condition is to solve the linear equation
Dw = 0 in which w = (w1, · · · , ws2)

T . It is not difficult to verify that the KSY
condition is equivalent to the fact that there exists wi = 0 (1 ≤ i ≤ s2) in w and
that C =⇒ monom(mi) �= 0.

If the validity of KSY condition has been verified, it remains to compute the
determinant of a r × r submatrix of D. For this, Kapur et al. [19] proved that
one can execute Gaussian elimination on the Dixon matrix D to construct Drow

and take the product of all its pivots as det(Y) as below.

Lemma 2. There exists some Y ∈ R such that the product of all the pivots of
Drow is equal to det(Y).

Since the KSY condition is satisfied in most situations, the KSY method
expands the range of application of the Dixon resultant effectively. We shall
denote the determinant of the sub-matrix that the KSY method produces by 	C
and also call it the Dixon resultant below in this paper.

Return to the equation system (8), we have constructed an 85 × 85 Dixon
matrix D in 5 s in our computer, and verified the KSY-condition very quickly,
too. However, when we applied the Maple command gausselim to do row-reduce
to the Dixon matrix D, again the overflow happened for allocating memory.

4 Reconstruct the Dixon Resultant Using Implicit
Equation Interpolation

In this section, we present a concise description to the interpolation for recon-
structing the Dixon resultant in the Fermat-Torricelli problem. We consider the

mmonagan@cecm.sfu.ca

274 X. Guo et al.

interpolation problem as follows. Given a multivariate implicit polynomial func-
tion

r(x1, · · · , xn, us) =
d∑

k=0

pk(x1, · · · , xn)uk
s = 0,

where pk ∈ K[x1, · · · , xn] for 0 ≤ k ≤ d, pd �= 0. If we take an n-tuple
(ξ1, · · · , ξn) ∈ Kn to substitute the variables (x1, · · · , xn) in the function, we
would get a univariate polynomial of variable us

c · r(ξ1, · · · , ξn, us), c �= 0. (18)

in which c ∈ K. Given this information, we want to reconstruct the polyno-
mial coefficients pk(x1, · · · , xn) of r(x1, · · · , xn, us). This type of interpolation
problem is called implicit function interpolation. Notice that c may not be the
same for different value (ξ1, · · · , ξn), As a consequence, the common methods for
multivariate polynomial interpolation may not be applied directly to solve the
implicit interpolation problem here. According to [17,18], if the constant term
of one of pk(x1, · · · , xn) (k = 0, 1, · · · , d) is not zero, say,

pd(x1, · · · , xn) = c0 +
∑

d1+···+dn≥1

cd1,··· ,dn
xd1
1 · · · xdn

n , c0 �= 0,

then r(x1, · · · , xn, us) can be reconstructed by using the normalized multivariate
rational function interpolation on

p0(x1, · · · , xn)
pd(x1, · · · , xn)

, · · · ,
pd−1(x1, · · · , xn)
pd(x1, · · · , xn)

,

and the number of the interpolation points (ξ1, · · · , ξn) we need is (D1 + 1) ×
· · · × (Dn + 1), where

D1 = max
k=0,··· ,d

deg(pk, x1), · · · , Dn = max
k=0,··· ,d

deg(pk, xn).

Otherwise, a more complicated general rational function interpolation method
(see [7,27,28]) is needed. A practical method for checking whether or not the
constant term of pk(x1, · · · , xn) is zero, is computing r(x1, · · · , xn, us) by taking
x1 = ξ1z, · · · , xn = ξnz, where ξ1, · · · , ξn are numbers and z is a letter. It is clear
that if an n-tuple (ξ1, · · · , ξn) ∈ Kn is found (indeed, this can be done randomly
with high probability in view of [26] and [34]) so that

pk(ξ1z, · · · , ξnz) = c0 + c1z + · · · + cNk
zNk

for certain k = 0, · · · , d−1, d, then we claim that pk(0, · · · , 0) �= 0, and moreover,
the upper bounds D1, · · · ,Dn can be obtained by

Dj = max
k=0,··· ,d

deg(pk, xj) ≤ max
k=0,··· ,d

(pk(ξ1z, · · · , ξnz), z) = max
k=0,··· ,d

Nk

for j = 1, · · · , n.

mmonagan@cecm.sfu.ca

The Fermat-Torricelli Problem on the Sphere 275

To the implicit interpolation of the Dixon resultants for the Fermat-Torricelli
problem, we have used

p = a2, q = b2, r = c2

to reduce computation complexity since we have seen that only a2, a4, b2, b4, c2, c4

appeared in the (8). We have tried to construct the Dixon matrix in two
ways. The first way is starting from the equation system (8), as indicated in
the end of the Sect. 3, an 85 × 85 Dixon matrix D (in symbolic expression)
has been constructed in 5 s, and the KSY-condition is also verified in seconds.
Then the experiment on computing the Dixon resultant for interpolation points
p = ξ1z, q = ξ2z, r = ξ3z, where ξ1, ξ2, ξ3 are positive rational numbers, shows
d = 24, the constant term of p24(p, q, r) is not zero, and

D1 = max
k=0,··· ,24

(pk, p) ≤ 12, D2 = max
k=0,··· ,24

(pk, q) ≤ 12, D3 = max
k=0,··· ,24

(pk, r) ≤ 12.

For instance, taking p = 10z, q = 3z, r = 6z, we get

p24(10z, 3z, 6z)L24+p22(10z, 3z, 6z)L22+ · · ·+p2(10z, 3z, 6z)L2+p0(10z, 3z, 6z)

where

p24(10z, 3z, 6z) = 45z3 − 108z2 + 76z − 16,

p22(10z, 3z, 6z) = −3420z4 + 7020z3 − 1752z2 − 2128z + 768,

...

p2(10z, 3z, 6z) = 86617423872z11 − 91866968064z10 + · · · + 48545464320z7,

p0(10z, 3z, 6z) = −12745506816z12 + 14703575040z11 + · · · − 9624158208z8.

It takes about 10 s to generate an interpolation instance from the symbolic 85×85
Dixon matrix D. In the second way, we use the polynomial P1, P2, P3 generated
in (10) to construct the Dixon matrix D. Again, we use substitution p = a2, q =
b2, r = c2 for shorter expression. Then, we have
⎧
⎪⎨

⎪⎩

P1(L, p, q, r, v, w) := −p2L4 + 4p2rL3 + · · · + 4r2w2 + 4pqr (86 terms),

P2(L, p, q, r, v, w) := p2L3 − 3p2vL2 + · · · + −2prw + 2q2v (56 terms),

P3(L, p, q, r, v, w) := p2L3 − 3p2vL2 + · · · − 2qrw + 2r2w (56 terms),

(19)

here the highest degrees of L, p, q, r, v, w in P1, P2, P3 are [4, 2, 2, 2, 4, 4],
[4, 2, 2, 1, 3, 3], [4, 2, 1, 2, 3, 3]. Then the Dixon matrix D1 for (10) or (19) is an
18×18 matrix in symbolic expression. It is also easy to check the KSY condition
of D1. Now it takes only 2 s to generate an instance r(ξ1z, ξ2z, ξ3z, L) for ξ1, ξ2,
ξ3 selected randomly and uniformly from 0 to 100. Again, we found that d = 24,
p24(0, 0, 0) �= 0, and the degree bounds for p, q, r are 12. Therefore, it is suffice
to reconstruct the p2k(p, q, r)/p24(p, q, r) for k = 0, 1, · · · , 11, and therefore, the
implicit equation

ρ(L, p, q, r) = p1(p, q, r)L24 + p2(p, q, r)L22 + · · · + p12(p, q, r)L2 + p13(p, q, r), (20)

mmonagan@cecm.sfu.ca

276 X. Guo et al.

on 133 = 2197 instances, or on the grid [ξ1z, ξ2z, ξ3z] for ξ1, ξ2, ξ3 ∈
{0, 1, 2, · · · , 12}.

Finally, factorizing the obtained Dixon resultant, we obtained the following
polynomial:

ρ(L, p, q, r) = ρ0(L, q, r)ρ0(L, r, p)ρ0(L, p, q)ρ4(L, p, q, r) (21)

where
ρ0(L, x, y) = L4 − 2(x + y)L2 + (x − y)2,

and
ρ4(L, p, q, r) = q12L

12 + q10L
10 + · · · + q2L

2 + q0,

with q12, q10, · · · , q2, q0 ∈ Q[p, q, r], same as polynomials displayed in the Theo-
rem 1, when taking k = pqr,m = p + q + r, n = pq + qr + rp and p = a2, q =
b2, r = c2 for shorter in expression, i.e., ρ4(L, a2, b2, c2) equals to the polynomial
g(L, a, b, c) defined in (4).

Notice that

L4−2(x+y)L2+(x−y)2 = (L−√
x−√

y)(L−√
x+

√
y)(L+

√
x−√

y)(L+
√

x+
√

y),

and
L + a + b > 0, L − a + b > 0, L + a − b > 0

for any four points P,A,B,C ∈ S2 with a = BC, b = CA, c = AB, L =
PA + PB + PC, so we proved that a, b, c are edges of a triangle on S2 and L be
the minimal or maximal of PA + PB + PC for P ∈ S2, then it satisfies

(L − a − b)(L − b − c)(L − c − a)ρ4(L, a2, b2, c2) = 0,

as claimed in the Theorem 1.

5 Geometric Properties of the Fermat-Torricelli Points

To conclude the paper, we list two geometric properties of the Fermat-Torricelli
points.

Proposition 1. If A,B,C ∈ S2 and one of the ∠CAB,∠ABC,∠BCA is larger
than 2π/3, then the point P ∈ S2 such that PA + PB + PC is the minimal
coincides to one of the vertices. In reverse, (L − a − b)(L − b − c)(L − c − a) = 0
implies that one of the angles of the triangle is larger than or equals to 2π/3.

Proof. Without loss of generality, we may assume that

A = (x1, y1, z0), B = (x2, y2, z0), C = (x3, y3, z0),

and z0 ≥ 0. Let P = (x, y, z) be any point on S2 and P0 = (x, y, z0). Then we
have

min(a + b, b + c, c + a) ≤ P0A + P0B + P0C ≤ PA + PB + PC

whenever max(∠ABC,∠BCA,∠CAB) ≥ 2π/3.
�

mmonagan@cecm.sfu.ca

The Fermat-Torricelli Problem on the Sphere 277

Proposition 2. Assume A,B,C ∈ S2 and Π1 be the plane determined by
A,B,C, and Π0 the plane that parallels to Π1, and passes the center O of S2.
Assume that Π1 � Π0. Then Π1 divides the sphere S2 into two parts. Let Σ1

be the minor part. Let Σ0 be the hemisphere of S2 divided by plane Π0 so that
Σ0∩Σ1 = ∅. Let P1 be the point on S2 satisfies P1A+P1B+P1C is minimal, and
P0 the point on S2 satisfies that P0A + P0B + P0C is maximal. Then P0 ∈ Σ0,
P1 ∈ Σ1.

Proof. Without loss of generality, assume that A = (x1, y1, z0), B =
(x2, y2, z0), C = (x3, y3, z0), and z0 ≥ 0. Then

Σ0 = {(x, y, z)|x2+y2+z2 = 1, z ≤ 0}, Σ1 = {(x, y, z)|x2+y2+z2 = 1, z ≥ z0},

Then it is easy to prove that any points P1 ∈ Σ1, P0 ∈ Σ0 satisfy that P1A +
P1B + P1C ≤ P0A + P0B + P0C if P0P1 is perpendicular to ABC. For point
P ∈ S2 \ (Σ0 ∪ Σ1), we can prove that there exist points P ′

0 ∈ Σ0 and P ′
1 ∈ Σ1

so that P ′
1A + P ′

1B + P ′
1C ≤ PA + PB + PC ≤ P ′

0A + P ′
0B + P ′

0C. We leave the
proof of this fact to readers for saving pages.
�

References

1. Alexandrescu, D.-O.: A characterization of the Fermat point in Hilbert spaces.
Mediterr. J. Math. 10(3), 1509–1525 (2013)

2. Blumenthal, L.F.: Theory and Application of Distance Geometry, 2nd edn. Chelsea
Publishing Company, New York (1970)

3. Cayley, A.: A theorem in the geometry of position. Camb. Math. J. 2, 267–271
(1841)

4. Chen, Z.: The Fermat-Torricelli problem on surfaces. Appl. Math. J. Chin. Univ.
31(3), 362–366 (2016)

5. Chionh, E.-W., Zhang, M., Goldman, R.: Fast computation of the Bezout and
Dixon resultant matrices. J. Symb. Comput. 33(1), 13–29 (2002)

6. Cut The Knot. https://www.cut-the-knot.org/Generalization/fermat point.shtml.
Accessed 6 Sept 2019

7. Cuyt, A., Lee, W.S.: Sparse interpolation of multivariate rational functions. Theor.
Comput. Sci. 412(16), 1445–1456 (2011)

8. Dalla, L.: A note on the Fermat-Torricelli point of a d-simplex. J. Geom. 70, 38–43
(2001)

9. Drezner, Z., Plastria, F.: In Memoriam Andrew (Andy) Vazsonyi: 1916–2003. Ann.
Oper. Res. 167, 1–6 (2009). https://doi.org/10.1007/s10479-009-0523-6

10. Du, D.-Z., Hwang, F.K.: A proof of the Gilbert-Pollak conjecture. Algorithmica 7,
121–135 (1992)

11. Œuvres de Fermat. Paris: Gauthier-Villars et fils (1891–1896)
12. Fasbender, E.: Über die gleichseitigen Dreiecke, welche um ein gegebenes Dreieck

gelegt werden können. J. Reine Angew. Math. 30, 230–231 (1846)
13. Ghalich, K., Hajja, M.: The Fermat point of a spherical triangle. Math. Gazette

80(489), 561–564 (1996)
14. Gilbert, E., Pollak, H.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)

https://www.cut-the-knot.org/Generalization/fermat_point.shtml
https://doi.org/10.1007/s10479-009-0523-6

mmonagan@cecm.sfu.ca

278 X. Guo et al.

15. Guo, X., Leng, T., Zeng, Z.: The Fermat-Torricelli problem on sphere with
Euclidean metric. J. Syst. Sci. Complex. 38(12), 1376–1392 (2018). (in Chinese)

16. Johnson, R.A.: Modern Geometry: An Elementary Treatise on the Geometry of
the Triangle and the Circle, pp. 221–222. Houghton Mifflin, Boston (1929)

17. Kai, H.: Rational interpolation and its Ill-conditioned property. In: Wang, D.,
Zhi, L. (eds.) Symbolic-Numeric Computation. Trends in Mathematics, pp. 47–
53. Birkhäuser, Basel (2007)

18. Kaltofen, E., Yang, Z.: On exact and approximate interpolation of sparse ratio-
nal functions. In: Proceedings of the International Symposium on Symbolic and
Algebraic Computation, pp. 203–210 (2007)

19. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon
resultants. In: Proceeding ISSAC 1994 (Proceedings of the International Sympo-
sium on Symbolic and Algebraic Computation), pp. 99–107 (1994)

20. Katz, I., Cooper, L.: Optimal location on sphere. Comput. Math. Appl. 6(2), 175–
196 (1980)

21. Kuhn, H.: Steiner’s problem revisited. In: Dantzig, G.B., Eaves, B.C. (eds.) Stud-
ies in Optimization. Studies in Mathematics, vol. 10, pp. 52–70. Mathematical
Association of America, Washington, DC (1974)

22. Kupitz, Y., Martini, H.: The Fermat-Torricelli point and isosceles tetrahedra. J.
Geom. 49(1–2), 150–162 (1994)

23. Kupitz, Y., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli
problem. In: Básrásny, I., Böröczky, K. (eds.) Intuitive Geometry. Bolyai Society
Mathematical Studies 1995, vol. 6, pp. 55–127. János Bolyai Mathematical Society,
Budapest (1995)

24. Launhardt, W.: Kommercielle Tracirung der Verkehrswege. Hannover (1872)
25. Saxena, T.; Efficient variable elimination using resultants. Ph.D. thesis, State Uni-

versity of New York at Albany, Albany (1996)
26. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.

J. ACM 27(4), 701–717 (1980)
27. Tang, M.: Polynomial algebraic algorithms and their applications based on sparse

interpolation. Ph.D. thesis, East China Normal University, Shanghai (2017)
28. Tang, M., Yang, Z., Zeng, Z.: Resultant elimination via implicit equation interpo-

lation. J. Syst. Sci. Complex. 29(5), 1411–1435 (2016)
29. Weber, A.: Über den Standort der Industrien, Teil I: Reine Theorie des Stan-

dorts. J.C.B. Mohr, Tübingen (1909). English ed. by C.J. Friedrichs, University of
Chicago Press (1929)

30. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés
est minimu. Tôhoku Math. J. 43, 355–386 (1937)

31. Wikipedia: Fermat point - Wikipedia. https://en.wikipedia.org/wiki/Fermat
point. Accessed 4 Apr 2019

32. Zachos, A.: Exact location of the weighted Fermat-Torricelli point on flat surfaces
of revolution. Results Math. 65(1–2), 167–179 (2014)

33. Zachos, A.: Hyperbolic median and its applications. In: International Conference
“Differential Geometry and Dynamical Systems”, pp. 84–89 (2016)

34. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5 73

35. Zuo, Q., Lin, B.: The Fermat point of finite points in the metric space. Math. J.
17(3), 359–364 (1997). (in Chinese)

https://en.wikipedia.org/wiki/Fermat_point
https://en.wikipedia.org/wiki/Fermat_point
https://doi.org/10.1007/3-540-09519-5_73

mmonagan@cecm.sfu.ca

Using Leslie Matrices as the Application
of Eigenvalues and Eigenvectors in a First

Course in Linear Algebra

Michael Monagan(B)

Department of Mathematics, Simon Fraser University, Burnaby, Canada
mmonagan@cecm.sfu.ca

Abstract. Leslie matrices may be used to model the age distribution of
a population as well as population growth. The dominant eigenvalue tells
us the long term population growth and the corresponding eigenvector
tells us the long term age distribution. Because the model is so simple,
and it does not require any knowledge of physics or chemistry or biology,
it’s ideal for presenting in a first course on Linear Algebra as the main
application of eigenvalues and eigenvectors.

In this paper we present the Leslie age distribution model and provide
accompanying exercises suitable for students. We use Maple for both
numerical calculations and symbolic calculations. We include some data
for real populations that instructors may use for classroom presentation
or for assignments.

1 Introduction

Linear algebra is my favourite subject to teach. Like most lower division math-
ematics courses, it is packed with topics that someone wants to be covered. So
there’s not much room for applications and certainly no room for applications
that require additional mathematics to be introduced first. An application needs
to fit in one lecture or less. For linear systems, I like to use Markov matrices
as the application as they also introduce a family of matrices. What applica-
tion should we use to illustrate eigenvalues and eigenvectors? I have 19 linear
algebra texts on my office shelf. The most common application for eigenvalues
and eigenvectors is to solving linear systems of first order differential equations.
A problem with this application is that many students will not yet have seen
first order linear systems of differential equations. And for those who have, their
understanding will likely be superficial. So this is not a good choice.

We need an application where the model is simple to understand and there
are interesting questions that the student can easily explore. I propose that we
use Leslie matrices and the Leslie age distribution model. This model is popular
in ecology and demographics. It takes 10 to 15 min to understand the model
and see how to express it as a linear transformation. It takes 15 to 20 min to
compute the dominant eigenvalue λ+ and corresponding eigenvector v+ for an

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 279–291, 2020.
https://doi.org/10.1007/978-3-030-41258-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_21

mmonagan@cecm.sfu.ca

280 M. Monagan

example and give a physical interpretation of what λ+ and v+ mean for the pop-
ulation. That leaves time to pose some interesting questions and exercises. For
the reader, a dominant eigenvalue is an eigenvalue, possibly complex, of largest
magnitude. Leslie matrices are non-negative matrices with a unique positive
dominant eigenvalue λ+.

Four of my texts, Anton and Rorres [1], Poole [8], Lay et al. [5], Boyd and
Vandenberghe [2] use Leslie matrices as an application of eigenvalues and eigen-
vectors. The latter two do so under the label “linear dynamical systems”. Anton
and Rorres give a longer theoretical treatment, data from actual populations,
and study what happens when we harvest from the population.

In Sect. 2 I develop the Leslie age distribution model, calculate the dominant
eigenvalue and eigenvector for an example in Maple and give a physical interpre-
tation of them. In Sect. 3 I explore the Leslie matrix from an algebraic viewpoint
using Maple to do some of calculations. In Sect. 4 I explore some questions about
controlling the growth of a population. For Sects. 2–4, I have included some exer-
cises that can be used for student assignments. I have also gathered some data
from real populations from the literature in the Appendix.

2 The Leslie Population Distribution Model

Leslie matrices model the age distribution of a population over time. They model
births, the aging process and deaths of a human or animal population. I think
the best way to introduce this subject is to present an actual example and show
how the model leads to a matrix times a vector before presenting the general
case. A real example will focus the attention of the students. I use the example of
the grey seal population on Sable island, an island off the coast of Nova Scotia.
The data for the example is taken from [7]. The model is presented in Fig. 1.

G1
seal pups

0− 4 yrs

G2
young adults

4− 8 yrs

G3
mature adults

> 8 yrs

s3 = 0.808
f2 = 1.26

f1 = 0

f3 = 2.0

s1 = 0.614 s2 = 0.808

Fig. 1. Leslie model for grey seal population. The Gk are age groups, fk are fertility
rates and sk are survival probabilities.

mmonagan@cecm.sfu.ca

Using Leslie Matrices as the Application of Eigenvalues and Eigenvectors 281

We divide the females of the population into n age groups G1, G2, . . . , Gn.
In Fig. 1 we have divided the seal population into three age groups: G1, seal
pups, ages 0–4 years, G2, young seal adults, ages 4–8 years, and G3, mature
seal adults aged over 8 years. We model the fertility rates f1, f2, . . . , fn which
are the average number of female births per female in the time period. In our
seal population we have f1 = 0 which means seal pups are not mature enough to
reproduce, f2 = 1.26 for young adult female seals and f3 = 2.0 for mature female
seals which means each seal has on average two female seal pups in 4 years, so
one seal pup per year until they die. We also model average survival rates for
each age group. In our seal population these are s1 = 0.614, s2 = s3 = 0.808
meaning over 60% of seal pups survive to be 4 years old. These numbers (see [7])
are estimates based on that has been gathered by scientists over a long period.

In [5] Lay et al. study the northern spotted owl population. They also divide
the owl population into three age groups with fertility rates f1 = 0.0, f2 =
0.0, f3 = 0.33 and survival rates s1 = 0.18, s2 = 0.71, s3 = 0.94.

Let pti be the number of females in age group i at time t. So the population
vector at time t is P (t) = [pt1, p

t
2, . . . , p

t
n]. It is the female population at time t.

According to the model the population at time t + 1 is given by

P (t+1) =

⎡
⎢⎣

f1p
t
1 + f2p

t
2 + f3p

t
3

s1p
t
1

s2p
t
2 + s3p

t
3

⎤
⎥⎦

The key observation is that the model is a linear transformation so we may write
P (t+1) = LP (t) for some n×n matrix L, a Leslie matrix. One should spend some
time constructing the matrix L here so the student can see where the matrix
comes from and why Linear Algebra is involved.

⎡
⎢⎣

p
(t+1)
1

p
(t+1)
2

p
(t+1)
3

⎤
⎥⎦ =

⎡
⎢⎣

f1 f2 f3

s1 0 0
0 s2 s3

⎤
⎥⎦

⎡
⎢⎣

pt1
pt2
pt3

⎤
⎥⎦

The Leslie matrices for the grey seal population and northern spotted owl pop-
ulation are given below in Fig. 2. For the reader, what we will eventually find is
that both matrices have a dominant eigenvalue λ+. For the grey seals λ+ = 1.49
which means the seal population is growing rapidly (it is exploding) and because

⎡
⎢⎢⎣

0 1.26 2.0

0.614 0 0

0 0.808 0.808

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 0.33

0.18 0 0

0 0.71 0.94

⎤
⎥⎥⎦

Fig. 2. Leslie matrices for the grey seals (left) and northern spotted owls (right)

mmonagan@cecm.sfu.ca

282 M. Monagan

of this there is an effort to stop the population growing. For the owl population
λ+ = 0.91 which means the owl population is dying and there is a concerted
effort to save it. For teaching we proceed as follows.

We are interested in the distribution of the population among the n age
groups. Let us define population distribution vector D(t) to be P (t)/pt where
pt =

∑n
i=1 pti is the total female population at time t.

Suppose the current seal population is P (0) = [1, 1, 1] thousands. We calculate
P (1) using Maple as follows.

> L := Matrix([[0.0,1.26,2.00],[0.614,0,0],[0,0.808,0.808]]);

L :=

⎡
⎢⎣

0.0 1.26 2.0
0.614 0 0

0 0.808 0.808

⎤
⎥⎦

> P[0] := <1,1,1>: P[1] := L.P[0];

P1 :=

⎡
⎢⎣

3.260000000
0.6140000000
1.616000000

⎤
⎥⎦

After 16 time periods (64 years) we get the following data.

P 16 D16 P 15 D15⎡
⎢⎣

1115.126895
459.0148362
542.5083059

⎤
⎥⎦

⎡
⎢⎣

0.5268357429
0.2168591067
0.2563051504

⎤
⎥⎦

⎡
⎢⎣

747.5811664
307.7235768
363.6975940

⎤
⎥⎦

⎡
⎢⎣

0.5268357541
0.2168591050
0.2563051409

⎤
⎥⎦

Maple code to compute these vectors is

> local D; # by default D is the differential operator in Maple
> t := 15;
> pop := proc(v) local i; add(v[i],i=1..numelems(v)) end;
> for i to t do P[t] := L.P[t-1]; D[t] := P[t]/pop(P[t]); od;

Now we connect what has happened to the seal population with the eigen-
values and eigenvectors of L. First, the seal population has exploded! It has
increased from 3 thousand to 2,116 thousand. Second, comparing D(15) and
D(16), the population age distribution has stabilized at 52.7% seal pups, 21.7%
young adults, and 25.6% mature adults. Consider the quantities

P 16
1

P 15
1

= 1.491646586,
P 16
2

P 15
2

= 1.491646630, and
P 16
3

P 15
3

= 1.491646673.

