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Foreword

As a global pandemic has been gripping the world for over a year now, many aspects of
our lives have changed: The way we work; the way we play; the way we meet friends
and family. And so the way the Maple community gathered on November 2–6, 2020
was very different as well. We met virtually. And so there was no conference dinner, no
coffee breaks, no handshakes or hugs with friends that we had not seen in a while.

But we coped. Our social event was a virtual tour of the Tom Thomson Art Gallery.
We met at informal breakfast and lunch “tables” to chat with old and new members
of the community. We were fortunate to have some brilliant keynote speakers like Dr.
Gabor Domokos who took us behind the scenes of the discovery of the Gömböc and
Dr. Juana Sendra Pons who introduced us to the magic of Bohemian matrices.

And indeed, despite the difficult circumstances that the world finds itself in, some
things were better. With no constraints from travel budget and week-long scheduling
conflicts, an unprecedented proportion of the Maple community was able to participate,
making the event more engaging and inspiring than ever with a large number of
excellent contributions drawn from research to education to interesting and novel
applications of Maple. In addition, the new format of combining pre-recorded talks
with live Q&A sessions allowed participants to watch presentations at their own pace
and to have the time to absorb the material before bringing thoughtful questions and
comments to the authors during the live session.

What is driving us at Maplesoft is the belief that Math Matters, stemming from the
realization that mathematics drives the world around us. Our mission is to build
engaging tools that help gain insight into mathematical concepts and that not just
provide solutions but also provide the inspiration to dig deeper and discover not only
the usefulness but also the beauty of mathematics. With this in mind, it was great to see
another first for a Maple Conference: We hosted a very lively and interesting panel
discussion with a group of social media influencers that share our vision of making
math accessible and enjoyable. Sneak peeks at our Maple Calculator Mobile App as
well as our new online solution for learning and teaching math, Maple Learn, rounded
out this part of the program.

The virtual format also allowed a record number of Maplesoft staff from around the
world to attend the conference and share their expertise with all attendees. There is
always something new to discover in the world of Maple and I would go out on a limb
and say that every participant learned something new in the course of this week.

Overall, we had an exceptional event and it was great to see the Maple community
come together. I was able to greet many familiar faces and introduce myself to an even
larger number of people that attended for the first time.

Finally, I would like to express a huge thank you to the Program Chairs Rob Corless
and Jürgen Gerhard and the rest of the Program Committee as well as to the countless
people at Maplesoft who made the event a resounding success.

Laurent Bernardin



Preface

The Maple Conference 2020 happened under stressful circumstances, mostly to do with
the global COVID-19 pandemic, but important political events (all over the world) also
happened during the conference. Political events are not usually explicitly acknowl-
edged in the proceedings of any scientific conference, on the basis that science is above
politics, or else on the basis that mathematics and science are apolitical. The truth of a
mathematical theorem or the functioning of a piece of software is indeed normally
independent of what any given group of humans has decided to do.

As always, the truth is more complex. The science and engineering that gets
accomplished by a community depends strongly on how that community is organized.
It depends in a long-term way—on a cycle of decades at least—on how the members
of the society are educated, and on the intellectual infrastructure and social capital
available to thinkers, educators, and doers—who may or may not be the same people.

The Maple Conference 2020 happened at a time of severe crisis. Millions of people
were being struck down, and many dying, of an infectious disease. The personal impact
of this crisis was of course huge, and continues to be huge: we swim in grief for family,
friends, loved ones, even for people we do not know. To protect vulnerable people and
medical institutions, many governments imposed Non-Pharmaceutical Interventions
(NPIs) which, among other impacts, forbade or reduced travel and in-person
interactions.

In spite of the impact of this crisis and of the NPIs taken to mitigate the impact, not
all of these impositions seem to have been wholly bad for science in general, or for the
Maple conference in particular. Perhaps as a side effect of going virtual, the Maple
Conference 2020 had over 700 registrants, the most of any Maple conference to date.
On any given day of the conference, which took place during November 2–6, 2020, we
might have had 400 people actively participating. By all normal measures, the con-
ference was a resounding success. For this we have to thank the efforts of many
working behind the scenes: specifically Kathleen McNichol, Eithne Murray, Jen
Iorgulescu, and Rochelle Angyal. Their very hard work and adaptability made the
virtual conference a success, both by long preparation ahead of time and by putting out
the inevitable “last-minute” fires with the software platform we were using. As a result,
the conference ran very smoothly.

One concludes in general that the impact of the crisis on science is as yet unclear,
because people have worked so hard to adapt. Because of these efforts, we now know
that remote collaboration and conferencing are not only possible but have some
advantages, as this conference proved. New tools for remote learning—such as Maple
Learn, perhaps—may help even more in the future.

This proceedings provides a tangible archive of that success. In this volume you will
find a selection of papers based on work presented at the conference: on mathematical
research, applications of Maple, and on mathematics education. There is another
archive: all the talks were recorded and they are, at the time of writing, still available on



the original website; after November 2021 they will move to a YouTube channel. We
encourage you to watch the videos of the talks, not just read the papers in these
proceedings.

In particular, the invited talks by Professor Gabor Domokos, Professor Juana Sendra
Pons, and Dr. Laurent Bernardin all remain available, and we highly recommend
watching them. We thank all of them for their discussions of fascinating work.
Professor Sendra Pons also contributed a paper to the proceedings, for which we also
thank her.

The “Meet the Developers” panel, consisting of Laurent Bernardin, Paulina Chin,
Paul DeMarco, Jürgen Gerhard, Erik Postma, Karishma Punwani, and Andrew Smith,
was lively and engaging, and we thank them all for their time and expertise.

The rise of YouTube “influencers”, among them Online Kyne, Bobby Seagull, and
Tom Crawford (The Naked Mathematician), was possibly predictable but the reality is
so amazing—they have not contributed to the proceedings but we urge you to watch
the panel discussion in the video on the conference website—that we would actually be
shocked had anyone predicted it, or predicted just how popular math and science
videos would turn out to be. We thank these influencers for their very entertaining and
thought-provoking panel discussion.

The three workshops, presented by Paulina Chin, Erik Postma, and Stephen Forrest,
were well-attended and extremely valuable. These workshops are not part of the formal
proceedings, and are not attached to the video record of the conference, but we thank
the presenters for their contributions to the conference at the time.

Several Maplesoft personnel gave presentations at the conference and these are part
of the video record: Dr. Robert Lopez, “Analytic Approximation for the Dirichlet
Problem;” Thomas Richard, “Application of the Identify Command to Special Func-
tions;” Valery McKay-Crites, “Generate Captivating Visualizations with Maple;”
Karishma Punwani, “Introducing Maple Calculator and Maple Learn; ” Dr. Stephen
Forrest, “Machine Learning in Maple;” Samir Khan, “Maple Whiteboard - tactile,
responsive calculations for science, engineering and technical analysis;” and Samir
Khan and Karishma Punwani, “Our Favorite Things: Maple 2020 Gems You May
Have Missed.” These presentations were extremely useful and enlightening, and are
still available; we hope that at least some of them will be reprised at the Maple
Conference 2021!

We thank our Program Committee and all the reviewers for all their hard work,
especially during this time of the COVID-19 pandemic. Refereeing is one of the most
critical, but thankless, jobs of an academic. Everyone is just expected to do it. Our
referees put in a very significant amount of work, providing feedback to our authors
and presenters, going well above the norm which made a significant difference to the
quality of the papers.

Of course, we also thank all our presenters and authors. They, too, worked hard; in
preparing their videos (sometimes for the first time ever for a conference), in taking
questions, in writing their papers, and in taking the constructive criticism of the referees
and using it to improve their papers.

Science takes time, and social stability, and education, and other things. That the
Maple 2020 Conference went so well, with participants from 70 countries, from
Australia to Zambia, is a mark of hard work and persistence, and of the resilience of the

viii Preface



supporting institutions and personal resilience of the participants. We believe that these
proceedings show evidence of this high-water mark, and we hope that all the
participants feel justified pride in their achievements in the face of the truly difficult
circumstances that they faced.

May 2021 Robert M. Corless
Jürgen Gerhard

Ilias S. Kotsireas
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Bohemian Matrices: Past,
Present and Future

Juana Sendra(B)

Dpto. de Matemática Aplicada a las TIC, Universidad Politécnica de Madrid,
Madrid, Spain

juana.sendra@upm.es

Abstract. A matrix family is called Bohemian if its entries come from
a fixed finite discrete (and hence bounded) set, usually integers, called
the “population” P . We look at Bohemian matrices, specifically those
with entries from {−1, 0,+1}. The name is a mnemonic for Bounded
Height Matrix of Integers. Such families arise in many applications (e.g.
compressed sensing) and the properties of matrices selected “at ran-
dom” from such families are of practical and mathematical interest. An
overview of some of our original interest in Bohemian matrices can be
found in [6,7]. In this paper we present a Bohemian Matrices tour, expos-
ing their appearance in the past, their promising present and their hope-
ful future.

Keywords: Bohemian matrices · Maple · Eigenvalues · Symbolic
computation

1 Introduction and Terminology

A family of Bohemian matrices is a set of structured matrices where the entries
are from a finite set of integers. These families of matrices are interesting by
themselves but they can appear in many applications. For instance, in signal
processing, where they use Bernoulli matrices, or error correcting codes working
with Hadamard matrices. Other fields where they can be applied are combina-
torics or Graph Theory, and in this same frame it is interesting the application
in Spectral Graph Theory, among others.

Dealing with this family of matrices, the question arises as: why Bohemian
Matrices? The original motivation of the authors of [7] was test problems for
various algorithms. Focusing on this type of representation we could give inter-
esting results and analyzing extreme behaviors. The basic idea is to develop
algorithms for computing discrete families of Bohemian (or brute force if nec-
essary) to analyse the behavior of certain facts to be used to conjecture prop-
erties, and hopefully prove them. In this context, the first drawbacks appear.

The author is partially supported by FEDER/Ministerio de Ciencia, Innovación y
Universidades - Agencia Estatal de Investigación/MTM2017-88796-P (Symbolic Com-
putation: new challenges in Algebra and Geometry together with its applications).

c© Springer Nature Switzerland AG 2021
R. M. Corless et al. (Eds.): MC 2020, CCIS 1414, pp. 3–16, 2021.
https://doi.org/10.1007/978-3-030-81698-8_1
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The number of possible Bohemian matrices of dimension n is typically quadrati-
cally exponential (exp (cn2) for some c), depending on the matrix structure. For
instance, with a population {−1, 0, 1} the number of general 5 × 5 Bohemians
is: 847, 288, 609, 443.

Analyzing such matrices leads to many unanswered questions. For instance,
for a given dimension and population, the set of Bohemian matrices is finite.
But how many are singular? or how many distinct characteristic polynomials
does the family have? or how many distinct eigenvalues does the family contain?
or how many distinct Jordan canonical forms are there? In this sense, a lot of
challenges arise and, in turn, provide new opportunities.

Through extensive experimental work, the authors have discovered many
properties of families of Bohemian matrices and their eigenvalues which lack
obvious explanations. These matrices are studied including the distributions of
their eigenvalues, and integer sequences arising from properties of the families
providing connections to other areas of mathematics and have been archived in
the Characteristic Polynomial Database, http://www.bohemianmatrices.com/
cpdb/. Currently the database contains 1, 762, 728, 065 characteristic polynomi-
als from 2, 366, 960, 967, 336 matrices.

By plotting the distributions of the eigenvalues of all matrices in a Bohemian
family over the complex plane, many interesting discrete structures appear. For
example, in Fig. 1, distinct “holes” appear in the distribution. Other families
exhibit fractal like structures and diffraction patterns, see [11]. By studying
these families in greater detail we are able to understand why some structures
appear. Many examples of the discrete structures that appear in the distributions
of eigenvalues can be found at http://www.bohemianmatrices.com. Pictures in
this paper have been taken from http://www.bohemianmatrices.com/gallery/.

Fig. 1. Density plot in the complex plane of the eigenvalues of a Bohemian matrix.
Image of the front cover of Newsletter of the London Math Society Gazette. Issue 491,
November 2020

http://www.bohemianmatrices.com/cpdb/
http://www.bohemianmatrices.com/cpdb/
http://www.bohemianmatrices.com
http://www.bohemianmatrices.com/gallery/
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Our experimental work is only possible thanks to advances in the processing
power of common personal computers. This has allowed us to explore families
containing upwards of 1 trillion matrices on a laptop. Through brute-force com-
putation we are able to answer questions such as how many 7 × 7 matrices with
entries from the set {−1, 0,+1} are nilpotent? The answer is 1, 138, 779, 265.
Further, these computations have helped us make connections among properties
of matrices that we may not have made otherwise. We have used Maple 2019 for
the experiments with small dimension (up to 5 for instance). Maple becomes a
good tool to analyze exact properties and it help us to check conjectures and it
is a great help in our theoretical analysis. On the other hand, we use Matlab and
Python for bigger computations and as a good tool for plotting and visualizing.
We finish this section introducing the notation used throughout this paper.

Definition 1 (BOundedHEightMatrix of Integers: BOHEMI). Matrices
where the free entries are from a finite population of small integers (or other popu-
lation) or even a bounded subset.

Definition 2. The Population of a Bohemian family is the set (usually finite
and discrete, hence bounded) of possible entries for each matrix in the family.

Definition 3. Bohemian Eigenvalues are the eigenvalues of Bohemian
matrices.

Definition 4. Eigenvalue Exclusion Zone are distinct region in the complex
plane where no eigenvalues fall.

Definition 5. Rhapsody Matrix is a Bohemian matrix whose inverse is
Bohemian with respect to the same population.

Definition 6. The Height of a matrix A is the infinity norm of vec(A).

Definition 7. The Characteristic Height of a matrix A is the infinity norm
of the vector of coefficients of its characteristic polynomial.

2 The Past

In this paper, we will travel from the past to the future, anchoring the present
in nowadays. Let’s start this fascinating travel by taking a look at the past. We
can go back to Leonhard Euler in the 18th century, passing through Ronald
Fisher, John E. Litlewood, Olga Taussky and H. J. Ryser in 19th and 20th
century and more recently we can mention C.W Gear, Borwein & Jorgenson
or T. Tao, V. Vu, among others. Their work has had repercussions in several
areas, for instance statistics, number theory, computer science, matrix theory,
random matrices, root finding and eigenvalues problems, and a great etc. We
will take as starting point the work of L. Euler who use the latin square using
latin characters as symbols. More formally, a Latin Square is an n×n array filled
with n different symbols, each occurring exactly once in each row and exactly
once in each column.
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A B C D

B C A D

C D B A

D A C B

In recreational mathematics, a square array of numbers, usually positive inte-
gers, is called a magic square if the sums of the numbers in each row, each
column, and both main diagonals are the same, called magic constant. Magic
squares have a long history. At various times they have acquired occult or myth-
ical significance, and have appeared as symbols in works of art. For instance in
the Sagrada Familia of Barcelona, while appreciating the Passion facade and the
sculpture of Judas Kiss, we find a magic square with magic constant 33. This
magic square is inspired in the engraving entitle Melancholia I, of the German
artist Albrecht Dürer. We can see the year 1514 in the last row, see Fig. 2.

Fig. 2. Dürer’s Melancholia I (1514) includes an order 4 square with magic sum 34.
Pictures taken from wikipedia.

Let us mention the work of Andrey Andreyevich Markov (1856–1922) who
use the stochastic matrix to describe the transition of a Markov chain. Each of
its entries is a nonnegative real number representing a probability and with each
row and/or column summing to 1. The stochastic matrix was first developed
by A. Markov, and has found use throughout a wide variety of scientific fields,
including probability theory, statistics, mathematical finance and linear algebra,
as well as computer science and population genetics. Another interesting con-
tribution precursor of the bohemians is due to John E. Littlewood (1885–1977).
More precisely, a Littlewood Polynomial is a polynomial all of whose coef-
ficients are +1 or −1. Littlewood’s problem asks how large the module of
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Fig. 3. Roots of all the Littlewood polynomials of degree 15.

the values of such polynomials can be when taking values on the unit circle in
the complex plane, see Fig. 3. Bohemian families have been studied for a long
time, although not under that name. For instance, Odlyzko and Poonen in their
work from 1993 [19], studied the zeros of polynomial with 0 and 1 coefficients
(also called Newman polynomials)and they obtained bounds for such zeros. Let
me also mention the work of Olga Taussky (1905–1995) [23,24]. She is famous
for her research papers in algebraic number theory, and integral matrices, in
particular she worked in the computational stability of complex matrices. These
papers show her work in computational problems about matrices with integer
coefficients. Taussky begins by saying

“This subject is very vast and very old. It includes all of the arithmetic theory
of quadratic forms, as well as many of other classical subjects, such as Latin
squares and matrices with elements +1 or –1 which enter into Euler’s, Sylvester’s
or Hadamard’s famous conjectures.”

The contribution by H. J. Ryser (1923−1985) is another example. He worked
with matrices of 0 and 1 in the frame of combinatorics. C.W. Gear in [16] inves-
tigates the eigenvalues of certain kind of matrices with 0 and 1, see [21]. Another
interesting contributions are the works of Borwein and Jorgenson [2] related with
computer graphics, and James Guyker of 2007 (see [13]) where he uses charac-
teristic polynomials to determine when magic squares have magic inverse. Let us
metion Matthew Lettington and his work [17] about fleck’s congruence involving
magic squares and a zeta identity. On the other hand, the idea of visualizing the
eigenvalues of random samples of matrices is not new. L. N. Trefethen in [27]
uses this idea to visualize the pseudospectra of several test matrices. Related to
the eigenvalues of matrices, many authors have studied the zeros of polynomi-
als whose coefficients belong to discrete sets of integers. Early work by Odlyzko
and Poonen [19] studies the zeros of polynomials with coefficients in {0, 1}. And
Tao and Vu have shown that random matrices (more specifically real symmetric
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random matrices in which the upper-triangular entries ξi,j , i < j and diagonal
entries ξi,j are independent) have simple spectrum [22].

The list of the forefathers of this topic is much larger than the one presented
here. But let us close this list with the work of R. Corless [8], about generalized
companion matrices, that can be considered as a connection bridge between the
first and the second section of this paper.

3 The Present

We can consider as the starting point of this section the well-known Littlewood
polynomial defined by

n∑

i=0

aix
i, ai ∈ {−1,+1}

whose roots produce interesting pictures.
More recently, the distributions of the roots of Littlewood polynomials [18]

have been studied [1,2,20]. In Fig. 4, the distribution of the roots of all degree
25 Littlewood polynomials are visualized. This is, of course, equivalent to the
eigenvalues of a Bohemian family of (Frobenius) companion matrices with entries
from the set {−1,+1}.

Fig. 4. The roots of all degree 25 polynomials (expressed in the monomial basis) with
±1 coefficients.

In [12], R.M. Corless and S.E. Thornton focus on the questions raised when
visualizing the distributions of Bohemian eigenvalues over the complex plane. In
particular, they analyze eigenvalue exclusion zones (i.e. distinct regions within
the domain of the eigenvalues where no eigenvalues exist), computational meth-
ods for visualizing eigenvalues, and some results on eigenvalue conditioning over
distributions of random matrices. By plotting the distributions of the eigenvalues
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of all matrices in a Bohemian family over the complex plane, many interesting
discrete structures appear. For example, in the image in Fig. 5 raises many ques-
tions, ranging from whether the set is a fractal or about the holes, and specially
their regularity of the boundary whose shape suggests a dragon curve. Some
of these questions could have some significance in number theory. Many exam-
ples of the discrete structures that appear in the distributions of eigenvalues can
be found at http://www.bohemianmatrices.com/gallery/. In this context, in [15]
the authors study the geometry of algebraic numbers in the complex plane called
Algebraic Numbers Starscapes. More precisely, they describe the geometry of the
map from the coefficient space of polynomials to the root space, focussing on
the quadratic and cubic cases.

Fig. 5. Details of the eigenvalue exclusion zones and regularity of the boundary.

Corless used a generalization of the Littlewood polynomial (to Lagrange
bases). In his paper [8], he gave a new kind of companion matrix for polynomials
expressed in a Lagrange basis. He used generalized Littlewood polynomials as
test problems for his algorithm.

In Chan’s Master’s thesis [3], she extended Piers W. Lawrence’s construc-
tion of the companion matrix for the Mandelbrot polynomials, [9,10], to other
families of polynomials, mainly the Fibonacci-Mandelbrot polynomials and the
Narayana-Mandelbrot polynomials. What is relevant here about this construc-
tion is that these matrices are upper Hessenberg and contain entries from a
constrained set of numbers {−1, 0}, and therefore fall under the category of
being Bohemian upper Hessenberg. Both the Fibonacci-Mandelbrot matrices
and Narayana-Mandelbrot matrices are also Bohemian upper Hessenberg, but
the set that the entries draw from is {−1, 0,+1}.

These new constructions led Chan and Corless to a new kind of companion
matrix for polynomials of the form c(z) = za(z)b(z) + c0. A first step towards

http://www.bohemianmatrices.com/gallery/
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this was first proved using the Schur complement in [4]. D. Knuth then sug-
gested that Chan and Corless look at the Euclid polynomials [5], based on the
Euclid numbers. It was the success of this construction that led to the realization
that this construction is general, and gives a genuinely new kind of companion
matrix. Similar to the previous three families of matrices, the Euclid matrices
are also upper Hessenberg and Bohemian, as the entries are comprised from the
set {−1, 0,+1}. In addition, an interesting property of these companion matrices
is that their inverses are also Bohemian with the same population, i.e. Rhapsody
matrices. As an extension of this generalization, Chan et al. [6] showed how to
construct linearizations of matrix polynomials, particularly of the form

za(z)d0 + c0, a(z)b(z), a(z) + b(z)

when deg(b(z)) < deg(a(z)), and za(z)d0b(z) + c0,

using a similar construction.
Different matrix structures produce remarkably different pictures. One struc-

ture useful in eigenvalue computation is the Upper Hessenberg matrix,

Hn =

⎛

⎜⎜⎜⎜⎜⎝

h11 h12 h13 · · · h1n

s1 h21 h22 · · · h2n−1

0 s2 h31 · · · h3n−2

...
. . . . . . . . .

...
0 · · · 0 sn−1 hn1

⎞

⎟⎟⎟⎟⎟⎠

with sk ∈ {−1, 1} and hij ∈ {−1, 0, 1}. The main reason to analyze these kind of
matrices is because these arise naturally in eigenvalue computation because the
QR iteration is cheaper for matrices in Hessenberg form. For other families of
matrices, such as upper Hessenberg Toeplitz matrices, there is no compression
at all because each matrix has a distinct characteristic polynomial, see [26].

We present some result proved in [7] by considering Bohemian upper Hes-
senberg matrices. We begin with two recursive formulae for the characteristic
polynomials Qn(z) = det(zI −Hn). Later we will specialize the population P to
contain only zero and numbers of unit magnitude, usually {−1, 0,+1}.

Theorem 1. The characteristic polynomial can be express as

Qn(z) = zQn−1(z) −
n∑

k=1

⎛

⎝
n−1∏

j=n−k+1

sj

⎞

⎠ hn−k+1,nQn−k(z) (1)

with the conventions that an empty product is 1, Q0(z) = 1 and H0 = [ ], that
is the empty matrix.

Theorem 2. Expanding Qn(z) as

Qn(z) = qn,nzn + qn,n−1z
n−1 + · · · + qn,0,
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we can express the coefficients recursively by

qn,n = 1,

qn,j = qn−1,j−1 −
n−j∑

k=1

⎛

⎝
n−1∏

j=n−k+1

sj

⎞

⎠ hn−k+1,nqn−k,j for 1 ≤ j ≤ n − 1,

qn,0 = −
n∑

k=1

⎛

⎝
n−1∏

j=n−k+1

sj

⎞

⎠ hn−k+1,nqn−k,0 for n > 0, and

q0,0 = 1 .

The natural question now is, which matrices reach maximal characteristic
height?

Proposition 1. For populations P with maximal height 1, the maximal char-
acteristic height of Hn occurs when

(∏n−1
j=n−k+1 sj

)
hi,i+k−1 = −1 for 1 ≤ i ≤

n − k + 1 and 1 ≤ k ≤ n.

Remark 1. When all sj = 1 and hi,j = −1 for all 1 ≤ i ≤ j ≤ n, and similarly
for sj = −1 and hi,j = 1 we attain maximal characteristic height. Both of these
cases correspond to Upper Hessenberg matrices with a Toeplitz structure.

This motivates the interest in Upper Hessenberg Toeplitz matrices with sub-
diagonal s ∈ {±1}.

Mn =

⎛

⎜⎜⎜⎜⎜⎝

t1 t2 t3 · · · tn
s t1 t2 · · · tn−1

0 s t1 · · · tn−2

...
. . . . . . . . .

...
0 · · · 0 s t1

⎞

⎟⎟⎟⎟⎟⎠

Let us denote by Mn×n(P ) = {n × n Bohemian Upper Hessenberg Toeplitz
matrices with upper triangle population P = {−1, 0, 1} and subdiagonal s = 1}.

The characteristic polynomial recurrence from Theorem 1 can be written for
upper Hessenberg Toeplitz matrices in Mn×n(P ) as follows.

Theorem 3 (Recurrence relation for the characteristic polynomial).
Let us denote Pn(z) the characteristic polynomial of Mn×n(P ). Then

Pn(z) = zPn−1(z) −
n∑

k=1

tkPn−k(z)

with the convention that P0 = 1 and M0 = [ ] the empty matrix.
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Corollary 1. The characteristic polynomial recurrence form can be written for
the previous upper Hessenberg Toeplitz matrices as

pn,n = 1,

pn,j = pn−1,j−1 −
n−j∑

k=1

tkpn−k,j for 1 ≤ j ≤ n − 1,

pn,0 = −
n∑

k=1

tkpn−k,0, and

p0,0 = 1

Theorem 4. The set of distinct characteristic polynomials for all matrices
Mn ∈ Mn×n has cardinality (#P )n, which is the same as the cardinality of
Mn×n. That is, each matrix in Mn×n has a different characteristic polynomial.

Next two theorems stablish two kind of matrices of the family in which we reach
maximal characteristic height.

Proposition 2. The characteristic height of Mn ∈ Mn×n is maximal when
tk = −1 for 1 ≤ k ≤ n.

Mn =

⎛

⎜⎜⎜⎜⎜⎝

−1 −1 −1 · · · −1
1 −1 −1 · · · −1
0 1 −1 · · · −1
...

. . . . . . . . .
...

0 · · · 0 1 −1

⎞

⎟⎟⎟⎟⎟⎠

Proposition 3. Mn ∈ Mn×n also reaches maximal characteristic height when
tk = (−1)k−1 for 1 ≤ k ≤ n.

Mn =

⎛

⎜⎜⎜⎜⎜⎝

1 −1 1 · · · (−1)n−1

1 1 −1 · · · ∗
0 1 1 · · · ∗
...

. . . . . . . . .
...

0 · · · 0 1 1

⎞

⎟⎟⎟⎟⎟⎠

Let us now introduce Mn×n
= {M ∈ Mn×n(P ) of maximal characteristic

height}. Let τn be the characteristic height of M and let μn be the largest degree of
the term of the characteristic polynomial of M whose coefficient gives the height.

Theorem 5. For fixed n, μn is the same for all Mn ∈ Mn×n
.

Theorem 6. Mn×n
contains 2 · 3µn matrices.
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Theorem 7. The maximum characteristic height, τn, of any upper Hessenberg
Bohemian with population {−1, 0, 1} lies between the following bounds:

F2n+1

n + 1
< τn < F2n+1 .

Here Fk is the kth Fibonacci number, with the conventional numbering given by
Fn+1 = Fn + Fn−1 with F0 = 0 and F1 = 1.

Conjecture 1. The maximum characteristic height, τn, approaches the exponen-
tially growing function CF2n+1/

√
n + 1 as n → ∞ for some constant C. Our

experiments indicate that C
.= 0.7701532.

Many properties of Bohemian families are included in the Characteristic
Polynomial Database in www.bohemianmatrices.com, see [25]. Finally, we end
with 21 conjectures related to integer sequences arising from the properties of
Bohemian families. Lastly, the work in [14] should be mentioned, which analyses
the determinants of normalized Bohemian upper Hessenberg Matrices.

4 The Future

Many questions relating to Bohemian families remain unanswered. Future work
is focused on a few main problems. For instance, the exploration of the distribu-
tions of eigenvalue condition numbers are of interest. Are the eigenvalues within
some families or for certain structures inherently better conditioned than in
other families? Inverse eigenvalue problems are also of interest. That is, given a
characteristic polynonial and a Bohemian family, identify a matrix in the family
with the given characteristic polynonial.

The class of upper Hessenberg Bohemian matrices gives a useful way to study
Bohemian matrices in general. Many questions remain unanswered about general
Bohemian matrices and new families remain to be explored. The Characteristic
Polynomial Database, http://www.bohemianmatrices.com/cpdb/, will continue
to expand to include many new families including structured matrices such as
symmetric, circulant, etc. As new families are explored new questions will arise,
see Fig. 7. The list of properties computed on these families will continue to grow
and new algorithms will be required as family sizes grow. New conjectures will
appear and the list of conjectures will continue to expand. Authors of [7] are
working in several promising work lines, see Fig. 6.

www.bohemianmatrices.com
http://www.bohemianmatrices.com/cpdb/
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Fig. 6. Work in progress by the author of [7].

Fig. 7. Density plots in the complex plane of the Bohemian eigenvalues of a sample
of matrices with entries in a discrete set. Images implemented by S. Thorton and E.
Chan.
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Abstract. We consider linear ordinary differential equations with power
series in the role of coefficients. It is assumed that some or all of the
series are truncated. A series of the form Σ aix

i can also be given com-
pletely using an algorithm that computes ai from i. The equation may
contain both types of coefficients—truncated and represented algorith-
mically. Algorithms and commands that implement them in Maple as the
TruncatedSeries package are proposed, which make it possible to find
Laurent, regular and exponential-logarithmic solutions. In cases where,
due to the presence of truncated coefficients, the information about the
equation is incomplete, commands of our package find the maximum pos-
sible number of terms of those series that are involved in the solutions. If
all the coefficients of the given equation are algorithmically represented
series then the commands allow finding any specified number of initial
terms of the series involved in the solutions.

Keywords: Differential equations · Truncated power series ·
Algorithmically represented infinite formal series

1 Introduction

Power and Laurent series are important and convenient tools of representing
linear ordinary differential equations with variable coefficients as well as of rep-
resenting solutions to these equations. This is reflected in theoretical studies
(see, e.g., [17–23]) and found numerous application in computer algebra (see,
e.g., [1–6,15,16,24]).

Linear ordinary differential equations with coefficients in the form of trun-
cated power series have been considered by us in [7–14]. Concerning the original
differential equation we have incomplete information in this case: for a power
series, only a finite number of initial terms are known. We are interested in the
information on the solutions of the equation given in this form that is invari-
ant under all possible prolongations of all the truncated series that represent
the coefficients of the equation (the prolongation is a series whose initial terms
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coincide with the known initial terms of the original truncated series). First, we
have investigated what can be learned about the solutions in the field of Laurent
formal series (we call them Laurent solutions) (see [7,8]). Then a similar ques-
tion has been discussed for regular solutions in [10]. In both cases, the proposed
algorithms construct the maximum possible number of invariant initial terms of
the series involved in the solutions.

The approach that we use in the algorithms for computing Laurent and
regular solutions, has allowed us, in combination with the well-known algorithm
of Newton polygons, to construct formal exponential-logarithmic solutions of
linear ordinary differential equations having coefficients in the form of truncated
power series (see [12,13]). The series which appear in the solutions have also
only a finite number of known initial terms.

Linear ordinary differential equations with the coefficients that are either
algorithmically represented power series, or truncated power series have been
considered as well in [11]. For such a mixed case, the problem of the construc-
tion of the maximum possible number of terms of the involved in the solutions
series is algorithmically undecidable (for some such equations, the information is
sufficient for computing any number of terms of the series). This undecidability
is, so to speak, not too burdensome. If we are interested in all solutions with a
truncation degree not exceeding a given integer d then the proposed algorithm
allows to construct all of them.

All the developed algorithms are implemented by us as the TruncatedSeries
package in Maple. Some examples of the use of the package procedures have been
already presented in the preceding works [7–14], the corresponding algorithms
being presented and justified there as well. In this work, we outline the current
state of the package and present more examples to demonstrate its up to date key
capabilities. We do not repeat the descriptions and justifications of the imple-
mented algorithms. In the future we plan to extend the package possibilities, in
particularly, to the case of the systems of linear ordinary differential equations
having truncated series coefficients.

The Maple library with the TruncatedSeries package and Maple worksheets
with examples of using its commands are available from

http://www.ccas.ru/ca/truncatedseries.

2 Short Specification of the Package

The TruncatedSeries package provides three commands LaurentSolution,
RegularSolution and FormalSolution:

> with(TruncatedSeries);

[FormalSolution,LaurentSolution,RegularSolution ]

http://www.ccas.ru/ca/truncatedseries.
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Calling sequence of these three commands:

LaurentSolution(ode, var, opts),
RegularSolution(ode, var, opts),
FormalSolution(ode, var, opts)

with parameters

ode – a homogeneous linear ordinary differential equation;
var – a dependent variable, for example y(x);
opts – a sequence of optional arguments of the form keyword=value.

The equation ode for y(x) may be given in the diff-form:

ar(x)
dr

dxr
y(x) + · · · + a1(x)

d
dx

y(x) + a0(x) y(x) = 0

or in the theta-form:

ar(x) θry(x) + · · · + a1(x) θ y(x) + a0(x) y(x) = 0.

where r is a positive integer and θ y(x) = x d
dx y(x). The derivative θky(x) is

specified as theta(y(x), x, k) for k ≥ 1. The derivative dk

dxk y(x) is specified
using the ordinary Maple diff command.

Coefficients ar(x), . . . , a1(x), a0(x) of the equation may be of two types. The
first type is an algorithmically represented power series in one of the following
forms:

– A polynomial in x over the algebraic number field.

– A finite power sum
N∑

k=k0

f(k)xk with a summation index k, a non-negative

integer low limit of summation k0 and a non-negative integer upper limit of
summation N ≥ k0. It has to be specified by means of the Maple inert Sum
command. The coefficient f(k) of xk may be given by an arbitrary expression
of the index k which gives an algebraic number for all k ≥ k0.

– An infinite power sum
∞∑

k=k0

f(k)xk with k0, f(k) as described above.

– A sum of a polynomial and power sums described above.

The other type of coefficients is a truncated power series in one of the following
forms:

– O
(
xt+1

)
, where t is an integer, t ≥ −1.

– a(x) + O
(
xt+1

)
, where a(x) is a polynomial in x over the algebraic number

field and t is an integer greater than or equal to the degree of a(x).

The integer t is called the truncation degree. In the presented package, all alge-
braic numbers have to be represented as RootOf(expr, x, ’index’=i) where
expr is an irreducible polynomial in x with rational number coefficients.

The following optional arguments can be used:

– ’top’=d, where d is an integer;
– ’threshold’=’h’, where h is a name of a variable.

Below we present the use of the commands with optional arguments ’top’
and ’threshold’.
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3 LaurentSolution

For an equation whose all coefficients are algorithmically represented power
series, the LaurentSolution command determines a finite set of all integers
i0 such that the equation has Laurent series solutions with the valuation i0, i.e.

the equation has solutions in the form
∞∑

i=i0

v(i)xi where v(i0) �= 0.

If the option ’top’ = d is given, the LaurentSolution command computes
the initial terms of Laurent series solutions to the degree d or greater for each
valuation i0. The LaurentSolution command returns a list [s1, s2, . . . ] of trun-
cated Laurent series solutions for all found valuations. The elements of the list
involve parameters of the form c1, c2, . . . For each element sj these parameters
can take any such values that the valuation of sj does not change.

Below is an equations whose all coefficients are algorithmically represented
power series:

> f := proc(i)
if i::’integer’ then 0 else ’procname’(i) end if;

end proc:
Ex1 := x^9*diff(y(x), x$5)+

(x^7+Sum(k^2*x^k/2, k = 9 .. infinity))*diff(y(x), x$4)+
(2*x^5+x^2)*diff(y(x), x$2)+
(2*x^10+x^4+3*x)*diff(y(x), x)+
Sum(f(k)*x^k, k = 0 .. infinity)*y(x) = 0;

Ex1 := x9

(
d5

dx5
y(x)

)

+

(

x7 +

( ∞∑

k=9

k2xk

2

)) (
d4

dx4
y(x)

)

+

(
2x5 + x2

)
(

d2

dx2
y(x)

)

+
(
2x10 + x4 + 3x

)
(

d
dx

y(x)
)

+
( ∞∑

k=0

f(k)xk

)

y(x) = 0

This equation has polynomial coefficients x9, 2x5 + x2. The coefficient
for the third derivative is zero. There are also two infinite sums: one with the
explicitly defined coefficients k2

2 and the other with the coefficients defined
by the Maple-procedure f.

For the equation Ex1 we obtain the list of two elements of solutions with the
truncation degree 3 which is set by the option ’top’:

> LaurentSolution(Ex1, y(x), ’top’ = 3);

[
c1
x2

+ c2 − 130x c1
3

+ 90 c1x2 − 324x3 c1 + O
(
x4

)
, c2 + O

(
x4

)
]
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The truncation degree of the result may be d1 which is greater than d if it
is needed to compute initial terms up to the degree d1 to determine if Laurent
solutions with valuation i0 exist. Below we obtain the list of two elements of
Laurent solutions with the truncation degree 0. This is needed to determine if
there are Laurent solutions with the valuation −2 and with the valuation 0 :

> LaurentSolution(Ex1, y(x), ’top’ = -1);

[ c1
x2

+ c2 + O(x), c2 + O(x)
]

The same result will be obtained if the option ’top’ = d is not given:

> LaurentSolution(Ex1, y(x));

[ c1
x2

+ c2 + O(x), c2 + O(x)
]

For an equation whose all coefficients are truncated series, the LaurentSolu-
tion command investigates what can be learned from the equation about its
Laurent solutions. The command constructs the maximum possible number of
initial terms of solutions which are defined uniquely by known terms of coeffi-
cients of the given equation. The maximum truncation degree may be different in
the solutions with different valuations, that is why the LaurentSolution com-
mand forms the solution for each valuation separately. The greatest truncation
degree of Laurent solutions is called the threshold of the given equation.

For example, the equation whose all coefficients are truncated power series
with various truncation degrees:

> Ex2 := O(x^9)*diff(y(x), x$5)+
(x^7+81/2*x^9+50*x^10+O(x^11))*diff(y(x), x$4)+
O(x^7)*diff(y(x), x$3)+
(2*x^5+x^2+O(x^7))*diff(y(x), x$2)+
(x^4+3*x+O(x^5))*diff(y(x), x)+
O(x^6)*y(x) = 0;

Ex2 := O
(
x9

)
(

d5

dx5
y(x)

)

+
(

x7 +
81x9

2
+ 50x10 + O

(
x11

)
) (

d4

dx4
y(x)

)

+ O
(
x7

)
(

d3

dx3
y(x)

)

+
(
2x5 + x2 + O

(
x7

))
(

d2

dx2
y(x)

)

+

(
x4 + 3x + O

(
x5

))
(

d
dx

y(x)
)

+ O
(
x6

)
y(x) = 0

We know only several initial terms of all coefficients. The coefficients of d5

dx5 y(x),
d3

dx3 y(x) and y(x) are O
(
x9

)
, O

(
x7

)
and O

(
x6

)
, and we don’t know if they

are zero or not. For Ex2 we obtain:
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> LaurentSolution(Ex2, y(x));

[
c1
x2

+ c2 − 130x c1
3

+ O
(
x2

)
, c2 + O

(
x6

)
]

The first element of the returned list has the valuation −2. The maximum
possible number of initial terms for it is equal to 4 , the truncation degree is
equal to 1. The second one has the valuation 0 and the maximum possible
number of the initial terms is equal to 6, the truncation degree is equal to 5.
So, the threshold for Ex2 is equal to 5.

If the option ’top’ = d is given, then the LaurentSolution command han-
dles d in the same way as described for equations whose all coefficients are
algorithmically represented power series.

> LaurentSolution(Ex2, y(x), ’top’ = 3, ’threshold’ = ’h’);

[
c1
x2

+ c2 − 130x c1
3

+ O
(
x2

)
, c2 + O

(
x4

)
]

Using the option ’threshold’=’h’ we can obtain the information whether the
given d is greater than the threshold of the ode. If it isn’t then h is set equal to
FAIL:

> h;

FAIL

Otherwise, h is set equal to the threshold. Below h is set equal to 5:

> LaurentSolution(Ex2, y(x), ’top’ = 8, ’threshold’ = ’h’);
’h’ = h;

[
c1
x2

+ c2 − 130x c1
3

+ O
(
x2

)
, c2 + O

(
x6

)
]

h = 5

For an equation whose coefficients are of both types, in general, it’s impossible
to determine the greatest degree of truncated Laurent solutions. The threshold
may be a finite number or infinity. Then if the option ’top’ is not given, the
LaurentSolution command computes exactly as many initial terms of the solu-
tions as needed to find a set of all valuations of the Laurent solutions of the
given equation. For the equation

> Ex3 := O(x^9)*diff(y(x), x$5)+
(x^7+Sum((1/2)*k^2*x^k, k = 9 .. infinity))*diff(y(x), x$4)+
(2*x^5+x^2)*diff(y(x), x$2)+(x^4+3*x+O(x^5))*diff(y(x), x)+
Sum(f(k)*x^k, k = 0 .. infinity)*y(x) = 0;
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Ex3 := O
(
x9

)
(

d5

dx5
y(x)

)

+

(

x7 +

( ∞∑

k=9

k2xk

2

))(
d4

dx4
y(x)

)

+

(
2x5 + x2

)
(

d2

dx2
y(x)

)

+
(
x4 + 3x + O

(
x5

))
(

d
dx

y(x)
)

+
( ∞∑

k=0

f(k)xk

)

y(x) = 0

we obtain

> LaurentSolution(Ex3, y(x));

[ c1
x2

+ c2 + O(x), c2 + O(x)
]

If the option ’top’ = d is given, then the LaurentSolution command tries
to compute all Laurent solutions to the truncation degree d. For Ex3 it’s only
possible for the solutions having valuation 0 (see the second element of the
returned list):

> LaurentSolution(Ex3, y(x), ’top’ = 4);

[
c1
x2

+ c2 − 130x c1
3

+ O
(
x2

)
, c2 + O

(
x5

)
]

If the threshold of the equation is greater than or equal to d and the option
’threshold’=’h’ is given, then h is set equal to FAIL:

> LaurentSolution(Ex3, y(x), ’top’ = 4, ’threshold’ = ’h’):
h;

FAIL

In fact, the threshold of Ex3 is equal to ∞. This equation has the solution
y(x) = c2, where c2 is an arbitrary constant. The trailing coefficient of Ex3

is
∞∑

k=0

f(k)xk and the LaurentSolution command can check any finite number

of values of f(k):

> {seq(f(k), k = 0 .. 100)};

{0}
but there is no algorithm to check that f(k) = 0 for all integer k ≥ 0.

If the given equation has no nonzero Laurent solution (the set of valuations
of Laurent solutions is empty), then the LaurentSolution command returns the
empty list:
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> LaurentSolution(x^2*diff(y(x), x)+y(x), y(x));

[ ]

And it returns FAIL if the known terms of the coefficients of the given equation
are not sufficient to find a set of valuations of Laurent solutions:

> LaurentSolution(O(x)*diff(y(x), x)+y(x), y(x));

FAIL

4 RegularSolution

For an equation with power series coefficients a formal regular solution is a finite
sum of expressions in this form:

xλ

⎛

⎝
m∑

k=0

⎛

⎝
∞∑

i=ik,0

vk(i)xi

⎞

⎠ lnkx

⎞

⎠

where λ is an algebraic number, m is a non-negative integer, i0,0, . . ., im,0 are
integers and vk(ik,0) �= 0 for k = 0, 1, . . . ,m.

Same as for the case of Laurent solutions, the definition of the threshold
of the equation is introduced. For the ’top’ and ’threshold’ options, the
RegularSolution command works in the same way as the LaurentSolution
command.

Below, we obtain the truncated regular solutions with λ = 0 (the truncation
degree is 4) and λ = 1

3 (the truncation degree is 1). The threshold is computed,
it is equal to 4:

> Sol := RegularSolution((-3+x+O(x^2))*theta(y(x), x, 2)+
(1+x+O(x^2))*theta(y(x), x, 1)+
(x^4+O(x^5))*y(x), y(x), ’threshold’ = ’h’);

’h’ = h;

Sol :=
[

c1 +
x4 c1

44
+ O

(
x5

)
+ x1 / 3

(
c2 +

x c2
9

+ O
(
x2

))
]

h = 4

Note that if the result Sol is combined in one series, for example using the series
command, then the number of the initial terms is less then the maximum possible
one (the term x4 c1

44 is lost):
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> series(Sol[1], x, infinity);

c1 + c2 x1/3 +
c2 x4/3

9
+ O

(
x7/3

)

Below is an equation which has regular solutions with lnx:

> RegularSolution((4+x+O(x^2))*theta(y(x), x, 2)+
O(x^2)*theta(y(x), x, 1)+
(x^3+O(x^4))*y(x), y(x), ’threshold’ = ’h’);

’h’ = h;

[

c2 + O
(
x2

)
+ ln(x)

(

c1 − x3 c1
36

+ O
(
x4

)
)

, c2 − x3 c2
36

+ O
(
x4

)
,

O
(
x2

)
+ ln(x)

(

c1 − x3 c1
36

+ O
(
x4

)
)]

h = 3

The first element of the returned list is the truncated regular solutions with
λ = 0 and m = 1, having two series with the valuation 0 and the truncation
degrees 1 and 3. The second one is the truncated regular solutions with λ = 0
and m = 0, having one series with the valuation 0 and the truncation degree 3.
The third one has the logarithm-free part with the valuation which is greater
than 1. The threshold is computed, it is equal to 3.

If the equation has at least one completely given coefficient (below it is the
coefficient of θ(y(x), x, 1) which is equal to 0) then we can use the command
with different values of d in the option ’top’ = d to obtain the threshold.

Below we obtain that h is equal to FAIL if ’top’ = 2:

> Ex4 := (4+x+O(x^2))*theta(y(x), x, 2)+(x^3+O(x^4))*y(x):
RegularSolution(Ex4, y(x), ’top’ = 2, ’threshold’ = ’h’);
’h’ = h;

[
c2 + O

(
x3

)
+ ln(x)

(
c1 + O

(
x3

))
,

c2 + O
(
x3

)
, O

(
x3

)
+ ln(x)

(
c1 + O

(
x3

))]

h = FAIL

and we obtain that the threshold is equal to 3 if ’top’ = 4:

> RegularSolution(Ex4, y(x), ’top’ = 4, ’threshold’ = ’h’);
’h’ = h;

[

c2 + x3
(
− c2

36
+

c1
54

)
+ O

(
x4

)
+ ln(x)

(

c1 − x3 c1
36

+ O
(
x4

)
)

,

c2 − x3 c2
36

+ O
(
x4

)
,

x3 c1
54

+ O
(
x4

)
+ ln(x)

(

c1 − x3 c1
36

+ O
(
x4

)
)]
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h = 3

The following equation has no nonzero formal regular solution (the set of
possible λ of regular solutions is empty), the result is the empty list:

> RegularSolution(x*theta(y(x), x, 2)+y(x), y(x));

[ ]

For the following one, the known terms of the coefficients are not sufficient
to determine the set of λ, the result is FAIL:

> RegularSolution(x*theta(y(x), x, 2)+
O(1)*theta(y(x), x, 1)+y(x), y(x));

FAIL

5 FormalSolution

A formal exponential-logarithmic solution has the form

eQ(x) xλ

⎛

⎝
m∑

k=0

⎛

⎝
∞∑

i=ik,0

vk(i)xi/q

⎞

⎠lnk x

⎞

⎠

where q is a positive integer, Q(x) is a polynomial in x−1/q, λ is an algebraic
number, m is a non-negative integer, i0,0, . . ., im,0 are integers and vk(ik,0) �= 0
for k = 0, 1, . . . , m. Laurent and regular solutions are special cases of formal
exponential-logarithmic solutions.

To construct all formal solutions for an equation with completely given coeffi-
cients, the DEtools[formal sol] command can be used. For an equation whose
coefficients may be truncated series the FormalSolution command of the pre-
sented TruncatedSeries package computes the maximum possible terms of the
exponent Q(x). If Q(x) is obtained completely, the FormalSolution command
then computes λ and initial terms of series which are components of solutions
(if they are invariant to all possible prolongations of the given equation).

For the following equation, the given initial terms are only sufficient to obtain
the one term of the exponent Q(x). The unknown part of solutions is denoted
by y1(x):

> Ex5 := (x^3 + O(x^4))*diff(y(x), x)+(2 + O(x))*y(x):
FormalSolution(%, y(x));

[

e
1
x2

y1(x)

]

(1)
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The following equation is a prolongation of Ex5 (extra new known terms are
added to the series coefficients). We obtain the second term of the exponent
Q(x). The notation yreg(x) in the result means that the exponential part of
formal solutions is obtained completely:

> (x^4+x^3+O(x^5))*diff(y(x), x)+(2+x+O(x^2))*y(x):
FormalSolution(%, y(x));

[

e
1
x2 − 1

x yreg(x)

]

(2)

Another prolongation of Ex5 leads to another result:

> (x^3+(1/2)*x^4+O(x^5))*diff(y(x), x)+(2+x+O(x^2))*y(x):
FormalSolution(%, y(x));

[

e
1
x2

yreg(x)

]

(3)

Both (2) and (3) are prolongations of (1). It shows that (1) presents the maxi-
mum possible information about the solution which is invariant to all possible
prolongations of Ex5.

Again and again, increasing the number of known terms in Ex5 we obtain
more information about solutions:

> (x^5+x^4+x^3+O(x^6))*diff(y(x), x)+(-x^2+x+2+O(x^3))*y(x):
FormalSolution(%, y(x));

[

e
1
x2 − 1

x x2 ( c1 + O(x))

]

> (x^5+x^4+x^3+(3/2)*x^6+O(x^7))*diff(y(x), x)+
(-x^2+x+2+O(x^4))*y(x):

FormalSolution(%, y(x));

[

e
1
x2 − 1

x x2
(

c1 + O
(
x2

))
]

> (x^5+x^4+x^3+(3/2)*x^6+(1/4)*x^7+O(x^8))*diff(y(x), x)+
(-x^2+x+2+O(x^5))*y(x):

FormalSolution(%, y(x));

[

e
1
x2 − 1

x x2

(

c1 − 3 c1x2

2
+ O

(
x3

)
)]
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The result of the FormalSolution command may contain the following
expressions: yreg(x1/q), yirr(p)(x), yirr(x), yi(x), where y, x are given via the
second parameter of the command, q and i are positive integers, p is a rational
number.

As mentioned above, the notation yreg(x1/q) in the result means that
the exponent Q(x) (together with the number q) is obtained completely but
the algebraic number λ is not invariant to all possible prolongations of the given
equation (see (2) and (3) where q is equal to 1).

If the result has a term in the form

eQ1(x) yirr(p)(x)

then it means that all prolongations of the given equation have formal solutions
with the exponential

Q(x) = Q1(x) +
b

xp
+ Q2(x) (4)

where Q1(x) and p are invariant to all possible prolongations (and the command
computes them) but b �= 0 is not invariant.

If the result has a term in the form

eQ1(x) yirr(x)

then it means that all prolongations of the given equation have formal solutions
with the exponential (4) but p is not invariant as well as b �= 0.

If the result has a term in the form

eQ1(x) yi(x)

where i is an integer it means that there are prolongation of the given equation
having solutions with the exponent (4) and b �= 0, and there are other ones
having solutions with the exponent (4) and b = 0 and Q2(x) = 0.

If different terms with the same expressions yreg(x1/q), or yirr(p)(x), or yirr(x)
appear in the result, then such expressions are additionally indexed as follows:
yreg,1(x1/q), yreg,2(x1/q), etc.

For example,

> Ex6 := (x^5 + O(x^6))*diff(y(x), x$3) +
(-3*x^3 + O(x^4))*diff(y(x), x$2) +
O(x)*diff(y(x), x) + (2 + O(x))*y(x) = 0:

FormalSolution(Ex6, y(x));

[
y1(x) + yirr(x) + yirr(1)(x)

]

The given initial terms are only sufficient to obtain the following information:

– all prolongations of Ex6 have a three-dimensional linear space of formal
exponential-logarithmic solutions;
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– the first term y1(x) of the result means that there are prolongations of Ex6
that have a one-dimensional space of regular solutions, and there are prolon-
gations that do not have regular solutions;

– the second term yirr(x) means that all prolongations of Ex6 have such irreg-
ular solutions that the exponent Q(x) has no invariant terms;

– the last term yirr(1)(x) means that all prolongations of Ex6 have at least
a one-dimensional space of irregular solutions with an exponent (4), where
Q1(x) = 0 and p = 1 but b is not invariant.

Below are two prolongations of Ex6 confirming the above:

> (x^5 + O(x^6))*diff(y(x), x$3) +
(-3*x^3 + O(x^4))*diff(y(x), x$2) +

(2*x + O(x^2))*diff(y(x), x) + (1 + O(x))*y(x) = 0:
FormalSolution(%, y(x));

[
c1 + O(x)√

x
+ e

− 2
x yreg,1(x) + e

− 1
x yreg,2(x)

]

> (x^5 + O(x^6))*diff(y(x), x$3) +
(-3*x^3 + O(x^4))*diff(y(x), x$2) +

O(x^2)*diff(y(x), x) + (1 + O(x))*y(x) = 0:
FormalSolution(%, y(x));

⎡

⎣e
− 2RootOf (3 Z2−1,index=1)√

x
yreg,1

(√
x

)
+

e
− 2RootOf (3 Z2−1,index=2)√

x
yreg,2

(√
x

)
+ e

− 3
x yreg,3(x)

⎤

⎦

The following equation is also a prolongation of Ex6. It contains enough
information to construct the exponential parts of the solutions completely. The
solution involves series in fractional powers of x:

> (x^5 + x^6 + O(x^7))*diff(y(x), x$3) +
(-3*x^3 - x^4 + O(x^5))*diff(y(x), x$2) +

(1 + x + O(x^2))*y(x) = 0:
FormalSolution(%, y(x));

⎡

⎣e
− 2RootOf (3 Z2−1,index=1)√

x
x29/36

(

c1 +

191RootOf
(
3 Z 2 − 1, index = 1

)
c1

√
x

432
− 82679 c1x

1119744
+ O

(
x3/2

))
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+ e
− 2RootOf (3 Z2−1,index=2)√

x
x29/36

(

c2 +

191RootOf
(
3 Z 2 − 1, index = 2

)
c2

√
x

432
− 82679 c2x

1119744
+ O

(
x3/2

))

+ e
− 3

x x17/9 ( c3 + O (x))

]
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Abstract. Phylogenetics deals with the task of reconstructing all the
ancestral relations among a set of lineages. For any given phylogenetic
tree that explains their evolution, subject to the Kimura Three Para-
meters Model, Hadamard Conjugation is an equation that relates its
tree weights (within a matrix Q) to its substitution patterns distribution
(within a matrix P) on leaves. In practice, the latter matrix is approxima-
ted via the DNA sequence alignment. Some challenges have to be faced
in the process such as filling the gaps when they exist. Throughout this
manuscript, it is provided fully explanation of how the matrix P can
be approximated. The authors contribute to the scientific community
with one library running on Maple to lead with these tasks. We conclude
this work with a fully developed example focused on three spieces of or-
chids of the genus Lophiarella distributed in southwestern Mexico and
northwestern Mesoamerica for which we obtained the matrix P.

Keywords: Phylogenetic reconstruction · Hadamard Conjugation ·
Maximum likelihood estimation

1 Phylogenetic Reconstruction

1.1 Introduction

Phylogenetics deals with the task of reconstructing all the ancestral relations
among a set of lineages [12]. Those relations can be illustrated by a phylogenetic
tree. DNA nucleotide sequences are currently used to hypothesize relationships
between members of the study group [6]. Several methods are known to answer
evolutionary questions at the macroevolutionary level [6,7]. This often requires
the use of a nucleotide substitution rate model. In a phylogenetic tree, branch
lengths stand for the expected number of substitutions (tree weights). Restricted
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to the Kimura Three Parameters Model [13], there are three kind of substitu-
tions: transitions, type I transversions, and type II transversions. Hadamard
Conjugation is a tool that relates the set of tree weights to the substitution pa-
tterns distribution on leaves [11]. The latter set of data is stored within a spec-
tral matrix P . Applications of Hadamard Conjugation are inferring trees from
sequence data, analyzing primate DNA sequences and inferring tree weights,
among others [1,9,10]. In real applications, upon the knowledge of a multiple
sequence alignment of current lineages, this matrix can be approximated. The
main contribution to this article is one library, written on the computer system
Maple 2015, that computes the observed substitution patterns distribution on
leaves in different contexts (within the corresponding spectral matrix P as in
Theorem 1). It is available in zenodo.org [3] as a Maple 2015 worksheet. It can
be accessed to it since the Maple version 2015.

Section 1.3 provides some definitions to understand Hadamard Conjugation.
It also provides some simple examples of what is pursued. Section 2 provides
concrete examples of how the library has to be implemented for obtaining results
in Sects. 1.3 to 1.5. Section 3 provides a fully developed example of how the
matrix P can be obtained by using the library.

1.2 Problem Statement

For any given set of lineages, we assume a phylogenetic tree that best explains all
their ancestral relations. We take its tree weights (edge lengths) as parameters.
We also assume the Kimura Three Parameters Model as the molecular evolution
model governing the tree.

Hadamard Conjugation is an equation that relates the set of tree weights
(within a matrix Q called Edge Length Spectrum) to the substitution patterns
distribution (within a matrix P called Spectral Sequence Spectrum) on leaves.
In real applications, the approximation to the latter distribution is done after
the process of sequence alignment. If the sequence alignment comprises equally
length sequences and if it has no gaps, the computation of the observed substi-
tution patterns distribution can be obtained directly. Throughout this article,
it is said that a sequence alignment is complete if it comprises equally length
sequences and if it has no gaps.

Chor, Hendy and Snir [1] make use of Hadamard Conjugation, applied to a
rooted phylogenetic tree, taking its tree weights as the parameters, to infere the
parameter values maximizing the likelihood function of substitution patterns dis-
tribution. In spite that Hendy and Snir [11] gave a proof of Hadamard Conjuga-
tion restricted to the Kimura Three Parameters Model as the molecular evolution
model, McBee and Pentilla [2] expanded the number of nucleotide substitution
models that can be used with Hadamard Conjugation. In the present work, we
restrict to the Kimura Three Parameters Model.

Library Description. The contribution by the authors is one library whose
main procedures are SSS and FillingGAPS. The former one can be implemented
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on complete sequence alignments to compute their Spectral Sequence Spectrum
as in [11] (illustrated in the Example 1.31). The latter one must be implemented
on sequence alignments that are not complete to make them be complete by
inserting characters under the condition of reducing the variance among charac-
ter patterns. In either case, for the implementation of these procedures, there is
no restriction to the number of sequences nor to their length, except the execut-
ing time and memory demand.

Section 3 is interesting as it includes an example, where the procedures Fill-
ingGAPS and SSS were implemented in that order to the taxa Lophiarella
flavovirens, Lophiarella microchila and Lophiarella splendida.

The procedure SSS is linked to other four procedures, whose dependence
order is as follows: Patterns → SPL → SPLM → SPF → SSS.

Patterns computes all substitution patterns present in the alignment; they are
included within the list NI . For any given substitution pattern, SPL provides
its location within the matrix S (to be computed later) as an ordered pair.
SPLM includes into the list PAIRS the location of every substitution pattern in
NI within the matrix S as ordered pairs. SPF associates to each ordered pair
in PAIRS the absolute frecuency of the corresponding substitution pattern as
an element of another matrix, M . SSS standarizes each entry in M to get the
matrix S: all entries in S sum to 1. This matrix is the observed spectral sequence
spectrum.

The procedure FillingGAPS is linked to other thirteen procedures, whose
dependence order is as follows:

GAPSL separation GAPSA GAPSITE

SLI SD−to−SCHPS DCHPS CPCL

CCHPS CHPR SHR RCHP

FillingGAPS RecSeq

� � �

�

�

� � �

� � �

�
�

Gaps are identified by empty characters along an n-sequence. Let L be an
n-sequence. GAPSL provides positions of its gaps within a list. For any given
m-sequence alignment of n-sequences, a, {separation, GAPSA} call GAPSL for
each of its n-sequences. GAPSITE provides within the list Siteset all sites show-
ing gaps in the m-sequence alignment. CPCL classifies all character patterns
that are present in a as those character patterns with gaps (within the matrix
GM) and as those character patterns with no gaps (within the matrix NGM).
Every character pattern has an index as a column position either in GM or in
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NGM. For any suitable pair (i, j), DCHPS compares nonempty entries GM(k,i)
to entries NGM(k,j): if corresponding entries equal, DCHPS returns 0; otherwise,
it returns 1. DCHPS does this for each integer k with 1 ≤ k ≤ m and adds over
ones. DCHPS measures distances between character patterns. For any suitable
integer s, SD−to−SCHP compares the s-th character pattern in GM to every
character pattern in NGM by calling DCHPS each time. SLI stores within the
list LOWER the nearest character patterns in NGM from the s-th character
pattern in GM. For any suitable pair of integers (s1, s2), CCHPS returns 1 if
the s1-th and s2-th character patterns in NGM equal. Otherwise, it returns 0.
CHPR stores within the list REPETITION the absolute frequency (minus one)
of each character pattern in LOWER. SHR provides the indexes of those char-
acter patterns in LOWER with highest absolute frequency according to the list
REPETITION. For the s-th character patter in GM, RCHP substitutes its gaps
by the corresponding row characters from the previously selected character pa-
ttern in LOWER, according to the highest index in SHR. {RecSeq, FillingGAPS}
fill all gaps in a by calling the last procedures in certain order.

1.3 Definitions

Hadamard Conjugation assumes an apriori phylogenetic tree as a taxa evolution
model [11].

As an illustration of a phylogenetic tree, the Fig. 1 shows a graph with six
vertices. The outest vertices stand for the current taxa σ1, σ2, σ3 and σ4, whose
nucleotide sequences appear in Table 1. The inner vertex represented by a dot is
the most recent ancestral taxa for σ3 and σ4. The inner vertex R, as being the
most recent ancestral taxa for σ1, σ2, σ3 and σ4, is the root. In the literature, the
outest vertices are called leaves. The arrows in Fig. 1 express the taxa evolving
direction. More over, the arrow lengths stand for the expected number of sub-
stitutions from certain ancestral taxa to their nearest descendants. Sometimes,
these arrow lengths are called tree weights.

Another restriction for holding Hadamard Conjugation is the molecular evo-
lution model: the Kimura Three Parameters Model [11]. As the Kimura Two
Parameters Model and the Jukes-Cantor Model are special cases of the Kimura
Three Parameters Model [13], they can also be used as molecular evolution mo-
dels to hold Hamadard Conjugation.

Hadamard Conjugation involves two spectral matrices: the Edge Lenght
Spectrum, Q, and the Spectral Sequence Spectrum, P . The former one includes
all the tree weights in the tree. The latter one includes all probabilities of obser-
ving the different substitution patterns on the alignment. In real applications,
tree weights are parameters for the model [1]. The latter probabilities are a-
pproximated via relative frequencies. Throughout this section, we will construct
the spectral matrices for an artificial example.

Character Patterns. Let σ1, σ2, σ3 and σ4 be the sequences of nucleotides of
Table 1, whose phylogenetic tree is the following:
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Fig. 1. Phylogenetic tree for the aligned sequences in Table 1.

In Fig. 1, R stands for the root; the internal dot stands for the common
ancestor of lineages 3 and 4. The root R is the common ancestor of lineages 1,
2, 3 and 4.

Table 1. Example of four aligned sequences with sixteen sites.

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

σ1 = C C A T C A A A C G T G T G A C

σ2 = A C A G C A A T G T T A T C T C

σ3 = C C A T T G A A G A T G C G T T

σ4 = A C A G T A G T G T T A C C A G

Table 1 shows a sequence alignment with 16 sites. Each site corresponds to
a column that is called a character pattern. Character patterns’ nucleotides are
ordered from top to bottom according to the observed lineage on the tree’s leaves
of Fig. 1.

For the alignment of Table 1 in the Example 1.32, its observed spectral
sequence spectrum P will be computed. It will also be given details on its cons-
truction, then it also will be explained how it is obtained by using the procedure
SSS in Sect. 2.1.

Substitution Patterns. We call a substitution the transformation from one
nucleotide to another. According to the Kimura Three Parameters Model, we
distinguish three kind of substitutions and refer to them as the following figure
shows (Fig. 2):

Fig. 2. Classes of substitution patterns: 1 stands for transitions; 2 stands for type I
transversions and 3 stands for type II transversions.
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If we select a row on Table 1, say row 2, we can produce from this one the
substitutions to the rest rows as the Table 2 shows:

Table 2. Substitution patterns.

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

σ2 → σ1 3 0 0 3 0 0 0 T → A = 2 2 3 0 1 0 2 2 C → C = 0

σ2 → σ3 3 0 0 3 1 1 0 T → A = 2 0 2 0 1 1 2 0 C → T = 1

σ2 → σ4 0 0 0 0 1 0 1 T → T = 0 0 0 0 0 1 0 2 C → G = 2

In Table 2, 0 stands for no change, 1 stands for transitions, 2 stands for type
I transversions and 3 stands for type II transversions.

Chor, Hendy and Snir [1] make use of another notation for substitution pat-
terns:

Select one reference lineage, say i ∈ [n] = {1, 2, 3, . . . n}. Take A,B ⊂ [n] \
{i}. The ordered pair (A,B) is the substitution pattern such that

A\B : set of lineages obtained by transitions.
B\A : set of lineages obtained by type I transversions.
A ∩ B : set of lineages obtained by type II transversions.
[n]\(A ∪ B) : set of lineages sharing the same character as row i.

As examples of this notation, we have: for sites 8 and 15 from Table 2,
(∅, {1, 3}); for site 16 from Table 2, ({3}, {4}). Their relative frequencies are
reported in the matrix P of the Example 1.31.

Chor, Hendy and Snir [1] take advantage of this last notation to include
within a 2n−1 square matrix, whose rows and columns are indexed by subsets
of the family of leaves (minus the reference lineage), all frequencies for different
substitution patterns.

Spectral Sequence Spectrum. We summarize the relative frequencies of all
substitution patterns in Table 2 within the matrix P :

Example 1.

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ {1} {3} {1, 3} {4} {1, 4} {3, 4} {1, 3, 4}
∅ 3

16
1
16 0 2

16 0 1
16 0 0

{1} 0 0 0 1
16 0 0 0 0

{3} 1
16 0 0 0 1

16 0 0 0
{1, 3} 1

16 0 0 2
16 0 0 0 0

{4} 1
16 0 0 0 0 0 0 0

{1, 4} 0 0 0 0 0 0 0 0
{3, 4} 2

16 0 0 0 0 0 0 0
{1, 3, 4} 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Observe that lineage σ3 takes σ2’s place in correspondence to the lexicographi-
cal order for the subsets of {1, 2, 3, 4}:

∅ {1} {3} {1,3} {4} {1,4} {3,4} {1,3,4}
	 	 	 	 	 	 	 	
0 1 10 11 100 101 110 111

For example, to locate the substitution pattern ({3}, {4}), we change 3 → 2
and 4 → 3: ({3}, {4}) → (22−1 + 1, 23−1 + 1) = (3, 5).

Edge Length Spectrum. The 2n−1 square matrix Q in theorem 1 is called
the Edge Length Spectrum. It reserves a unique entry for each expected number
of substitutions on the branches for the selected phylogenetic tree. It is typically
not known by prior. That’s why Chor, Hendy and Snir [1] take its entries as
parameters. In spite that its construction is not our goal in this article, we include
the corresponding Edge Length Spectrum for the phylogenetic tree in Fig. 1. Its
structure is evident once the phylogenetic tree’s branches are in correspondence
to subsets of its leaves: Take any leaf as a reference. Any branch cut produces
two subsets of leaves. The subset that omits the reference leaf (called bipartition)
corresponds to the given branch.

Example 2. With respect to the third lineage in Fig. 1, the sequence of subsets in
{1, 2, 4} (set of bipartitions), ordered lexicografically, are:

0 → ∅
1 → {1}

10 → {2}
11 → {1, 2}

100 → {4}
101 → {1, 4}
110 → {2, 4}
111 → {1, 2, 4}

The bipartitions {1, 4} and {2, 4} do not correspond to any leaves in Fig. 1.
That is why the corresponding rows and columns in the matrix Q are fulfilled
with zeroes.

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ {1} {2} {1, 2} {4} {1, 4} {2, 4} {1, 2, 4}
∅ −K q1(β) q2(β) q12(β) q4(β) 0 0 q124(β)

{1} q1(α) q1(γ) 0 0 0 0 0 0

{2} q2(α) 0 q2(γ) 0 0 0 0 0

{1, 2} q12(α) 0 0 q12(γ) 0 0 0 0

{4} q4(α) 0 0 0 q4(γ) 0 0 0

{1, 4} 0 0 0 0 0 0 0 0

{2, 4} 0 0 0 0 0 0 0 0

{1, 2, 4} q124(α) 0 0 0 0 0 0 q124(γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Hadamard Conjugation

Theorem 1 [11]. Let Q be the Edge Length Spectrum for any given phylogenetic
tree with n leaves. Let P be the corresponding Spectral Sequence Spectrum. Under
the Kimura Three Paramaters Model, it holds that

HnPHn = exp(HnQHn), (1)

where Hn is the 2n × 2n Hadamard matrix obtained inductively as follows:

1.

H1 =
(

1 1
1 −1

)

2. Hn = H1 ⊗ Hn−1, where the symbol ⊗ stands for the Kronecker product
of matrices.

The exponential function in Theorem 1 acts termwise on HnQHn.

1.4 Existence of Gaps

In practice, lineage sequences do not splice well: sites do not match. This is
due to the evolving process itself that forced the ancestral lineages diverge in
different ways. This divergence produces gaps:

Table 3. Four aligned sequences with gaps (indicated with an asterisk)

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

σ1 = C C A T C A A A C G T G T G * C

σ2 = A C * G C A * T G T T A T C T C

σ3 = C C * T T G A A G A T G C G T T

σ4 = A C A G T A G T G T T A C C A G

In the presence of gaps, the assumption for the sequences to obtain the spec-
tral sequence spectrum does not hold. Some work has to be done on the sequences
to overcome that limit: fill the gaps.

The criteria used by the authors to fill gaps on character patterns is that of
reducing the variance among the present character patterns on the alignment.
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2 Procedures

Throughout the following subsections, it will be shown how the procedures SSS
and FillingGAPS need to be implemented on the computer system Maple 2015.
As it also will be noted, there are a few Maple standard libraries that have to
be run before executing the procedures SSS and FillingGAPS as the latter ones
work with lists, sets, arrays and matrices. A short note on the variables usage
deserves attention: they appear according to the flow schemes in the Sect. 1.2.
More over, as it can be seen in the following two subsections, some of them are
named the same way to keep track the information.

2.1 Computation of the Observed Spectral Sequence Spectrum

The following lines show how to compute the matrix P in Example 1.31 by
calling the procedure SSS.

> with(LinearAlgebra):
> with(RandomTools):
> with(StringTools):
> with(ArrayTools):
> with(ListTools):
> PATTERNS(m, n, L):
> SPL(r, R):
> COLUMNS(m,n):
> SPLM(N_I):
> SPF(N_I):
> SSS(M,n):
> L[1] := "CCATCAAACGTGTGAC":
> L[4] := "ACAGCAATGTTATCTC":
> L[2] := "CCATTGAAGATGCGTT":
> L[3] := "ACAGTAGTGTTACCAG":
> L := Join([L[1],L[2],L[3],L[4]]):
> for i from 1 to 3 by 1 do

L := Delete(L,17*(4 - i)..17*(4 - i)):
end do:

> m := 4: n := 16:
> PATTERNS(m,n,L):
> SPLM(N_I):
> SPF(N_I):
> SSS(M,16);

Observe the trick of changing the sequence ordering: the procedure SSS
always computes all the observed substitution patterns with respect to the last
sequence. As it was the intention to compute substitution patterns with respect
to the second sequence, we re ordered the sequences: σ1 kept the same position;
σ3, σ4 and σ2 took positions second, third and fourth, respectively.
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2.2 Filling the Gaps of an Alignment

Table 3 shows an alignment with gaps in sites three, seven and fifteen. The
following lines on Maple show how to fill those gaps by using the procedure
FillingGAPS:

> with(LinearAlgebra):
> with(RandomTools):
> with(StringTools):
> with(ArrayTools):
> with(Logic):
> GAPSL(n,L):
> separation(m,n,L):
> GAPSA(m, n, chain2):
> GAPSITE(m, n, The_gaps):
> CPCL(m,n,L,siteset):
> DCHPS(m,n,i,j,site_diference_set,GM,NGM):
> SD_to_SCHP(m,n,s,site_diference_set,GM,NGM):
> MINOR_INTEGER(n1,n2):
> SLI(m,n,s,site_diference_set,GM,NGM):
> GRATEST_INTEGER(n1,n2):
> CCHPS(m,s1,s2,NGM):
> CHPR(m, MINOR_LIST, NGM):
> SHR(Repetition_list):
> RCHP(m, n, is_s,the_integer,GM,NGM):
> RecSeq(m, n, is_GAPchps, siteset, L, The_gaps):
> FillinGAPS(m,n,L):
> l[1] := "CCATCAAACGTGTG C":
> l[2] := "AC GCA TGTTATCTC":
> l[3] := "CC TTGAAGATGCGTT":
> l[4] := "ACAGTAGTGTTACCAG":
> L := Join([l[1],l[2],l[3],l[4]]):
> for i from 1 to 3 by 1 do

L := Delete(L,17*(4 - i)..17*(4 - i)):
end do:

> FillinGAPS(4,16,L);
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Table 4. Re alignment after implementing the library Spectral Sequence Spectrum on
Table 3.

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

σ1 = C C A T C A A A C G T G T G T C

σ2 = A C A G C A T T G T T A T C T C

σ3 = C C G T T G A A G A T G C G T T

σ4 = A C A G T A G T G T T A C C A G

FillingGAPS produces (Table 4):
Observe the following: Nucleotides in Table 3 were recovered with no change.

Gaps were filled with nucleotides that reduce distances from the new full-
filled character patterns to the rest. This criteria did not recover the deleted
nucleotides in Table 2.

3 Real Application

The genus Lophiarella(Orchidaceae: Oncidiinae) is a monophyletic clade inte-
grated by taxa Lophiarella microchila, L. flavovirens and L. splendida [4]. This
section develops a real case involving those taxa, whose nucleotide sequences
appear in the Appendix.

3.1 Molecular Data

Nucleotide sequences and coded gaps for the nrDNA ITS region of 3 taxa
of Lophiarella were used, whose vouchers and GenBank accession number are
listed in the Appendix. Gaps of ITS sequences were aligned manually with Win-
clada program [5] by the simple indel coding method paradigm of Simmons
and Ochoterena [8] in the context of phylogenetic tree proposed by Carnevali
et al. [4]: This method represents gaps by short dashes. In fact, they are inserted
between nucleotides on a sequence by separating some of these as part of the
alignment procedure itself.

The implementation of the procedures FillingGAPS and SSS (in that order)
to the taxa Lophiarella flavovirens, L. microchila and L. splendida (reported in
the Appendix) produces the following 4-dimensional Spectral Sequence Spec-
trum:

P =

⎛
⎜⎜⎝

717
740

1
740

1
740

1
740

0 3
740 0 0

2
185 0 1

740 0
1

148 0 0 3
740

⎞
⎟⎟⎠ .