This means λ = 1.4916466 and v = D15 satisfy Lv = λv to 7 decimal places.
Thus the sequence D1,D2,D3, . . . is converging to an eigenvector of L. We state
the following Theorem for a Leslie matrix L.

mmonagan@cecm.sfu.ca

Using Leslie Matrices as the Application of Eigenvalues and Eigenvectors 283

Theorem 1. For any non-zero initial population P 0 = [p01, p
0
1, . . . , p

0
n], if at

least one fertility rate fi is positive, the Leslie matrix L has a unique positive
eigenvalue λ+. If v+ is the corresponding eigenvector and at least two consecutive
fertility rates are positive, λ+ is dominant and the population distribution will
converge to an eigenvector of L, that is limt→∞ D(t) exists and is a multiple of
v+.

We also have the following physical interpretation for λ+.

λ+ < 1 means the population will decline exponentially.

λ+ > 1 means the population will grow exponentially.

λ+ = 1 means the population is stable, it does not change.

Below we calculate the eigenvalues of L and the dominant eigenvector of
L using Maple. This is too difficult to do by hand. In exercise 3 below, I’ve
constructed a Leslie matrix L with λ+ = 7/6 so that a hand calculation is easy.

> with(LinearAlgebra):
> E := Eigenvalues(L);

E :=

⎡
⎢⎣

−0.341823317441679 + 0.359549749028222 i

−0.341823317441679 − 0.359549749028222 i

1.49164663488336 + 0. i

⎤
⎥⎦

> lambda := Re(E[3]);
> I3 := IdentityMatrix(3):
> v := NullSpace(L-lambda*I3)[1]:
> v/pop(v); ⎡

⎢⎣
0.526835747502870
0.216859101480196
0.256305151016934

⎤
⎥⎦

Exercises

1. For a population with two age groups with f1 = 1, f2 = 1, s1 = 0.75 and s2 =
0. Write down the Leslie matrix. Calculate the eigenvalues and eigenvectors.
Is the population growing or declining? What is the long term population
distribution?

2. Calculate the positive eigenvalue of L for the spotted owl population. See
Fig. 2. Is the population growing or dying?

3. For the Leslie matrix L below, what does L22 = 0.5 mean? Calculate the
eigenvalues by hand. For the positive eigenvalue, determine the corresponding
eigenvector. What is the long term population distribution vector?

L =

[
0.5 0.75
0.5 0.75

]

mmonagan@cecm.sfu.ca

284 M. Monagan

4. For the Leslie matrix below calculate the eigenvalues. You should find that
one is 0 and one is positive. For the positive eigenvalue, determine the corre-
sponding eigenvector. What is the long term population distribution vector?

L =

⎡
⎢⎣

0 7/6 7/6
1/2 0 0
0 2/3 2/3

⎤
⎥⎦

5. For the northern spotted owl population (see Fig. 2), starting with P 0 =
[0.2, 0.1, 0.7], calculate P 4 = L4P 0 and P 5 = L5P 0 and determine the age
distribution. To how may decimal places has the population distribution con-
verged. Estimate the corresponding eigenvalue.

6. This exercise is taken from Poole [8]. Woodland caribou are found primarily in
western Canada and the American northwest. The fertility rates and survival
rates are given in the table below. The data shows that caribou cows do not
give birth during their first two years and the survival rate for caribou calves
is low.

Age 0–2 2–4 4–6 6–8 8–10 10–12 12–14

fi 0.0 0.2 0.9 0.9 0.9 0.8 0.3

si 0.3 0.7 0.9 0.9 0.9 0.6 0.0

P
(0)
i 10 2 8 5 12 0 1

Construct the Leslie matrix. Shown also in the last row is the female caribou
population in Jasper National park in 1990. Predict the female population in
1992, 1994, 1996, 1998 and 2000. What do you conclude will happen to the
population in the long term? Use a computer to compute the eigenvalues of
L. What is λ+? What does this tell you about the population?

3 The Leslie Matrix

A Leslie matrix is an n by n matrix of the form

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1 f2 · · · fn−1 fn

s1 0 · · · 0 0
0 s2 · · · 0 0
...

...
...

...
0 0 · · · sn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

where n ≥ 2, the survival rates si > 0 and fertility rates fi ≥ 0 with at least one
fi > 0. Thus the Fibonacci matrix [[1, 1], [1, 0]] is a Leslie matrix. Notice that
we have sn = Lnn = 0. If sn > 0, as was the case for the grey seals and spotted

mmonagan@cecm.sfu.ca

Using Leslie Matrices as the Application of Eigenvalues and Eigenvectors 285

owls, we say L is a generalized Leslie matrix. Here we assume sn = 0. One of
the exercises in [1] is to show that the characteristic polynomial of L is

c(x) = xn − f1x
n−1 − s1f2x

n−2 − s2s1f3x
n−3 − · · · − sn−1 . . . s3s2s1fn (2)

The difficulty is that the matrix has an arbitrary dimension. To do this we
would suggest that the student first calculate c(x) for n = 2 and n = 3. Using
Maple it is easy to do this. We will do it first for n = 3 then for n = 4.

> with(LinearAlgebra):
> L := Matrix([[f[1],f[2],f[3]],[s[1],0,0],[0,s[2],0]]);

⎡
⎢⎣

f1 f2 f3

s1 0 0
0 s2 0

⎤
⎥⎦

> CharacteristicPolynomial(L,x);

x3 − x2f1 − xf2s1 − s2s1f3

> L := Matrix([[f[1],f[2],f[3],f[4]],[s[1],0,0,0],
[0,s[2],0,0],[0,0,s[3],0]]):

> C := CharacteristicMatrix(L,x);

C :=

⎡
⎢⎢⎢⎣

x − f1 −f2 −f3 −f4

−s1 x 0 0
0 −s2 x 0
0 0 −s3 x

⎤
⎥⎥⎥⎦

> Determinant(C);

x4 − f1x
3 − s1f2x

2 − s2s1f3x − s3s2s1f4

Anton and Rorres [1] give the following formula for the eigenvector of L where
λ is an eigenvalue.

v =
[
1

s1
λ

s1s2
λ2

s1s2s3
λ3

· · · s1s2 . . . sn−1

λn−1

]T
(3)

How would we check this? The right way is simply to calculate Lv and λv and
try to show Lv = λv. Another not so clever way, which I confess to trying at
first, is to try to calculate the eigenvector, that is, solve (L − λI)z = 0 for z in
terms of λ and try to show that v = sz for some scalar s. Again, using Maple,
we can only do this for a fixed n. Let us try the first way for n = 4.

> v := <1,s[1]/x,s[1]*s[2]/x^2,s[1]*s[2]*s[3]/x^3> :
> y := L.v:
> y, x*v;

mmonagan@cecm.sfu.ca

286 M. Monagan

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1 +
s1f2
x

+
s2s1f3

x2
+

s3s2s1f4
x3

s1
s2s1
x

s3s2s1
x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

x

s1
s2s1
x

s3s2s1
x2

⎤
⎥⎥⎥⎥⎥⎥⎦

It seems that all I have to do is check that y1 = x. It is tempting to try to
manipulate y1 to get x. It is better to show y1 − x equals zero, that is, to show
that y1−x mod c(x) = 0. Simplifying to zero is always the best approach if you
are using a computer algebra system. It is also often true for a hand calculation.
How do we tell Maple to simplify y1 −x using the constraint c(x) = 0? One way
to do this is to use the simplify command directly as follows

> simplify(y[1]-x,{c = 0});

0

If the second input to the simplify command is a set of algebraic equations, they
are treated as constraints. Alternatively one could use division. First multiply
y1 − x by x3 to clear the denominators so that x3(y1 − x) is a polynomial in x
then and divide x3(y1 − x) by c(x) to get the remainder.

> zero := numer(y[1]-x);

f1x
3 + f2s1x

2 + f3s1s2x + f4s1s2s3f4 − x4

This is just the negative of the characteristic polynomial.

> rem(zero,c,x);

0

The remainder command treats the inputs as polynomials in x.
Another way is tell Maple that c(x) = 0 directly. I will use a Maple RootOf

to do this. The way to read the following command is that λ is one of the roots
of c(x) = 0 and λ is how this root will be displayed. Then we use Maple’s evala
facility to evaluate algebraic expressions.

> alias(lambda=RootOf(c,x)) ;
> evala(lambda^4-f[1]*lambda^3);

s1
(
f2 λ2 + f3 λ s2 + f4 s2 s3

)

> evala(subs(x=lambda,y[1]));

λ

Now for the not so smart way. We’ve just told Maple that λ is a root of the
characteristic polynomial. Let’s calculate the eigenvector the way we teach a
student to do it by solving (L − λI)u = 0 for u in terms of the fi and si. Since
the system is homogeneous it should have a free parameter. In the Maple code
below I tell Maple to use t for the parameter and, to save space, I print uT .

mmonagan@cecm.sfu.ca

Using Leslie Matrices as the Application of Eigenvalues and Eigenvectors 287

> I4 := IdentityMatrix(4):
> u := LinearSolve(L-lambda*I4,<0,0,0,0>,free=t):
> Transpose(u);

[
λ3t4

s3s2s1

λ2t4
s3s2

λ t4
s3

t4

]

Let’s try t = v4 = s1s2s3/λ3.

> u := subs(t[4]=v[4], u):
> Transpose(u); [

1
s1
λ

s1s2
λ2

s1s2s3
λ3

]

Well that worked with no further simplification required.
To show that the Leslie matrix L has one positive eigenvalue λ1 we introduce

q(x) =
f1
x

+
f2s1
x2

+
f3s1s2

x3
+ · · · +

fns1s2 · · · sn−1

xn
(4)

and claim q(λ) = 1 where λ is a non-zero eigenvalue of L. We leave this as
an exercise. Now since fi ≥ 0 and si > 0 the function q(x) is monotonically
decreasing and limx→∞ q(x) = 0. Consequently there is only one λ, say λ = λ+

such that q(λ+) = 1. That is, L has a unique positive eigenvalue λ+. Exercise 3
below shows that λ+ has multiplicity 1.

Exercises

1. Show that characteristic polynomial for an n by n Leslie matrix given by
Eq. (1) is (2).

2. Show that q(λ) = 1.
3. Show that the positive eigenvalue λ1 of a Leslie matrix has algebraic multi-

plicity 1. Hint: a root λ1 of a polynomial q(x) has multiplicity 1 if and only
if q′(λ1) �= 0.

4. For a generalized Leslie matrix

L =

⎡
⎢⎣

f1 f2 f3

s2 0 0
0 s2 s3

⎤
⎥⎦

use Maple to calculate the characteristic polynomial c(x). Now try to find a
formula for the c(x) for an n by n generalized Leslie matrix.

5. The net reproduction rate of a population is defined as

r = f1 + f2s1 + f3s1s2 + · · · + fns1s2 . . . sn−1.

Explain why r can be interpreted as the average number of daughters born
to a female over her lifetime. It follows that if r > 1 the population will
grow but if r < 1 it will decline. Calculate r for caribou population in Sect. 2
Exercise 5.

mmonagan@cecm.sfu.ca

288 M. Monagan

4 Population Stabilization and Harvesting

Consider the Leslie matrix for the grey seal population.
⎡
⎢⎣

0 1.26 2.0
0.614 0 0

0 0.808 0.808

⎤
⎥⎦

We have determined that the dominant eigenvalue λ+ = 1.49 which means the
seal population is growing by almost 50% every four years. How can we stabilize
the population so that it is neither growing nor declining? The idea is to change
the fertility rates f1, f2, f3 or the survival rates s1, s2, s3 to force λ+ = 1. We
consider two possibilities.

1. Reduce s1 by culling the seal pups every 4 years.
2. Reduce all fi by shooting all seals with infertility darts.

I do the first option in class by hand and leave the second as an exercise. Here
I will run the both experiments using Maple. These calculations can easily be
be done by hand but one will worry about errors. I use Maple here to check my
calculations.

> L := Matrix([[0.0,1.26,2.0],[s[1],0,0],[0,0.808,0.808]]);

L :=

⎡
⎢⎣

0 1.26 2.0
s1 0 0
0 0.808 0.808

⎤
⎥⎦

Now force the eigenvalue λ = 1 and solve for s1.

> I3 := IdentityMatrix(3):
> C := L - 1*I; # lambda=1

C :=

⎡
⎢⎣

−1. 1.26 2.0
s1 −1. 0
0 0.808 −0.192

⎤
⎥⎦

> c := Determinant(C);

c := −0.192 + 1.85792 s1

> s[1] = solve(c=0, s[1]);

s1 = 0.1033413710

So we must reduce s1 from 61% to 10% to stop the population growing. Such
a huge reduction indicates how healthy the population is. Continuing with the
second option.

> L := Matrix([[0,s*1.26,s*2.0],[0.614,0,0],[0,0.808,0.808]]);

mmonagan@cecm.sfu.ca

Using Leslie Matrices as the Application of Eigenvalues and Eigenvectors 289

L :=

⎡
⎢⎣

0 1.26 s 2.0 s

0.614 0 0
0 0.808 0.808

⎤
⎥⎦

> c := Determinant(L-I3);

c := −0.192 + 1.14076288 s

> s = solve(c=0,s);

s = 0.1683084218

Again, a drastic reduction in the fertility rates is needed to stabilize the popu-
lation.

Another kind of question that one can ask is, what is the maximal sustainable
harvest rate h. That is what value of h can we use such that the matrix

L =

⎡
⎢⎣

0 1.26(1 − h) 2.0(1 − h)
0.614(1 − h) 0 0

0 0.808(1 − h) 0.808(1 − h)

⎤
⎥⎦

has an eigenvalue 1? The answer below is one third.

> L := Matrix([[0,1.26,2.0],[0.614,0,0],[0,0.808,0.808]]):
> c := Determinant((1-h)*L - I3);

c := 0.94876288 − 3.45664864h + 1.87500864h2 − 0.36712288h3

> h = fsolve(c=0, h);

h = 0.3295999357

Exercises

1. Consider the following Leslie matrix

L =

[
0.5 f

0.75 0

]

For f = 0.25 is the population growing or declining? What must f be to
stabilize the population?

2. For the grey seal population in Fig. 2, what is the maximum sustainable
harvesting rate assuming we do not harvest seal pups. Why might it be risky
to harvest at this rate?

3. For the northern spotted owl population in Fig. 2, what must s1 be so that
the owl population stabilizes? Comment on the stability of the population.

4. If the government tries to eradicate northern owl predators so that all s1, s2, s3
increase, what rate must they increase by to stabilize the population?

mmonagan@cecm.sfu.ca

290 M. Monagan

5 Conclusion

I am indebted to Carl Schwarz of Simon Fraser University for introducing me
to Leslie matrices and the Leslie age distribution model and showing me the
Sable island grey seal data in [7]. I have taught Linear Algebra at Simon Fraser
University many times. I now use Leslie matrices as the sole application for
eigenvalues and eigenvectors in the course. The main advantage is that one does
not require any new mathematics nor any understanding of physics, chemistry
or biology to understand the model.

One difficulty with using data from real applications is that the characteristic
polynomials will not have a simple real root. Students would need a computer to
compute λ+. Furthermore, calculating the corresponding eigenvector by solving
(L − λ+I)v+ = 0 for v+ is also difficult to do correctly by hand.

One can obtain a good estimate for the dominant eigenvalue λ+ and corre-
sponding eigenvector v+ using the power method. If you teach the power method,
then that is a reasonable approach. It will require only a few matrix multiplica-
tions and the Leslie matrices are sparse. If not, then one needs Leslie matrices
which are suitable for hand calculations. I’ve provided some in the exercises in
this paper.

Appendix

The following data is taken from [1,3]. It is for a sheep population. The sheep
have a lifespan of 12 years so the age groups are 1 year each. The dominant
eigenvalue is 1.176.

Age 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12

fi .000 .045 .391 .472 .484 .546 .543 .502 .468 .459 .433 .421

si .845 .975 .965 .950 .926 .895 .850 .786 .691 .561 .370 .000

The following data is taken from [1]. The data is for Canadian females in
1965. Because few women over 50 bear children, we ignore those older than 50.
The age groups are 5 years each so 10 age groups. The dominant eigenvalue is
1.076.

Age 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50

fi .0000 .00024 .0586 .2861 .4479 .3640 .2226 .1046 .0283 .0024

si .9965 .9982 .9980 .9973 .9969 .9962 .9946 .9918 .9780 –

The following data is taken from [7]. The data is for the grey seal population
on Sable island, an island in the Atlantic off Nova Scotia. If one expands the

mmonagan@cecm.sfu.ca

Using Leslie Matrices as the Application of Eigenvalues and Eigenvectors 291

first age group to 4 age groups of 1 year each with si = 4
√

0.614 = 0.8852 and
fi = 0.0, I get λ+ = 1.114. To compress the model into three 4 year age groups,
for G2 (4–8 yrs) use f2 = .142 + .948(.347 + .948(.436 + .948(.468))) = 1.26 and
s2 = .9484 = 0.808.

Age 0–4 4–5 5–6 6–7 7–8 8–9 9–10

fi 0.000 0.142 0.347 0.436 0.468 0.491 0.500

si 0.614 0.948 0.948 0.948 0.948 0.948 0.948

The following data it taken from [9]. The data is for northern fur seals. The
birth rates include female and male seal pups. I calculate λ+ = 1.333.

Age 0–2 2–4 4–6 6–8 8–10 10–12 12–14

fi 0.00 0.02 0.70 1.53 1.67 1.65 1.56

si 0.91 0.88 0.85 0.80 0.74 0.67 0.59

Age 14–16 16–18 18–20 20–22 22–24 24–26

fi 1.45 1.22 0.91 0.70 0.22 0.00

si 0.49 0.38 0.27 0.17 0.15 0.00

References

1. Anton, H., Rorres, C.: Elementary Linear Algebra with Applications. Wiley, Hobo-
ken (1987)

2. Boyd, S., Vandenberghe, L.: Introduction to Applied Linear Algebra. Cambridge
University Press, Cambridge (2018)

3. Caughley, G.: Parameters for seasonally breeding populations. Ecology 48, 834–839
(1967)

4. Laberson, R.H., McKelvey, R., Noon, B.R., Voss, C.: A dynamic analysis of the
viability of the northern spotted owl in a fragmented forest environment. J. Conserv.
Biol. 6, 505–512 (1992)

5. Lay, D.C., Lay, S.R., McDonald, J.J.: Linear Algebra and its Applications, 5th edn.
Pearson, London (2016)

6. Leslie, P.H.: The use of matrices in certain population mathematics. Biometrika
33(3), 183–212 (1945)

7. Manske, M., Schwarz, C.J., Stobo, W.T.: The estimation of the rate of population
change of Grey Seals (Halichoerus grypus) on Sable Island using a Leslie projection
matrix with Capture-Recapture data. Unpublished manuscript

8. Poole, D.: Linear Algebra, A Modern Introduction. Brooks/Cole, Pacific Grove
(2003)

9. York, A.E., Hartley, J.R.: Pup production following harvest of female northern fur
seals. Can. J. Fish. Aquat. Sci. 38, 84–90 (1981)

mmonagan@cecm.sfu.ca

Transforming Maple into an Intelligent
Model-Tracing Math Tutor

Dimitrios Sklavakis(B)

European School Brussels III,
135 Boulevard du Triomphe, 1050 Brussels, Belgium

sklavadi@teacher.eursc.eu

http://www.ontomath.com/

Abstract. This article describes an intelligent, model-tracing system
for tutoring expansion and factoring of algebraic expressions. The sys-
tem is implemented as a set of procedures in a Maple document that
tutor a breadth of 18 top-level mathematical skills (algebraic operations).
Twelve (12) skills for expansion (monomial multiplication, monomial
division and power of monomial, monomial-polynomial and polynomial-
polynomial multiplication, parentheses elimination, collection of like
terms, identities square of sum and difference, product of sum by dif-
ference, cube of sum and difference) and six (6) skills for factoring (com-
mon factor, identities square of sum and difference, product of sum by
difference, quadratic form by sum and product, quadratic form by roots).
These skills are further decomposed in simpler ones giving a deep domain
expertise model of 68 primitive skills. The tutor has two novel features:
(a) it exhibits intelligent task recognition by identifying all skills present
in any expression through intelligent parsing, and (b) for each identified
skill, the tutor traces all the sub-skills, a feature called deep model tracing.
Furthermore, based on these features, the tutor achieves broad knowledge
monitoring by recording student performance for all skills present in any
expression.

Keywords: Intelligent Tutoring Systems · Model-Tracing tutors ·
Assessment systems

1 Introduction

One-to-one tutoring has proven to be one of the most effective ways of teaching.
It has been shown [4] that the performance of the average student under an
expert tutor is about two standard deviations above the average performance of
the conventional class (30 students to one teacher). That is, 50% of the tutored
students scored higher than 98% of students in the conventional class. However,
it is also known that one-to-one tutoring is the most expensive form of education.
Due to this cost, we are still in the era of mass education, struggling to raise the
teacher to student ratio. The problem of designing and implementing educational

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 292–306, 2020.
https://doi.org/10.1007/978-3-030-41258-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_22&domain=pdf
http://orcid.org/0000-0002-6901-8570
https://doi.org/10.1007/978-3-030-41258-6_22

mmonagan@cecm.sfu.ca

Transforming Maple into an Intelligent Model-Tracing Math Tutor 293

environments as effective as individual tutoring was termed by Bloom as “the two
sigma problem”, named after the mathematical symbol of standard deviation, σ.

The implementation of the one-to-one tutoring model by Intelligent Tutoring
Systems (ITSs) has motivated researchers to develop ITSs that provide the same
tutoring quality as a human tutor [17]. Model Tracing Tutors (MTTs) [3] have
shown significant success in domains like mathematics [7], computer program-
ming [5] and physics [18]. These tutors are based on a domain expertise model
that solves the problem under tutoring and produces the correct step(s). At
each step, the model-tracing algorithm matches the solution(s) produced by the
model to that provided by the student and gives positive or negative feedback,
hints or/and help messages.

However, the domain models of MTTs are hard to author [1]. The main
reason for this is the knowledge acquisition bottleneck : extracting the knowledge
from the domain experts and encoding it into a MTT. Knowledge reuse has been
proposed as a key factor to overcome this obstacle [8,10]. Since expert knowl-
edge and, particularly, tutoring knowledge is so hard to create, re- using it is
of paramount importance. A good example of knowledge reuse is the Mass Pro-
duction mechanism provided by Carnegie Mellon’s Cognitive Tutors Authoring
Tools (CTAT). This mechanism allows the creation of new tutors from existing
ones for isomorphic problems, that is problems having nearly the same solution
steps [1].

The problem of knowledge reuse permeates the whole domain of digital edu-
cation, from the development of digital learning resources to the creation of
online assessment questions and tests. While these resources demand consider-
able time and effort from domain experts, their reuse is almost impossible. The
main reason for this is that the domain and tutoring models for these systems
are developed from scratch and therefore they cannot reach the breadth and
depth necessary to build on top of them and extend them. Despite the research
efforts in the field of Artificial Intelligence in Education aimed in using semantic
technologies (ontologies) to overcome this problem [6,9,14,16], reuse of digital
learning resources is still limited.

A considerable effort in developing a model-tracing tutor, with a broad and
deep domain model and knowledge reuse as its primary design principle, is the
MATHESIS Algebra Tutor [12,13,15] and the MATHESIS meta-knowledge engi-
neering framework for intelligent tutoring systems in mathematics [14,16]. The
experience gained from these efforts, showed the paramount importance of a
broad, deep and fine-grained domain (mathematical) model. Maple, a research
and development effort of more than 30 years, provides one of the most advanced
and sophisticated mathematical models, both in terms of computational power
and in parsing mathematical expressions. This power of Maple in mathemat-
ical computation and parsing is the main research motive in redeveloping the
MATHESIS Algebra Tutor. The result is the model-tracing tutor described in
this article.

Based on the computational power of Maple, the tutoring system has a broad
domain model of eighteen (18) top-level skills which are analysed - after elaborate

mmonagan@cecm.sfu.ca

294 D. Sklavakis

cognitive task analysis - to a depth of sixty-eight (68) sub-skills. On the same
time, the development of such a broad and deep domain model gives rise to
the scaling-up problem: if a problem contains more than one (sub)tasks to be
performed then a more complex task arises, that of identifying and ordering the
(sub)tasks to perform! For example, the task of expanding the expression

3x · (2x + 5) − (5x2 − 1) · (3x − 2)

contains the (sub)tasks of monomial by polynomial multiplication, 3x · (2x + 5)
and polynomial multiplication (5x2−1) ·(3x−2) which contain the (sub)tasks of
monomial multiplications. After the execution of these tasks follow the tasks of
parentheses elimination and collection of like terms. The solution to this tutor-
ing problem was to equip the tutor with intelligent task recognition through
sophisticated parsing of the algebraic expressions based on the powerful parsing
functions of Maple. Another, rather positive, consequence of adopting a broad
and deep domain expertise model was the development of an equally detailed
student model. Instead of simply keeping a percentage measure of the students’
skill performance, the student model was extended to keep full records of the
interactions between the tutor and the student for each solution step.

This article describes the intelligent model-tracing tutor for expanding and
factoring algebraic expressions, developed as a set of procedures in a Maple
document. The rest of the article is structured as follows: Sect. 2 describes the
three models of the tutor, the mathematical domain expertise model, the tutoring
or pedagogical model and the student model. Section 3 presents the performance
of the expanding tutoring procedures of the tutor, while Sect. 4 presents the
factoring tutoring procedures. Section 5 concludes the article with a discussion
of the implementation and future directions of development.

2 The Tutor’s Domain, Tutoring and Student Models

The tutor consists of three models:

(a) The domain expertise or mathematical model, which produces the correct
solutions for each task. this is implemented through the expand and factor
commands of Maple.

(b) The tutoring or pedagogical model, which parses the student answer, com-
pares it with the correct answer produced by the domain model and gives
appropriate feedback in the form of messages and guides the student to the
correct solution. It must be noted that the most difficult part of the tutoring
model is parsing the student’s answer and finding any errors made. This is
feasible due to the powerful Maple commands op and type.

(c) The student model, which records the skill/sub-skill to be performed, the
student answer, and whether it is correct or not. The student model is
implemented as a Table of Records. Each Record has the following structure

Record(STUDENT-ID, SESSION-ID, DATE, SKILL, SUB-SKILL, TASK,
ANSWER, CORRECT)

mmonagan@cecm.sfu.ca

Transforming Maple into an Intelligent Model-Tracing Math Tutor 295

There are three procedures that manage the student model. These are:

– initializeStudentModel(student-id): Sets the global variable STUDENT-ID
and gets the next session number, SESSION-ID

– showStudentModel(student-id,[sub-skill1,sub-skill-2,...,sub-skill-N],[true,false]):

Displays all records of student with student-id which contain the skills con-
tained in the list of the second argument and the student’s answer is correct
([true]), wrong ([false]) or both ([true,false]).

– showStudentModelSkills(student-id): Displays the skills contained in the stu-
dent model for the student with student-id

The development of the domain expertise model was based on deep cognitive
task analysis in the paradigm of Carnegie-Mellon’s cognitive tutors [3]. The
tutor can teach a breadth of 18 top-level cognitive mathematical skills (algebraic
operations). Twelve (12) skills for expansion:

– Monomial multiplication,
– Monomial division,
– Power of monomial
– Monomial-Polynomial multiplication
– Polynomial multiplication,
– Parentheses elimination,
– Collection of like terms,
– Identity square of sum
– Identity square of difference
– Identity product of sum by difference,
– Identity cube of sum,
– Identity cube of difference

Six (6) Skills for factoring:

– Common factor,
– Identity square of sum,
– Identity square of difference,
– Identity difference of squares,
– Factoring quadratic form by sum S and product P,
– Factoring quadratic form by roots

For each one of these skills, the corresponding Maple procedure checks the
student’s answer for correct steps as well as for common mistakes. If the student’s
answer is correct, positive feedback is given. In the case of mistakes, the tutor
produces a series of messages and guidance to the correct solution. The following
two sections present in detail the performance of the tutoring procedures, using
illustrative examples of erroneous student answers.

mmonagan@cecm.sfu.ca

296 D. Sklavakis

3 The Tutoring Processes for Expanding

3.1 Procedure multiplyMonomials(expression, answer)

multiplyMonomials(
(
3x2y

) · (−4xz3
)
, 12x3yz3):

SUB-SKILL:multiplyCoefficients
FEEDBACK:The coefficient of your answer is not correct. You must multiply the
coefficients of the monomials.

multiplyMonomials(
(
3x2y

) · (−4xz3
)
, −12x3z3):

SUB-SKILL:multiplyVariables
FEEDBACK:You omitted variable, y.

multiplyMonomials(
(
3x2y

) · (−4xz3
)
, −12x2z3):

SUB-SKILL:multiplyVariables
FEEDBACK:The exponent, 2, of variable, x, is not correct. You must add the
exponents of the common variables.
Hint: when a variable does not have an exponent, the exponent is 1.

3.2 Procedure divideMonomials(expression, answer)

divideMonomials(−12x3yz3

3x2y , 4xz3):

SUB-SKILL:divideCoefficients
FEEDBACK:The coefficient of your answer is not correct.You must divide the coef-
ficients of the monomials.

divideMonomials(−12x3yz3

3x2y , −4z3):

SUB-SKILL:divideVariables
FEEDBACK:You omitted variable, x.

divideMonomials(−12x3yz3

3x2y , −4x2z3):

SUB-SKILL:divideVariables
FEEDBACK:The exponent, 2, of variable, x, is not correct. You must subtract the
exponents of the common variables.
Hint: when a variable does not have an exponent, the exponent is 1.

3.3 Procedure monomialPower(expression, answer)

monomialPower(
(−2x2yz3

)3, −6x6y3z9):
SUB-SKILL:raiseCoefficient
FEEDBACK:The coefficient of your answer is not correct. You must raise the coef-
ficient, -2, to the exponent, 3, of the power

mmonagan@cecm.sfu.ca

Transforming Maple into an Intelligent Model-Tracing Math Tutor 297

monomialPower(
(−2x2yz3

)3, −8x6z9):
SUB-SKILL:raiseVariable
FEEDBACK:You omitted variable, y.

monomialPower(
(−2x2yz3

)3, −8x6y3z6):
SUB-SKILL:raiseVariable
FEEDBACK:The exponent, 6, of variable, z, is not correct. You must multiply the
exponent, 3, of variable, z, by the exponent, 3

3.4 Procedure multiplyMonomialPolynomial(expression, answer)

multiplyMonomialPolynomial(2x2y3 · (3x + 5x2y − 2xy2
)
, 6x2y3 +10x3y4 − 4x3y5):

SUB-SKILL:partialProducts
FEEDBACK:For product, 2x2y3 · 3x, your answer is not correct.
For product, 2x2y3 · 5x2y, your answer is not correct.
For product, 2x2y3 · −2xy2, your answer, −4x3y5, is correct.
For products,

[
2x2y3 · 3x, 2x2y3 · 5x2y

]
, you must check your wrong answers,[

6x2y3, 10x3y4
]

with the command multiplyMonomials.

multiplyMonomialPolynomial(2x2y3 · (3x + 5x2y − 2xy2
)
, 6x3y3 +10x3y4 − 4x3y5):

SUB-SKILL:partialProducts
FEEDBACK:For product, 2x2y3 · 3x, the answer,6x3y3, is correct.
For product, 2x2y3 · 5x2y, your answer is not correct.
For product, 2x2y3 · −2xy2, your answer, −4x3y5, is correct.
(At this point, the tutor automatically calls procedure
multiplyMonomials)
Expression: 10x4y4, Answer: 10x3y4

The exponent, 3, of variable, x, is not correct. You must add the exponents of the
common variables.
Hint: when a variable does not have an exponent, the exponent is 1.

3.5 Procedure multiplyPolynomials(expression, answer)

multiplyPolynomials(
(
3xy − 2x2

) · (2x2y2 − 4xy
)
, 6x2y3 − 12x2y2 − 4x4y2 − 8x3y):

SUB-SKILL:partialProducts
FEEDBACK:For product, 3xy · 2x2y2, your answer is not correct.
For product, 3xy · −4xy, your answer, −12x2y2, is correct
For product, −2x2 · 2x2y2, your answer, −4x4y2, is correct.
For product, −2x2 · −4xy, your answer is not correct.
For products,

[
3xy · 2x2y2,−2x2 · −4xy

]
, you must check your wrong answers,[

6x2y3,−8x3y
]

with the command multiplyMonomials.

3.6 Procedure expandSquareOfSum(expression, answer)

expandSquareOfSum((ax − by)2, a2x − 2axby + b2y2)
SUB-SKILL:squareTerm

mmonagan@cecm.sfu.ca

298 D. Sklavakis

FEEDBACK:The first term, a2x, is not correct because...
(At this point, the Tutor automatically calls procedure
monomialPower((ax)2, a2x), to check the error)

The exponent, 1, of variable, x, is not correct.
You must multiply the exponent, 1 of variable, x, by the exponent, 2, of the power.

expandSquareOfSum((x2 − 1)2, x4 + 2x2 + 1)
SUB-SKILL:doubleProduct
FEEDBACK:The second term, 2x2, is not correct because...
(At this point, the Tutor automatically calls procedure
multiplyMonomials(2 · x2 · −1, 2x2), to check the error)
The coefficient of your answer is not correct. You must multiply the coefficients of
the monomials.
You must calculate the product of terms, 2, x2and − 1

3.7 Procedure expandSumByDifference(expression, answer)

expandSumByDifference((2y + x) · (2y − x), 4y − x2)
SUB-SKILL:squareTerm
FEEDBACK:The first term, 4y, is not correct because...
(At this point, the Tutor automatically calls procedure
monomialPower((2y)2, 4y), to check the error)
The exponent, 1, of variable, y, is not correct.
You must multiply the exponent, 1 of variable, y, by the exponent,2, of the power.

expandSumByDifference((ax + by) · (ax − by), a2x2 + b2y2)
SUB-SKILL:recallIdentity
FEEDBACK:The second term, b2y2, is not correct because...
The second term of your answer must have a NEGATIVE sign

3.8 Procedure expandCubeOfSum(expression, answer)

expandCubeOfSum((2x − 3)3, 2x3 + 36x2 + 54x − 27)
SUB-SKILL:cubeTerm
FEEDBACK:The first term, 2x3, is not correct because...
(At this point, the Tutor automatically calls procedure
monomialPower((2x)3, 2x3), to check the error)
The coefficient, 2, of your answer is not correct.
You must raise the coefficient of the monomial, 2, to the exponent, 3, of the power.

expandCubeOfSum((2x − 3)3, 8x3 − 12x2 + 54x − 27)
SUB-SKILL:doubleProduct
FEEDBACK:The second term, −12x2, is not correct because...
(At this point, the Tutor automatically calls procedure

mmonagan@cecm.sfu.ca

Transforming Maple into an Intelligent Model-Tracing Math Tutor 299

multiplyMonomials(3 · 4x2 · −3,−12x2), to check the error)
The coefficient of your answer is not correct. You must multiply the coefficients of
the monomials.
You must calculate the product of terms, 3, 4x2and − 3

3.9 Procedure addPolynomials(expression, answer)

addPolynomials(
(
2x2 − x

) − (
x3 − 5x2 + x − 1

)
, 2x2 − x − x3 + 5x2 − x − 1)

SUB-SKILL:ALL
(Maple simplifies automatically both the expression and the answer,
so the tutor cannot identify the source of errors)
FEEDBACK:Expression:

[−x3, 7x2,−2x, 1
]
, Answer:

[−x3, 7x2,−2x,−1
]

Correct terms in your answer:
[−x3, 7x2,−2x

]

Incorrect or Missing terms: [1]

addPolynomials(−3x2y−(
2xy − yx2

)
+

(
3xy − y3

)
,−3x2y−2xy−yx2+3xy−y3)

SUB-SKILL:ALL
(Maple simplifies automatically both the expression and the
answer, so the tutor cannot identify the source of errors)
FEEDBACK:Expression:

[−2x2y,−y3, xy
]
, Answer:

[−4x2y,−y3, xy
]

Correct terms in your answer:
[−y3, xy

]
, Incorrect or Missing terms:

[−2x2y
]

3.10 Scaling Up: Procedure expandTutor(expression, answer)

Procedure expandTutor combines the expansion procedures described in the pre-
vious subsections. Using the powerful parsing commands of Maple, like op and
type, it uses intelligent parsing to identify the expansion tasks present in both
the expression to be expanded and the student’s answer. By comparing the two
representations, the tutor identifies the task(s) executed by the student and calls
the corresponding procedures to check for errors and guide the student. Below
follow some illustrative examples:

expandTutor(−5x · (2x − 3) − 3x · (2 − 3x), 10x2 + 15x − 3x · (2 − 3x))
FEEDBACK:Your answer is not correct...
(The tutor identifies that only the first monomial-polynomial
multiplication was performed and calls myltiplyMonomialPolynomial)
For product, −5x · 2x, your answer is not correct
For product, −5x · −3, your answer, −15x, is correct
(Procedure myltiplyMonomialPolynomial now calls myltiplyMonomials)
Expression: −10x2, Answer: 10x2

The coefficient of your answer is not correct. You must multiply the coefficients of
the monomials.

expandTutor(−5x · (2x − 3) − 3x · (2 − 3x),−10x + 15x − 6x + 9x2)
FEEDBACK:Your answer is not correct...

mmonagan@cecm.sfu.ca

300 D. Sklavakis

(The tutor identifies that both monomial-polynomial multiplications
were performed and prompts the student to check them separately)
More than one operations performed. You must check them one by one:
Procedure to Call:multiplyMonomialPolynomial(−5x · (2x − 3), your-answer
Procedure to Call:multiplyMonomialPolynomial(−3x · (2 − 3x), your-answer

expandTutor(3x2 · (−2x + 3) · (5 − x), 3x2 · (10x + 2x2 + 15 − 3x
)
)

FEEDBACK:Your answer is not correct...
(The tutor identifies that only the polynomials’ multiplication
was performed and calls multiplyPolynomials)
Expression:(−2x+3) · (5−x), Answer:

[
2x2, 7x, 15

]
For product, −2x · 5, you have

not given a correct answer.
For product, −2x · −x,your answer, 2x2, is correct
For product, 3 · 5,your answer, 15, is correct.
For product, 3 · −x, your answer, −3x, is correct.
You must check your answers, [7x], with multiplyMonomials

The student model, after these three calls of expandTutor looks like this:
showStudentModel(1,[],[true,false])
Record(STUDENT-ID = 1, SESSION-ID = 1,DATE = Date: 2019-05-24,
SKILL = “expand”, SUBSKILL = “ALL”, TASK = −5x ·(2x−3)−3x ·(2−3x),
ANS = 10x2 + 15x − 3x · (2 − 3x), CORRECT = false)
Record(STUDENT-ID = 1, SESSION-ID = 1,DATE = Date: 2019-05-24,
SKILL = “multiplyMonomialPolynomial”, SUBSKILL = “partialProducts”,
TASK = −5x(2x − 3) , ANS =

[
10x2, 15x

]
, CORRECT = false)

Record(STUDENT-ID = 1, SESSION-ID = 1,DATE = Date: 2019-05-24,
SKILL = “multiplyMonomials”, SUBSKILL = “multiplyCoefficients”, TASK
= −10x, ANS = 10x, CORRECT = false)
Record(STUDENT-ID = 1, SESSION-ID = 2,DATE = Date: 2019-05-24,
SKILL = “expand”, SUBSKILL = “ALL”, TASK = −5x(2x− 3)− 3x(2− 3x),
ANS = 9x2 − x, CORRECT = false)
Record(STUDENT-ID = 1, SESSION-ID = 3,DATE = Date: 2019-05-24,
SKILL = “expand”, SUBSKILL = “ALL”, TASK = 3x2(−2x + 3)(5− x), ANS
= 3x2

(
2x2 + 7x + 15

)
, CORRECT = false)

Record(STUDENT-ID = 1, SESSION-ID = 3,DATE = Date: 2019-05-24,
SKILL = “multiplyPolynomials”, SUBSKILL = “partialProducts”, TASK =
(−2x + 3)(5 − x), ANS =

[
2x2, 7x, 15

]
, CORRECT = false)

4 The Tutoring Procedures for Factoring

4.1 Procedure factorByCommonFactor(expression, answer)

factorByCommonFactor(2a3 − 4a2 + 6a2b, 2a · (a − 2 + 3b))
SUB-SKILL:commonFactor
FEEDBACK:Your answer is not correct...

mmonagan@cecm.sfu.ca

Transforming Maple into an Intelligent Model-Tracing Math Tutor 301

Common Factor: 2a2, Partial quotients: a − 2 + 3b
Answer Common Factor: 2a, Answer Partial Quotients:a − 2 + 3b
Your common factor, 2a, is not correct
You must find the Greatest Common Divisor of the coefficients and the smallest
exponents of the common variables.

factorByCommonFactor(2a3 − 4a2 + 6a2b, 2a2 · (a − 2 + 3ab))
SUB-SKILL:partialQuotients
FEEDBACK:Your answer is not correct...
Common Factor: 2a2, Partial quotients: a − 2 + 3b
Answer Common Factor: 2a2, Answer Partial Quotients:a − 2 + 3ab
Your partial quotient, 3ab, is not correct

(The tutor automatically calls divideMonomials(6a2b
2a2 , 3ab))

The exponent, 1, of variable, a, is not correct. You must subtract the exponents of
common variables.

4.2 Procedure factorBySquareOfSum(expression, answer)

factorBySquareOfSum(25a2 − 10ab + b2, (25a − b)2)
SUB-SKILL:rootTerm
FEEDBACK:Your answer is not correct...
Term A: 5a, Term B: −b
Your Term A: 25a, Your Term B:−b
Your term A, 25a, is not correct. It must be the square root of, 25a2, or,b2

factorBySquareOfSum(25a2 − 10ab + b2, (5a + b)2)
SUB-SKILL:doubleProductSign
FEEDBACK:Your answer is not correct...
Term A: 5a, Term B: −b
Your Term A: 5a, Your Term B:b
The sign inside the parenthesis must be the same as that of the double product,
−10ab.

4.3 Procedure factorByDifferenceOfSquares(expression, answer)

factorByDifferenceOfSquares(x4 − 16,
(
x2 + 2

) · (x2 − 2
)
)

SUB-SKILL:rootTerm
FEEDBACK:Your answer is not correct...
Term A: x2, Term B: 4
Your Term A: x2 + 2, Your Term B: x2 − 2
Your term A, x2 + 2, is not correct. It must be the sum or difference of, x2, and, 4

factorByDifferenceOfSquares(16x2 − 1, (4x + 1) · (2x − 1))
SUB-SKILL:rootTerm
FEEDBACK:Your answer is not correct...
Term A: 4x, Term B: 1
Your Term A: 4x + 1, Your Term B: 2x − 1
Your term B, 2x − 1, is not correct. It must be the difference of, 4x, and, 1

mmonagan@cecm.sfu.ca

302 D. Sklavakis

4.4 Procedure factorByTrinomialSumProduct(expression, answer)

factorByTrinomialSumProduct(w2 + 5w + 6, (w + 1) · (w + 6))
SUB-SKILL:findSum
FEEDBACK:Your answer is not correct...
Roots: −2,−3
A: 1, B: 6
The numbers A, 1, and B, 6, that you gave do not have the right sum S.
The sum, S = 5 is the coefficient of the 1st degree term.

factorByTrinomialSumProduct(w2 + 5w − 6, (w + 1) · (w + 6))
SUB-SKILL:findProduct
FEEDBACK:Your answer is not correct...
Roots: 1,−6
A: 1, B: 6
The numbers A, 1, and B, 6, that you gave do not have the right product P.
The product P = −6 is the constant term of the trinomial.

4.5 Procedure factorByTrinomialRoots(expression, answer)

factorByTrinomialRoots(x2 + 3x + 2, (x − 1) · (x − 3))
SUB-SKILL:findRoot
FEEDBACK:Your answer is not correct...
The root, x1 = 1, that you gave is not correct.
The roots of the trinomial ax2 + bx + c are given by the formulae:

x1 = −b−√
b2−4ac
2a , x1 = −1 and x2 = −b+

√
b2−4ac
2a , x2 = −2

The factored form of the trinomial is a · (x − x1) · (x − x2)

factorByTrinomialRoots(4x2 − 4x + 1, 4 · (x − 1)2)
SUB-SKILL:findRoot
FEEDBACK:Your answer is not correct...
The root, x1 = 1, that you gave is not correct.
The roots of the trinomial ax2 + bx + c are given by the formulae:

x1 = −b−√
b2−4ac
2a , x1 = 1

2 and x2 = −b+
√
b2−4ac
2a , x2 = 1

2

The factored form of the trinomial is a · (x − x1) · (x − x2)

4.6 Scaling Up: Procedure factorTutor(expression, answer)

Procedure factorTutor combines the factoring procedures described in the pre-
vious subsections. Using the powerful parsing commands of Maple, like op and
type, it uses intelligent parsing to identify the factoring tasks present in both

mmonagan@cecm.sfu.ca

Transforming Maple into an Intelligent Model-Tracing Math Tutor 303

the expression to be expanded and the student’s answer. By comparing the two
representations, the tutor identifies the task(s) executed by the student and calls
the corresponding procedures to check for errors and guide the student. Below
follow some illustrative examples:

factorTutor(2a3 − 4a2 + 6a2b, 2a2 · (a2 − 2 + 3b
)
)

SUB-SKILL:factorByCommonFactor, partialQuotients
FEEDBACK:Your answer is not correct...
Common Factor: [2a2, “NoIdentity”],
Partial Quotients: [a − 2 + 3b, “NoIdentity”]
Factor a − 2 + 3b is not correct...
There is a common factor and it seems that you did not find correctly the partial
quotients.
You must first find correctly the partial quotients.
(Tutor calls factorByCommonFactor(2a3 − 4a2 + 6a2b, 2a2 · (a2 − 2 + 3b

)
))

Common Factor: 2a2, Partial quotients: a − 2 + 3b
Answer Common Factor: 2a2, Answer Partial Quotients:a2 − 2 + 3b
Your partial quotient, a2, is not correct

(The tutor automatically calls divideMonomials(2a3

2a2 , a2))

The exponent, 2, of variable, a, is not correct. You must subtract the exponents of
common variables.

factorTutor(5ax2 − 80a, 5a · (x2 − 16
)
)

SUB-SKILL:factorByCommonFactor, factorByDifferenceOfSquares
FEEDBACK:Correct!
Common Factor: [5a, “NoIdentity”],
Partial Quotients: [x2 − 16, “factorByDifferenceOfSquares”]
Your answer is correct but you can factor it further.
Use command factorByDifferenceOfSquares(x2 − 16,your-answer)

factorTutor(5ax2 + 30ax + 25a, 5a · (x + 2) · (x + 3))
SUB-SKILL:factorByCommonFactor, factorByDifferenceOfSquares
FEEDBACK:Your answer is not correct...
Common Factor: [5a, “NoIdentity”],
Partial Quotients: [(x + 5) · (x + 1), “factorByTrinomialRoots”]
Factor x + 2 is not correct in your answer.
There is a common factor and it seems that you did not find correctly the partial
quotients.
You must first find correctly the partial quotients.
You must use the command factorByCommonFactor(5ax2+30ax+25a,your-answer)

The student model, after these three calls of expandTutor looks like this:
showStudentModel(1,[],[true,false])
Record(STUDENT-ID = 1, SESSION-ID = 1,DATE = Date: 2019-05-24,
SKILL = “factor”, SUBSKILL = “ALL”, TASK = 2a3 + 6a2b − 4a2, ANS
= 2a2

(
a2 + 3b − 2

)
, CORRECT = false)

Record(STUDENT-ID = 1, SESSION-ID = 1,DATE = Date: 2019-05-24,

mmonagan@cecm.sfu.ca

304 D. Sklavakis

SKILL = “factorByCommonFactor”, SUBSKILL = “partialQuotients”, TASK
= 2a3 + 6a2b − 4a2, ANS = 2a2

(
a2 + 3b − 2

)
, CORRECT = false)

Record(STUDENT-ID = 1, SESSION-ID = 1,DATE = Date: 2019-05-24,
SKILL = “divideMonomials”, SUBSKILL = “divideVariables”, TASK = a,
ANS = a2, CORRECT = false)
Record(STUDENT-ID = 1, SESSION-ID = 2,DATE = Date: 2019-05-24,
SKILL = “factorByCommonFactor”, SUBSKILL = “ALL”, TASK = 5ax2 −
80a, ANS = 5a

(
x2 − 16

)
, CORRECT = true)

Record(STUDENT-ID = 1, SESSION-ID = 2,DATE = Date: 2019-05-24,
SKILL = “factor”, SUBSKILL = “factorPartialQuotients”, TASK = 5ax2−80a,
ANS = 5a

(
x2 − 16

)
, CORRECT = false)

Record(STUDENT-ID = 1, SESSION-ID = 3,DATE = Date: 2019-05-24,
SKILL = “factorByCommonFactor”, SUBSKILL = “partialQuotients”, TASK
= 5ax2 + 30ax + 25a, ANS = 5a · (x + 2) · (x + 3), CORRECT = false)

5 Discussion and Further Work

The last example of factorTutor
(
5ax2 + 30ax + 25a, 5a · (x + 2) · (x + 3)

)
pre-

sented, illustrates clearly that the success of Model-Tracing Tutors as tutoring
and/or assessment systems lies on the development of broad and deep domain,
tutoring and student models. In this example, when the tutor identifies that the
factoring (x+2) · (x+3) of x2 +6x+5 is not correct, it must backtrack to locate
where the student made the error. There are two possible choice points in this
backtracking: (a) The student may have calculated erroneously the partial quo-
tients, x2 + 6x + 5 or (b) The student calculated erroneously the roots x1 = −5
and x2 = −1 of the trinomial x2+6x+5. Based on tutoring experience, point (a)
must be considered first since it precedes in the solution path. However, if the
student model suggests a good performance in calculating the partial products,
point (b) could be considered. Of course, this knowledge of the possible back-
tracking points is based on the intelligent parsing of the student answer using
Maple’s op and type commands as well as the computational power of Maple’s
expand and factor commands.

The tutor presented here is in an experimental stage of development. Test-
ing and evaluation is planned in real-world conditions at the European School
Brussels III from the coming school year. However, the tutor performance per
se is far ahead of most tutoring and assessment systems to the best of the
author’s knowledge. This performance is clearly due to the two models of the
tutor: (a) The mathematical model implemented by Maple’s powerful compu-
tational, expand and factor, and parsing, op and type, commands, and (b) The
detailed tutoring model based on cognitive task analysis of the author’s tutoring
expertise. It is the author’s belief, based on previous research [12–16], that the
powerful, broad and deep mathematical domain model of Maple, extended with
adequately deep tutoring models can transform Maple into a new paradigm of
tutoring and assessment system. A system that can surpass the two main and
interconnected obstacles that inhibit the widespread and effective use of these

mmonagan@cecm.sfu.ca

Transforming Maple into an Intelligent Model-Tracing Math Tutor 305

systems, the knowledge acquisition bottleneck and the scaling up problem.