4 Conclusions

The contribution of this article is a library for obtaining the observed Spectral
Sequence Spectrum for a nucleotide sequence alignment with or without gaps, no
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matter the number of sequences nor the length sequences (in spite of the time
execution and memory demand). The construction algorithm for the spectral
matrix is given in [11]. The utility of the Spectral Sequence Spectrum is evident
after the application of the Theorem 1: either it imposes conditions to the tree
weights for an apriori phylogenetic tree as a model of taxa evolution or it helps
to find the best phylogenetic tree that explains all the ancestral relations of the
current data [1,9,10]. In this sense, the matrix P of the Sect. 3.1 can be the
departure for future research.

Appendix

Voucher information and GenBank accesion numbers on nrITS DNA for taxa
used in Sect. 3:

Lophiarella flavovirens, Mexico, Colima, Carnevali 7270 (CICY), JQ319734;
Lophiarella microchila, Mexico, Chiapas, Carnevali 7643 (CICY), JQ319735;
Lophiarella splendida, Guatemala, Carnevali 7232 (CICY), JQ319736.

Nucleotide sequences, as they were used on Maple, are:

LophiarellaFlavovirens :=

"GGTGAACCTGCGGAAGGATCATTGTCGAGA-CCGAAAAATAT--ACCGAGCG-ATTCGGACAACC

CGTGAAAATGAGCGTTTTGTA-CTGCTAT-CCTGG-TCGTCGCCCT--CGCTTTCCTTCAGGGGGG

--AGGGGGCACGGCGGAGGTGGATGAAC----CACAAACCGGCGCAGCATCGCGCCAAGGGAAGAT

TGGAATGCACGAGCCCCGCGTCGGGCTCGGAGGCGTGGAGTGCTGTTGCACGCCATGCGGTTGGAC

ACGACTCTCGGCAATGGATATCTCGGCTCTCGCATCGATGAAGAGCGCAGCGAAATGCGATACGTG

GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAGGCCAGCCGG

CCAAGGGCACGCCCGCCTGGGCGTCAAACATTGCGTCGCTCCGTGCCAC-CGCCGGCCCTCCAATG

GTCGTGCCGGTTGCGGCTTGGATGTGCAGAGTGGCCCGTCGCGCCTGCCGG-CGCGGCGGGTTGAA

GAGTTGGTTTCGTCTCGCTGGCCGCGAACAACAA-GGGGTGGGTGAAAGCTATGAGCGCAA-CCTG

CGTTGTCTCCGCGCCGGCCCGAAAGACGGCTTGTGCCTTTTATGTGATCCC-GGACCAA-GCCCCG

ATCGAC----ATGCGGCGGC-TTGGAATGCGACCCC----AGG-ATGGGCGAGGCC-ACCCGCTGA
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GTTTAAGCATATCAA-":

LophiarellaMicrochila :=

"GGTGAACCTGCGGAAGGATCATTGTCGAGA-CCGAAAAATAT--ACCGAGCG-ATTCGGACAACC

CGTGAAA-TTAGCGTTTTGTA-CTGCTAT-CCTGG-TCGTCGCCCT--CGCTTTCCTTAAGGGGGG

--AGGGGGCACGGCGGAGGTGGATGAAC----CACAAACCGGCGCAGCATCGCGCCAAGGGAAGAT

TGGAATGCACGAGCCCCGCGTCGGGCTCGGTGGCGTGGAGTGCTTTTGCACTCCATGCGGTTGGAC

ACGACTCTCGGCAATGGATATCTCGGCTCTCGCATCGATGAAGAGCGCAGCGAAATGCGATACGTG

GTGCGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAGGCCAGCCGG

CCAAGGGCACGCCCGCCTGGGCGTCAATCGTTGCGTCGCTCCGTGCCAC-CGCCGGCCCTCCAATG

GTCGTGCCGGTTGCGGCTTGGATGTGCAGAGTGGCCCGTCGTGCCTGTCGG-CGCGGCGGGTTGAA

GAGCTGGTTTCGTCTCGCTGGCCGCGAACAACAA-GGGGTGGGTGAAAGCTATGAGCGCAA-CCTG

CGTTGTCTCCGCGCCGGCCCGAGAGACGGTTTGTGCCTTTTATGTGATCCC-GGACCAA-GCCCCG

ATCGAC----ATGCGGTGGC-TTGGAATGCGACCCC----AGG-ATGGGCGAGGCC-ACCCGCTGA

GTTTAAGCATATCAA-":

LophiarellaSplendida :=

"GGGGGGTnT-CGGAAGGATCATTGTCGAGA-CCGAAAAATATATACCGAGCGGATTCGGACAACC

CGTGAAA-TGAGCGTTTTGTA-CTGCTAT-CCTGG-TCGTCGCCCT--CGCTTTCCTTCAGGGGGG

--AGGGGGCACGGCGGAGGTGGATGAAC----CACAAACCGGCGCAGCATCGCGCCAAGGGAAGAT

TGGAATGCACGAGCCCCGCGTCGGGCTCGGTGGCGTGGAGTGCTGTTGCACTCCATGCGGTTGGAC

ACGACTCTCGGCAATGGATATCTCGGCTCTCGCATCGATGAAGAGCGCAGCGAAATGCGATACGTG

GTGCGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAGGCCAGCCGG

CCAAGGGCACGCCCGCCTGGGCGTCAAACGTTGCGTCGCTCCGTGCCAC-CGCCGGCCCTCCAATG
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GTCGTGCCGGTTGCGGCTTGGATGTGCAGAGTGGCCCGTCGTGCCTGTCGG-CGCGGCGGGTTGAA

GAGCTGGTTTCGTCTCGCTGGCCGCGAACAACAA-GGGGTGGGTGAAAGCTATGAGCGCAA-CCTG

CGTTGTCTCCGCGCCGGCCCGAGAGGCGGTTTGTGCCTTTTATGTGATCCC-GGACCAA-GCCCCG

ATCGAC----ATGCGGTGGC-TTGGAATGCGACCCCCCCAAGGGCGAGGCC------ACCCGCTGA

GTTTAAGCATATC---":
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Abstract. We present MultivariatePowerSeries, a Maple library
introduced in Maple 2021, providing a variety of methods to study
formal multivariate power series and univariate polynomials over such
series. This library offers a simple and easy-to-use user interface. Its
implementation relies on lazy evaluation techniques and takes advan-
tage of Maple’s features for object-oriented programming. The exposed
methods include Weierstrass Preparation Theorem and factorization via
Hensel’s lemma. The computational performance is demonstrated by
means of an experimental comparison with software counterparts.

Keywords: Multivariate power series · Weierstrass preparation
theorem · Hensel’s lemma · Factorization · Lazy evaluation

1 Introduction

In elementary courses on univariate calculus, power series are often introduced as
limits of sequences of the form “the first n terms of a given sequence”. This leads
students to the study of analytic functions and the use of power series in comput-
ing function limits. While the extension of those notions to the multivariate case
is a standard topic in advanced calculus courses, the availability of multivariate
power series and multivariate analytic functions in computer algebra systems is
somehow limited.

In Maple [11], SageMath [16], and Mathematica [19], power series are
restricted to being either only univariate or truncated, that is, reduced modulo a
fixed power of the ideal 〈X1, . . . , Xn〉 generated by the variables of those power
series. A truncated implementation, while simple, may be insufficient for, or
computationally more expensive in, some particular circumstances. For instance,
modern algorithms for polynomial system solving require the intensive use of
modular methods based on Hensel lifting. In those lifting procedures, degrees of
truncation may not be known a priori, thus leading to truncated power series
being ineffective.

Considering that a power series has potentially an infinite number of terms
naturally suggests to represent it as a procedure which, given a particular (total)
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degree, produces the terms of that degree. This leads to a so-called lazy evalua-
tion scheme, where the terms of any power series are produced only as needed,
via such a generator function.

The usefulness of lazy evaluation in computer algebra has been studied for a
few decades. In particular, see the work of Karczmarczuk [10], discussing different
mathematical objects with an infinite length; Burge and Watt [7], and van der
Hoeven [17], discussing lazy univariate power series; and Monagan and Vrbik
[12], discussing lazy arithmetic for polynomials.

In this paper, we present MultivariatePowerSeries, which is among the
new features released in Maple 2021 and publicly available in [1]. This library,
written in the Maple language, provides the ability to create and manipu-
late multivariate power series with rational or algebraic number coefficients, as
well as univariate polynomials whose coefficients are multivariate power series.
Through lazy evaluation techniques and a careful implementation, our library
achieves very high performance. These power series and univariate polynomials
over power series (UPoPS) are employed in optimized implementations of Weier-
strass Preparation Theorem and factorization of UPoPS via Hensel’s lemma.

Our implementation follows the lazy evaluation scheme of multivariate power
series in the BPAS library [3]. The multivariate power series of BPAS, written in
the C language, is discussed in [6] and extends upon the work of the PowerSeries
subpackage of the RegularChainsMaple library [2,13]. The PowerSeries pack-
age is the only preexisting implementation of multivariate power series integrated
in Maple. In [6], it is shown that the BPAS implementation provides exceptional
performance, surpassing that of the PowerSeries package, the basic Maple

function mtaylor, and the multivariate power series available in SageMath [16]
by multiple orders of magnitude.

A key design element of our library, in addition to lazy evaluation techniques,
is the use of Maple objects and object-oriented programming. An object in
Maple is a special kind of module which encapsulates together data and proce-
dures manipulating that data, just like objects in any other object-oriented lan-
guage; see [5, Chapters 8, 9]. To the best of our knowledge, few Maple libraries
make use of those objects, which, as our report suggests, are worth considering for
improving performance. In particular, objects allow for the overloading of exist-
ing builtin Maple functions in order to integrate these new custom objects with
existing Maple library code. Our results show that MultivariatePowerSeries
is comparable in performance to the implementation of BPAS, is thus similarly
several orders of magnitude faster than other existing implementations. These
experimental results are discussed in Sect. 6.

The remainder of this paper is organized as follows. We begin in Sect. 2
with reviewing definitions of formal power series, and univariate polynomial
over power series, followed by a brief discussion about the basic arithmetic,
Weierstrass preparation theorem and factorization via Hensel’s lemma. Section 3
presents an overview of the MultivariatePowerSeries package, while Sect. 4
explores its underlying design principles. Implementation details are discussed
in Sect. 5, followed by our experimentation in Sect. 6. Finally, we conclude and
present future works in Sect. 7.
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2 Background

In this section we review the basic properties of formal power series and uni-
variate polynomials over those series, following G. Fischer in [8]. While various
proofs of Theorems 1 of 2 can be found in the literature, the proofs given in [6]
are constructive and support our implementation. Throughout this paper, N

denotes the semi-ring of non-negative integers and K an algebraic number field.

2.1 Power Series

Given a positive integer n, we denote by K[[X1, . . . , Xn]] the set of multivariate
formal power series with coefficients in K and variables X1, . . . , Xn. Let f =∑

e∈Nn aeX
e ∈ K[[X1, . . . , Xn]] and d ∈ N where Xe = Xe1

1 · · · Xen
n and e =

(e1, . . . , en) ∈ N
n. The homogeneous part and polynomial part of f in degree d

are respectively defined by f(d) :=
∑

|e|=d aeX
e and f (d) :=

∑
k≤d f(k), where

|e| = e1 + · · · + en. The sum (resp. difference) of two formal power series f, g ∈
K[[X1, . . . , Xn]] is defined by the sum (and resp. difference) of their homogeneous
parts of the same degree; thus we have: f±g =

∑
d∈N

f(d)±g(d). The product h =
f ·g can be defined as h =

∑
d∈N

h(d) with h(d) =
∑

k+l=d f(k) g(l). With the above
addition and multiplication, the set K[[X1, . . . , Xn]] is a local ring with M :=
〈X1, . . . , Xn〉 as maximal ideal; K[[X1, . . . , Xn]] is also a unique factorization
domain (UFD). The order of the power series f , denoted by ord(f), is defined
as min{d ∈ N | f(d) �= 0} if f �= 0, and as ∞ otherwise. We observe that
Mk = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ k} holds for every k ≥ 1. If f is a unit,
that is, if f �∈ M (or equivalently, if ord(f) = 0) then the sequence (hm)m∈N,
where hm = c−1(1 + g + · · · + gm), c = f(0), and g = 1 − c−1f , converges to the
inverse of f . This convergence is the sense of Krull topology, see [8] for details.

2.2 Univariate Polynomials over Power Series

We denote by A and M the power series ring K[[X1, . . . , Xn]] and its maximal
ideal. We allow n = 0, in which case we have M = 〈0〉. Let f ∈ A[[Xn+1]], written
as f =

∑∞
i=0 aiX

i
n+1 with ai ∈ A for all i ∈ N. Then, Weierstrass Preparation

Theorem (WPT) states the following.

Theorem 1. Assume f �≡ 0 mod M[[Xn+1]]. Let d ≥ 0 be the smallest integer
such that ad �∈ M. Then, there exists a unique pair (α, p) satisfying the following:

i α is an invertible power series of A[[Xn+1]],
ii p ∈ A[Xn+1] is a monic polynomial of degree d,
iii writing p = Xd

n+1 +bd−1X
d−1
n+1 + · · ·+b1Xn+1 +b0, we have bd−1, . . . , b0 ∈ M,

iv f = αp holds.

Moreover, if f is a polynomial of A[Xn+1] of degree d + m, for some m, then α
is a polynomial of A[Xn+1] of degree m.
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Since A is a UFD, then Gauss’ lemma implies that the polynomial ring
A[Xn+1] is also a UFD. Hensel’s lemma shows how factorizing a polynomial
in A[Xn+1] can be reduced to factorizing a polynomial in K[Xn+1].

Theorem 2 (Hensel’s Lemma). Assume that f is a polynomial of degree k
in A[Xn+1]. We define f = f(0, . . . , 0,Xn+1) ∈ K[Xn+1]. We assume that f is
monic in Xn+1, that is, ak = 1. We further assume that K is algebraically closed.
Thus, there exists positive integers k1, . . . , kr and pairwise distinct elements
c1, . . . , cr ∈ K such that we have f = (Xn+1−c1)k1(Xn+1−c2)k2 · · · (Xn+1−cr)kr .
Then, there exists f1, . . . , fr ∈ A[Xn+1], all monic in Xn+1, such that we have:

i f = f1 · · · fr,
ii the degree of fj is kj, for all j = 1, . . . , r,
iii fj = (Xn+1 − cj)kj , for all j = 1, . . . , r.

3 An Overview of the User-Interface

From the point of view of the end-user, the MultivariatePowerSeries pack-
age is a collection of commands for manipulating multivariate power series and
univariate polynomials over multivariate power series. The field of coefficients of
all power series created by the command PowerSeries consists of all complex
numbers that are constructible in Maple, thus including rational numbers and
algebraic numbers. The main algebraic functionalities of this package deal with
arithmetic operations (addition, multiplication, inversion, evaluation), for both
multivariate power series and univariate polynomials over multivariate power
series (UPoPS), as well as factorization of such polynomials. The list of the
exposed commands is given in Fig. 1.

Fig. 1. List of the commands of MultivariatePowerSeries.

The commands PowerSeries and UnivariatePolynomialOverPowerSeries
create power series and univariate polynomials over multivariate power series,
respectively, from objects like polynomials, sequences, and functions which pro-
duce homogeneous parts of a power series, as illustrated in Figs. 2 and 3. The
commands GeometricSeries and SumOfAllMonomials respectively create the
geometric series and sum of all monomials for an input list of variables.
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Fig. 2. Creating power series from a polynomial or an anonymous function.

Fig. 3. Creating a univariate polynomial over power series

Fig. 4. Controlling the output format of a multivariate power series.
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Whenever possible, the package associates every power series with its so-
called analytic expression. For each power series s, created by the command
PowerSeries as the image of a polynomial p (under the natural embedding from
C[X1, . . . , Xn] to C[[X1, . . . , Xn]]) the polynomial p is the analytic expression
of s. If a power series is defined by the sequence of its homogeneous parts,
as illustrated on Fig. 3, the user can optionally specify the sum of that series
which is then set to its analytic expression. Power series that have an analytic
expression are closed under addition, multiplication and inversion. Propagating
that information provides the opportunity to speed up some computations and
make decisions that could not be made otherwise. For instance, the command
HenselFactorize needs to decide whether its input polynomial has an invertible
leading coefficient; to do it starts by checking whether the analytic expression
of that leading coefficient is known and equal to one.

The commands Display, SetDefaultDisplayStyle and SetDisplayStyle
control the output format of multivariate power series and UPoPS. Meanwhile,
the commands HomogeneousPart, Truncate, GetCoefficient, Precision,
Degree, MainVariable access data from a power series or a univariate poly-
nomial over power series, as illustrated by Fig. 4.

The commands Add, Negate, Multiply, Exponentiate, Inverse, Divide,
EvaluateAtOrigin, and TaylorShift perform arithmetic operations on multi-
variate power series and univariate polynomials over multivariate power series.
The functionality of the first six commands can also be accessed using the stan-
dard arithmetic operators. As will be discussed in Sects. 4 and 5, the implemen-
tation of every arithmetic operation, such as addition, multiplication, inversion
builds the resulting power series (sum, product or inverse) “lazily”, by creating
its generator from the generators of the operands, which are called ancestors of
the resulting power series.

Fig. 5. Factoring univariate polynomials using WeierstrassPreparation.
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Fig. 6. Factoring univariate polynomials using HenselFactorize.

The commands WeierstrassPreparation and HenselFactorize factorize
univariate polynomials over multivariate power series. Thanks to their implemen-
tation based on lazy evaluation, each of these factorization commands returns
the factors as soon as enough information is discovered for initializing the data
structures of the factors; see Figs. 5 and 6.

The precision of each returned factor, that is, the common precision of its
coefficients (which are power series) is zero. However the generator (see Sect. 4
for this term) of each coefficient is known and, thus, the computation of more
coefficients can be resumed when a higher precision is requested. Such a request
can be explicit by calling UpdatePrecision, or implicit, when requesting data
of a higher precision than has been previously requested through, e.g., Truncate
or HomogeneousPart.
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4 Design Principles

In this section we examine several design principles underpinning the implemen-
tation of the MultivariatePowerSeries library. Foremost is lazy evaluation: an
algorithmic technique where the computation of data is postponed until explic-
itly required (Sect. 4.1). The eventual implementations of these lazy-evaluation
algorithms make deliberate efforts to use appropriate Maple data structures
and built-in functions to optimize performance (Sect. 4.2). Lastly, in support of
software quality and integration with existing Maple library code, we employ
Maple’s object-oriented mechanisms (Sect. 4.3).

4.1 Lazy Evaluation

Lazy evaluation is an optimization technique most commonly appearing in the
study of functional programming languages [9]. The lazy evaluation or “call-by-
need” refers to delaying the call to a function until its result is genuinely needed.
This is often complemented by storing the result for later look-up.

In the case of power series, consider a bivariate geometric series f =
∑∞

d=0 f(d)
where f(0) = 1, f(1) = x + y, f(2) = x2 + 2xy + y2, . . . , f(d) = (x + y)d. One
can prove that f converges to 1

1−x−y . Of course, in practice, it is impossible to
store an infinite number of terms on a computer with finite memory. A näıve
implementation then suggests storing f (d) for some large and predetermined d.
Thus, one can approximate power series as multivariate polynomials. Such an
implementation could be called truncated power series.

While this representation of power series is easy to implement, it leads to
notable restrictions for the study of formal power series. First, one must a priori
determine the precision, i.e. the particular value of d. Second, in a most näıve
implementation, previously-computed homogeneous parts must be recomputed
whenever a new, greater precision is required. For example, the polynomial f (d+1)

is likely to be constructed “from scratch” despite the polynomial f (d) possibly
being already computed. Third, storing and manipulating the polynomial part
of a power series up to a degree d needs a large portion of memory. This latter
problem is exacerbated when the predetermined precision is not a tight upper
bound on the required precision.

To combat the challenges of a truncated power series implementation, we
take advantage of lazy evaluation. Every power series is represented by a unique
procedure to compute a homogeneous part for a given degree. For example,
Listing 1.1 shows such a procedure for the bivariate geometric series which con-
verges to 1

1−x−y . As we will see, this lazy evaluation design can be paired with
an array of polynomials storing the previously computed homogeneous parts.

1 generator := proc(d :: nonnegint)

2 return expand ((x+y)^d);

3 end proc;

Listing 1.1. A Maple implementation of f(d) in 1
1−x−y

=
∑∞

d=0 f(d).
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4.2 Maple Data Structures and Built-in Functions

Using an appropriate data structure for encoding and manipulating data is crit-
ical for performance, particularly in high-level and interpreted programming
languages like Maple. In Maple, modifying an existing list or set—such as by
appending, replacing, or deleting an element—leads to the creation of a new list
or set, rather than modifying the original one in-place. In contrast, an Array is
a low-level and mutable data-structure which allows for in-place modification of
its elements. These functionalities provide much better performance than lists
or sets when the collection is frequently changed or when the elements being
modified are themselves large in size. This fact is clear from the overwhelm-
ing improvement in performance of our library compared against the existing
PowerSeries library which uses lists to encode homogeneous parts; see Sect. 6.

Looking more closely at the Array data structure, an n-dimensional Array
is stored as a n-dimensional rectangular block named RTABLE. The length of the
associated RTABLE is 2n+d where d is maximum number of elements that may be
stored, i.e., the allocation size of the Array; see [5, Appendix 1]. For the storage
of homogeneous parts of a power series, and the power series coefficients of a
UPoPS, we utilize 1-dimensional Arrays. Listing 1.2 in the next section shows
this as the variables hpoly and upoly, respectively.

To further improve performance, we make use of low-level built-in functions.
Such functions are provided as compiled code within the Maple kernel, and
therefore not written in the Maple language. Most notably, instead of using
Maple for-loops and the typical + and * syntaxes for addition and multiplica-
tion, respectively, we reduce the cost of summations and multiplications remark-
ably by taking advantage of built-in Maple functions, add and mul. These built-
in functions, respectively, add or multiply the terms of an entire sequence of
expressions together to return a single sum or product. These functions avoid a
large number of high-level function calls and reduce memory usage by avoiding
copying and re-allocation of data.

4.3 Maple Objects

An often overlooked aspect of Maple is its object-oriented capability. An object
allows for variables and procedures operating on that data to be encapsulated
together in a single entity. In Maple, a class—the definition of a particular
type of object—can be declared by including the option object in a module
declaration. Evaluating this declaration returns an object of that class. This
new object is often a so-called “prototype” object which, when passed to the
Object routine, returns a new object of the same class. See [5, Chapter 9] for
further details on object-oriented programming in Maple.

Our power series and UPoPS types are implemented using these object-
oriented features of Maple. The classes for each are named, respectively,
PowerSeriesObject and UnivariatePolynomialOverPowerSeriesObject.
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The use of object-oriented programming in Maple has two key benefits: (i)
the organization object-oriented code provides better software quality through
modularity and maintainability; and (ii) allows for the overloading of built-in
functions, thus allowing objects to be integrated with, and used natively by,
existing Maple library functions.

1 MultivariatePowerSeries := module()

2 option package;

3 local PowerSeriesObject ,

4 UnivariatePolynomialOverPowerSeriesObject ;

5 # create a power series:

6 export PowerSeries := proc (...)

7 # create a UPoPS:

8 export UnivariatePolynomialOverPowerSeries := proc (...)

9 #Additional procedures to interface these two classes

10

11 module PowerSeriesObject ()

12 option object;

13 local hpoly :: Array ,

14 precision :: nonnegint ,

15 generator :: procedure;

16 # other members and methods

17 end module;

18

19 module UnivariatePolynomialOverPowerSeriesObject ()

20 option object;

21 local upoly :: Array , vname :: name;

22 # other members and methods

23 end module;

24 end module;

Listing 1.2. An overview of the MultivariatePowerSeries package.

The MultivariatePowerSeries library contains a package of the same name
which groups together those two aforementioned classes along with additional
procedures to construct and manipulate objects of those classes. These additional
procedures are used to “hide” the object-oriented nature of the library behind
simple procedure calls. This keeps the package syntactically and semantically
consistent with the general paradigm of Maple which does not use object-
oriented programming. As an example of such a procedure, PowerSeries, as seen
in Fig. 2 (Sect. 3), handles various different types of input parameters to correctly
construct a PowerSeriesObject object through delegation to the correct class
method.

Listing 1.2 shows the declaration of our two classes and the
MultivariatePowerSeries package. The latter is created by using option
package in a module declaration; see [5, Chapter 8]. The implementation of
these two classes is further discussed in Sect. 5.
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5 Implementation of MultivariatePowerSeries

The MultivariatePowerSeries package provides a collection of procedures
which form simple wrappers for the methods of the aforementioned classes,
PowerSeriesObject and UnivariatePolynomialOverPowerSeriesObject.

These classes, respectively, define the data structures and algebraic function-
alities for creating and manipulating multivariate power series and univariate
polynomials over power series. This section discusses those data structures as
well as the implementation of basic arithmetic, Weierstrass Preparation Theo-
rem, and factorization via Hensel’s lemma, all following a lazy evaluation scheme.

5.1 PowerSeriesObject

The PowerSeriesObject class provides basic arithmetic operations, like addi-
tion, multiplication, inversion, and evaluation, for multivariate power series, all
utilizing lazy evaluation techniques. Let f ∈ K[[X1, . . . , Xn]] be a non-zero multi-
variate power series defined as f =

∑∞
d=0 f(d). f is encoded as an object of type

PowerSeriesObject, containing the following attributes.
First, the power series generator is the procedure to compute f(d), the d-

th homogeneous part of f , for d ∈ N. Second, the precision is a non-negative
integer encoding the maximum degree of the homogeneous parts which have
so far been computed. Third, the 1-dimensional array storing the previously
computed homogeneous parts of f , denoted as hpoly in Listing 1.2.

To create a power series object this class provides a variety of construc-
tors. Power series objects may be created from polynomials, algebraic numbers,
UPoPS objects, or procedures defining the generator of the power series.

Every arithmetic operation returns a lazily-constructed power series object by
creating its generator from the generators of the operands, but without explicitly
computing any homogeneous parts of the result. Thus, this is a lazy power
series, so that, the homogeneous parts of the result are computed when truly
needed. Once homogeneous parts are eventually computed, they are stored in
the array hpoly. An important aspect of this organization is that the generator
of the resulting power series becomes implicitly connected to the generators of
the operands; the latter are thus called the ancestors of the former. Note that
the ancestors are merely stored as references, not copies, thus saving time and
memory resources.

Moreover, the addition and multiplication operations are not only binary
operations (operations taking two parameters), but are m-ary operations. For
multiplication, a sequence of power series f1, . . . , fm ∈ K[[X1, . . . , Xn]] may be
passed to the multiplication algorithm to produce the product f1 · f2 · · · fm via
lazy evaluation. Similarly, addition may take the sequence f1, . . . , fm to return
the sum f1 + f2 + · · · + fm. Further, addition may also take as a parameter
an optional sequence of polynomial coefficients c1, . . . , cm ∈ K[X1, . . . , Xn] to
return the sum c1f1 + · · · + cmfm constructed lazily.

A key part to the efficiency of lazy evaluation is to not re-compute any
data. We have already seen that the hpoly array stores previously computed
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homogeneous parts for a PowerSeriesObject object. What is missing is to
ensure that the array is accessed where possible rather than calling the gen-
erator function. Moreover, one must avoid directly accessing that array for
homogeneous parts which are not yet computed. We thus provide the function
HomogeneousPart(f, d), demonstrated in Listing 1.3, to handle both of these
cases. This function returns the d-th homogeneous part of the power series f ;
if d is greater than the precision (f:-precision), then this method iteratively
calls the generator to update hpoly and precision, otherwise it simply returns
the previously computed homogeneous part. From here on we use hpart as
shorthand for the HomogeneousPart function.

1 export HomogeneousPart :: static := proc(f, d :: nonnegint)

2 if d > f:-precision then

3 f:-hpoly(d+1) := 0; # resize the hpoly array

4 for local i from f:-precision + 1 to d do

5 f:-hpoly[i] := f:-generator[i];

6 end do;

7 f:-precision := d;

8 end if;

9 return f:-hpoly[d];

10 end proc;

Listing 1.3. A simplified version of the HomogeneousPart function in
PowerSeriesObject.

Listing 1.4 shows a simplified implementation of Divide that computes the
quotient of two power series objects f, g ∈ K[[X1, . . . , Xn]]. In particular, notice
the creation of the local procedure gen for the generator of the quotient. Note
that EXPAND is a local macro defined in MultivariatePowerSeries to efficiently
perform expansion and normalization supporting algebraic inputs.

1 export Divide :: static := proc(f, g)

2 if hpart(g,0)=0 then

3 error "invalid input: not invertible ";

4 end if;

5 local h := Array (0..0, EXPAND(hpart(f,0)/hpart(g,0)));

6 local gen := proc(d :: nonnegint)

7 local s := hpart(f,d);

8 s -= add(EXPAND(hpart(g,i)*hpart(f,d-i)),i=1..d);

9 return EXPAND(s/hpart(g,0));

10 end proc;

11 return Object(PowerSeriesObject ,h,0,gen);

12 end proc;

Listing 1.4. A simplified version of the division method in PowerSeriesObject.

5.2 UnivariatePolynomialOverPowerSeriesObject

The UnivariatePolynomialOverPowerSeriesObject class is implemented as a
simple dense univariate polynomial with the simple and obvious implementations
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of associated arithmetic (see, e.g., [18, Chapter 2]). The arithmetic operations
are achieved directly from coefficient arithmetic, that is, PowerSeriesObject
arithmetic. Since the latter is implemented using lazy evaluation techniques,
UPoPS arithmetic is inherently and automatically lazy.

For example, the addition of two UPoPS objects f =
∑k

i=0 aiX
i
n+1 and

g =
∑k

i=0 biX
i
n+1 in K[[X1, . . . , Xn]][Xn+1] is the summation (ai+bi)Xi

n+1 for all
0 ≤ i ≤ k, where ai, bi are PowerSeriesObject objects. Other basic arithmetic
operations behave similarly. However, there are important operations on UPoPS
which are not as straightforward. In the following we explain our implementation
of Weierstrass Preparation Theorem, Taylor shift, and factorization via Hensel’s
lemma for UPoPS, all of which follow lazy evaluation techniques.

Weierstrass Preparation. Let f, p, α ∈ K[[X1, . . . , Xn]][Xn+1] be such that
they satisfy the conditions of Theorem 1 and such that f =

∑d+m
i=0 aiX

i
n+1,

p = Xn+1
d +

∑d−1
i=0 biX

i
n+1, and α =

∑m
i=0 ciX

i
n+1. Equating coefficients in

f = pα we derive the two following systems of equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0 = b0c0

a1 = b0c1 + b1c0
...

ad−1 = b0cd−1 + b1cd−2 + · · · + bd−2c1 + bd−1c0

(1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ad = b0cd + b1cd−1 + · · · + bd−1c1 + c0
...

ad+m−1 = bd−1cm + cm−1

ad+m = cm

(2)

To solve these systems we proceed by solving them modulo successive powers
of M, following the proof of Theorem 1 in [6]. Notice that solving modulo suc-
cessive powers of M is precisely the same as computing homogeneous parts of
increasing degree. Thus, this follows our lazy evaluation scheme perfectly. The
power series b0, . . . , bd−1 are generated by Eqs. (1) and c0, . . . , cm by Eqs. (2).

Consider that b0, . . . , bd−1, c0, . . . , cm are known modulo Mr while
a0, . . . , ad−1 are known modulo Mr+1; this latter fact is simple since f is the
input to Weierstrass Preparation and is fully known. From the first equation
in (1), b0 can be computed modulo Mr+1 since b0 ∈ M, c0 is known mod-
ulo Mr, and a0 is known Mr+1. Then, the equation a1 = b0c1 + b1c0, that is,
a1−b0c1 = b1c0 can be solved for b1 modulo Mr+1 since, again, b1 ∈ M and the
other terms are sufficiently known. We compute all b2, . . . , bd−1 modulo Mr+1

with the same argument. After determining b0, . . . , bd−1 modulo Mr+1, we can
compute cm, cm−1, . . . , c0 modulo Mr+1 from Eqs. (2) with simple power series
multiplication and subtraction, working iteratively, in a bottom up fashion. For
example, cm−1 = ad+m−1 − bd−1cm.
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As yet, we have not explicitly seen how the coefficients of p and α will be
updated. The key idea is that to update a single power series coefficient of p
or α requires simultaneously updating all coefficients of p and α. Thus, all the
generators of b0, . . . , bd−1, c0, . . . , cm simply call a single “Weierstrass update”
function to update all power series simultaneously using Equations (1) and (2).
Algorithm 1 shows this Weierstrass update function.

Algorithm 1. WeierstrassUpdate(p, α, F , r)
Given p = Xd

n+1 +
∑d−1

i=0 biX
i
n+1, α =

∑m
i=0 ciX

i
n+1, r ∈ N, and F = {Fi | Fi =

ai −∑i−1
j=0 bjci−j , 0 ≤ i < d} are all known modulo Mr, returns b0, . . . , bd−1, c0, . . . , cm

modulo Mr+1.

# update b0, ..., bd−1 modulo Mr+1

1: for i from 0 to d − 1 do
2: s := add(seq(hpart(bi, r − k) · hpart(c0 , k), k = 1 .. r − 1));
3: hpart(bi, r) := (hpart(Fi, r) − s)/hpart(c0, 0);

# ensure c0, ..., cm are updated modulo Mr+1

4: for i from 0 to m do
5: hpart(ci, r);

In order to update the coefficients of p, we frequently need to compute ai −∑i−1
j=0 bjci−j for 0 ≤ i < d. To optimize this operation, we a priori create helper

power series as the set F = {Fi | Fi = ai − ∑i−1
j=0 bjci−j , i = 0, . . . , d − 1}. The

power series Fi, following power series arithmetic with lazy evaluation, allows
for the efficient computation of homogeneous parts of increasing degree of ai −∑i−1

j=0 bjci−j . This set F is passed to the Weierstrass update function to optimize
the overall computation.

Finally, the Weierstrass preparation must be initialized before continuing
with Weierstrass updates. Namely, the degree of p and the initial values of p
and α modulo M must first be computed. The degree of p, namely d, is set
to be the smallest integer i such that ai is a unit. If d = 0, then p = 1 and
α = f , otherwise, m equals the difference between the degree of f and d, and we
initialize bi = 0 for 0 ≤ i < d. Then, cm, . . . , c0 are initialized using power series
arithmetic following Eqs. (2). Lastly, the set F is initialized.

Taylor Shift. This operation takes a UPoPS object f ∈ K[[X1, . . . , Xn]][Xn+1]
and performs the translation Xn+1 → Xn+1+c, i.e. f(Xn+1+c), for some c ∈ K.
In our implementation, c can be a numeric or algebraic Maple type with the
purpose of being used efficiently in factorization via Hensel’s Lemma.

Assume f =
∑k

i=0 aiX
i
n+1 is a UPoPS in K[[X1, . . . , Xn]][Xn+1] and c ∈ K.

As the PowerSeriesObject objects a0, . . . , ak are lazily evaluated power series,
we want to also make Taylor shift a lazy operation. Thus, we need to create a
generator for the power series coefficients of f(Xn+1 + c). Let T = (ti,j) be the
lower triangular matrix of the coefficients of Xn+1

j in the binomial expansion
(Xn+1 + c)i, for 0 ≤ i ≤ k, and 0 ≤ j ≤ i. Let (b0, . . . , bk) be the list of
coefficients of f(Xn+1 + c) in K[[X1, . . . , Xn]]. Then, it is easy to prove that for
every 0 ≤ i ≤ k, bi is the inner product of the i-th sub-diagonal of T with
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the lower k + 1 − i elements of the vector (a0, . . . , ak). This inner product can
be computed efficiently by taking advantage of the m-ary addition operation
described for the PowerSeriesObject (see Sect. 5.1). Since this operation returns
a lazily-constructed power series, this precisely defines the lazy construction of
the power series b0, . . . , bk, thus making Taylor shift a lazy operation.

Factorization via Hensel’s Lemma. Hensel’s lemma for factorizing univari-
ate polynomials over power series was reviewed in Theorem 2, where K is alge-
braically closed and f ∈ K[[X1, . . . , Xn]][Xn+1] is a UPoPS object. Following the
ideas of [6], we compute the factors of f in a lazy fashion. Algorithm 2 pro-
ceeds through iterative applications of Taylor shift and Weierstrass Preparation
Theorem in order to create one factor of f at a time. Those factors are actu-
ally computed through lazy evaluation thanks to the lazy behavior of the pro-
cedures WeierstrassPreparation and TaylorShift. This Algorithms thus
computes and updates the factors modulo the successive powers M,M2,M3, . . .
of the maximal ideal M.

Algorithm 2. HenselFactorize(f)
Given f =

∑k
i=0 aiXn+1

i ∈ K[[X1, . . . , Xn]][Xn+1], returns a list of factors {f1, . . . , fr}
so that f = ak · f1 · · · fr, and satisfies Theorem 2.

1: if ak /∈ M then
2: f∗ := 1

ak
· f ;

3: else
4: error “ak must be a unit.”

5: f̄ := EvaluateAtOrigin(f∗);
6: c1, . . . , cr := Roots(f̄ , Xn+1);
7: for i from 1 to r do
8: g := TaylorShift(f∗, ci);
9: p, α := WeierstrassPreparation(g);

10: fi := TaylorShift(p, −ci);
11: f∗ := TaylorShift(α, −ci);

12: return {f1, . . . , fr};

Note that the generation of the factors f1, . . . , fr takes place after factorizing
f̄ ∈ K[Xn+1]. Recall that f̄ is obtained by evaluating each Xi to 0 for 1 ≤ i ≤ n.
This is called EvaluateAtOrigin in our implementation. To efficiently factor
f̄ , we take advantage of the package SolveTools [15], which allows us to compute
the splitting field of f̄ (which, in practice, is a polynomial with coefficients in
some algebraic extension of Q) and factorize f̄ into linear factors.

Let c1, . . . , cr be the distinct roots of f̄ and k1, . . . , kr their respective mul-
tiplicities. To describe one iteration of Algorithm 2, let f∗ be the current poly-
nomial to factorize. For a root ci of f̄ , and thus f∗, we perform a Taylor shift
to obtain g = f∗(Xn+1 + ci). Then, we apply Weierstrass preparation on g to
obtain p and α where p is monic and of degree ki. Again, by using Taylor Shift,
we apply the reverse shift to p to obtain fi = p(Xn+1 − ci), a factor of f , and
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f∗ = α(Xn+1 − ci), for the next iteration. As mentioned above, since both Tay-
lor shift and Weierstrass preparation are implemented using lazy evaluation, our
factorization via Hensel’s lemma is inherently lazy.

6 Experimentation

We compare the performance of the MultivariatePowerSeries package,
denoted MPS, with the previous Maple implementation of multivariate power
series, the PowerSeries package, denoted RCPS, and the recent implementation
of power series via lazy evaluation in the BPAS library. This latter implementa-
tion is written in the C language on top of efficient sparse multivariate arithmetic;
see [4,6]. It has already been shown in [6] that the implementation in BPAS is
orders of magnitude faster than the PowerSeries package, Maple’s mtaylor
command, and the multivariate power series available in SageMath. As we will
see, our implementation performs comparably to that of BPAS.

Throughout this section, we collect our benchmarks on a machine running
Ubuntu 18.04.4, Maple 2020, and BPAS (ver. 1.652), with an Intel Xeon X5650
processor running at 2.67 GHz, with 12 × 4 GB DDR3 memory at 1.33 GHz.

Figures 7, 8, and 9, respectively, show the performance of division and mul-
tiplication algorithms to compute 1

f and 1
f ·f for power series f1 = 1+X1 +X2,

f2 = 1 + X1 + X2 + X3, and f3 = 2 + 1
3 (X1 + X2). It can be seen that MPS

power series division is 9×, 2100×, and 3× faster than the previous Maple

implementation for f1, f2, and f3 respectively. The speed-ups for multiplica-
tion are significantly higher. Moreover, MPS results are comparable with the C
implementation of similar algorithms in BPAS. Figure 10 then highlights the
efficiency of m-ary addition (see Sect. 5.1), compared to iterative applications
of binary addition. Recall that m-ary addition is exploited in the Weierstrass
preparation algorithm.

Fig. 7. Computing 1
f

and 1
f

· f for f1 =
1 + X1 + X2.

Fig. 8. Computing 1
f

and 1
f

· f for f2 =
1 + X1 + X2 + X3.
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Fig. 9. Computing 1
f

and 1
f

· f for f3 =

2 + 1
3
(X1 + X2).

Fig. 10. Computing f =
∑k

i=1
1

1−x−y

using m-ary and binary addition.

Fig. 11. Computing Weierstrass prepa-
ration of f1 = 1

1+X1+X2
X3

k + X3
k−1 +

· · · + X2X3 + X1 ∈ K[[X1, X2]][X3].

Fig. 12. Computing Weierstrass prepa-
ration of f2 = 1

1+X1+X2
X3

k+X2X3
k−1+

· · · + X3 + X1 ∈ K[[X1, X2]][X3].

Next, we compare the performance of Weierstrass preparation (Sect. 5.2).
Figures 11 and 12 demonstrate the running time of this algorithm for two differ-
ent UPoPS. Looking at these results, we can see a 2200× speed-up in comparison
with the similar algorithm in RCPS and timings comparable to BPAS.

We also compare the factorization via Hensel’s lemma and Taylor shift algo-
rithms for a set of UPoPS f =

∏k
i=1(X2 − i) + X1(Xk−1

2 + X2) in K[[X1]][X2]
with k = 3, 4 in Figs. 13 and 14. Our factorization implementation is orders of
magnitude faster than that of RCPS. However, factorization performs worse than
expected compared to BPAS, having already seen comparable performance of
Weierstrass preparation in Figs. 11 and 12. This difference can be attributed to
Taylor shift, the other core operation of HenselFactorize, as seen in Fig. 14.
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Fig. 13. Computing HenselFactorize

(f) for f =
∏k

i=1(X2 − i) + X1(X2
k−1 +

X2).

Fig. 14. Computing TaylorShift(f, 1)
for f =

∏k
i=1(X2 − i)+X1(X2

k−1 +X2).

The implementation in MPS is slower than the same procedure in BPAS by sev-
eral order of magnitude. This, in turn, can be attributed to using Maple matrix
arithmetic, rather than the direct manipulation of C-arrays as in BPAS, within
the Taylor shift algorithm.

7 Conclusions and Future Work

Throughout this work we have discussed the object-oriented design and imple-
mentation of power series and univariate polynomials over power series following
lazy evaluation techniques. Basic arithmetic operations for both are examined
as well as Weierstrass Preparation Theorem, Taylor shift, and factorization via
Hensel’s lemma for univariate polynomials over power series. Our implemen-
tation in Maple is orders of magnitude faster than the existing multivariate
power series implementation in the PowerSeries package of the RegularChains
library. Moreover, our implementation is comparable with the C implementation
of power series and univariate polynomials over power series in BPAS.

Further work is needed to extend lazy evaluation techniques to more sophisti-
cated algorithms. For example, a general Extended Hensel Construction (EHC)
[13], and the Abhyankar-Jung Theorem [14]. As a consequence, it is possible
to re-implement the EHC algorithm found in RegularChains using this library.
Further, as Maple supports multithreading, it is possible to apply parallel pro-
cessing to our algorithms. In particular, the computation of UPoPS coefficients
in Weierstrass preparation is embarrassingly parallel. Meanwhile, the successive
application of Weierstrass preparation and Taylor shift in HenselFactorize

present an opportunity for pipelining. Both should be exploited in to achieve
even further performance improvements.
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Bernoulli’s Problem xy = yx and Maple
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Abstract. We study the problem of xy = yx, first proposed by Daniel
Bernoulli in 1728. We present Maple’s parametric solution and a solu-
tion using the Lambert W function. This leads us to consider an imple-
mentation in Maple of new simplifications of the Lambert W function.
The method uses a mixture of exact and floating-point computation.

Keywords: Lambert W function · Simplification · Algorithms

1 Bernoulli’s Problem

On 29 June 1728, Daniel Bernoulli wrote to Christian Goldbach. Bernoulli was
working at the new St Petersburg Academy of Sciences1, and Goldbach had
recently left the same Academy for Moscow. In his letter, Bernoulli considered
the equation

xy = yx . (1)

Obviously, it has the trivial solution x = y, but Bernoulli wrote that he had
found the non-trivial solution x = 2, y = 4 (and, of course, y = 2, x = 4), and
further that he had proved that there are no other integer solutions [1].

Goldbach wrote to Bernoulli on 31 January 1729 giving a solution to (1) in
parametric form. Goldbach’s expressions can be obtained from Maple’s solve
command, using the syntax (see Maple help for solve/parametrized)

> s o l v e (xˆy=yˆx , [ x ( t ) , y ( t ) ] )

[[
x = e− ln( 1

t )
t−1 , y = t e− ln( 1

t )
t−1

]]
(2)

> s imp l i f y (%)

[[
x =

(
1
t

)− 1
t−1

, y = t

(
1
t

)− 1
t−1

]]
(3)

1 The Saint Petersburg Academy of Sciences opened its doors in 1725, shortly after
the death of its founder, Peter the Great.
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Solving using a parameter is a useful Maple command that deserves to be more
widely known. Goldbach would certainly have been assuming t > 0, and so the
solution becomes

> s imp l i f y (%) assuming t > 0

[[
x = t

1
t−1 , y = t

t
t−1

]]
(4)

Leonard Euler was in St Petersburg at that time, also working at the
Academy, and 20 years later in 1748 (having moved to Berlin) he included this
problem and its solution in his famous textbook on analysis [3].

A more conventional use of solve is to ask for y as a function of x. Maple

returns the expression (using the alias command to abbreviate LambertW to
W )

> a l i a s (W = LambertW ) :
> s o l v e (xˆy = yˆx , y )

y = − x

ln x
W

(
− ln x

x

)
. (5)

We recall that the Lambert W function obeys

Wk(z) exp (Wk(z)) = z , (6)

where k ∈ Z is the branch label [2]. Its real values are plotted in Fig. 1.

−1 1 2 3

−4

−3

−2

−1

1

x

W

−e−1

W0

W−1

Fig. 1. The real values of W . The solid line is the principal branch k = 0 and the
dashed line is the k = −1 branch.
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1.1 Comparing Solutions

Having the two solutions (4) and (5) to Bernoulli’s problem invites a comparison
between them. Substituting various values for t into (4) produces some typical
solutions as (x, y) pairs; see Table 1.

Table 1. Goldbach’s solution evaluated for some particular values of t. Bernoulli’s own
solution is the first entry.

t x y

2 2 4

3
√

3
√

27

7 7
1
6 7

7
6

3/2 9/4 27/8

4/3 64/27 256/81

5/4 625/256 3125/1024

Substituting one member of an (x, y) pair into (5) should produce the other.
We can start with Bernoulli’s solution (2, 4). Substituting x = 2 in (5), we obtain

y = − 2
ln 2

W

(
− ln 2

2

)
.

Maple can simplify this, and returns 2, the trivial solution, because Maple

assumes, by default, branch k = 0. To obtain the non-trivial solution, we must
ask for k = −1.

y = − 2
ln 2

W−1

(
− ln 2

2

)
= 4 , (7)

which simplification Maple can also do. What happens if we start with x = 4?

y = − 4
ln 4

W

(
− ln 4

4

)
= − 2

ln 2
W

(
− ln 2

2

)
= 2 .

Notice that whether one starts with x = 2 or x = 4, one arrives at the same
expression in terms of W . This underlines the importance of the branch index
in the analysis: different data can lead to the same argument for W , meaning
that only the branch index can differentiate cases.

Now we try another entry from Table 1 and substitute x =
√

3 in (5) to
obtain

y = −
√

3
ln

√
3
Wk

(
− ln

√
3√

3

)
= −2

√
3

ln 3
Wk

(
−1

6

√
3 ln 3

)
.
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Maple cannot simplify this expression, for either branch, but we can approxi-
mate it using evalf.

y = −2
√

3
ln 3

W0

(
−1

6

√
3 ln 3

)
≈ 1.732050812 .

The Maple identify command2 gives this as
√

3, and it also identifies the
k = −1 branch as giving

√
27. We are thus led to conjecture the simplifications

W0

(
−1

6

√
3 ln 3

)
= − 1

2 ln 3 , (8)

W−1

(
−1

6

√
3 ln 3

)
= − 3

2 ln 3 , (9)

and we would like Maple to incorporate these and similar simplifications into
its library.

2 A Class of Simplifications

Guided by the above observations, we develop a class of simplifications for
Maple’s implementation of Lambert W . We first generalize Bernoulli’s problem
to a problem which has appeared, in various disguises, in a number of mathe-
matical contests. Solve for x

xabx = c , (10)

with the parameters {a, b, c} chosen to give x a suitably simple form. The equa-
tion has the real solution

x =
a

ln b
Wk

(
1
a

c1/a ln b

)
, (11)

with Bernoulli’s problem corresponding to a = y, b = 1/y, and c = 1. Our
ambition, then, is to detect cases in which (11) can be simplified. Having observed
(7), (8) and (9), we aim to decide whether a rational number r exists such that
for some branch k

Wk

(
1
a

c1/a ln b

)
= r ln b . (12)

We limit the domains of the parameters so that the problem is tractable. We
restrict a to be an integer n, and assume c, b, r ∈ Q. This is sufficient to cover
solutions to (1) obtained by substituting rational values of t into Goldbach’s
expressions.

We focus, therefore, on deciding whether r exists, and on calculating it. A
first strategy could be to return to the identify command we used successfully
above. By rewriting (12) as

r =
Wk

(
1
n c1/n ln b

)
ln b

,

2 Another interesting, under-appreciated, feature.
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we can evaluate the right side to a floating-point number, and then use identify
to find the rational number. This conceptually simple approach has, however,
practical difficulties. First, the correct identification of a rational number is sen-
sitive to the precision of the floating-point evaluation. With multi-digit fractions,
identify can struggle, and Maple users can be relied upon to pose, sooner or
later3, problems containing large numbers. For example, consider

> e v a l f (1234567/678912)

1.818449225

> i d e n t i f y (%)

√
3
5 + 5 ζ(5)

8 + 3 ln(3)
4

> e v a l f [ 15 ] (1234567/678912)

1.81844922464178

> i d e n t i f y (%)

1.81844922464178

> e v a l f [ 20 ] (1234567/678912)

1.8184492246417797888

> i d e n t i f y (%)

1234567
678912

A second problem concerns rounding errors during evaluation [4], which can
mean that the number given to identify is not accurate.

> e v a l f ( W( –1 , –189/256 ln (4/3) sq r t ( 3 ) ) / ln (4/3) ) ;

−3.500000258

* *

> i d e n t i f y (%)

−3.500000258

> e v a l f [ 1 5 ] ( W( –1 , –189/256 ln (4/3) sq r t ( 3 ) ) / ln (4/3) ) ;

−3.50000000000461

* *

3 and usually sooner!
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> i d e n t i f y (%)

−3.50000000000461
The human will exclaim “But it’s obvious”, and ignore the erroneous digits.

W−1

(
−189

256

√
3 ln

4
3

)
= −7

2
ln

4
3

. (13)

Again, as the numbers grow larger identification will become more difficult. It is
possible to modify the approach so that we need only identify an integer. As a
step to an improved algorithm, we consider a numerical example: solve for x

x3

(
9
4

)x

=
3
16

. (14)

The solution is x = 1
2 , and this works because (9/4)x = (9/4)1/2 = 3/2. Note

that we chose 9/4 because it appears in Table 1, and rational numbers containing
pure powers must be expected in simplification problems.

Now we can see that since (12) is equivalent to solving the problem

xnbx = c , (15)

and we want all quantities in this equation to be rational, then bx will have to be
rational. Thus we must be able to extract, if necessary, a root from b. Suppose
b can be written b = Bp, with B ∈ Q and p ∈ Z, with p maximal. Then we can
write

xnbx = xnBpx = c ,

and all terms will be rational, provided px ∈ Z. This means we can change our
search from finding a rational x to finding an integer px.

The first step in our algorithm, therefore, must be to find p. This can be
done using Maple’s iperfpow function, which takes a positive integer m, and
computes integers q and j, such that m = qj . We extend its functionality in two
ways. First, iperfpow does not find the maximal power. Thus, iperfpow(256)
returns 162, whereas we need 256 = 28. Secondly, iperfpow accepts only integers,
whereas we need rational arguments. The calculation is then

X = px =
pn

ln b
Wk

(
1
n

c1/n ln b

)
=

n

ln B
Wk

(
1
n

c1/n p ln B

)
. (16)

The right-hand side is evaluated in floating point to give a candidate integer for
X. We return to the numerical example in (13). We convert it to the standard
form just given:

X =
2

ln(4/3)
W−1

(
1
2

(
107163
16384

)1/2

ln
4
3

)

≈ −7.00000000000922 . (17)
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From this we test the candidate X = −7 using the exact computation

(−7)2
(

4
3

)−7

=
107163
16384

.

With this exact verification, we can accept the simplification proposed in (13).

2.1 Limitations to Simplification

A careful study of the concept and the definition of simplification has been made
in [5]. Pragmatically, we are following one particular idea from that paper, which
is an ordered list of sub-expressions. For the present paper, simplification (12)
consists of expressing an instance of W in terms of simpler functions appearing
lower in the ordered list.

In the previous section, we restricted ourselves to branches k = 0,−1 and real
values. The question naturally arises whether complex simplifications are also
possible. We briefly consider the option here, but are not tempted to generalize
our algorithm. Substituting negative values in (4) gives the pairs (i,−i) and(
2−1/3(−1)1/3,−22/3(−1)1/3

)
. For the first pair, we substitute x = i into (5),

and get

y = − i

ln i
Wk

(
− ln i

i

)
= −2Wk(−π/2)

π
.

The branch behaviour is reversed from previous examples. Now it is the k = 0
branch that gives the non-trivial solution,

y = −2W0(−π/2)
π

= −i ,

which current Maple gets, and it is the k = −1 branch that gives the trivial
solution, which Maple also gets.

For the second pair, many people will immediately simplify (−1)1/3 = −1. In
Maple, this is obtained using the surd command: surd(-1,3)=-1. In a Maple

worksheet, surd(x,3) is printed as 3
√

x, as opposed to x1/3 for the principal
value. Thus, they would arrive at the pair

(x, y) =
(−22/3

2
, 22/3

)
.

Sadly, this tidy solution does not work.

xy =
(
−22/3/2

)22/3

; yx =
(
22/3

)−22/3/2

.

Among the infinite complex values of xy, we compute

−0.69297, 0.5911 ± 0.3617i, −0.3154 ± 0.6170i, . . .

and for yx, we compute

1.44306, 0.3913 ± 1.389i, −1.231 ± 0.7532i, . . .
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Not even Carathéodory could discover an equality there.
In contrast, the principal value of (−1)1/3 = 1

2 (1 + i
√

3) works a treat. Thus

(
22/3

4
(1 + i

√
3)

)22/3(−1−i
√
3)/2

= 4.4145302 − 2.48981i

(
22/3

2
(−1 − i

√
3)

)22/3(1+i
√
3)/4

= 4.4145302 − 2.48981i

An interesting new feature with the W solution, is that now k = +1 gives the
non-trivial solution:

−
(−1)1/3W1

(
ln

(
(−1)1/32−1/3

)
(−1)

2
3 3

√
2
)

21/3 ln
(
(−1)1/32−1/3

) = −(−1)1/32
2
3 = −0.7937−1.3747i

and it is the principal branch that gives the trivial solution.
Simplifications such as these can be expanded indefinitely, and a software

system has to draw the line somewhere, and we draw it before complex values.

3 Implementation

The implementation of the simplification proceeds in 3 stages. First, we process
the argument to W to write it in the standard form seen in (16). Then there is
the computation of the simplification, and finally a new output form that guides
users in their requests.

3.1 The Argument

Maple’s simplification routines use standard forms which are different from the
form needed for simplification. For example, suppose the standard form of the
argument for simplification is 1

3 (3/2)1/3 ln(9/8). The following Maple session
shows how this might be altered.

> s imp l i f y ( (1/3)∗ (3/2)ˆ (1/3)∗ ln (9/8) )

−
3
√

3 2
2
3 (−2 ln (3) + 3 ln (2))

6
The analysis of the argument assumes a form

Arg = abcd . . . (r ln s + u ln v . . .) .

This is converted to a list using convert(Arg, ’list’, ’‘*‘’), and then
we use selectremove(hastype, ArgList, specfunc(rational, ln)) to sep-
arate the powers and the logarithms. After that, it is straightforward Maple

programming to restore the form (1/n)C1/n ln B. If the argument cannot be
converted, then simplification fails.
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3.2 Testing Simplification

Once the argument is established, X is computed using (16), and the candidate
integer obtained using intX:=round(X). If the magnitude of intX is large, then
the working precision of evalf is increased (to mitigate rounding errors) and the
evaluation repeated. We check the fractional part of X to ensure the candidate is
plausible (abs(X-intX) < 10−5) and then conduct the test (15). An alternative
is to check the definition (6) directly.

3.3 Option Parametric

A long-standing challenge for computer algebra systems has been the question of
how to help users obtain useful results. A user who is not familiar with Lambert
W , or not used to thinking in terms of branches, might miss a simplification. For
example, the principal branch k = 0 of W

(− 189
256 ln(4/3)

√
3

)
does not simplify,

but k = −1 does. A simple call to simplify, therefore, might not produce a result
useful to the user.

Our implementation includes a parametric option, in which both k = 0 and
k = −1 are checked, and the user is given results for all branches. This option is
activated by asking for simplification leaving the branch k unassigned. For the
current example, this mode produces

Wk

(− 189
256 ln(4/3)

√
3

)
=

{
W0

(− 189
256 ln(4/3)

√
3

)
, if k = 0 ,

− 7
2 ln 4

3 , if k = −1 .

This is to be understood to mean that for k = 0 there is no simpler expression
for the number being represented than the value of W0, which can be obtained
as a floating-point approximation using evalf. For k = −1, on the other hand,
there is a simpler expression. The user is then in possession of useful information
with which to proceed.

4 Concluding Remarks

To repeat a comment made above, the simplifications explored here do not
exhaust the list of all possible simplifications. We have concentrated here on
covering those that are likely to arise in practice. Any person who wishes to
expose gaps in the coverage of simplifications can take inspiration and encour-
agement from Richardson’s famous theorem that zero-recognition is undecidable
[6]. For the Bernoulli-Goldbach problem, we considered only real, rational values
of the parameter. We have shown in Sect. 2.1 problems that escape the present
approach.

In addition to practicality, there are also æsthetic considerations. The equa-
tions here have already become complicated. To cover more detailed cases would
require even greater length and complexity in the function arguments. We feel
we have chosen a good density of coverage without undue complexity.
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The basic principal of the simplifications is the fact that W is the inverse
of the function V = zez. A common source of confusion in this regard is the
apparent equation W (xex) = x. This is the result of the standard mathematical
education, which teaches that a function f and its inverse f−1 obey f−1(f(x)) =
f

(
f−1(x)

)
= x. For W , however, this is wrong. The correct statement is

Wk(xex) = y ,where yey = xex .

The choice of y is determined by the branch k as much as by the value of x.
We anticipate that the simplifications described here will be available for all

users in Maple 2021.
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Abstract. In Germany mathematics has unfortunately become a subject of fear
and remains one of the main reasons for dropping out of university. Therefore,
universities need to close the knowledge gap between themathematical knowledge
learned at school and the mathematical knowledge needed in university studies.

Tomeet the requirements of students at the beginning of their studies, a hybrid
course had been implemented. The combination of online lectures to motivate and
address more difficult topics, online MAPLE exercises and tests to allow flexible
learning attracted many of them. This hybrid type of implementation also meets
the current expectations of students by avoiding old-fashioned teaching methods
in a highly flexible world, especially from the pandemic perspective.

MAPLE incorporated in the Möbius courseware was used as part of courses
to educate new students in mathematics. Lectures, online tutorials, and MAPLE-
based online exercises are preceded by a digital placement test, so students are
enabled to reflect on their level of knowledge beforehand.

We aim to investigate how intuitive the MAPLE-based learning environment
is and to determine the success factors and best practices of a digital bridge course.
Please be aware that we present our experiences using Möbius and MAPLE.

Keywords: MAPLE in education · Pre-courses in mathematics · Digital teaching

1 Introduction

The HTW is a university of applied science (HTW Berlin) in Berlin, Germany. Our
university has 14,000 Students and any year or more specifically any winter term
approximately 2,000 students join us in our over 70 bachelor programmes.

In 2020 we tackled the challenges of the COVID-19 crisis by using Möbius in a
hybrid environment [1]. Hybrid typically means on-campus plus online. But our setting
was different since we could not welcome hundreds of new students in math courses
on campus. So, we decided to combine online instructor-led training with self-paced
learning in Möbius.

The next subsections explain the necessities of such pre-courses, why there exists a
knowledge gap in mathematics when started studying at university and the challenges
regarding pre-courses.
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1.1 Necessities of Pre-courses in Mathematics

Mathematics is required in almost all faculties of the HTW Berlin. Be it the economists
who learn to understand cost, profit and revenue functions, or the engineers who are
starting to develop models based on sine and cosine functions, for example. In all cases,
mathematics represents the underlying language. The correct use of this language enables
a better understanding of complex issues in various fields.

In Germany mathematics has unfortunately become a subject of fear and remains
one of the main reasons for dropping out of university [2]. Therefore, universities need
to close the knowledge gap between the mathematical knowledge learned at school and
the mathematical knowledge required in university studies [3].

By offering a specialized course for approximately 1,000 first-year students, the
university wants to help students to be better prepared to tackle the upcoming chal-
lenges. To meet the requirements of students at the beginning of their studies, a hybrid
course had been implemented. The combination of on-campus lectures to motivate and
address more difficult topics, online MAPLE exercises and tests to allow flexible learn-
ing attracted many of them. This hybrid type of implementation also meets the current
expectations of students by avoiding old-fashioned teaching methods in a highly flexible
world, especially from the pandemic perspective.

1.2 Knowledge Gap and Challenges in Mathematics

As described before, there is a gap between the mathematical knowledge learned at
school and the knowledge required to successfully complete a study at university. The
“cooperation Schule undHochschule” (cosh) identified themathematical topics students
should be able to understand before starting a study includingmathematics [3]. Thiswork
was also used by us to structure and create content for our bridge courses.

The knowledge gap differs with respect to the university entrance qualification. In
Germany, there are several ways to obtain this entrance qualification, e.g., with high
school graduation, on the second education path or through work experience. These
different possibilities to start a Bachelor with comes along with different student’s level
of expertise in mathematics which is an additional challenge when organizing such a
learning program.

Furthermore, we observe that students are trained to reproduce basic concepts in
mathematics, but we sense a lack of deeper understanding, which we think should be
practiced by case studies. That leads to the challenge for new team members in our
university that need help to extend and apply their math expertise in such learning
materials.

2 Digital Bridge Course Mathematics

2.1 General Course Structure

Since the mathematical requirements are different regarding the study programs, two
courses have been offered. One is aimed at students of Economics and the other at
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students of Engineering & Computer Sciences. The courses only differ in content and
not in the structure.

Figure 1 Bridge course structure illustrates the course structure. The dashed frames
correspond to the self-study materials offered in the cloud-based learning platform
Möbius and the dashed-dotted frames to the digital lectures and tutorials.

Fig. 1. Bridge course structure

In the beginning of the course students are asked to go through the tool’s introduction
“Getting started inMöbius”, so they know how to enter mathematical expressions within
that particular tool. Then the “Digital PlacementTest” should be taken to give the students
a first impression on their abilities. After the submission of the “Digital Placement Test”
students get direct feedback on the solutions of the tasks and can decide which lectures
or topics of the pre-course they want to attend. The “Online Lecture”, “Online MAPLE
Exercises” and “Online Tutorial” will take place over four weeks including two online
lectures and two online tutorials per week. To enable students to assess their learning
progress, a final test is offered at the end of the course. The self-study material will be
available to all registered students for one semester.

The course structure including the course schedule is prepared in the Learning Man-
agement System (LMS) Moodle [4]. All further communication is also handled via
Moodle.

2.2 Self-study Materials Using Möbius Courseware and MAPLE

This section introduces Möbius Courseware, explains Möbius and MAPLE from an
instructor’s point of view, including the different question types and related challenges
in programming the assignments, and provides information about the possibility of
combining Möbius with an LMS.

Möbius Courseware. Möbius is a learning platform with the focus on use in and creat-
ing STEM courses [1]. This learning platform allows you to create mathematical content
based on the Computer Algebra System MAPLE [5], gives direct feedback on the ques-
tion solution, makes it possible to randomize question parameters and provides different
types of questions, i.e., matching, clickable image, graph sketching, multiple choice,
gradeable Math Apps, MAPLE-graded and others.

As presented, Möbius does not only consist of the computer algebra systemMAPLE
but has much more possibilities to prepare learning materials. However, we focus
exclusively on those aspects of Möbius that use MAPLE directly.
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Möbius and MAPLE from Teaching Perspective. Since we are interested in how
MAPLE is used in education, we concentrate on the question types such as MAPLE-
graded, gradeable Math Apps and randomized questions.

In our opinion, it is also important to point out the difficulties we have observed in
using Möbius and MAPLE, therefore it will be part of the following paragraphs. We
would like to emphasize that this tool generally has great potential and good features,
especially if you are already familiar with MAPLE and well trained in programming.

MAPLE-Graded Questions. First, we look at theMAPLE-graded question type and how
it is used within Möbius.

We observed that for simpler tasks, the grading codes can be relatively complex. This
makes the tool Möbius in combination with MAPLE less intuitive and requires higher
programming skills within MAPLE.

To illustrate this problem, consider the following mathematical question:
Apply the distributive law, i.e., exclude the greatest common multiple and calculate

without using a calculator:

5 · a + 5 · b = solution(5 · (a + b)).

Grading Code:

resp:= "$RESPONSE":
if StringTools[Search]("5*(", resp) > 0 or 
StringTools[Search](")*5",resp) >0
then
evalb(($ANSWER)-(parse(resp))=0)
else 0 end if;

The task is short and simple, and the grading code is more complex compared to the
task complexity. If we use the standard grading code,

evalb(($ANSWER)-($RESPONSE)=0);

and type in the response area the question itself, i.e. 5 · a+ 5 · b, then this will be scored
as correct. Therefore, the upper grading code, searching the string for certain symbols,
needs to be used.

This issuewas also observed for simplifying fractions. If a student is asked to simplify
a fraction the standard grading code will simplify the solution given by the student
automatically and scores the response as correct. Here again, a more complex grading
code is required.

Gradeable Math Apps. Gradeable Math Apps allow you to include interactive MAPLE
documents. That feature makes questions much more interactive and allows the students
to find the answer by themselves (Fig. 2). As Fig. 2 shows, we ask which parameters of
a parabola influence the function and how. With this question type, students can figure
out the solution on their own by varying the parameters using the sliders. This makes
the online exercises more interesting and varied.
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Fig. 2. Example Math Apps in Möbius

Randomized Questions. Actually, randomized questions can be used in all the above-
mentioned question types, so it is more a feature of the above-mentioned question types
than a question type itself. It allows to create several questions at once and gives students
the possibility to repeat the question with different parameters.

Given is the following example, e.g., subtraction of fractions:
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$c-$d/$b = solution(ans);

#choose range of variables
$b=range(2,6,2);
$c=range(3,5,1);
$d=range(3,6,1); 
#MAPLE code – return simplified expression
condition: eq(gcd($b,$d),1);
$ans=maple("$c-$d/$b");
$sd2=maple("($c*$b-$d)";
$bc=maple("$b*$c");
$s=maple("$bc-$d");
$sfd=maple("gcd($s,$b)");
$r=if(not(eq($sfd,1)),"= $ans","");

In Möbius it is possible to include MAPLE code directly by using the comment
“maple(“…”)”. This makes it very easy to create randomized questions, especially if
you are already familiar with this computer algebra system.

Preview Option. Möbius has a preview function that allows students to check their
entered answer for syntax errors. Using MAPLE-graded questions, preview automati-
cally simplifies certain mathematical expressions, such as additions, subtractions, mul-
tiplications, and divisions. Simplification is a disadvantage in pre-courses, especially
when students are asked to simplify expressions, since the solution is then given by the
preview function. Figure 3 and Fig. 4 illustrate the described behavior.

Fig. 3. Example on preview – entering response.
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Fig. 4. Example on preview – automatic simplification of the response.

To circumvent this observation, the Cascading Style Sheets (CSS) can be adjusted to
hide the preview function. Then, students do not receive any direct help for their entered
answer and thus none for the syntax used. Depending on the complexity of the response
this can be a disadvantage (Fig. 5).

Fig. 5. Hide preview – Custom CSS.

Overall Features and Policies. Once all content has been created, you can design tasks
or lessons by arranging the created questions in a specific order, e.g., by difficulty level
(easy to difficult). What we call “Online MAPLE exercises” (see Fig. 1) is called assign-
ments in Möbius. In assignments you can adjust the maximum allowed attempts, the
time limit and more. Our online exercises can be repeated an unlimited number of times
and have no time limit, as they are intended to be used to practice mathematics. It is also
possible to design exams, e.g., by inserting time limits, just to name a few possibilities
of the tool.

Using Möbius in a Learning Management System (LMS). In general, it is possible
to combine different LMS with Möbius by using the Learning Tools Interoperability
(LTI) specification. This allows students to use the material written in Möbius directly
from the university’s LMS without the need for additional accounts and registrations.
In Germany, the most common LMS is Moodle [4], where an integration of Möbius is
theoretically possible.
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However, due to the high level of data protection guidelines in Germany, it is not
allowed to use Möbius directly from the LMS Moodle, which leads to a participation
hurdle and can reduce the number of participants.

By the way, if you combine Möbius with your LMS, the scores are automatically
written to the LMS, so all data can be retrieved directly from the LMS.

2.3 Student’s Experience

By means of the placement test we want to show how many students have worked
at Möbius and explain what the reasons for the differences in the course registrations
and the processing of the learning material could be. In addition, we look at the score
distribution.

Figure 6 shows how many students are enrolled in Möbius, how many students
use Möbius and how many of them have submitted the digital placement test (in short:
pretest). You can see that almost 46.15% (252 out of 546) of the students in the Engineer-
ing and Computer Science course and 36.30% (110 out of 303) of the students enrolled
in the Economics course used Möbius. 75.4% (190 out of 252) of the Möbius users of
the Engineering & Computer Sciences and 70.91% (78 out of 110) of the users of the
Economics course submitted the digital placement test.

Fig. 6. Number of students enrolled in Möbius, number of students who have used Möbius and
number of students who have submitted the digital placemen test.

As mentioned in previous paragraph, the first decrease in participants can be
explained by the participation hurdle due to German data protection guidelines. The
students were not allowed to use Möbius directly from the LMS and thus had to register
separately in Möbius. The second dropout, i.e., the reduction in the submission of the
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pretest, could be due to the feedback we received regarding usability, i.e., the syntax
for entering mathematical expressions. Another reason may be also the normal drop-out
rate that university courses have to deal with.

Looking at the syntax of Möbius, it is especially confusing for the German students
that they have to enter the English writing of decimal numbers (commas and periods).
To help students enter answers, we wrote a note on how to enter the response within the
task description, which was helpful on reducing syntax problems.

Figure 7 shows the score distribution from incorrectly to correctly answeredquestions
of the digital placement test for each bridge course. The y-axis gives the percentage of the
students reaching a certain percentage of correct answers in the placement test. Due to
the good results in the test, i.e., a right-sided distribution, we are considering increasing
the difficulty of the test for the next semester. On the other hand, it is important to define
your target group, to adjust the level of difficulty accordingly. Is it of interest to encourage
prospective students to study, or is it of interest to make it clear that the course of study
chosen by new students includes higher level mathematics?

Fig. 7. Score distribution of the digital placement test.

Student’s feedback was positive in terms of self-directed learning, the opportunity
for immediate feedback to assess their skills, and the opportunity to ask questions about
the online tests and exercises in the tutorial.

There are students who are already parents, students who need to work while study-
ing, and other challenges that prevent students from attending their classes. Considering
the heterogeneity of the student background at our university, it is of high interest to
offer digital learning material to all students so that they can educate themselves in a
flexible time.

Our experience shows, when digital learning material is offered, it is beneficial to
give direct feedback that goes far beyond right or wrong. A solution path to the set task
helps to quickly acquire missing knowledge, as one’s own gaps can be better identified.



86 L. Binkowski et al.

The combination of the opportunity for direct feedback on digital assignments with
the personal attention of tutors provides the student with full support in achieving their
learning progress.

3 Acquired Experiences and Knowledge

3.1 Course Organization

Online learning software is not only new to first-year students, but also to many lecturers
and tutors at our university. Onboarding of the responsible persons running a course is
necessary to increase the willingness to use such software and to enable lecturers and
tutors to help students with tool-related questions. An internal support was offered by
us organizers to help when there were problems with Möbius, which was very useful.

Previously, our focus was more on empowering students to use the tool rather than
empowering the teachers involved. This needs to be changed. Hence, for future courses,
we will extend the onboarding such that persons involved in teaching get more insights
on the platform and feel more comfortable in using it.

As explained in the introduction (1.2), case studies will be conducted so that the
necessity of mathematics for study can be made clear and a deeper understanding of
mathematics can emerge among students. For the upcoming courses, we aim to achieve
a good balance between practicing classical mathematical problems and solving case
studies.

3.2 Working with Möbius and MAPLE

TheMöbius platform and the ability to entermathematical expressions as text was new to
our students. Therefore, a well-structured quick start guide is important so that students
can practice enteringmathematical formulas. Although a quick start guide was available,
students found the syntax of the online tool difficult. Thus, future courses will give an
additional introduction on Möbius within the tutorials.

We observe that in some cases the help for entering responses within the task descrip-
tion was not sufficient for students to enter mathematical expressions correctly. Based on
this observation, we will go through the questions and try to make the help for entering
answers clearer and extend this help to questions that previously had none.

Structuring the repository is another challenge. The more tasks there are in the
repository, the more difficult it becomes to find the question you are looking for. To
avoid this problem, the repository was structured according to the different areas of
mathematics, which works relatively well.

The registration hurdle due to data protection guidelines in Germany is a disadvan-
tage that can reduce participation in online course offerings. Therefore, before using
a particular online tool, it is highly recommended to be aware of what data protection
guidelines the considered country has. However, since participation in the course is vol-
untary and there is no grading, it is therefore not a disadvantage that the course grades
are not linked to the LMS. Möbius itself has a record function about the participation
and the grading of the course participants. This allows lecturers to see the progress of
the students and makes it possible to repeat certain topics due to test results.



Student Satisfaction Determinants in Hybrid Learning Environments 87

The platform is in many ways intuitive to use. Nevertheless, it is important to have
very good programming skills and experience in MAPLE to master this tool. Especially
simple school math tasks require special care and make programming unnecessarily
cumbersome. The documentation for the software is in progress and is currently being
improved, which we consider positive.

There is an idea portal where users can report ideas to the system’s developers, who
provide direct feedback on the ideas and whether they will be considered for future
implementation.

4 Summary

This article discusses a lot of different aspects in digital teaching. A good course struc-
ture balancing the self-study experiences and supervised learning in the form of online
lectures and online tutorials is required to attract students. The pandemic makes the
attraction and motivation of especially new students even more challenging. Therefore,
the positive feedback on the course coming from the students allows to implement the
same course structure in upcoming semesters. How to use Möbius from student’s and
lecturer’s and tutor’s perspective requires more attention. An additional introduction to
tutors and lecturers will be offered, so they are enabled to explain how to use the tool to
the students during their online sessions.

The data protection guidelines of Germany do not allow us to overcome the partici-
pation hurdle. Therefore, it is of interest if the cloud-based software Möbius can be used
on a university’s server or if the university requires other tools to overcome this prob-
lem. Furthermore, the sometimes long training period in Möbius or MAPLE represents
a hurdle to use on the part of the teachers.

Nonetheless, the features ofMöbius, especially when combined withMAPLE, allow
for the creation of many different digital learning materials, providing flexibility for the
individual learning scenarios that different universities require.
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Abstract. There exist several methods for computing exact solutions
of algebraic differential equations. Most of the methods, however, do not
ensure existence and uniqueness of the solutions and might fail after
several steps, or are restricted to linear equations. The authors have
presented in previous works a method to overcome this problem for
autonomous first order algebraic ordinary differential equations and for-
mal Puiseux series solutions and algebraic solutions. In the first case, all
solutions can uniquely be represented by a sufficiently large truncation
and in the latter case by its minimal polynomial.

The main contribution of this paper is the implementation, in a MAPLE

package named FirstOrderSolve, of the algorithmic ideas presented
therein. More precisely, all formal Puiseux series and algebraic solu-
tions, including the generic and singular solutions, are computed and
described uniquely. The computation strategy is to reduce the given dif-
ferential equation to a simpler one by using local parametrizations and
the already known degree bounds.

Keywords: Maple · Symbolic computation · Algebraic differential
equation · Formal Puiseux series solution · Algebraic solution

1 Introduction

The problem of finding power series solutions of ordinary differential equations
has been extensively studied in the literature. A method to compute general-
ized formal power series solutions, i.e. power series with real exponents, and
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to describe their properties is the Newton polygon method. A description of
this method is given in [11,12] and more recently in [1,6,13]. In [4], the second
author, using the Newton polygon method, gives a theoretical description of all
generalized formal power series solutions of a non-autonomous first order ordi-
nary differential equation as a finite set of one parameter families of generalized
formal power series. This description of the solutions is in general not algorith-
mic by several reasons. One of them is that there is no bound on the number
of terms which have to be computed in order to guarantee the existence of a
generalized formal power series solution when extending a given truncation of a
determined potential solution. Also the uniqueness of the extension can not be
ensured a-priori.

In [5] this problem has been overcome by the authors for autonomous first
order differential equations by using a local version of the algebro-geometric
approach introduced in [9].

In [15] they derive an associated differential system to find rational gen-
eral solutions of non-autonomous first order differential equations by considering
rational parametrizations of the implicitly defined curve. We instead consider its
places and obtain an associated differential equation of first order and first degree
which can be transformed into an equation of a very specific type [3]. Using the
known bounds for computing places of algebraic curves (see e.g. [7]), existence
and uniqueness of the solutions and the termination of our computations can be
ensured.

In [2] the results of [9,10] are generalized to algebraic solutions. It is well
known that algebraic solutions can be represented as Puiseux series. The advan-
tage is that they can be fully described by its minimal polynomial. In this package
we mainly follow [2], but we use an adapted version of the algorithm there for
deciding the existence of algebraic solutions and computing all of them in the
affirmative case.

2 Theoretical and Algorithmic Framework

In this section we recall the main notions and results that are used in our imple-
mentations. For further details we refer to [5] in the case of formal Puiseux series
and to [2] in the case of algebraic solutions.

Let K be a computable field of characteristic zero such as the rational num-
bers Q and let us denote by K its algebraic closure. Let us consider the differential
equation

F (y, y′) = 0, (1)

where F ∈ K[y, p] is square-free and non-constant in the variables y and p. We
are looking for formal Puiseux series and algebraic solutions of (1). In the case of
formal Puiseux series solutions we will represent the full series by a sufficiently
large truncation such that existence and uniqueness are guaranteed. In the case
of algebraic solutions we look for its minimal polynomial.

We associate to (1) the affine algebraic curve C(F ) ⊂ K
2

defined by the zero
set of F (y, p) in K

2
. We denote by C (F ) the Zariski closure of C(F ) in K

2

∞,
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where K∞ = K ∪ {∞} denotes the one-point compactification of K. In the case
of formal Puiseux series solutions we will look for local parametrizations of C (F )
and in the case of algebraic solutions for algebraic parametrizations, respectively.

2.1 Formal Puiseux Series Solutions

Formal Puiseux series can either be expanded around a finite point or at infinity.
In the first case, since Eq. (1) is invariant under translation of the independent
variable, without loss of generality we can assume that the formal Puiseux series
is expanded around zero and it is of the form ϕ(x) =

∑
j≥j0

aj xj/n, where aj ∈
K, n ∈ Z>0 and j0 ∈ Z. In the case of infinity we can use the transformation x =
1/z obtaining the (non-autonomous) differential equation F (y(z),−z2y′(z)) = 0.
In order to deal with both cases in a unified way, we will study equations of the
type

F (y(x), (1 − h)xhy′(x)) = 0, (2)

with h ∈ {0, 2} and its formal Puiseux series solutions expanded around zero.
We note that for h = 0 Eq. (2) is equal to (1) and for h = 2 the case of formal
Puiseux series solutions expanded at infinity is treated.

We use the notations L[[x]] for the ring of formal power series, L((x)) for its
fraction field and L((x))∗ =

⋃
n≥1 L((x1/n)) for the field of formal Puiseux series

expanded at zero with coefficients in some field L. We call the minimal natural
number n such that ϕ(x) belongs to L((x1/n)) the ramification order of ϕ(x).
Moreover, for ϕ(x) =

∑
j≥j0

aj xj/n with aj0 �= 0 we call j0/n ∈ Q the order of
ϕ, denoted by ordx(ϕ(x)), and set ordx(ϕ(x)) = ∞ for ϕ = 0.

Additionally to (2) we may require that a formal Puiseux series solution
y(x) of (2) fulfills the initial conditions y(0) = y0, ((1 − h)xhy′(x))(0) = p0 for
some fixed p0 = (y0, p0) ∈ K

2

∞. In the case where y(0) = ∞, ỹ(x) = 1/y(x)
is a Puiseux series solution of a new first order differential equation of the
same type, namely the equation given by the numerator of the rational func-
tion F (1/y,−(1 − h)xhp/y2), and ỹ(0) ∈ K. Therefore, in the sequel, we may
assume that p0 ∈ K × K∞.

Formal Parametrizations. Let us recall some classical terminology on local
parametrizations of algebraic curves and its algorithmic aspects, for further
details see e.g. [7,16].

A formal parametrization centered at p0 ∈ C (F ) is a pair of formal Puiseux
series A(t) ∈ K((t))2\K2

such that A(0) = p0 and F (A(t)) = 0. In the set of
all formal parametrizations of C (F ) we introduce the equivalence relation ∼ by
defining A(t) ∼ B(t) if and only if there exists a formal power series s(t) ∈ K[[t]]
of order one such that A(s(t)) = B(t). A formal parametrization is said to be
irreducible if it is not equivalent to another one in K((tm))2 for some m > 1. An
equivalence class of an irreducible formal parametrization (a(t), b(t)) is called
a place of C (F ) centered at the common center point p0 and is denoted by
[(a(t), b(t))].
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Let IFP(p0) denote the set of all irreducible formal parametrizations of C (F )
at p0 and Places(p0) containing the places of C (F ) centered at p0. Computa-
tionally we have to truncate the formal parametrizations. There are bounds
presented in [7,14] such that

1. the truncations of the formal parametrizations (a(t), b(t)) at p0 are in one-
to-one correspondence to Places(p0);

2. the orders ordt(a(t) − y0), ordt(b(t)) are determined;
3. no further extension of the ground field for computing the following coeffi-

cients have to be done.

More precisely, in [7], N = 2(degp(F ) − 1) degy(F ) + 1 is proved to be a bound
satisfying the above requirements, under the hypothesis that the leading coeffi-
cient of F (y, p), seen as polynomial in p and denoted by lcp(F )(y), is constant.
Her proof can be generalized straightforward to the case where lcp(F )(y) is of
order zero. The general case is reduced to the previous one by a change of vari-
able q(y) = yν p(y), where ν is the order of lcp(F )(y). In this way, the bound
above generalizes as

N = (2 degp F − 1) (degy F + ν (degp F − 1)) + 1

≤ (2 degp F − 1) degp F degy F + 1.
(3)

In the literature other possible bounds exist such as in [14] given in terms of the
Milnor number.

Let us note that the solutions of (2) will be independent of the chosen rep-
resentative of a place. Hence, regarding uniqueness of the prolongation, number
of field extensions, etc. it does not matter which local parametrization we chose
(for example classical Puiseux parametrizations or rational Puiseux parametriza-
tion [7]). For representing the solution parametrizations, which is not the goal
of the current paper, however, it would be relevant.

Puiseux Solution Place. Let Sol
K((x))∗(p0) be the set containing the non-

constant formal Puiseux series solutions of Eq. (2), expanded at zero, with coeffi-
cients in K and with p0 as initial values. Then the mapping Δ : Sol

K((x))∗(p0) −→
IFP(p0) defined as

Δ(y(x)) =
(

y(tn), (1 − h)thn d y

d x
(tn)

)

,

where n is the ramification order of y(x), is well-defined and injective. Moreover,
we denote by δ : Sol

K((x))∗(p0) −→ Places(p0) the map δ(y(x)) = [Δ(y(x))].
An irreducible formal parametrization A(t) ∈ IFP(p0) is called a solution

parametrization of (1) if A is in the image Im(Δ). Similarly, a place in Im(δ) is
called a (Puiseux) solution place.

It can be shown that for solution parametrizations (a(t), b(t)) ∈ IFP(p0),
corresponding to a solution with ramification index n, it holds that

n(1 − h) = ordt(a(t) − y0) − ordt(b(t)). (4)
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This condition is invariant for the representative of a place. In particular, all
Puiseux series solutions in the same solution place have the same ramification
order. It turns out that condition (4) is already sufficient for solution places at
p0 with y0 ∈ K. Let us highlight this statement (see Theorem 10 in [5]):

Theorem 1. Let P = [(a(t), b(t))] ∈ Places(p0) and h = 0. Then P is a solution
place if and only if Eq. (4) holds for an n ∈ Z>0. In the affirmative case the
ramification order of P is equal to n.

Also the solutions with h = 2 can be computed algorithmically. For this
purpose let us give in the following some insight into to proof of Theorem 1.

Let L be a subfield of K. For a given parametrization (a(t), b(t))) ∈ L((t))2

satisfying (4), our strategy is to find s(t) ∈ K[[t]] with ordt(s(t)) = 1 such that
(a(s(t)), b(s(t))) satisfies the associated differential equation

a′(s(t)) · s′(t) = n(1 − h) tn(1−h)−1 b(s(t)). (5)

Let k = ordt(a(t) − y0), r = ordt(b(t)) and n(1 − h) = k − r > 0. By transform-
ing (5) into an equation of Briot-Bouquet type [3], the solutions s(t) =

∑∞
i=1 σi ti

fulfill the following items.

1. If h = 0, there are exactly n solutions where σn
1 ∈ L and σi ∈ L(σ1) are

uniquely determined for i > 1.
2. If h = 2, there is no solution or up to n one-parameter families of solutions

with σn
1 ∈ L, σr−k ∈ L is a free parameter; σ2, . . . , σr−k−1 ∈ L(σ1) and for

i > r − k the coefficients σi ∈ L(σ1, σr−k) are uniquely determined.

After computing the solutions s(t) of the associated differential equation, we
obtain the solutions of the original differential equation by a(s(x1/n)).

Solution Truncations. Since we cannot compute all coefficients of the Puiseux
series solution, we have to truncate at some point. A determined solution trunca-
tion of (2) is an element of L[x1/n][x−1], for some n ∈ Z>0, that can be extended
uniquely to a formal Puiseux series solution in L((x1/n)) or L((x−1/n)), respec-
tively.

A point p0 = (y0, p0) ∈ C (F ) is called a critical curve point if p0 ∈ {0,∞} or
∂F
∂p (p0) = 0 or y0 = ∞. Under our assumptions, the set of critical curve points
is finite. The only formal Puiseux series solution with non-critical p0 as initial
tuple is a formal power series and its determined solution truncation is given by
y0 + p0x.

Assume that p0 ∈ C (F ) is a critical curve point. Then, by the properties of
the solutions of the associated differential equations, the bound N as in (3) also
holds for the computation of the determined solution truncations. In particular,
Eq. (4) can be checked, no further extensions of the ground field for computing
the coefficients are necessary and the ramification index is determined.
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Algorithm 1. PuiseuxSolve
Input: A first-order AODE F (y, y′) = 0, where F ∈ K[y, p] is square-free with no

factor in K[y] or K[p].
Output: A set consisting of all determined solution truncations of F (y, y′) = 0

(expanded around zero and around infinity).
1: If (∞, ∞) ∈ C (F ), then perform the transformation ỹ = 1/y and apply the follow-

ing steps additionally to the numerator of F (1/y, −p/y2) and p0 = (0, 0) in order
to obtain the solutions of negative order.

2: Compute the set of critical curve points B(F ) (for y0 ∈ K) and V(F (y, 0)) (for
y0 = ∞).

3: For every point (y0, p0) ∈ C (F ) \ B(F ), y0 �= ∞, a determined solution truncation
is y0 + p0x.

4: Add to the output the constant solutions y(x) = y0 corresponding to (y0, 0) ∈
C (F ), y0 �= ∞.

5: For every place centered at a critical curve point p0 = (y0, p0) ∈ B(F ), compute
the first N terms of a formal parametrization (a(t), b(t)).

6: For solutions expanded around zero (resp. around infinity), check equation (4) with
h = 0 (resp. h = 2).

7: In the negative case, [(a(t), b(t)] is not a solution place. In the affirmative case,
compute the first N terms of the solutions s(t) of (5).

8: If h = 0 and n > 0, there exist exactly n solutions. If h = 2 and n > 0, the
associated differential equation is either unsolvable or contains a free parameter.

9: The first N terms of a(s(x1/n)) are the solution truncations with p0 as initial tuple.

For solutions expanded around zero we are able to ensure uniqueness of the
extension of the truncated Puiseux series solutions (see also [5] [Theorem 14]).
In the case where the expansion point is infinity, some truncations may coincide
for some specific values of the free parameter coming from the solution of the
associated differential equation.

2.2 Algebraic Solutions

In this section we consider a subclass of formal Puiseux series, namely algebraic
series. These are y(x) ∈ K((x))∗ such that there exists a non-zero G ∈ K[x, y]
with G(x, y(x)) = 0. Since the field of formal Puiseux series is algebraically
closed, all algebraic solutions can be represented as (formal) Puiseux series.

In [2] a bound on the degree of algebraic general solutions is given. There
the authors indicate how to use these results in order to compute all algebraic
solutions of such a given differential equation. A more detailed proof of this fact
can be found in [8].

The first important observation is that if there exists one non-constant alge-
braic solution of (1), then all of them can be found easily by a shift in the
minimal polynomial (see [8] [Theorem 4.1.22]).

Theorem 2. Let F ∈ K[y, y′] be irreducible and let y(x) be a non-constant
solution of F = 0 algebraic over K(x) with minimal polynomial G ∈ K[x, y].
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Then all formal Puiseux series solutions Sol
K((x))∗(F ) are algebraic and given

by G(x + c, y), where c ∈ K.

The second important computational aspect is the degree bound on the solu-
tions [2] [Theorem 3.4, Theorem 3.8]:

Theorem 3. Let F ∈ K[y, y′] be irreducible and let y(x) be a non-constant
solution of F = 0 algebraic over K(x) with minimal polynomial G ∈ K[x, y].
Then

degx(G) = degp(F ), degy(G) ≤ degy(F ) + degp(F ).

The third result is used to construct candidates of algebraic solutions:

Lemma 1. Let G(x, y) ∈ K[x, y] be an irreducible polynomial with dx =
degx G, dy = degy G. Let y(x) be a Puiseux series solution of G(x, y) = 0
expanded at x = 0 with ordx(y(x)) = ν. Let ν′ = min{ν, 0} and write
y(x) = ȳ(x) + ϕ(x) with ordx(ϕ(x)) > N > 0 where

N ≥ 2 dx dy − 2 ν′ (dy − 1). (6)

Assume that A(x, y) ∈ K[x, y],degx A ≤ dx, degy A ≤ dy is minimal with respect
to the lexicographical order y > x such that

ordx(A(x, ȳ(x)) > 2 dx dy − ν′(dy − 1), (7)

holds. Then A(x, y) is, up to a constant factor, equal to G(x, y).

Proof. Let R(x) be the resultant of G(x, y) and A(x, y) with respect to y. It
is well known that there exist polynomials B(x, y), C(x, y) with degy B < dy,
degy C < dy such that

G(x, y)B(x, y) + A(x, y)C(x, y) = R(x).

Evaluating at ȳ(x) we obtain

G(x, ȳ(x))B(x, ȳ(x)) + A(x, ȳ(x))C(x, ȳ(x)) = R(x). (8)

Since ν′ ≤ 0, it follows that ordx C(x, ȳ(x)) ≥ ν′ degy C ≥ ν′(dy − 1) and
similarly for B(x, ȳ(x)). Hence, by (7), we have that

ordx(A(x, ȳ(x))C(x, ȳ(x))) > 2 dx dy.

Let us proof that ordx(G(x, ȳ(x)) > ν′(dy − 1) + N . Taking the Taylor series of
G(x, ȳ(x) + ϕ(x)) and because G(x, ȳ(x) + ϕ(x)) = 0, we have:

G(x, ȳ(x)) = −
dy∑

j=1

1
j!

∂jG

∂yj
(x, ȳ(x))ϕ(x)j .
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The order in x of each term on the right hand side of above equation is greater
than ν′ (dy − 1)+N , so it is for the left hand side. Now, because of (6), we have
that

ordx(G(x, ȳ(x))B(x, ȳ(x))) > ν′(dy − 1) + N + ν′(dy − 1) ≥ 2 dx dy.

Hence, the left hand side of (8) has order greater than 2 dx dy and the right hand
side is a polynomial of degree less than or equal to 2 dx dy. Hence, R(x) = 0,
and therefore, G(x, y) and A(x, y) have a common factor. Since G(x, y) is an
irreducible polynomial, it is a factor of A(x, y). Then, by the degree conditions
on A(x, y), the statement follows. ��

In [2] the method of detecting candidates G(x, y) for algebraic solutions of the
differential equations F (y, y′) = 0 consists by computing ȳ(x), the first N terms
of a power series solution y(x) of the differential equations F (y, y′) = 0, with a
regular curve point of C (F ) as initial tuple. Hence, in this case the solution y(x)
is of order 0 and ν′ = 0. Choose N > dx dy and construct, by solving a linear
system of equations, a polynomial A fulfilling the properties (6) and (7). This
approach reduced the number of formal power series solutions that we can use
to construct a candidate. Lemma 1 allows to choose any Puiseux series solutions
of the differential equations and reduce the computational cost.

Once a candidate A(x, y) is detected, we can check whether it is an actual
algebraic solution of the differential equation F (y, y′) = 0 by checking whether
the differential pseudo remainder of F (y, y′) with respect A(x, y) is zero. These
results lead to the following algorithm.

Algorithm 2. AlgebraicSolve
Input: A first-order AODE F (y, y′) = 0, where F ∈ K[y, p] is irreducible over K(y).
Output: The minimal polynomial of an algebraic solution of F (y, y′) = 0, describing

all solutions, if it exists.
1: Compute the minimal number of terms of all Puiseux solutions of F (y, y′) = 0

using PuiseuxSolve and choose one of them, denote it by ŷ(x). Let ν be its order,
ν′ = min(ν, 0) and n its ramification index.

2: Let dx = degp F and dy = degy F + degp F .
3: Compute the prolongation ȳ(x) of ŷ(x) up to order N = 2 dx dy−2 ν′ (dy−1)+1/n.

4: Compute A(x, y) ∈ K[x, y] fulfilling the required conditions from Lemma 1 by an
ansatz of unknown coefficients and solving the resulting linear system.

5: Check whether prem(F, A) = 0. If so, then A(x, y) is an actual solution. Otherwise
there exists no algebraic solution.

3 The Package FirstOrderSolve

In this section, we present the structure and content of the MAPLE package
FirstOrderSolve. It consists several procedures that implement in particular
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the algorithms PuiseuxSolve and AlgebraicSolve described above. This pack-
age computes the Puiseux series solutions and algebraic solutions of first order
autonomous AODEs with coefficients in an algebraic extension field of Q.

3.1 Overview of the Software Structure

The created MAPLE package is initialized by the command
> with(FirstOrderSolve):

The main procedures are

– SolutionTruncations: for computing all formal Puiseux series solutions
(Algorithm PuiseuxSolve);

– AlgebraicSolution: for computing the minimal polynomial of the algebraic
solutions (Algorithm AlgebraicSolve);

– GenericSolutionTruncation: for computing a truncation of the solutions
with non-critical initial tuple;

– ProlongSolutionTruncation: for prolonging the solution truncations up to
a higher degree.

These four commands are public to the user. The package is divided into several
sub-packages BriotBouquetSolve, LocalSolve, AlgebraicSolve, which are
not accessible for the user, and uses the hierarchy sketched below (Fig. 1).

Fig. 1. The hierarchy of the package.

The main commands in the sub-packages are the following.

– ParametrizationSetAlgCurve: for computing truncations of the formal
parametrizations of an implicitly defined algebraic curve by using the com-
mand algcurves:-puiseux;

– ReparametrizationSet: for computing the solutions of the associated differ-
ential equation by using BriotBouquetSolve;

– BriotBouquetSolve: for computing the unique solution of a first-order dif-
ferential equation in quasi-solved form (which is called an equation of Briot-
Bouquet type [3] [Section 80,86]); this procedure is using a Newton type algo-
rithm for solving the resulting linear system in several variables;

In the following, we give a description of the procedures in the package
FirstOrderSolve, available at https://risc.jku.at/sw/firstordersolve/. There
can be found more detailed information on the commands in the included help.

https://risc.jku.at/sw/firstordersolve/
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3.2 Description of the Software Components

> SolutionTruncations
Computes all Puiseux series solutions of a given first order autonomous ordinary
differential equation.

Since the equation is autonomous, the translation of the independent vari-
able by any constant in a solution is again a solution. Hence, the only relevant
expansion points are 0 and infinity.

The solutions expanded at 0 can be split into two sets: a generic solu-
tion and a set of particular solutions. The generic solution consists of
all solutions starting with a non-critical curve point and is addressed in
GenericSolutionTruncation. Each critical curve point corresponds to a set
(that could be empty) of particular Puiseux series solutions.

The command computes the generic solution, all particular solutions
expanded at 0 and all solutions expanded at infinity. The solutions are rep-
resented as truncations such that existence and uniqueness is ensured. In other
words, the truncations are in one-to-one correspondence to the solutions. By set-
ting the optional arguments genericsolution, const, computeFinite, computeInf
to false, the corresponding subsets of the solution set can be suppressed. The
remaining option iv = y0 represents an initial condition of the format y(0) = y0,
where y0 is an element of the ground field or an algebraic extension field of it,
which is additionally taken into account.

 Calling Sequence: > SolutionTruncations(F, N, options)
 Input: a polynomial F in y, y′, a rational number N (by default set to zero)

and several optional arguments: genericsolution, const, computeFinite, com-
puteInf (all boolean) and a constant iv.

 Output: a list consisting of three components: the generic solutions, the solu-
tions expanded at 0 and the solutions expanded at infinity represented as
truncated Puiseux series (modulo xN ).

> GenericSolutionTruncation
The first order differential equation has a generic local solution y(x) = y0 +
y1x + O(x2), where F (y0, y1) = 0. If F is irreducible as polynomial and
(y0, y1) is a regular affine point of the curve implicitly defined by F , the exten-
sion of y0 + y1x to a solution y(x) is guaranteed and unique. The command
GenericSolutionTruncation computes the first terms of the generic (formal)
power series solutions, expanded around 0, of the given differential equation.

Note that for every irreducible component one generic solution is computed.
Thus, all generic solutions of F = 0 are given by the union of the generic solutions
of the components. If the given differential equation is known to be irreducible,
the optional argument irreducible = true (see below) can be used in order to
speed up computations.
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The output of the command is a set of lists with two entries: a polynomial
in x representing the solution computed modulo xN involving an unspecified
parameter CC and a set of exceptional values for CC. For these values the
generic solution would in general not lead to a solution of the given differential
equation or might involve fractional exponents. Finally, let us mention that, if
the precision of the output is not high enough, it is possible to use the command
ProlongSolutionTruncation; see below.

 Calling Sequence: > GenericSolutionTruncation(F, N, options)
 Input: a polynomial F in y, y′, a rational number N (by default set to zero),

and optionally irreducible as boolean.
 Output: is a set of lists with two entries: a polynomial in x representing the

solution computed modulo xN involving an unspecified parameter CC and
a set of exceptional values for CC.

> ProlongSolutionTruncation
For the given first order differential equation, if an appropriate change of vari-
ables z(x) = y(x) + s(x) is performed, the resulting equation

G(x, z(x), z′(x)) = F (y(x) + s(x), y′(x) + s′(x)) = 0

might be of Briot-Bouquet type. In case that s(x) is such a solution truncation
of y(x), existence and uniqueness of the solution z(x) of G are ensured and the
following coefficients can be found by a Newton type algorithm. In particular,
this is the case when s(x) is an output element of GenericSolutionTruncation
or SolutionsTruncations.

In this situation, the command ProlongSolutionTruncation prolongs the
first terms of a truncated Puiseux series solution s(x) of F (y(x), y′(x)) = 0.

 Calling Sequence: > ProlongSolutionTruncation(F, s, N, x0)
 Input: a polynomial F in y, y′, a polynomial s, a rational number N and x0

equals 0 or infinity (by default set to zero)
 Output: it is again a truncated Puiseux series computed until the order xN

(or 1/xN )

> AlgebraicSolution
Algebraic solutions of the first order autonomous differential equation are rep-
resented by its minimal polynomisl, say G(x, y). In this case, all the functions
y(x) with G(x, y(x)) = 0 are solutions of this differential equation and can be
represented as Puiseux series.
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Assuming that F is an irreducible polynomial, the existence of algebraic solu-
tions can be decided and, in the affirmative case, all solutions are algebraic and
are given as shift of the independent variable, namely by G(x + c, y). Therefore,
by factorizing the given differential equation, all algebraic solutions can be found
using this procedure for every component.

The command AlgebraicSolution decides the existence of algebraic solu-
tions of the given differential equation. Furthermore, if a solution exists the
output is the minimal polynomial of the solution. The other solutions then can
be easily found by shifting x. The solutions are found by checking whether a
particular solution is algebraic. Efficiency of the algorithm highly depends on
the chosen initial value. The procedure is using a formal power series solution,
which means non-negative integer exponents for the solution, with a relatively
small number of algebraic extensions of the ground field. Similarly to the com-
mand GenericSolutionTruncation, if the given differential equations is known
to be irreducible, this can be specified by the optional argument irreducible =
true.

 Calling Sequence: > AlgebraicSolution(F, options)
 Input: F is a first-order differential polynomial, and irreducible is a boolean

option.
 Output: the decision on the existence of algebraic solutions of the differential

equation. If a solution exists the output is the minimal polynomial of the
solution.

3.3 Usage of the Package

In order to use the package, download the file FirstOrderSolve.m from https://
risc.jku.at/sw/firstordersolve/ and save it as your local folder. After starting
Maple you redefine the variable libname as

> libname:=libname, ’path of user local folder’;
Then, after executing the command

> with(FirstOrderSolve);
The package can be used. In the appendix we provide a Maple Worksheet

illustrating the usage of our package for the computation of all Puiseux series
solutions of first-order autonomous ordinary differential equations. We provide
at https://risc.jku.at/sw/firstordersolve/ an extended version of this file.

https://risc.jku.at/sw/firstordersolve/
https://risc.jku.at/sw/firstordersolve/
https://risc.jku.at/sw/firstordersolve/
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(7)(7)

 > >

 > >

(3)(3)

(6)(6)

 > >

 > >

 > >

(1)(1)

 > >

(2)(2)

(4)(4)

 > >

(5)(5)

 > >

A list of possible examples is the following.

We start with the first entry of the list and compute all solutions and use the option of minimal output 
length by not specifying the truncation order.

Let us prolong the non-constant solution.

The generic solution can be either prolonged by the same command or by GenericSolutionTruncation 
itself. The exceptional value is _CC=0.

For the second example we prolong the solution expanded around infinity.



102 F. Boulier et al.

 > >

 > >

(13)(13)

 > >
(12)(12)

 > >

(14)(14)

(15)(15)

(10)(10)

 > >

(8)(8)

 > >

 > >

 > >

(11)(11)

 > >

(9)(9)

The standard procedure of Maple cannot find all of the solutions, since for example the series 
expansion of the Puiseux series is not covered.

Solutions at infinity with fractional exponents are found in the next example. The generic solution, 
constant solutions and the solutions expanded around infinity are suppressed and the precision is set to 
N=2.

Alternatively one may directly specify the initial value by iv=infinity.

In the next example we compute the solutions with the initial value y(0)=0. The non-constant solutions 
are not detected by 'dsolve'.

For obtaining algebraic solutions we run the corresponding command over all examples. We see that 
not all of them have algebraic solutions.

For the last two differential equations we obtain other results by using 'dsolve'. In the latter example the
output is very complicated and lengthy whereas the algebraic solution obtained by our code is very 
compact.
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J. de l’Ecole Polytechnique 21(36), 133–198 (1856)

4. Cano, J.: The newton polygon method for differential equations. In: Li, H., Olver,
P.J., Sommer, G. (eds.) GIAE/IWMM -2004. LNCS, vol. 3519, pp. 18–30. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499251 3

5. Cano, J., Falkensteiner, S., Sendra, J.R.: Existence and convergence of Puiseux
series solutions for first order autonomous differential equations. J. Symb. Comput.
(2020). https://doi.org/10.1016/j.jsc.2020.06.010

6. Della Dora, J., Richard-Jung, F.: About the newton algorithm for non-linear ordi-
nary differential equations. In: Proceedings of the 1997 International Symposium
on Symbolic and Algebraic Computation, ISSAC 1997, pp. 298–304. ACM, New
York (1997). https://doi.org/10.1145/258726.258817

7. Duval, D.: Rational Puiseux expansion. Compositio Mathematica 70(2), 119–154
(1989)

8. Falkensteiner, S.: Power series solutions of AODEs - existence, uniqueness, conver-
gence and computation. Ph.D. thesis, RISC Hagenberg, Johannes Kepler Univer-
sity Linz (2020)

9. Feng, R., Gao, X.S.: Rational general solutions of algebraic ordinary differential
equations. In: Proceedings of the 2004 International Symposium on Symbolic and
Algebraic Computation, pp. 155–162. ACM (2004)

10. Feng, R., Gao, X.S.: A polynomial time algorithm for finding rational general
solutions of first order autonomous ODEs. J. Symb. Comput. 41(7), 739–762 (2006)

11. Fine, H.: On the functions defined by differential equations, with an extension of
the Puiseux polygon construction to these equations. Am. J. Math. 11, 317–328
(1889). https://doi.org/10.2307/2369347

12. Fine, H.: Singular solutions of ordinary differential equations. Am. J. Math. 12,
295–322 (1890). https://doi.org/10.2307/2369621

13. Grigoriev, D., Singer, M.: Solving ordinary differential equations in terms of series
with real exponents. Trans. A.M.S. 327, 329–351 (1991). https://doi.org/10.2307/
2001845

14. Stadelmeyer, P.: On the computational complexity of resolving curve singularities
and related problems. Ph.D. thesis, RISC, Johannes Kepler University Linz (2000)

15. Vo, N., Grasegger, G., Winkler, F.: Deciding the existence of rational general solu-
tions for first-order algebraic ODEs. J. Symb. Comput. 87, 127–139 (2018)

16. Walker, R.: Algebraic Curves. Princeton University Press, Princeton (1950)

https://doi.org/10.1007/11499251_3
https://doi.org/10.1016/j.jsc.2020.06.010
https://doi.org/10.1145/258726.258817
https://doi.org/10.2307/2369347
https://doi.org/10.2307/2369621
https://doi.org/10.2307/2001845
https://doi.org/10.2307/2001845


Algebraic Aspects of a Rank Factorization
Problem Arising in Vibration Analysis

Yacine Bouzidi1, Roudy Dagher1, Elisa Hubert2, and Alban Quadrat3(B)

1 Inria Lille – Nord Europe, Villeneuve-d’Ascq, France
yacine.bouzidi@gmail.com, roudy.dagher@inria.fr

2 University of Lyon, UJM-St-Etienne, LASPI, 42334 Saint-Etienne, France
elisa.hubert@wanadoo.fr

3 Inria Paris, Ouragan project-team, IMJ – PRG, Sorbonne University, Paris, France
alban.quadrat@inria.fr

Abstract. This paper continues the study of a rank factorization prob-
lem arising in gear fault surveillance [10–13]. The structure of a class
of solutions − important in practice − of the rank factorization prob-
lem is studied. We show that these solutions can be parametrized. Using
module theory and computer algebra methods, the parameter space P is
explicitly characterized and is shown to be the complementary of an alge-
braic set. Finally, a finite open cover of P is obtained and for each basic
open subset of the cover of P, a closed-form solution is characterized.

Keywords: Polynomial systems · Effective module theory ·
Demodulation problems · Gearbox vibration signals

1 Introduction

Before stating the mathematical problem studied in this paper, we first introduce
a few notations. Let k denote a field (e.g., k = Q, R, C), R a commutative ring,
Rn×m the R-module (the k-vector space if R = k) formed by all the n × m
matrices with entries in R, U(R) := {r ∈ R | ∃ s ∈ R : r s = 1} the group of
units of R, GLn(R) := {U ∈ Rn×n | det(U) ∈ U(R)} the general linear group of
invertible n × n matrices with entries in R, and In the n × n identity matrix of
GLn(R). If A ∈ Rr×s, then we can consider the following R-homomorphisms

.A : R1×r −→ R1×s

λ �−→ λ A,
A. : Rs×1 −→ Rr×1

η �−→ Aη,

and the following R-modules (the k-vector spaces if R = k):
⎧
⎨

⎩

imR(.A) := R1×r A,
kerR(.A) := {λ ∈ R1×r | λ A = 0},
cokerR(.A) := R1×s/imR(.A),

⎧
⎨

⎩

imR(A.) := ARs×1,
kerR(A.) := {η ∈ Rs×1 | Aη = 0},
cokerR(A.) := Rr×1/imR(A.).

c© Springer Nature Switzerland AG 2021
R. M. Corless et al. (Eds.): MC 2020, CCIS 1414, pp. 104–118, 2021.
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Recall that A is said to have full column (resp., full row) rank if kerR(A.) = 0
(resp., kerR(.A) = 0). A ∈ kr×s has full row rank (resp., full column rank) iff it
admits a right (resp., left) inverse B ∈ ks×r, i.e., AB = Ir (resp., B A = Is).

Motivated by the application of vibration analysis to gearbox fault surveil-
lance [2,3], a new demodulation approach of gearbox vibration signals was devel-
oped in [10,11]. It yielded the study of the following mathematical problem.

Rank Factorization Problem:
Let D1, . . . , Dr ∈ kn×n\{0} and M ∈ kn×m\{0} be such that rankk(M) ≤ r.
Determine − if they exist − u ∈ kn×1 and v1, . . . , vr ∈ k1×m satisfying:

M =
r∑

i=1

Di u vi. (1)

Note that (1) is a system formed by m n polynomial equations in the n + m r
entries of u and of the vi’s. Thus, (1) belongs to the realm of algebraic geometry.

The rank factorization problem was first solved for r = 1 and D1 = In in [11],
and then for r = 2 and D1 = In in [12]. In [13], the general problem was studied
with the assumption that the row vectors vi’s are k-linearly independent, i.e.,
that the matrix v := (vT

1 . . . vT
r )T has full row rank. This assumption, which is

motivated by the application, made the characterization of this class of solutions
possible using linear algebra methods. These results are reviewed in Sect. 2.

Based on module theory and computer algebra methods [7,14,17], the first
goal of the paper is to develop the algorithmic aspects of the results presented
in [13]. We then study the set formed by all the solutions (u, v) of (1) with
full row rank matrices v. An important problem in practice is to know how the
solutions can vary within the solution space. Hence, we develop the local study
of the solution space by proving the existence of local closed-form solutions
that can be computed by computer algebra methods. Finally, the existence of
global solutions is investigated and we show that this problem is related to well-
known difficult problems in module theory (e.g., computing the least number of
generator sets of an ideal, recognizing when a stably free module over certain
localizations of a polynomial ring is free and if so, computing a basis of the free
module) [7,17].

2 The Rank Factorization Problem

In this section, we state again results on the problem obtained in [13]. If we note

A(u) := (D1 u . . . Dr u) ∈ kn×r, v := (vT
1 . . . vT

r )T ∈ kr×m,

then (1) can be rewritten as the following factorization of M (bilinear system):

M = A(u) v. (2)

Note that if (u, v) is a solution of (2), then so is (λ u, λ−1 v) for all λ ∈ k\{0}.
We also note that Problem (2) is solvable iff there exists u ∈ kn×1 such that:

imk(M.) ⊆ imk(A(u).). (3)
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Indeed, if (2) holds, then ζ ∈ imk(M.) is of the form ζ = M η = A(u) (v η)
for a certain η ∈ km×1, which shows that (3) holds. Conversely, if there exists
a vector u ∈ kn×1 such that (3) holds, then for i = 1, . . . , m, the ith column
M•i of M belongs to imk(A(u).), and thus, there exists wi ∈ kr×1 such that
M•i = A(u)wi, which yields (2) with v := (w1 . . . wm).

Using (3), a necessary condition for the solvability of (2) is then:

∃ u ∈ kn×1, l := rankk(M) ≤ rankk(A(u)) ≤ min{r, n}. (4)

Suppose that (2) is solvable with a full row rank matrix v. Then, v admits a
right inverse t ∈ km×r, i.e., v t = Ir. Hence, (2) yields A(u) = M t, which yields

imk(A(u).) ⊆ imk(M.), (5)

and thus, we have:
imk(A(u).) = imk(M.). (6)

The existence of u ∈ kn×1 satisfying (6) is then equivalent to:

1. Di u ∈ imk(M.) for i = 1, . . . , r, i.e., (5).
2. rankk(A(u)) = l := rankk(M), i.e., dimk (span{Di u}i=1,...,r) = l, i.e.:

dimk(kerk(A(u).) = r − l.

Remark 1. If r = l, then the last condition becomes kerk(A(u).) = 0, i.e., the
Di u’s are k-linearly independent, which yields the uniqueness of the matrix v.

Remark 2. If rankk(M) = rankk(A(u)), then (3) is equivalent to (6). Using (4),
it holds if l = rankk(M) = r or l = n.

In this paper, we shall focus on the study of (6), i.e., on the above Conditions 1
and 2. In particular, we shall get the solutions (u, v1, . . . , vr) of (2) which are
such that the vi’s are k-linearly independent. In the demodulation problems for
gearbox vibration signals [10], each row vector vi contains Fourier coefficients of
a signal to be estimated. The hypothesis that v has full row rank amounts to
saying that the time signals are k-linearly independent, which is a fair hypothesis
in practice. The general rank factorization problem, i.e., (5), is studied in [6].

Let us now state again the approach developed in [13] for studying (2). We
first suppose that kerk(.M) �= 0 (if kerk(.M) = 0, see Remark 3 below). Let
L ∈ kp×n be a full row rank matrix whose rows define a basis of kerk(.M), i.e.:

kerk(.M) = imk(.L), p := dimk(kerk(.M)) = n − rankk(M) = n − l.

Hence, we get LM = 0, which yields imk(M.) ⊆ kerk(L.). Using
dimk(kerk(L.)) = n − p = rankk(M), we obtain kerk(L.) = imk(M.). Hence,
Condition 1 above is equivalent to Di u ∈ kerk(L.) for i = 1, . . . , r, i.e., to the
following linear system:

N u = 0, N := ((LD1)T . . . (LDr)T )T ∈ kp r×n.
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If kerk(N.) = 0, then u = 0, A(u) = 0 and (6) is not satisfied since M �= 0.
Let us now suppose that kerk(N.) �= 0 and let Z ∈ kn×d be a full column

matrix whose columns define a basis of kerk(N.), where d := dimk(kerk(N.)).
The vectors u ∈ kn×1 satisfying Condition 1 are then defined by:

∀ ψ ∈ kd×1, u = Z ψ. (7)

Remark 3. If kerk(.M) = 0, i.e., rankk(M) = n, then imk(M.) = kn×1. Condi-
tion 1 is Di u ∈ kn×1 for i = 1, . . . , r, which is satisfied for all u ∈ kn×1 and
yields Z = In. Equivalently, if we set L := 0, then N = 0, and thus, Z = In.

Using (7), Condition 2, i.e., rankk(A(u)) = l, is then equivalent to character-
izing the set of all the ψ ∈ kd×1 which are such that:

rankk(A(Z ψ)) = l ⇔ dimk(kerk(A(Z ψ).) = r − l. (8)

Example 1. Let us consider the following matrices:

M =
(

3 5
4 7

)

, D1 = I2, D2 =
(

1 0
0 2

)

.

Then, l := rankk(M) = r := 2, which by Remark 3 shows that Z = I2. Hence,
(6) holds for all u = ψ = (ψ1 ψ2)T satisfying det(A(ψ)) = ψ1 ψ2 �= 0.

Let X ∈ kn×l be a full column rank whose columns define a basis of imk(M.).
Since imk(M.) = imk(X.), there exist T ∈ km×l and a unique matrix Y ∈ kl×m

such that X = M T and M = X Y . Hence, we get X (Il −Y T ) = 0, which yields
Y T = Il because X has full column rank. In particular, Y has full row rank.

By construction, Di Z ψ ∈ kerk(L.) = imk(M.) = imk(X.) for all ψ ∈ kd×1,
which shows that there exists a unique matrix Wi ∈ kl×d such that Di Z = X Wi

for i = 1, . . . , r. If we set B(ψ) := (W1 ψ . . . Wr ψ) ∈ kl×r, then we obtain:

∀ ψ ∈ kd×1, A(Z ψ) = X B(ψ). (9)

Using the fact that X has full column rank, we get kerk(A(Z ψ).) = kerk(B(ψ).).
Hence, using (8), (6) holds iff there exists ψ ∈ kd×1 such that:

dimk(kerk(B(ψ).)) = r − l ⇔ rankk(B(ψ)) = l.

Hence, (6) holds iff the following set

P :=
{
ψ ∈ kd×1 | rankk(B(ψ)) = l

}
(10)

is not empty. In particular, if r = l, then P =
{
ψ ∈ kd×1 | det(B(ψ)) �= 0

}
.

Let us suppose that P �= ∅ and let us show how to characterize the solu-
tions (u, v) of (2). By construction, u = Z ψ for ψ ∈ P and using (9), we get
A(Z ψ) v = X B(ψ) v = X Y . Now, since X has full column rank, we obtain:

B(ψ) v = Y. (11)
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Since ψ ∈ P, B(ψ) admits a right inverse Eψ ∈ kr×l, i.e., B(ψ)Eψ = Il. Hence,
if the matrix Cψ ∈ kr×(r−l) is such that its columns define a basis of kerk(B(ψ).),
i.e., kerk(B(ψ).) = imk(Cψ.), then all the solutions of (11) are given by:

∀ Y ′ ∈ k(r−l)×m, v = Eψ Y + Cψ Y ′.

Note that det((Eψ Cψ)) �= 0. Hence, v has full row rank iff Y ′ ∈ k(r−l)×m is
chosen such that the matrix (Y T Y ′T )T ∈ kr×m has full row rank. If r = l, then
we note that Cψ = 0, which shows again that v is unique (see Remark 1).

Theorem 1 ([13]). With the above notations, (6) holds iff the set P defined by
(10) is not empty. If so, then

∀ ψ ∈ P, ∀ Y ′ ∈ k(r−l)×m,

⎧
⎨

⎩

u = Z ψ,

v = (Eψ Cψ)
(

Y
Y ′

)

,
(12)

are solutions of (2). Moreover, v has full row rank iff the matrix Y ′ ∈ k(r−l)×m

is chosen such that (Y T Y ′T )T ∈ kr×m has full row rank. Finally, P does not
depend on choices of the bases while defining the matrices L, Z and X.

Remark 4. Note that 0 /∈ P since B(0) = 0. If ψ ∈ P and λ ∈ k\{0}, then
B(λ ψ) = λ B(ψ), i.e., λ ψ ∈ P. Remark 6 of [13] shows that the solutions (12)
are stable under the transformations (u, v) �−→ (λ u, λ−1 v) for all λ ∈ k\{0}.

Note that the matrices X, Y, Z, W1, . . . , Wr, B of Theorem 1 can be obtained
by linear algebra methods as well as the matrices Eψ and Cψ for a fixed ψ ∈ P.

Example 2. We consider again Example 1. Taking X = M and Y = I2, we get:

W1 =

(
7 −5

−4 3

)
, W2 =

(
7 −10

−4 6

)
, B(ψ) =

(
7 ψ1 − 5 ψ2 7 ψ1 − 10 ψ2

−4 ψ1 + 3 ψ2 −4 ψ1 + 6 ψ2

)
,

P = {ψ ∈ k2×1 | det(B(ψ)) = ψ1 ψ2 �= 0}, Cψ = 0,

Eψ =
1

ψ1 ψ2

(−4 ψ1 + 6 ψ2 −7 ψ1 + 10 ψ2

4 ψ1 − 3 ψ2 7 ψ1 − 5 ψ2

)
.

Hence, the solutions of (2) are then defined by u = ψ ∈ P and v = Eψ.

For more explicit examples, see [12,13].

3 Characterization of P
In this section, we characterize the set P defined by (10). An element ψ ∈ P
is such that at least one of the Cl

r := r!/(l! (r − l)!) l × l-minors mk(ψ) of the
matrix B(ψ) := (W1 ψ . . . Wr ψ) ∈ kl×r does not vanish, i.e., we have:

P = kd×1 \ {
ψ ∈ kd×1 | mk(ψ) = 0, k = 1, . . . , Cl

r

}
. (13)
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Note that mk is either 0 or a homogeneous polynomial of degree l, i.e., it satisfies
mk(λ ψ) = λl mk(ψ) for all λ ∈ k\{0}. Note also that Cl

r can be very large.
Hence, we have to find a more tractable way to characterize P.

If ψ is considered as an arbitrary vector of kd×1, then B(ψ) can be inter-
preted as a matrix with polynomial entries in the ψi’s. A natural framework for
the study of P is thus module theory over a polynomial ring [7,14]. Based on
module theory and computer algebra methods (Gröbner bases) [7,9,17], in this
section, we give a characterization of P which is more tractable in practice. The
corresponding algorithm is implemented in the OreModules package [5] but
the homalg library (GAP) [1] or the Singular system [9] can also be used.

Let R := k[x1, . . . , xd] be the commutative polynomial ring in x1, . . . , xd with
coefficients in the field k. Moreover, let us consider:

x := (x1 . . . xd)T , B := (W1 x . . . Wr x) ∈ Rl×r.

Then, we can define the following finitely presented R-module [7,17]:

N := cokerR(B.) = Rl×1/imR(B.) = Rl×1/
(
B Rr×1

)
.

The R-module N defines the obstruction of the surjectivity of the R-
homomorphism B. : Rr×1 −→ Rl×1, i.e., the obstruction for B Rr×1 to be equal
to Rl×1.

Remark 5. In Remark 5 of [13], it is shown that, up to invertible matrices, B
does not depend on arbitrary choices for the matrices L, X and Z (whose rows
or columns define bases of certain k-vector spaces). Hence, up to isomorphism,
the R-module N is associated with the solvability of Problem (2).

We have the following finite presentation of the R-module N [7,14,17], i.e.,
the following exact sequence of R-modules:

0 N�� Rl×1κ�� Rr×1.
B.�� (14)

For each ψ ∈ kd×1, we can define the following maximal ideal of R

mψ := 〈x1 − ψ1, . . . , xd − ψd〉 =

{
d∑

i=1

ai (xi − ψi) | ai ∈ R, i = 1, . . . , d

}

, (15)

i.e., R/mψ is isomorphic to the field k, which is denoted by R/mψ
∼= k [7,14,17].

Applying the covariant right exact functor (R/mψ) ⊗R · to (14), we obtain
the following exact sequence of k-vector spaces [7,17]:

0 (R/mψ) ⊗R N�� kl×1id⊗κ�� kr×1.
B(ψ).�� (16)

Using properties of tensor products [17], B(ψ). : kr×1 −→ kl×1 is surjective iff

N/(mψ N ) ∼= (R/mψ) ⊗R N ∼= kl×1/
(
B(ψ) kr×1

)
= 0,
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where mψ N :=
{∑

i∈I ai ni | ai ∈ mψ, ni ∈ N , �I < ∞}
, i.e., iff we have:

N = mψ N . (17)

Note that mψ ⊂ R yields mψ N ⊂ N , i.e., (17) is equivalent to N ⊂ mψ N , i.e.:

P =
{
ψ ∈ kd×1 | N ⊂ mψ N}

.

Nakayama’s lemma [7,14,17] gives a necessary condition for (17). Before
stating again this well-known result, we rewrite (17) in terms of equations. Let
κ : Rl×1 −→ N be the R-homomorphism which sends η ∈ Rl×1 onto its residue
class in N , i.e., κ(η′) = κ(η) if there exists ζ ∈ Rr×1 such that η′ = η +B ζ [17].
Let fj be the jth vector of the standard basis of Rl×1, i.e., the vector defined
by 1 at the jth position and 0 elsewhere, and yj := κ(fj) the residue class of fj

in N . It can be easily show that {yj}j=1,...,l is a set of generators of N [4,16].
Then, (17) is equivalent to the existence of rjk ∈ mψ such that yj =

∑l
k=1 rjk yk

for j = 1, . . . , l. Noting y := (y1, . . . , yl)T , (17) is equivalent to the existence of
G := (rjk) ∈ mψ

l×l such that (Il − G) y = 0, which is then equivalent to the
existence of E ∈ Rr×l such that Il = G + B E, and thus:

P =
{
ψ ∈ kd×1 | ∃ G ∈ mψ

l×l, ∃ E ∈ Rr×l : Il = G + B E
}

.

Setting x := ψ, Il = G + B E yields B(ψ)E(ψ) = Il and rankk(B(ψ)) = l.
Now, if (Il − G)adj denotes adjugate matrix of Il − G, using the standard

identity (Il −G)adj (Il −G) = det(Il −G) [17], then we get det(Il −G) y = 0. Let
p(λ) := det(λ Il − G) = λl + p1 λl − 1 + . . . + pl be the characteristic polynomial
of G. We can check that pi ∈ mψ for i = 1, . . . , l, and thus, det(Il − G) = p(1) =
1 + a for a certain a ∈ mψ. Since 1 /∈ mψ, det(Il − G) �= 0 and each generator
yj of N satisfies the non-trivial equation (1 + a) yj = 0 for j = 1, . . . , l. Hence,
we get

0 �= 1 + a ∈ annR(N ) := {b ∈ R | b N = 0} , (18)

where annR(N ) is an ideal of R called the annihilator of N . Nakayama’s lemma
asserts (17) implies (18) [7,14,17]. In particular, (18) implies that the R-module
N is torsion, namely, t(N ) := {n ∈ N | ∃ 0 �= b ∈ R : b n = 0} = N [7,17].

Let us consider a family of generators {gi}i=1,...,t of annR(N ), i.e.:

annR(N ) = 〈g1, . . . , gt〉 :=

{
t∑

i=1

ai gi | a1, . . . , at ∈ R

}

. (19)

A set of generators {gi}i=1,...,t of annR(N ) can be computed by the command
PiPolynomial of OreModules [5]. See also Homalg [1] and Singular [9]. Note
that t is usually much smaller than Cl

r. Now, (18) shows that there exist qi ∈ R
for i = 1, . . . , t satisfying 1 + a =

∑t
i=1 qi gi. Evaluating this identity at the

point x = ψ, we obtain the following Bézout identity:

t∑

i=1

qi(ψ) gi(ψ) = 1. (20)



Algebraic Aspects of a Rank Factorization Problem 111

Hence, ψ ∈ kd×1 must to be chosen such that the generators g1, . . . , gt of
annR(N ) do not simultaneously vanish at ψ.

Remark 6. For two finitely generated R-modules M and N , it can be proved
that M ⊗R N = 0 implies annR(M) + annR(N ) = R. See, e.g., Corollary 4.9
of [7]. Setting M := R/mψ and using annR(M) = mψ, a necessary condition
for ψ ∈ P is then mψ + annR(N ) = 〈x1 − ψ1, . . . , xd − ψd, g1, . . . , gt〉 = R,
i.e.,

∑t
i=1 qi gi +

∑d
j=1 rj (xj − ψj) = 1 for certain qi, rj ∈ R, i = 1, . . . , t,

j = 1, . . . , d, which, by evaluation at x = ψ, yields again (20).

If I is an ideal of R, we can define the algebraic set of the affine space kd×1:

Vk(I) := {ψ ∈ kd×1 | ∀ g ∈ I : g(ψ) = 0}.

If I = 〈g1, . . . , gt〉, i.e., I is generated by the gi’s, then Vk(I) is the common zeros
ψ ∈ kd×1 of all the gi’s, i.e., Vk(I) = {ψ ∈ kd×1 | gi(ψ) = 0, i = 1, . . . , t}. Hence:

Vk(annR(N )) = Vk(〈g1, . . . , gt〉) =
t⋂

i=1

Vk(〈gi〉). (21)

Hence, a necessary condition for (17) to hold is ψ ∈ kd×1\Vk(annR(N )). This
condition is also sufficient as explained in the following remark.

Remark 7. Let Fitt0(N ) be the 0th Fitting ideal of N , namely, the ideal of R
defined by all the l × l-minors of B [7]. Proposition 20.7 of [7] then yields:

annR(N )l ⊆ Fitt0(N ) ⊆ annR(N ).

If
√

I := {a ∈ R | ∃ n ∈ Z≥0 : an ∈ I} denotes the radical of I [7,14], then
√

annR(N ) =
√

Fitt0(N ) ⇒ Vk(annR(N )) = Vk(Fitt0(N ))),

which also shows again (13), i.e., P = kd×1\Vk(Fitt0(N ))).

In Sect. 4, we shall give a more useful proof of P = kd×1\Vk(annR(N )).

Example 3. We consider the following matrices:

M =

⎛

⎝
0 0

−147360 −96804
0 0

⎞

⎠ , D1 =

⎛

⎝
0 0 0
0 54 −31
0 0 0

⎞

⎠ ,

D2 =

⎛

⎝
0 0 0
0 −58 −77
0 0 0

⎞

⎠ , D3 =

⎛

⎝
0 0 0
79 0 0
0 0 0

⎞

⎠ .

We can check that l := rankk(M) = 1 < r = 3,

X =

⎛

⎝
0

−147360
0

⎞

⎠ , Y =
(

1
8067
12280

)

, L =
(

1 0 0
0 0 1

)

, N = 0, Z = I3,
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and ψ = (ψ1 ψ2 ψ3)
T . If c := 1/(147360), then we have:

W1 = c (0 − 54 31) , W2 = c (0 58 77) , W3 = c (−79 0 0) ,
B(ψ) = c (−54ψ2 + 31ψ3 58ψ2 + 77 ψ3 − 79ψ1) .

Let R = k[x1, x2, x3], x := (x1 x2 x3)T , B := (W1 x W2 x W3 x) ∈ R1×3.
The R-module N = R/

(
B R3×1

)
= R/I, where I = 〈B1, B2, B3〉 is the ideal

generated by the three entries Bi’s (i.e., 1 × 1-minors mk) of B, is clearly a
torsion R-module. The R-module N is generated by the residue class y of 1 in
N and we can check that annR(N ) = I = m0 := 〈x1, x2, x3〉. Such a computation
can directly be obtained by the PiPolynomial command of the OreModules

package [5]. Hence, we get:

Vk(annR(N )) =
{
(0 0 0)T

} ⇒ P = k3×1 \ {0}.

Remark 8. Since the generators gi’s of annR(N ) can be chosen to be homoge-
neous polynomials, 0 ∈ Vk(annR(N )), which shows that 0 /∈ P (see Remark 4).

4 Local and Global Studies of the Solution Space

4.1 Existence of a Local/Global Right Inverse E of B

Let us first study the problem of computing a right inverse Eψ of B(ψ) for ψ ∈ P.
With the notation (19), let us consider the following integral domain

S−1
gi

R :=
{

a

gn
i

| a ∈ R, n ∈ Z≥0

}

,

i.e., the localization of R at the multiplicatively closed set Sgi
:= {gn

i | n ∈ Z≥0}
[7,14,17]. We can then consider the localization of N with respect of the powers
of gi, namely, the S−1

gi
R-module defined by S−1

gi
N := {s−1 n | s ∈ Sgi

, n ∈ N}.
It is well-known S−1

gi
R is a flat R-module [7,14,17], which yields the isomorphism

S−1
gi

N ∼= (S−1
gi

R)l×1/
(
B (S−1

gi
R)r×1

)

of S−1
gi

R-modules. Hence, S−1
gi

N can be seen as the S−1
gi

R-module obtained from
N by extending the scalars from R to S−1

gi
R. See, e.g., [7,14,17]. By definition

(see (19)), we have gi N = 0 and g−1
i ∈ S−1

gi
R, which yields S−1

gi
N = 0, i.e.:

B (S−1
gi

R)r×1 = (S−1
gi

R)l×1, i = 1, . . . , t.

Hence, there exists Egi
∈ (S−1

gi
R)r×l such that B Egi

= Il, i.e., Egi
is a right

inverse of B defined over the Zariski distinguished/basic open subset of kd×1 [7]

D(gi) := kd×1 \ Vk(〈gi〉), i = 1, . . . , t,

i.e., Egi
(ψ) is a right inverse of B(ψ) for all ψ ∈ D(gi), where Egi

(ψ) denotes the
value of the matrix Egi

evaluated at x := ψ. The matrix Egi
can be computed

by the LocalLeftInverse command of the OreModules package.
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Remark 9. Using (14), we get the split exact sequence of S−1
gi

R-modules [17]:

0 = S−1
gi

N (S−1
gi

R)l×1
S−1
gi

κ
��

Egi
.
�� (S−1

gi
R)r×1

B.
�� .

Thus, we have S−1
gi

imR(B.) = imS−1
gi

R(B.) ∼= (S−1
gi

R)l×1 for i = 1, . . . , t, i.e.,
S−1

gi
R-module S−1

gi
imR(B.) is free of rank l.

From the above results, rankk(B(ψ)) = l for all ψ ∈ kd×1\ ⋂t
i=1 Vk(〈gi〉).

Using (21), (2) has solutions in the complementary P of the Zariski closed subset
Vk(annR(N )) in kd×1. Hence, if P �= ∅ (e.g., annR(N ) �= 〈0〉 and k is algebraically
closed), then (2) generically has solutions in the sense of algebraic geometry, i.e.,
outside the Zariski closed subset Vk(annR(N )) of kd×1 [7,14]. Moreover, we have:

P = kd×1 \
t⋂

i=1

Vk(〈gi〉) =
t⋃

i=1

(
kd×1 \ Vk(〈gi〉)

)
=

t⋃

i=1

D(gi)

=
{
ψ ∈ kd×1 | ∃ i ∈ �1, . . . , t� : ψ /∈ Vk(〈gi〉)

}
.

Since P ∩ D(gi) = D(gi), D(gi) is also an open subset of P for the induced
Zariski topology [7,14]. Finally, P is an open subset of the irreducible affine set
kd×1 = Vk(〈0〉), i.e., which shows that P is a quasi-affine variety [9].

Theorem 2. Let R = k[x1, . . . , xd], x = (x1 . . . xd)T , Wi ∈ kl×d, i = 1, . . . , r,
be the matrices defined in Sect. 2, B = (W1 x . . . Wr x) ∈ Rl×r, the R-module
N = Rl×1/

(
B Rr×1

)
and its annihilator annR(N ) = 〈g1, . . . , gt〉. Then, we get:

P = D(annR(N )) := kd×1 \ Vk(annR(N )). (22)

Hence, Problem (2) has solutions in the complementary P of the closed algebraic
set Vk(annR(N )) in kd×1. Moreover, annR(N ) = 〈0〉 yields P = ∅ and the
converse holds if k is algebraically closed.

The quasi-affine variety P has a finite open cover defined by P =
⋃t

i=1 D(gi),
where D(gi) := kd×1\Vk(〈gi〉) is a basic open subset of kd×1 (of P). Finally, there
exist Egi

∈ (S−1
gi

R)r×l such that B Egi
= Il for i = 1, . . . , t, i.e., for each D(gi),

there exists a smooth right inverse Egi
of B, i.e., ψ ∈ D(gi) �−→ Egi

(ψ).

Using Theorem 2, B(ψ) admits a global right inverse E(ψ) over P, i.e.,
B(ψ)E(ψ) = Il for all ψ ∈ P, iff the ideal annR(N ) can be generated by a
single element g ∈ R, i.e., annR(N ) = 〈g〉, in which case annR(N ) is princi-
pal [7,17]. For instance, it is the case if we have l = r and g := det(B) �= 0
(see Example 2), or if d = 1, i.e., R = k[x1] is a principal ideal domain,
namely, every ideal of R (e.g., annR(N )) can be generated by a single ele-
ment g of R which can be obtained by Euclidean division [7,17]. Let us now
study the general case. Let annR(N ) = 〈g1, . . . , gt〉, g be a greatest common
divisor of all the gi’s and g′

i := gi/g ∈ R for i = 1, . . . , t. We then get
annR(N ) = 〈g〉〈g′

1, . . . , g
′
t〉, which shows that annR(N ) is principal iff so is
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〈g′
1, . . . , g

′
t〉, i.e., iff 〈g′

1, . . . , g
′
t〉 = R, i.e., iff there exist hi ∈ R for i = 1, . . . , t

such that
∑t

i=1 hi g′
i = 1. If k = C, using Hilbert’s Nullstellensatz [7,14], this

Bézout identity is equivalent to the fact that all the g′
i’s have no common zeros

in Cd×1, which can be checked by a Gröbner basis computation [7,9]. Now, using
Remark 8, 0 ∈ VC (annR(N )) = VC(〈g〉) ⋃

VC(〈g′
1, . . . , g

′
t〉), i.e., g(0) = 0 or

g′
i(0) = 0 for all i = 1, . . . , t. In particular, if g = 1, then annR(N ) is not a

principal ideal. Finally, if 〈g′
1, . . . , g

′
t〉 = R, i.e., annR(N ) = 〈g〉, then g(0) = 0.

The problem of finding the least number of generators μ(I) of an ideal I is a
well-known difficult problem in module theory (see, e.g., [14,15]). In our problem,
μ(annR(N )) is the least number of open sets D(gi)’s which defines a finite open
cover of P. Since annR(N ) is generated by homogeneous polynomials, it can be
proved that μ (annR(N )) = μ

(
annR(N )/annR(N )2

)
(see Ex. 12 of Chap. V.5 of

[14]), where annR(N )/annR(N )2 is the R/annR(N )-module conormal module.

Example 4. In Example 3, we proved that gi = xi for i = 1, 2, 3. Hence, if
D(xi) := k3×1 \ Vk(〈xi〉) = {ψ = (ψ1 ψ2 ψ3)T ∈ k3×1 | ψi �= 0} for i = 1, 2, 3,
then we have P =

⋃3
i=1 D(xi). Moreover, we can check that

∀ ψ ∈ D(x1) : Ex1(ψ) := c−1

(

0 0 − 1
79ψ1

)T

,

∀ ψ ∈ D(x2) : Ex2(ψ) := (5956 c)−1

(

− 77
ψ2

31
ψ2

0
)T

,

∀ ψ ∈ D(x3) : Ex3(ψ) := (2978 c)−1

(
29
ψ3

27
ψ3

0
)T

,

are local right inverses of B, i.e., B Eψi
= 1, on D(xi) for i = 1, 2, 3. They are

computed by the command LocalLeftInverse of the OreModules package
[5]. Since g := gcd(g1, g2, g3) = 1, as shown above, annR(N ) is not principal,
and thus, no global right inverse E of B exists over the whole space P. Using
annR(N ) = m0 = 〈x1, x2, x3〉, the R/m0

∼= k-module m0/m
2
0 is defined by the k-

linear combinations of the generators xi’s of m0/m
2
0, where xi denotes the residue

class of xi in m0/m
2
0, i.e., m0/m

2
0

∼= k3×1, which shows that t = μ(annR(N )) = 3
is the least number of distinguished open sets of k3×1 defining a cover of P.

4.2 Existence of a Local/Global Basis C of kerR(B.)

To study the local/global structure of the solution space (12) of (2), we now
investigate the existence of a local/global basis C(ψ) of ker(B(ψ).) over P.

As explained in Sect. 3, a matrix C ∈ Rr×s can be computed satisfying
kerR(B.) = imR(C.) (use, e.g., the SyzygyModule command of the Ore-

Modules package). By construction, we have the exact sequence of R-modules:

0 N�� Rl×1κ�� Rr×1B.�� Rs×1C.�� . (23)

Let Q(R) := k(x1, . . . , xd) be the field of fractions of R, i.e., the field of rational
functions in the xi’s with coefficients in k [7,17]. The rank of a finitely gener-
ated R-module L is rankR(L) := dimQ(R) (Q(R) ⊗R L). Since N is a torsion
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R-module, rankR(N ) = 0, the Euler-Poincaré characteristic applied to (14)
yields rankR(kerR(B.)) = r − l [7,17], which yields s ≥ r − l. The equality
holds, i.e., s = r − l, iff kerR(B.) is a free R-module, i.e., kerR(B.) ∼= Rr−l [17].

The problem of recognizing whether or not a module is free is an open
question in module theory [14,15,17]. It can be effectively solved for R =
k[x1, . . . , xd] due to the Quillen-Suslin theorem [14,15,17]. The Quillen-Suslin
theorem is implemented in the QuillenSuslin package [8]. Hence, we can effec-
tively test whether or not kerR(B.) is a free R-module and if so, compute a
basis of kerR(B.), namely, a full column rank matrix C ∈ Rr×(r−l) such that
kerR(B.) = imR(C.) [8]. We then have kerk(B(ψ).) = imk(C(ψ).) for all ψ ∈ P,
i.e., C is a global basis of kerR(B.) on P. In particular, C is a local basis on
D(gi) for all i = 1, . . . , t. Using Theorems 1 and 2, we finally obtain that

∀ ψ ∈ D(gi), ∀ Y ′ ∈ k(r−l)×m,

⎧
⎨

⎩

u = Z ψ,

v = (Egi
(ψ) C(ψ))

(
Y
Y ′

)

,
(24)

are solutions of (2) on D(gi). If t = 1, these solutions are globally defined on P.
If d = 1, then R = k[x1] is a principal ideal domain, which implies that

annR(N ) = 〈g1〉 and kerR(B.) is a free R-module of rank r − l [7,17]. Let us
show how to compute g1, Eg1 ∈ (S−1

g1
R)r×l and a basis of kerR(B.), i.e., a full

column rank matrix C ∈ Rr×(r−l) satisfying kerR(B.) = imR(C.). If we note
W := (W1 . . . Wr) ∈ kl×r, then we have B = W x1. Hence, if ψ1 �= 0, then we
get rankk(B(ψ1)) = rankk(W ), which yields P = ∅ if rankk(W ) < l, i.e., g1 = 0,
or P = k\{0} if rankk(W ) = l, i.e., g1 = x1. In the latter case, if F ∈ kr×l

is a right inverse of W , i.e., W F = Il, then Eg1 = x−1
1 F is a right inverse

of B. Moreover, let C ∈ kr×(r−l) be a matrix whose columns define a basis of
kerk(W.). Then, we have kerR(B.) = imR(C.) ∼= Rr−l. We note that E and C
can be computed by standard linear algebra methods.

Example 5. Let us consider the following matrices:

D1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎞

⎟
⎟
⎠ , D2 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞

⎟
⎟
⎠ , D3 =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0

⎞

⎟
⎟
⎠ ,

D4 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , M =

⎛

⎜
⎜
⎝

1 0 0 1
0 1 −1 0
0 1 1 0
1 0 0 1

⎞

⎟
⎟
⎠ .

We can easily check that l := rankk(M) = 3, r = 4 and:

X =

⎛

⎜
⎜
⎝

1 0 0
0 1 −1
0 1 1
1 0 0

⎞

⎟
⎟
⎠ , Y =

⎛

⎝
1 0 0 1
0 1 0 0
0 0 1 0

⎞

⎠ , L = (1 0 0 − 1), Z =

⎛

⎜
⎜
⎝

−1 0 0
0 0 1
0 1 0
1 0 0

⎞

⎟
⎟
⎠ ,
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W1 =

⎛
⎝−1 0 0

0 0 0
0 0 0

⎞
⎠ , W2 = −1

2

⎛
⎝ 0 0 0

0 1 −1
0 1 1

⎞
⎠ , W3 =

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ , W4 = −1

2

⎛
⎝ 0 0 0

0 −1 1
0 1 1

⎞
⎠ ,

R = k[x1, x2, x3], B =

⎛

⎜
⎜
⎜
⎝

−x1 0 x1 0

0 −1
2

(x2 − x3) 0
1
2

(x2 − x3)

0 −1
2

(x2 + x3) 0 −1
2

(x2 + x3)

⎞

⎟
⎟
⎟
⎠

.

If g1 := x1 (x2
2 − x2

3), then annR(N ) = 〈g1〉. Hence, t = 1 and P = k3\Vk(〈g1〉),
where Vk(〈g1〉) = {x1 = 0} ∪ {x2 − x3 = 0} ∪ {x2 + x3 = 0}. We can check
that the R-module kerR(B.) is free of rank 1, i.e., kerR(B.) ∼= R. Using [4,8], we
get kerR(B.) = imR(C.), where C = (1 0 1 0)T ∈ R4×1. Finally, using the
OreModules package, we obtain that the following matrix

Eg1 =
1
g1

⎛

⎜
⎜
⎝

0 0 0
0 −x1 (x2 + x3) −x1 (x2 − x3)

x2
2 − x2

3 0 0
0 x1 (x2 + x3) −x1 (x2 − x3)

⎞

⎟
⎟
⎠

is a right inverse of B, i.e., B Eg1 = I3. Hence, all the solutions of (2) with full
row rank matrices v can be expressed by a single closed-form given by (24) with
t = 1 and for all ψ ∈ P and for all Y ′ = (y′

1 y′
2 y′

3 y′
4) ∈ k1×4 such that:

det((Y T Y ′T )T ) = y′
4 − y′

1 �= 0.

Let us now suppose that the R-module kerR(B.) is not free. Let us study
the module structure of the S−1

gi
R-module kerS−1

gi
R(B.). Since S−1

gi
R is a flat

R-module, the functor S−1
gi

R ⊗R · is exact [7,14,17]. Hence, applying S−1
gi

R ⊗R ·
to (23) and using the fact that S−1

gi
R ⊗R N ∼= S−1

gi
N = 0, we get the following

split exact sequence of S−1
gi

R-modules [7,17]:

0 (S−1
gi

R)l×1�� (S−1
gi

R)r×1B.�� (S−1
gi

R)s×1C.�� .

See also Remark 9. Hence, we first obtain

kerS−1
gi

R(B.) = imS−1
gi

R(C.), (25)

and then (S−1
gi

R)r ∼= (S−1
gi

R)l ⊕ kerS−1
gi

R(B.), which shows that kerS−1
gi

R(B.) is
a stably free S−1

gi
R-module of rank r−l [17]. Thus, kerS−1

gi
R(B.) is not necessarily

a free S−1
gi

R-module. Recognizing whether or not a stably free S−1
gi

R-module is
free is an open question in module theory as well as the problem of computing
bases of free S−1

gi
R-modules. For more details, see, e.g., [14,15,17].
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If kerS−1
gi

R(B.) is a free S−1
gi

R-module of rank r − l, then there exists a full

column rank matrix Cgi
∈ (S−1

gi
R)r×(r−l) such that

kerS−1
gi

R(B.) = imS−1
gi

R(Cgi
.) ∼= (S−1

gi
R)(r−l), (26)

i.e., the r − l columns of the matrix Cgi
define a basis of the free S−1

gi
R-module

kerS−1
gi

R(B.). Hence, we obtain kerk(B(ψ).) = imk(Cgi
(ψ).) for all ψ ∈ D(gi).

Thus, Cgi
defines a basis of kerR(B.) on D(gi). Theorems 1 and 2 then imply

that the solutions of (2) defined on D(gi) are given by:

∀ ψ ∈ D(gi), ∀ Y ′ ∈ k(r−l)×m,

⎧
⎨

⎩

u = Z ψ,

v = (Egi
(ψ) Cgi

(ψ))
(

Y
Y ′

)

.
(27)

A stably free module of rank 1 over a commutative ring is free [15]. Hence,
(27) holds when r = rankk(M) + 1. See [8] for the computation of Cgi

.
If kerS−1

gi
R(B.) is not a free S−1

gi
R-module, then no full column rank matrix

Cgi
∈ (S−1

gi
R)r×(r−l) exists such that (26) holds, i.e., such that kerk(B(ψ).) =

Cgi
(ψ) k(r−l)×1 for all ψ ∈ D(gi). Hence, no basis of kerk(B(ψ).) exists on D(gi).

But, using (25), we have the following solutions of (2), where s > r − l:

∀ ψ ∈ D(gi), ∀ Y ′′ ∈ ks×m,

⎧
⎨

⎩

u = Z ψ,

v = (Egi
(ψ) C(ψ))

(
Y
Y ′′

)

.
(28)

Example 6. We consider again Examples 3 and 4. Using [8], we can check that
kerR(B.) is not a free R-module. Using the OreModules package, we get that

C :=

⎛

⎝
−58x2 − 77x3 −79x1 0
−54x2 + 31x3 0 −79x1

0 54x2 − 31x3 −58x2 − 77x3

⎞

⎠

is such that kerR(B.) = imR(C.), i.e., the 3 columns of C generate the R-module
kerR(B.) of rank r−l = 2. We get the solutions (28) of (2) on D(gi) for i = 1, 2, 3.

Finally, we study if the solutions of (2) can be written as (27). As explained,
the S−1

xi
R-module kerS−1

xi
R(B.) is stably free of rank 2. Using Corollary 4.10

of [15], i.e., a variant of the Quillen-Suslin theorem for the generalized Laurent
polynomial ring S−1

xi
R = R[x±1

i , xj ]1≤j �=i≤3, kerS−1
xi

R(B.) is a free S−1
xi

R-module
of rank 2. Using an implementation of this result in the QuillenSuslin package,
a basis of kerS−1

xi
R(B.) is defined by the columns of the matrix Cxi

defined by:

Cx1 =

⎛
⎝ −79 x1 0

0 −79 x1

54 x2 − 31 x3 −58 x2 − 77 x3

⎞
⎠ ,

Cx2 =

⎛
⎜⎜⎜⎝

− 29 x2

73680
− 77 x3

147360
−6083 x1

5956 x2

− 9 x2

24560
+

31 x3

147360

2449 x1

5956 x2

0 1

⎞
⎟⎟⎟⎠ , Cx3 =

⎛
⎜⎜⎜⎝

− 29 x2

73680
− 77 x3

147360

2291 x1

2978 x3

− 9 x2

24560
+

31 x3

147360

2133 x1

2978 x3

0 1

⎞
⎟⎟⎟⎠ .
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Hence, we have kerk(B(ψ).) = imk(Cxi
(ψ).) ∼= k2×1 for all ψ ∈ D(gi) and for

i = 1, 2, 3, and (27) are solutions of (2) defined on the D(gi)’s given in Example 4.

Finally, we emphasize that all the examples were computed with the Maple
packages OreModules [5] and QuillenSuslin [8]. For more details, see:

https://who.rocq.inria.fr/Alban.Quadrat/MapleConference.
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Abstract. In this paper, we study the problem of computing the L∞-
norm of finite-dimensional linear time-invariant systems. This problem
is first reduced to the computation of the maximal x-projection of the
real solutions (x, y) of a bivariate polynomial system Σ = {P, ∂P

∂y
}, with

P ∈ Z[x, y]. Then, we use standard computer algebra methods to solve
the problem. In this paper, we alternatively study a method based on
rational univariate representations, a method based on root separation,
and finally a method first based on the sign variation of the leading
coefficients of the signed subresultant sequence and then based on the
identification of an isolating interval for the maximal x-projection of the
real solutions of Σ.