Towards this direction, the next research and development steps are:

(a) Adding more factoring methods,
– Factoring by groups: ax+by+ay+bx = a·(x+y)+b·(x+y) = (x+y)·(a+b)
– Factoring by Cube of Sum/Difference: a3 ± 3a2b + 3ab2 ± b3 = (a ± b)3

– Factoring by Sum of Cubes (a3 + b3 = (a + b) · (a2 − ab + b2)
– Factoring by Difference of Cubes (a3 − b3 = (a − b) · (a2 + ab + b2)

(b) Elaborating the tutoring model in terms of backtracking and student guid-
ance,

(c) Using a graphical user interface instead of the default command execution
interface of a Maple document,

(d) Extending the tutor to handle operations (addition, subtraction, multipli-
cation, division and powers) of rational expressions.

References

1. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor
authoring tools (CTAT): preliminary evaluation of efficiency gains. In: Ikeda, M.,
Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 61–70. Springer,
Heidelberg (2006). https://doi.org/10.1007/11774303 7

2. Aleven, V., McLaren, B.M., Sewall, J.: Scaling up programming by demonstration
for intelligent tutoring systems development: an open-access web site for middle
school mathematics learning. IEEE Trans. Learn. Technol. 2(2), 64–78 (2009)

3. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors:
lessons learned. J. Learn. Sci. 4(2), 167–207 (1995)

4. Bloom, B.S.: The 2 sigma problem: the search of methods for group instruction as
effective as one-to- one tutoring. Educ. Res. 13(6), 4–16 (1984)

5. Corbett, A.: Cognitive computer tutors: solving the two-sigma problem. In: Bauer,
M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS (LNAI), vol. 2109,
pp. 137–147. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44566-
8 14

6. Dicheva, D., Mizoguchi, R., Greer, J. (eds.): Semantic Web Technologies for e-
Learning, The Future of Learning, vol. 4. IOS Press, Amsterdam (2009)

7. Koedinger, K., Corbett, A.: Cognitive tutors: technology bringing learning science
to the classroom. In: Sawyer, K. (ed.) The Cambridge Handbook of the Learning
Sciences, pp. 61–78. University Press, Cambridge (2006)

8. Mizoguchi, R., Bourdeau, J.: Using ontological engineering to overcome common
AI-ED problems. Int. J. Artif. Intell. Educ. 11(2), 107–121 (2000)

9. Mizoguchi, R., Hayasi, Y., Bourdeau, J.: Inside a theory-aware authoring system.
In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-
Learning: The Future of Learning, vol. 4, pp. 59–76. IOS Press, Amsterdam (2009)

10. Murray, T.: Principles for pedagogy-oriented knowledge based tutor authoring
systems. In: Murray, T., Ainsworth, S., Blessing, S. (eds.) Authoring Tools for
Advanced Technology Learning Environments, pp. 439–466. Kluwer Academic
Publishers, Netherlands (2003)

https://doi.org/10.1007/11774303_7
https://doi.org/10.1007/3-540-44566-8_14
https://doi.org/10.1007/3-540-44566-8_14

mmonagan@cecm.sfu.ca

306 D. Sklavakis

11. Sklavakis, D.: Implementing problem solving methods in CYC. MSc dissertation,
Department of Artificial Intelligence, University of Edinburgh (1998)

12. Sklavakis, D., Refanidis, I.: An individualized web-based algebra tutor based on
dynamic deep model tracing. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnel-
los, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 389–394. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-87881-0 38

13. Sklavakis, D., Refanidis, I.: The MATHESIS algebra tutor: web-based expert tutor-
ing via deep model tracing. Interactive Event. Proceedings of the 14th International
Conference on Artificial Intelligence in Education (AIED 2009), p. 795. IOS Press,
Amsterdam (2009)

14. Sklavakis, D., Refanidis, I.: Ontology-based authoring of intelligent model-tracing
math tutors. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS (LNAI), vol.
6304, pp. 201–210. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15431-7 21

15. Sklavakis, D., Refanidis, I.: MATHESIS: an intelligent web-based algebra tutoring
school. Int. J. Artif. Intell. Educ. 22(2), 191–218 (2013)

16. Sklavakis, D., Refanidis, I.: The MATHESIS meta-knowledge engineering frame-
work: ontology-driven development of intelligent tutoring systems. Appl. Ontol.
9(3–4), 237–265 (2014)

17. VanLehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16(3),
227–265 (2006)

18. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J., Shelby, R.: The andes physics
tutoring system: lessons learned. Int. J. Artif. Intell. Educ. 15(3), 147–204 (2005)

https://doi.org/10.1007/978-3-540-87881-0_38
https://doi.org/10.1007/978-3-642-15431-7_21
https://doi.org/10.1007/978-3-642-15431-7_21

mmonagan@cecm.sfu.ca

A Heilbronn Type Inequality
for Plane Nonagons

Zhenbing Zeng1 , Jian Lu1(B), Lydia Dehbi1(B), Liangyu Chen2,
and Jianlin Wang3(B)

1 Department of Mathematics, Shanghai University, Shanghai 200444, China
{zbzeng,lydia dehbi}@shu.edu.cn, {zbzeng,lujian}@picb.ac.cn

2 East China Normal University, Shanghai 200062, China
lychen@sei.ecnu.edu.cn

3 Henan University, Henan 475001, China
jlwang@henu.edu.cn

Abstract. In this paper, we present a proof of the property that for any
convex nonagon P1P2 . . . P9 in the plane, the smallest area of a triangle
PiPjPk(1 ≤ i < j < k ≤ 9) is at most a fraction of 4 · sin2(π/9)/9 =
0.05199 . . . of the area of the nonagon. The problems is transformed into
an optimization problem with bilinear constraints and solved by symbolic
computation with Maple.

Keywords: Heilbronn problem · Convex nonagon · Computer
algebra · Lagrange multipliers

1 Introduction

The general form of the Heilbronn triangle problem of n points in a given com-
pact set K in the plane with the unit area can be written as the following
max-min problem

Hn(K) := max{min{Area(PiPjPk), 1 ≤ i < j < k ≤ n}|P1, P2, · · · , Pn ∈ K}.
(1)

The original question posed by Heilbronn was to find a function f(n,K), and
constants c1 and c2, so that

c1f(n,K) < Hn(K) < c2f(n,K). (2)

Notice that for any convex compact set K in the plane, there exist a unique
ellipse Ei of the largest area inscribed to K and a unique ellipse Ec of the
smallest area circumscribed to K, as proven in [1], and that Ei, Ec satisfy the
inequalities

Area(Ei) ≥ π

3
√

3
Area(K), Area(Ec) ≤ 4π

3
√

3
Area(K), (3)

Supported by the National Natural Science Foundation of China (No. 11471209).

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 307–323, 2020.
https://doi.org/10.1007/978-3-030-41258-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_23&domain=pdf
http://orcid.org/0000-0002-9728-1114
https://doi.org/10.1007/978-3-030-41258-6_23

mmonagan@cecm.sfu.ca

308 Z. Zeng et al.

where in both cases equality holds for triangles. This fact implies that the shape
of K may affect the exact values of Hn(K), but only by a constant factor. Thus
the function f(n,K) in (2) can be chosen as independent of K through adjusting
c1, c2 when K is limited to convex bodies. For a general K, the best lower and
upper bounds satisfy the following form

log n

n2
� Hn(K) � exp

(√
log n

)

n8/7
, (4)

proven by Komlós, Pintz and Szemerédi in [10,11].
For specific convex sets and numbers, Goldberg [9] had investigated the opti-

mal arrangements of n points in the unit square and disc, for n up to 16. In [6],
Comellas and Yebra improved Goldberg’s bounds for n = 7, 8, 9, 10, 12 points in
the square, as shown in Table 1. Better configurations were found for n = 13, 15
by Peter Karpov in 2011 and for n = 14, 16 by Mark Beyleveld in 2006 (see
[8,12]).

Table 1. Heilbronn number of the unit square proposed by Goldberg and the new
bounds found by Comellas et al.

n Hn suggested by
Goldberg

Hn suggested by
Comellas et al.

n Hn suggested
by Goldberg

Hn suggested by
Comellas et al.

5 1/(3 +
√
5) = 0.1909 · · · √

3/9 = 0.1924 · · · 11 0.037037

6 1/8 1/8 12 0.030303 0.032599

7 0.079416 0.083859 13 1/27

8 0.066987 0.072376 14 0.0243

9 0.047619 0.054876 15 0.0211

10 0.042791 0.046537 16 7/341=0.0205

The following results for the unit square were proven in [5,14,15,17] by Yang,
Zhang, Zeng, and Chen.

H5 =
√

3
9

, H6 =
1
8
, H7 = (1 − 14x + 12x2 + 152x3)2 = 0.083859 · · · , (5)

9
√

65 − 55
320

= 0.054875999 · · · ≤ H9 < 0.054878314. (6)

Here, the notation (P (x))k indicates the k-th smallest positive root of the poly-
nomial P (x). For triangles �, the following results were proven in [3,4,16,18]
by Yang, Zhang, Zeng, Cantrell, Chen, and Zhou.

H5(�) = 3 − 2
√

2, H6(�) =
1
8
, H7(�) =

7
72

, 0.067789 ≤ H8(�) < 0.067816.

(7)

mmonagan@cecm.sfu.ca

An Inequality of Plane Nonagon 309

And for a general convex body K in the plane, the following results were proven
in [7,13] by Dress, Yang, and Zeng.

H6(K) ≤ 1
6
, H7(K) ≤ 1

9
. (8)

A very interesting problem that remains unsolved for n ≥ 9 encountered in
computing Heilbronn optimal configurations is as follows:

Open Problem 1. Let P1P2 · · · Pn be a convex polygon in the plane satisfying
Area(PiPjPk) ≥ a for 1 ≤ i < j < k ≤ n. Determine the minimal area of the
polygon.

Solutions to this problem for n ≤ 8 can be found in [7,13,19]. The proven results
can be expressed as follows.

Theorem 1. Let 4 ≤ n ≤ 8, P1P2 · · · Pn be any convex polygon in the plane,
and

a = min{Area(PiPjPk)|1 ≤ i < j < k ≤ n}.

Then
Area(P1P2 · · · Pn) ≥ n

4 sin2(π/n)
· a, (9)

and the equality holds if and only if P1P2 · · · Pn is an affine regular polygon.

In this paper, we solve the above open problem for n = 9. Namely, we will
prove the following inequality.

Theorem 2. For any convex nonagon P1P2 · · · P9 in the plane, the inequality

Area(P1P2 · · · P9) ≥ 9
4 sin2(π/9)

· min{Area(PiPjPk)|1 ≤ i < j < k ≤ 9} (10)

is valid, and the equality holds if and only if P1P2 · · · P9 is an affine regular
nonagon.

The strategy of the proof is as follows: in the first step we prove a property (as
stated in the Theorem 2) for the convex polygon P1P2 · · · Pn of smallest area that
satisfies Area(PiPjPk) ≥ a for 1 ≤ i < j < k ≤ n for general n, in the second
step we transform the problem of determining the convex polygon P1P2 · · · Pn

of smallest area to a global optimization problem, and in the third step we solve
the optimization problem via elimination using symbolic computation.

The rest of the paper is organized as follows:

• In Sect. 2 we prove some geometric properties of polygons that satisfy the
extremal condition in the Theorem 2 and represent the Heilbronn type
inequality for nonagons as a global optimization problem using the Lagrange
multiplier method.

mmonagan@cecm.sfu.ca

310 Z. Zeng et al.

• In Sect. 3 we use an elimination procedure to solve the derived system of
polynomial equations. The symbolic computations are run with Maple on
a notebook computer with Intel Core i7 CPU and 8 GB RAM. Since the
main Maple functions we have used are polynomial manipulations including
factor, gcd and resultant, and the symbolic computations follows the text
description in Sect. 3, we have not included the Maple code for saving space.

The authors are grateful to Prof. Dr. Ilias Kotsireas and the anonymous referees,
who have helped to improve this paper substantially.

2 The Convex Polygon with Equal Peripheral Triangles

Let n > 4, P1P2 · · · Pn be any simple convex polygon, and

a = min{Area(PiPjPk)|1 ≤ i < j < k ≤ n}.

Then, Area(PiPjPk) = a implies that Pi, Pj , Pk are three consecutive points in
the list P1, P2, · · · , Pn, P1, P2. Otherwise, let Q be the intersect point of Pj−1Pj+1

and PkPj , as shown in Fig. 1, we would have

Area(PiPjPk) > Area(PiQPk)
≥ min{Area(PiPj−1Pk),Area(PiPj+1Pk)} ≥ a. (11)

Pk Pi

Pj−1

Pj

Pj+1

Q

Fig. 1. Pi, Pj , Pk are not consecutive implies that Area(PiPjPk) > minimal.

For convenience, we define the triangle PiPjPk formed by three consecutive
vertices of a convex polygon P1P2 · · · Pn as a peripheral triangle. Therefore, we
have the following property.

Proposition 1. Let P1P2 · · · Pn be any convex polygon in the plane, Pn+1 =
P1, Pn+2 = P2, and a the minimal area of triangles PiPjPk for 1 ≤ i < j < k ≤
n. Then

a = min{Area(PiPi+1Pi+2)|i = 1, 2, · · · , n},

and Area(PiPjPk) > a for any non-peripheral triangle PiPjPk.

mmonagan@cecm.sfu.ca

An Inequality of Plane Nonagon 311

P6

P1 P2

P3

P4P5

P3

P2

P4

P7

P6

P1

P5

(a) (b)

Fig. 2. (a) An equi-peripheral hexagon P1P2 · · · P6 that is not affine regular. (b) A
self-intersecting heptagon P1P2 · · · P7 that satisfies Area(PiPi+1Pi+2) are equal.

Proof. For n ≥ 5 this is guaranteed by the inequality (11), and for n < 5, all
triangles formed by vertices of a convex polygon are peripheral ones. �	

If all peripheral triangles of a convex polygon are of equal area, we call the
polygon as an equi-peripheral polygon. It is easy to prove that any equi-peripheral
pentagon is an affine regular pentagon. The figures in Fig. 2 show that an equi-
peripheral polygon is not necessarily an affine regular polygon for n ≥ 6, and that
a polygon P1P2 · · · Pn satisfying the condition Area(PiPi+1Pi+2) = constant is
not necessarily a simple polygon. See Fig. 8(b) in the page 161 of [2] for drawing
(non-regular) simple nonagon ABCDEFGHI with equal peripheral triangles
starting from an equi-peripheral (called right equiangular) hexagon ABDEGH.
Figure 3 shows a way to construct an equi-peripheral polygon through solving a
polynomial equation system. Note that for any three points

Pi = (xi, yi), Pj = (xj , yj), Pk = (xk, yk)

in the plane, the oriented area of the triangle PiPjPk can be expressed as a
determinant

Area(Pi, Pj , Pk) = Δ(xi, yi, xj , yj , xk, yk) :=
1
2

·
∣
∣
∣
∣
∣
∣

xi yi 1
xj yj 1
xk yk 1

∣
∣
∣
∣
∣
∣
. (12)

Therefore, an equi-peripheral polygon with

P1 = (0, 0), P2 = (1, 0), Pi = (xi, yi)(i = 2, · · · , n − 1), and Pn = (0, 1)

can be constructed by solving the bi-linear polynomial equations system
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1 = Δ(x1, y1, x2, y2, x3, y3) − 1/2 = 0,
f2 = Δ(x2, y2, x3, y3, x4, y4) − 1/2 = 0,

...
fn−1 = Δ(xn−1, yn−1, xn, yn, x1, y1) − 1/2 = 0,

(x1 = 0, y1 = 0, x2 = 1, y2 = 0, xn = 0, yn = 1).

(13)

mmonagan@cecm.sfu.ca

312 Z. Zeng et al.

P1(0, 0) P2(1, 0)

P3(x3, y3)

P4(x4, y4)

Pi(xi, yi)

Pi+1(xi+1, yi+1)
Pn−2(xn−2, yn−2)

Pn−1

(xn−1, yn−1)

Pn

(0, 1)

Fig. 3. Construction of an equi-peripheral convex n-gon.

To prevent self-intersection in the polygon P1P2 · · · Pn, it also requires that
(x1, y1, x2, y2, · · · , xn, yn) are satisfying the four-point-condition as follows

Area(Pi, Pj , Pk) > 0, Area(Pj , Pk, Pl) > 0, Area(Pk, Pl, Pi) > 0, (14)

for all combinations (i, j, k, l) with 1 ≤ i < j < k < l ≤ n + 3 and Pn+1 :=
P1, Pn+2 := P2, Pn+3 := P3.

Moreover, we can prove that for n ≥ 6, any convex polygon P1P2 · · · Pn

contains an equi-peripheral polygon P ′
1P

′
2 · · · P ′

n in its inside so that

min{P ′
iP

′
jP

′
k|1 ≤ i < j < k ≤ n} ≥ min{PiPjPk|1 ≤ i < j < k ≤ n}.

Namely, we have

Proposition 2. Let n ≥ 6, P1P2 · · · Pn be any convex polygon, and a be the min-
imal area of triangles PiPjPk for 1 ≤ i < j < k ≤ n. Then there exists a convex
polygon P ′

1P
′
2 · · · P ′

n contained in P1P2 · · · Pn such that Area(P ′
iP

′
i+1P

′
i+2) = a

for i = 1, 2, · · · , n with P ′
n+1 = P ′

1, P
′
n+2 = P ′

2.

Proof. If P1P2 · · · Pn is an equi-peripheral polygon, just take P ′
1P

′
2 · · · P ′

n =
P1P2 · · · Pn. Otherwise, we may assume that

Area(P1P2P3) > a := min{PiPjPk|1 ≤ i < j < k ≤ n}.

Then, taking
P ′
2 = P ′

2(ε) = (1 − ε)P2 + εP5 (15)

as shown in Fig. 4. It is clear that

Area(P ′
2P3P4) > min{Area(P2P3P4),Area(P3P4P5)} ≥ a,

Area(PnP1P
′
2) > min{Area(PnP1P2),Area(PnP1P5)} ≥ a,

for any 0 < ε < 1, and

Area(P1P
′
2P3) = (1 − ε) · Area(P1P2P3) − ε · Area(P5P1P3) > a (16)

mmonagan@cecm.sfu.ca

An Inequality of Plane Nonagon 313

P2 P3

P4

P5

P1

Pn

Pi

P ′
2(ε)

Q

Fig. 4. If the triangle P1P2P3 is not the smallest triangle, then moving P ′
2 along to

P2Q to P ′
2(ε) so that Area(P1P

′
2P3) is still larger than the smallest triangle.

when ε > 0 is sufficiently small so that P ′
2(ε) ∈ P2Q, where Q is the intersec-

tion of P1P3 and P2P5. We make a similar perturbation for all vertices Pk for
which Area(Pk−1PkPk+1) > a to P ′

k recursively, until all peripheral triangles of
P ′
1P

′
2 · · · P ′

n are of equal area. It is clear that P ′
1P

′
2 · · · P ′

n ⊂ P1P2 · · · Pn, and

min{P ′
iP

′
jP

′
k|1 ≤ i < j < k ≤ n} ≥ a.

�	
Proposition 2 implies that if a convex polygon is a solution to Open Prob-

lem 1, then it must be an equi-peripheral polygon. We have the following result.

Theorem 3. Let kn be the solution to the following problem
⎧
⎨

⎩

minArea(P1P2 · · · Pn),
P1P2 · · · Pn is a convex polygon in the plane, and
Area(PiPjPk) ≥ 1/2 for all 1 ≤ i < j < k ≤ n.

(17)

Then kn is monotonically increasing with n with kn+1 ≥ kn + 1/2, and

kn ≤ n

8 sin2(π/n)
. (18)

Proof. Assume P1P2 · · · PnPn+1 is an optimal polygon corresponding to kn+1.
Then Area(PnPn+1P1) ≥ 1/2, and Area(P1P2 · · · Pn) ≥ kn. Thus,

kn+1 = Area(P1P2 · · · PnPn+1)

= Area(P1P2 · · · Pn) + Area(PnPn+1P1) ≥ kn +
1
2
. (19)

To prove the inequality (18), notice that the affine regular n-gon P1P2 · · · Pn

inscribed in the unit circle can be represented by

Pk = (cos(
(k − 1) · · · 2π

n
), sin(

(k − 1) · · · 2π

n
)), k = 1, 2, · · · , n − 1,

mmonagan@cecm.sfu.ca

314 Z. Zeng et al.

so we have
Area(P1P2 · · · Pn) = n · 1

2
sin(

2π

n
),

and

Area(P1P2P3) = 2 · 1
2

sin(
2π

n
) − 1

2
sin(

4π

n
) = sin(

2π

n
) · (1 − cos(

2π

n
)),

therefore,

kn ≤ 1
2

Area(P1P2 · · · Pn)
Area(P1P2P3)

=
n

4(1 − cos(2π
n))

=
n

8 sin2(π/n)
,

as claimed. �	
Together with Theorem 1, the above inequality immediately implies that

k5 = 5/(8 sin2(π/5)) = (5 +
√

5)/4 = 1.8090 · · · , k6 = 3,

k7 = 7/(8 sin2(π/7)) = 4.6479 · · · , k8 = 4 + 2
√

2 = 6.8284 · · · ,

Notice that k7 is the largest real root of the equation 8 z3 −56 z2 +98 z −49 = 0.

3 The Smallest Equi-Peripheral Nonagon

This section is devoted to proving Theorem 2. In view of Proposition 2 and
Theorem 3, we need only to prove that the smallest equi-peripheral nonagon
is an affine image of the regular nonagon. We will prove this by solving the
optimization problem

min S = Area(P1P2 · · · P9)
= 1

2 (y3 + x3 y4 − x4 y3 + x4 y5 − x5 y4 + x5 y6 − x6 y5
+ x6 y7 − x7 y6 + x7 y8 − x8 y7 + x8) ,

(20)

subject to the constraint conditions (13) and (14) for n = 9. For convenience we
only write the equality part of the condition as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = −1 + y3 = 0,

f2 = x3 y4 − x4 y3 + y3 − y4 − 1 = 0,

f3 = x3 y4 − x3 y5 − x4 y3 + x4 y5 + x5 y3 − x5 y4 − 1 = 0,
f4 = x4 y5 − x4 y6 − x5 y4 + x5 y6 + x6 y4 − x6 y5 − 1 = 0,
f5 = x5 y6 − x5 y7 − x6 y5 + x6 y7 + x7 y5 − x7 y6 − 1 = 0,
f6 = x6 y7 − x6 y8 − x7 y6 + x7 y8 + x8 y6 − x8 y7 − 1 = 0,
f7 = x7 y8 − x8 y7 − x7 + x8 − 1 = 0,

f8 = −1 + x8 = 0.

(21)

mmonagan@cecm.sfu.ca

An Inequality of Plane Nonagon 315

Regarding {f1, f2, f3, f6, f7, f8} as linear equations of {y3, x4, y4, x7, y7, y8}, we
have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x4 =
(x3 − 1) (x3 y5 − x5 + 1)

x3 y5 − x5 − y5 + 1
, y4 =

x3 y5 − x5 + 1
x3 y5 − x5 − y5 + 1

,

x7 =
x6 y8 − y6 + 1

x6 y8 − x6 − y6 + 1
, y7 =

(y8 − 1) (x6 y8 − y6 + 1)
x6 y8 − x6 − y6 + 1

,

x8 = 1, y3 = 1.

(22)

Substituting this solution into (20) and the constraint polynomial equations
f4 = 0, f5 = 0, we have transformed the optimization problem related to the
smallest equi-peripheral nonagon as follows:

min S

s.t. g0 = x3 y5 + x5 y6 − x6 y5 + x6 y8 − 2S − x5 − y6 + 4 = 0,
g1(x3, x5, y5, x6, y6, y8) = 0,
g2(x3, x5, y5, x6, y6, y8) = 0,
Ineq(i, j, k, l) for all 1 ≤ i < j < k < l ≤ n + 3. (23)

where

g1 = −1 + y6 + x6 − y5 x6 − x5 x6 + x5 y5 + x5
2 − x3 y6

+y5
2x6 − x5 y5 y6 + x5 y5 x6 − x5

2y6 + x3 y5 y6 + x3 y5 x6 − x3 y5
2

+x3 x5 y6 − 2x3 x5 y5 − x3 y5
2x6 + x3 x5 y5 y6 − x3

2y5 y6 + x3
2y5

2,

(24)

g2 = −1 + y5 + x5 + y6
2 + x6 y6 − y5 y6 − y5 x6 − x5 y8

−2x6 y6 y8 − x6
2y8 + y5 x6 y8 + y5 x6 y6 + y5 x6

2 + x5 y6 y8 − x5 y6
2

+x5 x6 y8 − x5 x6 y6 + x6
2y8

2 − y5 x6
2y8 − x5 x6 y8

2 + x5 x6 y6 y8, (25)

and Ineq(i, j, k, l) refers to the inequalities defined in (14). Observing that
{g0, g1} are linear equations with respect to {x6, y6}, we obtain

x6 =
P1(S, x3, x5, y5, y8)

Q(x3, x5, y5, y8)
, y6 =

P2(S, x3, x5, y5, y8)
Q(x3, x5, y5, y8)

(26)

mmonagan@cecm.sfu.ca

316 Z. Zeng et al.

where

P1 = 2S − 3 − 2Sx3 + 4x3 − 2Sx5 y5 + 3x5 y5 − 2Sx5
2 + 3x5

2

+2Sx3 y5 − 5x3 y5 + 2Sx3 x5 − 5x3 x5 + x3 y5
2 + 2Sx3 x5 y5

−x3 x5 y5 + x3 x5
2 − 2Sx3

2y5 + 5x3
2y5 − 2x3

2y5
2 − 2x3

2x5 y5 + x3
3y5

2,

P2 = −2S + 4 + y8 + 2Sy5 − 5 y5 + 2Sx5 − 5x5 − 2Sy5
2 + 4 y5

2 − 2Sx5 y5

+5x5 y5 + x5
2 − 2Sx3 y5 + 5x3 y5 − x5 y5 y8 − x5

2y8 + 2Sx3 y5
2

−5x3 y5
2 − 2x3 x5 y5 + x3 y5

2y8 + 2x3 x5 y5 y8 + x3
2y5

2 − x3
2y5

2y8

Q = 1 + y8 − 2 y5 − 2x5 + y5
2 + 2x5 y5 + x5

2 − x3 y8 + 2x3 y5

−x5 y5 y8 − x5
2y8 + x3 y5 y8 − 2x3 y5

2 + x3 x5 y8 − 2x3 x5 y5

+x3 x5 y5 y8 − x3
2y5 y8 + x3

2y5
2.