Keywords: L∞-norm computation · Real roots · Symbolic
computation · Complexity computation · Implementation · Control
theory

1 Introduction

An important issue in robust control theory is the computation of the L∞-
norm of linear systems [11,18]. Contrary to the L2-norm, no tractable formula
is known for the characterization of the L∞-norm of finite-dimensional systems
(i.e., systems defined either by linear ordinary differential equations or by linear
recurrence relations) [11,18]. Hence, the standard methods for the L∞-norm
computation are numerical (e.g., bisection algorithms, eigenvalues computation
of Hamiltonian matrices) [5,7]. In their paper [13], Kano and Smith develop a
validated numerical algorithm for the L∞-norm computation. They reduce the
problem to the localization of the real solutions of a bivariate polynomial and
then use Sturm chain tests to guarantee the accuracy of their algorithm. In [8],
Chen, Mazza and Xie provide an equivalent study using the theory of border
polynomials, which makes the presentation of their solution simpler.

When numerical methods are used, it is worth mentioning that the result
is usually obtained within a short time but with a slight error up to a precise
accuracy. In contrast, when using symbolic methods, the result usually takes
c© Springer Nature Switzerland AG 2021
R. M. Corless et al. (Eds.): MC 2020, CCIS 1414, pp. 119–136, 2021.
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more time to be computed but is exact. In this paper, to compute the L∞-norm,
we try to develop the right balance between these two approaches.

In this paper, following the approach developed in [8,13], we shall study
three different certified symbolic-numeric algorithms for the computation of the
L∞-norm with the goal of minimizing the drawback of the symbolic part of the
computation. This symbolic part consists in computing an isolating interval of
the maximal projection of the real solutions of a system of bivariate polynomials.
We develop the complexity analysis of each algorithm. Finally, we compare the
theoretical complexities of the algorithms and then their performances using an
implementation in the computer algebra system Maple.

Given two coprime polynomials P and Q in Z[x, y] of degree bounded by d
and of coefficient bitsize bounded by τ , the solving of the system Σ = {P,Q} can
be studied using numerous methods. Typically, isolating boxes of the solutions
can be computed either directly from the input system using numerical meth-
ods (such as subdivision or homotopy methods) or indirectly by first computing
intermediate symbolic representations such as triangular sets, Gröbner bases, or
rational parameterizations [1,6].

Two methods used in the paper require putting the system in a generic
position, i.e., require to finding a separating linear form x + a y that defines a
shear of the coordinate system (x, y), i.e., (x, y) �−→ (t − a y, y), so that no
two distinct solutions of the sheared system Σa = {P (t − a y, y), Q(t − a y, y)}
are vertically aligned. This approach has long been used in the literature. For
instance, a separating linear form x + a y with a ∈ {0, . . . , 2 d4} can be computed
as shown in [3,4]. We can then use a Rational Univariate Representation (RUR)
for the polynomial system Σa followed by the computation of isolating boxes for
its real solutions. For more details, see [3]. We simply apply this approach (i.e.,
the so-called RUR method) to the polynomial system associated with the L∞-
norm computation problem and then choose the maximal x-projection of the
real solutions of the system. The complexity analysis shows that this algorithm
performs ÕB(dx d3y (d2x + dx dy + dy τ)) bit operations in the worst case, where

dx = max(degx(P ),degx(Q)), dy = max(degy(P ),degy(Q)), (1)

and τ is the maximal coefficient bitsize of the polynomials P and Q.
Alternatively, we can also localize the maximal x-projection of the real solu-

tions of the polynomial system Σ by simply applying a linear separating form
on the system Σ. The linear separating form t = x+ s y proposed in [9] preserve
the order of the solutions of the sheared system Σs = {P (t−s y, y), Q(t−s y, y)}
with respect to the x-projection of the real solutions of the original system Σ.
Thus, the projection of the solutions of Σs onto the new separating axis t can be
done so that we can simply choose the x-projection corresponding to the max-
imal t-projection of the real solutions of Σs. The drawback of this method lies
on the growth of the size of the coefficients of the sheared system for the linear
separating form t = x + s y due to the large size of s. The complexity analysis
shows that this algorithm performs ÕB(d4x d5y τ) bit operations in the worst case.

The third method developed in this paper localizes the maximal x-projection
of the system real solutions − denoted by x̄ − by first isolating the real roots
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of the univariate resultant polynomial Res(P, ∂P
∂y , y) and then verifying the

existence of a real root of the univariate polynomial P (x̄, y) ∈ R[y] as done in
[8]. A key point is that we can compute a Sturm-Habicht sequence [12] of P (x̄, y)
without any consequent overhead. As P (x, y) = 0 is bounded in the x-direction,
it is then possible to compute the number of real solutions of P (x̄, y) with a
good complexity in the worst case, which gives an efficient algorithm as soon
as the curve P (x, y) = 0 has no isolated real singular points. The complexity
analysis shows that this algorithm performs ÕB(d2x d4y (dx + τ)) bit operations in
the worst case and ÕB(d2x d4y τ) when the plane curve P (x, y) = 0 has no isolated
real singular points.

Finally, we conclude the paper by comparing the bit complexity of those three
algorithms and then the experimental time obtained by the implementation of
each of these algorithms in Maple.

2 Problem Description

Before stating the problem studied in this paper, we first introduce a few stan-
dard notations and definitions. If k is a field and P ∈ k[x, y], then Lcvar(P )
is the leading coefficient of P with respect to the variable var ∈ {x, y} and
degvar(P ) the degree of P in the variable var ∈ {x, y}. We also denote by
deg(P ) the total degree of P . Moreover, let πx : R2 −→ R be the projec-
tion map from the real plane R2 onto the x-axis, i.e., πx(x, y) = x for all
(x, y) ∈ R2. For P,Q ∈ k[x, y], let gcd(P,Q) be the greatest common divi-
sor of P and Q, I := 〈P,Q〉 the ideal of k[x, y] generated by P and Q, and
VK(I) := {(x, y) ∈ K2 | ∀ R ∈ I : R(x, y) = 0}, where K is a field containing k.
Finally, let C+ := {s ∈ C | Re(s) > 0} be the open right-half plane of C.

Definition 1 ([11,18]). Let RH∞ be the R-algebra of all the proper and stable
rational functions with real coefficients, namely:

RH∞ :=
{

n

d
| n, d ∈ R[s], gcd(n, d) = 1, degs(n) ≤ degs(d), VC(〈d〉) ∩ C+ = ∅

}
.

An element g of RH∞ is holomorphic and bounded on C+, i.e.,

‖ g ‖∞ := sup
s∈C+

|g(s)| < +∞,

RH∞ is a sub-algebra of the Hardy algebra H∞(C+) of bounded holomorphic
functions on C+. The maximum modulus principle of complex analysis yields:

‖ g ‖∞ = sup
ω∈R

|g(i ω)|.

Note that this equality shows that the function g|iR : i ω ∈ iR �−→ g(i ω) belongs
to the Lebesgue space L∞(iR) or, more precisely, to the following R-algebra

RL∞ :=

{
n(i ω)

d(i ω)
| n, d ∈ R[i ω], gcd(n, d) = 1, degω(n) ≤ degω(d), VR(〈d〉) = ∅},
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i.e., the algebra of real rational functions on the imaginary axis iR which are
proper and have no poles on iR, or simply, the algebra of real rational functions
with no poles on iP1(R), where P1(R) := R ∪ ∞.

We can extend the above L∞-norms defined on functions of RH∞ (resp.,
RL∞) to matrices as follows. Let G ∈ RHu×v

∞ (resp., G ∈ RLu×v
∞ , R(s)u×v),

i.e., G is a u × v matrix with entries in RH∞ (resp., RL∞, R(s)) and let σ̄ (·)
denote the largest singular value of a complex matrix. Then, we can define:

‖ G ‖∞ := sup
s∈C+

σ̄ (G(s))
(

resp., ‖ G ‖∞ := sup
ω∈R

σ̄ (G(i ω))
)

.

If G ∈ RHu×v
∞ , then, as above, we have ‖ G ‖∞ = supω∈R σ̄ (G(i ω)).

The paper aims at developing certified symbolic-numeric algorithms for the
computation of ‖ G ‖∞ for G ∈ R(s)u×v satisfying G|iR ∈ RLu×v

∞ . This problem
plays a fundamental role in H∞-control theory [11,18].

The conjugate G̃ of G ∈ R(s)u×v is defined by G̃(s) := GT (−s).
The next proposition gives a first characterization of ‖ G ‖∞.

Proposition 1 ([13]). Let γ > 0, G ∈ R(s)u×v be such that G|iR ∈ RLu×v
∞

and let us consider Φγ(s) = γ2 Iv − G̃(s)G(s). Then, γ >‖ G ‖∞ if and only if
γ > σ̄ (G(i∞)) and det(Φγ(i ω)) �= 0 for all ω ∈ R.

Let n(γ, ω) and d(ω) be two coprime polynomials over R[γ, ω] satisfying:

det(Φγ(i ω)) =
n(γ, ω)
d(ω)

. (2)

Note that det(Φγ(s)) is a real function in s2 and γ2, and thus, det(Φγ(i ω)) is a
real function in ω2 and γ2. A consequence of Proposition 1 is the next result.

Proposition 2. Let G ∈ RLu×v
∞ and n ∈ R[γ, ω] be defined by (2). We denote

by n̄ ∈ R[γ, ω] the square free part of n. Then, we have:

‖ G ‖∞= max
{

πγ

(
VR

(〈
n̄,

∂n̄

∂ω

〉))
∪ VR (〈Lcω(n̄)〉)

}
.

Example 1. If G ∈ RL∞ then, by definition, ‖ G ‖∞ is the supremum of the
continuous function ω ∈ P1(R) := R ∪ {∞} �−→ |G(i ω)|, and thus, we have
‖ G ‖∞= maxω∈P1(R) |G(i ω)|, i.e., ‖ G ‖∞= max {|G(i∞)|, γmax}, where:

γmax := max
ω∈R

|G(i ω)| = max
{
γ ∈ R | ∃ ω ∈ R : γ2 = |G(i ω)|2} .

We find again Proposition 2, i.e., γ >‖ G ‖∞ iff Φγ(i ω) = γ2 − |G(i ω)|2 �= 0
for all ω ∈ R and γ > |G(i∞)|. Using |G(i ω)|2 = G(−i ω)G(i ω) ∈ R(ω2), a
computation of ‖ G ‖∞ amounts to first computing the zeros of the numerator
of d|G(i ω)|2

dω , then evaluating |G(i ω)| on these zeros and finally choosing the
maximal occurring value, that to say γ̄, and (iii) ‖ G ‖∞= max{|G(i∞)|, γ̄}.
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More explicitly, if we write G as G(s) = a(s)/b(s), where a, b ∈ R[s],
gcd(a, b) = 1, q = degs(a) ≤ r = degs(b), and b does not vanish on iR, then
G(i∞) = 0 if q < r (i.e., G is strictly proper) or G(i∞) = ar/br if q = r
(i.e., G is proper), where ar = Lcs(a) and br = Lcs(b). Moreover, we have
|G(i ω)|2 = N(ω)/D(ω), where N(ω) = |a(i ω)|2 and D(ω) = |b(i ω)|2 ∈ R[ω2].
Since b(i ω) has not real roots, D(ω) �= 0 for all ω ∈ R. Hence, if we note
Z := {ω ∈ R | N ′(ω)D(ω) − N(ω)D′(ω) = 0}, then we obtain:

‖ G ‖∞= max{|G(i∞)|, γ̄}, γ̄ := max
ω∈Z

{
(N(ω)/D(ω))1/2

}
.

Note that if Z ∩ VR(〈D′(ω)〉) = VR(〈N ′(ω)D(ω),D′(ω)〉) = ∅, then we also have
γ̄ = maxω∈Z

{
(N ′(ω)/D′(ω))1/2

}
. For instance, if G(s) = (2 s + 1)/(s + 1),

then N(ω) = 4ω2 + 1, D(ω) = ω2 + 1, Z = {0},Z ∩ VR(〈D′(ω)〉) = {0},
γ̄ = (N(0)/D(0))1/2 = 1, |G(i∞)| = 2, and ‖ G ‖∞= max{2, γ̄} = 2.

Finally, according to Proposition 2, we have n(γ, ω) = D(ω) γ2 − N(ω) and
d(ω) = D(ω). Now, using gcd(N,D) = 1, n̄ = n, Lcω(n̄) = b2r γ2 if q < r or
Lcω(n̄) = (b2r γ2 − a2

r) if q = r, which yields:

VR (〈Lcω(n̄)〉) =

{
0, if q < r,

±ar

br
, if q = r,

and using the fact that D(ω) �= 0 for all ω ∈ R, we have

πγ

(
VR

(〈
n̄,

∂n̄

∂ω

〉))
= πγ

(
VR(〈D(ω) γ2 − N(ω),D′(ω) γ2 − N ′(ω)〉))

=
{

γ ∈ R | γ2 =
N(ω)
D(ω)

, ω ∈ Z
}

,

and thus, ‖ G ‖∞ = max{γ̄, 0} = γ̄ if q < r and ‖ G ‖∞= max{γ̄, ar/br} if
q = r.

Corollary 1. Let G ∈ RLu×v
∞ and n ∈ R[γ, ω] be the numerator of det(γ2 Iv −

G̃(i ω)G(i ω)) defined by (2). Then, the real γ-projection πγ(VR(〈n〉)) of VR(〈n〉)
is bounded by ‖ G ‖∞.

According to Proposition 2, given G ∈ RLu×v
∞ , the problem of computing

‖ G ‖∞ can be reduced to the computation of the maximal γ-projection of the
real solutions of the following bivariate polynomial system:

Σ :=
{

n̄(γ, ω),
∂n̄(γ, ω)

∂ω

}
. (3)

For studying this problem, we propose three different symbolic-numeric meth-
ods − Rational Univariate Representation method, Roots Separation Method and
Sturm-Habicht method − and compare them. Without loss of generality, we shall
suppose that n is squarefree in Z[γ, ω].
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3 Rational Univariate Representation Method

In this section, we briefly state a straightforward algorithm which computes the
maximal γ-projection of the real solutions of (3) based on a Rational Univariate
Representation Method [3,4,15,16]. This algorithm consists in first computing a
rational parametrization (RUR) of the solutions of (3), then isolating the roots
of a univariate polynomial p defining the associated field extension, using the
intervals obtained to compute isolating boxes for the real solutions of (3) and
finally selecting the real solution of (3) with the maximal γ-projection.

If P, Q ∈ Q[x, y] are two coprime polynomials, then the computation of the
RUR of VK(〈P, Q〉), K = R, C, consists in finding s ∈ N such that x + s y
separates the K-zeros of {P, Q} and four polynomials p, q, p0, q0 ∈ Q[T ] which
define a 1-1 correspondence between VK(〈Σ〉) and VK(〈p〉), i.e., the following
bijection:

VK(〈P, Q〉) −→ VK(〈p〉)
(x, y) �−→ ξ = x + s y,(

p0(ξ)
q(ξ)

,
p1(ξ)
q(ξ)

)
←−� ξ

Roughly speaking, using the RUR of VK(〈P, Q〉), we can transform the study of
problems on VK(〈P, Q〉) into corresponding problems on VK(〈p〉) [3,15].

For the L∞-norm computation, the polynomials of Σ ⊂ Z[γ, ω], defined by
(3), are coprime. Hence, to compute ‖ G ‖∞, we first use the RUR method to
obtain isolating boxes for the real solutions (γ, ω) of Σ, choose the maximal
γ-projection γ1, then compute an isolation box γ2 for the maximal real root of
the univariate polynomial Lcω(n), and finally compute ‖ G ‖∞ = max{γ1, γ2}.

Algorithm 1. RUR method
Input: A zero dimensional polynomial system {n, ∂n

∂ω
} ⊂ Z[γ, ω].

Output: An isolating interval of max
{
πγ

(
VR

(
n, ∂n

∂ω

)) ∪ VR (Lcω(n))
}
.

1. Apply the RUR function (Isolate) for solving the polynomial system {n, ∂n
∂ω

}.
2. Let γ1 be the maximal γ-projection of the system’s real solutions.
3. Let γ2 be the maximal real root of Lcω(n).
4. Return the isolating interval of max{γ1, γ2}.

Remark 1. In step 1 of Algorithm 1, we obtain isolating boxes [ai, bi] × [ci, di]
of the system’s real solutions (γi, ωi). To compare the real values in step 2 and
then in step 4, we can apply a straightforward strategy consisting in computing
the resultant polynomial Rγ = Res(n, ∂n

∂ω , ω) and then refining the boxes until
each interval [ai, bi] is included in an isolating interval of Rγ . Even with this
naive approach, the asymptotic complexity of these operations does not exceed
the algorithm’s overall worst case bit complexity.
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In what follows, OB denotes the bit complexity and ÕB means that logarith-
mic factors have been omitted. Given two coprime polynomials P, Q ∈ Z[x, y]
of degree bounded by d and coefficient bitsize bounded by τ , an algorithm for
computing linear separating forms, RUR representations and isolating boxes of
the solutions can be obtained in the worst case bit complexity ÕB(d6 +d5 τ) [3].

Let us compute the complexity of Algorithm 1. We first need the next result.

Lemma 1. Let G ∈ RLu×v
∞ , Φγ(i ω) = γ2 Iv − G̃(i ω)G(i ω), n ∈ R[γ, ω] be

defined by (2), dγ = degγ(n), dω = degω(n), and τn the coefficient bitsize of n.
Moreover, let α = max{u, v}, N = max1≤i≤u,1≤j≤v{degω(Qi,j)}, where Gjk =
Pjk

Qjk
denotes the (j, k)th entry of G and Pjk, Qjk ∈ R[i ω] are coprime, and τG

the maximal coefficient bitsize of {Pjk, Qjk}1≤j≤u,1≤k≤v. Then, we have:

dγ = O(α), dω = O(N α2), τn = Õ(τG α2).

Proof. Let Gjk = Pjk/Qjk be the (j, k)th entry of G, where Pjk, Qjk ∈ R[i ω]
are coprime. Since G ∈ RLu×v

∞ , Gjk is a proper rational function, and thus,
degω(Pjk) ≤ degω(Qjk) ≤ N , which shows that the degrees in ω of the numer-
ators and the denominator of the entries of Φγ(i ω) are bounded by 2N α, and
thus, dω is bounded by 2N α2. Similarly, the maximal coefficient bitsize of the
entries of Φγ(i ω) is 2 τn α, which yields τn is bounded by 2 τG α2. Finally, dγ is
clearly bounded by 2α.

Theorem 1. With the above notations, the complexity of Algorithm 1 for the
computation of ‖ G ‖∞, where G ∈ RLu×v

∞ , is given by:

ÕB(dγ d3ω (d2γ + dγ dω + dω τn)) = ÕB(α9 N4 (α + τn)).

Proof. According to [3], using the RUR method, the complexity of the resolution
of a zero dimensional bivariate polynomial system comes first from the compu-
tation of the triangular decomposition of the system after shearing − using a
separating linear form γ + s ω − then from the root isolation of the univariate
polynomial defining the associated field extension, and finally from the compu-
tation of the isolating boxes for the solutions.

In the present case, the degrees in ω and γ are not of the same order. Hence,
the results of [3] must be adapted.

First, we determine the size and the degree of the sheared system up to the
method used in [3]: the degree with respect to the variable ω is Õ(dγ + dω)
and dγ with respect to the variable t = γ + s ω. The size of the sheared system
is Õ(τn + dγ). From [14], the complexity of the computation of a triangular
decomposition of a system over Z[x, y] costs ÕB(d3x d3y + (d2x d3y + dx d4y) τ̃),
where dx and dy are defined by (1) and τ̃ is its maximal coefficient bitsize.
Thus, using Lemma 1, we obtain that the complexity of the computation of the
triangular decomposition of the sheared system in Z[t, ω] is given by:

ÕB(d3γ (dγ + dω)3 + (d2γ (dγ + dω)3 + dγ (dγ + dω)4) (τn + dγ))

= ÕB(dγ d3ω (d2γ + dγ dω + dω τn)).
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Moreover, by Lemma 1, we obtain ÕB(α9 N4 (α + τn)). This triangular
decomposition yields (RUR) polynomials of degree that sum up to Õ((dγ +
dω) dγ) = Õ(α3N) with coefficients of bitsize Õ((dγ + dω)(dγ + τn)) =
Õ(α2N(α + τn)).

Finally, according to [3], it is known that the computation of isolating boxes
of all the roots of the system can be done in ÕB((α3 N)3 + (α3 N)2(α2 N (α +
τn))) = ÕB(α8 N3 (α + τn)) bit operations.

4 Roots Separation Method

In this section, we localize the maximal γ-projection of the real solutions of
the polynomial system Σ by only shearing the system Σ using a special linear
separating form [9]. With this linear separating form t = γ + s ω, we obtain:

t1 = γ1 + s ω1 < t2 = γ2 + s ω2 =⇒ γ1 ≤ γ2.

Let P, Q ∈ Z[x, y] be coprime and Rx = Res(P,Q, y) ∈ Z[x] be their resul-
tant. Moreover, let x1 ≤ . . . ≤ xm be the real roots of Rx with isolating intervals
[c1, d1], . . . , [cm, dm]. Moreover, let the real numbers δ,M and s be defined by:

δ <
1
2

min
i=1,...,m−1

(xi+1 − xi), M > max{y | (x, y) ∈ VR(〈P,Q〉)}, 0 < s <
δ

M
.

(4)
We can use the general root bounds for zero dimensional systems to estimate
δ and M . In fact, M is the measure of the univariate polynomial Res(P,Q, x).
Note that the resultant computation can be avoided by using the concept of
sleeve functions studied in [10] and [9, Lemma 3.3].

Let us consider an invertible linear map (a shear) of R2 to R2 defined by
Ψs : (x, y) �−→ (t, y) = (x + s y, y). Let us also note Ψs(P ) = P (t − s y, y),
Ψs(Q) = Q(t − s y, y), Rt = Res(Ψs(P ), Ψs(Q), y) and let t1 ≤ . . . ≤ tm′ = tmax

be the real roots of Rt.
To get a 1-1 correspondence between the zeros of {P,Q} and the roots of

Rt, Lcy(Ψs(P )) and Lcy(Ψs(Q)) must not both vanish. It is always possible to
choose s such that this condition is satisfied. In what follows, we shall consider
this case. For more details for the computation of s up to this condition, see [9].

Remark 2. In Fig. 1, we only draw a part of the plot. In fact, since n ∈
Z[γ2, ω2], Σ = 0 is symmetric with respect to the γ and ω axes.

Proposition 3. With the above notations, let xm be a real root of Rx with
an isolating interval [cm, dm] and tmax the maximal real root of Rt. If tmax ∈
[cm − δ, dm + δ], then the maximal x-projection of VR(〈P,Q〉) is equal to xm.

Proof. For each real root xi of Rx with an isolating interval [ci, di], let us denote
by Pi,j = (xi, yi,j) the real solutions of {P,Q} which project onto xi. Then,
Ψs(Pi,j) = (xi + s yi,j , yi,j), where xi + s yi,j is the first coordinate of a real
solution of {Ψs(P ), Ψs(Q)}. Using (4), we obtain that different Ψs(Pi,j) have
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Fig. 1. The blue dots represent the real solutions of Σ = 0 and the blue crosses are the
complex ones; the red dots are the solutions of Ψs(Σ) = {Ψs(n), Ψs(

∂n
∂ω

)}; the orange
dots on the γ-axis are the roots of univariate polynomial Rt. (Color figure online)

different first coordinates, and thus, {Ψs(P, Ψs(Q)} is in a generic position.
Furthermore, we have |xi + s yi,j − xi| = |s yi,j | < ( δ

M )M = δ. Consequently
Ψs(Pi,j) ∈ Ii = [xi − δ, xi + δ] × [−M,M ]. In addition, since δ < 1

2 (xi+1 − xi),
Ii are disjoint for different i. Hence, a real solution (x, y) of {P, Q} is mapped
to (η, y), where η ∈ [x − δ, x + δ]. Now, since xi ∈ [ci, di], the real roots of Rt

associated with xi are in the interval [ci − δ, di + δ].

Algorithm 2. Roots Separation method
Input: A zero dimensional system {P, Q} ⊂ Z[x, y], where Q = ∂P

∂y
.

Output: An isolating interval of max {πx (VR (〈P, Q〉)) ∪ VR (〈Lcy(P )〉)}
1. Isolate Rx = Res(P, Q, y) up to an accuracy ε and let RI := {[c1, d1], . . . , [cm, dm]}

be the isolating intervals of the real roots {x1, . . . , xm} of Rx.
2. Compute M and D = 1

2
mini=1,...,m−1 |ci+1 − di|:

– if D > 2 ε, let ε1 = ε, δ = D − ε1 and compute s up to the required conditions.
– elif D ≤ 2 ε, let ε1 = D/2, δ = D − ε1 and compute s up to the required

conditions ;
3. Expand {Ψs(P ), Ψs(Q)} and compute Rt = Res(Ψs(P ), Ψs(Q), y).
4. Isolate Rt up to an accuracy less than ε1 and set [pt, qt] to be the isolating interval

of its maximal real root tmax.
5. for j from 1 to m do:

– if [pt, qt] ⊂ [cj − D, dj + D], then X1 = xj .
6. Let X2 be the maximal real root of Lcy(P ).
7. Return the isolating interval of max{X1, X2}.
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Lemma 2. Let P ∈ Z[x, y], dx = degx(P ), dy = degy(P ) and τ be the
maximal coefficient bitsize of P . The sheared polynomial P (t − s y, y) satisfies
degy(P (t− s y, y)) = dx +dy, degt(P (t− s y, y)) = dx, and it can be expanded in
ÕB(dx d2y (τ +dx (1+ τs)). The maximal bitsize of the coefficients of P (t−s y, y)
is equal to Õ(τ + dx (1 + τs)), where τs denotes the bitsize of s.

Proof. The proof is a direct consequence of the proof of [4, Lemma 7] by taking
into account the bitsize τs of s.

Theorem 2. We consider a zero dimensional system {P,Q} ⊂ Z[x, y], where
dx = max(degx(P ), degx(Q)), dy = max(degy(P ),degy(Q)) and τ the maxi-
mal coefficients bitsize of the polynomials. We can compute an isolating interval
for the maximal x-projection of the real solutions of {P,Q} in ÕB(d4x d5y τ) bit
operations, using Algorithm 2.

Proof. For each root tj of Rt defined in Algorithm 2 with an isolating interval
[pj , qj ], there exists a unique i ∈ {1, . . . , m} such that [pj , qj ] ⊂ [ci − D, di + D]:
we know that there exists a unique [ci, di] such that tj ∈ [ci − δ, di + δ]. From
step 4, qj − pj < ε1 and D = δ + ε1. Hence, qj < tj + ε1 < di + δ + ε1 <
di + D. And similarly pj > ci − D. Consequently, based on Proposition 3,
Algorithm 2 outputs an isolating interval for the maximal x-projection of the real
solutions of {P,Q}. As for the complexity, step 1 has worst-case bit complexity
ÕB(dx d3y τ) based on [2, Proposition 8.46]. Step 2 is of worst case bit complexity
ÕB(d3 + d2 τ̃), where d = deg(Rx) and the coefficient size of Rx is equal to τ̃
[3, Lemma 54]. From [2, Proposition 8.46], d = O(dx dy) and τ̃ = Õ(dy τ).
Consequently, step 2 is of worst case bit complexity ÕB(d2x d3y (dx +τ). In steps 3

and 4, we get δ = 2−Õ(dx d2
y τ) and M = 2O(dx τ) [3]. The bitsize of s is then

equal to Õ(dx d2y τ). Consequently, the coefficient bitsize of the sheared system is
Õ(d2x d2y τ), and the worst case bit complexity of step 5 is Õ(d3x d2y (dx + dy)3 τ),
as computed in Lemma 2. In step 6, we isolate the resultant of the sheared
system. Considering the size and degree of the sheared polynomials computed
using Lemma 2, the size and degree of the resultant of the sheared system are
Õ(d2x d3y τ) and Õ(dx (dx+dy)) respectively. Then, knowing the complexity of the
isolation mentioned in [3], we can say that the worst case bit complexity in this
line is equal to ÕB((dx dy)3 + (dx d2y)2 (d2x d3y τ)) = ÕB(d4x d5y τ). Finally, in the
step 7, we simply compare two rational numbers. The maximal coefficients bitsize
of these rationals is in Õ(d3x d3y (dx + dy) τ) and the computation in this step is
done in Õ(d3x d3y (dx + dy) τ) bit operations. Hence, the overall bit complexity is
given by ÕB(d4x d5y τ).

Corollary 2. With the notations of Lemma 1, the worst case bit complexity for
the computation of ‖ G ‖∞ with the separation method (Algorithm 2) is given by
ÕB(α14 N5 τn).

From this section, we can conclude that trying to concentrate only on the
solution with the maximal γ-projection, after putting the system in a generic
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position, costs much more than computing isolating boxes for all the real solu-
tions, due to the large size of the separating bound that we must use. Hence, in
the next section, using another strategy than shearing the system, we shall try
to find the maximal γ-projection of the polynomial solutions without computing
isolating boxes for all the real solutions.

5 Sturm-Habicht Method

In this section, as in Sect. 4, we shall concentrate only on the maximal γ-
projection γ̄ of the real solutions of the polynomial system. But instead of
shearing the system, we shall verify the existence of a real root of the poly-
nomial system over γ̄ by studying the sign variation of the leading coefficients
of subresulant polynomials over γ̄. Hence, before explaining the third proposed
method, we first state again a few standard preliminaries on subresultants and
Sturm-Habicht sequences.

We denote by K the unique factorization domain Q[x] and we consider
P, Q ∈ K [y], where p = degy(P ) and q = degy(Q). We assume that p ≥ q. For
0 ≤ i ≤ min(q, p − 1), the ith subresultant polynomial of P and Q is denoted by
Sresy,i(P, p,Q, q). When there is no ambiguity on the degrees of the polynomials
P and Q, we simply denote it by Sresy,i(P,Q). It has degree at most i in y
and the coefficient of yi is denoted by sresy,i(P,Q). It is called the ith principal
subresultant coefficient. We recall that sresy,i(P,Q) = 0 implies that Sresy,i(P,Q)
vanishes identically. Note that Sresy,0(P,Q) = sresy,0(P,Q) is the resultant of
P and Q with respect to y, also denoted by Res(P,Q, y). The greatest common
divisor gcd(P,Q) of the polynomials P and Q (uniquely defined up to units of
K ) is the first non-zero subresultant polynomial Sresy,i(P,Q) for increasing i.

Letting v = p + q − 1 and δk = (−1)
k(k+1)

2 for k ∈ Z≥0, the jth polynomial
in the Sturm-Habicht sequence associated to (P, Q), denoted by StHaj(P,Q), is
then defined by δv−j Sresy,j(P, v +1, P

′
Q, v), where P

′
denotes the derivative of

P with respect to y. The principal jth Sturm-Habicht coefficient is denoted by
sthaj(P,Q) for j = 0, . . . , v + 1. We also denote by SignVar the function which
maps {sign(sthaj(P, 1))}j=0,...,v+1 to the number of real roots of P . For more
details on the function SignVar, see [12, Definition 4.1, Theorem 4.1].

As stated above, we aim at computing:

γ̄ = max
{

πγ

(
VR

(〈
n̄,

∂n̄

∂ω

〉))
∪ VR (〈Lcω(n̄)〉)

}
.

Hence, γ̄ is either the maximal real root of Lcω(n) or an algebraic value
over which gcd(n(γ̄, ω), ∂n

∂ω (γ̄, ω)) ∈ R[ω] has at least one real root. We recall
that gcd(n(γ̄, ω), ∂n

∂ω (γ̄, ω)) is proportional to the first subresultant polynomial
Sresω,i(n, ∂n

∂ω ) (for i increasing) that does not identically vanish for γ = γ̄. If γ̄
is not a real root of Lcω(n), then we can compute the Sturm-Habicht sequence
of the univariate polynomial n(γ̄, ω) ∈ R[ω] to check the existence of a real root
for gcd(n(γ̄, ω), ∂n

∂ω (γ̄, ω)). In what follows, we shall need the next result.



130 Y. Bouzidi et al.

Lemma 3. Let P ∈ Z[x, y] and x̄ be a root of Res(P, ∂P
∂y , y). Moreover, let

G = gcd
(
P (x̄, y), ∂P

∂y (x̄, y)
)

∈ R[y]. If the x-projection of the points of P is
bounded by x̄, then we have VR(〈P (x̄, y)〉) = VR(〈G(x̄, y)〉).
Proof. If VR(〈G(x̄, y)〉) � VR(〈P (x̄, y)〉), then there exists y0 ∈ R such that
P (x̄, y0) = 0 and G(x̄, y0) �= 0. This is equivalent to saying that P (x̄, y0) = 0 and
∂P
∂y (x̄, y0) �= 0. Hence, based on the theorem of implicit functions, there exists a
real function ϕ of class Cp (p > 0), defined on an open interval V ⊂ R, contain-
ing x̄, and an open neighborhood Ω of (x̄, y0) in R2 such that for all (x, y) in
R2, {(x, y) ∈ Ω | P (x, y) = 0} is equivalent to {x ∈ V | y = ϕ(x)}. This cannot
be true since the x-projection of the points of the curve P = 0 is bounded by x̄,
and thus, an open interval containing x̄, such as V , does not exist. Consequently,
we obtain VR(〈P (x̄, y)〉) = VR(〈G(x̄, y)〉).

Algorithm 3. Sturm-Habicht method

Input: A bivariate polynomial P ∈ Z[x, y] such that P = 0 is bounded in the x-
direction.
Output: Isolating interval of max

{
πx

(
VR

(〈
P, ∂P

∂y

〉))
∪ VR (〈Lcy(P )〉)

}
.

1. Compute {Sresj(P, ∂P
∂y

)}j=0,...,degy(P ).
2. Compute x1 < . . . < xm the real roots of sres0.
3. for i from 1 to m do:

– if x1−i+m ∈ VR(〈Lcy(P )〉) then return the isolating interval of x1−i+m;
– elif SignVar({sign(sthady (x1−i+m)), . . . , sign(stha1(x1−i+m))}) > 0, then

return the isolating interval of x1−i+m.
4. end if end do.

Lemma 4. Let P ∈ Z[x, y], dx = degx(P ), dy = degy(P ) and τ be the maximal
coefficients bitsize of P . Let {StHaj(P (x, y), 1)}j=0,...,dy

be the Sturm-Habicht

sequence and xj a real root of sresy,0

(
P, ∂P

∂y

)
. Then, {sign(sthak(xj))}k=dy,...,1

can be computed in ÕB(d2x d4y (dx + τ)) bit operations.

Proof. We denote by sres0 (resp., sresi) sresy,0

(
P, ∂P

∂y

)
(resp., sresy,i

(
P, ∂P

∂y

)
),

where sresi ∈ Z[x]. We first recall that sthai(xj) = δdy−1−i sresi(xj). Based on
[2, Proposition 8.46], sresi is of degree dx dy and of coefficients bitsize dy τ .
Thus, the square free part of sres0 is of coefficients bitsize O(dy (dx + τ))
and, based on [4, Lemma 5], can be computed in ÕB(d2x d3y τ). By follow-
ing the proof of [17, Proposition 6], the overall cost for obtaining the list
{sign(sthady

(xj)), . . . , sign(stha1(xj))} is ÕB(d2x d4y (dx + τ)).
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Theorem 3. Let P ∈ Z[x, y] be such that dx = degx(P ), dy = degy(P ) and
of maximal coefficients bitsize τ . Then, we can compute an isolating interval
of the maximal x-projection of the real solutions of {P, ∂P

∂y } (Algorithm 3) in
ÕB(d2x d4y (dx + τ)) bit operations in the worst case.

Proof. The maximal x-projection of the real solutions of {P, ∂P
∂y } is the maximal

real root of sres0
(
P, ∂P

∂y

)
, say xm, such that gcd

(
P (xm, y), ∂P

∂y (xm, y)
)

has at
least one real root. If the x-projection of the points of P is bounded by xm, then,
by Lemma 3, the real roots of gcd

(
P (xm, y), ∂P

∂y (xm, y)
)

are the real roots of
P (xm, y). Consequently, we can compute an isolating interval of xm using Algo-
rithm 3. According to [2, Proposition 8.46], we can compute the set of principal
subresultants in Õ(dx d3y τ) bit operations and each subresultant polynomial is
of degree O(dx dy) and of coefficient bit size Õ(dy τ). Thus, step 2, which per-
forms real root isolation of sres0, is of complexity Õ((dx, dy)3 +(dx dy)2 dy τ) [3,
Lemma 54]. Using Lemma 4, step 3 can be done in ÕB(d2x d4y (dx +τ)) operations
since its first step is of complexity ÕB(d3x + d2x τ). Hence, the overall complexity
of this algorithm is ÕB(d2x d4y (dx + τ)).

Considering the notations of Lemma 1, the following result is an immediate
consequence of Corollary 1 and Theorem 3.

Corollary 3. Based on Theorem 3, ‖ G ‖∞ can be computed by Sturm-Habicht
method in the worst case bit complexity ÕB(α10 N4 (α + τn)).

In Algorithm 4, we suppose that there are no real isolated points, and thus,
we replace the computation of signs of polynomials at real algebraic numbers by
signs of polynomials at rational numbers. Syntactically, these are small modifi-
cations but the effect on the computations is consequent in practice, as well as
in theory, since the evaluation of signs of polynomials at real algebraic numbers
carries the theoretical worst case complexity of Algorithm 3.

Theorem 4. Let P ∈ Z[x, y] be a bivariate polynomial of maximal coefficient
bitsize τ and let dx = degx(P ) and dy = degy(P ). Moreover, let us suppose that
VR(〈P 〉) has no isolated singular points. Using Algorithm 4, an isolating interval
of the maximal x-projection of the real solutions of {P, ∂P

∂y } can be computed in
the worst case bit complexity ÕB(d2x d4y τ).

Proof. As mentioned in the proof of Theorem 3, we can compute the set of
principal subresultants in Õ(dx d3y τ) bit operations and each subresultant poly-
nomial is of degree O(dx dy) and of coefficient bitsize Õ(dy τ) according to
[2, Proposition 8.46]. Thus, step 2 of Algorithm 4, which performs the real
root isolation of sres0, is of complexity Õ((dx dy)3 + (dx dy)2 dy τ) [3, Lemma
54]. Steps 3 and 4 are of same bit complexity: in these steps, we perform
O(dy) evaluations of the principal subresultant polynomials over a rational
number which is between two real roots of sres0. This rational number is of
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Algorithm 4. Sturm-Habicht method - equidimensional

Input: A bivariate polynomial P ∈ Z[x, y] such that the curve P = 0 is bounded in
the x-direction and has not real isolated singular points.

Output: An isolating interval of max
{

πx

(
VR

(
P, ∂P

∂y

))
∪ VR (Lcy(P ))

}

1. Compute {StHaj(P, 1)}j=0,...,degy(P ).
2. Let x1 < . . . < xm be the roots of sres0.
3. for i from 1 to m do:

– if x1−i+m ∈ VR(Lcy), then return the isolating interval of x1−i+m;
– else let X ′ ∈ Q such that xm−i < X ′ < x1−i+m;

• if SignVar({sign(sthady (X ′)), . . . , sign(stha1(X
′))}) > 0, then return

the isolating interval of x1−i+m;
• end if.

– end if.
4. end do.

worst possible coefficient bitsize ÕB(dx d2y τ), which is equal to the separat-
ing bound of sres0. According to [4, Lemma 6], the dy evaluations are done
in ÕB(dy (dx dy (dy τ + dx d2y τ))) = ÕB(d2x d4y τ). Hence, the overall cost is given
by ÕB(d2x d4y τ).

Corollary 4. Based on Theorem 4, ‖ G ‖∞ can be computed by the Sturm-
Habicht method (Algorithm 4) in the worst case bit complexity ÕB(α10 N4 τn).

From the above complexity analysis, we can conclude that RUR method and
the Sturm-Habicht method have comparable theoretical complexities since, in
our case, we have α � N .

6 Experiments

6.1 Practical Example

We consider the following transfer matrix:

G =

⎛
⎜⎝

1
s + 1

1
s + 1

0
1

s + 1

⎞
⎟⎠ ∈ RH2×2

∞ .

Let Φγ(s) = γ2 I2 − G̃(s)G(s) and det(Φγ(i ω)) =
n(γ, ω)
d(ω)

. We study the real

solutions of the polynomial system Σ = {n̄, ∂n̄
∂ω }, where:

n̄(γ, ω) = γ4 ω4 + γ2 (2 γ2 − 3)ω2 + (γ2 + γ − 1)(γ2 − γ − 1).
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Fig. 2. Plot of n(γ, ω) = 0, where ω/γ is in the horizontal/vertical axis.

We first compute VR(Lcω(n̄)) = {0}. Then, applying the RUR method, we
obtain the following rational univariate representation:

⎧
⎪⎪⎨
⎪⎪⎩

p = (t2 + t − 1)(t2 − t − 1),

γ =
3 t2 − 2

t (2 t2 − 3)
,

ω = 0.

Thus, the system’s real solutions (γ, ω) are:
(

−
√

5
2

− 1
2
, 0

)
,

(
−

√
5

2
+

1
2
, 0

)
,

(√
5

2
− 1

2
, 0

)
,

(√
5

2
+

1
2
, 0

)
.

Thus, we simply pick their maximal γ-projection to obtain
√
5
2 + 1

2 , which yields:

‖ G ‖∞= max
{

0,

√
5

2
+

1
2

}
=

√
5

2
+

1
2
.

Following the second approach, which consists in directly focusing on
the maximal γ-projection of the system’s real solutions, we first compute
Res(n̄, ∂n̄

∂ω , ω) and denote by R = γ (γ2 + γ − 1) (γ2 − γ − 1) ∈ Z[γ] its square
free part. Then, the maximal real root of R has the following isolating interval:

[a, b] =
[
56929509912547
35184372088832

,
113859019825121
70368744177664

]
.

Following the Root Separation method, we obtain:
⎧
⎪⎨
⎪⎩

s =
12060328540887
281474976710656

,

δ =
43490275647441
140737488355328

.
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We have Rt = Res(Ψs(n̄), Ψs( ∂n̄
∂ω ), ω) = α (t2 + t − 1)(t2 − t − 1), where α is a

rational of size about 3000 bits. We denote by tmax the maximal real root of Rt.
An isolating interval of tmax is then given by:

[c, d] =
[
113859019825095
70368744177664

,
56929509912561
35184372088832

]
.

In this case, [c, d] ⊂ [a − δ, b + δ], which shows that ‖ G ‖∞ is equal to the
maximal real root of R of isolating interval [a, b].

Following the Sturm-Habicht method, we have to check the existence of a
real root for the univariate polynomial n̄([a, b], ω). To do that, we first compute
L = [sresω,i(n̄, ∂n̄

∂ω )]i=1,...,degω(n)=4 = [5 γ14 (2 γ2 − 3), 2 γ10 (2 γ2 − 3), 4 γ4, γ4].
We then compute the list of signs of the elements of L over [a, b]. We obtain the
list Ls = [−,−,+,+]. Then, SignVar(Ls) = 1 and we conclude that n̄([a, b], ω)
admits one real root. Hence, ‖ G ‖∞ is equal to the maximal real root of R of
isolating interval [a, b].

6.2 Experiments

The three proposed methods can be implemented in a few lines of Maple but we
then have to use implementations at different levels that do not give valuable
information about the intrinsic efficiency. For instance, the RUR is implemented
in C but for general zero dimensional polynomial systems: a variant for bivariate
polynomials, the one used for the complexity analysis, is not part of Maple and
is much more efficient for bivariate systems.

In order to have fair comparisons, we extract the dominating operations and
compare them using exactly the same implementations. Namely, resultant com-
putations of sheared/non sheared systems and Root Isolation carry the largest
percentage of the computation time. For instance, Algorithm 4 saves time on the
resultant computation since it does not perform any shear while it loses time on
the root isolation.

For the three methods, the principle subresultant sequence is computed using
the routine SubResultantChain of the Maple package RegularChain.

Isolating the real roots of univariate polynomials is another common basic
block shared between the three algorithms for which we use Isolate provided
by the Maple routine package RootFinding.

In left table of Table 1, we list the main steps of the three algorithms. The
check marks mean that the step makes part of the method and the double check
marks indicate that this step is the bottleneck of the method. Note that Res1
stands for the resultant of the original system and Res2 for the resultant of the
sheared system. Keep in mind that the shear done in Hinf RUR is different than
the one done in Hinf Sep. Finally, Iso means Isolate.

In the right table of Table 1, we report the average running time in CPU
seconds of the marked steps listed in the table on the left of Table 1 for the three
proposed algorithms run on square matrices of size α, with entries given by
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Table 1. Left: main steps considered in the implementation of the proposed method.
Right: timings for L∞-norm for random matrices with τG = 2.

Res1 + Iso Res2 + Iso List of signs

Hinf RUR ✓ ✓✓

Hinf Srep ✓ ✓✓

Hinf Sres ✓ ✓✓

α N Hinf RUR Hinf Sep Hinf Sres

2

2 0.2 3 0.2

3 0.5 7 0.5

4 2.5 25 2

5 10 83 6

6 37 96 10

7 50 186 47.5

8 133.5 353 59

9 236 394 130

random proper rational functions of degree N (degree of the denominators)1. It
corresponds to a fixed input coefficient bitsize τ = 2, i.e., the rational functions
involved in the entries of the matrices have coefficients of magnitude O(2τ ).

We finally mention that with these experiments, our goal is not to illus-
trate the theoretical complexity, but, on the contrary, to show that on practical
examples, the results in practice are different than in theory. In theory, the
RUR algorithm might asymptotically be the fastest while in practice the Sturm
method performs better.

7 Conclusion

In this paper, we have presented three different algorithms for the computation of
the L∞-norm of the transfer matrix of a finite-dimensional linear control system.
By reformulating this problem as the search for the maximal projection of the
real solutions of a zero dimensional polynomial system, we have used existing
methods such as the rational univariate representation (RUR method). As for the
second algorithm, we have only used a special separating linear transformation
to shear the polynomial system and put it in a generic position. The last method
(Sturm-Habicht method) was based on verifying the existence of a real root for
a univariate polynomial having real coefficients.

The complexity analysis has showed that the RUR method has the best
theoretical efficiency in comparison with other algorithms. Practically, as we can
notice in the tables given in Sect. 6, the practical efficiency is nearly matching
with the theoretical efficiency but with a slight advantage for the Sturm-Habicht
method probably due to the fact that it is the most adaptive one.

1 The experiments were conducted on Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz
2.90 GHz, Installed RAM 8.00 GB under a Windows platform.
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Abstract. In this paper we present the Maple package Luroth for
dealing with the birationality of curves and surfaces parametrizations.
The procedures in the package decide whether a given, either curve or
surface, parametrization is injective by computing its degree map. In
addition, if the parametrization is not injective, it determines a bira-
tional reparametrization. For the curve case, the corresponding command
always provides an optional answer. For the surface case, not all cases
are covered. Nevertheless, we illustrate using Maple some new ideas on
how to approach those surface cases not covered in the package.

Keywords: Maple · Symbolic computation · Birational (proper)
parametrization · Algebraic curves · Algebraic surfaces

1 Introduction

Algebraic varieties are definable as the zero–set of polynomials. Nevertheless, for
some special cases, namely those that are unirational, they can also be repre-
sented by means of a tuple of rational functions; see [10,11] for the case of radical
parametric representations. It is well-known, and illustrated in the literature (see
e.g. [3]), that depending on the particular problem to be approached a different
representation might be more advisable. In this paper, we stay within the world
of rational parametric representations, that is we deal with unirational varieties,
and more specifically with unirational curves and surfaces. Even in this case,
different computational and theoretical questions appear that affect to the feasi-
bility of the applications of the parametric representations. More precisely, one
may consider the injectivity and/or the surjectivity (see [1,9]) of the parametric
representation. We here deal with the injectivity.

The natural question in this context is whether a rationally parametrized
variety (i.e. parametrized by means of a tuple of rational functions) can be
parametrized birationally (i.e. the map being injective on a non-empty Zariski
open subset of the parameter space); we will refer to a birational parametrization
as a proper parametrization. This question can be reformulated in terms of field
theory by using the field of rational functions of the variety. Then, it holds that
c© Springer Nature Switzerland AG 2021
R. M. Corless et al. (Eds.): MC 2020, CCIS 1414, pp. 137–151, 2021.
https://doi.org/10.1007/978-3-030-81698-8_10
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any unirationally parametrized curve can be parametrized birationally for any
field (see e.g. [12]) because of Lüroth’s Theorem:

Theorem 1. (Lüroth) Consider the inclusion of fields K ⊂ L ⊂ K(x). Then,
there exists f(x) ∈ K(x) such that L = K(x).

Equivalently, let P ∈ K(t)n a (maybe non proper) curve parametrization.
Then, the Zariski closure C of P(K) is a rational curve (i.e. there exists a bira-
tional parametrization of C).
Example 1. Consider the parametrization

t �→ (t6 − 3 t5 − 3 t4 + 11 t3 + 5 t2 − 11 t − 6, t4 − 2 t3 − 3 t2 + 4 t + 3). (1)

Its image is a curve that, by Lüroth’s Theorem, is rational. In fact, it is the nodal
cubic y3 − x2 + y2, that can be properly (not injectively) parametrized by t �→
(t3 − t, t2 −1). It is interesting to have means to find the proper parametrization
from the map (1) and the relation between both of them.

However, for the surface case, the characterization is only possible when the
field is algebraically closed (see [13]); for other dimensions, the situation is even
more restrictive.

In this paper, we deal with the problem of deciding the properness, and
computing birational parametrizations, for the case of curves and surfaces. For
the curve case, there are constructive proofs of Lüroth’s Theorem (see [12] and
the references therein), but we will mainly use here the algorithmic approaches
in [5] and [6]. For the surface case, one may proceed as follows: compute the
implicit equation of the surface, using e.g. [7], and then apply a parametrization
algorithm, e.g. Schicho’s algorithm (see [8]). However, here, we want to app-
roach the problem without implicitizing, that is by reparametrizing the original
parametrization. For this purpose, we will use the algorithm in [6]. Results in [6]
provide a wide, but partial, solution to the problem. But, up to our knowledge,
there is no complete algorithmic (reparametrizing) answer for the surface case.

More precisely, we present a Maple package, that we call Luroth for dealing
with the described problems. Furthermore, we also show some ideas on how to
approach the cases not covered in [6] that we illustrate with the help of Maple.
The paper is structured as follows. In Sect. 2 we briefly recall the results in [5]
and [6] that we use in our implementations. In Sect. 3 we give an overview of
the package and we show some examples that are additionally illustrated in
the Appendix. The Maple package is available (see Sect. 3 for details) at the
web site http://www3.uah.es/jorge caravantes/research.html. In Sect. 4, some
on-going working ideas to approach the general case using Maple are presented.
Finally, in the appendix (Sect. 5), the Maple executions, corresponding to the
examples in the Subsect. 3.2, are shown.

2 Theoretical and Algorithmic Framework

In this section, we briefly recall some theoretical facts and algorithms that will
be used in the implementation of the package. Throughout this section, K is an

http://www3.uah.es/jorge_caravantes/research.html
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algebraically close field and L a subfield of K; usually the ground field where the
parametrization is expressed.

2.1 The Curve Case

Let C ⊂ K
n be a curve, rationally parametrized by

P(t) = (p1(t), . . . , pn(t)) ∈ L(t)n,

where P is not necessarily proper. By Lüroth’s Theorem, we know that there
exists a rational function R ∈ L(t) and a birational parametrization Q(t) ∈ L(t)n

of C such that P(t) = Q(R(t)). In Algorithm 1, we outline the ideas presented
in [5] for effectively computing Q and R. For this purpose, we denote by Res
the univariate resultant of two polynomials, by Num the numerator of a rational
function expressed in reduced form, and by Den the denominator of a rational
function expressed in reduced form.

Algorithm 1. Proper reparametrization of space curves
Input: P(t) = (p1(t), . . . , pn(t)) ∈ L(t)n ⊂ K(t)n a parametrization of C.
Output: A proper parametrization Q(t) ∈ L(t)n and R(t) ∈ L(t) such that Q(R(t)) =

P(t).
1: Determine

S(s, t) = gcd(Num(p1(s) − p1(t)), . . . ,Num(pn(s) − pn(t))).

Let us say that S(s, t) = Cm(t)sm + · · · + C0(t).
2: if degt(S) = 1 then
3: return Q(t) = P(t), and R(t) = t.
4: end if
5: Choose C,D ∈ {C0, . . . , Cm} such that gcd(C,D) = 1 and C/D,C · D �∈ L (see

Section 2 in [5] for further details). Take R(t) = C/D.
6: for i = 1, . . . , n do
7: Compute

Li(s, xi) = Rest(Num(xi − pi(t)),Num(s − R(t))).

It holds that Li is of the form Li = (bi(s)xi − ai(s))
deg(R).

8: end for
9: return the rational function R(t), and the proper parametrization

Q(t) = (a1(t)/b1(t), . . . , an(t)/bn(t)) ∈ L(t)n.

We illustrate Algorithm 1 by an example.

Example 2. Let C be a rational space curve over C defined by the parametriza-
tion

P(t) =
(

(t + 1)2(t2 + 1)
2(t4 + 4t2 + 1 + 2t3 + 2t)

,
2(t2 + t + 1)

(t + 1)2
,

−(t2 + 1)(t2 + 1 + 4t)
(t + 1)4

)
.
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In Step 1 of the algorithm, we get

Num(p1(t) − p1(s)) = −(s − t)(ts − 1)(ts2 + t2s + 2ts + s + t)
Num(p2(t) − p2(s)) = 2(s − t)(ts − 1),
Num(p3(t) − p3(s) = 4(ts − 1))(s − t)(ts2 + t2s + s + 4ts + t).

Thus, we get S(s, t) = C0(t)+C1(t)s+C2(t)s2, where C0(t) = t, C1(t) = −t2−1,
and C2(t) = t. Since degt(SP) > 1, the parametrization is not proper (observe
that, for general t, two values of s vanish S, so give the same image by P), so we
go to Step 2 where we choose C as C1 and D as C0. Therefore, R(t) = −(t2+1)/t.
Note that gcd(C0, C1) = 1. Now, we compute the polynomials

L1(s, x1) = (4x1 + 4 sx1 − 2 s − s2 + 2 s2x1)2,
L2(s, x2) = (2x2 − 2 − 2 s + sx2)2,
L3(s, x3) = (4x3 + 4 s + 4 sx3 + s2 + s2x3)2.

Finally, in Step 5, the algorithm outputs the proper parametrization Q(t), and
the rational function R(t):

Q(t) =

(
t(t + 2)

2(2 + 2t + t2)
,

2(t + 1)

2 + t
,

−t(t + 4)

4 + 4t + t2

)
∈ C(t)3, R(t) = − t2 + 1

t
∈ C(t).

It is not difficult to see that P(t) = Q(R(t)).

2.2 The Surface Case: A Partial Solution

Let P( t ) be a rational affine parametrization over L of an algebraic rational
surface V. We express P as

P( t ) =
(
p1( t ), p2( t ), p3( t )

) ∈ L( t )3, pi( t ) = pi,1( t )/pi,2( t ), (2)

where gcd(pi,1, pi,2) = 1, i = 1, 2, 3, and t = (t1, t2) ∈ K
2.

The degree of the rational map induced by P is denoted by MapDeg(P); see
e.g. [2] pp. 80, or [13] pp. 143 for details. We recall that the properness of P( t )
is characterized by MapDeg(P). More precisely, P( t ) is proper if and only if
MapDeg(P) = 1 (see [2] and [13]). Also, the mapping degree is the cardinality
of the fibre of a generic element (see Theorem 7, pp. 76 in [13]). That is,

FP(P ) = P−1(P ) = { t ∈ K
2 | P( t ) = P},

where FP(P ) is the fibre of a point P ∈ V. Associated with the parametrization
P, we consider the polynomials

GP
i ( t , s ) = pi,1( t )pi,2( s ) − pi,2( t )pi,1( s ) ∈ (K[ s ])[ t ], i = 1, 2, 3,

and
SP
1 (t1, s ) = PrimPart s (ContentZ(Rest2(G1, G2 + ZG3))),

SP
2 (t2, s ) = PrimPart s (ContentZ(Rest1(G1, G2 + ZG3))),
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where s = (s1, s2) ∈ K
2, Z is an auxiliary variable, and Contentx(p) and

PrimPartx(p) are the content and the primitive part of a polynomial p with
respect to the variable x. Let F = K( s ) be the algebraic closure of K( s ).

The polynomials SP
j play an important role in deciding the properness of a

parametrization P. More precisely, in [4] the following theorem is proved.

Theorem 2. The following statements hold:

1. P−1(P( s )) = { t ∈ F
2 | GP

i ( t , s ) = 0, i = 1, 2, 3} and, for generic s̄ ∈ K
2,

MapDeg(P) = Card(P−1(P( s ))).
2. The polynomial SP

i defines the ti–coordinates of the points in P−1(P( s )).
3. Considering s̄ as a couple of variables, MapDeg(P) = degt1(S

P
1 (t1, s )) =

degt2(S
P
2 (t2, s )).

Therefore, by means of resultants and gcd’s one can determine the degree
map of a surface parametrization, and hence decide whether it is birational or
not. We will refer to the algorithms in [4] for this purpose.

Now, let us assume that the given surface parametrization P is not birational.
Then, by Castelnuovo’s Theorem, since we are working over an algebraically
closed field, there exists a proper parametrization of the same surface. In gen-
eral, this birational parametrization may require the extension of the ground
field L. One possibility, as already mentioned in the introduction, could be an
implicitation-parametrization approach. Nevertheless, the idea here is to solve
the problem staying within the parametric representation of the variety. For this
purpose, we can apply the results in [6] that, although do not provide a complete
answer, cover many of the cases.

The method in [6] is based on the application of Algorithm 1 to some par-
tial parametrizations associated to P, namely the parametrizations Pi(tj) :=
P( t ) ∈ (K(ti))(tj)3 (that is, P is seen over K(ti)), for i, j ∈ {1, 2} and i �= j.
Observe that the partial parametrization Pi(tj) (i �= j) defines a space curve
over K(ti). Hence, the goal of Algorithm 2 is to properly reparametrize the
partial parametrizations by applying Algorithm 1. The algorithm outputs a
rational parametrization Q( t ) ∈ K( t )3 of V, and R( t ) ∈ K( t )2 such that
P( t ) = Q(R( t )), and MapDeg(Q) < MapDeg(P). In fact, it is proved that
MapDeg(P) = degt1(S)degt2(T )MapDeg(Q) (see Theorem 4 in [6]). Further-
more, if some additional properties hold, then Q is proper. These ideas are
described in Algorithm 2 and we illustrate it by an example.

Example 3. Let V be a rational surface defined over the field of the complex
numbers, C, by the parametrization

P( t ) =
(−(3t82t

4
1 + 2t62t

6
1 + 2t102 t21 + t42t

8
1 + t122 − t42t

2
1 − t22t

4
1 − t62 + 2t22)/t22,

−t21t
2
2 − t41 − t42 + 3t41t

4
2 + 2t61t

2
2 + 2t21t

6
2 + t81 + t82 + t22 + t62, 3 + t21t

2
2 + t41 + t42

)
.
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We apply Algorithm 2. For this purpose, in Step 1, we apply Algorithm 1, and
we find that

SP2(t1, s1) = (s1 − t1)(s1 + t1)(s21 + t22 + t21) ∈ (C[t2])[t1, s1]

which implies that P2(t1) is not proper; in fact, MapDeg(P2) = degt1(S
P2) = 4.

Thus, we go to Step 2 and we apply Algorithm 1 to P2. We obtain

S2(t1) = −t21t
2
2 − t41 ∈ (C[t2])[t1].

Furthermore, we determine the polynomials

Li(s1, t2, xi) = Rest1(G
P2
i ( t , xi), s1 − S2(t1)) = (mi,2(s1, t2)xi − mi,1(s1, t2))

degt1
(S2),

where GP2
i ( t , xi) = xipi,2( t ) − pi,1( t ), for i = 1, 2, 3, and we get M( t ) =

(−2 − t102 + t42 + 2t1t
6
2 − t1 − t21t

2
2,−t42 + t82 + t22 + t62 + t1 − 2t42t1 + t21, 3 + t42 − t1

)

(we rename s1 as t1).

Now, in Step 2.2 of the algorithm, we apply Algorithm 1 to M1(t2) ∈
(C(t1))(t2)3, and we find that

SM1(t2, s2) = (t2 − s2)(t2 + s2) ∈ (C[t1])[t2, s2].

Thus, since MapDeg(M1) = degt2(S
M1) = 2, we get that M1 is not proper.

Then, we go to Step 2.3. We apply Algorithm 1 to M1, and we compute T1(t2) =
t22 ∈ (C[t1])[t2], and the polynomials

Li(t1, s2, xi) = Rest2(G
M1
i ( t , xi), s2 − T1(t2)) = (qi,2(t1, s2)xi − qi,1(t1, s2))

degt2
(T1),

where GM1
i ( t , xi) = ximi,2( t ) − mi,1( t ), for i = 1, 2, 3. We obtain Q( t ) =

(−2 − t1 − t2t
2
1 + t22 + 2t1t

3
2 − t52, t1 + t21 + t2 − t22 − 2t1t

2
2 + t32 + t42, 3 − t1 + t22

)

(we rename s2 as t2). Finally, in Step 2.4 of the algorithm, we apply Algorithm 1
to Q2(t1) ∈ (C(t2))(t1)3. We get that SQ2(t1, s1) = s1− t1 ∈ (C[t2])[t1, s1] which
implies that Q2 is proper. Therefore, Algorithm 2 outputs the parametrization
Q( t ), and

R( t ) = (S( t ), T (S( t ), t2)) = (−t21t
2
2 − t41, t22) ∈ C( t )2.

One may check that MapDeg(P) = degt1(S)degt2(T ) = 8 and thus Q is
a proper reparametrization (we remind that MapDeg(P) = degt1(S)degt2(T )
MapDeg(Q)).
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Algorithm 2. Proper reparametrization of surfaces (partial case)
Input: A rational parametrization

P( t ) =
(
p1( t ), p2( t ), p3( t )

) ∈ K( t )3, pi( t ) = pi,1( t )/pi,2( t ),

gcd(pi,1, pi,2) = 1, i = 1, 2, 3, of an algebraic surface V.
Output: A rational parametrization

Q( t ) =
(
q1( t ), q2( t ), q3( t )

) ∈ K( t )3, qi( t ) = qi,1( t )/qi,2( t ),

of V, and R( t ) ∈ (K( t ) \ K)2 such that P( t ) = Q(R( t )), and 1 ≤ MapDeg(Q) <
MapDeg(P).

1: if P1 and P2 are proper (apply Algorithm 1) then
2: return
3: else if P2 is not proper then
4: Apply Algorithm 1 to P2. [It returns a parametrization M( t ) ∈ K( t )3, and

S( t ) ∈ K( t ) such that the partial parametrization associated to M, M2(t1) ∈
(K(t2))(t1)

3, is proper and S2(t1) ∈ (K(t2))(t1) satisfies P2(t1) = M2(S2(t1))].
5: if M1(t2) ∈ (K(t1))(t2)

3 is proper (apply Algorithm 1) then
6: return Q := M, and R( t ) := (S( t ), t2).
7: else
8: Apply Algorithm 1 to M1(t2). [It returns a parametrization Q( t ) ∈ K( t )3,

and T ( t ) ∈ K( t ) such that the partial parametrization associated to Q,
Q1(t2) ∈ (K(t1))(t2)

3, is proper and T1(t2) ∈ (K(t1))(t2) satisfies M1(t2) =
Q1(T1(t2))].

9: end if
10: if the partial parametrization associated to Q, Q2(t1) ∈ (K(t2))(t1)

3, is proper
(apply Algorithm 1) then

11: return Q, and R( t ) := (S( t ), T (S( t ), t2)).
12: else
13: return Q, R( t ) := (S( t ), T (S( t ), t2)), and the message “you may apply the

algorithm again (Step 3 and so on) to Q2”.
14: end if
15: else
16: Apply Step 8 and the next one to P and P1 (P2 is proper and P1 is not).
17: end if

3 The Package Luroth

In this section, we present the creation of a package in the computer algebra
system Maple, that we call Luroth. This package consists in several procedures
that implement the algorithms described in Sect. 2. More precisely, the package
deals with rational parametrizations, either of plane or space curves, or surfaces.
It checks the injectivity giving the degree of the map. In addition, it provides
birational reparametrizations of a given non-birational parametrization. For the
case of curves, all cases are covered. For the case of surfaces, only those treated
in [5] and [6] are considered. In Sect. 4, we show how, with the help of Maple,
we approach the general case.
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3.1 General Description

The Maple package is initialized by the command:

> with(Luroth):

The main procedures in the package are:

• IsTheCurveProper:
i) Feature: This procedure checks whether a given rational curve parametri-

zation, non necessarily planar, is birational. Briefly, the input and output
of the procedure can be stated as follows:

� Input:
◦ A list, of length at least 2, whose entries are univariate rational
functions, not all constant.
◦ The variable of the rational functions
◦ An option u ∈ {probabilistic,deterministic}.

� Output: The command returns either true or false. true means that
the parametrization is birational. If false then the input parametriza-
tion is not birational and the procedure returns also the degree of the
map associated to the input parametrization.

ii) Calling Sequence: > IsTheCurveProper(List,variable,option);
iii) Mathematical Argumentation: the procedure is based on the results in [6]

and implements the first steps of Algorithm 1.
• CurveProperReparametrization:

i) Feature: This procedure computes a birational parametrization of the
curve defined by the input parametrization. Briefly, the input and output
of the procedure can be stated as follows:

� Input:
◦ A list, of length at least 2, whose entries are univariate rational
functions, not all constant.
◦ The variable of the rational functions

� Output: a proper curve parametrization of the input curve.
ii) Calling Sequence: > CurveProperReparametrization(List,variable);
iii) Mathematical Foundation: the procedure is based on the results in [6] and

implements the first steps of Algorithm 1
• IsTheSurfaceProper:

i) Feature: This procedure checks whether a given rational surface
parametrization is birational. Briefly, the input and output of the pro-
cedure can be stated as follows:

� Input:
◦ A list, of length at least 3, whose entries are bivariate rational
functions, which generic Jacobian has rank 2.
◦ The variables of the rational functions
◦ An option u ∈ {probabilistic,deterministic}.

� Output: The command returns either true or false. true means that
the parametrization is birational. If false then the input parametriza-
tion is not birational and the procedure returns also the degree of the
map associated to the input parametrization.
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ii) Calling Sequence:
> IsTheSurfaceProper(List,variable1, variable2,option);

iii) Mathematical Foundation: the procedure is based on the results in [4].
• SurfaceProperReparametrization:

i) Feature: This procedure tries to compute a birational parametrization of
the surface defined by the input parametrization. Briefly, the input and
output of the procedure can be stated as follows:

� Input:
◦ A list, of length at least 3, whose entries are univariate rational
functions, not all constant.
◦ The variables of the rational functions

� Output: one of the following possibilities
◦ A birational parametrization of the input surface.
◦ A non-birational parametrization of the input surface with
smaller map degree than the input parametrization.
◦ A message informing that no improvement has been possible.

ii) Calling Sequence:
> SurfaceProperReparametrization(List,variable1,variable2);

iii) Mathematical Foundation: the procedure is based on the results in [6] and
implements the first steps of Algorithm 2.

There are other auxiliary procedures in the package that we do not mention
here besides Try. Given a surface parametrization P ∈ K(t1, t2)3, with K a field
of characteristic zero, Try decides whether the surface seen as a curve over the
algebraic closure of K(t2)(t1), and parametrized by P(t1, t2) as tuple in K(t1)(t2),
is birational. In the affirmative case, it looks for a reparametrization function
over the ground field K(t1). Additionally, FindR executes Step 3 in Algorithm 1.

3.2 Illustrative Examples

In this subsection, we illustrate the package by some examples run in Maple.
In Example 4, we see the performance of the package for the case of curves.
Examples 5, 6 and 7 are devoted to surfaces. In Example 5 the algorithm is able
to provide a birational parametrization. Example 6 illustrates the case where the
algorithm does not yield to an optimal answer but outputs a parametrization
whose map degree has decreased. Finally Example 7 is devoted to the case where
the algorithm does not provide any improvement. For additional information on
how the execution is performed we will be referring to the tables in the Appendix.

The package and installation instructions can be found at

http://www3.uah.es/jorge caravantes/research.html

Once the package is installed, after executing the command with(Luroth), the
package is ready to be used (see Fig. 1).

http://www3.uah.es/jorge_caravantes/research.html
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Example 4. We consider the curve parametrization

P(t) =

(
t6

(t3 + t + 2)2
,

(
t3 + t + 2

)3
t9

,
2 t6 + 2 t4 + 4 t3 + t2 + 4 t + 4

(t3 + t + 2) t3

)

that parametrizes the space curve defined by

{x2y + xy − z, xz2 − x2 − 2x − 1, xyz − z2 + x + 1, z3 − xy − xz − y − 2 z,
xy2 − yz + z2 − x − 2}.

Using the command IsTheCurveProper, one gets that the degree of the map
induced by P is 3 (see Fig. 2). Hence, the curve is traced three times when
giving values to the parameter. Since the parametrization is not injective, we
apply the command CurveProperReparametrization (see Fig. 3) to get the
following birational parametrization of the same curve,

Q(t) =

(
t2

(t − 2)2
,
t3 − 6 t2 + 12 t − 8

t3
, 2

t2 − 2 t + 2
t (t − 2)

)
.

Example 5. We consider now the surface parametrization

P(t1, t2) =

(
t1t2

(
t1

2 − t1t2 + t2
2
)

(t1 + t2)
2 , t2,

t2
(
t1

3 − t2t1
2 + t2

2t1 + t1
2 + 2 t1t2 + t2

2
)

(t1 + t2)
2

)
.

Applying the command IsTheSurfaceProper, we get that the degree map is 3,
and hence the P(t1, t2) is not birational. We then apply the command

ProperSurfaceReparametrization

to get proper parametrization of the surface (see Fig. 4)

Q(t1, t2) =
(

− t2 (t1t2 + 1)
t1

, t2,− (1 + (t2 − 1) t1) t2
t1

)
.

Example 6. We consider the following surface parametrization

P =

(
− −93t1

4 − 51 t1
2t2

2 + 90 t2
4 − 22 t1

2

2601 t42t
4
1 − 1530t62t

2
1 + 225t82 + 2244t22t

4
1 − 660t42t

2
1 + 484t41 − 2

,

−4743 t2
2t1

6 − 1395 t2
4t1

4 − 3825 t2
6t1

2 + 1125 t2
8 + 2046 t1

6 − 1650 t2
4t1

2 − 2

−51 t12t22 + 15 t24 − 22 t12
,

−1

3

8649 t1
8 − 13950 t2

4t1
4 + 5625 t2

8 + 51 t1
2t2

2 − 15 t2
4 + 22 t1

2 − 3

−31 t14 + 25 t24

)
.

In this case, applying the command IsTheSurfaceProper we get that
the parametrization has map degree 16. The command SurfacePorper-
Reparametrization does not get a proper parametrization but the procedure
returns a new parametrization of the same surface, which is not proper, but where
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the degree map has decreased from 16 to 4 (see Fig. 5). The output parametriza-
tion is

Q =

(
(22 t1 − 93) t2

4 − 51 t1t2
3 + 90 t1

2t2
2(

2 t1
2 − 484

)
t2

4 + 2244 t2
3 + (−660 t1 − 2601) t2

2 + 1530 t1t2 − 225 t1
2
,

2 t1
3t2

4 − 1650 t1
2t2

2 + 2046 t2
4 − 1125 t1

3 + 3825 t1
2t2 + 1395 t1t2

2 − 4743 t2
3

t1
2t2

2
(
22 t2

2 + 15 t1 − 51 t2
) ,

(
3 t2

4 + 15 t2
2 − 5625

)
t1

4 +
(
22 t2

4 − 51 t2
3
)
t1

3 + 13950 t1
2t2

2 − 8649 t2
4

75 t1
4t2

2 − 93 t1
2t2

4

)
.

Example 7. We consider the following surface parametrization

P =

(
−4 t1

4t2
2 − 4 t1

2t2
3 − t1

4 + t2
4 + t1

2t2

(2 t12 − t2)
2 (t12 − t2)

,− t1t2
2

(2 t12 − t2) (t12 − t2)
,

t2
4

(t12 − t2)
2

)
.

The command IsTheSurfaceProper ensures that the map degree of P is 3.
However, The command SurfacePorperReparametrization does not get any
parametrization with smaller map degree (see Fig. 6).

4 Approaching the General Case

As we have already mentioned, Lüroth’s Theorem, for the case of surfaces,
requires the field to be algebraically closed. This implies that, in general, the
ground field L of the parametrization needs to be extended. Observe that the
curve case (see Algorithm 1) does not extend L, and hence the surface partial
approach behaves the same (see Algorithm 2). Therefore, a new strategy has to
be considered. Here, we present some on-going working ideas to approach the
general case. For this purpose, let P( t ) = (p1( t ), p2( t ), p3( t )) be as in (2). Let
P be non-birational and Φ := MapDeg(P) > 1. In this situation, we know that
there exists a birational surface parametrization Q of the same surface, and a
dominant rational map R : K2 ��� K

2 such that P = Q ◦ R. Therefore, to find
Q, it is enough to find R. However, note that the possible pairs (Q, R), solving
the problem, are not unique. Nevertheless, our idea is to observe that an answer
can be achieved by looking for rational maps R with the same fiber as P. One
may proceed as follows:

1. Let I be the ideal in K[ t , s , w] of the fibre of P. That is I is generated by

{Num(pi( t ) − pi( s )), w · lcm(Den(p1),Den(p2),Den(p3)) − 1}i=1,2.

Note that I is zero-dimensional with Φ points.
2. We want R such that the ideal J in K[ t , s , w] of its fibre is equal to I. By

Bézout’s Theorem we know that a linear system of curves defining such R
must have degree greater than or equal to d = �√Φ
.
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3. Make an ansatz of unknown coefficients of a linear systems of degree d, and
increase the degree by one until a R satisfying J = I is found. Since Castel-
nuovo’s Theorem ensures the existence of R, the procedure terminates.

We illustrate these ideas by means of an example.

Example 8. We consider the parametrization P of Example 7. Using Maple, we
compute a Gröbner basis, with respect to the pure lex order with t1 < t2 < w, of
the ideal I. It contains 3 polynomials. Since Φ := MapDeg(P) = 3 (see Example
7), a change of variables of degree greater than or equal to 2 is expected.

We start analyzing all the degree-2 transformations of C
2. We consider a

generic degree-2 transformation R and we require that J ⊂ I. For this purpose,
we compute the normal forms w.r.t. to the Gröbner basis above, and we solve
the system of equations derived from the vanishing conditions of the normal
forms. This provides three different type of expressions for the coordinates of R,
namely

{
2a1t1

2 b4t1
2 + 2 b1t1 − b4t2

,
a5t2

2

b4t1
2 + b5t2

2 − b4t2
,

2 a4t1
2 + 2 a1t1 − a4t2

−4 b2t1
2 + 2 b1t1 + 2 b2t2

,

−a4t1
2 − a5t2

2 + a4t2
b2t1

2 − b5t2
2 − b2t2

}
.

We now choose from above two shapes to be the entries of the transformation
of the plane. For instance, take b5 = 0, a5 + b4 = 0 in the last entry, and
a4 = b1 = 0, 2a1 − b4 = 0 in the first entry. We get

R = (r1, r2) =
(

− t2
2

t1
2 − t2

,
t1

2 t1
2 − t2

)
.

From the equality P = Q ◦ R, we get the parametrization

Q(t1, t2) =
(
t22 + t1, t1t2, t

2
1

)
.

Note that one may get Q, for instance, using the idea that (r1, r2, pi) ∈ L( t )3

parametrizes the irreducible polynomial Num(qi(x1, x2) − x3) (for i = 1, 2, 3),
where we denote Q = (q1, q2, q3), qi = qi,1/qi,2, gcd(qi,1, qi,2) = 1. Thus, one
only has to compute the implicit equations of the parametrizations (r1, r2, pi)
for i = 1, 2, 3 (see e.g. [7]).

Finally, using the command IsTheSurfaceProper from the package Luroth
one checks that MapDeg(Q) = 1, and hence it is a birational transformation of
the surface.
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5 Appendix

In this appendix, the Maple executions, corresponding to the examples in the
Subsect. 3.2, are shown.

Fig. 1. Starting the package

>
false

The map degree is
3

Fig. 2. It checks the properness of P in Example 4. The same result is achieved with
the option deterministic

A proper parametrization is

Fig. 3. It computes a proper parametrization of the curve in Example 4
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>>

>>

false
The map degree is

3

A proper parametrization is

Fig. 4. It checks the properness of P in Example 5. The same result is achieved with
the option probabilistic. Applying the command SurfacePorperReparametrization

one gets a proper parametrization of the surface.

false
The map degree is

16

The algorithm does not get a proper parametrization but it gets
[New Parametrization, Degree Map]

Fig. 5. It checks the properness of P in Example 6. The same result is achieved with
the option probabilistic. Applying the command SurfacePorperReparametrization

one gets a degree map 4 parametrization of the surface.
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false
The map degree is

3

Fig. 6. It checks the properness of P in Example 7. The same result is achieved with
the option probabilistic. The command SurfacePorperReparametrization does not
get any parametrization with smaller map degree.
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1 Introduction

Mathematical modeling of quantum-mechanical collisions of molecules, atoms
and atomic nuclei, guided propagation of waves (oceanic, optical, electromag-
netic), as well as transitions between metastable and bound quantum states
using the methods of coupled channels or normal modes reduces to boundary-
value problems (BVPs) for systems of N coupled second order ordinary differ-
ential equations (ODEs) [1–3].

Mathematical models of the above phenomena, initially formulated as a
multidimensional (quantum mechanical) or three-dimensional elliptic BVP [4],
reduce to a system of ODEs with variable coefficients (real or complex, tabu-
lar or piecewise continuous, or not only continuous, but also having continuous
derivatives up to a given order) on a finite interval. The appropriate boundary
conditions (BCs) are of the mixed type: Robin (third-type or radiation condi-
tion), Neumann and Dirichlet. The procedure implies constructing asymptotes
of the desired solution and its expansion in terms of a suitable basis functions,
including the calculation of the variable coefficients of the ODE as integrals in
the reduction of the original problem in terms of basis functions to be solved by
the Kantorovich method or by the incomplete Galerkin method [5,6].

For example, in molecular and nuclear physics, optical waveguides, for the
spectrum of beryllium dimer [7], sub-barrier fusion of heavy ions [8] or transverse
modes in smoothly irregular optical fibers [9], the proposed approach and the
program of its finite element method (FEM) implementation allow the deter-
mination of scattering or metastable states in the case of different numbers of
asymptotically coupled or entangled open channels [10,11]. The eigenfunctions
and the symmetric (or unitary) scattering matrix composed of square matrices
of transmission amplitudes and rectangular matrices of reflection amplitudes are
found, as well as complex energy eigenvalues and eigenfunctions of metastable
states calculated by means of the Newton method [12].

Standard FEM programs with interpolation Lagrange polynomials (ILPs),
implemented in FORTRAN and in public domain computer algebra systems like
MAPLE and MATHEMATICA solve 3D, 2D and 1D elliptic BVPs [4]. However,
they are not applicable to systems of N ODEs of the above general type.

Indeed, in standard public domain FEM programs the desired solution is
approximated by ILPs, which do not preserve the continuity of the derivatives
of solutions up to a given order, depending on the smoothness of the variable
coefficients of the ODE at the boundary points of the finite element mesh subin-
tervals. This can violate the conservation laws inherent in the original problem.

In the present paper we propose new algorithms and software implementa-
tion of the FEM for solving BVPs for systems of N ODEs. To approximate
the desired solution, the interpolation Hermite polynomials (IHPs) with arbi-
trary multiplicity of the nodes [6] are used, which preserve the continuity of
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the derivatives of the desired solution up to a given order, depending on the
smoothness of the ODE variable coefficients at the boundary points of the finite
element mesh subintervals [13]. The paper continues our previous work presented
in the libraries of computer programs of the Computer Physics Communication
journal [14–16] implemented in FORTRAN and JINRLIB [17] implemented and
executed in MAPLE [18]. In the case of smooth coefficients of the ODE, the
approximation by IHPs saves computer resources and provides not only high
accuracy, but also the continuity of the solution gradient.

We apply MAPLE to construct and analyze the appropriate FEM schemes,
to calculate the IHPs, to approximate the sought solution, to approximate the
tabulated ODE coefficients, to implement smooth matching of the FEM solution
with its analytical asymptotic extension, to construct the asymptotes of the
sought ODE solution necessary for formulating the Robin BCs for the expansion
of the desired solution of the original multidimensional BVP in appropriate basis
functions. Moreover, using MAPLE we calculate the first derivatives of the basis
functions with respect to the parameter – the independent variable of the ODE.
The variable coefficients of the ODE – integrals in the reduction of the original
multidimensional BVP in terms of basic functions and their first derivatives by
the Kantorovich or incomplete Galerkin method are also obtained using MAPLE,
as well as a convenient graphical representation of all the items that make up
the solution of the BVP.

The structure of the paper is as follows. In Sect. 2, we formulate the BVPs
and briefly describe the FEM scheme. Section 3 presents the benchmark exam-
ples of using the code to solve bound state problems and scattering problems
of quantum mechanics and waveguide physics. In Appendices we present the
algorithms of IHPs generation on the standard interval, calculation of the FEM
scheme characteristics and FEM generation of an algebraic eigenvalue problem.
In Conclusion we summarize the results and prospects of application.

All calculations in this paper were performed by KANTBP 5M code using
MAPLE 2019 on PC Intel Pentium 987 2 × 1.5 GHz, 4 Gb, 64bit Windows 8.

2 The Problem Statement

2.1 The Boundary-Value Problems

The proposed approach implemented as program KANTBP 5M is intended
for solving BVPs for systems of the ODEs with respect to unknown functions
Φ(z)=(Φ1(z), . . ., ΦN (z))T of independent variable z∈Ω(zmin, zmax) numerically
using the FEM [10]:

(D − E I) Φ(z) ≡
(

− 1
fB(z)

I
d

dz
fA(z)

d

dz
+V(z)

+
fA(z)
fB(z)

Q(z)
d

dz
+

1
fB(z)

dfA(z)Q(z)
dz

−E I
)

Φ(z)=0. (1)

Here fB(z) > 0 and fA(z) > 0 are continuous or piece-wise continuous positive
functions, I is the unit matrix, V(z) is a symmetric matrix, Vij(z) = Vji(z),
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and Q(z) is an antisymmetric N × N matrix, Qij(z) = −Qji(z), of effective
potentials. The elements of these matrices are continuous or piecewise continuous
real or complex-valued coefficients from the Sobolev space Hs≥1

2 (Ω), providing
the existence of nontrivial solutions Φ(z) subjected to homogeneous Dirichlet,
Neumann or Robin BCs at the boundary points of the interval z ∈ {zmin, zmax}
at given symmetric real or complex-valued N × N matrix G(z) = R(z) −Q(z)

Φ(zt) = 0, lim
z→zt

fA(z)
(
I

d

dz
− Q(z)

)
Φ(z) = 0, (2)

(
I

d

dz
− Q(z)

)
Φ(z)

∣∣∣∣
z=zt

= G(zt)Φ(zt),

where the superscript t = min,max labels the boundary points of the interval.

The Scattering Problem at a fixed energy E in the asymptotic form “incident
wave + outgoing waves” can be written as:

Φ→(z → ±∞) =

{
X(→)

min (z) + X(←)
min (z)R→ + X(c)

min(z)Rc
→, z → −∞,

X(→)
max(z)T→ + X(c)

max(z)Tc
→, z → +∞,

Φ←(z → ±∞) =

{
X(←)

min (z)T← + X(c)
min(z)Tc

←, z → −∞,

X(←)
max(z) + X(→)

max(z)R← + X(c)
max(z)Rc

←, z → +∞.

Here Φ→(z), Φ←(z) are matrix solutions with dimensions N × NL
o , N × NR

o ,
where NL

o , NR
o are the numbers of open channels, X(→)

min (z), X(←)
min (z) are open

channel asymptotic solutions at z → −∞, dimension N ×NL
o , X(→)

max(z), X(←)
max(z)

are open channel asymptotic solutions at z → +∞, dimension N ×NR
o , X(c)

min(z),
X(c)

max(z) are closed channel solutions, dimension N × (N −NL
o ), N × (N −NR

o ),
R→, R← are the reflection amplitude square matrices of dimension NL

o × NL
o ,

NR
o × NR

o , T→, T← are the transmission amplitude rectangular matrices of
dimension NR

o × NL
o , NL

o × NR
o , Rc

→, Tc
→, Tc

←, Rc
← are auxiliary matrices.

For real-valued potentials V(z) and Q(z) the transmission T and reflection R
amplitudes satisfy the relations

T†
→T→ + R†

→R→ = Ioo, T†
←T← + R†

←R← = Ioo,

T†
→R← + R†

→T← = 0, R†
←T→ + T†

←R→ = 0, (3)
TT

→ = T←, RT
→ = R→, RT

← = R←

ensuring unitarity and symmetry of S-matrix

S =
(
R→ T←
T→ R←

)
, S†S = SS† = I.

Here † and T denote conjugate transpose and transpose of a matrix, respectively.
So, for complex potentials V(z) and Q(z) the S-matrix is only symmetric S = ST

and only the last three conditions of (3) hold.
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For set of ODEs (1) with fB(z)=fA(z)=1, Qij(z)=0 and constant effective
potentials Vij(z)=V L,R

ij in the asymptotic region, asymptotic solutions X(∗)
i (z →

±∞) are as follows. The open channel asymptotic solutions i =io = 1, ..., NL,R
o :

X(
→←)

io
(z → ±∞) →

exp
(

±ı
√

E − λL,R
io

z

)

4

√
E − λL,R

io

ΨL,R
io

, λL,R
io

< E.

The closed channels asymptotic solutions i = ic = NL,R
o + 1, . . . , N :

X(c)
ic

(z → ±∞) → exp
(

−
√

λL,R
ic

− E|z|
)

ΨL,R
ic

, λL,R
ic

≥ E.

Here λL,R
i and ΨL,R

i = {ΨL,R
1i , ..., ΨL,R

Ni }T are solutions of the algebraic eigenvalue
problems with matrix VL,R of dimension N ×N for the entangled channels [11]

VL,RΨL,R
i = λL,R

i ΨL,R
i , (ΨL,R

i )T ΨL,R
j = δij . (4)

Note that λL,R
i = V L,R

ii and ΨL,R
i = δji, if V L,R

i�=j = 0, i.e. in the conventional
case of orthogonal channels.

Bound or Metastable States. Eigenfunctions Φm(z) obey the normalization
and orthogonality conditions

(Φm|Φm′) =
∫ zmax

zmin
fB(z)(Φ(m)(z))T Φ(m′)(z)dz = δmm′ .

For bound states with real eigenvalues E: E1 ≤ E2 ≤ ... the Dirichlet or Neu-
mann BC (2) follow from asymptotic expansions. For metastable states with
complex eigenvalues E = �E + ı	E, 	E < 0: �E1 ≤ �E2 ≤ ... the Robin BC
follow from outgoing wave fundamental asymptotic solutions that correspond to
the Siegert outgoing wave BCs [12].

For the set of ODEs (1) with fB(z)=fA(z)=1, Qij(z)=0 and constant effec-
tive potentials Vij(z)=V L,R

ij in the asymptotic region, asymptotic solutions

X(∗)
i (z → ±∞) are as follows. For bound states:

X(c)
ic

(z → ±∞) → exp
(

−
√

λL,R
ic

− Ei|z|
)

ΨL,R
ic

, λL,R
ic

≥E, ic = 1, . . . , N,

and for metastable states:

X(
→←)

io
(z→∞)→exp

(
+ı

√
E−λL,R

io
|z|

)
ΨL,R

io
, λL,R

io
<�E, io=1, ..., NL,R

o ,

X(c)
ic

(z→∞)→ exp
(

−
√

λL,R
ic

−E|z|
)

ΨL,R
ic

, λL,R
ic

≥�E, ic=NL,R
o +1, . . . , N.
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In the considered case matrix R(zt) of logarithmic derivatives for the corre-
sponding Robin BC takes the form

R(zt) = ΨL,RFL,R
(
ΨL,R

)−1

,

where FL,R = diag(...,±
√

λL,R
ic

− E, ...,∓ı
√

E − λL,R
io

, ...) and ΨL,R is the

matrix, composed from solutions ΨL,R
j of algebraic eigenvalue problem (4).

2.2 Finite Element Scheme

Finding solution Φ(z)∈Hs≥1
2 (Ω̄) of BPVs (1)–(2) reduces to the FEM calculation

of stationary points of symmetric quadratic functional

Ξ(Φ, E, zmin, zmax) ≡
∫ zmax

zmin
fB(z)Φ•(z) (D − E I) Φ(z)dz = Π(Φ, E, zmin, zmax)

−fA(zmax)Φ•(zmax)G(zmax)Φ(zmax) + fA(zmin)Φ•(zmin)G(zmin)Φ(zmin),

Π(Φ, E, zmin, zmax) =

∫ zmax

zmin

[
fA(z)

dΦ•(z)

dz

dΦ(z)

dz
+ fB(z)Φ•(z)V(z)Φ(z)

+fA(z)Φ•(z)Q(z)
dΦ(z)

dz
− fA(z)

dΦ(z)•

dz
Q(z)Φ(z) − fB(z)EΦ•(z)Φ(z)

]
dz, (5)

where G(z) = R(z) − Q(z) is a symmetric N × N matrix and • stands for T or
† depending on the problem considered.

High-accuracy computational schemes for solving BVP (1)–(2) are derived
from variational functional (5) basing on the FEM. The general idea of FEM
in a one-dimensional space is to divide the interval [zmin, zmax] into many small
subintervals referred to as elements. The choice of subintervals size (length) is
free enough to account for physical properties or qualitative behavior of the
sought solutions, such as smoothness.

The interval Δ = [zmin, zmax] is covered by a set of n subintervals Δj =
[z(j−1), z(j)], z(0) = zmin, z(n) = zmax in such a way that Δ =

⋃n
j=1 Δj . On each

subinterval Δj = [z(j−1), z(j)] of a length hj = z(j) − z(j−1) we introduce a set
of local functions given by the IHPs [6]: ϕκ

r (z), r = 0, ..., p, κ = 0, . . . , κmax
r − 1,

where κmax
r is referred to as the multiplicity of the nodes zr ∈ Δj , z0 = z(j−1),

zp = z(j). The values of functions ϕκ
r (z) of the order p′ =

∑p
r=0 κmax

r − 1 with
their derivatives up to the order (κmax

r − 1) are determined by expressions

ϕκ
r (zr′) = δrr′δκ0,

dκ′
ϕκ

r (z)
dzκ′

∣∣∣∣
z=z

r′

= δrr′δκκ′ . (6)

IHPs are calculated using analytical formulas [13] implemented in the algorithm
of Appendix A. The numerical solution Φh(z) ≈ Φ(z) is sought in the form of a
finite sum over the basis of local functions Ns(z) at each nodal point z = zρ of
the grid Ωp

hj(z)
[zmin, zmax] on interval z ∈ Δ = [zmin, zmax]:
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Table 1. Interrelation of subscripts μ, ν, i, r, ρ, j, S, s and κ by the example of BVP
(1) with N = 2 solved by FEM with the IHPs of the order p′ = 4 (p′ =

∑p
r=0 κmax

r −1)
with multiplicities (κmax

1 , κmax
2 , κmax

3 ) = (2, 1, 2) on n = 4 finite elements. Here (D)
means using the Dirichlet conditions at z = zmin and z = zmax.

odd j 1 3

even j 2 4

ρ 0 0 0 0 1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8

κ 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

i 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

r (odd j) 0 0 0 0 1 1 2 2 2 2 0 0 0 0 1 1 2 2 2 2

r (even j) 0 0 0 0 1 1 2 2 2 2 0 0 0 0 1 1 2 2 2 2

S (odd j) 1 1 2 2 3 3 4 4 5 5 11 11 12 12 13 13 14 14 15 15

S (even j) 6 6 7 7 8 8 9 9 10 10 16 16 17 17 18 18 19 19 20 20

s 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13

ν 1 2 1 2

μ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

μ(D) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Φh(z)=
L−1∑
s=0

Φh
sNs(z), Φh

s=(Φh
s1, ..., Φ

h
sN )T ,

dκNs(z)
dzκ

∣∣∣∣
z=zρ

=δss′(κ,ρ). (7)

Basis functions Ns(z) are piecewise polynomials calculated by IHP matching
(see for the details [13,17]). The substitution of expansion (7) into variational
functional (5) reduces problem (1)–(2) to an algebraic problem for the unknown
eigenvalues E or S-matrix and vector Φh = {Φh

μ}LN
μ=1 = {{Φh

si}N
i=1}L−1

s=0 :

(A − E B)Φh = 0. (8)

Here A = A(2)+A(1)+V+Mmin−Mmax and positive definite B are symmetric
NL × NL matrices of stiffness and mass, respectively:

A(2)
μ1,μ2

=
∫

Δ

dNs1(z)
dz

δi1i2

dNs2(z)
dz

fA(z)dz,

A(1)
μ1,μ2

=
∫

Δ

(
Ns1(z)Qi1i2(z)

dNs2(z)
dz

− dNs1(z)
dz

Qi1i2(z)Ns2(z)
)

fA(z)dz,

Vμ1,μ2 =
∫

Δ

Ns1(z)Vi1i2(z)Ns2(z)fB(z)dz,

Bμ1,μ2 =
∫

Δ

Ns1(z)δi1i2Ns2(z)fB(z)dz. (9)

According to the definition of local function Ns(z), the integrals in (9) are cal-
culated only on subinterval Δj in which both Ns1(z) and Ns2(z) are localized.
NL × NL matrices Mmax and Mmin have only one nonzero N × N submatrix:

Mmin
ν1,ν2

= fA(zmin)Rν1,ν2(z
min), Mmax

ν0+ν1,ν0+ν2
= fA(zmax)Rν1,ν2(z

max), (10)

where ν0 = N(L − κmax
r ), respectively. Each element of the eigenvector Φh is

marked by the multi-index notation μ. The dependence of multi-index μ on
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Fig. 1. Phase shift δ vs scattering energy E at L = 18. Here δE(res) = E − E(res).

indices ν, i, r, ρ, j, s, κ defined above and index S used for global enumeration
of local functions ϕκ

r on each of finite elements Δj (see Appendix B) is illustrated
in Table 1 by an example of BVP (1) with N = 2, solved using FEM with fourth-
order IHPs (κmax

1 , κmax
2 , κmax

3 ) = (2, 1, 2) on n = 4 finite elements.
The algorithms for calculating characteristics of FEM scheme and generating

an algebraic eigenvalue problem are given in Appendixes B and C. The algebraic
eigenvalue problem is solved using either built-in linear algebra procedures, or
the continuous analog of Newton method [12].

3 Benchmark Calculations

3.1 ODE with Potential Calculated by Quantum Chemistry

In quantum chemical calculations, effective potentials of interatomic interaction
are presented in the form of numerical tables calculated with a limited accuracy
and defined on a nonuniform mesh of nodes in a finite range of interatomic dis-
tances. It is important that the proposed FEM scheme with IHPs ensures smooth
matching of the tabulated potential with its analytical asymptotic expression, as
well as high-quality smooth approximation of eigenfuntions [7]. Consider, e.g.,
the Schrödinger equation for a diatomic beryllium molecule in the adiabatic
approximation, commonly referred to as Born–Oppenheimer approximation

(
− 1

r2
d

dr
s2r

2 d

dr
+V (r) +

L(L+1)
r2

s2−EvL

)
ΦvL(r)=0,

where s2 = 1/0.2672973729, r is the distance between the atoms in angstroms,
EvL is the energy in cm−1 and L is the total angular momentum quantum
number. The potential V (r) is defined by its values on a grid and an asymptotic
expansion beyond it (see for details [7]). For L = 18 there are 7 bound states
EvL = (−600.3, −392.4, −240.7, −150.4, −96.6, −54.4, −20.3) cm−1 and 1
metastable state EM

1L = (4.788 − 4 · 10−10ı) cm−1. The computation time does
not exceed 20 s. Figure 1 shows phase shifts δ as functions of scattering energy
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E; as expected, the phase shifts equal δ = π/2 at resonant energies and rapidly
change near them. Figure 2 show real and imaginary parts of wave functions of
metastable and scattering states for energies close to a very narrow resonance at
L = 18. For the resonance energy, the scattering wave function in Fig. 2 (b) is
seen to be localized within the potential well, while in the non-resonance case it
becomes no longer observed under a minor change in the incident wave energy.
Our large-scale calculations [7] showed efficiency and robustness of the program
that provides an exhaustive analysis of the spectrum of 252 bound states and 58
metastable states of beryllium dimer in ground X1Σ+

g state.

Fig. 2. Plots of the real (solid curves) and imaginary (dashed curves) parts of
metastable state wave function ΦvL(r) (a) and scattering functions ΦL(r) in the vicinity
of resonance energy E(res) ≈ 4.788 cm−1 (b). Here L = 18 and v = 7.

3.2 ODE System with Piecewise Constant Potentials

Consider, e.g., a BVP similar to that of Ref. [11] for the Schrödinger equation
in 2D domain Ωyz={y∈(0, π), z∈(−∞,+∞)}, with potential

V (y, z)= {0, z < 2;−2y, |z| ≤ 2; 2y, z > 2} .

We seek the solution in the form of expansion Ψ(y, z)=
∑N

i=1 Bi(y)Φi(z)
in a set of basis functions Bi(y)=

√
2√
π

sin(iy), which leads to Eqs. (1) with
fB(z)= fA(z) = 1, Qij(z)= 0 and effective potentials

Vij(z)= i2δij+
{

0, z < −2;−2, |z|≤2; 2, z>2
}

×
{

π/2, i=j; 0, even i−j;
−8ij

π(i2−j2)2
, odd i−j

}
.

For example, let us choose N = 6. The considered system has sets of thresh-
old energies that differ in the left and right asymptotic regions of the z-axis:
λ
(L)
i = {1, 4, 9, 16, 25, 36} and λ

(R)
i = {3.742260, 7.242058, 12.216485, 19.188688,
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Fig. 3. Real (solid curves) and imaginary (dashed curves) parts of elements (R→)ij ,
(R←)ij , (T→)ij = (T←)ji of reflection R→, R← and transmission T→, T← amplitudes,
and reflection coefficients R∗

i = (R†
∗R∗)ii at ∗ =→ (solid curves) and ∗ =← (dashed

curves) as functions of scattering energy E.

Table 2. Eigenvalues Ei, i = 1, 2, 3 of bound states and EM
i , i = 1, ..., 4 of metastable

states obtained by solving the eigenvalue problem with Neumann BC (E) by Newton
method (N) and method of matching fundamental solutions (M).

E −2.12846503065 −0.925565889437 0.835126562953

N −2.12846503036 −0.925565881437 0.835126980234

M −2.12846503156 −0.925565883542 0.835126979072

N 1.35989392876−ı0.00016253897 2.43040517408−ı0.0789059067115

M 1.35989392695−ı0.00016253895 2.43040517183−ı0.0789059070893

N 6.32021061134−ı0.00326071312 7.50608788873−ı0.0194121454599

M 6.32021060910−ı0.00326071319 7.50608789245−ı0.0194121442796

28.173689,39.286376}, respectively. So, we have different numbers of open chan-
nels and entangled channels (4) in the right-hand asymptotic region.

The bound states were calculated on a grid [−25.78125, −18.1875, −13.125,
−9.75, −7.5, −6(1)6] built up a geometric progression of steps in accordance
with a slow exponential decay of solutions at z < −6 subject to the Neumann
BC. The metastable states were found by Newton method on a grid [−4(1)4]
with the Robin BC dependent on the eigenvalue. As initial data, the solution
obtained on a grid [−2(1)2] with the Neumann BC was taken. The same grid
[−4(1)4] was used to solve the scattering problem. In both cases, IHPs of the
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sixth order (κmax
1 , ..., κmax

5 ) = (2, 1, 1, 1, 2) were used. The computation time was
62 s for the eigenvalue and scattering problem and 70 s per iteration when using
the Newton method.

Table 2 presents the calculated energies of bound and metastable states. The
results obtained by method of matching fundamental solutions [11] and FEM are
seen to coincide with an accuracy of 10−9 ÷10−7. The third eigenvalue obtained
by solving the BVP with the Neumann BC differs from the results of two other
methods by 5 · 10−7, which is due to a slow decrease of the solution.

Figure 3 shows real and imaginary parts of elements (R→)ij , (R←)ij ,
(T→)ij = (T←)ji of reflection R→, R← and transmission T→, T← amplitudes
satisfying conditions (3). At E ≤ λ

(R)
1 ≈ 3.742260 we have a single-channel scat-

tering problem on a semiaxis. As follows from scattering theory, in the case of
resonance, the argument of one element S11 = (R→)11 of the S-matrix equals
π/2, i.e., the imaginary part is equal to one and the real part is equal to zero.
These values of real and imaginary parts of (R→)11 are observed at E ≈ 1.1
and E ≈ 2.4 corresponding to the first two resonances in Table 2. So, near
E ≈ 6.3 and E ≈ 7.5 corresponding to the next two resonances, a sharp change
of reflection and transmission amplitudes is seen. Thus, the program provides
an exhaustive analysis of the scattering problem with a different number of open
entangled channels similar to the one present in sub-barrier fusion reactions [8].

4 Conclusion

We presented the FEM scheme and showed its efficiency by benchmark examples
of using the KANTBP 5M program (an upgrade of KANTBP 4M [17] containing
1484 lines) implemented and executed in MAPLE. We showed that the program
provides a suitable tool for solving multichannel scattering and eigenvalue prob-
lems for systems of second-order ODEs with continuous or piecewise continu-
ous real or complex-valued coefficients with a given accuracy. The new type of
FEM discretization is implemented using IHPs with an arbitrary multiplicity of
IHPs nodes, determined by Eqs. (6) and (7) given in Appendices A and B and
Gauss quadratures given in Appendix C, whereas only a fixed multiplicity of the
nodes and analytical integration of polynomial approximants were available in
KANTBP 4M, which preserves the continuity of derivatives of the sought solu-
tions. To reduce the new type of a scattering problem with a different number
of open entangled channels (whereas in KANTBP 4M only non-entangled open
channels could be considered) in the left and right asymptotic regions to a BVP
on a finite interval, the new type of entangled asymptotic BCs determined by
Eq. (4) are approximated by the homogeneous third-type (Robin) conditions.
To calculate metastable states with complex eigenvalues, or to solve a bound
state problem with Robin BC depending on the spectral parameter, the Newto-
nian iteration scheme is implemented. The open code of the KANTBP 5M and
test examples including INPUT and OUTPUT both implemented and executed
in MAPLE of solving eigenvalue problems and scattering problems of quantum
mechanics [7,8,10–12] and adiabatic waveguide modes [9] will be presented in
JINRLIB program library.
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A Generation of IHPs on the Standard Interval

This appendix presents an algorithm for constructing IHPs according to their
characteristics: p is the number of partitions of a finite element, zr are the IHP
nodes with multiplicities κmax

r . They are applied to construct IHPs in the FEM
scheme, then the conditions zr ∈ [0, 1], z0 = 0, zp = 1, κmax

0 = κmax
p are to be

satisfied. For further implementation it is convenient to number IHPs with n′′.

Input: r = 0, ..., p is the number of the node,
κmax

r is the multiplicity of node zr,
Output: n′ is the number of last IHP, IHP(0),...,IHP(n′) the set of IHPs,
r(n′) and κ(n′) are values of r and κ vs n′,
p′ is the degree of IHPs.

1.1.: n′ := −1;
for r:=0 to p do

wr :=
∏p

r′=0,r′ �=r

( z−zr′
zr−zr′

)κmax
r′ ;

1.2.: g0r := 1; g1r :=
∑p

r′=0,r′ �=r
κmax

r′
z−zr′ ;

for κ:=2 to κmax
r − 1 do

gκ
r := dgκ−1

r

dz + g1rgκ−1
r ;

end for;
gκ

r := gκ
r (z → zr), κ := 1, ..., κmax

r − 1
end for;

1.3.: for r:=0 to p do
a0 = H0;
for r′:=1 to κmax

r − 1 do
ar′ := Hr′/r′! − ∑r′−1

r′′=0 ar′′gκ
r′−r′′/(r′ − r′′)!

end for;
for r′:=1 to κmax

r − 1 do
n′ := n′ + 1; r(n′) := r; κ(n′) := r′;
IHP(n′) = wr(z) +

∑κmax
r′ −1

r′=0 ar′(Hr′′ → δrr′′)(z − zr)r′

end for;
end for;
p′ =

∑p
r=0 κmax

r − 1
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B Calculation of the FEM Scheme Characteristics

Note that when calculating the matrices (9) of the algebraic problem (8), we do
it without explicitly calculating Ns(z) from (7) by introducing global numbering
ϕκ

r on each of the finite elements Δj , i.e. ϕS ≡ ϕn′′(z ∈ Δj) ≡ ϕκ
r (z ∈ Δj). In

our implementation, the FEM IHP schemes are numbered so that S increases
with an increase in j, or with a constant j and an increase in n′′, or with con-
stant j and n′′ and an increase in i. For convenience, arrays of length n × 3 are
introduced: E(j, 1) is the minimum S at which ϕS is defined on Δj , E(j, 2) is the
minimum S for which r = p and ϕS is defined on Δj , E(j, 3) is the maximum
S at which ϕS is defined on Δj and a two-dimensional array C with dimension
Smax × 3, where depending on S, C(S, 1), C(S, 2), C(S, 3) correspond to μ (the
number of element of eigenvector Φh), n′′ (the number of IHP) and i (the num-
ber of equation in the system of ODEs from Eq. (1)).

Input: n is the number of finite elements Δj = [zj−1, zj ], Δ = ∪n
j=1Δj

n′ is the number of last IHP,
IHP(0),...,IHP(n′) the set of IHPs,
r(n′′) and κ(n′′) are values of r and κ vs n′′.
Output: E(n, 1 : 3) and C(Smax, 3) are the FEM scheme characteristics

for j from 1 to n do
E(j, 1) := 0;
E(j, 2) := 0;
for n′′ from 0 to n′ do

if (not
((Dirichlet BC on zmin and j = 1 and r(n′′) = 0 and κ(n′′) = 0)
or
(Dirichlet BC on zmax and j = n and r(n′′) = p and κ(n′′) = 0 ))

) then
for i from 1 to N do

S:=S+1;
if (E(j, 1) = 0) then E(j, 1) := S; fi;
if (E(j, 2) = 0 and r(i2) = p) then E(j, 2) := S; fi;
E(j, 2) := S;
C(S, 2) := n′′;
C(S, 3) := i;
if (r(n′′) = 0 and j > 1) then

if ∃S′ ∈ {E(j − 1, 2), ..., E(j − 1, 3)}:
C(S, 3) = C(S′, 3) and κ(C(S, 2)) = κ(C(S′, 2))):

then C(S, 1) := C(S′, 1);
else increase μ and C(S, 1) := μ

End of all cycles and conditions
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C FEM generation of Algebraic Eigenvalue Problem

Input: E(n, 1 : 3) and C(Smax, 3) are FEM scheme characteristics from
Appendix B. IHPg(C(S, 2)) and IHP′

g(C(S, 2)) are the values of IHPs and their
derivatives in Gaussian nodes z̄g (in local coordinates)
wg are the Gaussian weights
Output: Aμ1,μ2 , Bμ1,μ2 are matrix elements of A and B

A = 0, B = 0
for j from 1 to n do

Δzj := z(j) − z(j−1);
for S, S′ from E(j, 1) to E(j, 3) do

if C(S, 3) = C(S′, 3) then
BC(S,1),C(S′,1) := BC(S,1),C(S′,1) +

∑
g wgIHPg(C(S, 2))IHPg(C(S′, 2))

×(Δzj)1+κ(C(S,2))+κ(C(S′,2))fb(z(j−1) + Δzj z̄g);

AC(S,1),C(S′,1) := AC(S,1),C(S′,1) +
∑

g wgIHP′
g(C(S, 2))IHP′

g(C(S′, 2))
×(Δzj)−1+κ(C(S,2))+κ(C(S′,2))fa(z(j−1) + Δzj z̄g);

else
AC(S,1),C(S′,1) := AC(S,1),C(S′,1)
+

∑
g wg(IHPg(C(S, 2))IHP′

g(C(S′, 2)) −IHP′
g(C(S, 2))IHPg(C(S′, 2)))

×(Δzj)κ(C(S,2))+κ(C(S′,2))fa(z(j−1) + Δzj z̄g)
×QC(S,3),C(S′,3)(z(j−1) + Δzj z̄g);

fi;
AC(S,1),C(S′,1) := AC(S,1),C(S′,1) +

∑
g wgIHPg(C(S, 2))IHPg(C(S′, 2))

×(Δzj)1+κ(C(S,2))+κ(C(S′,2))fb(z(j−1) + Δzj z̄g)
×VC(S,3),C(S′,3)(z(j−1) + Δzj z̄g);

End of all cycles
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Abstract. A blend of two Taylor series for the same smooth real- or complex-
valued function of a single variable can be useful for approximation of said func-
tion. We use an explicit formula for a two-point Hermite interpolational poly-
nomial to construct such blends. We show a robust MAPLE implementation that
can stably and efficiently evaluate blends using linear-cost Horner form, evaluate
their derivatives to arbitrary order at the same time, or integrate a blend exactly.
The implementation is suited for use with evalhf. We provide a top-level user
interface and efficient module exports for programmatic use.

Keywords: Two-point Hermite interpolants · Blends · MAPLE · Stable and
efficient implementation

1 Introduction

Taylor series are one of the basic tools of analysis and of computation for functions of a
single variable. However, outside of specialist circles it is not widely appreciated that two
Taylor series can be rapidly and stably combined to give what is usually a much better
approximation than either one alone. In this paper we only consider blending Taylor
series at two points, say z= a and z= b. We convert to the unit interval by introducing
a new variable s with z= a+ s(b−a). Most examples in this paper will just use s, but
it is a straightforward matter to adjust back to the original variables, and we will give
examples of how to do so.

1.1 The Basic Formula

Consider the following formula, known already to Hermite, which states that the grade
m+n+1 polynomial

Hm,n(s) =
m

∑
j=0

[
m− j

∑
k=0

(
n+ k
k

)
sk+ j (1− s)n+1

]
p j

+
n

∑
j=0

[
n− j

∑
k=0

(
m+ k
k

)
sm+1 (1− s)k+ j

]
(−1) j q j (1)
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has a Taylor series matching the givenm+1 values p j = f ( j)(0)/ j! at s= 0 and another
Taylor series matching the given n+ 1 values q j = f ( j)(1)/ j! at s = 1. Putting this in
symbolic terms and using a superscript ( j) to mean the jth derivative with respect to s,
we have

H( j)
m,n(0)
j!

= p j , 0 ≤ j ≤ m , and
H( j)
m,n(1)
j!

= q j , 0 ≤ j ≤ n .

This is a kind of interpolation, indeed a special case of what is called Hermite interpo-
lation. As with Lagrange interpolation, where for instance two points give a grade one
polynomial, that is, a line, here m+n+2 pieces of information gives a grade m+n+1
polynomial. We will see that this formula can be evaluated in O(m)+O(n) arithmetic
operations.

We use the word grade to mean “degree at most”. That is, a polynomial of grade
(say) 5 is of degree at most 5, but because here the leading coefficient is not visible, we
don’t know the exact degree, which could be lower. Typically, with a blend we will not
know the degree unless we compute it. This use of the word “grade” is common in the
literature of matrix polynomial eigenvalue problems.

1.2 Applications

Our initial motivation was in writing code in MAPLE to solve the Mathieu differential
equation in [5] using a Hermite-Obreschkoff method [17–19], which uses Taylor series
at either end of each numerical step; this implicit high-order method is especially suited
to differential equations for which the Taylor series at any point may be computed
quickly, such as so-called D-finite or holonomic functions [10,14,15]. Blends can also
be used for quadrature (numerical evaluation of definite integrals), or for approximation
of functions. We will see examples of that last, in Sect. 3.

Using a companion matrix discussed in [13], we can also find approximate zeros
of nonlinear functions from Taylor series data at either end of an interval. This can
be turned into an efficient iterative method of order 1+

√
3 > 2 with the same cost

as Newton’s method, by using reversed Taylor series: see [7]. This method was used,
as were blends, in [6] to compute several graphs of nodal lines in an elliptical drum,
according to the Mathieu equation.

There are also interesting pedagogical applications. Using blends can strengthen the
notion of convergence in students’ minds; this can be done at an elementary calculus
level or at a real analysis level. The companion matrix mentioned earlier can be used
in Linear Algebra as a topic in computing eigenvalues. The derivation of the method is
a lovely exercise in contour integration for a course in complex variables. Of course,
it provides a topic in approximation theory and in numerical analysis: a proof that the
method is numerically stable will be given elsewhere. Interestingly, blends generate an
infinite number of different quadrature rules, unusual members of which can be used as
unique tools of student assessment.

1.3 Initial Examples

We show an example in Fig. 1. We take the function f (s) = 1/Γ (s−3). For a reference
on the Gamma function, see [4]. This function has known series at both ends of the
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interval: at s= 0 we have

1
Γ (s−3)

= −6s+(−6γ +11)s2+
(

π2

2
−3γ2+11γ −6

)
s3+O

(
s4

)
and at s= 1 we have

1
Γ (s−3)

= 2 (s−1)+(2γ −3)(s−1)2+
(

− π2

6
+ γ2 −3γ +1

)
(s−1)3+O

(
(s−1)4

)
,

as computed by MAPLE’s series command1. The series coefficients get complicated
as the degree increases, so we suppress printing them. We compute them up to degrees
m= 9 and n= 9 and make a blend for this function. This gives a grade 9+9+1= 19
approximation (and indeed the blend turns out to be actually degree 19; the lead coef-
ficient does not, in fact, cancel). In the figure, we plot the error H9,9(s)− f (s) and the
derivative error H ′

9,9(s)− f ′(s), first in the top row computing the blend in 15 Digits
(which takes a third of a second on a 2018 Surface Pro to compute the blend and three
of its derivatives at 2021 points, so 8084 values) and then comparing against MAPLE’s
built-in evaluator (computed at higher precision, in fact 60 Digits because of the appar-
ent end-point singularity, and then rounded correctly to 15 digits). In the second row we
compare the blend computed at 30 Digits, which takes 3.14 seconds, about ten times
longer than the 15 Digit computation. We see in the second row of the figure that the
truncation error—that is, the error in approximation by taking a degree 19 polynomial—
is smaller than 6 · 10−16; MAPLE’s hardware floats use IEEE double precision with a
unit roundoff of 2−53 ≈ 10−16. We therefore expect rounding error to dominate if we
do computation in only 15 Digits, and that is indeed what we see in the top row—and
moreover we see that the rounding error is not apparently amplified very much, if at all:
the errors plotted are all modest multiples of the unit roundoff. The unit roundoff itself
can be seen in the apparent horizontal lines, in fact. This will be indicative of the gen-
eral behaviour of a blend: when carefully implemented, rounding errors do not affect it
much. Since, as we will see, balanced blends are quite well-conditioned, this will result
in usually accurate answers.

To compare with Taylor series and other methods of approximating this particular
f (s), an equivalent cost Taylor series would be degree 19. The Taylor series of degree
19 at s= 0 has an error at s= 1− of about 3.5 ·10−7, many orders of magnitude greater
than the error in the blend; the series at s = 1 has a similar-sized error at s = 0+. This
is well-known: Taylor series are really good at their point of expansion, but will be bad
at the other end of the interval. On the other hand, the “best” polynomial approxima-
tion to this function, best in the minimax sense and found by the Remez algorithm, is
of course better than the blend we produce here. Similarly a Chebyshev approximation
to this function, as would be produced by Chebfun [1], is also better: either cheaper
for the same accuracy, or more accurate for the same effort. And then there is the new
AAA algorithm, which is better still [16], which we do not pursue further here. But
where does a blend fit in on this scale of best-to-Taylor? The Chebyshev approximation

1 In fact, MAPLE can compute the series for 1/Γ (z) at z= −n where n is a symbol, assumed to
be a nonnegative integer. This example will be discussed further in a separate paper.
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accurate to 6 · 10−16 (as computed by numapprox[chebyshev] is of degree 16, not
19, so it is about 20% cheaper to evaluate2. For the rational Remez best approxima-
tion, by numapprox[minimax] the degree [7,8] gets an error 3 ·10−16 and is cheaper
yet to evaluate. Conversely, when using a single Taylor series, experiments at high pre-
cision show that we need to use degree 29 to get an error strictly less than the error
of the (9,9) blend everywhere in the interval, and a degree 28 Taylor series is strictly
worse. Therefore both the best approximation and the Chebyshev series are better than
a blend—but in this case not by that much, while a blend beats a single Taylor series by
a considerable margin. There are other examples where Chebyshev series beat blends
by a similarly large margin, but because blends are relatively simple to compute and
to understand, being “sometimes in the ballpark” of the best kinds of approximation is
likely good enough to make these objects interesting. We are especially interested in
situations where Taylor series at either end of an interval are known or very cheap to
compute, e.g. for so-called holonomic or D-finite functions [10,14,15]. Note that even
there we find that sometimes Chebyshev series are worth the extra effort [3].

2 Truncation Error and Rounding Error

The error in Hermite interpolation is known, see for instance [12]. Here, the general
real results simplify to

f (s)−Hm,n(s) =
f (m+n+2)(θ)
(m+n+2)!

sm+1(s−1)n+1 (2)

for some θ = θ(s) between 0 and 1. This is quite reminiscent of the Lagrange form
of the remainder of Taylor series, and indeed it reduces exactly to that if we have an
(m,−1) or (−1,n) blend—that is, without using any information from the other point.
We saw in the high-precision graphs in Fig. 1 that the actual error curve really does
flatten out at both ends, when information is known at both ends.

The errors in derivatives have a similar form, and as shown in [12] essentially lose
only one order of accuracy for each derivative taken.

The numbers
(n+k

k

)
, for 0 ≤ k ≤ m, and identically

(m+k
k

)
, 0 ≤ k ≤ n, which appear

in formula (1), grow large rather quickly. If we made a table of
(m+k

k

)
, the largest entries

would be on the diagonal, and indeed(
2m
m

)
∼ 4m√

πm

(
1+O

(
1
m

))
(3)

as we find out from the MAPLE command

asympt( binomial(2*m,m), m )

2 This is harder to judge than we are saying, here. Optimal evaluation of Chebyshev polynomials
via preprocessing is not usually done; the Clenshaw algorithm is backward stable (see e.g. [8])
and usually used because it is O(n) in cost. Similarly, evaluation of a blend is O(m+ n). So
this figure of 20% is likely not very true, but rather merely indicative.
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Fig. 1. The error in an (9,9) blend for f (s) = 1/Γ (s−3). This grade of blend produces an approx-
imation that is nearly accurate to full double precision; when the correctly rounded reference
result is subtracted from the computed result, the truncation error is obscured by rounding errors.
As is shown in the second row of graphs, recomputing these approximations at higher preci-
sion gives smoother error curves of about the same size and showing the theoretical s10(1− s)10

behaviour. As usual with approximation methods, the accuracy degrades as the derivative order
increases.

and some simplification. One worries about the numerical effect of these large numbers
for high-degree blends. These do have some bad numerical effects sometimes, such as
in the companion matrices of [13], but we will also see by the example of high-degree
blends that their influence is not as bad as it might have been feared. For instance, when
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m = n = 233, we have
(2m
m

)
= 7 · 10138. Yet the blends that we have computed of this

grade (including those for the Lebesgue function) show no numerical difficulties at all.
Indeed rounding error depends strongly on how the blend is actually evaluated. The

ordinary Horner’s rule has a standard “backward error” result: each evaluation is the
exact evaluation of a polynomial with only slightly different (in a relative error sense)
coefficients. Different x gets different polynomials, of course. In precise terms, if p(x)=
∑�
k=0 akx

k and “fl” means the result on floating-point evaluation using Horner’s method
in IEEE arithmetic with unit roundoff μ ( in double precision, μ = 2−53 ≈ 10−16) then,
if 2� < 1/μ ,

fl(p(x)) = a0(1+θ1)+
�−1

∑
k=0

ak(1+θ2k+1)xk+a�(1+θ2�)x� (4)

where each θ j (which counts j rounding errors) is bounded by

γ j = jμ/(1− jμ) (5)

and that this is largest when k = �, being γ2�. Notice that zero coefficients are not dis-
turbed. This implicitly requires that � not be so large that 2�μ ≥ 1, which would happen
only with impractically large degree polynomials. See [9] or [8] for a proof of that fact
and for more practice with the notation.

A similar result is true for blends. We have a proof, which relies on the positivity
of the terms, and thus relies on s being in the interval [0,1], which will be published
elsewhere. We prove there that the floating-point evaluation of H(s) in this interval by
our adapted Horner algorithm will, if no overflow or underflow occurs, give the exact
value of a blend with different coefficients p j(1+ t j) and q j(1+ s j), where each |t j| is
smaller than γ3m+2n+4 and each |s j| is smaller than γ2m+3n+4. But, experimentally, more
seems to be true: the backward stability seems to be true over quite a large region in the
complex s-plane, not just on the interval 0 ≤ s ≤ 1.

This means that the effects of rounding error can be modelled by the usual combi-
nation of backward error (guaranteed to be small) times conditioning. Our experiments,
not shown here for space reasons, show that blends are usually well-conditioned, and
that balanced blends are the best.

2.1 Conditioning and the Lebesgue Function

One common measure of the numerical behaviour of a polynomial expression in a given
basis is the so-called Lebesgue function of the basis: this is defined to be what you
would get if absolute values are taken of each term multiplying a coefficient, and more-
over all coefficients are also replaced by 1. More formally, if we expand f (z) using the
basis φk(z) for 0 ≤ k ≤ n, so that

f (z) =
n

∑
k=0

akφk(z) , (6)

then

| f (z)| =
∣∣∣∣∣

n

∑
k=0

akφk(z)

∣∣∣∣∣ ≤ max
0≤ j≤n

|a j|
n

∑
k=0

|φk(z)| (7)
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and if we write L(z) = ∑n
k=0 |φk(z)| and call it the Lebesgue function for the basis φk(z)

then the absolute value of f (z) is bounded by the infinity norm of the vector of coeffi-
cients of f (z) times the Lebesgue function. This is simply the Hölder inequality applied
to the expression for f (z).

In our case we can see that on the interval 0 ≤ s ≤ 1 all terms in the first series,
with p j, are positive anyway; in the second term, we may make everything positive by
choosing q j = (−1) j. Outside that interval, the absolute values are needed.

Lm,n(s) =
m

∑
j=0

∣∣∣∣∣
m− j

∑
k=0

(
n+ k
k

)
sk+ j (1− s)n+1

∣∣∣∣∣
+

n

∑
j=0

∣∣∣∣∣
n− j

∑
k=0

(
m+ k
k

)
sm+1 (1− s)k+ j

∣∣∣∣∣ (8)

Thus the Lebesgue function for our blend is (inside 0 ≤ s ≤ 1) a blend itself, for a
function with the same Taylor series at s = 0 as 1/(1− s), and the same Taylor series
at s = 1 as 1/s = 1/(1+(s−1)). There is no function analytic everywhere with those
properties, of course, but nonetheless these polynomials are useful. Having a small size
of L is a guarantee of good numerical behaviour, if one implements things carefully.
Here, for the balanced casem= n, one can show that inside the interval 1≤ Lm,m(s)≤ 2,
no matter how largem is. Ifm and n are large but not balanced, then we can have Lm,n(s)
as large as the maximum of m and n. See Fig. 2.

Outside the interval 0 ≤ s ≤ 1 the Lebesgue function grows extremely rapidly: not
exponentially fast, but like a degree m+n+1 polynomial in |s|. This essentially guar-
antees that blends are typically useful numerically only between the two endpoints and
in a small region in the complex plane surrounding that line segment; that is, where
L(s) remains of moderate size. By refining this argument somewhat, we may do better
for certain polynomials by taking better account of the polynomial coefficients through
the theory of conditioning, see [8]. We do not pursue this further here.

3 Integration of a Blend

We will now see that the definite integral of a blend over the entire interval will allow
us to construct a new blend whose value at any point is the indefinite integral of the
original blend up to that point, F(x) =

∫ x
s=0Hm,n(s)ds.

Direct integration over the entire interval 0 ≤ s ≤ 1 and use of the formula

∫ 1

s=0
sa(1− s)b ds=

a!b!
(a+b+1)!

gets us a formula for F(1) involving the symbolic sum

m− j

∑
k=0

(n+k
k

)
( j+ k)! (n+1)!

(n+2+ j+ k)!
(9)
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Fig. 2. Lebesgue functions for (m,n) = 2k, 0 ≤ k ≤ 8 (balanced case) and (m,n) = (4 · 2k,2k),
0≤ k ≤ 8 (unbalanced case). We see that in the balanced case, errors will be amplified by at most
a factor of two; in the unbalanced case, it can be more, depending on the degree of unbalancing,
but never more than the maximum of m and n.

and a similar one interchanging m and n. MAPLE can evaluate both those sums:

sm := sum( binomial(n+k,k)*(n+1)!*(k+j)!/(j+k+n+2)!, k=0..m-j ):
simplify( sm );

yields the right-hand side of the equation below:

m− j

∑
k=0

(n+k
k

)
( j+ k)! (n+1)!

(n+2+ j+ k)!
=

(n+m− j+1)! (1+m)!
( j+1)(n+2+m)! (m− j)!

. (10)

Similarly we find the other sum, and finally we get∫ 1

s=0
Hm,n(s)ds=

(m+1)!
(m+n+2)!

m

∑
j=0

(n+m− j+1)!
( j+1)(m− j)!

p j

+
(n+1)!

(m+n+2)!

n

∑
j=0

(n+m− j+1)!
( j+1)(n− j)!

(−1) j q j . (11)

The numbers showing up in this formula turn out to be smaller for the higher-order
Taylor coefficients, as one would expect. We emphasize that the above formula gives
(in exact arithmetic) the exact integral of the blend over the whole interval. If the blend
is approximating a function f (s), then integrating Eq. (2) gives us∫ 1

s=0
f (s)ds−F(1) = (−1)n+1 (m+1)!(n+1)!

(m+n+3)!
f (m+n+2)(c)
(m+n+2)!

(12)

where, using the Mean Value Theorem for integrals and the fact that sm+1(1− s)n+1 is
of one sign on the interval, we replace the evaluation of the derivative at one unknown
point θ with another unknown point c on the interval.
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Once we have the value F(1), we can construct a new blend from the old one as
follows. First, we put a value of 0 for the new F(0) at the left end (in a string of blends,
we would accumulate integrals; for now, we are just integrating from the left end).
Then we adjust all the Taylor coefficients at the left: the old f (0)/0! becomes the new
F ′(0)/1!, the old f ′(0)/1! becomes the new F ′′(0)/2! and so we have to divide the old
p1 by 2; the old f ′′(0)/2! becomes the new F ′′′(0)/3! so we have to divide by 3, and so
on until the old f (m)(0)/m! becomes the new F(m+1)(0)/(m+ 1)!; the new blend will
have m+2 Taylor coefficients on the left (indexing starts at 0).

Now we make F(1) = the integral given above. We then shift all the old q j =
f ( j)(1)/ j! into the new F( j+1)(1)/( j+1)! for j = 0, . . ., n.

We now have a type (m+ 1,n+ 1) blend Hm+1,n+1(s). Its Taylor coefficients on
the left are the same as the Taylor coefficients of F(x) =

∫ x
s=0Hm,n(s)ds as a function

of x. Its Taylor coefficients on the right are also the same as those of F(x) at x = 1.
Thus we have a blend for the integral. Its grade is m+1+n+1+1 which is m+n+3,
not m+ n+ 2. However, in exact arithmetic, the result is actually of degree at most
m+n+2, because the value is the exact integral of a polynomial, and thus we see that
the blend we have is actually using more information than it needs. We could throw one
of the highest derivatives away (it’s natural to do so at the right end) but there is no real
need unless we expect to do this process repeatedly to a single blend.

To use this formula on integration from z = a to z = b one must incorporate the
change of variable from z to s = (z− a)/(b− a). Putting h = (b− a) then we must
(as always) scale the Taylor coefficients p j and q j by multiplying each by h j, and then
finally the integral is just

∫ b

z=a
Hm,n

(
z−a
b−a

)
dz= h

∫ 1

s=0
Hm,n(s)ds . (13)

The case m= n= 0 just gives the trapezoidal rule, which is right because the blend
is just a straight line; if instead m = n = 1 then we get what is called the “corrected
trapezoidal rule”

∫ b

z=a
H1,1

(
z−a
b−a

)
dz=

h
2
( f (a)+ f (b))+

h2

12

(
f ′(b)− f ′(a)

)
. (14)

A (4,4) blend gives the rule

∫ 1

s=0
H4,4(s)ds=

p0
2

+
p1
9

+
p2
36

+
p3
168

+
p4

1260

+
q0
2

− q1
9
+

q2
36

− q3
168

+
q4

1260
(15)

To get a valid rule on an interval of width h, one needs powers of h in the Taylor series.
We see that this balanced blend gives coefficients that will telescope at odd orders for
composite rules on equally-spaced intervals. [This is well-known.] See also [20] for
optimal formulas of this balanced type.
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If we have more than one blend lined up in a row, which we call a “string of
blends” (this is quite natural, as can be seen from the fact that blends are joined at
what are termed “knots” in the spline and piecewise polynomial literature), then this
formula can be used to generate composite quadrature rules. For example, in the reposi-
tory https://github.com/rcorless/Puiseux-series-Mathieu-double-points you can find the
workbook MathieuTalk.maple where the following integral is computed:∫ π

0
w2
1(z)dz

.= −2.9×10−15+5.780×10−15i .

Here w1(z) is a complex-valued eigenfunction of the Mathieu differential equation, at
a double eigenvalue. The function w1(z) is represented as a string of nine blends, with
Taylor series of order 9 at each end (so the blends are of grade 17). We multiply the
blend for w2(z)with itself by using the Cauchy product of the Taylor series at each knot.
When we integrate the result by the method outlined above, we get zero (to numerical
accuracy), which is correct.

4 Horner Form

If we look at Eq. (1) with a programmer’s eye, we see a lot of room for economiza-
tion. First, the sums are polynomials in s and in 1− s. Because 0 ≤ s ≤ 1, both of these
terms are positive, so we do not want to expand powers of (1− s), for instance; intro-
ducing subtraction means potentially revealing rounding errors made earlier. But as a
first step we may put the sums in Horner form. We remind you that the Horner form
of a polynomial f (x) = f0+ f1x+ f2x2+ f3x3 is a rewriting so that no powers occur,
only multiplication: f (x) = f0+x( f1+x( f2+x f3)). The form can be programmed in a
simple loop:

p := f[n];
for j from n-1 by -1 to 0 do
p := f[j] + x*p;

end do;

Here we have a double sum, and in each sum we may write in Horner form; that is,
where the loop above has a simple f[j] we would have an inner Horner loop to com-
pute it.

But the inner sum is simply ∑m− j
k=0

(n+k
k

)
sk once the s j(1− s)n+1 is factored out of

it. These inner sums should be precomputed by the simple recurrence (adding the next
term to the previous sum), outside of the innermost loop, so that the cost is proportional
to either n or m, and not their product.

The numbers
(m+k

k

)
and

(n+k
k

)
occur frequently, and perhaps they should be pre-

computed. Except that they, too, can be split in a Horner-like fashion, because for k ≥ 1

sk
(
m+ k
k

)
= s

m+ k
k

· sk−1
(
m+ k−1
k−1

)
.

While this is actually more expensive than precomputing the numbers, by keeping s
involved, the loop keeps the size of the numbers occurring in the formula small (remem-
ber 0 ≤ s ≤ 1), and this contributes to numerical stability. This is best seen by example.

https://github.com/rcorless/Puiseux-series-Mathieu-double-points
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In the m= n= 3 case, one of the terms is

1+4s+10s2+20s3

which rewritten in Horner form is just 1+ s(4+ s(10+ s ·20)). But if we factor out the
binomial coefficient factors using the rule above, it becomes

1+4s

(
1+

5
2
(1+2s)s

)
.

It might be better to keep only integers in the rewritten form; we do not know how to
do that in general, although it is simple enough for this example.

A final and important efficiency is to realize that the sum for the left-hand terms
and the sum for the right-hand terms is invariant under a symmetry: exchange m and n,
exchange s and 1− s, and account for sign changes in the second sum by absorbing
them into the q j, and the sums can be executed by the same program. This leads to later
programmer efficiency as well, if one thinks of a further improvement to the code: then
it only has to happen in one place. [This actually happened here.] We give the algorithm
for this half-sum in Algorithm 1. To compute the blend, this algorithm is called once
with m, n, and s and the coefficient vector p j, and once with n, m (note the reverse
order), 1− s, and the coefficient vector (−1) jq j, and the results are added.

The goal is to make the innermost loop as efficient as is reasonably possible. We
expect that these blends will be evaluated with hundreds of points (routinely) and on
occasion with tens of thousands of points (for a tensor product grid of a bivariate func-
tion, for instance). In MAPLE, we want to be able to use evalhf or even the compiler.
This provides significant speedup.

4.1 “Automatic” Differentiation

The Horner loop above can be rewritten to provide not only the value of p(x) but also
of p′(x), the derivative with respect to x. This is also called program differentiation.
MAPLE’s D operator can differentiate simple programs such as that. Supposing we
define

Horner := proc(x, f, n)
local i, p;
p := f[n];
for i from n-1 by -1 to 0 do

p := f[i] + x*p;
end do;
return p;

end proc:

Then the command D[1](Horner) produces a procedure returns just the derivative,
not the derivative and the polynomial value. If one wishes that, one may use instead
codegen[GRADIENT], with the syntax

codegen[GRADIENT](Horner, [x], function_value = true)
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Algorithm 1. Horner’s algorithm adapted for one of the two sums of the blend.
1: procedure HSF(m, n, σ , w )
2: a0 ← 1
3: for k ← 1 . . .m do
4: ak ← (n+ k)σak−1/k
5: end for
6: for k ← 1 to m do
7: ak ← ak−1+ak
8: end for
9: u ← 0
10: for j ← m by −1 to 0 do
11: u ← am− jw j+σu
12: end for
13: c ← 1
14: for j ← 1 to n+1 do
15: c ← (1−σ)c
16: end for
17: e ← cu
18: return e
19: end procedure

Procedures for evaluating higher-order derivatives may be computed in a similar way.
For our purposes, though, it is better to allow an arbitrary number nder of deriva-

tives. This means not adding one or more statements to the Horner loop, but rather
writing a loop to evaluate all the derivatives. Here is this idea applied to the Horner
program above.

Horner := proc(x, f, n, nder)
local i, ell, p;
p := Array(0..nder,0);
p[0] := f[n];
for i from n-1 by -1 to 0 do

for ell from nder by -1 to 1 do
p[ell] := p[ell]*x + ell*p[ell-1];

end do;
p[0] := f[i] + x*p[0];

end do;
return p;

end proc:

But the strength of this technique is not for symbolic use, but rather for numeric use.
When calling the modified program with a numeric x then the loop just performs (rea-
sonably efficient) numerical computation; this program can be translated into other lan-
guages, as well.

For the code for our blends, we simply wrote all the loops ourselves as above. We
have not yet tried to translate the resulting code (which is more complicated than the
simple Horner loop above) into any other languages.
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4.2 User Interface Considerations

There is similar code in the Interpolation package and in the CurveFitting pack-
age, namely Spline and ArrayInterpolation. The interface to this code should not
be too much different to those. Consideration of the various possible kinds of inputs
demonstrates that a front-end that dispatches to the most appropriate routine would be
helpful; if the input s is a symbol, then there is no point in calling evalhf, for instance.
If the input is an Array of complex floating-point numbers, then depending on Digits
it might indeed be appropriate to try the hardware float routine.

For that reason we chose a module with ModuleApply as being most convenient;
this would allow the user to be relatively carefree. We also allowed the module to export
the basic ‘fast’ routines so that if the user wanted to look after the headaches of working
storage of hardware floating point datatypes then the user could use blends in their own
code without a significant performance penalty.

The minimum information that the routine needs is z, a, b, and the Arrays p and q of
Taylor coefficients. If the user does not request a number of derivatives, it can be safely
assumed that only H(z) is wanted. The grade (m,n) of the blend can be deduced from
the input Arrays p and q. As a convenience to the user we allow the ability to specify m
or n even if the input Arrays are larger.

The types of data input can vary considerably. We allow rationals, exact numerics,
software floats, hardware floats, and complex versions of all of those. We do not provide
for finite fields (the binomial coefficients would in some cases then possibly be zero—
and we don’t even know if formula (1) is even true over finite fields—in that case) or
for matrix values although for that latter case the concept is well-defined.

The data type of the output can vary, as well: when there is an Array of inputs, and
only function values are wanted and no derivatives, the user would surely expect an
Array of outputs of the same dimension. If derivatives are wanted, though, then there
will be a higher-dimensional Array output; sometimes the special case of an index 0
for such a higher-dimensional output would fit the user’s expectations so we allow an
option to specify such. The default is just to be sensible: scalar in, scalar out; Vector in,
Vector out.

Currently several operations take place outside the code, in “main MAPLE”. This
includes series manipulations and the construction of the companion matrix pair. Con-
struction of the integrated blend is also currently left in the user’s hands.

5 Testing and Timing

Tests show the computing time depends linearly on m+ n. We first used the MAPLE

rand function to generate coefficients for the maximum m and n. Subsequent calls to
Blend used subsets of those data. The blends were evaluated in 15 Digit precision at
2021 points equally-spaced on 0 ≤ s ≤ 1 including the endpoints. The code was asked
to compute derivatives up to order 3. That is, four quantities were computed at each
point: Hm,m(s), H ′

m,m(s), H
′′
m,m(s), and H ′′′

m,m(s). The computing time was modest and
showed linear growth, with a fit of 0.023m to its data (in seconds). Thus the computing
time seems, as expected, linear in the degree of the balanced blend. We ran a further
test with the same coefficients but this time without asking for derivatives; the cost (not
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shown) was a factor 4.2 less. In both cases the main call was used, so these times include
the times for preparation and dispatch to evalhf.

For testing stability and accuracy, we first looked at very smooth functions. In Fig. 3
we see error curves at 15 Digits for (8,8) blends for f (s) = cosπs and its derivatives.
This shows the effects, scaled with the appropriate power of π , of taking the derivative.
This function has known Taylor series at each end (indeed the coefficients are just the
negatives of each other): cosπs = 1− (πs)2/2!+(πs)4/4!− ·· · and at the other end
cosπs=

−1+
π2

2
(s−1)2 − π4

24
(s−1)4+

π6

720
(s−1)6 − π8

40320
(s−1)8+O

(
(s−1)10

)
.

The (9,9) blends are better—and use essentially the same information because the Tay-
lor coefficients of degree 9 at either end are zero—but these curves are informative
about the numerical stability and efficiency of these blends.

We then chose a harder example. We consider the results of a “stress test”, namely
a blend for the function f (s) = exp(−1/s). This has all its right-sided derivatives at
s= 0+ being zero, but the function is not analytic there, and indeed has an essential sin-
gularity there. At the other end, s= 1, we use MAPLE’s symbolic-order differentiation
capability [2] diff(exp(-1/x),x$k) to find that, for k ≥ 1,

d(k) f
dxk

∣∣∣∣∣
x=1

= (−1)k+1e−1/2WhittakerM

(
k,
1
2
,1

)
= (−1)k+1e−1F

(
1− k
2

∣∣∣∣1
)

. (16)

Here F represents hypergeom([1-k], [2], 1). For k = 0 one uses the same for-
mula but adds 1. MAPLE knows how to evaluate these; they are rational multiples of
exp(−1). It is amusing to note that apart from sign, the first 5 are just exp(−1)/k!, but
the degree 5 term is −19exp(−1)/5!: only computing to degree 4 could have led to a
false experimental conclusion! This formula allows us to compute as many series coef-
ficients at s= 1 as we could wish. We take n= 900, and m= 100, giving a grade 1001
blend. Indeed only the q part of formula (1) is present, so the blend is actually degree
1001 not just grade 1001. The largest binomial coefficient appearing is

(1000
100

)
which is

about 6.4 · 10139 which suggests that numerical difficulties are to be expected. None,
however, appear. The blend is entirely smooth, and the difference between the blend
and f (s) is no more than 10−5 at its greatest. One expects that the blends will converge
as (m,n) go to infinity, for any fixed ratio of m and n. Here because the ratio was 9/10
we find the maximum error occurring near s= 0.1 (about s= 0.095).

It is natural to compare with the pure Taylor series at s= 1, both of degree 900 and
of 1001. The errors at s= 0 are, naturally, far larger, because that series diverges there.
The degree 900 polynomial has error −0.0558, while the degree 1001 polynomial has
error 0.0576. The blend wins very handily.

We now give another stress test, this one (finally) showing some numerical failure
(overflow and underflow, resulting in NaNs, or floating-point (Not A Number)s). We
blend the step function f (s) =−1 at s= 0 with all derivatives zero and f (s) = 1 at s= 1
with all derivatives zero. Depending on the ratio of m and n, the step will be located
somewhere between; near s = (m+ 1)/(m+ n+ 2) in fact. The Lebesgue function is
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Fig. 3. The error in an (8,8) blend for f (s) = cosπ s. This grade of blend produces an approxima-
tion that is nearly accurate to full double precision; the truncation error, proportional to s9(1−s)9,
is beginning to be obscured by rounding errors. Recomputing these errors at higher precision
gives smoother curves of about the same size. As usual with approximation methods, the accu-
racy degrades as the derivative order increases.

maximal at that point, with value (max(m,n) + 1)/(min(m,n) + 1). In Fig. 4 we see
a phase plot in the complex plane of a modest (3,5) blend for this function; this was
symbolically computed and plotted with no difficulty using the code below.

Digits := 15:
(m,n) := (3,5):
p := Array(0..m,[-1,0$m]):
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q := Array(0..n,[1,0$n]):
H := Blend( S, -1, 1, p, q ):
plots:-complexplot3d(H, S = -2-I .. 2+I, style=surfacecontour,

contours=[1], orientation=[-90,0],
lightmodel=none, size=[0.75, 0.75],
grid=[400,400] );

Fig. 4. Phase plot (see [21]) of the blend H3,5(s) of a step function over a region of the complex
plane surrounding the unit interval.

For higher grades, we must use the numerical code of this paper. By taking very
high grades, we stress the floating-point capacity of the code. For (m,n) = (987,610)
the largest binomial coefficient is about 3.5 ·10459 which must overflow in IEEE double
precision, which is used by evalhf. The corresponding powers of s and 1− s may
underflow. In spite of that, the blend correctly computes (taking 7.7s CPU time) the
step portion of the plot: overflow and underflow causing NaNs only happen in the flat
portions of the blend. Computing instead in 30 Digits (which takes about 70 seconds
on the same machine) does not suffer from overflow or underflow because software
floats in MAPLE have a greater range. At this precision, MAPLE computes the complete
figure (not shown). Moreover, comparing the numerical values computed at 15 Digits
to the values computed at 30 Digits, we find that the largest difference is smaller than
7 ·10−14. Working at 15 Digits, the blend was able to correctly compute the interesting
part of the curve, even though overflow/underflow prevented it from computing the flat
parts. The derivative was computed in 15 Digits correct to 10−11 in the same region the
function was computed correctly.
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We conclude that blends of degrees high enough to produce binomial coefficients(m+n
n

)
that overflow will cause numerical difficulty. What seems surprising is that this

is the only case where we have seen numerical difficulty. We have also looked at cases
where the function has nearby complex poles and so the series cannot converge, and
while the blends do have unexpected features in the regions between the two points of
expansion of the series, in all cases they behaved smoothly. Even when we tried series
for functions whose Taylor series are known to be ill-conditioned (such as exp(−50s)
blending with exp(150(s−1)/π) the resulting behaviour was explainable.

6 Future Work

The idea of blending two Taylor series is quite old, and people have tried to do it in
several different ways. The Hermite interpolation idea is one of the oldest, but we think
that not enough attention has been paid to it. There are other ways in the literature. For
example, there is the very similar work in [11], which makes a kind of blend with a
variable upper limit and uses that to construct rational approximations.

The next step of course is to combine different blends into what we call a string
of blends, joined at “knots” where the same local Taylor series are reused. This is a
kind of piecewise polynomial, similar to splines which are another kind of piecewise
polynomial. Of course having a single blend use more than two truncated Taylor series
is just Hermite interpolation. There are a great many other similar ideas in the literature.

We would like to extend this code to vector and matrix blends. We would also
like to blend Laurent and Puiseux series (Laurent series seem, in fact, very simple:
just do a blend of the Taylor series for (z−a)α(z−b)β f (z)—but we haven’t tried this
yet). Creating an environment where one can add, subtract, multiply, and apply other
operations to blends and produce new blends, might be of interest, in a way similar to
Chebfun (www.chebfun.org). It is in such an environment where the companion pair
and the integration of blends would fit most naturally.

Extending this work to the multivariable case (aside from the use of tensor product
grids) may also be of interest. However, the residue argument breaks down for finding
formulas; other approaches will have to be used. There is a significant literature on low-
degree multivariate Hermite interpolation, and in the context of finite element methods
there is interest in higher-degree methods (and considerable published work) as well.

Acknowledgements. We thank Jürgen Gerhard for coordinating the reviewing, and the referees
for their comments.
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Abstract. Various methods can obtain certified estimates for roots of
polynomials. Many applications in science and engineering additionally
utilize the value of functions evaluated at roots. For example, critical val-
ues are obtained by evaluating an objective function at critical points. For
analytic evaluation functions, Newton’s method naturally applies to yield
certified estimates. These estimates no longer apply, however, for Hölder
continuous functions, which are a generalization of Lipschitz continuous
functions where continuous derivatives need not exist. This work develops
and analyzes an alternative approach for certified estimates of evaluating
locally Hölder continuous functions at roots of polynomials. An imple-
mentation of the method in Maple demonstrates efficacy and efficiency.

Keywords: Roots of polynomials · Hölder continuous functions ·
Certified evaluations

1 Introduction

For a univariate polynomial p(x), the Abel-Ruffini theorem posits that the roots
cannot be expressed in terms of radicals for general polynomials of degree at
least 5. A simple illustration of this is that the solutions of the quintic equation

p(x) = x5 − x − 1 = 0 (1)

cannot be expressed in radicals. Thus, a common technique is to compute numer-
ical approximations with certified bounds for the roots of a polynomial. Some
approaches based on Newton’s method are the Kantorovich theorem [7] and
Smale’s α-theory [19]. Kantorovich’s approach is based on bounds for a twice-
differentiable function in an open set while Smale’s approach only uses local
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estimates at one point coupled with the analyticity of the function. Certified
approximations of roots of polynomials can also be obtained using interval meth-
ods such as [4,8,13,18] along with the Krawczyk operator [10,12].

Although computing certified estimates for roots of polynomials is impor-
tant, many applications in science and engineering utilize the roots in further
computations. As an illustrative example, consider the optimization problem

min{21x8 − 42x4 − 56x3 + 3 : x ∈ R}. (2)

For this problem, the global minimum is the minimum of the critical values which
are obtained by evaluating the objective function g(x) = 21x8 − 42x4 − 56x3 +3
at its critical points, i.e. at the real roots of g′(x) = 168x2(x5 −x− 1). Since the
quintic in (1) is a factor of g′(x), only approximations of the roots of g′ can be
computed. One must translate these approximate roots to certified evaluations
of the objective function g(x) evaluated at the roots of the polynomial g′(x) to
obtain certified bounds on the global minimum of (2).

One approach for computing a certified evaluation of f(x) at roots of a poly-
nomial p(x) is via certified estimates of solutions to the multivariate system
p(x) = y − f(x) = 0. For sufficiently smooth f , approaches based on Newton’s
method generate certified estimates. When f is not differentiable, one can alter-
natively follow a two-stage procedure: first, certifiably estimate a root of p(x) to
error at most ε and then use interval evaluation methods, e.g. see [13, Chap. 5],
to compute a certified estimate of f(x) evaluated at the root. Such an approach
provides direct control on the approximation error of a root of p(x) but not on
the output evaluation error of f(x) which will typically be larger than ε.

The approach in this paper considers certified evaluations of locally Hölder
continuous functions at roots of polynomials and links the desired output of
the certified evaluation with the error in the approximation of the root. Hölder
continuous functions are a generalization of Lipschitz functions which are indeed
continuous, but need not be differentiable anywhere, e.g., see Sect. 5.3. Moreover,
satisfying the local Hölder continuity condition does not guarantee that a func-
tion can be evaluated exactly for, say, rational input. Therefore, our approach
also incorporates numerical evaluation error into the certified bounds.

The rest of the paper is organized as follows. Section 2 describes the neces-
sary analysis of locally Hölder continuous functions, with a particular focus on
polynomials and rational functions. Section 3 summarizes the approach used for
developing certified bounds on roots of polynomials. Section 4 combines the certi-
fication of roots and evaluation bounds on Hölder continuous functions yielding
our approach for computing certified evaluations. Section 5 presents informa-
tion regarding the implementation in Maple along with several examples demon-
strating its efficacy and efficiency. Section 6 applies the techniques developed
for certified evaluations to prove non-negativity of coefficients arising in a series
expansion of a rational function. The paper concludes in Sect. 7.

2 Hölder Continuous Functions

The following describes the collection of functions under consideration.
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Definition 1. A function f : C → C is locally Hölder continuous at a point
x∗ ∈ C if there exist positive real constants ε, C, α such that

|f(x∗) − f(y)| ≤ C · |x∗ − y|α ≤ C · εα (3)

for all y ∈ B(x∗, ε) where B(x∗, ε) = {z ∈ C : |z−x∗| ≤ ε}. In this case, f(x) is
said to have Hölder constant C and Hölder exponent α at x∗. Moreover, if α = 1,
then f(x) is said to be Lipschitz continuous at x∗ with Lipschitz constant C.

Functions which are locally Hölder continuous at a point are clearly continu-
ous at that point and the error bound provided in (3) will be exploited in Sect. 4
to provide certified evaluations. Every function f(x) which is continuously dif-
ferentiable in a neighborhood of x∗ is locally Hölder continuous with α = 1,
i.e., locally Lipschitz continuous. For n ≥ 1, f(x) = n

√|x| is continuous but not
differentiable at x∗ = 0. It is locally Hölder continuous at x∗ = 0 with Hölder
constant C = 1 and Hölder exponent α = 1/n.

A computational challenge is to determine a Hölder constant C and Hölder
exponent α for f(x) on B(x∗, ε) given f(x), x∗, and ε > 0. Sections 2.1 and 2.2
describe a strategy for polynomials and rational functions, respectively.

2.1 Polynomials

Since every polynomial f(x) is continuously differentiable, we can take the Hölder
exponent to be α = 1 at any point x∗. However, the Hölder constant C depends
upon x∗ and ε. The Fundamental Theorem of Calculus shows that one just needs

C ≥ max
y∈B(x∗,ε)

|f ′(y)|. (4)

Although one may attempt to compute this maximum directly, the Taylor series
expansion of f ′(x) at x∗ provides an easy to compute upper bound. If d = deg f ,
f ′(x) =

∑d
i=1

f(i)(x∗)
(i−1)! (x−x∗)i−1 so that the triangle inequality yields the bound

C :=
d∑

i=1

|f (i)(x∗)|
(i − 1)!

εi−1 ≥ max
y∈B(x∗,ε)

|f ′(y)|. (5)

2.2 Rational Functions

The added challenge with a rational function f(x) is to ensure that it is defined on
B(x∗, ε). One may attempt to compute the poles of f(x) and ensure that none are
in B(x∗, ε). However, the implementation in Sect. 5 is based on a local approach
that also enables computing local upper bounds on |f ′(x)|. For f(x) = a(x)/b(x),
one can prove b(y) �= 0 for all y ∈ B(x∗, ε) by showing that |b(x∗)| > |b(y)−b(x∗)|
for all y ∈ B(x∗, ε). If db = deg b, then

|b(y) − b(x∗)| =

∣∣∣∣∣

db∑

i=1

b(i)(x∗)
i!