Therefore, the optimization problem (23) has been transformed to the following
simple form:

min S,
s.t. g(S, x3, x5, y5, y8) = 0,

Ineq(i, j, k, l) fot all 1 ≤ i < j < k < l ≤ n + 3,
(27)

where

g = 3 − 2S + 15 y8 − 18 y5 + (135 terms) − x3
3x5 y5

2y8
2 − x3

4y5
3y8

is the polynomial obtained by substituting (26) into g2 defined in (25), and
Ineq(i, j, k, l) are the inequalities determined by (14).

It is clear that the inequality constraint conditions in the problem (27) define
an open subset in R

5. Thus, a necessary condition for a nonagon P1P2 · · · P9 with

P1 = (0, 0), P2 = (1, 0), P9 = (0, 1),

P3 = (x3, 1), Pi = (xi, yi)(4 ≤ i ≤ 7), P8 = (1, y8),
(28)

to be an equi-peripheral nonagon with the smallest area is that
(S, x3, x5, y5, y8) ∈ R

5 satisfies the following system of equations:

g = 0,
∂g

∂x3
= 0,

∂g

∂x5
= 0,

∂g

∂y5
= 0,

∂g

∂y8
= 0. (29)

and x4, y4, x6, y6, x7, y7 satisfy (22) and (26). We list the information on the
equation system in Table 2.

As we can see from Table 2, the equation ∂g
∂y8

= 0 is a linear equation with
respect to variable y8, thus we have

y8 =
A(x3, x5, y5)S2 + B(x3, x5, y5)S + C(x3, x5, y5)

D(x3, x5, y5)S + E(x3, x5, y5)
, (30)

mmonagan@cecm.sfu.ca

An Inequality of Plane Nonagon 317

Table 2. The degree and number of terms of equation system (29)

Polynomial
equation

Degree w.r.t. variable nops (number
of terms)

S x3 x5 y5 y8

g 2 4 3 3 2 141

∂g/∂x3 2 3 3 3 2 91

∂g/∂x5 2 3 2 2 2 87

∂g/∂y5 2 4 2 2 2 94

∂g/∂y8 2 4 3 3 1 76

where A,B,C,D,E ∈ Z[x3, x5, y5]. Therefore, the system (29) can be trans-
formed into a new system in variables S, x3, x5, and y5 by substituting (30) into
(29) as follows:

g → h1 = (−3 + 2S − x3y5) · h
(1,3,2,2)
1,20 (S, x3, x5, y5) · h

(3,7,4,5)
1,240 (S, x3, x5, y5),

∂g
∂x3

→ h2 = h
(5,10,6,8)
2,923 (S, x3, x5, y5),

∂g
∂x5

→ h3 = (−3 + 2S − x3y5) · h
(4,10,6,7)
3,688 (S, x3, x5, y5),

∂g
∂y5

→ h4 = h
(5,11,6,7)
4,882 (S, x3, x5, y5),

(31)
here h

(d1,d2,d3,d4)
i,n (S, x3, x5, y5) represents a factor of hi with n monomials, where

the highest degrees of S, x3, x5, and y5 are d1, d2, d3, and d4, respectively. For
example,

d
(1,3,2,2)
1,20 (S, x3, x5, y5) = 3 − 3 x3 − 2 S − 3 x5 y5 − 3 x2

5 + 4 x3 y5 + 4 x3 x5 + 2 Sx3

+2 x3 x5 y5 − x3 x2
5 − 4 x2

3y5 + 2 Sx5 y5 + 2 S x2
5 − 2 Sx3 y5 − 2 Sx3 x5

+x2
3 y2

5 + 2 x2
3x5 y5 − 2 Sx3 x5 y5 + 2 S x2

3y5 − x3
3y

2
5 .

For convenience, we will use the notation h
(1,3,2,2)
1,20 (or h1,20) to represent the

polynomial h
(1,3,2,2)
1,20 (S, x3, x5, y5, y8) for short.

The following property of a general equi-peripheral nonagon P1P2 · · · P9 is
very useful for simplifying the equation system (31).

Proposition 3. For any equi-peripheral nonagon determined by the coordinates
setting in (28), we have

x3, y8 > 1, xi, yi > 1(i = 4, 5, 6, 7), (32)

Area(P1P2 · · · P9) ≥ 9
2

+ 2
√

2 = 7.3284 · · · , (33)

and
Area(P1P2 · · · P9) >

1
2
(x3y5 + 5). (34)

mmonagan@cecm.sfu.ca

318 Z. Zeng et al.

Proof. The inequalities xi > 1 for 3 ≤ i < 8 and yj > 1 for 3 < j ≤ 8 are derived
from the convexity of P1P2 · · · P9.

For (33), we have seen that there is an equi-peripheral octagon P ′
1P

′
2 · · · P ′

8

in P1P2 · · · P8, therefore,

Area(P1P2 · · · P8P9) = Area(P1P2 · · · P8) + Area(P8P9P1)

≥ Area(P ′
1P

′
2 · · · P ′

8) +
1
2

≥ 8
4 sin2(π/8)

· 1
2

+
1
2

=
9
2

+ 2
√

2.

For (34), we have

1
2
(x3y5 + 5) =

1
2

∣
∣
∣
∣
∣
∣

x3 1 1
x5 y5 1
0 0 1

∣
∣
∣
∣
∣
∣
+

1
2

· x5 +
3
2

+ 1

= Area(P1P3P5) + Area(P1P5P9)
+Area(P1P2P3) + Area(P3P4P5) + Area(P5P6P7) + 1

= Area(P1P2 · · · P9)−Area(P5P7P8P9) + 1 < Area(P1P2 · · · P9).

�	
In view of Proposition 3, the equation system (29) can be split into the

following two systems:

(Eqs I):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h
(1,3,2,2)
1,20 = 0,

h
(5,10,6,8)
2,923 = 0,

h
(4,10,6,7)
3,688 = 0,

h
(5,11,6,7)
4,882 = 0.

(Eqs II):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h
(3,7,4,5)
1,240 = 0,

h
(5,10,6,8)
2,923 = 0,

h
(4,10,6,7)
3,688 = 0,

h
(5,11,6,7)
4,882 = 0.

At first, we prove that the smallest equi-peripheral nonagon P1P2 · · · P9 can-
not be a solution to the system (Eqs I). Namely, we have

Proposition 4. If xi(3 ≤ i < 8), yj(3 < j ≤ 8) are the coordinates of an
equi-peripheral nonagon P1P2 · · · P9 as defined in (28), and S is the area of the
nonagon, then they do not satisfy the equation system (Eqs I).

Proof. Let f, g ∈ Z[u1, · · · , un, x], h ∈ Z[u1, · · · , un], and

resultant(f, g, x) = c1 · rd1
1 · · · rdk

k

(c, d1, · · · , dk ∈ Z+, r1, · · · , rk ∈ Z[u1, · · · , un])

be the irreducible factorization of the Sylvester resultant of f, g that satisfies
gcd(ri, rj) = 1 for all 1 ≤ i < j ≤ k. Define

resultant1(f, g, x, h) =
∏

1≤i≤k
gcd(ri,h)=1

ri,

mmonagan@cecm.sfu.ca

An Inequality of Plane Nonagon 319

that is, resultant1(f, g, x, h) is the square-free product of all factors of the
Sylvester resultant which has no common divisor with h. Let

h0 = y5(x3 − 1)(x3y5 + 1)(2S − 3)(2S − x3y5 − 3)(2S − x3 − 3).

In view of (3), it is obvious that h0 > 0 for all equi-peripheral nonagons defined
by (28). Then we have

resultant1(h1,240, h2,923, x5, h0) = h
(4,4,3)
120,72(S, x3, y5),

resultant1(h1,240, h3,688, x5, h0) = h
(2,2,2)
130,24(S, x3, x5),

resultant1(h1,240, h4,882, x5, h0) = h
(3,4,2)
140,33(S, x3, x5),

where h
(4,4,3)
120,72 (S, x3, y5), h

(2,2,2)
130,24 (S, x3, y5), h

(3,4,2)
140,33 (S, x3, y5) are polynomials in

Z[S, x3, y5], with n = nops(h(d1,d2,d3)
i,n), d1 = degree(h(d1,d2,d3)

i,n , S), and so on.
Hence, any real solutions of the system (Eqs I) that forms a convex nonagon
must satisfy

h120,72 = 0, h130,24 = 0, h140,33 = 0. (35)

To complete the proof, observe that

resultant(h130,24, h140,33, x5) = (2S − 3)2(2Sx3 − 2S − 2x3 + 3)8. (36)

Since

2S − 3 > 0, 2Sx3 − 2S − 2x3 + 3 = 2(S − 1)(x3 − 1) + 1 > 0

hold for all convex nonagons, we conclude that h130,24 and h140,33 have no com-
mon zero, and therefore, the coordinates (xi, yi) and the area S of any equi-
peripheral nonagon do not satisfy (Eqs I) as stated in the proposition. �	

To solve the equation system (Eqs II), we need the following lemma.

Lemma 1. Let

q0 := (2S − x3 − 4) · (2Sx3 − 2S − 4x3 + 3)
·(2Sx3 − x2

3 − 4x3 − 1) · (2Sx3 − 2S − x2
3 − 2x3 + 2)

·(4S2x3 − 2Sx2
3 − 4S2 − 10Sx3 + 2x2

3 + 12S + 6x3 − 9), (37)
q2 := x3 (x3 − 1) x5 (x5 − 1) (2S − 3)

· (4S2 x3 − 2S x2
3 − 4S2 − 8Sx3 + 2x2

3 + 10S + 4x3 − 6

−2Sx3 x5 + x2
3x5 + 2x3 x5

)

· (4S2 x3 − 2S x2
3 − 4S2 − 10Sx3 + 2x2

3 + 12S + 6x3 − 9

−2Sx3 x5 + x3
2x5 + 3x3 x5

)
. (38)

Then
(q0 = 0 ∨ q2 = 0) ∧ (Eqs II) ⇒ S < 9/2 + 2

√
2.

mmonagan@cecm.sfu.ca

320 Z. Zeng et al.

Proof. The proof is essentially to add a relatively simple polynomial, for example,
2Sx3−2S−4x3+3, to the system (Eqs II), and eliminate the variables x3, x5, y5
from the new system, using resultant computation. The computation is direct,
for saving space we omit the details here. �	
Proposition 5. Let P1P2 · · · P9 the equi-peripheral nonagon of minimal area
with the coordinates defined in (28), and S the minimal area of the nonagon.
Then

8S3 − 108S2 + 324S − 243 = 0, (39)

Proof. Observing that

q1 := (−x3 y5 + 2S − 3) (2S − 3) (x3 − 1) (2S − 2 − x3)
· (x3 y5 + 1) (−x3 y5 + 2S + y5 − 5) y5 > 0

for any convex equi-peripheral nonagon determined by (28), we have

resultant1(h1,240, h2,923, x5, q1) = h
(15,14,11)
120,1761 (S, x3, y5),

resultant1(h1,240, h3,688, x5, q1) = h
(10,10,8)
130,832 (S, x3, y5) · h

(2,2,1)
131,8 (S, x3, y5),

resultant1(h1,240, h4,882, x5, q1) = h
(14,14,9)
140,1257 (S, x3, y5),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(40)
where h

(15,14,11)
120,1761 ∈ Z[S, x3, y5] is irreducible, with nops(h(15,14,11)

120,1761) = 1761, and
the degrees of S, x3, y5 are 15, 14, 11, respectively, and so on. Using resultant to
eliminate y5 from the equation system (40), we obtain

resultant1(h120,1761, h130,832 · h131,8, y5, q0)

= h
(3,2)
12130,9 · h

(104,110)
12131,9498 · h

(13,11)
12132,147 · h

(23,25)
12133,432, (41)

resultant1(h140,1257, h130,832 · h131,8, y5, q0)

= h
(1,2)
13140,5 · h

(92,96)
13141,7571 · h

(20,21)
13142,306 · h

(7,7)
13143,58 · h

(1,1)
13144,3, (42)

where q0 ∈ Z[S, x3] is the polynomial defined in (37), and h1213i,ni
, h1314j,nj

∈
Z[S, x3] are irreducible polynomials. As we have proven that the equi-peripheral
nonagon satisfies q0 �= 0, we assert that a necessary condition for minimal equi-
peripheral nonagon can be given as follows:

resultant1(
∏

0≤i≤3

h1213i,ni
,

∏

0≤j≤4

h1314j,nj
, x3, 1) = r1(S)r2(S) · · · r53(S), (43)

where r1, r2, · · · , r53 are irreducible polynomials in Z[S], and their degrees are
given by the following list:

[1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4,

4, 4, 5, 5, 5, 6, 6, 6, 7, 10, 14, 17, 22, 26, 28, 42, 46, 75, 90,

92, 120, 171, 209, 209, 270, 535, 640, 1220, 2045, 2110, 9210].

mmonagan@cecm.sfu.ca

An Inequality of Plane Nonagon 321

This elimination process can be done in different orders. For example, we
can also eliminate y5 at first, and then eliminate x5, and x3 at the final step as
follows.

resultant1(h1,240, h2,923, y5, q2) = h
(14,18,11)
12y,2651 (S, x3, x5),

resultant1(h1,240, h3,688, y5, q2) = h
(13,16,8)
13y,1444(S, x3, x5),

resultant1(h1,240, h4,882, y5, q2) = h
(11,14,9)
14y,1273(S, x3, x5),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(44)

where q2 is the polynomial defined by (38), and h12y, h13y, h14y are irreducible
polynomials with 2651, 1444, 1273 terms, respectively. Then eliminate x5 as fol-
lows:
we have

resultant1(h12y,2651, h13y,1444, x5, q0)

= h
(13,11)
1213y0,147 · h

(173,198)
1213y1,29107, (45)

resultant1(h13y,1444, h14y,1273, x5, q0)

= h
(1,2)
1314y0,5 · h

(116,123)
1314y1,12180 · h

(1,1)
1314y2,3 · h

(7,7)
1314y3,58, (46)

where q0 ∈ Z[S, x3] is defined by (37), and h1213y0, h1213y1, h1314y0, · · · , h1314y3

are irreducible polynomials in Z[S, x3]. Finally, eliminate x3 via computing the
resultant as follows:

resultant1(
1∏

i=0

h1213yi,ni
,

3∏

j=0

h1314yj,nj
, x3, 1) = ry1(S)ry2(S) · · · ry17(S), (47)

where ry1, ry2, · · · , ry16 are irreducible polynomials in Z[S], and ry17 ∈ Z[S] is
not irreducible (Maple 18 was not able to complete the factorization of ry17 in
332,498.40 seconds in the machine mentioned in the end of Sect. 1). The degree
information of ryj(j = 1, 2, · · · , 17) is recorded in the following list:
[1, 1, 1, 1, 1, 2, 3, 10, 14, 90, 114, 156, 160, 160, 1234, 1595, 30402].

Consequently, we obtain a simple necessary condition for S to be the minimal
area of the optimal equi-peripheral nonagon as follows

gcd(
53∏

i=1

ri,

17∏

j=1

ryj) = (S − 1)(2S − 3)(2S − 5)(S − 3)(2S − 7)(8S2 − 12S + 13)

·(8S3 − 108S2 + 324S − 243) · r
(10)
8,11(S) · r

(14)
9,15(S). (48)

Using the Maple built-in command sturm(f, x, a, b) we can check that among
all factors, only the cubic one has a real root in the interval [6, 10]. Therefore,
the optimal equi-peripheral nonagon satisfies the cubic equation as claimed in
the proposition. �	
Remark 1. The time for computing the resultant (43) was 46,433.95 seconds,
and for computing (47) was 127,865.93 seconds on the machine we used.

mmonagan@cecm.sfu.ca

322 Z. Zeng et al.

Finally, we can give a proof to Theorem 2 as follows. Adding the equation
8S3−108S2+324S−243 = 0 to the equation system (Eqs II), we get the following
equations: the univariate equation x3−3x2+3 = 0 (which has two positive roots:
1 + 2 cos(4π/9) = 1.3472 · · · , 1 + 2 cos(2π/9) = 2.5320 · · ·) for x3, y4, x7, y8; the
univariate equation y3 − 6y2 + 9y − 3 = 0 (which has two positive roots greater
than 1: 2+2 cos(5π/9) = 1.6527 · · · , 2+2 cos(π/9) = 3.8793 · · ·) for x4, y5, x6, y7;
and the univariate equation z3 − 3z2 − 6z − 1 = 0 (which has one positive root
1+2

√
3 cos(π/18) = 4.4114 · · ·) for x5, y6. After checking the 24 × 24 × 12 = 256

possible combinations we can see that there is only one combination

P1 = (0, 0), P2 = (1, 0), P3 = (a, 1), P4 = (b, a), P5 = (c, b),
P6 = (b, c), P7 = (a, b), P8 = (1, a), P9 = (0, 1),

where

a = 1 + 2 cos(2π/9), b = 2 + 2 cos(π/9), c = 1 + 2
√

3 cos(π/18)

that satisfies the equation system (21) and all four-point-conditions (14) for a
simple polygon. It is also easy to check that the minimal area of the nonagon is
the largest root (S = 9.6172 · · ·) of the Eq. (39), which can also be represented
as 9/(8 sin2(π/9)). This proves Theorem 2.

Remark 2. We have used Gröbner bases computation for solving the equation
systems (Eqs I) and (Eqs II), neither were succeeded for insufficient memory
space.

References

1. Behrend, F.: Über die kleinste umbeschriebene und die größte einbeschriebene
Ellipse eines konvexen. Bereichs. Math. Ann. 115(1), 379–411 (1938)

2. Buitrago, A., Huylebrouck, D.: Nonagons in the Hagia Sophia and the Selimiye
Mosque. Nexus Netw. J. 17(1), 157–181 (2015)

3. Cantrell, D.: The Heilbronn problem for triangles. http://www2.stetson.edu/
∼efriedma/heiltri/. Accessed 7 Sept 2019

4. Chen, L., Zeng, Z., Zhou, W.: An upper bound of Heilbronn number for eight
points in triangles. J. Comb. Optim. 28(4), 854–874 (2014)

5. Chen, L., Xu, Y., Zeng, Z.: Searching approximate global optimal Heilbronn con-
figurations of nine points in the unit square via GPGPU computing. J. Global
Optim. 68(1), 147–167 (2017)

6. Comellas, F., Yebra, J.L.A.: New lower bounds for Heilbronn numbers. Electron.
J. Comb. 9, #R6 (2002)

7. Dress, A., Yang, L., Zeng Z.: Heilbronn problem for six points in a planar convex
body. In: Combinatorics and Graph Theory 1995, vol. 1 (Hefei), pp. 97–118. World
Scientific Publishing, River Edge (1995)

8. Friedman, E.: The Heilbronn Problem. http://www.stetson.edu/efriedma/
heilbronn. Accessed 14 Mar 2019

9. Goldberg, M.: Maximizing the smallest triangle made by n points in a square.
Math. Mag. 45, 135–144 (1972)

http://www2.stetson.edu/~efriedma/heiltri/
http://www2.stetson.edu/~efriedma/heiltri/
http://www.stetson.edu/efriedma/heilbronn
http://www.stetson.edu/efriedma/heilbronn

mmonagan@cecm.sfu.ca

An Inequality of Plane Nonagon 323

10. Komlós, J., Pintz, J., Szemerédi, E.: On Heilbronn’s triangle problem. J. London
Math. Soc. 24(3), 385–396 (1981)

11. Komlós, J., Pintz, J., Szemerédi, E.: A lower bound for Heilbronn’s problem. J.
London Math. Soc. 25(1), 13–24 (1982)

12. Weisstein, E.W.: Heilbronn Triangle Problem. From MathWorld - A Wolfram
Web Resource. http://mathworld.wolfram.com/HeilbronnTriangleProblem.html.
Accessed 14 Mar 2019

13. Yang, L., Zeng, Z.: Heilbronn problem for seven points in a planar convex body. In:
Du, D.-Z., Pardalos, P.M. (eds.) Minimax and Applications. Nonconvex Optimiza-
tion and Its Applications, vol. 4, pp. 191–218. Springer, Boston (1995). https://
doi.org/10.1007/978-1-4613-3557-3 14

14. Yang, L., Zhang, J., Zeng, Z.: Heilbronn problem for five points. Intl Centre The-
oret. Physics preprint IC/91/252 (1991)

15. Yang, L., Zhang, J., Zeng, Z.: A conjecture on the first several Heilbronn numbers
and a computation. Chinese Ann. Math. Ser. A 13(2), 503–515 (1992). (in Chinese)

16. Yang, L., Zhang, J., Zeng, Z.: On the Heilbronn numbers of triangular regions.
Acta Math. Sinica 37(5), 678–689 (1994). (in Chinese)

17. Zeng, Z., Chen, L.: On the Heilbronn optimal configuration of seven points in the
square. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS (LNAI), vol. 6301, pp.
196–224. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21046-
4 11

18. Zeng, Z., Chen, L.: Determining the Heilbronn configuration of seven points in
triangles via symbolic computation. In: England, M., Koepf, W., Sadykov, T.M.,
Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 458–477.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2 30

19. Zeng, Z., Shan, M.: Semi-mechanization method for an unsolved optimization prob-
lem in combinatorial geometry. In: SAC 2007, pp. 762–766 (2007)

http://mathworld.wolfram.com/HeilbronnTriangleProblem.html
https://doi.org/10.1007/978-1-4613-3557-3_14
https://doi.org/10.1007/978-1-4613-3557-3_14
https://doi.org/10.1007/978-3-642-21046-4_11
https://doi.org/10.1007/978-3-642-21046-4_11
https://doi.org/10.1007/978-3-030-26831-2_30

mmonagan@cecm.sfu.ca

Extended Abstracts – Research Stream

mmonagan@cecm.sfu.ca

PseudoLinearSystems – A Maple Package
for Studying Systems of Pseudo-Linear

Equations

Moulay Barkatou, Thomas Cluzeau, and Ali El Hajj(B)

University of Limoges, CNRS, XLIM UMR 7252, MATHIS, Limoges, France
{moulay.barkatou,thomas.cluzeau,ali.el-hajj}@unilim.fr

Abstract. Pseudo-linear systems constitute a large class of linear func-
tional systems including the usual differential, difference and q-difference
systems. The Maple package PseudoLinearSystems is dedicated to the
study of this class of linear systems. It contains a generic procedure for
computing a so-called simple form of a pseudo-linear system as well as
local data useful for the local analysis: k-simple forms, super-irreducible
forms, integer slopes of the Newton polygon, indicial equations, etc. It
is also devoted to the computation of rational solutions (using simple
forms) of a single linear differential, difference or q-difference system, as
well as rational solutions of a system of mixed linear partial differential,
difference and q-difference equations. In this software presentation, we
demonstrate the use of several procedures of the package that are all
based on the simple form procedure.

Keywords: Pseudo-linear systems · Simple forms · Rational solutions

The package is freely available online at [1]. All notions and details about
the algorithms leading to the procedures presented in what follows are explained
in our paper [2] and the references therein. For space restrictions, examples of
computations of all procedures presented below, and more, are given in separate
files at [1].

1 Simple Forms and Local Data

Let K = C((t)) be the field of Laurent series in a variable t over a constant field
C ⊂ Q, and equipped with the t-adic valuation ν. A pseudo-linear system can
be written in the form

L(y) := Aδ(y) + B φ(y) = 0, L = Aδ + B φ, (1)

where A and B are square matrices in Mn(C[[t]]), with C[[t]] the ring of power
series in t, det(A) �= 0, φ is an automorphism of K preserving the valuation,
i.e., ν(φ(a)) = ν(a), for all a ∈ K, and δ is a φ−derivation, that is an additive
map from K to itself satisfying the Leibniz rule δ(ab) = φ(a)δ(b) + δ(a)b, for all
a, b ∈ K.
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 327–329, 2020.
https://doi.org/10.1007/978-3-030-41258-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_24

mmonagan@cecm.sfu.ca

328 M. Barkatou et al.

Definition 1. The leading matrix pencil of a pseudo-linear system (1) is defined
as the matrix polynomial Lλ = A0 λ + B0 in the indeterminate λ, where A0 and
B0 are the constant terms in the t–adic expansion of A and B. We say that
System (1) is simple, or in simple form, if det(Lλ) �= 0.