(y − x∗)i

∣∣∣∣∣
≤

db∑

i=1

|b(i)(x∗)|
i!

εi.
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Therefore, a certificate that f(x) is continuously differentiable on B(x∗, ε) is

|b(x∗)| >

db∑

i=1

|b(i)(x∗)|
i!

εi

yielding

min
y∈B(x∗,ε)

|b(y)| ≥ |b(x∗)| −
db∑

i=1

|b(i)(x∗)|
i!

εi > 0. (6)

When b(x∗) �= 0, it is clear that one can always take ε small enough to satisfy (6).
When f(x) is continuously differentiable on B(x∗, ε), then one can take the

Hölder exponent α = 1 and the Hölder constant C as in (4). Hence,

max
y∈B(x∗,ε)

|f ′(x)| ≤
max

y∈B(x∗,ε)
|a′(y)|

min
y∈B(x∗,ε)

|b(y)| +
max

y∈B(x∗,ε)
|a(y)| · max

y∈B(x∗,ε)
|b′(y)|

min
y∈B(x∗,ε)

|b(y)|2

where the maxima can be upper bounded similar to (5) and the minimum can
be lower bounded using (6).

3 Certification of Roots

The initial task of determining certified evaluation bounds at roots of a given
polynomial is to compute certified bounds of the roots. From a theoretical per-
spective, we assume that we know the polynomial p(x) exactly. From a computa-
tional perspective, we assume that p(x) has rational coefficients, i.e., p(x) ∈ Q[x].
The certification of roots of p(x) can thus be performed using RealRootIsolate
based on [3,15,20–22] in Maple as follows.

Since p(x) is known exactly, we can first reduce down to the irreducible case
with multiplicity 1 roots by computing an irreducible factorization of p(x), say

p(x) = p1(x)r1 · · · ps(x)rs

where p1, . . . , ps are irreducible with corresponding multiplicities r1, . . . , rs ∈ N.
For p(x) ∈ Q[x], factor in Maple computes the irreducible factors in Q[x], i.e.,
each pi(x) ∈ Q[x]. If z ∈ C is a root of pj(x), then z has multiplicity 1 with
respect to pj(x), i.e., z is a simple root of pj(x) with pj(z) = 0 and p′

j(z) �= 0.
In contrast, z has multiplicity rj with respect to p(x). Note that one could
alternatively use a squarefree factorization with appropriate modifications.

For each irreducible factor q := pj , one computes certified approximations
of each root. Although methods over C are more efficient [2,14], we utilize the
RealRootIsolate function in Maple by transforming the domain C into R

2 via

q(x + iy) = qr(x, y) + i · qi(x, y) where i =
√−1. (7)

Therefore, solving q = 0 on C corresponds with solving qr = qi = 0 on R
2.

Applying RealRootIsolate with an optional absolute error bound abserr that
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will be utilized later guarantees as output isolating boxes for every real solution
to qr = qi = 0 on R

2. Therefore, looping over the irreducible factors of p, one
obtains certified bounds for every root z of p(x) in C of the form a1 ≤ real(z) ≤
a2 and b1 ≤ imag(z) ≤ b2 where a1, a2, b1, b2 ∈ Q.

4 Certified Evaluations

Combining information on Hölder continuous functions from Sect. 2 and cer-
tification of roots of polynomials from Sect. 3 yields the following approach to
develop certified evaluations. With input a polynomial p(x), a Hölder continuous
function f(x) which is defined at each root of p(x), and an error bound ε > 0, the
goal is to develop an approach that computes an approximation of f(z) within ε
for each root z of p(x). Since one may not be able to evaluate f(x) exactly, we
incorporate an evaluation error of δ ∈ (0, ε). Typically, δ can be decreased by
utilizing higher precision computations. For rational input, rounding to produce
finite decimal representations constitutes the only source of representation error
in Maple. Our implementation utilizes enough digits to have δ = ε/10.

The first step is to utilize Sect. 3 to determine initial certified bounds for
each root of p(x). For an initial error bound on the roots, we start with γ = ε/2
and approximate each root z by x∗ with |z − x∗| < γ. Certified evaluations are
then obtained root by root since the Hölder constants are dependent upon local
information near each root. In particular, the next step is to compute a Hölder
exponent α and Hölder constant C that is valid on the ball B(x∗, 2γ). If this is
not possible, e.g., if f(x) cannot be certified to be defined on B(x∗, 2γ), one can
simply reduce γ, e.g., by replacing γ by γ/2 and repeating the process using a
newly computed certified approximation of z. Since f(x) is defined at each root
of p(x), such a loop must terminate.

The final step is to utilize local information to compute a new approximation
of root z that will produce a certified evaluation within ε. Consider μ such that

0 < μ ≤ min

{

γ,
α

√
ε − δ

C

}

and z∗ an approximation of z such that z ∈ B(z∗, μ). Since |x∗ − z∗| ≤ 2γ,
we have B(z∗, μ) ⊂ B(x∗, 2γ) so that all of the Hölder constants are valid
on B(z∗, μ). Hence, all that remains is to compute a certified approximation
of f(z∗), say f∗, within the evaluation error of δ since

|f∗ − f(z)| ≤ |f∗ − f(z∗)| + |f(z∗) − f(z)| ≤ δ + C · |z∗ − z|α ≤ δ + C · μα ≤ ε.

Remark 1. Software packages that deal with numerical approximations express
numerical estimates either in terms of absolute or relative error. The choice is
typically made based on the intended application. For example, relative error
is more easily associated with memory requirements for storing approximations
regardless of the magnitude of a value being approximated so that control over
relative error in approximations is often easier than controlling absolute error.
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We have chosen to bound the absolute error here since the application of our
Hölder function based approach presented in Sect. 6 is simpler to state in terms
of absolute error.

Remark 2. When f is polynomial, one could use the built-in Maple function
RootFinding[Isolate] which implements various root isolation strategies based
on [1,9,16,17,20]. The Maple function call is:

RootFinding[Isolate]([p_r,p_i],[x,y],constraints=[f],
digits=ceil(-log[10](eps)))

where pr and pi are the real and imaginary parts of p(x + iy), respectively.
The outputs estimate both the roots of p and evaluations of f at those roots.
One principal difference between our approach and the built-in functionality
is that RootFinding[Isolate] is only implemented for polynomial evaluation
functions. See Sect. 5.1 for a polynomial example using RootFinding[Isolate].

Example 1. As an illustration, consider evaluating the Cantor ternary function

f

⎛

⎝
∞∑

j=1

aj

3j

⎞

⎠ =
1

2N
+

1
2

N−1∑

j=1

aj

2j
where

{
aj ∈ {0, 1, 2} for j = 1, 2, . . . ,
N = min{j | aj is odd} ∈ Z>0 ∪ {∞}.

at the unique root z ∈ [0, 1] of the polynomial

p(x) =
(

3
2

)101

x5 + 17
(

3
2

)101

x − 1

with error ε = 10−16. Figure 1 plots the Cantor ternary function on the
domain [0, 1] along with the point (z, f(z)). Clearly, the Cantor ternary func-
tion f(x) is not polynomial so that RootFinding[Isolate] can not be utilized.
Since f(x) can be evaluated exactly at points with a finite ternary expansion,
we can take δ = 0. Moreover, f(x) is Hölder continuous on [0, 1] with Hölder
exponent α = log 2/log 3 and Hölder constant C = 2 so that we can simply take

μ = 10−26 <
α

√
ε − δ

C
.

Hence,

z
∗

=
2

340
+

2

341
+

1

342
+

1

343
+

2

344
+

2

345
+

1

348
+

1

349
+

1

350
+

1

351
+

2

352
+

1

353
+

1

354
+

2

355
+

1

356

satisfies |z − z∗| < μ so that

f(z∗) =
1

242
+

1
2

(
2

240
+

2
241

)
=

7
242

is certifiably within ε of f(z).
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Fig. 1. Plot of the Cantor ternary function f with evaluation at a root of p.

5 Implementation and Examples

The certified evaluation procedure has been implemented as a Maple pack-
age entitled EvalCertification available at https://github.com/P-Edwards/
EvalCertification along with Maple notebooks for the examples. The main export
is the procedure EstimateRootsAndCertifyEvaluations which has the follow-
ing high level signature:

Input:

– Univariate polynomial p ∈ Q[x].
– List of locally Hölder continuous functions f1, . . . , fm with which to certifiably

estimate evaluations at the roots of p(x).
– List of procedures specifying how to compute local Hölder constants and

exponents for f1, . . . , fm. (See Sect. 5.3 for example of the syntax).
– Desired accuracy ε ∈ Q>0.

Main output:

– Complex rational root approximations z∗
1 , . . . , z∗

s , one for each of the distinct
roots z1, . . . , zs of p(x), such that |zj − z∗

j | ≤ ε.
– For each fi and xj , a complex decimal number f∗

ij with |fi(xj) − f∗
ij | ≤ ε.

The EvalCertification package is formatted in a .mpl file which can be read
into a notebook with:

read("EvalCertification.mpl")
with(EvalCertification)

This lists the package’s following four exports: the main function and three built
in procedures for determining local Hölder constants and exponents for common
classes of Hölder functions.

https://github.com/P-Edwards/EvalCertification
https://github.com/P-Edwards/EvalCertification
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EstimateRootsAndCertifyEvaluations, HolderInformationForExponential,

HolderInformationForPolynomial, HolderInformationForRationalPolynomial

The following highlight specific Maple types of inputs and outputs as well as
other interface details.

5.1 Critical Values

As a first example, consider (2) by certifiably evaluating

f(x) = 21x8 − 42x4 − 56x3 + 3

at the roots of p(x) = f ′(x) = 168x2(x5 − x − 1) with error ε = 10−14.

f_polynomial := 21x^8 - 42x^4 - 56x^3 + 3;
f_derivative := diff(f_polynomial, x);
EstimationPrecision := 1/10^14;

The main call to EstimateRootsAndCertifyEvaluations is subsequently:

solutions_information :=
EstimateRootsAndCertifyEvaluations(f_derivative,

[f_polynomial, f_derivative],
HolderInformationForPolynomial,
EstimationPrecision);

The first argument provides the polynomial to solve and the second is a list of
polynomials to evaluate. For illustration, we include evaluating the polynomial
to solve in the evaluation list. The third argument is a procedure for computing
Hölder constants which, in this case, uses the procedure that implements the
estimates in Sect. 2.1 for polynomials. Notice that we need only provide the
procedure once since all functions for evaluation fall into the same class of Hölder
functions, namely polynomials. The last argument is the final error bound.

The output solutions information is formatted as a Record. Certifiably
estimated roots are stored in a list as illustrated.

solutions_information:-root_values =
[0,
2691619717901426047/2305843009213693952,
26745188167908553113/147573952589676412928 -
19995423894655642147*I/18446744073709551616, ...]

Evaluations are also stored in lists, one list for each function to evaluate with
one entry for each root of p. Estimates are ordered so that the estimate at index i
in its list corresponds to the root at index i in the roots list.

solutions_information:-evaluations_functions_1 =
[3., -91.6600084778015707, ...];
solutions_information:-evaluations_functions_2 =
[0, -6.692143197043304*10^(-16), ...];
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Therefore, the solution to (2) is −91.6600084778015707 which is certifiably
correct within an error of 10−14.

Since f(x) is polynomial, we can compare with RootFinding[Isolate] as
discussed in Remark 2. Since evaluations at only the real critical points are of
interest, one can simply utilize

Isolate(f_derivative, constraints = [f_polynomial], digits = 14);

which yields

[x = 0., x = 1.1673039782614],
[[21*x^8 - 42*x^4 - 56*x^3 + 3 = 3.],
[21*x^8 - 42*x^4 - 56*x^3 + 3 = -91.660008477802]]

The 14 digits of 1.1673039782614 are indeed correct, but the result
has an absolute error of approximately 1.87 · 10−14 while the evaluation
−91.660008477802 has an absolute error of approximately 4.29 ·10−13. Nonethe-
less, the relative error for both the root and evaluation estimates is less than the
requested 10−14, both of which are controlled by the digits argument. This ful-
fills the documented specifications for Isolate, though the digits argument’s
control over the evaluation’s relative error is undocumented [11]. An additional
function call with digits set to 16 would be necessary to decrease the absolute
error below 10−14 for both the root and evaluation.

5.2 Comparison with Ball Arithmetic

Interval and ball arithmetic methods can provide similar certification function-
ality as EvalCertification by first isolating each root and then evaluating a
interval extension of the function. As mentioned in the Introduction, this two-
step procedure does not provide direct control on the size of the evaluation
error and thus one may need to perform several loops to refine the isolation of
each root to have sufficiently small evaluation error. In contrast, for evaluating
functions without poles, EvalCertification always performs root estimation
exactly twice: once to obtain local Hölder information and then a second time
to guarantee small evaluation error.

For illustration, consider evaluating the function f(x) = 50x at the roots of
the polynomial p(x) = (x7 + x − 1)(x − 1000) with an error at most ε = 2−1000.
The library Arb [6] required a root estimation error of at most 0.91 · 2−8176 to
provide the requisite evaluation error. In Arb, relative error is input as a number
of bits of precision available to computations. Thus, by supplying additional bits
of precision, one lowers the relative and absolute error. For our computation, the
precision in Arb was initialized at 210 = 1024 bits of precision which is enough
to accurately store the desired error of 2−1000 exactly. We then utilized the two-
stage procedure which loops back to refine the root if the output evaluation error
is unacceptably large. If we simply double the number of bits of precision used
in each loop, then three iterations are required to yield 8192 bits of precision
which is sufficient to perform root estimation accurately enough for the function
evaluation to yield the desired evaluation error.
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As mentioned in Sect. 3, transforming complex root isolation into bivariate
real root isolation is a costly maneuver. However, such an approach was used in
EvalCertification to take advantage of the already existing RealRootIsolate
in Maple. Since Arb implements a faster univariate solver that only allows relative
error bounds on the estimates as input, this accounts for the drastic difference in
computing time on this problem using Arb (0.52 s) and using RealRootIsolate
in Maple via EvalCertification (153 s).

5.3 Extending with Custom Hölder Information Procedures

Polynomial and rational functions can utilize the built-in procedures for comput-
ing local Hölder constants. One more feature of EvalCertification is the ability
to extend the certification procedures to new classes of functions by specifying
how to compute local Hölder constants. To illustrate, consider the Weierstrass
function f : R → R given by

f(x) =
∞∑

n=0

7− n
3 cos(7nπx)

which we aim to evaluate at the unique real root z of p(x) = x7 +x−1. Figure 2
plots f(x) and p(x) along with the point (z, f(z)). The Weierstrass function f(x)
is nowhere differentiable but is globally Hölder continuous [5] with exponent
α = 1/3 and constant C ≤ 4.73. The following is the format for defining a new
procedure to supply the Hölder information:

WeierInfo := proc(f, point, radius, domain_estimate := false)
return Record(’exponent’ = 1/3,

’constant’ = 4.73,
’avoid_roots’ = false); end proc;

Fig. 2. Plot of the Weierstrass function f(x), the polynomial p(x), and point (z, f(z))
where z is the unique real root of p(x).
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All custom Hölder information procedures must follow the same signature as this
example. The exponent α and constant C in the output Record should satisfy
the Hölder conditions for InputFunction on the ball B(point, radius). For this
example, the Hölder information is independent of the point and radius since
the Weierstrass function is globally Hölder continuous. The entry avoid roots
lists estimates within radius of points missing from the input function’s domain
or false if defined everywhere.

Since f(x) is an infinite series, we must evaluate a finite truncation of it, say

fN (x) =
N∑

n=0

7− n
3 cos(7nπx) with |f(x) − fN (x)| ≤

∞∑

n=N+1

7− n
3 =

7− N+1
3

1 − 7− 1
3

=: EN .

Therefore, to approximate f(z), one has three sources of error: approximation
error in z, finite truncation error EN , and numerical error when evaluating fN .
After selecting N such that EN < ε, one can simply replace ε by ε−EN with the
other two errors already accounted for in our approach. The following commands
produce certified evaluations of f to precision 10−14 at z utilizing N = 51 so
that E51 < 4.71 · 10−15:

p := x^7 + x - 1;
MaxErr := 1/10^14-E_N;
solutions_information :=
EstimateRootsAndCertifyEvaluations(p,[F_N],WeierInfo,MaxErr);

This yields z∗ = 0.79654435412846 and f∗ = −1.06659590869988.

5.4 Benchmarking

As mentioned in Sect. 5.2, the dominant computational cost is in estimating roots
with the next largest cost associated with computing local Hölder constants.
Suppose that R(p, ε) is the complexity of approximating roots of p within ε,
H(f1, . . . , fn, p, ε) is the minimum complexity of computing Hölder constants at
one root, and A(p, f1, . . . , fn, ε) is the number of repetitions required to find an
accuracy γ ≤ ε where local Hölder constants can be calculated. Then,

A(p, f1, . . . , fn, ε)(R(p, ε) + ndeg(p)H(f1, . . . , fn, p, ε)) + R(p, ε)

is a lower bound on the complexity. The number of repetitions A is 1 for functions
without poles and otherwise depends on the input in a complicated way which
we do not attempt to characterize here.

We benchmarked EvalCertification using random polynomials generated
by the command randpoly in Maple. All tests computed roots of a random
polynomial p(x) with integer coefficients between −1010 and 1010 and evaluated
rational functions where the numerator and denominator were polynomials of
degree D. The average was taken over 50 random selections. Figure 3 shows
the results of the benchmarking tests, which were performed on Ubuntu 18.04
running Maple 2020 with an Intel Core i7-8565U processor. They were based on
the degree d of p(x), the value of D, the number of functions n to evaluate, and
the size of the output error ε.
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Fig. 3. Results of tests with (a) d ∈ {1, . . . , 25}, D = 5, n = 1, and ε = 10−14;
(b) d = 5, D ∈ {1, . . . , 25}, n = 1, and ε = 10−14; (c) d = 5, D = 5, n ∈ {1, . . . , 25},
and ε = 10−14; (d) d = 5, D = 5, n = 1, and ε ∈ {1, 10−1, . . . , 10−25}.

6 Application to Prove Non-negativity

One application of our approach for computing certified evaluations is to certifi-
ably decide whether or not all coefficients of the Taylor series expansion centered
at the origin are non-negative for a given real rational function r(x). We focus
on non-negativity since non-positivity is equivalent to non-negativity for −r(x)
and alternating in sign is equivalent to non-negativity for r(−x). The following
method uses certified evaluations to obtain information about the coefficients
in the tail of the Taylor series expansion reducing the problem to only needing
to inspect finitely many coefficients. This approach assumes that the function
does not have a pole at the origin, its denominator has only simple roots, and its
denominator has a real positive root that is strictly smallest in modulus amongst
all its roots. This approach can be extended to more general settings, but will
not considered here due to space considerations.

We will make use of the following standard theorem.

Theorem 1. Let p(x), q(x) ∈ R[x] such that p(x) and q(x) have no common
root, q(0) �= 0 and deg(p(x)) < deg(q(x)) = d. If q(x) has only simple roots
say α1, . . . , αd ∈ C, then r(x) = p(x)/q(x) has a Taylor series expansion of the
form r(x) =

∑∞
n=0 rnxn converging for all x ∈ C with |x| < min{|α1|, . . . , |αd|}.

Furthermore, for all n ≥ 0,

rn = −
d∑

i=1

p(αi)
αiq′(αi)

α−n
i . (8)

Theorem 1 follows from partial fraction decomposition of rational functions or
using linear recurrences. For completeness, we provide a proof in the Appendix.
Using Theorem 1, we obtain the following result on the eventual behavior of the
coefficients of the Taylor series of certain rational functions.
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Theorem 2. With the setup from Theorem 1, define Ci = −p(αi)/(αiq
′(αi))

for i = 1, . . . , d. If α1 ∈ R is such that |α1| < min{|α2|, . . . , |αd|}, then there
exists N after which exactly one of the following conditions on rn holds:

1. If α1 > 0 and C1 > 0, then rn > 0 for all n > N .
2. If α1 > 0 and C1 < 0, then rn < 0 for all n > N .
3. If α1 < 0, then rn is alternating in sign for all n > N , i.e., (−1)n · rn > 0

for all n > N or (−1)n · rn < 0 for all n > N .

Moreover, one may take N = log(K)/ log(M/m) where K =
∑d

i=2 |Ci|/|C1|,
m = |α1|, and M = min{|α2|, . . . , |αd|}.

A proof of Theorem 2 is provided in the Appendix. Theorems 1 and 2 yield
the following.

Corollary 1. Suppose that f(x), q(x) ∈ R[x] have no common root, q(0) �= 0,
and q(x) has only simple roots, namely α1, . . . , αd ∈ C, such that α1 ∈ R

and |α1| < min{|α2|, . . . , |αd|}. Let g(x), p(x) ∈ R[x] be the unique poly-
nomials such that f(x) = q(x) · g(x) + p(x) with deg(p(x)) < deg(q(x)).
Define Ci = −p(αi)/(αiq

′(αi)) for i = 1, . . . , d. Then, f(x)/q(x) has a Tay-
lor series expansion f(x)/q(x) =

∑∞
n=0 Rnxn converging for all x ∈ C with

|x| < min{|α1|, . . . , |αd|} and there is a threshold N0 so that exactly one of the
following conditions on Rn holds:

1. If α1 > 0 and C1 > 0, then Rn > 0 for all n > N0.
2. If α1 > 0 and C1 < 0, then Rn < 0 for all n > N0.
3. If α1 < 0, then Rn is alternating in sign for all n > N0, i.e. (−1)n · Rn > 0

for all n > N0 or (−1)n · Rn < 0 for all n > N0.

One can take N0 = max{deg(f(x)) − deg(q(x)) + 1, log(K)/ log(M/m)} where
K =

∑d
i=2 |Ci|/|C1|, m = |α1|, and M = min{|α2|, . . . , |αd|}.

Proof. Since f(x)/q(x) = g(x) + p(x)/q(x), applying Theorem 1 yields the first
part. Since the Taylor series coefficients of f(x)/q(x) and p(x)/q(x) are same for
n > deg(f(x))−deg(g(x)), the second part immediately follows from Theorem 2.

One key to utilizing Theorem 2 and Corollary 1 is to certify that q(x) sat-
isfies the requisite assumptions. Validating that q(x) has only simple roots fol-
lows from computing an irreducible factorization as in Sect. 3 and checking if
every factor has multiplicity 1. Section 6.1 describes a certified approach to ver-
ify the remaining conditions on q(x). Section 6.2 yields a complete algorithm
for certifiably deciding non-negativity of all Taylor series coefficients which is
demonstrated on two examples.

6.1 Classification of Roots

Given a polynomial q(x) ∈ R[x] with only simple roots and q(0) �= 0, the fol-
lowing describes a method to certifiably determine if q(x) has a positive root



198 P. B. Edwards et al.

that is strictly smallest in modulus amongst all its roots. This method uses
the ability to certifiably approximate all real points in zero-dimensional semi-
algebraic sets. Computationally, this can be accomplished using the command
RealRootIsolate in Maple. Note that some of these computations could also
be accomplished using RootFinding[Isolate] following Remark 2.

The first step is to certifiably determine if q(x) has a positive root via

P = {p ∈ R : q(p) = 0, p > 0}.

If P = ∅, then one returns that q(x) does not have a positive root. Otherwise,
one proceeds to test the modulus condition for α1 = min P.

The modulus condition needs to be tested against negative roots and non-real
roots. For negative roots, consider

N = {n ∈ R : q(−n) = 0, n > 0} and B = {b ∈ R : q(b) = q(−b) = 0, b > 0}.

By using certified approximations of α1 and points in N and B of decreasing
error, one can certifiably determine which of the following holds: α1 < min N ,
α1 > min N , or α1 ∈ B ⊂ P. If α1 > min N or α1 ∈ B, then one returns that q(x)
does has not a positive root that is strictly smallest in modulus amongst all its
roots. Otherwise, one proceeds to the non-real roots by considering

L = {(r, a, b) ∈ R
3 : q(r) = 0, r > 0, q(a + ib) = 0, b > 0, a2 + b2 < r2} and

E = {(r, a, b) ∈ R
3 : q(r) = 0, r > 0, q(a + ib) = 0, b > 0, a2 + b2 = r2}.

Note that q(a + ib) = 0 provides two real polynomial conditions on (a, b) ∈ R
2

via the real and imaginary parts as in (7) so that L and E are clearly zero-
dimensional semi-algebraic sets. Moreover, for the projection map π1(r, a, b) = r,
π1(L∪E) ⊂ P. By using certified approximations of α1 and points in L and E of
decreasing error, one can certifiably determine if α1 ∈ π1(L∪E) or α1 /∈ π1(L∪E).
If the former holds, then one returns that q(x) does has not a positive root that
is strictly smallest in modulus amongst all its roots. If the later holds, then one
returns that q(x) does indeed have a positive root that is strictly smallest in
modulus amongst all its roots.

6.2 Certification of Non-negativity

Suppose that f(x), q(x) ∈ R[x] which satisfy the assumptions in Corollary 1. The
following describes a method to certifiably determine if all of the coefficients Rn

of the Taylor series expansion for f(x)/q(x) centered at the origin are non-
negative or provides an integer n0 such that Rn0 < 0.

First, the Euclidean algorithm is utilized to determine g(x), p(x) ∈ R[x] with
deg(p(x)) < deg(q(x)) such that f(x) = q(x) ·g(x)+p(x). Define h(x) = x ·q′(x)
and C(x) = −p(x)/h(x). Hence, d = deg(q(x)) = deg(h(x)) such that q(x)
and h(x) have no common roots. As in Corollary 1, let α1, . . . , αd be the roots
of q(x) with α1 ∈ R>0 such that α1 < min{α2, . . . , αd}. Let β1, . . . , βd ∈ C (not
necessarily all distinct) be the roots of h(x).

Certified evaluations at the roots of q(x) and h(x) with error bound εk = 2−k

for k = 1, 2, . . . can be used until the following termination conditions are met:
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1. α∗
i and β∗

j are such that α∗
1 ∈ R, |α∗

i − αi| < εk, and |β∗
j − βj | < εk

2. the set {0, α∗
1, . . . , α

∗
d} is 2 · εk separated, i.e., |s − t|2 ≥ (2εk)2 for all distinct

s, t in this set,
3. γ∗ ≤ min{|α∗

i − β∗
j | : 1 ≤ i, j ≤ d} such that γ∗ > 2 · εk + ε

1/(4d)
k ,

4. for m∗ = α∗
1 + εk and M∗ ≤ min{|α∗

2|, . . . , |α∗
d|} − εk, one has m∗ < M∗,

5. L∗
i such that L∗

i ≥ |cd|−2
∑2d−1

�=0 |u(�)(α∗
i )|ε�

k/�! where cd is the leading coeffi-
cient of q(x) and u(x) = −p′(x)h(x) + p(x)h′(x), and

6. either (a) C∗
1 + L∗

1

√
εk < 0 or (b) C∗

1 − L∗
1

√
εk > 0.

Note that starred quantities in the termination conditions above, or in the further
discussion below, are either exact rational approximations to real constants or
complex numbers with rational real and imaginary parts that approximate roots.

Before proving that such a termination condition can be met, we describe
the last steps which are justified by Corollary 1. Let ε = εk be the value where
the termination conditions are met and calculate 0 < b∗ ≤ min{|C∗

1 ± L∗
1

√
ε|},

K∗ ≥ (1/b∗)
∑d

i=2(|C∗
i | + L∗

i

√
ε), A∗ ≥ log(K∗)/ log(M∗/m∗),

N∗
0 = max{deg(f(x)) − deg(q(x)), �A∗}.

The inequalities in Items 3, 4, and 5 and these values above are meant to signify
the rounding direction in machine precision used to compute the values. With
this, if C∗

1 +L∗
1

√
εk < 0, then return n0 = N∗

0 +1 for which Rn0 < 0. Otherwise,
the non-negativity of all Rn is equivalent to the non-negativity of R0, . . . , RN∗

0

which can be computed by explicit computation. If there exists n0 ∈ {0, . . . , N∗
0 }

such that Rn0 < 0, return n0. Otherwise, return that all Rn are non-negative.

First, note that Item 1 is obtained by real root certification. We have

δ = min{|αi − αj |, |αi| : 1 ≤ i < j ≤ d} > 0.

By Item 1, |α∗
i − α∗

j | ≥ |αi − αj | − 2εk and |α∗
i | ≥ |αi| − εk. Thus,

δ∗ = min{|α∗
i − α∗

j |, |α∗
i | : 1 ≤ i < j ≤ d} ≥ δ − 2εk − η

where η > 0 is the machine precision on the lower bounds on the quantities in δ∗.
Since εk → 0 and η can be made arbitrarily small, eventually δ∗ − 2εk − η > 2εk

and Item 2 will be met.
Since q(x) and h(x) have no roots in common, consider

γ = min{|αi − βj | : 1 ≤ i, j ≤ d} > 0.

We have γ∗ ≥ γ − 2εk − η where η > 0 is the machine precision on the lower
bounds of the quantities in γ∗. Eventually, γ∗ ≥ γ − 2εk − η > 2εk + ν + ε

1/(4d)
k

where ν > 0 is the machine precision on the upper bound for ε
1/(4d)
k and Item 3

will be met.
Since Δ = M −m > 0, we have M∗ > M − εk −η where η > 0 is the machine

precision on the lower estimates in M∗ and also m∗ = α∗
1 + εk < α1 +2εk. Thus,

M∗ − m∗ ≥ Δ − 3εk − η so that eventually Item 4 will be met.
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Since C(x) = p(x)/h(x), we have C ′(x) = u(x)/h2(x). Assuming the previous
items have all been met, we have

|βj − α∗
i | ≥ |β∗

j − α∗
i | − |βj − βJ |∗ > 2εk + ε

1/(4d)
k − εk > εk.

Hence, h(x) has no roots in B(α∗
i , εk) and C ′(x) is continuous on B(α∗

i , εk). Fix
z ∈ B(α∗

i , εk) and let ζ be the straight line segment contour from α∗
i to z in

B(α∗
i , εk). Since C ′(x) exists on B(α∗

i , εk), C(z) − C(α∗
i ) =

∫
ζ
C ′(x)dx. Thus,

|C(z) − C(α∗
i )| ≤ P · |z − α∗

i | where P = max{|C ′(x)| : x ∈ B(α∗
i , εk)}.

Therefore, we have P ≤ P1/P 2
2 where P1 = max{|u(x)| : x ∈ B(α∗

i , εk)} and
P2 = min{|h(x)| : x ∈ B(α∗

i , εk)}. Since u(z) =
∑2d−1

�=0 u(�)(α∗
i )(z − α∗

i )
�/�!,

we have P1 ≤ ∑2d−1
�=0 |u(�)(α∗

i )|ε�
k/�!(1 + η) where η > 0 is the machine precision

that results from the upper bound on the quantities |u(�)(α∗
i )|. Since

h(z) = cd

d∏

j=1

(z − βj) and |z − βj | ≥ |α∗
i − β∗

j | − |z − α∗
i | − |β∗

j − βj | > ε
1/(4d)
k ,

we have |h(z)| ≥ |cd|ε1/4. Thus, P 2
2 ≥ |cd|2ε1/2 and |C(z) − C(α∗

i )| ≤ L∗
i

√
ε.

Thus, |C∗
i − Ci| ≤ L∗

i

√
ε where Ci = C(αi) and C∗

i = C(α∗
i ). By the inclusions

B(α∗
i , εk) ⊂ B(αi, 2εk) ⊂ B(αi, 1), all estimates |u(�)(α∗

i )| will be bounded above
by the corresponding maximum values of |u(�)(z)| for z ∈ B(α1, 1). Thus, even
though P1 varies in each step k, P1 and L∗

i will be uniformly bounded above
for all k. Since L∗

1 is uniformly bounded above and C1 �= 0 by the proof of
Theorem 2, Item 6(a) will eventually be met if C1 < 0 while Item 6(b) will
eventually be met if C1 > 0.

Having proved termination, we note that in order to get a value of N∗
0 which

is reasonably close to the value of N0 in Corollary 1, one may continue to
decrease εk past the point where all termination conditions are first met. The
reason for this is to separate m∗ and M∗ as far all possible, i.e., to match the
actual gap between m and M as closely as possible. This could be wise especially
when m∗ is very close to M∗ in which case log(M∗/m∗) will be very close to 0
so that N∗

0 will be very large.

Example 2. To demonstrate the approach, consider the rational functions

(1 − x3 − x7 + x18)−1 and (1 − x3 − x7 + x21)−1.

The implementation of this approach in Maple certifies that both rational func-
tions have Taylor series expansions centered at the origin where all of the coeffi-
cients are non-negative. The value of N0 from Corollary 1 which could be certified
by the method described above was N∗

0 = 204 and N∗
0 = 55, respectively. Thus,

it was easy to utilize series in Maple to check the non-negativity of the Taylor
series coefficients up to N∗

0 combined with Corollary 1 for the tail.
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7 Conclusion

This manuscript developed techniques for certified evaluations of locally Hölder
continuous functions at roots of polynomials along with an implementation in
Maple. These techniques were demonstrated on several problems including certi-
fied bounds on critical values and proving non-negativity of coefficients in Taylor
series expansions. Although this paper focused on roots of univariate polynomi-
als, it is natural to extend to multivariate polynomial systems in the future.

Acknowledgments. JDH was supported in part by NSF CCF 1812746. CDS was
supported in part by Simons Foundation grant 360486.

A Appendix

Proof of Theorem 1. Suppose that C �= 0 such that q(x) = C · ∏d
i=1(x − αi).

Thus, we know q′(x) = C ·∑d
i=1

∏
j �=i(x−αj) and q′(αi) = C ·∏j �=i(αi −αj) �= 0

for all i. Let pi(x) = q(x)/(x − αi) = C · ∏
j �=i(x − αj). Hence, pi(αi) = q′(αi)

and pi(αj) = 0 if j �= i. The polynomials p1, . . . , pd are linearly independent
since, if

∑d
i=1 aipi(x) = 0, then evaluating at x = αj yields aj · q′(αj) = 0 which

implies aj = 0. Thus, they must form a basis for the d-dimensional vector space
of polynomials of degree at most d − 1.

Since p(x) has degree at most d − 1, there are unique constants ai so that∑d
i=1 aipi(x) = p(x). Evaluating at x = αj yields ajq

′(αj) = p(αj) so that
aj = p(αj)/q′(αj). Therefore, for all x ∈ C \ {α1, . . . , αd},

p(x)

q(x)
=

d∑

i=1

p(αi)

q′(αi)

1

x − αi
=

d∑

i=1

− p(αi)

αiq′(αi)

1

1 − x/αi
. (9)

The terms in (9) have a Taylor series expansion centered at the origin that
converge for all x with |x| < min{|α1|, . . . , |αd|} such that, as (8) claims,

p(x)

q(x)
=

d∑

i=1

− p(αi)

αiq′(αi)

∞∑

n=0

α−n
i xn =

∞∑

n=0

(
−

d∑

i=1

p(αi)

αiq′(αi)
α−n
i

)
xn.

Proof of Theorem 2. Clearly, one has rn = dn

dzn

p(z)
q(z)

∣∣∣
z=0

. Since p(x) and q(x) have

real coefficients, rn is real for all n ≥ 0. For i ∈ {1, . . . , d}, let tin = Ciα
−n
i so

that (8) reduces to rn =
∑d

i=1 tin. Moreover, α1 ∈ R \ {0} implies C1 ∈ R \ {0}.
Clearly, if α1 < 0, then t1n is alternating in sign.

Consider the case when α1 > 0. First, note that t1n and C1 always have the
same sign. The following derives a threshold N such that |rn − t1n| < |t1n| for all
n > N . Given such an N , rn will have the same sign as t1n and C1 for n > N

and the theorem will be proved. To that end, since (rn − t1n)/t1n =
∑d

i=2 tin/t1n,

|rn − t1n|
|t1n| ≤

d∑

i=2

|Ci|
|C1|

|α1|n
|αi|n ≤ K

( m

M

)n
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for all n. Since, by assumption, m/M < 1, there is a threshold N so that
K(m/M)n < 1 and |rn − t1n| < |t1n| for all n > N . We may take N so that
K(m/M)N = 1 or N = log(K)/ log(M/m) as claimed.
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Abstract. Many educational institutions have been closed to contain the spread
of COVID-19 and teachers took action to continue education through remote
learning with the use of technologies. The context of this research is a community
of Italian STEM teachers from different secondary schools, within the Ministerial
Project PP&S-Problem Posing and Solving. The project involves the use of a
Digital Learning Environment (DLE), a Moodle platform integrated with Maple.
The research question is: what kind of support can Maple integrated in a DLE
give for Distance Education? To answer this question, we considered teachers
who used Maple through the DLE during this school year. We carried out an
analysis on 74 courses to understand how much they used this type of resource;
for what purpose it was used; and whether this type of resource is related to the
participation of the students in the course. Analysis shows that there are teachers
who have conducted the entire course with this teaching material. They have used
Maple in a meaningful way to propose problem-solving activities, theoretical
explanations, interactive resources, explanation of Maple commands and text of
exercises and resolution. Representative examples of each category are shown.
Student views of worksheets increase when teachers use at least three categories
of worksheets within a course. In particular, student participation increases when
using the problem solving methodology. This type of resources is very effective
for online teaching, where immediate feedback and interactivity are essential to
involve students more.

Keywords: Digital learning environment · Distance Education · Interactive
resources ·Maple · Secondary schools · STEM Education

1 Introduction

As UNESCO reports [1], in 2020 most governments around the world have temporarily
closed educational institutions to contain the spread of COVID-19 pandemic. In Italy,
schools were closed on March 5, 2020 until the end of the school year in June. After
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the lockdown of the schools and the suspension of face-to-face lessons, it was necessary
to switch to “distance learning”, in order to not interrupt the didactic continuity and to
guarantee the right to education for all the students. All teachers took action to facilitate
continuity of education through remote learning with the use of technological methods
and tools. At the end of September, the lessons of the new school year began face to
face but, due to the uncertainty of the evolution of the pandemic, teachers were asked to
contemplate blended scenarios with their students. In some cases, in fact, single infected
students or entire classes were isolated for few weeks and for these students the teachers
had to carry out the lessons online. In December, a new closure of all upper secondary
schools was necessary. All teachers must therefore be ready for hybrid teaching. At the
beginning of the emergency, not many schools were prepared for this type of change.
For example, since they did not adopt online teaching in regular teaching, teachers did
not have the adequate digital skills and adequate devices, so teachers and students did
not get used to work on a Digital Learning Environment (DLE), a shared virtual space in
which teachers deliver activities and students consult educational resources. The Italian
Ministry of Education created a site dedicated to distance learning, to globally distribute
instructions to teachers and schools who had to activate types of distance learning.
The context of this research is a community of teachers in disciplines like Science,
Technology, Engineering and Mathematics (STEM) from different Italian secondary
schools, within the Ministerial Project PP&S-Problem Posing and Solving, one of the
proposed initiatives [2–4].

The PP&S - “Problem Posing and Solving” - project (available at www.progettop
ps.it), headed by the Italian Ministry of Education, promotes since 2012 the training of
teachers of secondary schools on innovative teaching methods, through the use of digital
technologies, and on the creation of a culture of problem posing and problem solving,
with the use of Information and Communication Technology (ICT). Teachers involved
in the project learn how to use different kinds of digital tools and new methodologies,
in order to enhance their daily teaching. The project proposes innovative methodologies
like problem posing and solving using Maple, automatic formative assessment [5, 6]
and collaborative learning among teachers and students [7].

In the PP&S community, teachers exchange materials, ideas, and useful advices,
they participate in training activities and have the constant support of expert tutors. The
project involves the use of a DLE for STEM, a Moodle platform integrated with Maple
for the creation of interactive materials, which help the exploration of mathematical
concepts and the developing of problem solving skills [8]. Maple allows numerical
and symbolic calculations, static and animated graphical representations in 2 and 3
dimensions, writing procedures in simple language, programming and connecting all
these different representation registers in a single worksheet using verbal language, too
[9].

The term “problem-solving” includes all mathematical tasks that have the potential
to provide intellectual challenges for enhancing students’ mathematical understanding
and development [10]. The ability to solve problems in everyday situations includes the
ability to understand the problem, devise a mathematical model, develop the solving
process and interpret the obtained solution [11]. The use of Maple in problem solving
activities offers a precious diversity of ways to represent and explore the tasks andmakes

http://www.progettopps.it
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teachers and learners active participants in the learning process [8]. A very important
aspect of Maple for problem solving is the design and programming of interactive com-
ponents (such as math container, text area, slider, tables, graphs, etc.). They allow to
visualize the variation of the output when the input parameters change and therefore
they allow to generalize the solving process of a problem. Generalizing is an important
process by which the specifics of a solution are examined and questions as to why it
worked are investigated [12].

Teachers enrolled in the project can work inside an integrated DLE available for each
class of students they wish. In addition to using a DLE integrated with Maple, teachers
and students receive the software in equipped laboratories thanks to the enrollment in the
Project. The choice of theACEMaple integrated inside theDLEwas influenced by differ-
ent factors. The most important one is the close connection with the Automatic Assess-
ment System Möbius Courseware. Maple engine allows students to analyze, explore,
visualize and solve complex mathematical problems. Moreover, Maple suite for educa-
tion has an attractive, easy-to-use, well designed interface, with tutoring commands and
math applications for learning. Finally, Maple is very close to academic research. On
the project platform, throughout the year, multiple online synchronous training activi-
ties are offered to teachers, about the use of the integrated digital learning environment
and about the use of Maple to create interactive files and to design problem posing and
solving activities [13, 14]. Teachers who were part of the PP&S before the pandemic
and the closure of schools, already used the integrated DLE in their daily teaching and
they continued to use it during the emergency. As a result, it was much easier for them
to switch to distance learning. For online teaching, but not only, the interactive nature
of the resources within the DLE is fundamental. Compared to static resources, inter-
active resources allow to enter numbers and expressions, to click on buttons, to move
sliders, etc. and above all to receive immediate feedback on the exploration. This aspect
is very important because it increases student engagement, where by engagement we
mean “students’ dynamic participation and coparticipation in recognition of opportunity
and purpose in completing a specific learning task” [15]. Peculiarity of this definition
is the characterization of engagement as an interactive and purposive process; it allows
to examine how it may change over time and vary according to situations and contexts.
When students participate eagerly in a specific learning activity, they deploy appropri-
ate strategies, regulate processes and monitor their actions [16]. In addition, interactive
files provide students with immediate feedback on the exploration and allow teachers to
implement formative assessment strategies [17] such as: stimulating discussions, feed-
back that advance students, and activating students and peers as the protagonists of their
learning [18]. These strategies act on student involvement. Maple allows the creation
of interactive files and these materials, thanks to the integration of the DLE with the
software, maintain interactivity even on the platform (they are calledMaple worksheets)
and students can actively explore the resource even if they do not have the software on
their device.

Before the emergency, teachers used Maple in different ways: carrying out problem
solving activities in a computer lab also in groups; having students submit their works
(problem solving, exercises or research) created with Maple; projecting the interactive
files in class through the IWB (Interactive WhiteBoard) for a theoretical explanation or
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for an exploratory activity; uploading interactive materials on the DLE for asynchronous
activities. After the school closure, teachers and students worked exclusively online via
the platform. The teachers had to get used to this new type of teaching and they had
to develop strategies to involve students even remotely, through synchronous online
lessons but also and above all through asynchronous activities and interactive resources
to explore and study. PP&S teachers have the great advantage of being part of a large
community of teachers, some of whom have been part of the project for many years and
therefore more experienced, and some who are less experienced. Even the teachers who
joined the project during the emergency had the opportunity to access the Community
database, in which many materials created with Maple for STEM didactics have been
inserted and cataloged. Therefore, even teachers who are not experts in using Maple
can immediately use the proposed methodologies. Furthermore, within the Community,
teachers can exchange ideas and opinions on the design and creation of teachingmaterials
and on the activities carried out with students.

The research conducted fits into this context, in particular wewant to studywhat kind
of support can Maple, integrated in a DLE, give for Distance Education. The analyzes
conducted and the results obtained show how the use of Maple has facilitated teaching
and increased student participation.

2 Methodologies

To answer this question, we considered PP&S teachers who used Maple online through
the DLE during the school year 2019/20, uploading a Maple worksheet resource within
one of their courses with students. We carried out an analysis on all the courses of the
platform used by the teachers in the school year 2019/20 to understand how much they
had used this type of resource.

Through the creation of a configurable report, a plugin of the Moodle platform that
allows you to create customized reports on all courses using the SQL language, the
following information has been automatically reported for each course opened in the
2019/20 school year:

• name and ID (Identification code) of the course;
• teacher data (name, surname, email, institute);
• total number of activities and resources in the course;
• number of Maple worksheets in the course.

The 74 courses in which there were at least five activities and resources (in which at least
one of these resources was represented by a Maple worksheet) were selected. For each
course, the ratio between the number ofMaple worksheet resources and the total number
of activities and resources present in the coursewas also calculated, to analyze howmuch
this resource was used by teachers in relation to other types of online teaching tools.
An analysis was then conducted to study for what purpose this educational resource
was used, to understand the potential and effectiveness that Maple resources can give to
STEM Education. All the worksheets present in the various courses were then classified
into one of the following categories:
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• Contextualized problem-solving activities - Materials in which it is proposed: a con-
textualized problem, its resolution with the use of Maple and an active exploration of
the generalization of the problem through a system of interactive components.

• In-depth theoretical explanations -Materials for theoretical explanationswith texts and
formulas but also graphics (static and animated), tables and interactive components
for the exploration of theoretical concepts.

• Interactive resources for mathematical exploration - Materials characterized exclu-
sively by interactive explorations for the exploration of mathematical concepts (such
as MathApps).

• Explanation of Maple commands - Materials for explaining the use of Maple: the
basic commands, the commands in the various packages and the design and creation
of interactive components.

• Text of exercises and resolution - Materials in which Mathematics exercises are
presented (for example taken from textbooks) and their resolution.

By classifying the worksheets into these categories, for each course it was indicated how
many worksheets of each type are present. In this way, it was possible to study:

• if teachers use more types of worksheets, and therefore more teaching methods;
• which are the most used types;
• if there are patterns in the use of the various types (for example if teachers who use
worksheets for theoretical explanations tend to assign exercises with Maple as well).

Another goal was to see if, in the courses where the teachers used Maple worksheet
resources, the amount of resources of this type is related to the participation of the
students in the activities and resources of the course, and if it also reflects/affects their
design by the teachers. To do this, two pieces of information have been added to the
previously created configurable report to analyze student participation. For each course
it was reported:

• number of views of course worksheets (total student logs to worksheets in the course);
• course logs (total student logs to all course activities).

Using the software R, the correlation matrix between the following variables was
calculated:

• course logs;
• total number of activities and resources present in the course;
• number of course worksheets;
• number of views of course worksheets.

The last goal was to test if and how using worksheets of different categories influences
student participation in the online course. In this case, we have used the subdivision of
courses based on the number of categories of worksheet used (courses with one category
of worksheets, two categories, etc.) with respect to the variables inherent to student logs.

Finally, a specific analysis was carried out to study the impact of using the “contex-
tualized problem-solving activities” category of worksheet on student participation.
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3 Results

3.1 Descriptive Analysis

The first analysis was carried out on the 74 selected courses, in which there were at least
five activities and resources (in which at least one of these resources was represented
by a Maple worksheet). The 74 courses analyzed were held by 40 teachers. 62.5%
of teachers teach upper secondary school (divided equally between High Schools and
Technical Institutes) and 37.5% lower secondary school. The subjects taught by the
teachers in the various courses are: Physics (1%), Mathematics (70%), Mathematics and
Physics (15%), Mathematics and Computer Science (14%).

A total of 1289 Maple worksheets were uploaded into 74 courses. The number of
worksheets in a course varies from a minimum of three to a maximum of 138, and the
median is 10.5. For each course, the ratio between the number of maple worksheets and
the total number of activities and resources in the course was calculated. On average,
27% of course materials are worksheets, with a range from 5% to 84%. Therefore,
there are teachers who conducted the entire online course using Maple worksheet and
teachers who rarely used this type of resource. The graph shown in Fig. 1 shows the
various percentages of worksheets available in the courses compared to the total number
of activities and resources, divided into four percentage classes: 5%–24%, 25%–44%,
45%–64%, 65%–85%.

Fig. 1. Percentages of the worksheets available in the courses compared to the total number of
activities and resources.

As shown in the graph, the most populated class is the “5%–24%” class (46%):
this class is represented by teachers who have used this type of resource less than other
types of activities and resources available within the DLE. However, it can be seen that
for more than half of the courses, more than a quarter of the materials are worksheet
resources. A percentage of teachers (8%) made almost exclusive use of this type of
resource when teaching their subject.

3.2 Classification of Worksheets into Five Categories

For each course, all the Maple worksheets were analyzed and each resource was classi-
fied into one of the five categories: contextualized problem solving activities; in-depth
theoretical explanations; interactive resources formathematical exploration; explanation
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of Maple commands; and text of exercises and resolution. The number of worksheets
of each type was then reported for each course. Table 1 shows, for each category of
worksheet:

• the number of teachers who used worksheets of this category;
• the number of worksheets in this category;
• the percentage of worksheets in this category with respect to the total number of
worksheets (1289).

Table 1. Classification of worksheets in the five categories and use by teachers.

Problem
solving
activities

Theoretical
explanations

Maple
explanations

Interactive
resources

Exercises

Number of
teachers who
used worksheets
of this type

31 34 27 34 23

Number of
worksheet

348 259 229 339 114

Percentage of
worksheets

27% 20% 18% 26% 9%

This table shows that theworksheet categoriesmostly used by teachers are contextualized
problem solving activities, in-depth theoretical explanations, and interactive resources
for mathematical exploration. These categories were used by most of the 40 teachers.
The least used category was that of texts and solving exercises, probably because it
is a static resource, very similar to the textbooks that all students possess. The great
advantage of using Maple is precisely the possibility of creating interactive contents for
the active exploration of mathematical concepts and problems by students. In fact, of
the 1289 worksheets, more than half are problem solving and interactive exploration
activities. Figure 2 shows the number of teachers who used one, two, three, four or five
types of Maple worksheets within the same course.

The graph shows that 66% of teachers used more than one category of Maple work-
sheet, adopting different teachingmethods depending on the purpose of the activity. 34%
of teachers who used only one type of Maple worksheet chose more problem solving
activities (36%) and interactive resources (32%), but fewer Maple explanations (4%).
This last result may be due to the fact that this type of file is mainly designed for students
who use Maple alone even at home, and can be more supportive when combined with
other types of worksheets. The first result is in line with the previous results.

A final analysis on the various categories of worksheet used by teachers concerned
the search for patterns in the use of the various types. Table 2 shows the numerous
combinations of use of different types of worksheets in the 74 courses.
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Fig. 2. Number of Maple worksheet categories used by teachers.

Table 2. Combination of the types of worksheets used by teachers looking for patterns.

Problem solving
activities

Theoretical
explanations

Maple
explanations

Interactive
resources

Exercises

X X X X X 13

X 9

X 8

X X X 6

X X X X 4

X X 4

X 4

X X X X 3

X 3

X X X X 2

X X X 2

X X 2

X X 2

X X X 2

X X 2

X X X 2

X X X 1

X X 1

X X 1

X X 1

X 1

X X 1
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The search for patterns was not very significant. The combination used by most
teachers is the one in which all types of Maple worksheets are used (18%). According
to the previous results, the most used were: the combination with only the problem
solving methodology (12%), the combination with only the interactive resources (11%),
or the combination with both methodologies used together (5%). Another widely used
combination is the one with problem solving activities, theoretical explanations and
solving exercises (8%). This shows that this type of resource, even if more static and
ordinary, can be effective in combination with other teaching methodologies.

3.3 Representative Examples of the Various Categories of Worksheet

Contextualized Problem Solving Activities
The first category of worksheet includes problem solving activities. All materials of this
type, according to the methodology proposed within the project, are characterized by:
the presentation of a contextualized problem (Example in Fig. 3), a resolution proposal
with the use of Maple and the generalization of the solution process through a system of
interactive components. The contextualization of the problem in a real context or in one
that is familiar to the students is one of the main factors of the proposed methodology.
This allows students to approach the world of mathematics and to understand its impor-
tance in everyday life. The solution of the problem is proposed using different registers
(calculations, formulas, tables, graphs, etc.). Another very important aspect is the gener-
alization of the problem. This is an activity that would not be proposed to students during
regular lessons with pen and paper, but which is fundamental for developing computa-
tional thinking and abstraction skills. Through the interactive components, students can
change the data of the problem and see how the solution of the problem varies. In this
way students can focus on the solution process and its abstraction and modeling, and
not just on the calculations.

Fig. 3. Example of contextualized problem created by teachers

In-Depth Theoretical Explanations
The second category of worksheet is the one dedicated to theoretical explanations.
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Through this type of resource, the teachers’ goal is to enrich the theoretical expla-
nation of the textbooks, which all students have and use, with animated graphics and
interactions. In the example in Fig. 4, the teacher proposes an introduction to the con-
cept of limit of a function in an accumulation point and enriches the explanation with
an animated graph that clarifies the explanation and provides an example. Within the
integrated DLE the animations within the worksheets are displayed as GIFs.

Fig. 4. Example of worksheet for a theoretical explanation enriched by animated graphics

Interactive Resources for Mathematical Exploration
The third category of worksheet is “interactive resources for mathematical exploration”.
These types of resources are very similar to MathApps (available in Maple) but are cre-
ated by the teachers themselves. Through a system of interactive components, mathemat-
ical explorations are proposed to study mathematical concepts, for modeling activities,
to support the study or for insights. The example shown in Fig. 5 concerns the problem
of calculating the areas. Through a step-by-step procedure (of which only the first steps
are shown), the student is guided in the reasoning of calculating the area of a flat region.
In the first part, the student can choose the function to study and write it inside the math
container, after which he can visualize it graphically by clicking the button. In the sec-
ond part, the student must choose the extremes in which to draw and calculate the area
of the function and how many parts to subdivide the interval into, and again visualize
the function in the chosen interval. In the third part, by clicking the two buttons, the
student can view the inscribed or circumscribed rectangles. This type of material is very
effective for formative evaluation because it provides an example of good practice and
gives immediate feedback. Students are active and engaged in learning.

Explanation of Maple Commands
This category of worksheet includes all materials dedicated exclusively to the expla-
nation of how to use Maple (commands, particular packages, procedures, interactive
components, etc.). Usually, teachers teach students to use the software face-to-face in a
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computer lab but, having to do it remotely, they have created explanatory files. One of
the most interesting examples in this category is the interactive guided explanation of
how to create an interactive component system. To enrich the explanation, the teacher
also created a short video commenting the Maple file.

Text of Exercises and Resolution
This category of worksheet differs from the previous ones because it is not interactive.
This type of resource is similar to the exercises found in a textbook. In this case the
teachers use Maple as a text editor to write the texts of the exercises and comment on
the resolutions and commands (also maple tools like Tasks and Tutors) to calculate the
solutions.

Fig. 5. Example of an interactive resource on the problem of calculating areas

3.4 Analysis of Student Participation

As seen in Table 3, the linear correlation index showed that there is a relationship between
the two variables “total number of activities” and “course logs” (index value 0.727). This
result is not particularly surprising, since the logs are automatic recordings made by the
DLE at every user interaction with the resources or activities of the course. Therefore,
as their number increases within the course, the course logs increase in turn.
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The correlation index between the variables “Maple worksheet views” and the “num-
ber of Maple worksheet” highlights how the increase in views is moderately correlated
with the number of Maple worksheets (index value 0.444). This may be due to the fact
that, as a teaching methodology, it is not enough to just insert many worksheets into
the course for students to use. Especially in online teaching, students need to be guided
within the DLE to use the resources.

There is also a moderate correlation between the total number of course activities
and the number of Maple worksheets (index value 0.696). This result may seem obvious
since we considered the worksheets within the course activities. However, on average,
worksheets represent approximately 30% of course activities. This means that other
activities and resources are used in parallel with the use of worksheets, such as, for
example,material for explanations on the use ofDLE, for formative assessment activities,
for learning tests, for in-depth studies, etc.

Table 3. Correlation matrix

Total number of
activities

Number of Maple
worksheet

Maple worksheet
views

Course logs

Total number of
activities

1 0.696 0.389 0.727

Number of Maple
worksheet

0.696 1 0.444 0.17

Maple worksheet
views

0.389 0.444 1 0.37

Course logs 0.727 0.17 0.37 1

The latest analysis concerned the impact of the number of worksheet categories used
by teachers on student participation in the course. The courses were divided into five
classes according to the number of worksheet categories used in the course (as in Fig. 2).
Since the “course logs” and “worksheet views” variables are not normally distributed,
we used the Kruskal – Wallis test by ranks. The first result is that there is no significant
difference between the medians of the course logs in the various classes (p-value= 0.2).
Since having used multiple types of worksheets has no influence on the course logs,
the influence on the number of views of worksheets within the course was studied. This
analysis shows that there is a significant difference among the medians of the worksheet
views in the course classes (p-value < 0.0001). Figure 6 shows how the averages of the
views appear to be higher in the last three course classes (those in which teachers have
used at least three categories of worksheet).

By dividing the courses into two macroclasses (class 1 and 2 on the one hand and
classes 3, 4 and 5 on the other), the test shows (Fig. 7) that the median of the views is
greater for the second macroclass (p-value < 0.0001).

These results show that using multiple types of worksheets affects students’ partici-
pation in this type of resource and not the entire course. Therefore, using this resource
for different methodologies engages the students. Student participation increases when
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Fig. 6. Boxplot of the averages of the worksheet views in the course classes

Fig. 7. Boxplot of the averages of the worksheet views in the two macro-classes

teachers use at least three types of worksheets. From this type of analysis, it does not
emerge directly which type of worksheet has the greatest influence on student participa-
tion (whichwill be the subject of future analysis). However, the test shows that in courses
in which worksheets of the “contextualized problem-solving activities” category were
inserted, student views are on average higher than in courses in which this category of
worksheet is not present (p-value = 0.04).

4 Conclusion

This paper investigates Maple software support for online teaching during the pandemic
emergency in the 2019/20 school year. The context of the research is the Italian commu-
nity of teachers of the PP&S ministerial project of STEM disciplines. Teachers enrolled
in the project can have a DLE, Moodle platform integrated with Maple, available for
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each class of students. 74 courses, in which the Maple worksheet resource was used,
were analyzed: 1289 Maple worksheets were uploaded into the courses. Analysis shows
that there are teachers who have conducted the entire course with theseMaple worksheet
resources and teachers who have rarely used them.

Teachers have usedMaple in ameaningfulway to propose problem-solving activities,
in-depth theoretical explanations, interactive resources for mathematical exploration,
explanation of Maple commands, and text of exercises and resolution. Some significant
examples have been shown to explain how this type of resource can enrich STEM
teaching and learning. Not being able to teach Maple in the school computer lab, some
teachers have designed files with step-by-step explanations for students to allow them to
use the software independently at home. Most of the teachers used more than one type
of Maple worksheet, adopting different teaching methods depending on the purpose of
the activity.

The worksheet categories most used by teachers are contextualized problem solving
activities, in-depth theoretical explanations, and interactive resources for mathematical
exploration.Themost appreciated feature by teachers is the interactiveMaplefiles (which
is maintained thanks to the integrated platform) used for interactive theoretical expla-
nations, interactive explorations of mathematical concepts and for the generalization of
solution processes in problem solving activities.

Analysis shows that it is not enough to insert many worksheets into the course for
students to view and interact with them. Particularly in online teaching, students have to
be guided within the DLE to use the resources. In addition, student views of worksheets
increase when teachers use at least three categories of worksheets within a course with
different teaching methodologies. In particular, student participation increases when
using the problem solving methodology.

This type of resource, more interactive and effective than classic paper textbooks, is
very effective for online teaching, where immediate feedback and interactivity are essen-
tial to involve students more. During the emergency, Maple not only proved to be useful
for dealing with forced distance teaching more easily, but it also showed to be a very
convenient tool, flexible for new modalities and new purposes like synchronous online
lessons, formative online assessment, adaptive activities for students with difficulties.
This resource can enrich STEM teaching and learning at any level of education.
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Abstract. Problem solving is the ability to understand the environment, identify
complex problems, and review related information to develop, evaluate strate-
gies and implement solutions to build the desired outcome. Mathematics boosts
problem solving skills and, in Higher Education, all scientific degree programs
deliver at least one module in Mathematics that should develop students’ prob-
lem solving skills. Mathematics Modules of the Biotechnology Bachelor Degree
and of the Strategic Science Bachelor and Master Degrees at the University of
Turin use innovative digital technologies, like the Advanced Computing Environ-
ment Maple, and methodologies to facilitate the learning of Mathematics and the
development of problem solving skills. At the beginning of the courses, students
must learn how to use Maple through dedicated lab sessions to solve contextual-
ized problems related to their future careers. Moreover, for the final examination,
students must study, present and discuss a science-based problem solved with
Maple. In this paper, we investigated how the use of Maple enabled students to
develop problem solving skills. We examined 110 students’ submissions through
a rubric that analyzes different dimensions: comprehension, resolution strategy
identified, solution process, representation, argument, use of Maple. Dimensions
are correlated with module attendance, involvement, exam marks. A qualitative
analysis was also performed. The research shows that the adopted approach is use-
ful and effective: students’ scores are high and submissions indicate the presence
of problem solving skills. Problem solving labs with Maple should be introduced,
in connection with other disciplines, to facilitate analysis of data, visualization,
communication, and deep understanding of concepts.

Keywords: Higher education ·Maple ·Mathematics education · Problem
solving

1 Introduction

Humans have always been fascinated and entertained by solving problems, games, mys-
teries, and puzzles. Even in ancient history, there were some famous problems, halfway
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between legend and reality, such as the measurement of the Great Pyramid performed by
Thales and the mythological riddle of the Sphinx, asked to the tragic hero Oedipus. With
the evolving of human history, societies became complex systems, with a great variety
of professionals and citizens who now have to face practical problems in their daily
routine. The challenge to tackle such complexity and such practical problems nowadays
mainly resides on Higher Education that needs to foster creative problem solvers [1].
Solving a problem requires creativity, but at the same time problems help in developing
creativity. Novelty in creativity does not necessarily mean that something is new for the
whole humanity, but it can be such also just for the individual who needs to develop his
capacities and to focus on relevance and effectiveness.

More specifically, Problem Solving (PS) can be defined as the ability to understand
the environment, identify complex problems, review related information to develop,
evaluate strategies and implement solutions to build the desired outcome. It is the basis for
creative thinking, new inventions, evolution, continuous improvement, communication,
and learning. PS skills are then essential for every citizen in the world, not only for their
career but also for their nonprofessional, everyday life. There is indeed scientific research
on PS skills for adults, especially in connection with technology-rich environments [2]
and teacher training [3, 4]. PS competences are essential inside the world of work, in
[5] PS appears twice in the list of the Top 15 skills for 2025, and those skills are also
very important in the framework of Digital Competences [6]. Higher Education plays
a pivotal role: findings indicate that there is a tendency to have high problem-solving
skills among adults with Higher Education degrees [2].

The best area to foster PS skills is Mathematics, the queen of sciences. In Higher
Education, all scientific degree programs deliver at least onemodule inMathematics that
should develop students’ PS skills beyond notions. However, this is not always the case,
since the curricula contain a lot of theory and exercises that do not leave much space
to PS, which looks more like a side effect of education. That is why at the University
of Turin we are addressing PS with different actions, involving students, teachers at
secondary schools [7], and university students [8].

1.1 Outline of the Research

At the University of Turin, technology is used to enhance the development of PS skills.
In this research, we are going to address a specific way to face this challenge adopted
in Mathematics Modules of the Biotechnology Bachelor Degree, of the Earth Sciences
Bachelor Degree, and of the Strategic Science Bachelor and Master Degrees at the Uni-
versity of Turin. The approach makes use of innovative digital technologies, like the
Advanced Computing Environment (ACE) Maple, and methodologies, like contextu-
alized problem solving and formative assessment, in order to facilitate the learning of
Mathematics and, more in detail, the development of PS skills [9, 10].

The research question of this paper is the following: canMaple be a valuable support
for students to develop problem solving skills, to learn Mathematics and to understand
its applications?

The research does not aim at stating the importance of the software, which is indu-
bitable, but it considers a variety of actions (activities, labs, teaching strategies, online
education) that are devoted to the development of learners’ PS skills. These actions
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must provide the basis in which the use of the ACE Maple gives an enhancement to the
development of students’ skills.

Section 2 delineates the state of the art about PS skills development, its close relation
with Mathematics and its relation with Higher Education. Section 3 illustrates the expe-
rience and the approach about PS skills development inside modules at the University
of Turin. Section 4 is devoted to the presentation of the research methodology. Section 5
shows results of the experience, measuring scores and the point of view of students.
Section 6 provides a showcase of some elements of the work of students that exhibit the
presence of PS skills. In Sect. 7, conclusions are drawn.

2 State of the Art

One of the first authors to describe methods of PS was the Hungarian mathematician
George Pólya in the book “How to solve it” [11]. In its list, Pólya suggests the following
steps when solving a mathematical problem.

• First step: you have to understand the problem and determine unknowns, data and
conditions.

• Second step: make a plan, find connections between data and unknowns, according
also to previous experience, eventually split into auxiliary problems.

• Third step: carry out the plan, carefully checking each step of the solution process.
• Fourth step: look back on your work, examine the solution obtained and see if
something better could have been done.

Pólya stressed the importance of the teacher: this role requires time, practice, devotion
and sound principles. Students need to develop PS skills independently, but they should
not be alone, because in this case they may make no progress at all. There is a balance
in these two aspects. This happens at all stages of education.

To improve PS skills, students should regularly work to solve problems according
to their own attitude [12]. Using non-routine problems and open problems, students can
face a wide range of possibilities and good or bad performance is an indicator of the
presence of PS skills. On the other side, learned PS strategies tend to be ignored at higher
levels, possibly because of the routine nature of examinations [12].

Modellization should not take place exclusively into the students’ mind. Words,
numbers, symbols, graphics, simulations, technologies and many others must mediate
contextualized real-world situations [13]. Representation is at the core of PS, and dif-
ferent computerized systems enable and enhance different approaches to the problem.
Mathematics skills are also reinforced after implementation in the systems [14].

Different activities carried out at the University of Turin aim at enhancing PS skills
using technology. The target of these activities are secondary school students and teacher
[15–17]. As an example, Digital Math Training (DMT) wants to develop and strengthen
Mathematics and Computer Science skills through problem solving activities using the
ACE Maple [18]. This activity is meant for secondary schools, but in many cases the
performance required by students is quite challenging, close to university level. This
activity also promotes Collaborative Problem Solving.
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Approach in Collaborative Problem Solving is affected by gender, too. In [19], the
authors studied the effects of gender pairings on CPS performances, processes, and atti-
tudes in a social learning context. Single-gender groups had more focused discussions;
male-male groups tended to develop and test their solutions directly without spending
significant time on problem identification; female-female groups were more attentive to
the benefits of social learning.

Collaboration can be promoted through Digital Learning Environments (DLE),
which are suitable places to share, assess, communicate and interact between peers,
tutors and machine agents [20–22].

There are evidences that the participation to online collaborative activities and dis-
cussions promotes critical thinking [23]. A close connection brings together Information
and Communication Technology (ICT), Mathematics and PS, too. ICT and PS work on
problem-based software development [24] and allow students to develop Computational
thinking competences [10, 25]. In fact, programming is not only about writing code but
also about the ability to analyze a scenario, identify key components, model data and
processes, and refine a program through an agile design-thinking approach [26]. In edu-
cational settings, programming can be used as a tool to develop PS skills and to engage
participants in creative PS activities.

3 Problem Solving Inside University Modules

Regular teaching at the university is an opportunity to experiment different approaches.
The main degrees in which we adopted newmethodologies are the Biotechnology Bach-
elor Degree, in the academic year 2019/2020, the Strategic Science Bachelor andMaster
Degrees, in the academic years 2017/2018, 2018/2019, 2019/2020 and theEarth Sciences
Bachelor Degree, in the academic years 2017/2018, 2018/2019.

Students of these modules must learn how to use the ACE Maple. The choice of the
ACE Maple integrated inside the DLE was influenced by different factors. The most
important one is the close connection with the Automatic Assessment System Möbius
Courseware. Maple engine allows students to analyze, explore, visualize and solve com-
plex mathematical problems. Moreover, Maple suite for education has an attractive,
easy-to-use, well designed interface, with tutoring commands and math applications for
learning. Finally, Maple is very close to academic research.

Students learn Maple through dedicated lab sessions and they must use it alone and
in groups with different modalities: during in-person lessons and lab sessions, inside
a DLE integrated with the ACE. The aim of these activities is to develop PS skills by
solving contextualized problems connected with possible challenges that students will
face in their future job. Students attend 3 to 12 h labs solving problems inside the ACE
Maple, meanwhile learning how to use the software. During labs, tutors briefly introduce
amathematical topic, its applications and the basic commands and operations that can be
performed inside the ACEMaple; afterwards students can practice with a contextualized
exercise. Students practice with PS, with examples of applications and with Maple even
at home with their personal device.

As part of the final examination, students must study, present and discuss a science-
based problem solved with Maple. In order to get a high score, they must show mastery
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in Mathematics underlying the problem, critical and computational thinking, proper
use of the ACE Maple, ability to generalize, to justify and to make arguments for the
provided solutions. Students do not only solve a problem, but also pose it, according to
their experience, to the study of other scientific topics and, more importantly, based on
examples seen during classes and inside the DLE.

4 Methodology

To answer the research question stated in the introduction, in this work we examined the
effectiveness of the approach adopted through the analysis of worksheets that students
submitted in order to take the exam. From the various submission activities, we collected
110 distinct files, which correspond to 127 students since some of the submissions came
from a groupwork. It is worthmentioning that this sample does not cover all students that
took an exam with this approach of submitting a science-based problem with the ACE
Maple. Going back to previous academic years, we could collect more submissions, but
this approach has been refined over the years, thus we decided to only take into account
students from the academic years 2017/2018, 2018/2019, 2019/2020. Moreover, this
research considers only students that submitted the work through the official submission
activity: other methods of submission (email, hard drive, cloud sharing) lie outside this
research. Students come from three different degree courses: theBiotechnologyBachelor
Degree, the Earth Sciences Bachelor Degree, and the Strategic Science Bachelor and
Master Degrees at the University of Turin. They concern different disciplines, but for
each of them it is important to develop PS skills. Figure 1 shows the percentage of
students for each degree course, while Table 1 provides the precise number of students
divided by degree course and academic year.

Biotechnology
42%Strategic Sciences

28%

Earth Sciences
30%

Biotechnology Strategic Sciences Earth Sciences

Fig. 1. Percentage of students that submitted a science-based problem divided by degrees:
biotechnology, earth sciences and strategic sciences.

The evaluation is based on a rubric. The rubric has been prepared in accordance to
the literature on PS, the ItalianMathematics assessment grid, and to previous experience
of DMT at the University of Turin. The specific rubric has been developed to assess the
students’ competence in PS. This rubric is quite transversal among education levels and
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Table 1. Number of students divided by degree courses and academic years (AY)

Degree course AY Students Total per AY

Biotechnology Bachelor Degree 2019/2020 54 63

Strategic Sciences Master Degree 2019/2020 9

Earth Sciences Bachelor Degree 2018/2019 16 30

Strategic Sciences Master Degree 2018/2019 14

Earth Sciences Bachelor Degree 2017/2018 22 34

Strategic Sciences Master Degree 2017/2018 12

Total 127

it is the basis for this paper’s evaluations of submissions. In this research, the rubric
evaluates six different dimensions:

• D1 – Comprehension: it evaluates to which extent the student is able to analyze the
situation, to represent and translate the data into mathematical language

• D2 – Resolution strategy: it evaluates to which extent the student implements and
identifies the most suitable solution strategies through modeling.

• D3 – Solution process: it evaluates to which extent the student solves the problem in a
coherent, complete and correct way, applying the rules and performing the necessary
calculations.

• D4 – Representation: it evaluates to which extent the student graphically represents
the problem and the results and communicates effectively to the reader with proper
diagrams, tables, plots, animations.

• D5 – Argument: it evaluates to which extent the student comments and adequately
justifies the choices, the applied strategies, the fundamentals and the consistency of
the results.

• D6 – Use of Maple: it evaluates to which extent the student masters the ACE Maple
to solve the problem appropriately and effectively.

An independent expert in the use of Maple and in the PS methodologies adopted at
the University of Turin provided a score from 1 to 4 to every submission and about every
dimension. The scores are then compared and correlated with other measurables related
to students’ learning, such as the student involvement in viewing online resources and
final exam marks.

Moreover, a qualitative analysis is also provided by the answers to an anonymous
questionnaire that student had to submit after attending the Biotechnology Bachelor
Degree, which is the course with the highest attendance among the considered courses.
We had 87 respondents. The questionnaire covered different topics, butwe extracted only
the relevant items, related to PS skills and the ACE Maple. Different kinds of questions
compose the questionnaire, from Likert scale to open-ended answers. For scales, basic
statistics with median and IQR (Inter Quartile Range) are provided.
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5 Results

Each of the 110 submissions received a score from 1 to 4 on the various dimensions
that were considered in the rubric. Figure 2 shows the distribution of scores according
to these six dimensions.
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Fig. 2. Distribution of scores per dimensions: D1 Comprehension, D2 Resolution strategy, D3
Solution process, D4 Representation, D5 Argument, D6 Use of Maple

From Fig. 2, we can see that students’ scores are in general quite high. The median
score in every dimension is 3, except for the first dimensionD1, inwhich themedian score
is 4, the highest value. This can have two possible interpretations. On one side, without
comprehension it is very hard to make progress on the resolution of the problem, thus it
is the expected behavior. On the other side, students were not only solving the problem,
they were also posing the problem, so students may even have created ill-conditioned
problems.

Considering the average mark per student across the six dimensions, we can see, as
shown in Fig. 3, that marks are shifted towards the highest values, 61% of submissions
being between 3 (not included) and 4 (included). Categories are open on the left and
closed to the right: the higher extremum is included in the category.

2% 

37% 

61% 

0%
20%
40%
60%
80%

"1 - 2" "2 - 3" "3 - 4"

Distribu�on of marks 

Fig. 3. Distribution of marks, calculated as average across the six dimensions. Categories are
open on the left: the higher extremum is included in the category.
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Correlations among the various dimensions are very different, but there is generally
a moderate correlation (Pearson coefficient between 0.3 and 0.6), stating a good balance
between independence of the dimensions and overall quality of the submission. Just one
Pearson coefficient between D1 and D6 is quite low (0.24), and one Pearson coefficient
between D2 and D3 is very high (0.98). Table 2 reports all the correlation coefficients
between the six dimensions.

Table 2. Correlation coefficients between the six dimensions. Almost all coefficients show
moderate correlation.

Dimension D1 D2 D3 D4 D5 D6

D1 1.00 0.43 0.41 0.49 0.32 0.24

D2 0.43 1.00 0.98 0.74 0.60 0.44

D3 0.41 0.98 1.00 0.75 0.60 0.45

D4 0.49 0.74 0.75 1.00 0.48 0.56

D5 0.32 0.60 0.60 0.48 1.00 0.34

D6 0.24 0.44 0.45 0.56 0.34 1.00

One possible reason for the high correlation between D2 and D3 may rely on the
formulation of indicators of good or bad performance. Both dimensions are related to
the resolution, in D2 concerning strategy and in D3 concerning process. The dimensions
are different, but very close.

As we already mentioned, students can attend and use a parallel online course, a
different one for every degree course, in which they find suitablematerials and examples.
Collecting all together data from course usage, we can see that, on average, each student
made 282 views. The distribution of views is shown in Fig. 4.
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Fig. 4. Percentages of views of the online course divided into categories open to the left. 77% of
students made more than 100 views.
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Similar data can be collected focusingmainly on visualizations ofMapleWorksheets.
On average, studentsmade 70views each, but in this case the distribution, shown inFig. 5,
is denser on low numbers, since 76% of students made less than 50 views.

76% 

7% 2% 2% 2% 2% 2% 1% 1% 5% 
0%

20%

40%

60%

80%

100%

[0 , 50] (50 , 100] (100 , 150] (150 , 200] (200 , 250] (250 , 300] (300 , 350] (350 , 400] (400 , 450] More than
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Fig. 5. Percentages of views of Maple worksheets of the online course divided into categories
open to the left. 76% of students viewed less than 50 times.

The different behavior with respect to general views of the course can be explained
in different ways. On one side, by the presence of different kinds of resources, as an
example a consistent portion of formative assessment activities. On the other side, the
number of available Maple Worksheets varies depending on the degree course and on
the size of the program.

Since the submission is part of the exam, we considered the exam marks of the
involved students. 120 students compose the subsample of students with exam marks
since fewof them still have to take the exam.The averagemark is 24.9, standard deviation
3.6, with 30 cumLaude counting as 30. Themedian is 25. Figure 6 shows the distribution
of exam marks.

Since the submission was part of the exam, we evaluated the correlation between
submission score and exam mark. The Pearson coefficient gives 0.41, meaning there is
correlation, but not a strong one. A possible explanation relies on the different evalu-
ators that intervened in the research (an independent evaluator and the professors, the
module leader). Another possible explanation relies on the difference between exercises
that students usually do on paper and practical applications that students must deeply
understand and develop.

Another source of useful data comes from the questionnaire that students submit
before the examination. The questionnaire concerns the students in Biotechnology, aca-
demic year 2018/2019. The questionnaire is anonymous, thus there is no chance to
consider relations with submission scores and exammarks. 87 students responded to the
questionnaire, which touched numerous aspects. In the following, we are going to focus
on the questions related to the adopted approach and to PS.
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Fig. 6. Distribution of exam marks, the lowest mark to pass the exam is 18, the highest is 30
(eventually L, cum Laude).

After attending the module, students stated their agreement from 1 (disagree) to 5
(agree) to the following statements on PS:

• “Solving contextualized problems helps me learn theory better”
• “Studying mathematics through contextualized problems helps me to better face my
university career”

• “Studying mathematics through contextualized problems helps me to better face my
career path”

We can state that students found the adopted methodology useful in order to under-
stand theory and to face their future study or job (median 4, over a 5-point Likert scale,
IQR 1).

Concerning the use of Maple, students are more skeptical. Students had to state how
much they used Maple, their confidence after the course and its usefulness over a 5-
point scale, in which 1 means not at all and 5 means very much. Results are illustrated in
Table 3.

The first concern is that they did not use Maple too much and, when you do not use
an instrument, you do not understand its full potential. During classes, three labs were
dedicated to learn PS with Maple. A total amount of 12 h over a total of 80 h for the
whole course. However, many students declared that they would like to have more time
to deepen and understand all potentialities of Maple.

A last sentence, with which 54% of the respondents agree, is “Mathematics can
provide reasoning methods that are valid in many areas”, underlying the importance of
the discipline in first year scientific courses.
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Table 3. Median of students’ answers over the usage, confidence and usefulness of Maple.

Question Median IQR

How much have you used ACE Maple? 3 1

How much has the use of ACE Maple contributed to your training? 2 1

How competent do you feel in using the ACE Maple? 2 1

In your opinion, how useful will the skills acquired using ACE Maple be for
your future professional career?

3 1

6 Examples

In this section, we are going to highlight some parts of the submissions to show the
presence of indicators of good performance and the presence of problem solving skills.

The contexts of the various submissions were quite different and so were the topics
related to the course of study that students attend. Thus, problems vary from health and
natural sciences to applications about military, as shown in Fig. 7. Students had the
chance to watch and study applications and problems that teachers prepared as example
of good submissions.

Fig. 7. Contextualization of a problem in the military field: the student is going to calculate the
velocity of a specific rotating cannon.

Various types of representation enable students to solve the problem. Students
adopted and combined several modalities, such as words, graphics, symbolic calcu-
lations, numerical approximations and experiments through computerized simulations.
Students are free to choose the modalities, so they need to constantly validate and care-
fully justify every step of their resolution process and of their solving strategy. The ACE
Maple allows users to use all these modalities in a single environment, helping clearness
and comprehension. Figure 8 shows explanations of a basic analysis in a simple context.
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One of the most known PS strategies consists in considering the same problem with
smaller size or less degrees of freedom.

Fig. 8. Students explained the problem with examples and calculations. In this case, the student
was considering the quantity of a contaminant in a lake after three years.

Fig. 9. Students prepared custom interactive components to generalize the studied context, letting
the user choose initial conditions and parameters and watch the resulting plot.

After studying the problem, students were strongly encouraged to create a general-
ization of the situation using a standard or custom interactive interface, using embedded
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components such as buttons, sliders, input and output areas. In this part of the submis-
sion, the teacher, when evaluating, is able to change parameters and input variables to
check the situation with a different perspective and to check possibly different behaviors
according to the initial conditions. Figure 9 shows an example of interactive component.

7 Conclusion

This research provided a useful insight on possible approaches to the development of PS
skills inside Mathematics university modules. The approach make use of contextualized
PS with the help of the ACE Maple. The collected data show the presence of PS skills,
detected by the six dimensions of Comprehension, Resolution strategy, Solution process,
Representation, Argument, and Use ofMaple. The use of the technology is not essential,
but we can state that it facilitated students in the development of PS skills, in learning
Mathematics and in understanding its applications, thanks to the opportunity of symbolic
and numerical calculation, graphical representations and interactivity. Students empha-
sized this, stating that studying mathematics through contextualized problems will help
better face future challenges, even if they still do not fully comprehend the mediation of
the ACE Maple.

Future work will be carried out at the University of Turin in these areas. For sure,
futuremodules and future examination led by our research groupwill maintain and boost
this approach. In the Academic Year 2020/2021, we have already experimented guided
problem posing, in which students choose a problem from a list of available ones. In this
way, given the precise formulation of the problem, there is a benefit in Comprehension
and, consequently, in the other dimensions.

Other work needs to be done also on institutional policies. PS skills development
is left to Mathematics modules and in the work of teachers who adopt new teaching
approaches and methodologies. Moreover, PS dedicated labs with the use of Maple
should be introduced, in connection also with other disciplines, not only scientific,
to facilitate analysis of data, visualization, communication, intersection with other
disciplines and deep understanding of concepts.
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Abstract. Mathematical modelling and numerical simulations have
greatly contributed to the development of technical sciences in the recent
decades. With powerful tools, like Maple, the examination of ever newer
engineering applications in simulation environment was made possible.
This paper gives an overview of mathematical modelling and numerical
examination of nonlinear fire truck suspension systems using Maple. The
examined models are the suspension system of a heavy-duty fire truck
with different degrees of freedom and a special double-cabin fire truck
suspension system with a crew compartment. The construction of math-
ematical models, their implementation to Maple and the numerical simu-
lation results are explained. Detailed One-at-a-Time sensitivity analysis
results using a novel fuzzy logic based evaluation method developed in
Maple are also presented. With the proposed method an extended param-
eter range can be examined and the parameters can be easily compared.
From the sensitivity analysis it was concluded that the spring character-
istics and the road models greatly affect simulation results.

Keywords: Maple · Fire truck · Nonlinear system modelling ·
Sensitivity study

1 Introduction

In Hungary there has been only a limited amount of research about operation of
fire trucks and firefighting systems so far. In special purpose vehicles, such as fire
trucks, high value equipment is built in. This can be damaged by various adverse
effects, like harmful vibrations during firefighting. A search of the available lit-
erature shows that different purpose of trucks [1,2] or passenger cars [3,4] have
been examined in simulation environment, but there are only a few publications
dealing with fire trucks [5,6]. The aim of this study was therefore the mathe-
matical modelling and numerical simulation of nonlinear fire truck suspension
systems.

For the purpose of mathematical modelling different tools are available from
script based ones to computer algebra systems [7]. Maple and MapleSim are
c© Springer Nature Switzerland AG 2021
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powerful tools for system modelling and numerical simulation with a wide range
of engineering applications [8]. Moreover, Maplesoft products have already been
successfully and effectively used to solve simulation tasks of different trucks [9–
11]. The main advantages of Maple include the effective combination of symbolic
and numeric computations, a user friendly, clear interface, an intuitive syntax
easy to understand and debug, and the availability of a lot of useful extensions
by the Application Center [12]. Maple also offers a lot of packages, which can
be effectively used for solving engineering tasks [13]. With regard to all these
advantages, Maple was chosen was chosen for our research.

An effective method to study nonlinear systems is their sensitivity study,
which can be used to detect the weak points of a system and to develop new
models effectively. It is primarily used to examine how changes in parameters
affect system behavior [14]. Using it parameter identification [15] and inverse
simulation tasks [16] can also be solved and the uncertainty of the system can
also be calculated [17]. Sensitivity study is also widely used in robust control
tasks [18]. There are different approaches to carry out a sensitivity analysis
ranging from partial differential techniques to statistical methods [19]. In this
study OaT (One-at-a-Time) sensitivity study method was chosen, because it is
easy to implement and on fast computers a lot of parameter combinations can
be examined in a short time. OaT sensitivity study is, however, mainly used in a
short examination range and only the most sensitive parameters with the highest
sensitivity index are determined. To use the method in a wider examination
range, to obtain the degree of sensitivity and to compare the parameters more
precisely a fuzzy-logic evaluation method developed in Maple is proposed.

This paper is organized as follows: first a novel fuzzy logic based OaT sensi-
tivity study method developed in Maple is presented, followed by the description
of the modelling, the numerical analysis and the sensitivity study of 2 different
fire trucks. The paper concludes with further research tasks.

2 One-at-a-Time Sensitivity Study Using Fuzzy Logic

During our research OaT sensitivity study of different fire truck suspension sys-
tems was carried out. Using a fuzzy logic based [20,21] evaluation method devel-
oped with Maple’s FuzzySets[RealDomain] package [22] a finer, broader analysis
can be carried out with an extended parameter range. Moreover, with defuzzifi-
cation a sensitivity number can be calculated, with which the parameters could
be easily compared to each other. The aim of using fuzzy logic based sensitivity
analysis is, to analyze the models in detail in order to select the most appropriate
one and to compare the applicability of different models. The proposed method
is shown in Fig. 1.

After selecting the output variable, sensitivity functions were created. On a
sensitivity function a selected output variable versus the change in the selected
parameter is shown. The parameter is sensitive where the slope of the sensitivity
function is large, therefore a small change in the parameter changes the output
parameter significantly (see Fig. 2).
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Fig. 1. Proposed OaT sensitivity study with fuzzy logic

Fig. 2. Example of sensitivity function. The parameter is sensitive from 1 to 1.8 and
is not sensitive above 1.8

From the sensitivity function sensitivity index can be calculated. Sensitivity
index is the ratio of the relative change in the output variable and the relative
change in the selected parameter:

SI =
Δv

Δp
(1)

From sensitivity functions and the calculated sensitivity index the member-
ship to the sensitivity sets can be calculated [21]. Sensitivity sets were established
as fuzzy sets and are shown in Fig. 3.

Fig. 3. Fuzzy sensitivity sets
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To calculate the membership to the sensitivity sets the sensitivity function
was divided into segments based on the sensitivity index. After division, the
membership is calculated with the following formula:

μy =
∑ Ri

R
(2)

where Ri is the length of the examined segment and R is the length of the
entire examination range.

From the membership the centroids for defuzzification can be established [20].
The functions for defuzzification and a centroid is shown is Fig. 4. For defuzzifi-
cation Maple’s command defuzzify was used, which provides the center of gravity
or the center of area [22]. After defuzzification the sensitivity number (SN) is
obtained.

Fig. 4. Rules for defuzzification (left) and example for centroid (right)

3 Modelling and Sensitivity Study of Nonlinear Fire
Truck Suspension Models

According to the literature, in case of system modelling, taking into account non-
linear effects is important. Linear models do not always reflect certain essential
properties and behavior of the system, therefore fire truck suspensions were mod-
elled as mass-spring-damper systems with nonlinear spring and damper char-
acteristics [23]. Mass parameters were taken from manufacturing catalogs and
spring and damper coefficients were taken from literature of similar truck mod-
els [24,25]. Our starting model was based on the half-vehicle model because it is
detailed and suitable for many tests, easily expandable with new elements but
does not require as much computing capacity as a full vehicle model. A simple,
easily modifiable model was selected to include the nonlinear effects. The non-
linearity of the spring, the damper and the tire were included with the following
formulas [26,27]:

Fk = kisgn(Δxi)|Δxi|si (3)
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Fc = cisgn(Δẋi)|Δẋi|di (4)

where Fk is the spring force, Fc is the damping force ki is the spring stiffness,
Δxi is the relative displacement, ci is the damping coefficient, si and di are
the nonlinear coefficients. The tire was modelled as a spring-damper pair with
nonlinear spring characteristics and a linear damper. In case of other mass-
spring-damper parts (e.g. cabin mount) linear spring and damper were used.

A theoretical sinusoidal road profile, which corresponds to the profile of an
undulated road [28], was used to develop and test the simulation models more
easily. The road was included as an input excitation signal at the tires with the
following formulas:

uf (t) = Asin

(
2πv

λ
t

)
(5)

ur(t) = Asin

(
2πv

λ
(t − Td)

)
(6)

where uf is the excitation signal at the front tire, ur is the excitation signal
at the rear tire, λ is the wavelength of the road, v is the vehicle speed and Td

is the time delay between the front and rear tire, which can be calculated with
the following formula:

Td =
L

v
(7)

A Maple script was written for each suspension model. In the script first the
simulation parameters were specified, then the system of equations was given
and was solved with the rkf45 numerical algorithm with 0.01 s step size. After
solving the system of equations, the results were evaluated with time-dependent
diagrams, phase-plane diagrams, Poincaré-sections, frequency diagrams and sen-
sitivity diagrams.

3.1 Heavy-Duty Fire Truck

The model was based on a Hungarian Csepel SCD-755-10 heavy-duty fire truck.
The vehicle has a ladder chassis with rigid bridges. Suspension is provided by
leaf springs for both bridges, and an auxiliary leaf spring has also been installed
at the rear to support the constant load. Hydraulic shock absorbers are installed
on both sides of the bridge. The vehicle and its model are shown in Fig. 5.

The equations describing the system behavior are the following:

mcẍc = −(kcΔxc + ccΔẋc) (8)

meẍe = keΔxe + ceΔẋe (9)
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Fig. 5. Csepel CSD-755-10 heavy-duty fire truck and its suspension model

mẍm = kcΔxc + ccΔẋc − keΔxe(t) − ceΔẋe

− kfssgn(Δumfs
)|Δumfs

|sfs − cfssgn(Δ ˙umfs
)|Δ ˙umfs

|dfs

− krssgn(Δumrs
)|Δumfs

|srs − crssgn(Δ ˙umfs
)|Δ ˙umrs

|drs

(10)

Jφ̈ = −(kcΔxc + ccΔẋc)c − (keΔxe − ceΔẋe)d

+ (kfssgn(Δumfs
)|Δumfs

|sfs − cfssgn(Δ ˙umfs
)|Δ ˙umfs

|dfs)a

− (krssgn(Δumrs
)|Δumfs

|srs − crssgn(Δ ˙umfs
)|Δ ˙umrs

|drs)b

(11)

mf ẍf (t) = kfssgn(Δumfs
)|Δumfs

|sfs − cfssgn(Δ ˙umfs
)|Δ ˙umfs

|dfs

− kftsgn(Δufst)|Δufst |srs − crssgn(Δ ˙ufst)|Δ ˙ufst |drs
(12)
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mrẍr(t) = krssgn(Δumrs
)|Δumrs|sfs − crssgn(Δ ˙umrs)|Δ ˙umrs|drs

− krtsgn(Δurst)|Δurst|srs − crssgn(Δ ˙urst)|Δ ˙urst|drs
(13)

The relative displacements are:

Δucm = xc − xm + φc (14)

Δuem = xm − xm + φc (15)

Δumfs = xm − xf − φa (16)

Δumrs = xm − xr + φb (17)

Δufst = xf − uf (18)

Δurst = xr − ur (19)

With this model different DOF (degrees of freedom) models were examined:
a 4 DOF half car model, a 5 DOF model with an additional cabin, a 5 DOF
model with an additional engine mount and a 6 DOF model with additional
cabin and engine mount. The configuration of different models is easy to set in
Maple: the included masses are multiplied by 1 and the others are multiplied by
0 (Fig. 6).

With numerical simulations it was observed that theoretically chaotic oscil-
lations can occur [29]. The model was solved with stricter tolerances and smaller
step size, but the same chaotic behavior occurred. Consequently to be a numeri-
cal chaos was concluded to be an unlikely cause [30]. To prove the chaotic behav-
ior of the model, further work with a more detailed backward error analysis is
planned [31]. It was also observed that by adding new elements to the model (e.g.
cabin, engine) the behavior of the system can completely change. For example,
new attractors may appear, which can be seen on the Poincaré-sections (Fig. 7).
The same tests were also carried out on completely linear models, which, how-
ever showed that the results in these only varied in the amplitude of the output
signals, while the Poincaré sections remained the same regardless of the DOF of
the model [32]. Hence, nonlinear models were the better choice for our purposes.
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Fig. 6. Maple script to change the DOF of the suspension model

Fig. 7. Poincaré sections (left: 4 DOF model, middle: 5 DOF model with engine, right:
6 DOF model with engine and cabin)

The sensitivity analysis was carried out with the 4 DOF model. The output
variable was the RMS (root mean square) of the acceleration at the center of
mass of the vehicle. The detailed OaT sensitivity study of the 4 DOF system
was carried out in a previous research [33]. In this research only the sensitivity
numbers with defuzzification were calculated, which were respectively:

SN(m) = 1.633;SN(mf ) = 0.08;SN(mr) = 0.08;SN(J) = 0.08;
SN(kfs) = 0.175;SN(krs) = 0.89;SN(kft) = 0.2;SN(krt) = 0.08;
SN(cfs) = 0.08;SN(crs) = 0.232;SN(cft) = 0.08;SN(crt) = 0.08;
SN(a) = 0.231;SN(b) = 0.4;SN(sfs) = 2.652;SN(srs) = 2.894;
SN(dfs) = 0.08;SN(drs) = 0.247;SN(sft) = 0.08;SN(srt) = 0.737;
SN(λ) = 2.091;SN(A) = 1.137;SN(v) = 1.889.

The most sensitive parameter was the nonlinear coefficient of the rear spring
(srs), as it has the highest sensitivity number value. It was 1.09 times more
sensitive than the nonlinear coefficient of the front spring suspension (sfs), 1.38
times more sensitive than the wavelength of the road (λ) and 1.53 times more
sensitive than the vehicle speed (v). It is 36.18 times more sensitive than the
non-sensitive parameters (the parameters with SN = 0.8). It can be concluded
that the nonlinear coefficients of the springs were amongst the most sensitive
parameters, therefore accurate spring models are essential in vehicle simulations.
The parameters, which are connected to the time delay (wavelength of the road,
vehicle speed) were also sensitive. This corresponds to the findings of other
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studies in the literature, in which it was showed that chaotic behavior can be
caused by the time delay between the tires [34].

3.2 Double Cabin Fire Truck

The model was based on a mid-size fire truck with an Austrian Rosenbauer
superstructure built on a Mercedes-Benz 1124 chassis. The vehicle has a ladder
chassis with rigid bridges. Suspension is provided by leaf springs for both bridges,
and an auxiliary leaf spring has also been installed at the rear to support the
constant load. Hydraulic shock absorbers are installed on both sides of the bridge.
The vehicle is designed with a special firefighting superstructure, in which the
4-person crew compartment is also installed. The body was attached to the
vehicle chassis with a separate auxiliary chassis. The 2-person driver’s cabin
and the crew compartment are attached to the main chassis with special rubber
mounts. The vehicle and its model are shown is Fig. 8.

The equations describing the systems behavior are the following:

mseẍse = −(kseΔusc + ccΔ ˙usc) (20)

mcẍc(t) = −(kcΔuchc + ccΔ ˙uchc(t)) + kseΔusc + ccΔ ˙usc) (21)

mbẍb = kbΔuchb + ceΔ ˙uchb(t) (22)

mchẍch = kcΔuchc + ccΔ ˙uchc + (keΔuchb + ceΔ ˙uchb

− kfssgn(Δuchfs)|Δuchfs|sfs − cfssgn(Δ ˙uchfs)|Δ ˙uchfs|dfs

− krssgn(Δuchrs)|Δuchrs|srs − crssgn(Δ ˙uchrs)|Δ ˙uchrs|drs

(23)

Jφ̈ = −(kcΔuchc + ccΔ ˙uchc)c

+ (kfssgn(Δuchfs)|Δuchfs|sfs − cfssgn(Δ ˙uchfs)|Δ ˙uchfs|dfs)a

− (krssgn(Δuchrs)|Δuchrs|srs + crssgn(Δ ˙uchrs)|Δ ˙uchrs|drs)b

(24)

mf ẍf (t) = kfssgn(Δuchfs)|Δuchfs|sfs − cfssgn(Δ ˙uchfs)|Δ ˙uchfs|dfs

− kftsgn(Δufst)|Δufst|srs − crssgn(Δ ˙ufst)|Δ ˙ufst|drs
(25)

mrẍr(t) = kfssgn(Δuchrs)|Δuchrs|sfs − crssgn(Δ ˙uchrs)|Δ ˙uchrs|dfs

− kftsgn(Δurst)|Δurst|srs − crssgn(Δ ˙urst)|Δ ˙urst|drs
(26)

The relative displacement are:

Δusc = xs − xc (27)
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Fig. 8. MB RB TLF 2000 double-cabin fire truck and its suspension model
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Δuchb = xb − xch (28)

Δuchc = xc − xm + φc (29)

Δuchfs = xm − xf − φa (30)

Δuchrs = xb − xr + φb (31)

Δufst = xf − uf (32)

Δurst = xr − ur (33)

With this model the vibrations affecting the driver and the crew were
examined in the case of a highway and an urban road [35]. The harmful
effects of the vibrations were examined with frequency analysis using Maple’s
SignalProcessing:-Engine package [36]. The frequency diagrams in the case of
the urban road are shown in Fig. 9.

Fig. 9. Frequency diagrams in case of an urban road (left: driver’s cabin, right: crew
compartment)

To create the frequency diagrams first the acceleration at the driver’s seat
and at the crew compartment were calculated and then with FFT (Fast Fourier
Transform) the peak frequencies were obtained. From the frequency analysis it
can be concluded that the peak frequency exceeds the standard safety limit of
8 h [37]. In Hungary, the maximum time of a deployment is approximately 25–
30 min, which according to the standard should not be harmful, but can cause
discomfort.

The sensitivity analysis was carried out in the case of the urban road. The
output variables were the RMS of the acceleration at the driver’s seat and at
the crew compartment.

The results of the sensitivity study are summarized in Table 1.
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Table 1. Sensitivity study of the double cabin fire truck (upper row: driver’s seat,
lower row: crew compartment)

Parameter Initial value SImax S1 S2 S3 S4 SN

mch 3515 kg 7.823 0.000 0.321 0.482 0.197 2.113

0.589 0.363 0.637 0.000 0.000 0.363

mb 205 kg 0.027 1.000 0.000 0.000 0.000 0.008

3.079 0.000 0.448 0.427 0.125 1,825

mc 205 kg 1.364 0.000 0.000 1.000 0.000 1.350

0.689 0.109 0.811 0.079 0.000 0.596

mf 225 kg 0.539 0.338 0.662 0.000 0.000 0.366

1.606 0.000 0.000 1.000 0.000 1.350

mr 335 kg 0.645 0.006 0.949 0.044 0.000 0.514

0.190 0.702 0.298 0.000 0.000 0.284

mse 100 kg 8.675 0.000 0.000 0.408 0.592 2.962

0.059 1.000 0.000 0.000 0.000 0.080

J 26130 kgm2 0.828 0.000 0.780 0.220 0.000 0.826

5.107 0.000 0.000 0.462 0.538 2.869

kfs 300000 N/m 0.020 1.000 0.000 0.000 0.000 0.080

0.048 1.000 0.000 0.000 0.000 0.080

krs 400000N/m 0.028 1.000 0.000 0.000 0.000 0.080

0.023 1.000 0.000 0.000 0.000 0.080

kft 1000000N/m 2.716 0.000 0.241 0.591 0.167 1.998

1.913 0.000 0.102 0.898 0.000 1.312

krt 1800000N/m 1.184 0.047 0.487 0.466 0.000 1.087

0.709 0.082 0.812 0.106 0.000 0.651

kc 75000N/m 0.650 0.000 0.926 0.074 0.000 0.580

0.105 0.994 0.006 0.000 0.000 0.087

ke 75000N/m 0.042 1.000 0.000 0.000 0.000 0.080

0.061 1.000 0.000 0.000 0.000 0.080

kse 20000N/m 1.299 0.000 0.082 0.918 0.000 1.319

0.039 1.000 0.000 0.000 0.000 0.080

cfs 20000Ns/m 0.316 0.818 0.182 0.000 0.000 0.233

1.148 0.426 0.416 0.158 0.000 0.801

crs 40000 Ns/m 0.579 0.225 0.775 0.000 0.000 0.380

0.341 0.633 0.367 0.000 0.000 0.306

cft 500 Ns/m 0.032 1.000 0.000 0.000 0.000 0.080

0.123 0.804 0.196 0.000 0.000 0.240

crt 1000 Ns/m 0.053 1.000 0.000 0.000 0.000 0.080

0.026 1.000 0.000 0.000 0.000 0.080

(continued)
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Table 1. (continued)

Parameter Initial value SImax S1 S2 S3 S4 SN

cc 7500 Ns/m 1.306 0.000 0.483 0.517 0.000 1.112

0.731 0.407 0.538 0.054 0.000 0.543

ce 7500 Ns/m 0.059 1.000 0.000 0.000 0.000 0.080

0.289 0.000 1.000 0.000 0.000 0.400

cse 1000 Ns/m 1.764 0.000 0.000 1.000 0.000 1.350

0.023 1.000 0.000 0.000 0.000 0.080

a 3.44 m 10.850 0.010 0.032 0.098 0.860 3.366

11.161 0.019 0.041 0.163 0.777 3.274

b 0.2 m 0.374 0.108 0.892 0.000 0.000 0.392

0.200 0.764 0.236 0.000 0.000 0.259

c 3.5 m 0.383 0.078 0.922 0.000 0.000 0.394

0.736 0.000 0.019 0.981 0.000 1.343

r 2.5 m kg – – – – – –

2.631 0.000 0.000 0.000 1.000 3.500

sfs 1.3 3.027 0.655 0.175 0.137 0.033 1.362

7.878 0.478 0.225 0.168 0.129 2.127

srs 1.45 0.338 0.591 0.379 0.030 0.000 0.291

0.467 0.565 0.435 0.000 0.000 0.324

sft 1.1 0.467 0.565 0.435 0.000 0.000 0.324

5.032 0.040 0.104 0.339 0.517 2.909

srt 1.1 4.533 0.011 0.135 0.604 0.250 2.262

3.271 0.043 0.240 0.584 0.133 1.883

dfs 2.2 0.048 1.000 0.000 0.000 0.000 0.080

0.382 0.004 0.996 0.000 0.000 0.400

drs 2.2 0.325 0.683 0.317 0.000 0.000 0.291

0.128 0.964 0.036 0.000 0.000 0.123

λ 2m 11.342 0.000 0.044 0.057 0.899 3.410

34.565 0.012 0.055 0.222 0.711 3.182

v 50 km/h 3.385 0.017 0.063 0.667 0.253 2.262

5.532 0.048 0.127 0.206 0.619 3.110

A 0.02 m 2.270 0.000 0.000 0.191 0.809 3.278

2.665 0.000 0.000 0.000 1.000 3.500

It can be seen that using the RMS of the acceleration at the driver’s seat
the wavelength of the road (λ) was the most sensitive parameter, because it had
the highest sensitivity number (SN = 3.410). The distance between the center
of mass and the front tire (a) was almost as a sensitive parameter, since their
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ratio was only 1.01. The amplitude of the road (A) was also sensitive, the ratio
compared to the wavelength of the road was 1.04. The membership value of these
parameters to the extremely sensitive set was high, which means that they were
extremely sensitive over almost the entire examination range. The nonlinear
coefficient of the rear tire (srt) and the vehicle speed (v) were also sensitive
parameters, their ratio to the wavelength of the road was 1.15. The parameters
mass of the chassis (mch), mass of the seat (mse) and the nonlinear coefficient
of the front tire (sft) were also sensitive parameters with sensitivity numbers
above 2.

In case of selecting the RMS of the acceleration at the crew compartment,
the most sensitive parameters were the amplitude of the road (A) and, not
surprisingly, the distance between the crew compartment and the center of mass
(r), as they had the highest sensitivity number (SN = 3.5). The distance between
the center of mass and the front tire (a) was almost as a sensitive parameter
as the amplitude of the road, their ratio was 1.06. The next most sensitive
parameters were the wavelength of the road (λ) with a ratio of 1.1 and the
speed of the vehicle (v) with a ratio of 1.12 compared to the amplitude of the
road. The nonlinear coefficient of the front tire (sft) and the moment of inertia
(J) were also sensitive parameters their ratio to the amplitude was 1.12. These
parameters had a membership value to the extremely sensitive set above 0.5,
which means that they were extremely sensitive over more than half of the
examination range. The nonlinear coefficient of the front suspension spring (sfs)
was also sensitive with sensitivity number above 2.

It can be concluded that the road parameters and the vehicle speed were
amongst the most sensitive parameters in both output variables. The road
parameters had similar SN values (their ratio was 1.07), but the vehicle speed
was 1.3 more sensitive, when the RMS of acceleration at the crew compart-
ment was the output variable. Therefore it can be concluded that road model is
particularly important in vehicle simulations. The nonlinear coefficients of the
tires were also amongst the most sensitive parameters. Surprisingly the nonlinear
coefficient of the front tire was more sensitive, when the output variable was the
RMS of the acceleration at the crew compartment. On the other hand the non-
linear coefficient of the rear tire was more sensitive, when the output variable
was the RMS of the acceleration at the driver’s seat. Therefore, the nonlin-
ear effects of the tire cannot be neglected. The distance between the center of
mass and the front tire were also amongst the more sensitive parameters. The
other parameters, such as spring stiffnesses, damping coefficients and most of
the masses were moderately sensitive or not sensitive parameters with SN below
2. Also, the nonlinear coefficients of the dampers were not sensitive parameters.
According to the results of the presented sensitivity study in the future more
accurate spring and road models and simpler damper models can be used to
improve the suspension models further.
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4 Conclusions and Further Research Tasks

In this study the mathematical modelling and numerical simulation of a heavy-
duty and a double-cabin fire truck were carried out using Maple scripts. Dur-
ing the simulation of the heavy-duty fire truck it was observed that theoreti-
cally chaotic oscillations can occur in the case of undulated roads. It was also
observed, that by adding a new element to the system, its behavior can be
changed completely, for example new attractors can appear on the phase plane.
During the simulation of the double cabin fire truck frequency analysis using
Maple’s SignalProcessing:-Engine package showed that in the case of a theoret-
ical undulated road the vibrations affecting the crew should not be harmful,
but might cause discomfort. A novel fuzzy logic based OaT sensitivity study
method developed in Maple was also tested with these systems. The advantage
of the proposed method is that an extended parameter range can be examined
and the parameters can easily be compared. From the sensitivity study of the
heavy-duty fire truck it was observed that the nonlinear coefficient of the rear
spring was the most sensitive parameter. Therefore, in vehicle simulations it is
particularly important to use accurate spring models. From the sensitivity study
of the double-cabin fire truck it was observed that parameters which affect the
time delay between the front and rear tire (like the wavelength of the road, the
distance between the tires and the vehicle speed) were sensitive parameters. The
nonlinear coefficients of the tires were also sensitive parameters. Therefore, the
nonlinear effects of the tire also cannot be neglected in vehicle simulations. The
parameters of the dampers were not sensitive, therefore, in the future simpler
damping models can be used.

In this study it was also shown, that Maple can be effectively used to develop
and carry out numerical simulations in case of nonlinear systems. Using different
packages of Maple, several engineering tasks can be solved fast. For example,
with SignalProcessing:-Engine package, the vibrations affecting people travelling
in a vehicle can be examined and a more comfortable seat can be developed.
FuzzySets[RealDomain] package can be used in several fields of engineering, like
the design of a controller or of a robotic system. Moreover, the scripts can be
easily modified and therefore a lot of parameter combinations can be examined as
well as new models can be developed fast. The metods and the models presented
in this paper can be used with little modification in other similar studies as well,
for example to carry out numerical simulations of similar trucks or other special
firefighting vehicles. The presented sensitivity study can be used to develop new
mathematical models and simulation of other nonlinear systems in different fields
of engineering in an effective, convenient way. It might also be used for model
callibration and to select the most appropriate model for a specific tasks.

The models are planned to be developed further according to the results of
the presented sensitivity study. For example more accurate and realistic road
profiles are planned to be used in simulations. To create more accurate models,
laboratory and field measurements are planned with parameter identification
using Maple’s Optimization package. For establishing stochastic road profiles,
Maple’s Statistics package is planned to be used. To carry out an OaT sensitiv-
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ity study a large number of calculations are necessary as there are many different
parameter combinations. To speedup the calculations parallelization is an impor-
tant task, for which Maple’s Grid package is planned to be used. Another future
research goal is to model and carry out the sensitivity study of other nonlinear
firefighting systems using Maple and MapleSim.
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17. Zádor, J., Zsély, I. Gy., Turányi, T., Ratto, M., Tarantola, S., Saltelli, A.: Local and
global uncertainty analyses of a methane flame model. J. Phys. Chem. A. 109(43),
9795–9807 (2005)

18. Rauh, A., Minisini, J., Hofer, E.P.: Verification techniques for sensitivity anal-
ysis and design of controllers for nonlinear dynamic systems with uncertain-
ties. Int. J. Appl. Math. Comput. Sci. 19(3), 425–439 (2009). https://doi.org/10.
2478/v10006-009-0035-1. https://sciendo.com/downloadpdf/journals/amcs/19/3/
article-p425.pdf

19. Hamby, D.M.: A review of techniques for parameter sensitivity analysis of environ-
mental models. Environ. Monit. Assess. 32(2), 135–154 (1994)
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István University, pp. 197–208 (2019)

33. Hajdu, F., Molnárka, Gy., Kuti, R.: One-at-a-time sensitivity study of a nonlinear
fire truck suspension model. FME Trans. 48(1), 90–95 (2020)

34. Zhu, Q., Ishitobi, M.: Chaotic vibration of a nonlinear full-vehicle model. Int. J.
Solids Struct. 43(3–4), 747–759 (2006)

https://doi.org/10.2478/v10006-009-0035-1
https://doi.org/10.2478/v10006-009-0035-1
https://sciendo.com/downloadpdf/journals/amcs/19/3/article-p425.pdf
https://sciendo.com/downloadpdf/journals/amcs/19/3/article-p425.pdf
https://16.www.maplesoft.com/applications/view.aspx?SID=96899
https://16.www.maplesoft.com/applications/view.aspx?SID=96899
https://doi.org/10.1063/1.5019118


Modelling of Nonlinear Firefighting Systems 251

35. Hajdu, F., Kuti, R.: Development of a simulation model for analyzing vibrations
of a double cabin fire truck and their effects on firefighters. Int. Adv. Res. J. Sci.
Eng. Technol. 6(5), 74–79 (2019)

36. Maple Signal Processing. https://www.maplesoft.com/products/maple/features/
Signal Processing.aspx. Accessed 15 Oct 2020

37. International Standard 2631 (ISO 1974, 1985): Mechanical vibration and shock -
Evaluation of human exposure to whole-body vibration

https://www.maplesoft.com/products/maple/features/Signal_Processing.aspx
https://www.maplesoft.com/products/maple/features/Signal_Processing.aspx


Merging Maple and GeoGebra
Automated Reasoning Tools
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Abstract. A branch of the Automated Deduction in Geometry (ADG)
theory deals with the automatic proof and discovery of theses holding
on a given collection of hypotheses. The mechanical proof and derivation
of such statements, through computational complex algebraic geometry
methods, will be exemplify in this paper through the performance of
GeoGebra Automated Reasoning Tools. Then we will refer to some chal-
lenging issues that rise in this context, regarding the translation in alge-
braic terms of the given geometric facts, the verification or the finding
of the sought properties, and the interpretation of the outcome. We will
show how some of these involved issues could be be better approached
through the collaboration of Maple packages for polynomial ideal manip-
ulation, requiring, as well, diverse theoretical concepts recently intro-
duced by the authors.

Keywords: Automated reasoning · Computational algebraic
geometry · Elementary geometry · Maple · GeoGebra

1 GeoGebra’s Automated Reasoning Tools

In the past years the authors have developed and integrated in the dynamic
mathematics program GeoGebra [10] several tools and commands for automated
proving and discovering in elementary geometry, as detailed in [19], see also
[3]. Probably the most basic one is the Relation command, that automatically
searches, from a given collection of possibilities: parallelism, equal size, con-
currency, co-circularity, etc., if one of these relations1 holds over some pair of
geometric objects in a GeoGebra construction, specified by the user.

The command proceeds, first, making some numerical estimation (that was
the only feature of the command in earlier times [16]) about the verification of
1 See https://wiki.geogebra.org/en/Relation Command for a full list.
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the different properties and, when an answer sufficiently close to true is obtained
for a particular query, a symbolic approach to deal with this property is turned
on. Thus, the different steps of the geometric construction are internally and
automatically translated into a collection of algebraic equations with variables
representing the coordinates of the elements (free or constrained) in the con-
struction. Likewise, the property under investigation is expressed as a polynomial
equation, and, then, some automated reasoning algorithms [15,22] are executed
to rigorously verify if the thesis (the property) holds for the given hypotheses
(the geometric construction).

Fig. 1. An example of the Relation command executed in GeoGebra Classic 5. In the
bottom, the numerical check. In the upper right, the symbolic answer provided by
Relation after clicking the “More. . .” button.

Figure 1 shows the use of the Relation tool. An arbitrary triangle ABC
is given and GeoGebra is asked about the existence of some relation holding
between the symmetric point symmetricA of vertex A with respect to the mid-
point of the opposite side, and the line linecircumcentersymmetricO defined
by the circumcenter and the symmetric of the orthocenter O with respect to
A. As shown in the figure, GeoGebra is able to automatically conjecture and,
then, prove, the alignment of the three points symmetricA, circumcenter and
symmetricO, as stated in Example 230 of Chou’s benchmark [8].

In GeoGebra’s automated reasoning tools, there are two other, quite nat-
ural, commands: Prove and ProveDetails. Both require the user to introduce,
over a certain construction, a specific thesis. Then their output is, essentially, a
true/false label, adding, in the former case, if using the ProveDetails command,
details about instances that are considered degenerate and where the thesis does
not hold. See Fig. 2.

Let us remark that, in general, it is quite involved to describe in detail the
method implemented in GeoGebra to output the non-degeneracy requirements
that appear in the Relation or in the ProveDetails window (e.g. A and B not
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Fig. 2. Same example as in Fig. 1, but here is the user who introduces the conjec-
tured thesis in the Input bar. The ProveDetails command confirms the truth of Chou’s
statement except for some degenerate cases.

equal, Triangle ABC is non-degenerate, in Fig. 1; or AreCollinear{A,B,C} and
AreEqual{A,B}) in Fig. 2).

It has to do, in part, with the fact that GeoGebra, internally and to simplify
the computations, assumes always that some two initial free points of a given
figure are (0, 0) and (0, 1) and, thus, it automatically outputs they are assumed
to be different, even if it is not needed for the conclusion. It has to do, also,
with the fact that the non-degeneracy conditions are algebraically related to the
generators (and its factors!) of a certain ideal computed by GeoGebra internally
(and that Maple computations help to understand, as described in the last two
Sections of this chapter), and it might happen that the geometric translation of
some factor or generator yields a property that is already consequence of another
translated one, etc. It can also happen that there is not a sound geometric
translation and GeoGebra then outputs just some {“ . . . ”}, etc. See https://
wiki.geogebra.org/en/ProveDetails Command.

Finally, the command LocusEquation is the last essential piece of the basic
collection of GeoGebra’s automated reasoning tools. Suppose we make a con-
struction similar to the ones in the previous Figs. 1 and 2, but where we do not
consider the symmetric of A with respect to the midpoint of the opposite side.
Rather, we build a new, free point D and we consider the symmetric of A with
respect to D. Obviously, this symmetric point does not lie, in general, in the line
defined by the circumcenter and the symmetric of the orthocenter with respect
to A. So we would like to discover a new theorem: where to place D so that this
alignment takes place. And the answer is: place D on the red line (a necessary
condition, maybe not sufficient), see Fig. 3 .

Indeed, in this case the necessary condition turns out to be also sufficient, as
one can easily check with the Prove command, after adding the condition that
D lies in the parallel to linecircumcentersymmetricO through the mid-point

https://wiki.geogebra.org/en/ProveDetails_Command
https://wiki.geogebra.org/en/ProveDetails_Command
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Fig. 3. Discovering a generalization of Chou’s Example 230. The alignment holds, but
symmetricA is now the symmetric with respect to any point on the (red) line, parallel
to linecircumcentersymmetricO through the midpoint of side BC.

of side BC. It is, in many respects, a way to “discover” new theorems, keeping
a given thesis but relaxing the hypotheses. It is quite surprising to apply this
method to different, well known, theorems after dropping some—apparently—
essential thesis, and see what happens.

Let us conclude this summary introduction to GeoGebra’s automated reason-
ing tools by mentioning two recent novelties. One is the development of a specific
fork of GeoGebra, that we have called GeoGebra Discovery2, including the most
recent versions of the automated reasoning commands we have described, plus
the Discover(P) command. This command allows GeoGebra to formulate, almost
without human intervention and following some heuristics, different geometric
conjectures involving a concrete element (say, a point P , selected by the user) of
a given geometric construction, and to confirm or deny them through the rea-
soning tools. It is available both on GeoGebra Classic 5, for Windows, Mac and
Linux systems; and on GeoGebra Classic 6, ready for starting it in a browser
and thus, adequate for tablets and smartphones.

The other is the Geometer Automaton (GA)3, a module that allows Geo-
Gebra to internally consider, following some combinatorial approach, and not
requiring any human decision at all, the validity or failure of a collection of geo-
metric conjectures involving all the elements of a given geometric construction.
Consider, for instance, the following well known question posed in the usually
called as the ICMI-Kuwait Report [12]: given a square ABCD, let E,F be the
midpoints of the sides AB, BC, respectively. Let G,H be the intersection points
of the diagonal AC and the lines DE and DF . Are the segments AG,GH,HC
of equal length? See Fig. 4, reproducing a page from the report, and Fig. 5 where
the construction of a square has been performed in GeoGebra starting from two

2 https://github.com/kovzol/geogebra-discovery, http://autgeo.online/geogebra-dis-
covery/.

3 http://autgeo.online/ag/, https://github.com/kovzol/ag.

https://github.com/kovzol/geogebra-discovery
http://autgeo.online/geogebra-dis-covery/
http://autgeo.online/geogebra-dis-covery/
http://autgeo.online/ag/
https://github.com/kovzol/ag
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free points A,B, using some perpendicular lines g, h to the line f = AB and
selecting point D on g and in the circle centered at A and passing through B.

Fig. 4. A question from the ICMI-Kuwait Report.

Of course, we could address the posed question by using the ProveDetails
command, asking for the equality of this pair of segments AG,GH and then,
the same for GH,HC, see Fig. 5, where output l1 shows the truth of the first
equality except when the square collapses (A = B) and l2 does the same for the
second equality.

Fig. 5. Answering Kuwait Report question by using ProveDetails.

But here we want to show how the GA could deal with this situation in a
different way. Indeed, formulating this precise question required, first, a human
geometer observing that the segments AG,GH,HC could be of equal length, and
then proving that this conjecture was correct. Now we would like to show how
the GA plays the role of the human geometer, when receiving just a geometric
diagram, see Fig. 6. The user just has to decide what kind of property the GA
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should consider, choosing among several options: Collinearity of three points,
Equality of distances between two points, etc. (see bottom left in Fig. 6).

Then, after clicking the Start Discovery button, the obtained output (2 s
computation time) is a collection of equalities between different points in the
geometric diagram, as shown in Fig. 7. In particular we obtain the sought equal-
ities and many more, some of them not so easy to visualize, like the equality
EH = FG; some simply obvious, like AB = AD, as we are dealing with a
square ABCD.

Fig. 6. The geometer automaton at work over a geometric figure.

Fig. 7. Statements on equality of distances, automatically found on the given figure.

Details about these recent GeoGebra ART (Automated Reasoning Tools)
improvements can be found in [4,5,21] and the references therein.
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2 The Symbolic Computation Background: Basic Facts

Behind the quite successful performance of the above mentioned tools there
are plenty of computational algebraic geometry algorithms, using the Giac [11]
computer algebra system, embedded in GeoGebra [17].

Roughly speaking, the GeoGebra approach follows the well-known algebro-
geometric path to automated reasoning in geometry described in the founda-
tional work of [8], that also includes a detailed account of the basic concepts,
precedents and performing examples. Moreover, since 1996, the proceedings of
the biennial conference on Automated Deduction in Geometry (ADG) seem to
be the most suitable source for the on-going research in this field, see https://
www3.risc.jku.at/conferences/adg2020/?content=previous for links to the vol-
umes collecting, along the years, the papers developing the presentations in the
different conferences.

Let us emphasize the symbolic computation character of this approach, as the
output provided by the involved algorithms does not intend to be just numeri-
cally approximate or probabilistic, but rather mathematically accurate and fully
rigorous. Indeed, as a consequence of the result in [7], describing the formaliza-
tion of the arithmetization of Euclidean plane geometry, the answers obtained
using this technique, about the truth of the geometric statements, are also valid
on the synthetic geometry realm:

. . .The arithmetization of geometry paves the way for the use of alge-
braic automated deduction methods in synthetic geometry. Indeed, with-
out a “back-translation” from algebra to geometry, algebraic methods only
prove theorems about polynomials and not geometric statements. However,
thanks to the arithmetization of geometry, the proven statements corre-
spond to theorems of any model of Tarski’s Euclidean geometry axioms.

On the other hand, it is generally considered, even by authors working on auto-
mated reasoning through a different approach, that the algebro-geometric meth-
ods are extremely successful in dealing with geometry problems. For example,
[2] states—including references to some foundational articles on this area—that
“. . . Automated geometry theorem proving (consisting of several techniques such
as Wu’s methods [23], Gröbner basis method [13], and the angle method [9]) is
one of the most successful areas of automated reasoning”.

Of course, within the algebro-geometric framework there are many different
theoretical developments and implementations. Thus, we refer to [18,20,22] for
details on the concepts and algorithms standing in the background of GeoGebra’s
automated reasoning instruments. Probably the most basic are the Prove and
ProveDetails commands that, roughly speaking, proceed by mechanically trans-
lating the hypotheses and thesis of a geometric statement {H ⇒ T} into poly-
nomial expressions in K[X], where the variables X = {x1, . . . , xn} refer to the
symbolic coordinates (after adopting a convenient coordinate system) involved
in the algebraic description of the hypotheses H = {h1 = 0, . . . , hr = 0} and
thesis T = {f = 0}, and K is the field of coefficients.

https://www3.risc.jku.at/conferences/adg2020/?content=previous
https://www3.risc.jku.at/conferences/adg2020/?content=previous
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For example, if we are dealing with Pythagoras’s Theorem, we are given
A = (a1, a2), B = (b1, b2), C = (c1, c2) so that AC,BC are perpendicular, that
is (c1 − a1)(c1 − b1) + (c2 − a2)(c2 − b2) = 0. Moreover, we denote the length of
the sides as h, i, j, thus verifying h2 = (b1 − a1)2 + (b2 − a2)2, i2 = (c1 − b1)2 +
(c2 − b2)2, j2 = (c1 − a1)2 + (c2 − a2)2. And the thesis is h2 = i2 + j2. See Fig. 8.

Fig. 8. Pythagoras’s Theorem proved by GeoGebra.

Next, we associate the geometric instances verifying the hypotheses to the dif-
ferent solutions of a system of polynomial equations V (H) = {h1 = 0, . . . , hr =
0} (hypotheses variety), that in this case would be {(c1 − a1)(c1 − b1) + (c2 −
a2)(c2 − b2)) = 0, h2 − (b1 − a1)2 − (b2 − a2)2 = 0, i2 − (c1 − b1)2 − (c2 − b2)2 =
0, j2 − (c1 − a1)2 − (c2 − a2)2 = 0}. Analogously, the thesis is translated as the
solution set of a polynomial V (T ) = {f = h2 − i2 − j2 = 0} (thesis variety).
Thus, we could say that Pythagoras’s Theorem states that V (H) ⊆ V (T ), mean-
ing that every instance in V (H), i.e. a right triangle, verifies also the condition
to be part of V (T ), i.e. that the square of the length of the hypotenuse is equal
to the sum of the squares of the lengths of the other two sides.

Now, following [14], checking that V (H) ⊆ V (T ) is equivalent to proving
that V (H) ∩ (Kn \ V (T )) = ∅; and, using Hilbert’s Nullstellensatz, assuming
K is an algebraically closed field, this can be decided by showing that 1 ∈
〈h1, . . . , hr, f · t−1〉, a test that is available through the commands implemented
in Maple’s PolynomialIdeals package. The next lines show the corresponding
Maple session:

> H:=<((c 1−a 1)∗(c 1−b 1)+(c 2−a 2)∗(c 2−b 2)),
hˆ2−(b 1−a 1)ˆ2−(b 2−a 2)ˆ2,iˆ2−(c 1−b 1)ˆ2−(c 2−b 2)ˆ2,
jˆ2−(c 1−a 1)ˆ2−(c 2−a 2)ˆ2>: T:=hˆ2−iˆ2−jˆ2:
1 in H + <T∗t−1>;

true
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Let us remark that whole algorithm relies on the consideration of the solu-
tions of the hypotheses and thesis equations over an algebraically closed field
(i.e. the complex numbers). That is, we are setting the validity or failure of the
proposed statement for geometric instances over a field with such characteris-
tics; if the statement is found true, it will be true for complex instances; if it
is declared false, it could be true over the reals. . . but it would not be true for
some instances with complex coordinates.

The reason behind this seemingly strange approach has to do with the higher
development and efficiency of complex algebraic geometry algorithms versus the
real case, yet we must point out that it is very often, in elementary geometry,
the coincidence of the behavior of the real and complex contexts (see [6] for
some counterexample to this assertion). See also [1] for some recent, specific
developments for the real case.

3 Using Maple in Automated Reasoning in Elementary
Geometry

The precedent Section collects only a very pale image of the complete story
behind GeoGebra’s automated reasoning tools. It is not the purpose of this
paper to get into technical details concerning the theoretical background and
algorithms implemented in GeoGebra (see, for instance [3,15]), but to exemplify
how the cooperation of Maple can help understanding some challenging issues
involved in the algebraic approach to the verification of some geometric property,
contributing to the interpretation of the outcome.

Consider, for instance, Fig. 9, displaying the following construction: given a
couple of points A(a1, a2), B(b1, b2), we consider three points D(d1, d2), F (f1,
f2), G(g1, g2) on the line AB. Then we consider a new point C(c1, c2) and points
E,H, I that are, respectively the midpoints of the segments CD,CF,CG. Finally,
we claim thatE,H, I are aligned. Here the hypothesesH involves three equations,
each one expressing that D,F,G are on the line AB, namely H := {(d1 − a1) ·
(b2 − a2) − (d2 − a2) · (b1 − a1) = 0, (f1 − a1) · (b2 − a2) − (f2 − a2) · (b1 − a1) =
0, (g1 − a1) · (b2 − a2) − (g2 − a2) · (b1 − a1) = 0}.

To formulate the thesis we consider the alignment of E = ((d1 + c1)/2, (d2 +
c2)/2),H = ((f1 + c1)/2, (f2 + c2)/2), I = ((g1 + c1)/2, (g2 + c2)/2)), that is, the

determinant of the matrix
(

1 (d1+c1)/2 (d2+c2)/2
1 (f1+c1)/2 (f2+c2)/2
1 (g1+c1)/2 (g2+c2)/2

)
yielding, after multiplying the

output by 4, the thesis T := d1f2 − d1g2 − d2f1 + d2g1 + f1g2 − f2g1 = 0.
Now we perform the same test as in the precedent example, but this time

the output is not the expected one:

> 1 in H + <T∗t−1>;

false

When we arrive to this point, where our personal geometric intuition (the state-
ment is certainly true!) seems to contradict the result of the computation (the
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Fig. 9. Proving the collinearity of the mid-points of CD, CF , CG.

machine labels the statement as false!), it is natural to go back to the hypothe-
ses set H, revisiting it in order to check that we have accurately collected in its
description the geometric constraints of our given data. This is a task where the
role of Maple is essential. To begin with, we would like to confirm that the set
V (H) has the expected dimension 9: two free coordinates for each of the initial
points A,B,C and, then, since D,F,G are constrained to lie on the line AB,
each of these points brings just a single free coordinate.

To verify this, we need, first, to declare H as an ideal living in K[a1, a2, b1,
b2, c1, c2, d1, d2, g1, g2, f1, f2]:

> H:=<(d 1−a 1)∗(b 2−a 2)−(d 2−a 2)∗(b 1−a 1),(f 1−a 1)∗(b 2−a 2)−
−(f 2−a 2)∗(b 1−a 1), (g 1−a 1)∗(b 2−a 2)−(g 2−a 2)∗(b 1−a 1),
variables ={a 1,a 2,b 1,b 2,d 1,d 2,g 1,g 2, f 1 , f 2 ,c 1 ,c 2}>;

because c1, c2 are part of the initial construction, but these two variables are not
subject to any constraint and thus they do not appear explicitly as part of the
definition of H. And then we ask for the dimension of H:

> HilbertDimension(H);

10

getting, as unexpected answer, that it is ten!
Now, since the dimension of an ideal is the maximum of the dimen-

sion of its associated primary or prime ideals, we try to find the
PrimaryDecomposition(H), to understand, checking the dimension on
each primary component and trying to understand which one does not
behave as expected. Unfortunately, after a long computation time without
answer, we decide to abort the computation and switch to computing the
PrimeDecomposition (over the field of coefficients involved in the description of
H, namely, Q). This decomposition is easily computed by Maple, getting three
prime ideals:

> PP:=PrimeDecomposition(H);
<b 1−a 1, b 2−a 2>,
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<b 2−a 2, d 2−a 2, f 2−a 2, g 2−a 2>,
<−a 1∗b 2+a 1∗d 2+a 2∗b 1−a 2∗d 1−b 1∗d 2+b 2∗d 1, −a 1∗b 2+a 1∗f 2+
+a 2∗b 1−a 2∗f 1−b 1∗f 2+b 2∗f 1, −a 1∗b 2+a 1∗g 2+a 2∗b 1−a 2∗g 1−
−b 1∗g 2+b 2∗g 1, −a 1∗d 2+a 1∗f 2+a 2∗d 1−a 2∗f 1−d 1∗f 2+d 2∗f 1,
−a 1∗d 2+a 1∗g 2+a 2∗d 1−a 2∗g 1−d 1∗g 2+d 2∗g 1, −a 1∗f 2+a 1∗g 2+
+a 2∗f 1−a 2∗g 1−f 1∗g 2+f 2∗g 1>

A collateral observation: it is easy to check (using Maple’s IdealContainment
and Intersect commands) in this particular case that the intersection of the
three prime ideals PP [i], i = 1 . . . 3 is exactly H, so the prime and primary
decomposition of H are the same.

Next the dimension of each of these three ideals is computed, obtaining

> for i from 1 to 3 do HilbertDimension(PP[i]) od;

10
8
9

so actually only the last component behaves as expected. Indeed we
observe that the first one, PP [1], has dimension 10 (e.g. free variables
{a1, a2, c1, c2, d1, d2, f1, f2, g1, g2}), and corresponds to instances of our construc-
tion where A = B, a degenerate situation that we do not consider as being part
of the “real” statement, yet it is a case that the equations of the hypotheses we
have introduced do not dismiss.

The second component corresponds to instances where all the points
A,B,D, F,G are on the line parallel to the X-axis through A, and thus this point
contributes with two free coordinates, and each of the remaining B,D,F,G with
only one: b1, d1, f1, g1. Finally C brings two more free variables, so 2 + 4 + 2 = 8
in total.

> EliminationIdeal (PP[2],{a 1,a 2,b 1,c 1,c 2,d 1, f 1 ,g 1});
〈0〉

We consider that such component includes some specific collection of “standard”
instances, so we should test our thesis over them.

Finally, the last component PP [3], has the expected dimension 9 and collec-
tion of free variables. Indeed

> EliminationIdeal (PP[3],{a 1,a 2,b 1,b 2, c 1,c 2,d 1, f 1 ,g 1});
〈0〉

So, after these computations, we could conclude that the amended hypotheses
ideal could rather be HH := Intersect(PP [2], PP [3]). And we can check that
the rectified statement HH ⇒ T is now correct, as expected:

> 1 in HH + <T∗t−1>;

true
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All these digressions are already captured by GeoGebra’s automated reasoning
tools, as shown in Fig. 9, Algebra column, displaying in the last entry that the
collinearity of E,H, I is true except when AreEqual[A,B] holds, that is, except
for instances verifying PP [1]. Although GeoGebra’s internal computations do
not follow exactly the steps we have described here in this example, they high-
light as well the same two crucial issues: the relevance of free variables and the
relevance of the different irreducible components of the hypotheses variety V (H).

To expand these essential ideas a little bit, in what follows we will consider
K and L to be fields, with L an algebraically closed extension on K (for instance
L = C and K = Q), and an algebraically translated statement {H ⇒ T}. Let be
H = 〈h1, . . . , hr〉 and T = 〈f〉 the hypotheses and thesis ideals in the polynomial
ring K[X], where the variables X = {x1, . . . , xn} refer to the symbolic coordi-
nates involved in the algebraic description of the hypotheses in Kn. And take
the algebraic variety V (H) (respectively, V (T )) in the affine space Ln defined
over K.

Then consider (as a user choice, possibly following some geometric intuition) a
subset Y = {x1, . . . , xd} of X being independent modulo H (i.e. H∩K[Y ] = 〈0〉),
but not necessarily of maximum size, i.e. not necessarily d = dimension(H).
Now, the irreducible components of V (H) where these variables Y do remain
independent will be declared as non-degenerate components. With this termi-
nology, the following definition involves a subtle modification of a similar one in
[22] or [20], in that the cardinal of Y in our version below does not have to agree
with the dimension of H.

Definition 1. A statement {H ⇒ T} is considered to be generally true if the
thesis f vanishes on all non-degenerate K-components of the hypotheses vari-
ety V (H). If the thesis holds over all the (degenerate or not) components the
statement is labelled as always true or, simply, true.

For example, it is easy to check, with Maple’s command similar to the ones
we have shown before, that Pythagoras’s Theorem holds always true since the
hypotheses variety has dimension 5, with independent variables given by the
coordinates of A,B and one of the coordinates of C. It has two irreducible
components, associated to different signs of i or of j, each are non-degenerate,
of dimension 5, and the thesis is verified over both of them.

On the other hand, the collinearity of the three midpoints in Fig. 9
is generally true, with respect to the chosen independent variables
{a1, a2, b1, b2, c1, c2, d1, f1, g1}, but not always true, as the thesis does not hold
over the first component PP [1] = 〈b1 − a1, b2 − a2〉:
> 1 in <b 1−a 1, b 2−a 2>+<T∗t−1>;

false

Of course, this computation is not strictly needed since it follows from the fact
that we have already observed that 1 is not in H + 〈T · t − 1〉, but it is part of
(PP [2] ∩PP [3)] + 〈T · t− 1〉. In general, we have the following characterization:
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Proposition 1. Let {H ⇒ T} be a statement. Then it is always true if and
only if V (H) ⊆ V (T ) if and only if 1 ∈ H + 〈T · t − 1〉 if and only if for all
associated primes PP [i], i = 1 . . . r of H, V (PP [i]) ⊆ V (T ) if and only if for all
i = 1 . . . r, 1 ∈ PP [i]+〈T ·t−1〉 if and only if for all i = 1 . . . r, {PP [i] ⇒ T}
is always true.

Proof is immediate, bearing in mind Hilbert’s Nullstellensatz for the alge-
braic/geometric interrelation.

On the other hand, we have the following modification of the first statement
in Theorem 1 in [20], bearing in mind that in the proof of that particular item
there it is not required that Y is of maximum size, with d = dim(H).

Proposition 2. Let {H ⇒ T} be a statement and fix a set Y = {x1, . . . , xd}
of independent variables for the hypotheses ideal H (but d does not have to be
equal to the dimension of H). Then, the statement is generally true if and only
if 〈h1, . . . , hr, f · t − 1〉K[X, t] ∩ K[Y ] 
= 〈0〉.

In fact, following the proof in [20] it is easy to conclude that the ideal
〈h1, . . . , hr, f · t−1〉K[X, t]∩K[Y ] gives the algebraic description of the Zariski-
closure for the projection, over the space Kd of (x1, . . . , xd)-coordinates, of the
degenerate irreducible components of V (H) where T is not always true.

As a toy example of this situation, we could think of H = 〈x · z〉K[x, y, z],
with {y, z} as free variables, with {x = 0} as the non-degenerate component and
with {z = 0} as a degenerate component (since z is not free in this component).
Let T = {x = 0} be the thesis. Then {H ⇒ T} is generally true, since T vanishes
over the only non-degenerate component. In fact,

> EliminationIdeal (<x∗z> + <x∗t−1>,{y,z});
〈z〉

and the output yields the equation {z = 0} of the projection, over the {y, z}-
plane, of the degenerate component {z = 0}. Notice that, if we select instead
{x, y} as free variables, then the same statement would not be generally true,
since

> EliminationIdeal (<x∗z> + <x∗t−1>,{x,y});
〈0〉

because now {x = 0} would be a degenerate component, yet it is the only
component where the thesis holds true.

Again, using the above Proposition over the example of Fig. 9, we get

> EliminationIdeal (H + <T∗t−1>,{a 1,a 2,b 1,b 2,c 1,c 2,d 1,g 1,f 1});

〈b 1 − a 1, b 2 − a 2〉 (1)

confirming that the thesis vanishes identically over all non-degenerate com-
ponents (considering {a1, a2, b1, b2, c1, c2, d1, g1, f1} as the set of variables that
should be free in the non-degenerate components).
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4 Conclusions

The above output of the EliminationIdeal command being not zero is, surely, a
much simpler way—versus the previous approach, requiring the primary decom-
position of the hypotheses ideal and the test over each component—to conclude
that the involved statement (the collinearity of the three midpoints E,H, I) is
true in all non-degenerate cases. It is, roughly speaking, the way the ProveDetails
algorithm is implemented in GeoGebra, and depends on the internal choice of
free variables, that GeoGebra selects following the construction steps performed
by the user (introducing free or semi-free points, those constrained to lie on some
one dimensional object by using the Point on Object command, etc.).

It is a simpler way, indeed, but one that does not provide any hint about the
reasons behind the conclusion. It is in this respect that we believe that the con-
tribution of Maple could be extremely clarifying to help humans to understand
what is the detailed picture concerning the statement under consideration.

In particular, the precedent computations, yielding 〈b1 − a1, b2 − a2〉 as
output of (1) explain why GeoGebra’s affirmative answer to the ProveDe-
tails(AreCollinear(E,H,I)) requires discarding AreEqual[A,B], as the equality
between these two points is described, precisely, by the vanishing of all the poly-
nomials in 〈b1 − a1, b2 − a2〉. In fact, let us remark that, if we are dealing with
a generally true statement {H ⇒ T}, and if we consider any non-zero element
g ∈ 〈h1, . . . , hr, f · t−1〉K[X, t]∩K[Y ], then adding g ·z−1 as a new hypotheses
yields a statement {H ′ = 〈h1, . . . , hr, g · z− 1〉 ⇒ T} that is always true. In fact,
by construction, g ∈ 〈h1, . . . , hr, f ·t−1〉, so g is also in 〈h1, . . . , hr, g·z−1, f ·t−1〉,
which implies this ideal is 〈1〉.

Thus, in the Collinearity example above, the statement will be always true
if we add the negation of any polynomial in 〈b1 − a1, b2 − a2〉, that is, if we are
not in the case A = B. A similar consideration could explain the output shown
in other statements addressed in Figs. 2 and 5.

We have exemplified in this paper a few, quite basic, issues concerning some
surprising outcomes of GeoGebra’s Automated Reasoning Tools, showing how
they are better handled and interpreted with the cooperation of Maple’s com-
putations, trying to reproduce and deepen the involved algebraic geometry algo-
rithms. We refer the interested reader to [20] for further, similar, situations, both
concerning new surprising outputs in GeoGebra and the corresponding enhanced
explanations using Maple.
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Abstract. In this paper the Maple package AGADE is introduced. This
software package implements different methods for computing rational
general solutions of first-order algebraic ODEs and planar rational sys-
tems. All implemented algorithms follow a special algebro-geometric solu-
tion approach. In the first stage, an affine algebraic set is associated to the
differential equation(s)which is then parametrizedwith rational functions.
Subsequently, a solution of the differential problem is obtained by finding a
suitable reparametrization of these rational functions in the second stage.
The basic usage of the software package is demonstrated at a number of
examples. Finally, an outlook on future implementations is provided.
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1 Introduction

Computing symbolic solutions of differential equations or deciding whether a
solution exists are notoriously difficult problems in the general (non-linear) case.
For algebraic differential equations, i.e. differential equations where the indepen-
dent variables and the dependent functions and their derivatives are related by
a polynomial function, a general solution strategy is available if one restricts
to a suitable class of solutions. The idea of this strategy, which is called the
algebro-geometric method for solving algebraic differential equations [19], is a
two stage process. First, an algebraic set is derived from the differential equa-
tions which is then parametrized with functions from the solution class. This is
a purely algebraic problem. In the second stage, the parametrization is modified
such that the differential aspect is satisfied as well. A solution of the differential
equations is then extracted from this modified parametrization.
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This algebro-geometric approach is well understood for algebraic ordinary
differential equations (AODEs) and rational solutions, cf. Winkler [19, Section 2].
Over a computable field of characteristic zero, such as the algebraic numbers,
the algebro-geometric solution method has led to several algorithms which can
be implemented on a computer. The aim of the software package AGADE1 is to
provide implementations of some of these methods for the widely used computer
algebra system Maple. At present, the package implements four such algorithms:
the methods for computing rational general solutions of first-order AODEs of
Ngô and Winkler [11,12] and Vo et al. [18]; the special case of autonomous
first-order AODEs from Feng and Gao [5,6]; and the algorithm for computing
rational general solutions of planar rational systems of Ngô and Winkler [13].
Examples which show how these implementations can be used to find solutions
are provided at the end of the paper.

The structure of this paper is as follows: Sect. 2 recalls basic concepts from
algebraic geometry and provides a rigorous definition of the term rational general
solution. Afterwards, the basic principles of the implemented algorithms are
described in Sect. 3. Section 4 describes where the package AGADE can be obtained
and how it can be used to find solutions. In addition, limitations and details on
the implementation are discussed. Finally, an outlook on future implementations
is given in Sect. 5.

2 Preliminaries

Denote by Q the computable field of algebraic numbers and let x be an indeter-
minate. The polynomial ring Q[x] and its quotient field Q(x) can be seen as a
differential ring and a differential field, respectively, by endowing both structures
with the usual derivation ′ := d/dx. In either case, Q is the field of constants.

Let y be a differential indeterminate representing an unknown differentiable
function of x. A first-order algebraic ordinary differential equation (AODE) is
an ordinary differential equation (ODE) of the form

A(x, y, y′) = 0, (1)

where A is a trivariate polynomial, say A ∈ Q[x, u, v], of positive degree in v.
The polynomial A will be of further importance in the sequel of this paper and
is referred to as the defining polynomial of the AODE (1). Since the ultimate
goal of the implemented algorithms is to compute (rational) general solutions,
it is assumed w.l.o.g. that the defining polynomial of any AODE is irreducible.

Classically, by a general solution of a first-order ODE one understands a
solution ŷ of the differential equation which contains an arbitrary constant. In
the case of AODEs a more rigorous definition is available in the language of
differential algebra, cf. Ritt [14] or Kolchin [9] for details on the subsequent

1 The acronym AGADE stands for Algebro-Geometric methods for solving Algebraic
Differential Equations.
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constructions. Denote by Q(x){y} the differential polynomial ring2 over the dif-
ferential field (Q(x),′ ). Let P ∈ Q(x){y} be an irreducible differential polynomial
of order 1. The radical differential ideal generated by P , commonly denoted by
{P}, can be decomposed into

{P} = ({P} : SP ) ∩ {P, SP },

where SP = ∂P/∂y′ is the separant of P . From this decomposition one can see
that a root of P might be a root of the separant as well. These are the so-called
singular solutions of the differential equation P = 0 and will not be of further
interest in this paper. The component {P} : SP on the other hand does not
contain the separant. Since P is irreducible, {P} : SP is a prime differential
ideal and as such has a generic zero in some differential extension field [14,
Chapter 2]. It is precisely the generic zero of this component that will be used
to define the general solution of an AODE. In the literature, {P} : SP is usually
referred to as the general component of P .

Given a first-order AODE A(x, y, y′) = 0. The left-hand side can be con-
sidered as an element of the differential polynomial ring Q(x){y}. Since A ∈
Q[x, u, v] is assumed to be irreducible and of positive degree in v, A(x, y, y′) is
an irreducible differential polynomial of order 1.

Definition 1. Let A(x, y, y′) = 0 be a first-order AODE and denote its left-
hand side by P = A(x, y, y′). A general solution of P = 0 is a generic zero of
the prime differential ideal ({P} : ∂P/∂y′) ⊆ Q(x){y}. If, in addition, a general
solution ŷ is of the form

ŷ =
am xm + am−1 xm−1 + · · · + a0

xn + bn−1 xn−1 + · · · + b0
,

where ai, bj are constants in a differential extension field of (Q(x),′ ), then ŷ is
called a rational general solution.

In other words, a general solution of the first-order AODE A(x, y, y′) = 0 is
defined as a generic zero of the general component of {A(x, y, y′)} ⊆ Q(x){y}. If
such a general solution is rational in the independent variable x, then it is called
a rational general solution. An advantage of this definition is that there exists
an algorithmic way to verify whether a solution is indeed a general solution via
differential pseudo-remainder computations, cf. Ritt [14, Chapter 2, Sect. 13].
Note that if ŷ is a rational general solution in the sense of Definition 1, then
the coefficients ai, bj must contain a constant that is transcendental over Q.
Consequently, ŷ is also a general solution in the classical sense.

The implemented algorithms for computing rational general solutions of first-
order AODEs derive a solution from a so-called proper rational parametrization

2 Denote by y(o) the o-th derivative of y, then Q(x){y} is just the polynomial ring
Q(x)[y, y′, y′′, . . . , y(o), . . .], where the derivation ′ extends to Q(x){y} by setting
(y(o))′ = y(o+1) for all o ∈ N.
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of an associated affine algebraic variety. In order to define such parametriza-
tions properly, it is necessary to recall certain basic terminology form algebraic
geometry. Details can be found, for instance, in Shafarevich [17].

Let F denote an algebraically closed field of characteristic zero3 and consider
a non-constant polynomial P ∈ F[x1, . . . , xn], where n > 0. The roots of P

Z(P ) := {(a1, . . . , an) ∈ A
n(F) | P (a1, . . . , an) = 0}

constitute a classical affine algebraic set, where A
n(F) denotes the n-dimensional

affine space over F. If P is irreducible, then Z(P ) is irreducible as an algebraic
set4 and in this case Z(P ) is called an affine algebraic variety.

Definition 2. Let V ⊆ A
n(F) be a d-dimensional affine algebraic variety. A

rational map

PV : Ad(F) ��� V, a = (a1, . . . , ad) �→ (φ1(a), . . . , φn(a)),

where φi ∈ F(t1, . . . , td) are rational functions in d variables over F is called a
rational parametrization of V if im(P) is Zariski-dense in V. If, in addition, P
is a birational equivalence, viz. has a rational inverse, then P is called a proper
rational parametrization of V.

Typically, (proper) rational parametrizations will be denoted simply by a tuple of
rational functions and we write PV(a) = (φ1(a), . . . , φn(a)). It is well-known that
only irreducible affine algebraic sets can have a proper rational parametrization,
hence it is sufficient to restrict to the case of varieties in the definition. If an affine
algebraic variety V has a proper rational parametrization, i.e. is birationally
equivalent to a full affine subspace, then V is called rational or a rational variety.

Only low-dimensional varieties will be of interest in this paper, in particular,
irreducible curves and surfaces, i.e. affine algebraic varieties of dimension 1 and
2, respectively. For these types of varieties simple rationality criteria are known,
hence the existence of a proper rational parametrization can be decided.

Theorem 1. Let C ⊆ A
2(F) and S ⊆ A

3(F) be an irreducible curve and an
irreducible surface, respectively. The curve C is rational if and only if its genus
is 0. Furthermore, S is rational if and only if the arithmetic genus and the second
plurigenus of S are both 0.

A precise definition of these terms is beyond the scope of this section and can be
found in standard literature on algebraic geometry such as Hartshorne [7]. Note
that proper rational parametrizations of curves and surfaces can be computed.
For parametrization methods of algebraic curves consult Sendra et al. [16] or van
Hoeij [8]. Schicho [15] gave an algorithm for computing rational parametrizations
of algebraic surfaces.

Remark 1. The Maple package algcurves offers methods for studying algebraic
plane curves. In particular, the commands algcurves:-genus and algcurves:-
parametrization can be used to compute the genus and a proper rational
parametrization of an algebraic curve, respectively.
3 In the sequel of this paper, the cases F = Q and F = Q(x) will be of importance.
4 Viz. Z(P ) is not the union of two strictly smaller affine algebraic sets.
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3 Algorithms for Parametrizable AODEs

The aim of this section is to provide an overview of the implemented algo-
rithms for computing rational general solutions of first-order AODEs. The com-
mon point of all methods is that they derive a solution from a proper rational
parametrization of an associated affine algebraic set via a suitable reparametriza-
tion. In other words, a solution is found by substituting the variables of the
parametrization with suitable rational functions.

3.1 Surface-Parametrizable AODEs

In Ngô and Winkler [11,12], an algorithm for computing rational general solu-
tions of first-order AODEs based on surface parametrizations is described. The
basic principle of their approach will be outlined briefly in this section. For the
technical details, the reader is referred to the aforementioned references.

Let A(x, y, y′) = 0 be a first-order AODE and A ∈ Q[x, u, v] be the corre-
sponding defining polynomial. The zero-locus of A

SA := Z(A) = {(a1, a2, a3) ∈ A
3(Q) | A(a1, a2, a3) = 0}

defines a surface in 3-dimensional affine space over Q. Since A is irreducible, SA

is irreducible as an algebraic set, i.e. an affine algebraic variety.

Definition 3. The surface SA obtained from a first-order AODE A(x, y, y′) =
0 is referred to as the associated surface (of the AODE). Furthermore, if SA

has a proper rational parametrization, then A(x, y, y′) = 0 is called surface-
parametrizable.