Simple forms are very useful for many algorithms handling pseudo-linear sys-
tems. The PseudoLinearSystems package contains a procedure SimpleForm
that is generic enough to compute simple forms of any pseudo-linear system of
the form (1). The user enters the matrices A and B with rational function entries
admitting power series expansions, specifies the local parameter t (for instance
t = x−x0 for the singularity x0, and t = 1/x for the singularity ∞), and provides
the automorphism φ and the derivation δ as Maple procedures. For instance,
for a q-difference system written in the form (1), with φ defined as φ(x) = q x
and δ = φ − idK , at the singularity x = ∞ the user defines:
> PhiAction:= proc(M,x) return subs(x=q*x,M) end:
> DeltaAction:= proc(M,x) return PhiAction(M,x)-M end:
> t:=1/x;
The user hence runs
> SimpleForm(A, B, x, t, DeltaAction, PhiAction);
The output is a list containing respectively the matrices ̂A and ̂B of the equiv-
alent simple system ̂L(y) = ̂A δ(y) + ̂B φ(y) = 0, the two invertible matrices S

and T such that ̂L = S LT , and the determinant of the leading matrix pencil of
̂L, that is thus not identically zero.

PseudoLinearSystems contains procedures based on SimpleForm that are
useful for computing local data of pseudo-linear systems. A so called super-
irreducible form is computed by iteratively computing a k-simple form for k =
p − 1, . . . , 0, where p is the Poincaré rank (see [2, Section 4.2], [3]). This can be
performed using our generic SimpleForm procedure just by altering at each
step the derivation δ in its input. For a general pseudo-linear system of the form

δ(y) = M φ(y), M ∈ Mn(K), (2)

the command
> SuperReduced(M,x,t,DeltaAction,PhiAction);

returns the matrix ̂M of an equivalent super-irreducible system δ(y) = ̂M φ(y),
the list of the characteristic polynomials of each of the k-simple systems for
k = m, . . . , 0, where m is the minimal Poincaré rank, and finally the matrix
T ∈ GLn(K) such that ̂M = T−1(Mφ(T) − δ(T)).

PseudoLinearSystems also contains a procedure to compute the minimal
Poincaré rank of System (2). The command
> MinimalPoincareRank(M, x, t, DeltaAction, PhiAction);

returns the minimal Poincaré rank, the matrix ̂M of an equivalent Moser-reduced
system δ(y) = ̂M φ(y), the characteristic polynomial, and finally the matrix
T ∈ GLn(K) such that ̂M = T−1(Mφ(T) − δ(T)).
The integer slopes of the Newton polygon, associated with their corresponding
Newton polynomials can be also computed for a system of the form (2):
> IntegerSlopesNewtonPolygon(M, x, t, DeltaAction, PhiAction);

mmonagan@cecm.sfu.ca

PseudoLinearSystems 329

2 Rational Solutions

The package contains the procedure RationalSolutions 1System, devoted
to computing all rational solutions of one single first order differential, dif-
ference, or q-difference system. This procedure calls the SimpleForm proce-
dure to compute the indicial polynomial at fixed singularities. This is a main
difference compared to similar procedures for rational solutions included in
ISOLDE1, resp., LinearFunctionalSystems2, which uses super-reduction, resp.
EG-eliminations, instead of simple forms.

RationalSolutions 1System takes as an input the matrix defining the sys-
tem, the variable, and the type of the system (e.g., differential, difference,
qdifference). It returns a matrix whose columns form a basis of all rational
solutions ({} if there are no non-trivial rational solutions).

We now consider a fully integrable system {L1(y) = 0, . . . , Lm(y) = 0} com-
posed of m partial pseudo-linear systems, where each Li(y) = 0 is either a par-
tial differential, difference or q-difference system. The PseudoLinearSystems
package also contains the procedure RationalSolutions for computing rational
solutions of such partial pseudo-linear systems. For example, for a system
{

y(x1 + 1, x2, x3) = A(x)y(x), y(x1, q x2, x3) = B(x)y(x),
∂y

∂x3
(x) = C(x)y(x)

}
,

defined over K = C(x1, x2, x3), with A, B ∈ GLn(K), and C ∈ Mn(K), we
enter the following lists:
> L:=[A,B,C]: x:=[x[1],x[2],x[3]]:
> type:=[’difference’, ’qdifference’, ’differential’]:
If the integrability conditions are satisfied, then the command
> y:=RationalSolutions(L, x, type);
returns a matrix whose columns form a basis of all rational solutions and {} if
there are no non-trivial rational solutions.

References

1. Barkatou, M., Cluzeau, T., El Hajj, A.: PseudoLinearSystems - A Maple Package
for Studying Systems of Pseudo-Linear Equations (2019). http://www.unilim.fr/
pages perso/ali.el-hajj/PseudoLinearSystems.html

2. Barkatou, M., Cluzeau, T., El Hajj, A.: Simple forms and rational solutions of
pseudo-linear systems. In: Proceedings of the ISSAC 2019 (2019)

3. Barkatou, M., El Bacha, C.: On k-simple forms of first-order linear differential sys-
tems and their computation. J. Symb. Comput. 54, 36–58 (2013)

1 http://isolde.sourceforge.net.
2 https://www.maplesoft.com/support/help/Maple/view.aspx?path=LinearFunctio

nalSystems.

http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html
http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html
http://isolde.sourceforge.net
https://www.maplesoft.com/support/help/Maple/view.aspx?path=LinearFunctionalSystems
https://www.maplesoft.com/support/help/Maple/view.aspx?path=LinearFunctionalSystems

mmonagan@cecm.sfu.ca

Machine Learning to Improve Cylindrical
Algebraic Decomposition in Maple

Matthew England(B) and Dorian Florescu

Faculty of Engineering, Environment and Computing, Coventry University,
Coventry CV1 5FB, UK

{Matthew.England,Dorian.Florescu}@coventry.ac.uk

Abstract. Many algorithms in computer algebra systems can have their
performance improved through the careful selection of options that do
not affect the correctness of the end result. Machine Learning (ML) is
suited for making such choices: the challenge is to select an appropri-
ate ML model, training dataset, and scheme to identify features of the
input. In this extended abstract we survey our recent work to use ML
to select the variable ordering for Cylindrical Algebraic Decomposition
(CAD) in Maple: experimentation with a variety of models, and a new
flexible framework for generating ML features from polynomial systems.
We report that ML allows for significantly faster CAD than with the
default Maple ordering, and discuss some initial results on adaptability.

1 Introduction

Machine learning (ML) is the branch of artificial intelligence where computers
learn computational tasks without being explicitly instructed. It is most attrac-
tive when the underlying functional relationship modelled is not well understood.

Software for computational mathematics will usually come with a range of
choices which, while having no effect on the correctness of the end result, could
have a great effect on how that result is presented and the resources required
to find it. These choices range from the low level (in what order to perform a
search that may terminate early) to the high (which of a set of competing exact
algorithms to use for this problem instance). See for example the survey [5]. The
issues are even more pronounced for computer algebra systems where the objects
of computation are symbolic with often multiple acceptable representations. In
practice these choices are taken by human-made heuristics − our hypothesis is
that many could be improved by allowing ML algorithms to analyse the data.

In this extended abstract we discuss our work on using ML to select the
variable ordering for Cylindrical Algebraic Decomposition (CAD): an algorithm
that decomposes real space relative to a polynomial system. CAD was developed
to perform quantifier elimination over the reals − see the collection [2]. Our
experiments have focussed on the CAD implementation in Maple, part of the
RegularChains Library as described in [3].

The authors are supported by EPSRC Project EP/R019622/1: Embedding Machine
Learning within Quantifier Elimination Procedures.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 330–333, 2020.
https://doi.org/10.1007/978-3-030-41258-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_25

mmonagan@cecm.sfu.ca

Machine Learning to Improve Cylindrical Algebraic Decomposition in Maple 331

2 Machine Learning for CAD Variable Ordering

2.1 Results from CICM 2014

The first application of ML for choosing a CAD variable ordering was [9] which
used a support vector machine to select which of three human-made heuristics
to follow. The experiments there identified substantial subsets of examples for
which each of the three heuristics outperformed the others, and demonstrated
that the ML meta-heuristic could outperform any one individual heuristic.

2.2 Results from CICM 2019

Our current project has revisited these experiments with the nlsat dataset1,
using 6117 SAT problems with 3 variables, and thus six possible orderings. We
divided into separate datasets for ML training (4612) and testing (1505).

Our first experiments (see [6] for full details) used the CAD routine in
Maple’s RegularChains Library. We experimented with four common ML clas-
sifiers: K−Nearest Neighbours (KNN); Multi-Layer Perceptron (MLP); Decision
Tree (DT); Support Vector Machine (SVM) with RBF kernel. The target vari-
able ordering for ML was defined as the one that minimises the computing time
for a given problem. All models used the same 11 features from [9].

The performance of the models is summarised in Table 1 (top half). Accuracy
is how often the model picked an optimal ordering, while Time is the total com-
putation time for all problems using that model’s choices. The table also gives the
results for virtual solvers who always pick the best (VB)/worst (VW) ordering,
a random choice, and three human-made heuristics: sotd [4], Brown’s heuristic
(Br) [1], and the RegularChains:-SuggestVariableOrdering function (SVO).

SVO was omitted from [6]. It is the default used by Maple when the user
neglects to specify an ordering. It does produce the lowest computation times of
the human made heuristics, but all four ML models significantly outperform it.

2.3 Results from SC-Square 2019

We next considered how to extract further information from the input data. The
11 features used in [6,9] were derived in turn from the human heuristics. They
can all be cheaply extracted from polynomials (e.g. measures of variable degree
and frequency of occurence). The only other ideas from the literature involved
more costly operations from CAD projection operators [4].

In [8] a new feature generation procedure [8] was presented, based on the
observation that the original features can be formalised mathematically using
a small number of basic functions (average, sign, maximum) evaluated on the
degrees of the variables in either one polynomial or the whole system. Consider-
ing all possible combinations of these functions (1728) led to 78 useful and inde-
pendent features for our dataset. The experiments were repeated with these, and
the results are presented in Table 1 (bottom half). All four models were improved
with these additional features.
1 Available at http://cs.nyu.edu/∼dejan/nonlinear/.

http://cs.nyu.edu/~dejan/nonlinear/

mmonagan@cecm.sfu.ca

332 M. England and D. Florescu

Table 1. Performance of ML models and three human-made heuristics.

DT KNN MLP SVM VB VW rand sotd Br SVO

From [6] Accuracy 62.6% 63.3% 61.6% 58.8% 100% 0% 22.7% 49.5% 51 % 50.6%

11 Fts. Time (s) 9 994 10 105 9 822 10 725 8 623 64 534 30 235 11 938 10 951 10 821

From [8] Accuracy 65.2% 66.3% 67% 65%

78 Fts. Time (s) 9 603 9 178 9 399 9 487

3 Further Experiments on Adaptability of Classifiers

We are now experimenting with how adaptable these classifiers are: whether
they can be applied elsewhere without further training. We first considered using
them to predict the orderings for an alternative Maple CAD implementation
(without retraining). The CAD from the ProjectionCAD Library [7] uses the
traditional projection and lifting algorithm [2] rather than working via complex
space with regular chains theory. The ML models still made better choices than
the human-made heuristics but the difference is not as significant.

We also investigated how the models perform when presented with problems
from a different CAD dataset2 (one not large enough for training with). In
this case a human-made heuristic outperformed the ML models. Thus our next
challenge is to identify a training dataset that better represents the wide range
of CAD problems that a Maple user may be interested in.

References

1. Brown, C.: ISSAC 2004 Tutorial Notes (2004). http://www.usna.edu/Users/cs/
wcbrown/research/ISSAC04/handout.pdf

2. Caviness, B.F., Johnson, J.R.: Quantifier Elimination and Cylindrical Algebraic
Decomposition. Texts and Monographs in Symbolic Computation. Springer, Cham
(1998). https://doi.org/10.1007/978-3-7091-9459-1

3. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decom-
position based on regular chains. In: Proceedings of the ISSAC 2014, pp. 91–98.
ACM (2014). https://doi.org/10.1145/2608628.2608666

4. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Pro-
ceedings of the ISSAC 2004, pp. 111–118. ACM (2004). https://doi.org/10.1145/
1005285.1005303

5. England, M.: Machine learning for mathematical software. In: Davenport, J.H.,
Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 165–
174. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8 20

6. England, M., Florescu, D.: Comparing machine learning models to choose the vari-
able ordering for cylindrical algebraic decomposition. In: Kaliszyk, C., Brady, E.,
Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp.
93–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4 7

2 Available from http://dx.doi.org/10.15125/BATH-00069.

http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1145/2608628.2608666
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1007/978-3-319-96418-8_20
https://doi.org/10.1007/978-3-030-23250-4_7
http://dx.doi.org/10.15125/BATH-00069

mmonagan@cecm.sfu.ca

Machine Learning to Improve Cylindrical Algebraic Decomposition in Maple 333

7. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the regular chains
library to build cylindrical algebraic decompositions by projecting and lifting. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 458–465. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44199-2 69

8. Florescu, D., England, M.: Algorithmically generating new algebraic features of
polynomial systems for machine learning. In: Proceedings of the SC2 2019. CEUR
Workshop Proceedings, vol. 2460, 12 p. (2019). http://ceur-ws.org/Vol-2460/

9. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the
variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543,
pp. 92–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3 8

https://doi.org/10.1007/978-3-662-44199-2_69
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1007/978-3-319-08434-3_8

mmonagan@cecm.sfu.ca

Ball Arithmetic as a Tool in Computer
Algebra

Fredrik Johansson(B)

Inria Bordeaux, Talence, France
fredrik.johansson@gmail.com

http://fredrikj.net

Abstract. This presentation gives an overview of ball arithmetic as a
tool for computing with real numbers in the context of computer algebra,
and discusses recent development to the Arb library.

Keywords: Ball arithmetic · Real numbers · Symbolic-numeric
algorithms

1 Introduction

Computing with real numbers involves tradeoffs in the algorithms or interfaces,
often between speed, correctness and simplicity. Depending on the application,
it is useful to consider three levels of abstraction for real numbers, sometimes
in combination: nonrigorous (floating-point arithmetic), rigorous (interval arith-
metic), and exact (symbolic or lazy).

Ball arithmetic is interval arithmetic with a midpoint-radius representation
of real numbers [1], for example: π ∈ [3.141592654± 4.11 · 10−10]. This format is
particularly suitable for the high precision calculations often needed in computer
algebra applications, for instance to evaluate inequalities, to evaluate symbolic
expressions that may involve large cancellations, and to recover exact coefficients
and formulas from numerical approximations.

The Arb library [2] has been designed to replace many previous uses of non-
rigorous numerics with rigorous (and often more efficient) versions. There are
now several successful projects building on the ball arithmetic in Arb, validating
this approach. This includes libraries and research code written directly against
the low-level C interface, as well as projects working with the high-level inter-
faces to Arb available in Nemo (Julia) and Sage (Python). A good example is
Mezzarobba’s numeric extension of the ore algebra Sage package, which sup-
ports effective analytic continuation of D-finite (holonomic) functions defined by
linear ODEs with polynomial coefficients [3]. This relies heavily on arithmetic
with Arb polynomials. Another good example is the class group computation in
Hecke [4] which depends on Arb matrices.

The experience suggests that ball arithmetic not only makes sense for backend
library code, but that it is a useful abstraction to expose to the end users of
computer algebra software.
c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 334–336, 2020.
https://doi.org/10.1007/978-3-030-41258-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_26

mmonagan@cecm.sfu.ca

Ball Arithmetic as a Tool in Computer Algebra 335

1.1 Algebraic Computation

One of the central tasks in computer algebra is to manipulate polynomials
and matrices with coefficients in various domains, including the real and com-
plex numbers. Floating-point computations often run into problems with ill-
conditioning or cancellation for high-degree or high-dimensional objects, and
errors are not always easy to detect, in particular when they occur inside a
complicated algorithm. Ball arithmetic solves this problem elegantly. Indeed, it
is often straightforward to translate an algorithm designed for exact quantities
to a rigorous numerical version using ball arithmetic; the main caveat is that
comparisons can be uncertain (for example, the truth value of x = y or x < y is
unknown if x and y are represented by overlapping balls of nonzero width), and
conditional cases must be handled accordingly.

The polynomial and matrix arithmetic in Arb has recently been optimized
significantly and now generally runs several times faster than other arbitrary-
precision software [6]. For linear algebra (including linear solving and eigen-
decomposition), Arb provides two levels of functionality: classical nonrigorous
numerical algorithms, and rigorous algorithms. The rigorous functions now use
nonrigorous approximation followed by a posteriori certification to avoid the
pessimistic blow-up resulting from direct methods such as Gaussian elimination
in ball arithmetic. This makes it possible to handle dense linear algebra prob-
lems with dimensions in the thousands, using only modest working precision as
long as the systems are well-conditioned. Direct methods are also used when
appropriate for small systems or for very high precision.

1.2 Analytic Computation

Diverse numerical tools are required for analytic operations, such as the compu-
tation of limits, infinite series, integrals, and evaluation of transcendental func-
tions. The computation of transcendental functions is a task that translates
rather well to rigorous numerics with the help of ball arithmetic. The library
of special functions in Arb is continually being expanded: additions in the last
two years include the complex branches of the Lambert W -function, Coulomb
wave functions, Dirichlet characters and Dirichlet L-functions (contributed by
P. Molin), and arbitrary-index zeros of the Riemann zeta function (contributed
by D.H.J. Polymath).

One of the more important recent additions to Arb is support for rigorous
numerical integration of arbitrary (piecewise meromorphic) user-defined func-
tions, based on adaptive Gaussian quadrature with automatic error bounds com-
puted from complex magnitudes. This approach performs on par with the best
nonrigorous integration tools for a wide range of integrals [5].

The main limitation of rigorous numerical integration (or similar operations)
based on “black-box” evaluation of the integrand in ball arithmetic is that it can-
not converge for improper integrals. Such integrals require symbolic processing,
either in the form of explicit truncation, a suitable change of variables, or use of
an integration scheme designed for the particular singularity at hand. Designing
new symbolic-numeric algorithms in this area is an interesting research topic.

mmonagan@cecm.sfu.ca

336 F. Johansson

1.3 Relation to Other Software

Classical interval arithmetic using endpoints [a, b] is more well known than ball
arithmetic and exists in many implementations. For example, Maple has a built-
in “range arithmetic” (although this is not strictly rigorous) and the external
Maple package intpakX provides a wide range of tools for interval analysis [7].

It is natural to think of classical interval arithmetic as a better tool for
subdivision of space and ball arithmetic as a better tool for representation of
numbers [1], though it should be stressed that the formats are interchangeable
for many tasks. This difference in goals is reflected in the content of the Arb
library: Arb provides few subdivision-related functions and presently offers no
functionality for tasks such as multivariate optimization. On the other hand, it
has excellent support for transcendental functions.

A competitor to Arb is the C library MPFI which implements arbitrary-
precision interval arithmetic using MPFR endpoints [8]. MPFI is designed to
guarantee tightest possible intervals, while Arb makes virtually no a priori guar-
antees about the tightness of the balls. In part due to this tradeoff, Arb is gen-
erally more efficient than MPFI and also offers a much larger set of functions.

For Maple users, Arb may be most directly useful as drop-in replacement
for individual mathematical functions, though one can also imagine more elab-
orate symbolic-numeric applications involving ball arithmetic. At this time, the
author is not aware of any published projects combining Arb and Maple, but
there should not be any technical obstacles since Arb is easy to interface in any
environment with a C foreign function interface (for example, Arb has been used
in projects written in C++, Fortran, Java, JavaScript, Julia and Python).

References

1. van der Hoeven, J.: Ball arithmetic (2009). http://hal.archives-ouvertes.fr/hal-
00432152/fr/

2. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic.
IEEE Trans. Comput. 66, 1281–1292 (2017). https://doi.org/10.1109/TC.2017.
2690633

3. Mezzarobba, M.: Rigorous multiple-precision evaluation of D-finite functions in
SageMath (2016). arxiv:1607.01967

4. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/Hecke: computer algebra
and number theory packages for the Julia programming language. In: ISSAC 2017,
pp. 57–164. ACM (2017). https://doi.org/10.1145/3087604.3087611

5. Johansson, F.: Numerical integration in arbitrary-precision ball arithmetic. In: Dav-
enport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol.
10931, pp. 255–263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96418-8 30

6. Johansson, F.: Faster arbitrary-precision dot product and matrix multiplication. In:
ARITH26 (2019, to appear). arxiv:1901.04289

7. Geulig, I., Krämer, W., Grimmer, M.: intpakX 1.2. http://www2.math.uni-
wuppertal.de/org/WRST/software/intpakX/

8. Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic
and the MPFI library. Reliab. Comput. 11(4), 275–290 (2005). https://doi.org/10.
1007/s11155-005-6891-y

http://hal.archives-ouvertes.fr/hal-00432152/fr/
http://hal.archives-ouvertes.fr/hal-00432152/fr/
https://doi.org/10.1109/TC.2017.2690633
https://doi.org/10.1109/TC.2017.2690633
http://arxiv.org/abs/1607.01967
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1007/978-3-319-96418-8_30
https://doi.org/10.1007/978-3-319-96418-8_30
http://arxiv.org/abs/1901.04289
http://www2.math.uni-wuppertal.de/org/WRST/software/intpakX/
http://www2.math.uni-wuppertal.de/org/WRST/software/intpakX/
https://doi.org/10.1007/s11155-005-6891-y
https://doi.org/10.1007/s11155-005-6891-y

mmonagan@cecm.sfu.ca

The Lie Algebra of Vector Fields Package
with Applications to Mappings

of Differential Equations

Zahra Mohammadi1(B), Gregory J. Reid1, and S.-L. Tracy Huang2

1 Department of Applied Mathematics, University of Western Ontario,
London, Canada

{zmohamm5,Reid}@uwo.ca
2 Data61, CSIRO, Canberra, ACT 2601, Australia

tracy.huang49@gmail.com

Abstract. Lie symmetry groups of transformations (mappings) of dif-
ferential equations leave them invariant, and are most conveniently stud-
ied through their Lie algebra of vector fields (essentially the lineariza-
tion of the mappings around the identity transformation). Maple makes
powerful and frequent use of such Lie algebras, mostly through rou-
tines that are dependent on Maple’s powerful exact integration routines,
that essentially automate traditional hand-calculation strategies. How-
ever these routines are usually heuristic, and algorithmic approaches
require a deeper integration of differential elimination (differential alge-
braic) approaches in applications to differential equations. This is the
underlying motivation of the LieAlgebrasOfVectorFields (LAVF) package
of Huang and Lisle. The LAVF package introduces a powerful algorithmic
calculus for doing calculations with differential equations without the
heuristics of integration to calculate efficiently many properties of such
systems.

We use LAVF in the development of our MapDE package, which deter-
mines the existence of analytic invertible mappings of an input DE to
target DE. Theory, algorithms, and examples of MapDE can be found in
[5,6]. Here we present a brief summary, through examples, of the appli-
cation of LAVF to MapDE.

Keywords: Symmetry · Lie algebra · Structure constants ·
Differential algebra

Differential Equations (DE) are the main tools to mathematically express gov-
erning laws of physics and models in biology, financial and other applications.
Examining the solutions of related DE helps to gain insights into the phenomena
described by the DE. However, finding exact solutions of DE can be extremely
difficult and often impossible. Analyzing solutions of DE using their symmetries
is one of the main approaches to this problem. An important application of
symmetries of PDE is to determine if the PDE is linearizable by an invertible

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 337–340, 2020.
https://doi.org/10.1007/978-3-030-41258-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_27

mmonagan@cecm.sfu.ca

338 Z. Mohammadi et al.

mapping and construct the linearization in terms of exploiting the Lie symmetry
invariance algebra of vector fields of the given PDE and construct a linear target
and the mapping when the existence is established.

Here we describe the application of the LAVF package in our MapDE algorithm
that determines the existence and construction of local mapping relating a given
Source DE system to a more tractable Target DE. Please see [5,6] for additional
details, examples, algorithms, references and theoretical results. MapDE will be
integrated into the LAVF package of Huang and Lisle [2,3]. LAVF is a powerful
object-oriented Maple package for determining the structure of symmetry of dif-
ferential equation by extracting algebraic and geometric information about Lie
algebras of vector fields (e.g. isomorphism invariants, diffeomorphism invariants,
various sub-algebras, upper and lower series, etc). LAVF can automatically com-
pute defining systems and Lie algebra structure for various objects including
derived algebras which are core operations needed by MapDE.

Example 1. Consider a class of Schrödinger equations in N space (for N =
1, · · · , 10) with time varying harmonic oscillator potentials for u(x1, · · · , xN , t):

i ut = ∇2 u +
N∑

j=1

t2 x2
j .u

Application of pdsolve fails to find the symmetries or to solve any of the above
equations (even for N = 1). However LAVF can efficiently compute the struc-
ture of Lie Symmetry algebras of the above equations for any N = 1, · · · , 10.
We note that the above equations with such harmonic oscillator potentials are
fundamental in physics.

LAVF computes Lie Algebra of Vector fields for the determining equa-
tions of differential equation and Derived Algebras by using command lines of
LAVF e.g. VectorField, SymmetryLAVF, DerivedAlgebra, etc. These commands
improve the construction stage of MapDE algorithm and other commands such as
SolutionDimension help us to build an efficient linearizations existence test.

Table 1. Table presents the CPU times for
(

d
dx

)d
(u(x)2) + u(x)2 = 0. Timings corre-

spond to the existence (3rd and 4rd row) and construction (5th row) of linearization
by MapDE.

Existence and construction of linearization ODE in secs using MapDE

Order ODE 3 4 5 6 7 8 9 10 11 12 13 14 15

ExistenceLGMTest .406 .266 .515 .609 1.000 1.329 1.734 2.500 2.953 4.204 6.000 7.922 10.359

ExistenceHilbertTest .484 .329 .578 .687 1.094 1.454 1.844 2.625 3.078 4.360 6.203 8.109 10.609

Existence and

construction

.578 .407 .672 .812 1.234 1.735 2.062 3.125 3.453 4.860 7.000 9.156 11.688

mmonagan@cecm.sfu.ca

The Application of LAVF to MapDE 339

Procedure 1 LGMLinearizationTest
IsLinearizable := proc (Q)

local n, xi, eta, Y, L, m, DA, Linearizability;
n := PDEtools[difforder] (Q);
Linearizability := false;
Y := VectorField ([[xi(x, u), x], [eta(x, u), u]]);
L := SymmetryLAVF ([Q], Y);
m := SolutionDimension (L);
DA := DerivedAlgebra (L);
if 2 < n and m = n + 4 then Linearizability := true;

return Linearizability;
elif 2 < n and (m = n + 1 or m = n + 2) then

DA := DerivedAlgebra (L);
if IsAbelian (DA) and n = SolutionDimension (DA) then

Linearizability := true
end if

end if ;
return Linearizability;

end proc;

Example 2 (Lyakhov, Gerdt and Michels ODE Test Set [4]). To illustrate the
flexibility and power of LAVF we use it to implement algorithm (I) of [4] using
LAVF commands for ODE[n] =

(
d
dx

)n
(u(x)2) + u(x)2 = 0 of order n ≥ 3. See

Procedure 1.
It admits the linearization:

Ψ = {x̂ = ψ = x, û = φ = u2}
The times for detecting the existence of the linearization by Lyakhov et al. test
in range from 0.2 s for d = 3 to about 150 s for d = 15. Their linearization
construction method takes 7512.9 s for n = 9 and out of memory for n ≥ 10.
(See [4] for these results). Our runs of the same tests to determine the existence
and construct the map are displayed in Table 1. We also report the time for our
other linearization test, Hilbert test, see our paper [6] for more details.

References

1. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods
to Partial Differential Equations. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-0-387-68028-6

2. Huang, S.L.: Properties of lie algebras of vector fields from lie determining system.
Ph.D. thesis, University of Canberra (2015)

3. Lisle, I.G., Huang, S.-L.T: Algorithmic calculus for Lie determining systems. J.
Symbolic Comput. 79(part 2), 482–498 (2017)

4. Lyakhov, D., Gerdt, V., Michels, D.: Algorithmic verification of linearizability for
ordinary differential equations. In: Proceedings ISSAC 2017, pp. 285–292. ACM
(2017)

https://doi.org/10.1007/978-0-387-68028-6
https://doi.org/10.1007/978-0-387-68028-6

mmonagan@cecm.sfu.ca

340 Z. Mohammadi et al.

5. Mohammadi, Z., Reid, G., Huang, S.-L.T.: Introduction of the MapDE algorithm
for determination of mappings relating differential equations. arXiv:1903.02180v1
[math.AP] (2019). To appear in Proceedings of ISSAC 2019. ACM

6. Mohammadi, Z., Reid, G., Huang, S.-L.T.: Symmetry-based algorithms for invert-
ible mappings of polynomially nonlinear PDE to linear PDE. Submitted to Mathe-
matics of Computer Science (Revision requested 15 May 2019)

http://arxiv.org/abs/1903.02180v1

mmonagan@cecm.sfu.ca

Polynomial Factorization in Maple 2019

Michael Monagan(B) and Baris Tuncer

Department of Mathematics, Simon Fraser University, Burnaby, Canada
mmonagan@cecm.sfu.ca

Extended Abstract

Maple 2019 has a new multivariate polynomial factorization algorithm for fac-
toring polynomials in Z[x1, x2, ..., xn], that is, polynomials in n variables with
integer coefficients. The new algorithm, which we call MTSHL, was developed by
the authors at Simon Fraser University. The algorithm and its sub-algorithms
have been published in a sequence of papers [3–5]. It was integrated into the
Maple library in early 2018 by Baris Tuncer under a MITACS internship with
Maplesoft. MTSHL is now the default factoring algorithm in Maple 2019.

The multivariate factorization algorithm in all previous versions of Maple is
based mainly on the work of Wang in [6,7]. Geddes is the main author of the
Maple code. The algorithm and sub-algorithms are described in Chap. 6 of [1].
Wang’s algorithm is still available in Maple 2019 with the method="Wang" option
to the factor command.

Wang’s method can be exponential in n the number of variables. MTSHL
is a random polynomial time algorithm. In [3] we found that it is faster than
previous polynomial time methods of Kaltofen [2] and Zippel [8] and competitive
with Wang’s method in cases where Wang’s method is not exponential in n.

Here we give an overview of the main idea in MTSHL. Let a be the
input polynomial to be factored. Suppose a = fg for two irreducible fac-
tors f, g ∈ Z[x1, . . . , xn]. The multivariate polynomial factorization algorithm
used in all computer algebra systems is based on Multivariate Hensel Lift-
ing (MHL). For a description of MHL see Chap. 6 of [1]. MHL first chooses
integers α2, α3, . . . , αn that satisfy certain conditions and factors the univari-
ate image a1 = a(x1, α2, . . . , αn) in Z[x1]. Suppose a1(x1) = f1(x1)g1(x1) and
f1(x1) = f(x1, α2, . . . , αn) and g1(x1) = g(x1, α2, . . . , αn). Next MHL begins
Hensel lifting. Wang’s design of Hensel lifting recovers the variables x2, . . . , xn

in the factors f and g one at a time in a loop. Let us use the notation

fj = f(x1, . . . , xj , αj+1, . . . , αn) for j ≥ 1.

So at the j’th step of MHL we have the factorization aj−1 = fj−1gj−1 and we
want to obtain the factorization aj = fjgj . Consider the polynomials fj and gj

expanded as a Taylor polynomial about xj = αj

fj =
deg(fj ,xj)∑

i=0

σi(xj − αj)i and gj =
deg(gj ,xj)∑

i=0

τi(xj − αj)i

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 341–345, 2020.
https://doi.org/10.1007/978-3-030-41258-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_28

mmonagan@cecm.sfu.ca

342 M. Monagan and B. Tuncer

Here σi, τi ∈ Z[x1, . . . , xj−1] and σ0 = fj−1 and τ0 = gj−1 are known. MHL
recovers the coefficients σi, τi one at a time in a loop. Let supp(σ) denote the
support of σ, that is, the set of monomials in σ. Before continuing we give an
example to fix the ideas and notation presented so far. Let f = x3

1 − x1x2x
2
3 +

x3
2x

2
3 + x3

3 − 27. For α3 = 2, we have f2 = f(x1, x2, 2) = x3
1 + 4x3

2 − 4x1x2 − 19.
Expanding f about x3 = 2 we have

f = (x3
1 + 4x3

2 − 4x1x2 − 19)︸ ︷︷ ︸
σ0

+ (4x3
2 − 4x1x2 + 12)︸ ︷︷ ︸

σ1

(x3 − 2)

+ (x3
2 − x1x2 + 6)︸ ︷︷ ︸

σ2

(x3 − 2)2 + 1︸︷︷︸
σ3

(x3 − 2)4.

We have supp(σ0) = {x3
1, x

3
2, x1x2, 1}, supp(σ1) = supp(σ2) = {x3

2, x1x2, 1},
and supp(σ3) = {1}. Multivariate Hensel Lifting (MHL) computes σi and τi by
solving the multivariate polynomial diophantine (MDP) equation

σigj−1 + τifj−1 = ci in Zp[x1, . . . , xj−1]

where the polynomial ci is the Taylor coefficient

coeff(aj −
(

k−1∑

i=0

σi(xj − αj)i

) (
k−1∑

i=0

τi(xj − αj)i

)
, (xj − αj)k).

Most of the time in MHL is solving these MDP equations. Wang’s method for
solving them is recursive. If the α2, . . . , αn are non-zero Wang’s method is expo-
nential in n. For many polynomials it is possible to use zero for some or all αj

and avoid this exponential behaviour. But this is not always possible as there are
several conditions that α2, . . . , αn must satisfy. The sparse Hensel lifting meth-
ods of [2] and [8] were developed to solve this problem. It turns out that if the
integer αj is chosen randomly from a large set then

supp(σi) ⊇ supp(σi+1) for 0 ≤ i < deg(fj , xj) (1)

with high probability. The reader may verify this support chain holds in Example
1 where α = 2 but it does not hold if α = 0. See Lemma 1 in [3] for a precise
statement for the probability and proof. MTSHL exploits (1) by using supp(σi−1)
as the support for σi to construct linear systems to solve for the coefficients of
σi in x1. The linear systems are tj × tj transposed Vandermonde systems where
tj = #coeff(σi, x

j
1). We use Zippel’s method from [9] to solve them in O(t2j) time

and O(tj) space. Since the number of terms in σi and τi is not more than those
in f and g respectively, our algorithm takes advantage of sparse factors f and g.

We present two benchmarks comparing the new algorithm MTSHL in Maple
2019 with Wang’s method in Maple 2019. The following Maple code creates an
input polynomial a ∈ Z[x1, . . . , xn] which is a product of two factors f ×g. Each
factor has n variables, 100 terms, and degree at most d. The Maple command
randpoly creates each term randomly to have degree at most d with an integer
coefficient chosen at random from [−106, 106].

mmonagan@cecm.sfu.ca

Polynomial Factorization in Maple 2019 343

kernelopts(numcpus=1); t := 100; d := 15;

for n from 5 to 12 do

X := [seq(x||i, i=1..n)];

f := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);

g := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);

a := expand(f*g);

h := CodeTools[Usage](factor(a,method="Wang"));

#h := CodeTools[Usage](factor(a)); # Uses MTSHL in Maple 2019

od:

Shown in column (MDP) in Table 1 is the percentage of time Wang’s
algorithm spent solving Multivariate Diophantine Equations. MTSHL is not
impacted significantly by the number of variables. In theory the cost of MTSHL
is linear in n which is supported by this example.

Table 1. Factorization timings in CPU seconds

n Wang (MDP) MTSHL n Wang (MDP) MTSHL

5 4.87 s (89.4%) .509 s 10 65.55 s (98.0%) .911 s

6 8.67 s (85.8%) .589 s 11 154.8 s (98.0%) .989 s

7 6.77 s (91.2%) .616 s 12 169.8 s (99.0%) 1.78 s

8 35.04 s (94.7%) .718 s 13 163.8 s (96.5%) 1.16 s

9 40.33 s (99.6%) .788 s 14 603.6 s (98.7%) 2.37 s

Let Cn denote the n × n cyclic matrix. See Fig. 1. Observe that detCn is
a homogeneous polynomial in Z[x1, . . . , xn]. Because the factors of det Cn are
dense, MTSHL has no inherent advantage over Wang’s method and we expected
it to be slower than Wang’s method.

x1 x2 . . . xn−1 xn

xn x1 . . . xn−2 xn−1

...
...

...
...

...
x3 x4 . . . x1 x2

x2 x3 . . . xn x1

(x1 + x2 + x3 + x4)
(x1 − x2 + x3 − x4)

x2
1 − 2x1 x3 + x2

2 − 2x2 x4 + x2
3 + x2

4

)

Fig. 1. The cyclic n× n matrix Cn and the factors of det(C4).

Maple code for computing detCn and factoring detCn is given below. Note,
for a homogenous input polynomial detCn, the factor command evaluates one
variable xi = 1, factors det(Cn)(xi = 1) then homogenizes the factors. To fix i
we compute and factor det(Cn(xn = 1)).

mmonagan@cecm.sfu.ca

344 M. Monagan and B. Tuncer

kernelopts(numcpus=1);

for n from 6 to 10 do

Cn := Matrix(n,n,shape=Circulant[x]);

Cn := eval(Cn,x[n]=1); # dehomogenize Cn

d := LinearAlgebra[Determinant](Cn,method=minor);

F := CodeTools[Usage](factor(d));

#F := CodeTools[Usage](factor(d,method="Wang"));

od:

Table 2. Timings (CPU time seconds) for factoring det(Cn(xn = 1))

n #det deg(fi) max #fi MTSHL Wang (MDP) Magma

8 810 1, 1, 2, 4 86 0.140 s 0.096 s (52%) 0.12 s

9 2704 1, 2, 6 1005 0.465 s 0.253 s (76%) 1.02 s

10 7492 1, 1, 4, 4 715 3.03 s 1.020 s (49%) 10.97 s

11 32066 1, 10 184756 1.33 s 12.43 s (88%) 142.85 s

12 86500 1, 1, 2, 2, 2, 4 621 4.97 s 20.51 s (65%) 7575.14 s

13 400024 1, 12 2704156 10.24 s 212.40 s (88%) 30,871.9 s

14 1366500 1, 1, 6, 6 27132 666.0 s 1364.4 s (68%) >106 s

Table 2 contains data for detCn and timing data for factoring detCn(xn = 1).
Column 2 is the number of terms of detCn. Column 3 is the degrees of the factors
of Cn. Column 4 is the number of terms of the largest factor. Columns 5–7 are
the CPU time to factor det Cn using our new algorithm MTSHL in Maple 2019,
Wang’s algorithm in Maple 2019 and Wang’s algorithm in the Magma computer
algebra system.

References

1. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer
Academic Publishers, Boston (1992)

2. Kaltofen, E.: Sparse hensel lifting. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS,
vol. 204, pp. 4–17. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-
15984-3 230

3. Monagan, M., Tuncer, B.: Using sparse interpolation in Hensel lifting. In: Gerdt,
V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890,
pp. 381–400. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6 25

4. Monagan, M., Tuncer, B.: Factoring multivariate polynomials with many factors
and huge coefficients. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V.
(eds.) CASC 2018. LNCS, vol. 11077, pp. 319–334. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99639-4 22

5. Monagan, M., Tuncer, B.: The complexity of sparse Hensel lifting and sparse poly-
nomial factorization. Symb. Comput. 99, 189–230 (2019)

https://doi.org/10.1007/3-540-15984-3_230
https://doi.org/10.1007/3-540-15984-3_230
https://doi.org/10.1007/978-3-319-45641-6_25
https://doi.org/10.1007/978-3-319-99639-4_22
https://doi.org/10.1007/978-3-319-99639-4_22

mmonagan@cecm.sfu.ca

Polynomial Factorization in Maple 2019 345

6. Wang, P.S., Rothschild, L.P.: Factoring multivariate polynomials over the integers.
Math. Comput. 29(131), 935–950 (1975)

7. Wang, P.S.: An improved multivariate polynomial factoring algorithm. Math. Com-
put. 32, 1215–1231 (1978)

8. Zippel, R.E.: Newton’s iteration and the sparse Hensel algorithm. In: Proceedings
SYMSAC 1981, pp. 68–72. ACM (1981)

9. Zippel, R.E.: Interpolating polynomials from their values. J. Symb. Comput. 9(3),
375–403 (1990)

mmonagan@cecm.sfu.ca

Extended Abstracts –
Education/Applications Stream

mmonagan@cecm.sfu.ca

Distributive Laws Between the Operads
Lie and Com

Murray Bremner1(B) and Vladimir Dotsenko2

1 Department of Mathematics and Statistics, University of Saskatchewan,
Saskatoon, Canada

bremner@math.usask.ca
2 Institut de Recherche Mathématique Avancée, UMR 7501, Université de

Strasbourg et CNRS, 7 rue René-Descartes, 67000 Strasbourg CEDEX, France
vdotsenko@unistra.fr

Abstract. We apply computer algebra, especially linear algebra over
polynomial rings and Gröbner bases, to classify inhomogeneous distribu-
tive laws between the operads for Lie algebras and commutative associa-
tive algebras.

Keywords: Computer algebra · Linear algebra over polynomial rings ·
Gröbner bases · Algebraic operads · Distributive laws · Lie and
commutative algebras

1 Theory

We refer the reader to [1,5] for a systematic treatment of algebraic operads and
Gröbner bases, and to [4] for specific information on weight graded operads. All
objects in this paper are defined over an arbitrary field k. We denote by ◦ the
composition of (underlying symmetric) collections, and by ◦′ the infinitesimal
composition.

Let P = T (X)/(R) and Q = T (Y)/(S) be two weight graded operads
presented by generators and relations; we assume the standard weight grading
for which the generators are of weight 1. We say that an operad O generated by
X ⊕ Y is obtained from P and Q by an inhomogeneous distributive rewriting
rule if the defining relations of O are ˜R ⊕D ⊕S , with subcollections ˜R and D
of the free operad T (X ⊕Y) satisfying two constraints: (i) There should exist a
map of weight graded collections ρ : R → T (X)◦T (Y) ⊂ T (X ⊕Y) such that
the post-composition of ρ with the projection T (X ⊕Y) � T (X) is zero, and
the subcollection ˜R consists of all elements of the form r − ρ(r) with r ∈ R. (ii)
There should exist a map of weight graded collections λ : Y ◦′X → T (X ⊕Y)(2)
such that the post-composition of λ with the projection T (X ⊕Y) � T (X) is
zero, and the subcollection D consists of all elements v − λ(v) with v ∈ Y ◦′ X .

The first author was supported by the Discovery Grant Algebraic Operads from
NSERC. The authors thank the anonymous referees for useful comments.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 349–352, 2020.
https://doi.org/10.1007/978-3-030-41258-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_29&domain=pdf
http://orcid.org/0000-0003-2672-3189
http://orcid.org/0000-0002-6949-5166
https://doi.org/10.1007/978-3-030-41258-6_29

mmonagan@cecm.sfu.ca

350 M. Bremner and V. Dotsenko

These constraints imply O/(Y) ∼= P; we choose a splitting α : P → O on the
level of weight graded collections, allowing us to define the following maps:

P ◦ Q ↪→ T (P ⊕ Q) → T (O) → O.

We say that an inhomogeneous distributive rewriting rule is an inhomogeneous
distributive law if the composite map η is an isomorphism on the level of collec-
tions.

2 Computations

The operad Com is generated by the symmetric sequence X ; a basis of X (2)
is the commutative operation a1a2, and X (n) = 0 for n �= 2. The relations
R ⊂ Com(3) are the S3-module generated by associativity: (a1a2)a3 − (a2a3)a1;
we have written this relation in commutative normal form. The operad Lie is
generated by the symmetric sequence Y ; a basis of Y (2) is the anticommutative
operation [a1, a2], and Y (n) = 0 for n �= 2. The relations S ⊂ Lie(3) are the S3-
module spanned by the Jacobi identity: [[a1, a2], a3]− [[a1, a3], a2] + [[a2, a3], a1],
written in anticommutative normal form.

If an operad O is obtained from Com and Lie by an inhomogeneous distribu-
tive law, then O must be a quotient of T (X ⊕ Y) by relations of arity 3. We
determine the viable candidates for the relations of O. They must contain S ,
meaning in our case the Jacobi identity [[a1, a2], a3] − [[a1, a3], a2] + [[a2, a3], a1].
The canonical projection T (X ⊕ Y) � T (X) sends to zero the image of ρ;
hence ρ : R → (X ◦′ Y) ⊕ (Y ◦′ Y). The S3-module R is generated by
(a1a2)a3−(a2a3)a1, which satisfies skew-symmetry under the transposition (13),
and the sum over cyclic permutations is 0. We obtain

(a1a2)a3 − (a2a3)a1 − t3[[a1, a3], a2].

Finally, the canonical projection T (X) ◦ T (Y) � T (X) must send to zero
the image of the map λ; hence λ : Y ◦′X → (X ◦′Y)⊕ (Y ◦′Y). By symmetry
of [a1a2, a3] under the transposition (12), we obtain

[a1a2, a3] − t1
(

[a1, a3]a2 + [a2, a3]a1

) − t2
(

[[a1, a3], a2] + [[a2, a3], a1]
)

.

We focus on checking that the map η is an isomorphism in arity 4. To that
end, we impose the condition dimO(4) = 24, and study this condition using
the methods we applied for classification of regular parametrized one-relation
operads in [2]. This is done using Maple, especially the packages LinearAlgebra
and Groebner.

First, we order a basis of T (X ⊕ Y)(3), and find a reduced row echelon
matrix whose rows form a basis of relations of O; those relations are

r1 = (a1a2)a3 − (a2a3)a1 − t3[a1, a3]a2,
r2 = (a1a3)a2 − (a2a3)a1 − t3[[a1, a3], a2] + t3[[a2, a3], a1],
r3 = [a1a2, a3] − t1[a1, a3]a2 − t1[a2, a3]a1 − t2[[a1, a3], a2] − t2[[a2, a3], a1],
r4 = [a1a3, a2] − t1[a1, a2]a3 + t1[a2, a3]a1 − t2[[a1, a3], a2] + 2t2[[a2, a3], a1],
r5 = [a2a3, a1] + t1[a1, a2]a3 + t1[a1, a3]a2 + 2t2[[a1, a3], a2] − t2[[a2, a3], a1],
r6 = [[a1, a2], a3] − [[a1, a3], a2] + [[a2, a3], a1].

mmonagan@cecm.sfu.ca

Distributive Laws Between the Operads Lie and Com 351

Pre- and post-composing the relations r1, . . . , r6 with the generators of O,
and applying all 24 permutations of the arguments, we obtain a spanning set
of 1152 consequences of arity 4 of those relations. These consequences are lin-
ear combinations of the basis elements of the vector space T (X ⊕ Y)(4) of
dimension 120. This gives us a 1152 × 120 matrix M which has entries in the
polynomial ring Q[t1, t2, t3], which we equip with the deglex (tdeg in Maple)
monomial order t1 	 t2 	 t3.

Since Q[t1, t2, t3] is not a PID, the matrix M has no Smith form, but since
many entries of M are ±1, we can compute a partial Smith form; see [1, Chapter
8] and [2]. The result is a block matrix

(

I96 096×24

01056×96 L′

)

where the 1056 × 24 lower right block L′ has many zero rows. Deleting the zero
rows, we obtain a 372 × 24 matrix L which contains 126 distinct elements of
Q[t1, t2, t3]. We replace each of these elements by its monic form and obtain a
set S of 56 distinct polynomials of degrees 2 and 3. Finally, we compute the
reduced Gröbner basis for the ideal I generated by S and obtain the set

t2, t3(t1 − 1), t1(t1 − 1).

Hence the zero set of I consists of the point (0, 0, 0) and the line (1, 0, t3). By the
results of [3,6], each of the corresponding operads is indeed obtained from Com
and Lie by an inhomogeneous distributive law. Since any isomorphism between
two different such operads O and O ′ must send the symmetric generator of O
into a nonzero scalar multiple of the symmetric generator of O ′, and the anti-
symmetric generator of O into a nonzero scalar multiple of the anti-symmetric
generator of O ′, we immediately obtain a classification up to isomorphism, as
follows.

Theorem 1. The only operads obtained from the symmetric operads Com and
Lie by an inhomogeneous distributive law are defined by the following relations:

⎧

⎨

⎩

(x1x2)x3 − x1(x2x3) = 0,
[x1x2, x3] = 0,
[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2] = 0.

(1)

⎧

⎨

⎩

(x1x2)x3 − x1(x2x3) + q[[x1, x3], x2] = 0 (q ∈ k),
[x1x2, x3] − [x1, x3]x2 − x1[x2, x3] = 0,
[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2] = 0.

(2)

To classify such operads up to isomorphism, replace q ∈ k by q ∈ k/(k×)2 in
the first relation of the operads (2). In particular, over C, the operads (2) are
all isomorphic for nonzero q; that is, the same operad admits many different
presentations.

mmonagan@cecm.sfu.ca

352 M. Bremner and V. Dotsenko

References

1. Bremner, M., Dotsenko, V.: Algebraic Operads: An Algorithmic Companion. Chap-
man and Hall/CRC, Boca Raton (2016)

2. Bremner, M., Dotsenko, V.: Classification of regular parametrised one-relation oper-
ads. Can. J. Math. 69(5), 992–1035 (2017)

3. Dotsenko, V., Griffin, J.: Cacti and filtered distributive laws. Algebraic Geom. Topol.
14(6), 3185–3225 (2014)

4. Dotsenko, V., Markl, M., Remm, E.: Non-Koszulness of operads and positivity of
Poincaré series. Preprint arXiv:1604.08580

5. Loday, J.L., Vallette, B.: Algebraic Operads. Grundlehren der mathematischen Wis-
senschaften, vol. 346. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30362-3

6. Markl, M., Remm, E.: Algebras with one operation including Poisson and other
Lie-admissible algebras. J. Algebra 299(1), 171–189 (2006)

http://arxiv.org/abs/1604.08580
https://doi.org/10.1007/978-3-642-30362-3
https://doi.org/10.1007/978-3-642-30362-3

mmonagan@cecm.sfu.ca

Classifying Discrete Structures by Their
Stabilizers

Gilbert Labelle(B)

LaCIM, Université du Québec à Montréal, Montréal, (QC), Canada
labelle.gilbert@uqam.ca

http://www.lacim.uqam.ca

Abstract. Combinatorial power series are formal power series of the
form

∑
cn,HXn/H where, for each n, H runs through subgroups of the

symmetric group Sn and the coefficients cn,H are complex numbers (or
ordinary power series involving some “weight variables”). Such series
conveniently encode species of combinatorial (possibly weighted) struc-
tures according to their stabilizers (up to conjugacy). We give general
lines for expressing these kinds of series – as well as the main operations
(+, ·, ×, ◦, d/dX) between them – by making use of the GroupTheory

package and give suggestions for possible extensions of that package and
some other specific procedures such as collect, expand, series, etc. An
analysis of multivariable combinatorial power series is also presented.

Keywords: Discrete structures · Stabilizers · Combinatorial
operations

1 Encoding Species by Combinatorial Power Series

Any two rooted trees of Fig. 1 in a rectangle share the same stabilizer group but
are not isomorphic. For example, in the last rectangle, this common stabilizer is
the 2-element subgroup 〈(1, 2)〉 of S5 generated by the transposition (1, 2)1.

Definition 1. Two discrete structures s and t are similar if they share the same
stabilizer subgroup of Sn after suitable relabelings of their underlying sets by [n] =
{1, 2, . . . , n}. Equivalently, s and t are similar if they have conjugate stabilizers
in Sn when their underlying sets are arbitrarily relabeled by [n].

In order to enumerate structures according to the nature of their stabilizers,
fix, for each n ≥ 0, a system Hn = {Hn,1,Hn,2, · · · ,Hn,cn} of representatives
of the cn conjugacy classes of subgroups of the symmetric group Sn and let
H = ∪∞

n=0Hn. Then, any class F of discrete structures on arbitrary finite sets

− See [1] and [4] for more references about combinatorial species.
1 Two subgroups G of Sn and H of Sm, with n �= m, are always considered to be be

different, even if they consist of the ”same” permutations.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 353–356, 2020.
https://doi.org/10.1007/978-3-030-41258-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_30&domain=pdf
http://orcid.org/0000-0003-0281-000X
https://doi.org/10.1007/978-3-030-41258-6_30

mmonagan@cecm.sfu.ca

354 G. Labelle

Fig. 1. The 17 non isomorphic rooted trees on ≤ 5 elements grouped by similarity.

that is closed under arbitrary relabellings of their underlying sets2 is encoded
by a combinatorial power series3 (CPS for short)

F (X) =
∑

n≥0

∑

H∈Hn

cn,H(F)Xn/H (1)

where cn,H(F) = the number of similar non isomorphic F -structures on [n] whose
stabilizers are conjugate to H. Of course, when cn,H(F) = 0, the corresponding
term does not appear in (1). Also, if H = {idn}, the trivial identity subgroup of
Sn, then Xn/{idn} is denoted by Xn. For example, let L,C,E be respectively
the species of finite linear orders, cyclic permutations and sets then it is easily
checked that

L(X) =
∑

n≥0

Xn, C(X) =
∑

n≥1

Xn/Cn, E(X) =
∑

n≥0

Xn/Sn,

where Cn = 〈(1, 2, . . . , n)〉, Sn = 〈(1, 2), (1, 2, . . . , n)〉. Also, Fig. 1 shows that the
first terms, up to degree 5, of the CPS T (X) of the species T of rooted trees are
given by

T (X) = X + X2 + X3 +
X3

S2
+ 2X4 +

X4

S2
+

X4

S3

+ 3X5 + 3
X5

S2
+

X5

〈(1, 2)(3, 4)〉 +
X5

S3
+

X5

S4
+ · · · .

2 CA Implementation of CPS Calculus

Various operations (including +, ·,×, ◦, d/dX) between CPS’s have been defined
by Yeh to faithfuly reflect the corresponding combinatorial operations between
2 Technically, such classes are species in the sense of Joyal [2]. A species is an endofunc-

tor F of the category of finite sets with bijections as morphisms. For each finite set
U , each s ∈ F [U] is called an F -structure on U and for each bijection β : U → V , the
bijection F [β] : F [U] → F [V] is said to “relabel” (or “transport”) each F -structure
s on U to an isomorphic F -structure t = F [β](s) on V..

3 This kind of series was introduced by Yeh [5] to deal with species.

mmonagan@cecm.sfu.ca

Classifying Discrete Structures by Their Stabilizers 355

species defined by Joyal, by which species can be defined (explicitly or implicitly)
in terms of simpler ones. Moreover, the CPS of a species F is the most refined
series associated to F . It contains, by specialization, all the underlying classical
power series : F (x) (which counts labelled F -structures), F̃ (x) (which counts
unlabelled F -structures), F (x, q) (which q-counts F -structures), as well as the
Pólya-Joyal cycle-index series ZF (x1, x2, x3, . . .).

In this presentation we shall deal with the implementation of CPS calculus
using and suggesting extensions of the Maple GroupTheory package and other
specific procedures. The following points will be discussed.

1. Construct convenient/canonical lists of generators for subgroups of Sn.
2. Efficiently decide whether or not two given subgroups of Sn defined in terms

of generators are conjugate (as subgroups).
3. Construct convenient/canonical (exhaustive or not) ordered lists of systems

of representatives Hn = {Hn,1,Hn,2, · · · ,Hn,cn} of the conjugacy classes of
subgroups of Sn, n ≥ 0. Give suggestive combinatorial names to some Hn,i.

4. Efficiently decide (using Yeh’s criteria [5], or otherwise) whether or not a
given subgroup of Sn is atomic. A subgroup A of Sn is said to be atomic if
it cannot be expressed as an external product H ∗ K, in the sense of [5], of
two subgroups H of SU and K of SV , U ∪ V = [n], U ∩ V = ∅, U
= ∅
= V .

5.Construct convenient/canonical (exhaustive or not) ordered lists of systems
of representatives An = {An,1, An,2, · · · , An,an

} of the conjugacy classes of
atomic subgroups of Sn, n ≥ 0. A theorem of Yeh [5] asserts that every
subgroup H of Sn can be expressed in a unique way (up to conjugacy) as an
external product A ∗ B ∗ · · · of atomic subgroups.

6. Implement the operations +, ·,×, ◦, d/dX on CPS’s making use of linearity,
bilinearity, concatenation, wreath products, double cosets, etc.

7. Implement methods (see [3]) to compute the CPS of special classes of species
to large degrees. For example, the class E of set-like species, defined as the
smallest class of species containing n-sets, n ≥ 0 that is closed under summa-
bility, ·, and ◦. Class E contains the species T of rooted trees, and the CPS
T (X) can be expanded up to large degrees by such methods.

8. Explore the extensions of the above points to the analysis of CPS of weighted
multisort species. These are CPS on several variables X,Y, . . . , of the form

F (X,Y, . . .) =
∑

n,m,···≥0

∑

H∈Hn,m,...

cn,m,...,H(F)XnY m · · · /H

where Hn,m,... is a system of representatives of the conjugacy classes of
subgroups of the Young subgroup Sn,m,... of Sn+m+··· and each coefficient
cn,m,...,H(F) is a polynomial or power series in some weight-variables u, v,

mmonagan@cecm.sfu.ca

356 G. Labelle

References

1. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-like Struc-
tures. Ency. of Mathematics and Its Applications, vol. 67. Cambridge University
Press, Cambridge (1998)

2. Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82 (1981)
3. Labelle, G.: New combinatorial computational methods arising from pseudo sin-

gletons. In: Discrete Mathematics and Theoretical Computer Science, pp. 247–258
(2008)

4. Labelle, G.: Binomial species and combinatorial exponentiation. J. Électronique du
Séminaire Lotharingien de Combinatoire 78, B78a (2018)

5. Yeh, Y.-N.: The calculus of virtual species and K-species. In: Labelle, G., Leroux, P.
(eds.) Combinatoire énumérative. LNM, vol. 1234, pp. 351–369. Springer, Heidelberg
(1986). https://doi.org/10.1007/BFb0072525. ISBN 978-3-540-47402-9

https://doi.org/10.1007/BFb0072525

mmonagan@cecm.sfu.ca

How Maple Has Improved Student
Understanding in Differential Equations

Douglas B. Meade(B)

Department of Mathematics, College of Arts and Sciences,
University of South Carolina, Columbia, SC 29205, USA

meade@math.sc.edu

Abstract. In this talk I will provide a quick tour through some of the
different ways in which I have used Maple to improve student under-
standing of traditional topics in an introductory differential equations
course, such as direction fields, the phenomenon of beats, and develop-
ing an understanding of solutions to first-order systems in phase space.

Keywords: Ordinary differential equations · Conceptual
understanding · Multiple representations · Symbolic and graphical ·
Maplet · Embedded component · Maple Cloud

The algebraic manipulations involved in finding an explicit solution to an
ordinary differential equation can obscure the concepts and structure of the
solution—particularly for students seeing the material for the first time. Maple’s
symbolic capabilities are one way to circumvent some of the algebraic complica-
tions, but students’ abilities to see structure in mathematical expressions.

1 Visualizing Slope Fields for First-Order ODEs

The traditional introductory course in differential equations is an ideal course to
utilize Maple’s symbolic and graphical features to increase student understanding
of fundamental concepts about slope fields. Figures 1 and 2 show two different
maplets intended to help students develop their understanding of slope fields.

These maplets are part of the 201 maplets in the Maplets for Calculus [1]
collection that the author co-wrote with Professor Philip Yasskin of Texas A&M
University. While the maplet technology is now somewhat outdated, the Maplets
for Calculus are still very effective at helping students develop good habits for
solving calculus problems as well as improving their conceptual understanding
of the calculus and differential equations.

Supported in part by NSF DUE grants 0737209 and 1123170, Michael Monagan, Maple-
soft, and the University of South Carolina’s College of Arts and Sciences.

c© Springer Nature Switzerland AG 2020
J. Gerhard and I. Kotsireas (Eds.): MC 2019, CCIS 1125, pp. 357–361, 2020.
https://doi.org/10.1007/978-3-030-41258-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41258-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-41258-6_31

mmonagan@cecm.sfu.ca

358 D. B. Meade

Fig. 1. Maplet for identifying slope field for a given ODE. [1]

Fig. 2. Maplet for identifying ODE for a given slope field. [1]

2 Second-Order Linear ODEs

For second-order linear ordinary differential equations with constant coefficients,
Maple is an ideal tool for reinforcing the process of finding the solution of
the homogeneous equation (Fig. 3), developing an understanding of solutions

mmonagan@cecm.sfu.ca

How Maple Has Improved Student Understanding in Differential Equations 359

in phase space (Fig. 4), and understanding beats and other phenomena that
appear in solutions of an undamped spring-mass system with periodic external
force (Fig. 5).

While Fig. 3 is another example from the Maplets for Calculus collection,
Figs. 4 and 5 are built directly in a Maple worksheet using embedded compo-
nents. These specific examples illustrate some of Maple’s interactive features
for both symbolic and graphical representations of solutions. I like to challenge
students to see if they can find an example that shows a specific characteristic.

3 And More ..

In this talk I will share additional examples of interactive Maple-based resources
developed utilizing combinations of symbolic and graphical representation. While
the specifics are different for each topic, all have a common goal of communicat-
ing fundamental mathematics in a way that allows students to better understand
the underlying mathematics.

Fig. 3. Maplet for finding homogeneous solution of second-order constant coefficient
linear ODE. [1]

mmonagan@cecm.sfu.ca

360 D. B. Meade

Fig. 4. Maple Cloud-based interactive worksheet for multiple visualizations of homo-
geneous solution of second-order constant coefficient linear ODE. [2]

Fig. 5. Maple Cloud-based interactive worksheet for visualizing solutions of undamped
spring-mass problem with oscillating external force. [3]

mmonagan@cecm.sfu.ca

How Maple Has Improved Student Understanding in Differential Equations 361

References

1. Maplets for calculus, version 1.3.1. https://m4c.math.sc.edu/. Accessed 10 Sept
2019

2. Visualizing solution to second-order linear IVP: explicit and phase space,
Maple Cloud. https://maple.cloud/app/5171234265366528/Visualizing+Soln+to+
2nd+order+linear+IVP%3A+explicit+and+phase+space. Accessed 10 Sept 2019

3. Visualizing solution to undamped spring-mass problem with oscillating external
force, Maple Cloud. https://maple.cloud/app/6287234297757696/Visualizing
+Solution+of+Undamped+Spring-Mass+Problem+with+Oscillating+External+
Force. Accessed 10 Sept 2019

https://m4c.math.sc.edu/
https://maple.cloud/app/5171234265366528/Visualizing+Soln+to+2nd+order+linear+IVP%3A+explicit+and+phase+space
https://maple.cloud/app/5171234265366528/Visualizing+Soln+to+2nd+order+linear+IVP%3A+explicit+and+phase+space
https://maple.cloud/app/6287234297757696/Visualizing+Solution+of+Undamped+Spring-Mass+Problem+with+Oscillating+External+Force
https://maple.cloud/app/6287234297757696/Visualizing+Solution+of+Undamped+Spring-Mass+Problem+with+Oscillating+External+Force
https://maple.cloud/app/6287234297757696/Visualizing+Solution+of+Undamped+Spring-Mass+Problem+with+Oscillating+External+Force

mmonagan@cecm.sfu.ca

Author Index

Alvandi, Parisa 13

Barana, Alice 189
Barkatou, Moulay 327
Bouzidi, Yacine 30
Bremner, Murray 349
Bright, Curtis 205
Byrne, Helen M. 114

Caravantes, Jorge 156
Chablat, Damien 50
Char, Bruce 230
Charbonneau, Benoit 65
Chen, Liangyu 307
Cluzeau, Thomas 30, 327
Conte, Alberto 189
Corless, Robert M. 77
Couto, Ana C. Camargos 220

Dehbi, Lydia 307
Dotsenko, Vladimir 349

El Hajj, Ali 327
England, Matthew 330

Fissore, Cecilia 189
Florescu, Dorian 330
Floris, Francesco 189

Ganesh, Vijay 205
Gerhard, Jürgen 205
Gonzalez-Vega, Laureano 92
Gooden, Lancelot Arthur 245
Gould, Scot A. C. 254
Guo, Xiaofeng 263

Hamdi, Samir 101
Harrington, Heather A. 114
Hauenstein, Jonathan D. 114
Huang, S.-L. Tracy 337

Jeffrey, David J. 220
Jing, Rui-Juan 132

Johansson, Fredrik 334
Johnson, Jeremy R. 230

Kazemi, Mahsa 145
Kotsireas, Ilias 205

Labelle, Gilbert 353
Leng, Tuo 263
Levin, David I. W. 101
Lu, Jian 307

Marchisio, Marina 189
Meade, Douglas B. 357
Mehta, Dhagash 114
Mohammadi, Zahra 337
Monagan, Michael 279, 341
Moreno Maza, Marc 132, 145
Moroz, Guillaume 50
Morse, Brian 101

Quadrat, Alban 30

Rafiee Sevyeri, Leili 77
Reid, Gregory J. 337
Rouillier, Fabrice 30, 50

Sacchet, Matteo 189
Sendra, J. Rafael 156
Sendra, Juana 156
Sklavakis, Dimitrios 292

Tonks, Zak 171
Trocado, Alexandre 92
Tuncer, Baris 341

Wang, Jianlin 307
Watt, Stephen M. 13
Weinstein, Marvin 3
Wenger, Philippe 50
Whitehead, Spencer 65

Zeng, Zhenbing 263, 307

	Preface
	Organization
	Contents
	Keynote
	Your Data Wants You to Ask Better Questions. Do It!
	Full Papers – Research Stream
	The LegendreSobolev Package and Its Applications in Handwriting Recognition
	1 Introduction
	2 Preliminaries
	3 Construction of Handwritten Curves from Moments
	4 LegendreSobolev Package
	4.1 Legendre-Sobolev Polynomials
	4.2 Changing a Polynomial Representation w.r.t Different Bases: Legendre-Sobolev, Legendre, and Monomial
	4.3 Computing the Derivates of Polynomials in Legendre-Sobolev Bases
	4.4 Computing the Roots of Polynomials in Legendre-Sobolev Bases
	4.5 Computing Gcds of Polynomials in Legendre-Sobolev Bases

	5 Handwriting Recognition with LegendreSobolev Package
	5.1 Baselines and Cusps
	5.2 Regions of the Characters in a Handwritten Math Expression

	6 Concluding Remarks
	References

	On the Effective Computation of Stabilizing Controllers of 2D Systems
	1 Introduction
	2 The Fractional Representation Approach
	3 Testing Stability of Multidimensional Systems
	3.1 Stability Tests for nD Systems
	3.2 An Efficient Stability Test for 2D Systems

	4 Testing Stabilizability of 2D Systems
	4.1 Module-Theoretic Conditions for Stabilizability
	4.2 Towards an Effective Version of the Polydisc Nullstellensatz

	5 Computing Stabilizing Controllers of 2D Systems
	6 A Maple illustrating example
	References

	Using Maple to Analyse Parallel Robots
	1 Introduction
	2 Manipulators and Kinematics Problems
	3 The SIROPA Maple Library
	4 Case Studies on Some 3-PPPS Manipulators
	4.1 Joint Space and Workspace Analysis
	4.2 Cuspidal Robots

	References

	Studying Wythoff and Zometool Constructions Using Maple
	1 Introduction
	2 Wythoff Construction
	3 Zometool Models
	4 Computational Cost
	5 Projections
	References

	Approximate GCD in a Bernstein Basis
	1 Introduction
	2 Preliminaries
	2.1 Finding Roots of a Polynomial in a Bernstein Basis
	2.2 Clustering the Roots
	2.3 The Root Marriage Problem
	2.4 de Casteljau's Algorithm

	3 Computing Approximate Polynomials
	4 Computing Approximate GCD
	5 Numerical Results
	6 Concluding Remarks
	References

	Using Maple to Compute the Intersection Curve of Two Quadrics: Improving the Intersectplot Command
	1 Introduction
	2 The Algorithm
	3 The Implementation and the Comparison with the Intersectplot Command
	4 Conclusions
	References

	Exact Parametric Solutions for the Intersections of Quadric Surfaces Using MAPLE
	1 Introduction
	2 Problem Statement of the Intersection of Quadric Surfaces
	3 Exact Solutions for the Intersection of Quadric Surfaces in General Forms
	4 Exact Solutions for the Intersection of Quadric Surfaces in Canonical Forms
	5 Implementation and Examples
	6 Concluding Remarks
	References

	Decomposing the Parameter Space of Biological Networks via a Numerical Discriminant Approach
	1 Introduction
	1.1 Previous Work
	1.2 Problem Setup
	1.3 Contribution and Organization of Paper

	2 Decomposition Using Numerical Algebraic Geometry
	2.1 Computing All Solutions
	2.2 Perturbed Sweeping
	2.3 Global Region Decomposition
	2.4 Local Region Decomposition
	2.5 Quadratic Example

	3 Results from Biological Models
	3.1 Molecular Network Model
	3.2 Cellular Network Model
	3.3 Chain of Cells

	4 Conclusion
	References

	The Z_Polyhedra Library in Maple
	1 Introduction
	2 Mathematical Concepts and Their Implementation
	2.1 Polyhedra
	2.2 Lattices
	2.3 Z-Polyhedra
	2.4 Parametric Z-Polyhedra

	3 Core Algorithms and Their Implementation
	3.1 Data-Types
	3.2 Solvers

	4 Applications
	4.1 Dependence Analysis
	4.2 Cache Lines Accessed by a For-Loop Nest
	4.3 Parametric Linear Programming

	References

	Detecting Singularities Using the PowerSeries Library
	1 Introduction
	2 Background
	2.1 Concepts from Singularity Theory
	2.2 The Extended Hensel Construction
	2.3 The PowerSeries Library

	3 Applications
	3.1 The Pitchfork Bifurcation
	3.2 The Winged Cusp Bifurcation

	References

	A Maple Package for the Symbolic Computation of Drazin Inverse Matrices with Multivariate Transcendental Functions Entries
	1 Introduction
	2 Theoretical and Algorithmic Framework
	2.1 The Notion of Drazin Inverse
	2.2 Gröbner Basis Computation of Drazin Inverses
	2.3 Drazin Inverses Under Specializations
	2.4 An Illustrating Example

	3 The Package DrazinInverse
	3.1 Summary: Overview of the Software Structure
	3.2 Description of the Individual Software Components
	3.3 Illustrative Examples of the Usage of the Package Commands

	References

	A Poly-algorithmic Quantifier Elimination Package in Maple
	1 Introduction
	2 Background of Techniques and Other Software
	3 Virtual Term Substitution
	3.1 Implementation

	4 Cylindrical Algebraic Decomposition
	4.1 Implementation

	5 The QuantifierElimination Package
	5.1 VTS and CAD
	5.2 QuantifierTools

	6 Aims for QE Output
	6.1 Production of Meaningful Witnesses

	7 Conclusions
	7.1 Comparison to Other QE Implementations
	7.2 Future and Further Aims

	References

	Full Papers – Education/Applications Stream
	The Creation of Animated Graphs to Develop Computational Thinking and Support STEM Education
	Abstract
	1 Introduction
	2 Theoretical Framework
	3 Animated Graphs Created with Maple
	4 Methodology for the Analysis of Processes of Computational Thinking in the Creation of Animated Graphs
	5 Results
	6 Animated Graphs for Didactics
	6.1 Animated Graphs for Problem Solving
	6.2 Animated Graphics for Illustrating Theoretical Concepts

	7 Conclusions
	References

	Effective Problem Solving Using SAT Solvers
	1 Introduction
	2 Background
	3 The n-queens Problem
	4 The Einstein Riddle
	5 Sudoku Puzzles
	6 Euler's Graeco-Latin Square Problem
	7 The Maximum Clique Problem
	8 The 15-Puzzle
	9 Conclusion
	References

	Using Maple to Make Manageable Matrices
	1 Introduction
	2 The Method
	2.1 Implementation

	3 Usage
	4 Observations and Examples
	A Appendix: Supplementary Code
	References

	Use of Maple and Möbius in an Undergraduate Course on Cryptography
	1 Overview
	2 Introduction
	3 Learning from Reading and Lecturing
	4 Active Learning in the Classroom: Labs and Quizzes
	5 Homework Assignments
	6 Pedagogical Considerations
	6.1 Getting Started with Maple
	6.2 Going Beyond ``Understanding Through Programming and Problem-Solving"
	6.3 Cultivating Habits of Mathematical Thought
	6.4 Learning the Experimental Paradigm

	7 What Can a Busy Instructor Afford to Do?
	8 Iterative Refinement, Not ``Waterfall" Development
	9 Mashups and Integration
	10 Conclusion
	References

	Enhance Faculty Experience and Skills Using Maple in the 21st Century Classroom
	Abstract
	1 Introduction
	References

	Undergraduate Upper Division Quantum Mechanics: An Experiment in Maple® Immersion
	Abstract
	1 Motivation and Objectives: Why Include Maple [6]?
	2 Implementation and Instructions to Class
	3 Results
	3.1 Maple Skillsets and Problem-Solving Capabilities Evaluated
	3.2 Fraction of Implementation
	3.3 Student Self-reporting on Their Use of Maple

	4 Analysis: Success and “Opportunities”
	5 Conclusion
	References

	The Fermat-Torricelli Problem of Triangles on the Sphere with Euclidean Metric: A Symbolic Solution with Maple
	1 Introduction
	2 The Metric Equation and the Algebraic Representation of Fermat-Torricelli Problem
	3 Symbolic Elimination via Sylvester Resultant and Dixon Resultant
	4 Reconstruct the Dixon Resultant Using Implicit Equation Interpolation
	5 Geometric Properties of the Fermat-Torricelli Points
	References

	Using Leslie Matrices as the Application of Eigenvalues and Eigenvectors in a First Course in Linear Algebra
	1 Introduction
	2 The Leslie Population Distribution Model
	3 The Leslie Matrix
	4 Population Stabilization and Harvesting
	5 Conclusion
	References

	Transforming Maple into an Intelligent Model-Tracing Math Tutor
	1 Introduction
	2 The Tutor's Domain, Tutoring and Student Models
	3 The Tutoring Processes for Expanding
	3.1 Procedure multiplyMonomials(expression, answer)
	3.2 Procedure divideMonomials(expression, answer)
	3.3 Procedure monomialPower(expression, answer)
	3.4 Procedure multiplyMonomialPolynomial(expression, answer)
	3.5 Procedure multiplyPolynomials(expression, answer)
	3.6 Procedure expandSquareOfSum(expression, answer)
	3.7 Procedure expandSumByDifference(expression, answer)
	3.8 Procedure expandCubeOfSum(expression, answer)
	3.9 Procedure addPolynomials(expression, answer)
	3.10 Scaling Up: Procedure expandTutor(expression, answer)

	4 The Tutoring Procedures for Factoring
	4.1 Procedure factorByCommonFactor(expression, answer)
	4.2 Procedure factorBySquareOfSum(expression, answer)
	4.3 Procedure factorByDifferenceOfSquares(expression, answer)
	4.4 Procedure factorByTrinomialSumProduct(expression, answer)
	4.5 Procedure factorByTrinomialRoots(expression, answer)
	4.6 Scaling Up: Procedure factorTutor(expression, answer)

	5 Discussion and Further Work
	References

	A Heilbronn Type Inequality for Plane Nonagons
	1 Introduction
	2 The Convex Polygon with Equal Peripheral Triangles
	3 The Smallest Equi-Peripheral Nonagon
	References

	Extended Abstracts – Research Stream
	PseudoLinearSystems – A Maple Package for Studying Systems of Pseudo-Linear Equations
	1 Simple Forms and Local Data
	2 Rational Solutions
	References

	Machine Learning to Improve Cylindrical Algebraic Decomposition in Maple
	1 Introduction
	2 Machine Learning for CAD Variable Ordering
	2.1 Results from CICM 2014
	2.2 Results from CICM 2019
	2.3 Results from SC-Square 2019

	3 Further Experiments on Adaptability of Classifiers
	References

	Ball Arithmetic as a Tool in Computer Algebra
	1 Introduction
	1.1 Algebraic Computation
	1.2 Analytic Computation
	1.3 Relation to Other Software

	References

	The Lie Algebra of Vector Fields Package with Applications to Mappings of Differential Equations
	References

	Polynomial Factorization in Maple 2019
	References

	Extended Abstracts – Education/Applications Stream
	Distributive Laws Between the Operads `3́9`42`"̇613A``45`47`"603ALie and `3́9`42`"̇613A``45`47`"603ACom
	1 Theory
	2 Computations
	References

	Classifying Discrete Structures by Their Stabilizers
	1 Encoding Species by Combinatorial Power Series
	2 CA Implementation of CPS Calculus
	References

	How Maple Has Improved Student Understanding in Differential Equations
	1 Visualizing Slope Fields for First-Order ODEs
	2 Second-Order Linear ODEs
	3 And More ..
	References

	Author Index