Assume that A(x, y, y′) = 0 is surface-parametrizable and let

PSA
(t1, t2) = (φ0(t1, t2), φ1(t1, t2), φ2(t1, t2)) with φ0, φ1, φ2 ∈ Q(t1, t2) (2)

be a proper rational parametrization of the associated surface SA. Given a ratio-
nal (general) solution ŷ of the AODE, such a solution generates a parametric
curve5 Cŷ(x) = (x, ŷ(x), ŷ′(x)) by interpreting the independent variable x as the
parameter. Since A(x, ŷ, ŷ′) = 0 the curve Cŷ lies on the associated surface SA.
The conditions when PSA

has a suitable reparametrization are then deduced
from the preimage of PSA

under the parametric curve Cŷ. Recall that PSA
is a

proper rational parametrization and therefore has a birational inverse.
Let (σ(x), τ(x)) = P−1

SA
(x, ŷ(x), ŷ′(x)), where P−1

SA
denotes the birational

inverse of PSA
. Application of PSA

on both sides yields PSA
(σ(x), τ(x)) =

(x, ŷ(x), ŷ′(x)). From Eq. 2 the following conditions for σ(x) and τ(x) are derived
⎧
⎨

⎩

φ0(σ(x), τ(x)) = x

φ2(σ(x), τ(x)) =
d
dx

φ1(σ(x), τ(x)).
(3)

5 For rational general solutions this is actually a parametric family of rational curves.
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The system (3) can be solved for σ(x) and τ(x). A solution is of the form [11,
Section 3]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ′ =
φ2(σ, τ)∂φ0(σ,τ)

∂τ − ∂φ1(σ,τ)
∂τ

∂φ0(σ,τ)
∂τ

∂φ1(σ,τ)
∂σ − ∂φ0(σ,τ)

∂σ
∂φ1(σ,τ)

∂τ

τ ′ =
φ2(σ, τ)∂φ0(σ,τ)

∂σ − ∂φ1(σ,τ)
∂σ

∂φ0(σ,τ)
∂σ

∂φ1(σ,τ)
∂τ − ∂φ0(σ,τ)

∂τ
∂φ1(σ,τ)

∂σ

,

(4)

where the dependency on x is omitted for simplicity. Notice the special form of
this system: Both equations are quasi-linear and the independent variable x does
not appear explicitly, i.e. the system is autonomous. Furthermore, for rational
general solutions of the system (4) the denominators do not vanish [12, p. 4].

Definition 4. Let A(x, y, y′) = 0 be a surface-parametrizable first-order
AODE and PSA

(t1, t2) = (φ0(t1, t2), φ1(t1, t2), φ2(t1, t2)) be a proper rational
parametrization of the associated surface. The autonomous quasi-linear system of
ODEs (4) is called the associated planar system (of the AODE) with respect to PSA

.

The following theorem can be found in Ngô and Winkler [12, Theorem 2.1].

Theorem 2. There is a one-to-one correspondence between the rational general
solutions of a surface-parametrizable first-order AODE A(x, y, y′) = 0 and the
rational general solutions6 of the associated planar system (wrt. a proper rational
parametrization of SA).

In particular, if (σ̂(x), τ̂(x)) is such a rational general solution of the associated
planar system, then ŷ = φ1(σ̂(x+C), τ̂(x+C)), where C = x−φ0(σ̂(x), τ̂(x)), is
a rational general solution of the original AODE [11, Theorem 3.15]. This leads to
an algorithm for computing rational general solutions of surface-parametrizable
AODEs which is summarized in Algorithm 1. Of course, this requires that com-
puting the solutions of the associated planar system is actually algorithmic. This
is indeed the case and the algorithm which performs that task is described briefly
in Sect. 3.4.

Remark 2. If a first-order AODE has a rational general solution, then it is not
necessarily surface-parametrizable. For example, the first-order AODE

x2y′2 − 2xyy′ − y′3 + y2 − 2 = 0

has the rational general solution ŷ = Cx +
√

C3 + 2, however, the arithmetic
genus of the associated surface is non-zero.

3.2 Curve-Parametrizable AODEs

Recently, Vo et al. [18] presented another algorithm for computing rational gen-
eral solutions of first-order AODEs based on curve parametrizations. As will be
6 A precise definition of the term rational general solution for planar rational systems

can be found in Ngô and Winkler [11, Definition 3.9].
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Algorithm 1. Rational general solution surf.-param. first-order AODE
(cf. Ngô and Winkler [11, Algorithm 1])
Input : First-order AODE A(x, y, y′) = 0
Output: Rational general solution ŷ or string message

1 if the associated surface SA is rational then
2 Compute a proper rational parametrization

PSA(t1, t2) = (φ0(t1, t2), φ1(t1, t2), φ2(t1, t2)), where φ0, φ1, φ2 ∈ Q(t1, t2).

3 Find a rational general solution (σ̂(x), τ̂(x)) of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ′ =
φ2(σ, τ) ∂φ0(σ,τ)

∂τ
− ∂φ1(σ,τ)

∂τ
∂φ0(σ,τ)

∂τ
∂φ1(σ,τ)

∂σ
− ∂φ0(σ,τ)

∂σ
∂φ1(σ,τ)

∂τ

τ ′ =
φ2(σ, τ) ∂φ0(σ,τ)

∂σ
− ∂φ1(σ,τ)

∂σ
∂φ0(σ,τ)

∂σ
∂φ1(σ,τ)

∂τ
− ∂φ0(σ,τ)

∂τ
∂φ1(σ,τ)

∂σ

.

4 if no such solution exists then
5 return “AODE has no rational general solution”
6 else
7 return ŷ = φ1(σ̂(x + C), τ̂(x + C)), where C = x − φ0(σ̂(x), τ̂(x))

8 else
9 return “AODE is not surface-parametrizable”

seen, their approach is similar to the one from Sect. 3.1 and shall be presented
at the same level of generality here.

Unlike before, the independent variable x will not be parametrized, but
is adjoined to the coefficient field. In other words, given a first-order AODE
A(x, y, y′) = 0, the defining polynomial A is viewed as an element of the polyno-
mial ring Q(x)[u, v]. Although this will not be required for the actual computa-
tions, the field Q(x) must be, formally, algebraically closed to be consistent with
the theory of rational parametrizations of Sect. 2. Thus, A is actually viewed as
an element of Q(x)[u, v]. In this structure, the zero-locus of A defines the curve

CA := Z(A) = {(a1, a2) ∈ A
2(Q(x)) | A(a1, a2) = 0}

in 2-dimensional affine space over Q(x). Notice that, although A is irreducible
in Q[x, u, v], the polynomial might factor in this new ring and CA will not be an
affine algebraic variety.7 In this case CA is not parametrizable as only varieties
may possess a (proper) rational parametrization.

Definition 5. The curve CA obtained from the first-order AODE A(x, y, y′) = 0
is referred to as the associated curve (of the AODE). Furthermore, if CA

has a proper rational parametrization, then A(x, y, y′) = 0 is called curve-
parametrizable.
7 For example, A = v2−x is irreducible in Q[x, u, v], but factors into (v+

√
x)(v−√

x)
as an element of Q(x)[u, v].
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Consider a curve-parametrizable first-order AODE A(x, y, y′) = 0 and let

PCA
(t) = (ψ1(t), ψ2(t)) with ψ1, ψ2 ∈ Q(x)(t) (5)

be a proper rational parametrization of the associated curve CA. Further assume
that ψ1, ψ2 actually can be chosen in Q(x)(t).8 This last assumption guarantees
that a suitable rational reparametrization yields a rational solution. If some of
the coefficients of the parametrization PCA

were actually in Q(x) \ Q(x), then
the reparametrization could yield an algebraic solution. Note that this additional
requirement does not restrict the class of curve-parametrizable AODEs further
and there exists an algorithm that produces parametrizations of this special
form [18, Section 4 and Algorithm 1].

The conditions for a suitable reparametrization of PCA
are derived analogous

to Sect. 3.1. Given a rational (general) solution ŷ, then (ŷ, ŷ′) defines a (family
of) point(s) on the associated curve CA. Let ω = P−1

CA
(ŷ, ŷ′), where P−1

CA
is the

birational inverse of PCA
. Thus, PCA

(ω) = (ŷ, ŷ′) and by Equation (5)

d
dx

ψ1(ω) = ψ2(ω). (6)

A solution for ω of Equation (6) is of the form [18, Section 5]

ω′ =
ψ2(ω) − ∂ψ1(ω)

∂x
∂ψ1(ω)

∂ω

. (7)

Equation (7) is a quasi-linear ODE. Unlike the associated planar system, how-
ever, it is not autonomous in general. Note that the denominator does not vanish
for rational general solutions of Equation (7) [18, Lemma 5.2].

Definition 6. Let A(x, y, y′) = 0 be a curve-parametrizable first-order AODE
and PCA

(t) = (ψ1(t), ψ2(t)) be a proper rational parametrization of the associ-
ated curve such that ψ1, ψ2 ∈ Q(x)(t). The quasi-linear ODE (7) is called the
associated quasi-linear equation (of the AODE) with respect to PCA

.

This associated equation is constructed in such a way that rational general solu-
tions are preserved. The following theorem can be found in Vo et al. [18, Theo-
rem 5.3].

Theorem 3. There is a one-to-one correspondence between the rational general
solutions of a curve-parametrizable first-order AODE A(x, y, y′) = 0 and the
rational general solutions of the associated quasi-linear equation (wrt. a proper
rational parametrization of CA) if the components of the parametrization are
contained in Q(x)(t).
8 In general, one would not expect to find a proper rational parametrization of CA—if

such an object exists at all—whose components can be chosen in Q(x)(t) [16, Corol-
lary 5.9]. However, the coefficient field Q(x) is quite special and it can be shown that
a rational plane curve defined over Q(x) does always have such a parametrization [18,
Theorem 4.3].
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In this case, ŷ = ψ1(ω̂) is a rational general solution of the original AODE,
where ω̂ is a rational general solution of the associated quasi-linear equation [18,
Theorem 5.3]. The steps to compute a rational general solution of a curve-
parametrizable first-order AODE from a solution of the associated quasi-linear
equation are summarized in Algorithm 2. Note that quasi-linear ODEs are well-
studied objects and ODE solvers of modern computer algebra systems should
be able to find suitable solutions in most cases. An algorithm which exclusively
produces rational general solutions of quasi-linear ODEs is described in Chen
and Ma [3].

Remark 3. In fact, the associated quasi-linear equation must be of a special form
in order to yield a suitable reparametrization. More elaborate, if Equation (7) is
neither linear nor a Riccati equation, then there cannot exist a rational general
solution [18, Theorem 5.4(ii)]. This is another termination condition which is
not indicated in Algorithm 2 for the sake of brevity.

Remark 4. As with surface-parametrizable AODEs, not all first-order AODEs
which possess a rational general solution are curve-parametrizable [18, Exam-
ple following Definition 3.3]. However, if such an AODE has a rational gen-
eral solution such that the arbitrary constant appears only rationally, i.e.
ŷ ∈ Q(x)(C), where C is a transcendental constant, then the AODE must be
curve-parametrizable [18, Theorem 3.1]. Such solutions are called strong ratio-
nal general solutions and for this solution class the algorithm presented in this
section actually is a decision algorithm.

Algorithm 2. Rational general solution curve-param. first-order AODE
(cf. Vo et al. [18, Algorithm 2])
Input : First-order AODE A(x, y, y′) = 0
Output: Rational general solution ŷ or string message

1 if the associated curve CA is rational then
2 Compute a proper rational parametrization

PCA(t) = (ψ1(t), ψ2(t)) such that ψ1, ψ2 ∈ Q(x)(t).

3 Find a rational general solution ω̂ of

ω′ =
ψ2(ω) − ∂ψ1(ω)

∂x
∂ψ1(ω)

∂ω

.

4 if no such solution exists then
5 return “AODE has no rational general solution”
6 else
7 return ŷ = ψ1(ω̂)

8 else
9 return “AODE is not curve-parametrizable”
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3.3 Special Case for Autonomous AODEs

The algorithms described in Sect. 3.1 and Sect. 3.2 can, of course, be used to find
rational general solutions of autonomous first-order AODEs as well. In this case
the associated planar system and the associated quasi-linear equation simplify
drastically. However, in the autonomous case even more can be said. As it turns
out, the conditions for reparametrization reduce to simple pattern matching
rather than solving an associated differential equation. The complete derivation
of these results can be found in Feng and Gao [5,6].9

If a first-order AODE A(x, y, y′) = 0 is autonomous, then the independent
variable x does not appear explicitly in the equation and the defining polynomial
A actually belongs to Q[y, y′]. In this case

Ca
A := Z(A) = {(a1, a2) ∈ A

2(Q) | A(a1, a2) = 0}

is just an irreducible plane curve over Q. To avoid confusion, the notation
A(y, y′) = 0 will be used to denote autonomous first-order AODEs.

Definition 7. The curve Ca
A obtained from an autonomous first-order AODE

A(y, y′) = 0 is called the associated autonomous curve (of the AODE).

Consider an autonomous first-order AODE A(y, y′) = 0 such that Ca
A is rational

and let
PCa

A
(t) = (χ1(t), χ2(t)) with χ1, χ2 ∈ Q(t)

be a proper rational parametrization. Further, let μ = χ2(t)/∂χ1(t)
∂t and notice that

μ is well-defined, i.e. χ1(t) cannot be a constant. One can show that PCa
A

has
a suitable reparametrization if either μ = a or μ = a(t − b)2 for some a, b ∈ Q

with a �= 0. In these cases

ŷ = χ1(a(x + C)) and ŷ = χ1

(

b − 1
a(x + C)

)

are rational general solutions of the autonomous AODE, respectively, where C
is a transcendental constant [5, Theorem 5]. In addition, if an autonomous first-
order AODE has a rational general solution, then the associated autonomous
curve must be rational [5, Section 3]. Unlike the general case of curve- and
surface-parametrizable first-order AODEs, the rationality of the associated
autonomous curve is a necessary condition for the existence of a rational general
solution. All these considerations are summarized in Algorithm 3.

Remark 5. The efficiency of Algorithm 3 can be further improved. Based on
known degree bounds for proper rational parametrizations of plane curves, one
can derive additional necessary conditions that an autonomous first-order AODE

9 Note that the authors focus on autonomous AODEs with coefficients in Q. Neverthe-
less, the required theory for this section holds for AODEs with algebraic coefficients
as well.
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has a rational general solution. This reduces to simple verifications that the
degrees of the defining polynomial in y and y′ satisfy certain conditions, cf. [5,
Theorem 3].10

Algorithm 3. Rational general solution autonomous first-order AODE
(cf. Feng and Gao [5, Algorithm 1])
Input : Autonomous first-order AODE A(y, y′) = 0
Output: Rational general solution ŷ or string message

1 if the associated autonomous curve Ca
A is rational then

2 Compute a proper rational parametrization

PCa
A

(t) = (χ1(t), χ2(t)), where χ1, χ2 ∈ Q(t)

and let μ = χ2(t)/∂χ1(t)
∂t

.
3

4 if μ = a ∈ Q \ {0} then
5 return ŷ = χ1(a(x + C))

6 else if μ = a(t − b)2 for some a, b ∈ Q, a �= 0 then

7 return ŷ = χ1

(
b − 1

a(x+C)

)

8 else
9 return “AODE has no rational general solution”

10 else
11 return “AODE has no rational general solution”

3.4 Planar Rational Systems

An algorithm for computing rational general solutions of autonomous planar
rational systems was proposed by Ngô and Winkler [13]. It is beyond the scope
of this section to introduce the necessary objects and theory to describe a com-
prehensive derivation of their approach. Instead, only the basic objects required
for the computations will be mentioned. The individual steps of the method are
summarized in Algorithm 4.

Let σ, τ be differential indeterminates representing unknown differential func-
tions of x. Consider the autonomous planar rational system

⎧
⎪⎪⎨

⎪⎪⎩

σ′ =
Mσ

Nσ

τ ′ =
Mτ

Nτ
,

(8)

where Mσ, Nσ,Mτ , Nτ ∈ Q[σ, τ ] are such that gcd(Mσ, Nσ) = 1 = gcd(Mτ , Nτ )
and the denominators are non-zero. Solutions of such systems can be obtained
by finding so-called (rational) first integrals.
10 Additional improvements which replace the computationally expensive parametriza-

tion step by more efficient routines are described in Feng and Gao [6].
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Definition 8. A rational first integral of the autonomous planar rational sys-
tem (8) is a non-constant rational function F ∈ Q(σ, τ) \ Q such that

Mσ

Nσ

∂F

∂σ
+

Mτ

Nτ

∂F

∂τ
= 0.

Assume that the planar system (8) has a rational first integral F = P/Q, where
P,Q ∈ Q[σ, τ ] are coprime and let C be a transcendental constant. The irre-
ducible factors of the polynomial P − CQ, viz. irreducible in Q(C)[σ, τ ], deter-
mine a so-called general invariant algebraic curve of the system. If a proper
rational parametrization of the curve determined by one such factor has a suit-
able reparametrization by a linear rational function, then one can construct a
rational general solution of the planar rational system (8). The precise steps of
this approach are described in Algorithm 4. Note that the irreducible factors
of P − CQ are conjugate over Q(C) and the solvability of the system does not
depend on which of these factors is parametrized [13, Remark 5.4 and Theo-
rem 5.6]. Furthermore, the existence of a rational first integral of the planar
rational system is a necessary condition that the system has a rational general
solution [13, Theorem 5.6].

Algorithm 4. Rational general solution planar rational system
(cf. Ngô and Winkler [13, Algorithm RATSOLVE])
Input : Autonomous planar rational system (8)
Output: Rational general solution (σ̂, τ̂) or string message

1 Compute a rational first integral F = P/Q ∈ Q(σ, τ) \Q of the system (8), where

P, Q ∈ Q[σ, τ ] are coprime.
2 if no such rational first integral exists then
3 return “Planar rational system has no rational general solution”
4 else
5 Let C be a transcendental constant. Take any irreducible factor I of

P − CQ ∈ Q(C)[σ, τ ] and let CI = Z(I) be the plane curve defined by I.
6 if CI is rational then
7 Compute a proper rational parametrization

PCI (t) = (ψ1(t), ψ2(t)), where ψ1, ψ2 ∈ Q(C)(t).

8 Find a linear rational function ω̂ ∈ Q(C)(x) that solves either11

ω′ =
1

∂ψ1(ω)
∂ω

Mσ(ψ1(ω), ψ2(ω))

Nσ(ψ1(ω), ψ2(ω))
or ω′ =

1
∂ψ2(ω)

∂ω

Mτ (ψ1(ω), ψ2(ω))

Nτ (ψ1(ω), ψ2(ω))
.

9 if such a linear rational function exists then
10 return (σ̂, τ̂) = (ψ1(ω̂), ψ2(ω̂))

11 return “Planar rational system has no rational general solution”

11 Notice that it might happen that either ∂ψ1(ω)/∂ω = 0 or ∂ψ2(ω)/∂ω = 0. In this case,
ω̂ should be a solution of the respective other differential equation. Since PCI is a
rational parametrization both partial derivatives cannot vanish simultaneously.
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Remark 6. It can be shown that the rational first integrals of the planar rational
system (8) coincide with those of the planar polynomial system [13, Section 5]

{
σ′ = MσNτ

τ ′ = MτNσ.

Efficient algorithms for computing rational first integrals of planar polynomial
systems can be found in Chèze [4] and Bostan et al. [1]. Notice that the com-
putation of rational first integrals typically requires to pass a degree bound for
these objects as additional input. Upper bounds for rational first integrals of
planar polynomial systems are known in the generic situation [2], however, the
general case is still open.

4 The Maple Package AGADE

The algorithms described in Sect. 3 have been implemented in the computer
algebra system Maple and are available in the form of a package called AGADE12

(Algebro-Geometric methods for solving Algebraic Differential Equations). This
package is publicly available at the online repository https://github.com/
JohannMitteramskogler/AGADE. In order to use the package, download the
file AGADE.mla and make sure that it is found in the current library path by
setting the value of the variable libname13 accordingly. Afterwards, the pack-
age can be loaded with the usual with(<PackageName>) routine. In its current
version, the following commands are available.

> with(AGADE);

[RGSautonomousFOAODE , RGScurveParametrizableFOAODE ,

↪→ RGSplanarRationalSystem ,

↪→ RGSsurfaceParametrizableFOAODE ]

Note that the abbreviations RGS and FOAODE stand for rational general solution
and first-order AODE, respectively. A precise specification and current limi-
tations of these commands are described in the remainder of this section. In
addition, a couple of basic examples are given to demonstrate the usage of the
software package. For spacial reasons it is not possible to provide larger examples
or demonstrate the use of the optional arguments in this paper. For this, the
interested reader may consult the demo file AGADE Demo.mw, which can be found
at the aforementioned online repository.

RGSautonomousFOAODE
This is an implementation of Algorithm 3 for computing rational general solu-
tions of autonomous first-order AODEs. By default, the parametrization of the

12 This package was developed and tested with Maple 2020.
13 https://de.maplesoft.com/support/help/Maple/view.aspx?path=libname.

https://github.com/JohannMitteramskogler/AGADE
https://github.com/JohannMitteramskogler/AGADE
https://de.maplesoft.com/support/help/Maple/view.aspx?path=libname
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associated autonomous curve is computed with algcurves:-parametrization.
Note that this routine implements the efficiency improvement mentioned in
Remark 5 as well.

Calling sequence:

RGSautonomousFOAODE(aode, depVar, indepVar, options)

Parameters:

aode - autonomous first-order AODE
depVar - symbol; denotes the dependent variable
indepVar - symbol; denotes the independent variable
options - (optional) equations of the form keyword=value, where keyword

can be parametrization or extendedOutput.

Options:

– The option parametrization=[χ1, χ2, t] can be used to supply a user-defined
parametrization of the associated autonomous curve, where t is a symbol and
χ1, χ2 ∈ Q(t).

– If the option extendedOutput=true is passed, then the algorithm returns
a record with additional information about the computation such as the
used parametrization and the termination condition. The default value is
extendedOutput=false.

Minimal example:

> aode1 := 27*y(x)^4 + diff(y(x),x)^3 + 27* diff(y(x),x)*y(

↪→ x)^2 - 108*y(x)^3 + 4*diff(y(x),x)^2 - 54* diff(y(x),

↪→ x)*y(x) + 166*y(x)^2 + 31* diff(y(x),x) - 116*y(x) +

↪→ 31 = 0:

> AGADE:-RGSautonomousFOAODE (aode1 , y, x);

3 2 2 3 2

_C1 + (3 x + 1) _C1 + (3 x + 2 x) _C1 + x + x + 1

------------------------------------------------------

3

(x + _C1)

RGScurveParametrizableFOAODE
This is an implementation of Algorithm 2 for computing rational general solu-
tions of first-order AODEs. By default, the parametrization of the associated
curve is computed with algcurves:-parametrization. In case the resulting
parametrization is not rational in the independent variable, the algorithm falls
back to a less efficient implementation. Note that this routine will not attempt
to find a solution of the associated quasi-linear equation if the latter is neither
linear nor a Riccati equation, cf. Remark 3.



282 J. J. Mitteramskogler

Rational general solutions of the associated quasi-linear equation are com-
puted with dsolve using selected solving methods14 which have been found to
produce solutions of the desired form. However, dsolve cannot be used to decide
existence of a rational general solution of the associated quasi-linear equation.
Consequently, the implementation is unable to give a definite answer on the
existence of a rational general solution of the original AODE if dsolve fails to
find a solution.

Calling sequence:

RGScurveParametrizableFOAODE(aode, depVar, indepVar, options)

Parameters:

aode - first-order AODE
depVar - symbol; denotes the dependent variable
indepVar - symbol; denotes the independent variable
options - (optional) equations of the form keyword=value, where keyword

can be parametrization, solutionAssocODE or extendedOutput.

Options:

– The option parametrization=[ψ1, ψ2, t] can be used to supply a user-defined
parametrization of the associated curve, where t is a symbol and ψ1, ψ2 ∈
Q(x)(t).

– Use the option solutionAssocODE=ω̂ to pass a user-defined rational general
solution of the associated quasi-linear equation, where ω̂ is a rational function
in the independent variable.

– If the option extendedOutput=true is passed, then the algorithm returns a
record with additional information about the computation such as the used
parametrization, the associated quasi-linear equation and the termination
condition. The default value is extendedOutput=false.

Minimal example:

> aode2 := diff(y(x),x)*x^6 + diff(y(x),x)^3*x^3 - 2*y(x)*

↪→ x^5 - 3*y(x)*diff(y(x),x)^2*x^2 + 2*x^5 + 3*diff(y(x

↪→ ),x)^2*x^2 + 3*y(x)^2* diff(y(x),x)*x - 6*diff(y(x),x

↪→ )*y(x)*x - y(x)^3 + 3*diff(y(x),x)*x + 3*y(x)^2 - 3*

↪→ y(x) + 1 = 0:

> AGADE:-RGScurveParametrizableFOAODE(aode2 , y, x);

2 2 3

_C1 x + _C1 + x

------------------

3

_C1

14 https://www.maplesoft.com/support/help/Maple/view.aspx?path=dsolve
%2fdetails.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=dsolve%2fdetails
https://www.maplesoft.com/support/help/Maple/view.aspx?path=dsolve%2fdetails
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RGSplanarRationalSystem
This is an implementation of Algorithm 4 for computing rational general solu-
tions of autonomous planar rational systems. Notice that this routine requires
the external Maple package RationalFirstIntegrals15 by Bostan et al. [1] for
computing rational first integrals. This package provides the command Generic-
RationalFirstIntegral which is used for the computation of such objects and
requires a degree bound as input. Upper bounds for the degree of the rational
first integrals of a planar rational system are not known in the general case, cf.
Remark 6. Consequently, this routine cannot be used to decide the existence of
a rational general solution. In the generic case, however, such a bound exists [2].
By default, the implemented method uses this generic bound.

The command GenericRationalFirstIntegral tends to be quite slow for
moderate degree bounds. More efficient probabilistic/heuristic methods are pro-
vided by the package RationalFirstIntegrals, but these require some guid-
ance by the user. In case the computation takes too long, one could try to find
a rational first integral by one of these faster methods and then pass it to the
algorithm via an optional argument. Another possibility is to specify a lower
degree bound, again, via an optional argument.

Recall that in Step 5 of Algorithm 4 it might be necessary to factor a polyno-
mial over the algebraic closure of a rational function field. Such a factorization is
not yet available in Maple. The implemented method verifies certain trivial irre-
ducibility criteria and then attempts to parametrize the polynomial in Step 5
using algcurves:-parametrization. If this attempt fails due to reducibility,
then the algorithm cannot proceed to compute a solution.

Calling sequence:

RGSplanarRationalSystem(prs, depVars, indepVar, options)

Parameters:

prs - list of two aut. quasi-linear ODEs; the planar rational system
depVars - list of two symbols; denotes the dependent variables
indepVar - symbol; denotes the independent variable
options - (optional) equations of the form keyword=value, where keyword can

be generalIAC, degreeBoundRFI, parametrization or extended-
Output.

Options:

– Use the option generalIAC=[I, C] to pass a user-defined (irreducible) general
invariant algebraic curve, where C is a symbol and I is a polynomial over
Q(C) in the dependent variables.

– Use the option degreeBoundRFI=n to pass a user-defined degree bound of the
rational first integrals, where n is a positive integer.

15 This package is publicly available at http://www.unilim.fr/pages perso/thomas.
cluzeau/Packages/RFI/RationalFirstIntegrals.html.

http://www.unilim.fr/pages_perso/thomas.cluzeau/Packages/RFI/RationalFirstIntegrals.html
http://www.unilim.fr/pages_perso/thomas.cluzeau/Packages/RFI/RationalFirstIntegrals.html
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– The option parametrization=[ψ1, ψ2, t] can be used to supply a user-defined
parametrization of the general invariant algebraic curve, where t is a symbol
and ψ1, ψ2 ∈ Q(C)(t).

– If the option extendedOutput=true is passed, then the algorithm returns a
record with additional information about the computation such as the com-
puted invariant algebraic curve, the used parametrization and the termination
condition. The default value is extendedOutput=false.

Minimal example:

> prs1 := [diff(u(x),x) = 1, diff(v(x),x) = (2*v(x) + 1)/(

↪→ u(x) + 1)]:

> AGADE:-RGSplanarRationalSystem (prs1 , [u, v], x);

2 2

[x, -_C1 x - 2 _C1 x + 1/2 x - _C1 + x]

RGSsurfaceParametrizableFOAODE
This is an implementation of Algorithm 1 for computing rational general solu-
tions of first-order AODEs. Note that the associated planar system is solved by
RGSplanarRationalSystem. To the best of the author’s knowledge, there does
not exist a complete implementation for computing proper rational parametriza-
tions of algebraic surfaces in Maple at the moment. However, if the associated
surface is a pencil of rational curves [10, Section 5.1], then a parametrization
can be computed with algcurves:-parametrization. If this is not the case, a
user-defined surface parametrization has to be passed via an optional argument.
A discussion on surface parametrizations for AODEs of special geometric shape
can be found in Ngô et al. [10, Section 5].

Calling sequence:

RGSsurfaceParametrizableFOAODE(aode, depVar, indepVar, options)

Parameters:

aode - first-order AODE
depVar - symbol; denotes the dependent variable
indepVar - symbol; denotes the independent variable
options - (optional) equations of the form keyword=value, where keyword

can be parametrization, solutionAssocODEs or extendedOutput.

Options:

– The option parametrization=[φ0, φ1, φ2, [t1, t2]] can be used to supply a
user-defined parametrization of the associated surface, where t1, t2 are sym-
bols and φ0, φ1, φ2,∈ Q(t1, t2).
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– Use the option solutionAssocODEs=[σ̂, τ̂ ] to pass a user-defined rational gen-
eral solution of the associated planar system, where σ̂, τ̂ are rational functions
in the independent variable.

– If the option extendedOutput=true is passed, then the algorithm returns a
record with additional information about the computation such as the used
parametrization, the associated planar system and the termination condition.
The default value is extendedOutput=false.

Minimal example:

> aode3 := x*diff(y(x),x)*y(x)^4 - 4*diff(y(x),x)*y(x)^3*x

↪→ + y(x)^5 + 6*diff(y(x),x)*y(x)^2*x - 5*y(x)^4 -

↪→ diff(y(x),x)^3 - 4*diff(y(x),x)*y(x)*x + 10*y(x)^3 +

↪→ x*diff(y(x),x) - 10*y(x)^2 + 5*y(x) - 1 = 0:

> AGADE:-RGSsurfaceParametrizableFOAODE (aode3 , y, x);

3 2

_C1 + _C1 x - 1

-----------------

2

_C1 x - 1

5 Conclusion and Outlook

In this paper, four methods for computing rational general solutions have been
presented: two for computing such solutions for first-order AODEs, one special-
ized method for autonomous first-order AODEs and, finally, one for autonomous
planar rational systems. All these methods operate in an algebro-geometric man-
ner, where the solution is obtained by modifying a proper rational parametriza-
tion of a derived algebraic set. These methods were implemented in the computer
algebra system Maple and are available in the form of a software package named
AGADE. The basic usage of the package was demonstrated with simple examples,
with more advanced scenarios available in the online demo file.

Compared to Maple’s dsovle command, an advantage of the implemented
methods is that they provide a definite answer whether a (rational general)
solution exists or not. Even when the implemented algorithms fail to give such
an answer due to a technical limitation, enabling the extended output option
usually gives enough information such that the user can easily deduce the answer
by hand or provide the missing object to continue the computation. Furthermore,
application of dsovle on first-order AODEs of higher degree often produces
complicated integral solutions with large algebraic subexpressions. The output
of the implemented methods is, by nature, much more manageable.

The complexity of the implemented methods is determined primarily by the
parametrization step and, in the case of planar rational systems, the computation
of a rational first integral. A complexity analysis for computing rational first
integrals can be found in Bostan et al. [1]. The main parametrization method
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is based on the paper by van Hoeij [8]. However, the latter does not provide an
explicit complexity estimation.

Finally, additional functionality for this package is planned. At the time of
writing, an implementation for computing rational general solutions of systems
of autonomous AODEs of algebro-geometric dimension 1 is under development.
We hope that AGADE will be useful for further studies of symbolic solutions of
AODEs.
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12. Ngô, L.X.C., Winkler, F.: Rational general solutions of parametrizable AODEs.
Publicationes Mathematicae Debrecen 79(3–4), 573–587 (2011). https://doi.org/
10.5486/PMD.2011.5121
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Abstract. In this paper we present some results of a research with application
case study format of a simulation model, as a tool that supports decision making.
The simulation model is developed with Maple tools. The main objective was to
estimate the travel time for the extension of the Metrobus line proposed, consid-
ering the time traveled between two adjacent stations, the waiting time at each
station (intended for passengers to board and leave the units), and the waiting time
at intersections with traffic lights. The simulation model takes as input parameters
the probability functions that characterize the operating speed of the units on a
current Metrobus line, the duration of each phase of the traffic light cycles, and the
distance between stations and traffic lights, within the proposed route. With these
parameters, random variables are generated to represent those durations and then,
they are added to estimate the total duration of the trip. In the first part we introduce
the context research. Then we give a brief literature review about Monte-Carlo
simulation. After that, we explain the proposal and define the main variables of
the simulation model. So that, in the next section we explain the structure of the
model in aMAPLE 2016 worksheet, based on previously defined helper functions
(algorithms). Finally, we discuss the results and compare them with the current
travel time by buses, minibuses, and vans.

Keywords: Simulation model · Estimation of travel time · Metrobus route ·
Probability functions · Maple simulation

1 Introduction

Urban mobility is closely related to the daily movement that people need to carry out
to achieve comprehensive development, involving the movement of people and goods
from one place to another. Currently, most people use public transport systems as the
main option for transportation, so the growth and urbanization of many regions demand
accessible and efficient public transport systems that allow their comprehensive devel-
opment. However, there are several factors that impede suitable operation of public
transport units, harming urban mobility. Some of these factors are existing imbalance
between user demand and available offer, lack of adequate infrastructure for the opera-
tion of public transport units, interaction of public transport units with private vehicles
of independent travelers, which many times cause areas of vehicular congestion.
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Because of the importance of urban mobility, the proper operation of transport sys-
tems and the consequences that their operation can generate, this paper addresses a
proposal for connecting two transport systems in Mexico City: The Mexico City Sub-
way System (MCSS) and the Metrobus System (MS), by means of the addition of two
connecting routes of a current Metrobus line. This project was developed within the
framework of a Mobility Project around the main campus of UNAM, University City
(CU), whose objective was to prepare proposals to improve mobility in CU and its sur-
roundings, within the framework of ecosystem services (Social Service 2020–12/81–166
program).

The model presented here is part of Nieves’ project [1], a case study whose objective
was to develop and analyze a proposal to connect the MCSS and MS systems, from
different operational points of view and through several simulation models. This work
corresponds to a naturalistic social application case [2] in CDMX, and was developed
with a system approach [3, 4], where, in addition to identifying the elements that are
involved (cars, public transport units, users, operational personnel, independent drivers,
etc.), it is important the relationships among them and what are the behaviors emerging
from their interaction. A valuable aspect of Nieves’ work is the methodology adopted
to prepare the proposal, starting with delimiting, understanding and describing the case
study region, collecting and managing information for qualitative and quantitative anal-
ysis, as well as the application of analytical and simulation models as tools that support
and validate decision-making. Each of itsmodels has different objectives, for example, to
estimate passenger demand on current routes that are carried out by buses or minibuses,
or to estimate the average number of public transport units currently operating in the
studied area, in periods of one hour.

In the model that is exposed here, the main objective was to estimate the travel
duration of two proposed routes, to be made by Metrobus units. It is a Monte Carlo sim-
ulation model that can be easily implemented with various computational tools, whether
it be specialized packages for the development of simulation models or programming
languages (in general) which ones offer flexibility in the development of any type of
model. We implemented the model with the Maple tools, unlike to Nieves, who used
Excel sheets.

Although it is a simple model, one of our objectives is show to the reader a case of
application in Mexico City, using real data exclusively collected for the development of
the proposal and applying a holistic and naturalistic approach. Both the methodology
and the model can be extended to other cases, not only in Mexico, but anywhere in the
world. A strength of this research is the modeling and simulating with basis on data
analysis of historical data, recorded on videos.

In the next section we expose some important concepts of simulation models. In the
Sect. 3, we present the details of the proposal. In the Sects. 4 and 5 we describe the
model and some characteristics of its implementation in Maple. In Sect. 6 we present
some results from various model runs, then we compared with the duration of trips
that are currently made by buses, minibuses, and vans. Finally, some conclusions are
presented at the end in the Sect. 7.
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2 Some Elements of the State of Art

Simulation is an Operations Research tool, whose development and use have grown
widely in recent decades. The simulation process is based on graphical, physical, and
computational models that represent in an abstract and simplified way situations or
systems of the real world, or hypothetical in nature. These type of models allow us to
analyze current situations taking into account from the modification of input parameters,
the logical structure, or both, in order tomake predictions and formulate control strategies
on the original system [5]. For this reason, simulationmodels were a great tool to support
decision making for this project.

Simulation models also offer high flexibility to represent systems of different types
and allow us to propose improvements and solutions to problems of the real system,
where mathematical model formulations, with complex analytical expressions impede
finding solutions due to the complexity to solve them and even sometimes it is difficult
or impossible to solve them [5]. In addition, they are widely used in situations where
making changes and modifications to the real system is impossible, prohibited, not
feasible, very expensive, long-term, unsafe and even illegal processes are involved [6].
Using simulation models, it is possible to easily perform actions on the system, avoiding
damage or alterations in the real elements that participate. This defines simulationmodels
as risk-free environments that could be produced by errors and bad decisions [7].

Simulation models can be static or dynamic [5]. In static models, over time is not a
relevant element and they simply represent the system in a well-defined fixed time point.
Conversely, in dynamic models, over time is a key element, since there is interest in
knowing the state and behavior of the elements of the system (or the complete system),
at different times, and many times it is necessary to analyze behaviors continuously,
through time.

There are physical and computational simulation models. Physical models gener-
ally simulate processes and phenomena at real scales and allow elements of the real
system to interact with the model directly. Many physical models constitute simulated
environments that allow the training of staff to face different situations, for example,
evacuations, fires, and floods. Meanwhile, computational models completely extract the
elements of the system and do not allow a direct interaction between the real system
and the modeled system. This work corresponds to the development of a computational
simulation model, therefore, henceforth the simulation model concept is used to refer to
a computational simulation model.

There are many characteristics to classify simulation models, for example, kind of
application, implementation strategy, or kind of system being represented. Within the
last classification are discrete and continuous systems. In discrete event systems there
are well-defined states of the system and its elements change from one state to another
instantaneously through jumps, at discrete points in time [5]. Meanwhile, in continuous
systems, the state of its elements is constantly changing over time [5].
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Regarding the implementation method, Robinson S. (2014), classifies the simulation
models into four categories:

• Discrete event simulation
This method simulates the interaction of entities in discrete systems. The main objec-
tive is to track in detail the movement of entities (people, objects, or information)
through the system.

• Monte Carlo Simulation
• In this method, random variables are generated, and they interact with each other
to generate results to support the analysis and prediction of the behavior of some
variables of interest.

• Dynamic System Simulation
It uses a continuous approach over time, and it refers to flows (of objects, people,
vehicles, money, matter). These flows simultaneously integrate and disintegrate the
blocks that make up the system. The size of these blocks keeps changing constantly
depending on the flow that enters and leaves them.

• Agent based simulation
With this simulation method, the objective is to model and analyze the community
behavior of a population of agents, where each agent has characteristics and behaviors,
but community behaviors emerge from the joint interaction.

Although each category is defined by different specific characteristics, frequently
most situations can be modeled by more than one method. Robinson (2014), for exam-
ple, mentions that there are many situations in which dynamic systems could be used
instead of discrete event simulation and vice versa. When characteristics of two or more
implementation methods are combined, hybrid simulation take place [8].

The key element in simulation models is the presence of random variables, whose
behavior is generally defined by a probability distribution. For this reason, it is extremely
important to have knowledge about it about the graphical formof probability distributions
and their main areas of use and application.

With what has been mentioned so far, we can get a general idea of what simulation
means. However, there are many technical questions that you can study independently
in depth, for example: methodologies to collect and manage data and information, sta-
tistical procedures to adjust data and define the input parameters of a model, methods
to generate random variables and simulation models implementation methods, compu-
tational tools to implement simulation models, analysis of the results of a simulation
model, its interpretation and the formulation of conclusions from them.

By handling random variables in the simulation models, a set of results is obtained,
and they represent the flexibility of the solution, a characteristic that analytical mod-
els lack. Given these circumstances, to provide an adequate and interpretable solution
according to the model and situation being addressed, it is necessary to analyze sets of
executions of the computational model, since each execution provides different results
as a consequence of the generation and manipulation of random variables of the model.
To reach a conclusion from a simulation model, some statistical methods are commonly
used, such as confidence intervals and data fitting, corresponding to the output variable
of interest. But one of the most common methods to analyze the outputs of a model and
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to define a stop condition in a simulation model, is to achieve a stable behavior of the
variable of interest. Addressing an analysis of the results that leaves out of consideration
the initial period of each replica of the simulation (or those replicates with few data),
where the variable of interest shows large variations between replicates. This initial
period is known as the warmup period [9]. There are various mathematical formulations
that allow defining the warmup period, but one of the most used methods in practice is
the graphical method, which allows us to easily identify when the variable of interest
reaches a stable behavior.

A simple, but well-structured example of a simulation model corresponds to the
work of White & Ingalls [6]. It is a discrete event model whose description is quite clear
and detailed, so that it allows you a general understanding of the process of developing
a simulation model.

3 Proposal of Metrobus Routes

The case study boarded in this paper is geographically located inCoyoacan,MexicoCity.
Two connecting routes for MS are proposed between an existing line of the MS and a
terminal station of a line of the MCSS. This proposal was developed after a long period
of observation and data collection within the region involved. Currently, the connection
in this area, between the stations of both systems, is made by other transport systems
which operate with Public Transport Units (PTU), like buses, minibuses, and vans, as
well as taxis and private vehicles.

The proposal arises in response to the observation and analysis of the current situ-
ation, in which PTU routes generate congestion points due to the inadequate existing
infrastructure on streets, continuous bus stops, the circulation of a large number of PTU,
and the long duration of trips, aspects that harm urban mobility in the area. The details of
this proposal and the analysis of its viability through simulation models can be consulted
at the research work of Nieves [1].

Figure 1 illustrates the proposed connection between MS line (red color) and MCSS
line (green color) in Mexico City. The proposed routes are from point A to point B and
from point B to point C, where A and C are adjacent stations on a MS line, and B is a
terminal station on anMCSS line. So, the proposed connection can be also thought as an
extension of the MS line, since the proposed routes are for MS units, whose origin and
destination points correspond to existing stations. Once the AB route connects the MS
line to the MCSS station, the second route, BC, allows the connection in the opposite
direction, in this way, after completing both routes, the MS units return to the original
line (see Fig. 1).

In the design of this proposal, aspects such as the existing infrastructure of streets
and avenues, traffic light signals and the direction of current vehicular flow were con-
sidered. The infrastructure and the existing traffic flow around station A prevent a direct
connection from B to A, for this reason station C was considered.

It is worth mentioning that the two transport lines (and systems) involved have other
connection points, but these are mainly in the north and center of Mexico City. In such
a way this proposal offers one more point of connection between the lines and between
both systems (MS and MCSS), but in the southern area, which could be quite beneficial



Estimation of Travel Time for Additional Metrobus Route 293

Fig. 1. Proposed connection routes in Mexico City (created by Nieves V.) (This and next figures,
and graphs of this paper were presented in the Maple Conference 2020 which was done virtual,
November 2 - 6, 2020. Available on https://www.maplesoft.com/mapleconference/Papers-and-Pre
sentations.aspx.)

for workers, students and general users whose point of origin or destination is at the
south of the city.

4 The Model to Document the Proposal

This section presents the structuring of the simulation model, including the definition
of key variables used to develop the simulation model in Maple. First, look at the Fig. 1
that illustrates the surroundings of the proposed routes AB and BC.

As part of the proposal, two intermediate stations were defined on the routes: D1
and D2 (see Fig. 2), and three crossings with traffic light signals: TL1, TL2 and TL3 (see
Fig. 2). Currently TL1 and TL2 exist, but TL3 is part of the proposal.

For each traffic light, we define TL as the total duration of its traffic light cycle, which
is composed of three phases: Green Light (GL), Yellow Light (YL), and Red Light (RL).
The green light corresponds to the time that vehicles can continue moving, the yellow
light is a caution alert that indicates to drivers that the red light is the next phase, and
they must stop. The yellow light has a fixed duration of three seconds and the duration of
the green light varies depending on the location of each traffic light. The total duration
of one traffic light cycle is TL = GL + YL + RL, so if we know TL and GL, we can
determine RL (because of YL is always 3 s). A very important assumption for this model
is that only for the green light we allow the MS units to move, and for the yellow and
red light we assume they stop.

https://www.maplesoft.com/mapleconference/Papers-and-Presentations.aspx
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Fig. 2. Elements of the proposed routes (created by Nieves V.)

As an example, let’s consider TL2. The total duration is TL = 150 s, and the green
light duration isGL = 90 s (that is the 60% of the duration of the TL2 traffic light cycle).
Thus, 60% of the time MS units can travel freely in green light and, the remaining 40%
of the time, MS units will have to wait from 0 to 60 s to be able to cross the cruise,
according to the moment of their arrival to TL2.

From Fig. 2, note that the location of the three traffic light signals fragments the
routes AB and BC into four sections each one. On the other hand, intermediate stop
stations D1 and D2 divide both routes into three sections each one. For simplicity, given
the closeness between TL1 and S2, TL2 and S1, and, TL3 and S1 the final fragmentation
for both routes only considers the longest sections, as shown in Fig. 3. This simplification
allows us to define the average speed for each section, as explained in the next section.

Fig. 3. Fragmentation of the proposed routes (created by Nieves V.)

4.1 Travel Time for Proposed Routes

Duration of each route considers three important variables. They are

TT The Travel Time between two consecutive stations (or traffic light cruise)
TS The Stop Time at bus stops
TTL The Traffic Lights Time at cruise

So, total duration of a route is given by the following expression

T = TT + TS + TTL (1)

To estimate the duration of each of the three components, we were based on data
obtained from observations made in February 2020 about the operation of line 1 of
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the MS units in Mexico City. The entire study for the development and analysis of the
proposal is limited to the behavior of the system on workdays (Mon-day to Friday) and
within specific schedule from 07:00 am to 10:00 am, in which there is high use of public
transport in the study area.According to the results of the interviews carried out byNieves
[1], the operators of minibuses and combis ex-pressed that there is a strong relationship
between this schedule and the beginning ofwork force and schooling activities inMexico
City. These activities are not presented in the same way on weekends, and that is exactly
the reason why the data collection of the study was not carried out seven days a week.

The operating speed of the Metrobus units varies between each section defined by
two adjacent stations on the line. When it comes to short length sections, Metrobus units
cannot reach full throttle as they must anticipate stopping at the next station. In longer
sections the average operating speed increases. That is, there is a direct relationship
between the distance and the average operating speed of the Metrobus units, as long
as in the section defined by two adjacent stations, there is no traffic light signal or
intersection between roads that causes the stop of the units. This statement is reflected in
the work of Nieves [1], as part of the description of the current operation of theMetrobus
units.

Below is a brief description of each of the components of Eq. (1).

Travel Time (TT). Duration of travel between two adjacent points was obtained from
the current average operating speed.

The speed of the Metrobus units is not constant throughout each section (length
between two adjacent stations), in fact, when leaving one station the units begin to
accelerate, and before reaching the next station, they begin to slow down. A prospective
study can undertake to analyze these behaviors in detail.

However, in this model, we consider the average speed per section, and we consider
it as a random variable that presents different behaviors depending on the length of the
route. We used three probability functions: Normal, Lognormal or Weibull1.

The assigned probability function depends on the subsection with the greatest dis-
tance defined when is considering traffic light signals and stations (terminal or interme-
diate). In such a way that the average speed of operation of the Metrobus units on the
smallest subsections corresponds to the Weibull distribution, those of medium distance
were associated with the Normal distribution and those subsections of greater distance
with the Lognormal distribution as indicated in Table 1.

This correspondence was obtained from the data adjustment of the speed variable,
which was obtained by considering the distance of the routes (between adjacent stations
and without intermediate traffic light signals), and the total time of the route (from when
it begins itsmovement at one station until it stops at the next station). The distance of each
section of the line was approximated with the distance function of Google Maps and the
time of the journeys was measured by making tours on the units as a user, with the help
of digital clocks. The details of the methodology to collect the data can be consulted in
Nieves [1].Regarding the adjustment of the data, goodness-of-fit testswere performed for

1 Distribution functions characterizing the average operating speed of the MS units were defined
from the fit of data, collected in the sections of the MS line defined by stations A, C and two
adjacent stations, considering the operation in both directions of the line.
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Table 1. Speed parameter per section on proposed routes (Created by Nieves V.)

Speed Key Probability distribution Parameters Distance x for longest
distance subsections
(meter)

location or shape scale

S1 Normal 11.010 1.1823 701 ≤ x ≤ 1100

S2 Lognormal 2.484 0.0853 1101 ≤ x

S3 Weibull 9.8974 10.4064 x ≤ 700

a set of continuous probability distributions. It was considered the representative function
of the data as the one whose p-value is above the alpha significance level ∝ = 0.05 to
a greater extent (with respect to the set of probability distributions with the possibility
of adequately representing the behavior of the data).This analysis was performed with
the Minitab 18 statistical software tools [1]. The three probability distributions (Normal,
Weibull and lognormal) are similar in that they all have the shape of “a mountain”, which
varies in thickness and height according to its parameters. The difference is that both the
Weibull and the Lognormal allow slant to the left, while the normal is always symmetric.

So, to define the speed in each section of the proposed routes, first, we consider the
distance of the longest subsection between each pair of adjacent intermediate stations
of the routes, that is, the longest subsection that does not have intermediate traffic light
signals. Then, assuming that the average operating speed in sections of similar length is
similar, we define the average operating speed as a random variable that behaves in the
same way as the average speed of the current sections of the Metrobus line.

Once calculated the average operating speed (s) of each section (from the distribu-
tions mentioned before), and considering the length (l), we obtained the travel time per
section by the next expression:

TT = length

average operating speed
= l

s
(2)

Stop Time (TS). To estimate this parameter, we collected information corresponding
to the stop time of the MS units (in seconds) at 5 stations on the line, around A and C.
The data showed an adequate fit to the Beta distribution (4.0878, 3.9075), with mini-
mum value = 8.13 s. and maximum value = 13.45 s. Then the stop time (TS) in both
intermediate stations (D1 and D2) is defined as a random variable that follows a beta
distribution

TS ∼ Beta(4.0878, 3.9075, 8.13, 13.35) (3)

Traffic Light Time at Cruise (TTL). For each traffic light signal, the total duration of
the traffic light cycle (TL) is considered, in such a way that in the fraction corresponding
to the duration of green light (GL), a MS unit must wait 0 s to cross it, while the
complement percentage in yellow (YL) or red light (RL), MS units must wait between 0
TL-GL seconds to cross it.
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All the information related to the traffic lightswas also collected by direct observation
in the study area, within the schedule mentioning above, and with the help of digital
watches and handmade paper notes.

5 Maple Algorithm for the Model

The implementation of the model with Maple tools involves the generation of random
variables, defined by the Normal, Lognormal, Weibull and Beta probability functions.
For this reason, the Statistics and Random Tools packages were used. On the other hand,
Array, Matrices and Graphics functions were used to analyze and display the results
of the model. Maple includes help documentation on all its libraries and functions, so
users may consult this documentation from the help section, “The Maple Help System”,
or online way, from the official site [10].

One execution of the model consists of calculating the total travel time of a route
from a starting point (A or B) to an end point (B or C), respectively, considering the
Travel Time TT (between stops), the Stop Time TS (in intermediate stations), and the
Traffic Light Time TTL (in traffic light cruises). To calculate each of these components,
the simulation model has three auxiliary functions Section Travel Time Vector, Stop
Time Vector and Traffic Light Vector, which calculate the time of each component,
depending on the input parameters and the specified route.

In the Maple algorithm, a route is defined as a vector expressed with an even number
of input values. The odd inputs indicate the distance of the subsections of the route,
while the even specify the probability distribution that represents the average operating
speed according to the longest distance of each subsection (according to Table 1). For
example, for route AB, this vector is R1: = [1328, S1, 785, S1, 1610, S2]. Inputs in
1, 3 and 5 position represent the three distances of the subsections of the route AB
(according to Fig. 3), and positions 2, 4 and 6 indicate the probability distribution of the
mean operating speed for each subsection (as indicates Table 1). In the same way, for
route BC, it is defined R2: = [2670, S2, 835, S1, 795, S3, 1138, S2].

Definition of routes does not specify intermediate stops or traffic light crossings since,
in both R1 and R2, the two intermediate stations (D1 and D2) and the three traffic light
crossings (TL1, TL2 and TL3) are considered. However, the model can be generalized
to evaluate different routes that contain only some of these components, but not all.

The three auxiliary functions mentioned previously perform operations handling the
seconds as a unit of time. Subsequently, through the Route Evaluation function, the
results of these three functions are added together and the last result is provided in
minutes, with the objective of offering to the user a perceptible result, easy to interpret.

The result of a single execution of the model is not enough to give conclusions about
the random total travel time of the proposed routes. For this reason, to get an estimation,
several sets of executions, called replicas, were analyzed. Each replica r consists of
running the model d times. We considered the analysis of results through replicas, to
focus our attention on the mean, as a new variable representative of each replica. In this
sense, we look for the stability of the variable mean by choosing a suitable value of d
and as the number of replicas increases.
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Parameters r and d are provided by the user and can be easily modified. All results
are stored in an array Mr×d, where each row corresponds to the results of one replica.
In this case, 100 replicas were considered, each one with d = 100 data.

Once results of independent executions have been calculated, statistics are obtained
for each replica. This process of evaluatingmore than one execution is carried out through
the outputs of theMatrix Evaluation function, which produces the matrixM, and three
vectors Mmin, Mmax and Mmean, which correspond to the sets of the minimum,
maximum and average value of each replica.

After that, another function calledModel, whose input parameters are r, d andRoute
(R1 or R2), uses all the auxiliary functions described above to provide the last results,
considering r replicas, each one with d data. The results are shown graphically by repre-
senting the vectors Mmin, Mmax and Mmean and the 95% confidence interval of the
mean of each replica. The confidence interval is also calculated as an auxiliary function
of the model. Figure 4 shows the conceptual diagram of the complete simulation model
created from the auxiliary functions, logical structures, and loops. As a complement,
Fig. 5 illustrates the implementation structure of the model in Maple. This may be chal-
lenging for the curious reader interested in implementing a new version of the model. In
addition, Fig. 6 shows the details of the implementation of the auxiliary function Traffic
Light Vector (see Fig. 6 b), using the input parameter defined in a).

Fig. 4. Conceptual model for the simulation
model (created by Nieves V.)

Fig. 5. Structure of the model in Maple.
(created by Nieves V.)

As a representative result of the travel time of the routes, the global mean was
considered, and the 95% confidence interval for population mean is calculated by taking
all means of each replication.
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Fig. 6. Implementation of the Traffic Light Vector helper function in Maple (created by Nieves
V.).

6 Results and Discussion

In the analysis of results, 100 replicates were considered, each one with 100 data. Due
to the results of each replica are stored in a matrix M100×100, Maple does not display
them in the worksheet, however they can be exported and viewed with Microsoft Excel
tools, if the user so wishes. The resulting graphs of the simulation model for R1 and R2
are Fig. 7 and Fig. 8, respectively.

Fig. 7. Route R1 results, r = 100, d = 100 (generated with Maple software by Nieves V.)

The global mean for route R1 is approximately 7.17 min and for R2 it is 9.67 min.
Thesemodel output parameters allowus to estimate the total duration of the twoproposed
routes, however this is a simulation model and manipulates random variables, so in each
execution of the model different results can be obtained with small variations. For R1,
95% of the times, these variations are less than 0.016 min, according to the confidence
interval, which is [7.154, 7.186] and whose range is approximately 0.032.

On the other hand, variation of the parameter d is reflected in the confidence interval;
as the value of d increases, it becomes smaller. By repeatedly running the model and
varying the amount d, as an experimental process, it is found that, for "small" values of d,
the corresponding graph to the mean values of each replica presents greater oscillations
around the global mean. To the contrary, for larger values of d, these oscillations are
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Fig. 8. Route R2 results, r = 100, d = 100 (generated with Maple software by Nieves V.)

minimal. For example, for r= 100 and d = 20, the results are presented in Fig. 9 (see
black color line), where we can see greater oscillation in the average graph, compared to
the Fig. 10, whose parameters are r = 100 and d = 1000. In the latter case, the average
graph (black color line) appears almost as a straight line. Note that this behavior is also
seen in the graph of the minimum and maximum values in each replica, but to a lesser
extent. Hence, when evaluating replicates with a greater number of data (d), more stable
results are obtained, with less discrepancy.

Fig. 9. Variation of the parameter d, Route R1 results, r = 100, d= 20 (generated with Maple
software by Nieves V).

But also, is necessary to mention that as the value of d increases, the execution of the
model takes longer. This is a simple model where only one output variable is analyzed,
and the execution time is almost imperceptible. But, in more complex models, where
more variables are involved, this could make a significant difference in running time,
which can take days, weeks, and even months. In such a way that the adequate definition
of parameters (d and r) becomes restrictive in some cases.
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Fig. 10. Variation of the parameter d, Route R1 results, r= 100, d= 1000 (generated with Maple
software by Nieves V).

The results of this model are then compared with the duration of travels currently
made by buses and vans2 making the connection between the MS and MCSS systems.
It should be noted that currently existing connections between these two systems only
involve stations A and B, that is, there are routes AB and BA, but currently there is no
connection between station B and C. In a generic way, we named Travel T1 to the routes
from the MS line to the MCSS, and Travel T2 to the routes in the opposite direction,
from MCSS to MS, as shows Fig. 11.

Fig. 11. Generic travels directions between MS y MCSS, (created by Nieves V.)

In Fig. 12 we compare the travel time of the current and proposed travels T1 and
T2. It indicates that in T1, the travel by MS units is shortest (7.17 min), compared to
the current bus and van travel times (7.88 and 75 min respectively). On the other hand,
regarding the T2 routes, the travel time of the proposed route (9.67 min) is similar to
vans (9.62 min), and is approximately 36.1% (5.48 min) less than the current travels
made by buses and minibuses, even when the proposed route is longer for considering
station C.

2 The travel time of current trips made by buses, minibuses and vans was estimated from time
measurements taken during running travels on weekdays, between 7:00 A.M. and 10:00 A.M.
The information in Fig. 12 corresponds to the average value of the data collected in each case.



302 V. Nieves-Cruz and P. E. Balderas-Cañas

7.88 

15.15 

7.17 

9.67 

7.5 

9.62 

3

5

7

9

11

13

15

T1 T2

M
in
ut
es

Bus and minibus

Metrobus Unit

Van

Fig. 12. Travel time comparation between current and proposed routes per travel direction and
type of transport unit, in minutes (created by Nieves V.)

7 Conclusive Notes

The proposed routes offer an alternative connection between two transport systems in
Mexico City and are favorable in terms of travel time. The development, feasibility and
analysis of this proposal are studied in more detail and from different perspectives in a
broader investigation of Nieves [1].

Thepresentwork constitutes an example of the application case studyof simulation as
a tool to estimate the travel time of routes proposed byMetrobus units, as an extension of
a currently existing line. Something valuable about this work is the methodology for the
observation of the study region and the data collection that defined the input parameters
of the simulation model. The analysis of the proposal, by means of a Monte Carlo
simulation model, estimates the travel time without making any changes to the routes of
the real system. In a prospective way, by evaluating the viability of the proposal through
simulation models, it is possible to prevent and avoid errors, setbacks, and expenses in
the real system.

The simulation model and the analysis of results through replicas allowed to obtain a
mean value and its confidence interval, which represent a set of values and not an only fix
value as result. In such a way that the management and the adequate interpretation of the
results turn into effective tools for decision making to connect two public transportation
systems.

On the other hand, Maple is a useful programming language to develop Monte Carlo
simulation models because of it has packages and functions that help to structure these
models, for example, statistics packages allow to generate, manipulate and analyze sets
of random variables. In addition, it has graphical tools which facilitate the interpretation
of results. Likewise, the environment of this programming language has visual and
structural qualities that facilitate the implementation of algorithms and models, not only
for simulation models, but also of a general nature.
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Abstract. The aim of this paper is pedagogical in nature and two-
folded. It is primarily intended for instructors who teach undergrad math
courses (such as Linear Algebra, Calculus or Fourier Analysis), or courses
in basic Music Theory. In the modern classrooms of today, educational
software is ubiquitous. Sometimes it is a daunting task to find, use and
take advantage of applications that allow for an efficient instructional
activity. In this work we show how to use the AudioTools, SignalPro-
cessing and Curve Fitting packages in Maple to illustrate and explain at
a deeper level the mathematics needed to implement and play various
musical concepts such as: tones, overtones, chords, and more complex
paradigms from Music Theory, the counterpoint, and Euler’s space of
(horizontal) fifths and (vertical) major thirds. Our Maple code and pro-
posed student projects are elementary, and allow for the math and music
concepts to be transparent and easy to grasp in the application context.
A few lectures based on these ideas, in an independent or hybrid course
setting, may bring important education benefits to a large spectra of
undergraduate students taking math/music courses, regardless of their
major.

Keywords: Signal processing · Sound wave · (over)tone · Chords ·
Maple · Pitch · Musical scale

1 Introduction

Here is a question that can be studied from a multitude of fields of science: What
is sound? For the purposes of this paper we will start with the short answer,
from the math/physics perspective: sound is a wave created by differences in
air pressure. Although not a straightforward explanation, sound is perceived
(encoded/decoded) because ears and brains are equipped with “hardware” and
“software” tools able to detect and interpret/decode these vibrations. Organisms
have evolved quite a complex mechanism to perform these jobs. Explaining it
(how/why it works) requires learning anatomy, neuroscience, physics, mathemat-
ics, and probably more. For example it is not clear how/why brains transforms
the auditive information into a complex cognitive experience (e.g. see [13]).
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In this work we will bound ourselves to the realm of mathematics and com-
puters science to process sound as digital signals. We will relate to very specific
sounds, namely those bits that occur in music. The implementation of the basic
musical pitches is quite easy due to the periodic nature of such waves. Also, mul-
tiple connections with mathematics can be obtained, starting from an elementary
level (algebra, trigonometry) then going up to more abstract or technical levels
(group theory, Fourier analysis, and signal processing to mention a few).

Starting with a fundamental frequency f0 (e.g. conventionally the nowadays
440 Hz for note A on the piano) all musical pitches are encoded in Maple as sine
waves using the nice logarithmic formula between pitches and frequencies (in
musical terms, we have implemented the “temperate tuning”). Hence all pitch
classes are associated with the numbers 0 = C, 1 = C#, 2 = D, . . ., 11 = B, 12 = C
an octave higher, and so on. The procedure Note(i, t, x) encodes the pitch i,
played for t seconds, at amplitude x. A melody then becomes a sequence (array)
of notes that can be played either straightforward and/or saved as a .wav file.

The paper is structured as follows: In the first section we present an elemen-
tary mathematical background needed to implement sound waves as functions
of a single variable. The next section serves a similar purpose from the music
theory point of view. The terms collected should be sufficient to a reader with
more math backround than music to continue further to next sections. In the
third section we present the relationship between frequencies and tuning along
with the historical examples of temperate, Pythagorean, and just tuning. The
section also contains justifications for Pythagorean and just tunings which due
to the simple algebraic manipulations can be implemented even in a highschool
algebra course. The fourth section contains Maple code used for implementing
the 12-scale musical notes. From here onward it is almost straightforward to go
on to implement chords code, that is combinations of notes played at the same
time. In the last section we touch upon the simpler species of the counterpoint
technique, and some mathematics behind. This subject is vast and besides a sim-
ple example to obtain counterpoint-like sound with Maple, we mentioned a few
mathematical connections and bibliography needed to further study this topic.
Throughout the paper we propose Maple projects that could be interesting to
either math or music majors, and can be used to better absorb mathematical
facts and concepts. Of course, most of the projects proposed are about writing
Maple “apps” that manipulate sound/music. The amount of software available
to the professional or amateur musician is staggering, however such software
behaves like a “black box” from the user point of view, and for good reason. The
simpler Maple projects are intended to make clear to the student or educator,
some of the operations that such “black boxes” are based on.

The intersection between music and science as a topic is vast, and references
abound. We kept the bibliography section light so that it is available to either
students, musicians, and mathematicians. Most of the references included should
be accessible to STEM undergrads, except maybe [9] and [14] where a graduate
level preparation is advised.
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2 Basic Terms/Math

One can start the mathematical representation of sound waves with the solutions
of a simple differential equation,

my′′(t) + ky(t) = 0

where the unknown function y(t) models the (free, undamped) vibrations in time
of a spring of mass m, and spring constant k > 0. As taught in any undergraduate
Differential Equations course, the general solution is

y(t) = c1 sin(2πf0t) + c2 cos(2πf0t)

where f0 := 1
2π ·

√
k
m is called the “natural” or “fundamental” frequency. Using

trigonometry one can rewrite the general solution in the form A sin(2πf0t + ϕ),
where ϕ is called the angle of phase-shift and A the amplitude. One can of
course rewrite the solution y(t) in cosine form, and use the cosine “wave” when
implementing musical tones without affecting the sound result. Either way, one
can think of these sine and cosine stemming from the spring equation above,
as fundamental “bits” of sound, which model the vibrations produced by sound
traveling through the air. We have thus arrived at a simple model of a sound
wave, or sound function. Due to J. Fourier’s research into heat conduction at the
start of the XIX-century, and his representation of periodic functions as sums of
sine and cosine waves, a more general sound function can be assumed to have
the following form (Fig. 1):

F (t) = A0 + A1 sin(2πf0t + ϕ1) + A2 sin(2π2f0t + ϕ2)+
+ A3 sin(2π3f0t + ϕ3) + A4 sin(2π4f0t + ϕ4)+
+ A5 sin(2π5f0t + ϕ5) + ...

where An are amplitudes, f0 is the fundamental (frequency), nf0 are partials,
and ϕn are phases. The summation above is of course a “series”, and modern
analysis has specific tools to deal with types of convergence, recovery of the

Fig. 1. sin(t), cos(t), sin(2t), and cos(2t)
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coefficients An etc. For the purpose of implementing the function digitally and
be able to experiment its “sound”, only a few terms are needed (finite summa-
tion) and a little care in choosing the coefficients. Nonetheless, for more realistic
sound experiments and situations, acoustic models are constructed in multiple
dimensions. The equations giving rise to such sounds can be quite complicated
(partial) differential equations (see [3] and references therein). For a realistic
model, think of the sound wave as tucked inside a surface, with each partial
inside its own envelope. Such considerations are beyond the elementary expo-
sition and purpose of this paper. The bibliography on the subject is vast, but
the interested reader may consult the books [2] and [15]. Here we will consider
1-dimensional (time variable) waves only. However, the envelope function will be
implemented into the sound, which simply means multiplying the sine wave(s)
by it. In music such a function bears the acronym ADSR (attack, decay, sustain,
release). Examples (see Figs. 2 and 3) are built in Maple using a few points in the
plane and the (unique) polynomial curve passing through those points. For the
second envelope we used the Spline command. We warn the reader that some
issues may be encountered when creating audio files by means of spline func-
tions. It seems that spline functions do not accept the evalhf command which is
needed to sample the audio.

Fig. 2. ADSR polynomial enveloped sound wave

Fig. 3. ADSR spline enveloped sound wave
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Maple Project 2.1. Create more ADSR envelopes and check the differences of
the sound this produced. Experiment with Maple CurveFitting package and solv-
ing the system of linear equations based on sample points on a polynomial ADSR
curve. Notice that equidistant points on the x-axis give rise to a Vandermonde
coefficient matrix, which is “famously ill-conditioned” [7] and may create issues
when solving such linear systems.

3 Basic Terms/Music

What is music? Music of course is a complex phenomenon which can be studied
and created from multiple corners of science, culture and civilization. In this
section we describe a few basic concepts for the benefit of a reader who has no
previous knowledge of music theory but is equipped with minimal mathemat-
ical background. We will not need music notation and will not mention other
important basic concepts such as rhythm, meter, time signature etc. We claim
that after reading this article the interested reader should have sufficient knowl-
edge to cover these concepts by herself/himself from elementary texts such as
[12]. Coming back to the question above, from the laymen perspective here is an
oversimplified attempt at a definition: music can be thought of as a succession
of “nice” sound bites. Frequency ratios close to rationals p/q with “smallish” p
and q (e.g. less than 10) seem to be perceived as pleasant by (most) beings. For
example the ratios 5 : 4, 4 : 3, 3 : 2, 2 : 1 corresponding to the first five terms in
the previous Fourier series of a sound wave are considered harmonious. In reality
it is quite rare to discriminate between the above ratios and close approxima-
tions. For example, the (approximations of) irrational numbers below are also
perceived as “nice” by most humans:

24/12 ≈ 1.2599 ≈ 1.25 = 5 : 4 “major third”

25/12 ≈ 1.3348 ≈ 1.3333 ≈ 4 : 3 “major fourth”

27/12 ≈ 1.4983 ≈ 1.5 = 3 : 2 “fifth”

Notes (tones and semitones) are identified with numbers as follows: C = 0 (Do),
C# = 1,
D = 2 (Re), D# = 3,
E = 4 (Mi),
F = 5 (Fa), F# = 6,
G = 7 (Sol), G# = 8,
A = 9 (La), A# = 10,
B = 11 (Ti),
C = 12 (Do) one “octave” up, same pitch class in Z12.

For the purpose of connecting the theoretical notes with practical instru-
ments, a subset of the piano keys and of the guitar are shown in the figures,
together with numbering on consecutive 12-scale lists (Figs. 5 and 6).
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Fig. 4. Euler’s space of fifths and major thirds

Fig. 5. Subset of piano keys

Fig. 6. Guitar strings and notes

Working with equivalence classes of the tones (pitches) modulo 12, we can
define “musical intervals” terms. For example, a major third represents the inter-
val from C = 0 to E = 4. The namesake comes from counting on the 8-notes
scale, avoiding the sharp notes. Any interval of length 4 in Z12 is a major third:
F = 5 to A = 9, A = 9 to C# = 1 = 13 mod 12 etc. Fifth (perfect fifth): Inter-
val from C = 0 to G = 7 or any interval of length 7 in Z12. The complete list
includes: minor/major second, minor third, perfect fourth, tritone (augmented
fourth or diminished fifth), minor/major sixth, minor/major seventh, perfect
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eighth (unison or octave). The tuning tables in the next section provide a visu-
alization of all musical intervals. Also Fig. 4 displays Euler’s representation of the
musical scale which among other things introduces musical coordinates. Another
application is that it makes one important restriction in counterpoint easier to
digest (see last section).

4 Pitch Frequencies and Tuning

There are many types of tuning in music depending on a variety of factors.
One type that established itself as classic throughout the ages is the so-called
temperate tuning. Its discovery is attributed to Chinese mathematician Zhu
Zaiyu (1584), and it works as follows: consecutive intervals are assumed constant
frequency ratio 21/12 to one another. It is customary to start the game with
a “fundamental frequency”, f0. For example, note A on the piano is set at
f0 := 440Hertz, but other settings would work. Then frequencies for all notes
obey the formula fn = 440 · 2n/12. Notice that at n = 12 another octave starts
corresponding to a note of frequency double the fundamental frequency. We will
implement this type of tuning along with notes and chords with Maple in the
next section. We will not look at the technique of tuning an instrument. For
this one needs to identify the physical place on a component of the instrument
where to obtain musical intervals. For example on a string instrument, physical
characteristics are needed for precise placement of frets or fingers. This is done
according to the principle that frequency is proportional to the inverse of string
length L:

f =
1

2L

√
T

d
where T = tension, d = density

Next we describe two more types of tuning often used in the development of
western music. The first one, Pythagorean tuning (≈500 BC ) displays “nice”
fourth and fifth intervals: 4

3 and 3
2 , respectively. The second one, just tuning

(Middle Age) improves with a “nice” major third ratio 5
4 . We display all interval

ratios for both and show part of the (guess) work. These values pop up because
of simple algebraic manipulations, which can prove illuminating to any high
school student. Before doing the work we mention the somehow notorious place
of the tritone (e.g. from C to F#) whose ratio is not that “nice” given the large
numerator and denominator (in comparison to the other ratios in the table): 729

512
(Pythagorean) and 45

32 (just).
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In Pythagorean tuning the frequency ratios are of type 2p3q where p, q ∈
Z.

n=Note Interval name [0, n] Ratio fn/f0
0=C unison or perfect eighth 1
1=C# minor second 256

243

2=D major second 9
8

3=D# minor third 32
27

4=E major third 81
64

5=F fourth 4
3

6=F# tritone 729
512

7=G fifth 3
2

8= G# minor sixth 128
81

9=A major sixth 27
16

10= A# minor seventh 16
9

11= B major seventh 243
128

To explain the values in the table we start with the fourth: from C = 0 to F = 5
make the correspondence r5 �→ 4

3 .

r2·5 = r10 �→ (
4
3

)2, so 10 = A# has frequency ratio 16
9 .

r3·5 = r15 �→ (
4
3

)3, an octave up, so 15 mod 12 = D# has frequency ratio
1
2 · (

4
3

)3 = 32
27 .

r4·5 = r20 �→ (
16
9

)2, so 20 mod 12 = G# has frequency ratio 1
2 · (

16
9

)2 = 128
81 .

Here we stop this correspondence as one more iterate would yield ratios p
q with

too large p or q in comparison to what is achieved in the next step: take the fifth
(interval): from C = 0 to G = 7 make the correspondence s7 �→ 3

2 .
Proceed as above with consecutive powers of s7: s14 �→ 9

4 , one octave up:
14 mod 12 = D, ratio 1

2 · 9
4 = 9

8 , and continue in this fashion until the tables fills
out.

In just tuning the frequency ratios are of type 2p3q5l where p, q, l ∈ Z.

n=Note Interval name [0, n] Ratio fn/f0
0=C unison or perfect eighth 1
1=C# minor second 16

15

2=D major second 9
8

3=D# minor third 6
5

4=E major third 5
4

5=F fourth 4
3

6=F# tritone 45
32

7=G fifth 3
2

8= G# minor sixth 8
5

9=A major sixth 5
3

10= A# minor seventh 16
9

11= B major seventh 15
8
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In this case the guesswork is murkier than Pythagorean: there are multiple
choices to attempt the nicest possible ratios. Throughout its evolution many
authors came up with different values, see e.g. [2] for a variety of tunings. We
will proceed similarly to Pythagorean, using correspondences. First, keep r5 �→ 4

3
and s7 �→ 3

2 , and the major second’s ratio 9
8 . Then add a new correspondence

t4 �→ 5
4 . In combination with r5 and s7 we obtain the major sixth: t4r5 �→ 5

3 .
Also the minor second: t−4r5 �→ 16

15 (notice another option could be t8r5 �→ 25
24 ).

For the tritone : t4s14 �→ 1
2 · 45

16 = 45
32 . However the tritone can be given a

nicer treatment as follows: t8r10 �→ 1
2 · 25·16

16·9 = 25
18 . The idea is to continue these

correspondences until all values are filled, and produce ratios with the smallest
possible numerators and denominators.

5 Creating Notes in Maple

We return to temperate tuning and shift the frequency formula fn by 9. Thus
the note C corresponds to n = 0.

w(n) = 440 · 2(n−9)/12

The Maple code below creates a sound wave at frequency f , and amplitude
am ∈ [−1, 1] such that the sine curve sampled at 44100 values per second in
[0, t].

with ( AudioTools ) :
with ( S i gna lProc e s s i ng ) :
Tone := proc ( f , t ,am)

local x , f i n a l ;
f i n a l := Create ( ( x ) −> evalhf (am∗ sin ( x/44100∗4∗Pi∗ f ) ) , durat ion=t ) ;
return f i n a l :

end proc :

Remark 5.1. The code above represents the bare minimum needed to create a
“pure” tone. We will modify (improve) the code in two ways: by multiplying
with an envelope function, and by frequency modulation, that is the sampled sine
curve of the form sin(ft+sin(kft)), where k is a constant. This idea was used by
John Chowning in 1967 at Stanford and implemented in the first synthesizers.
We note in passing that the command Modulate available in Maple is completely
different. Its description in the Help section is as follows: “consists of multiplying
each sample in the audArray by the corresponding sample in the maskArray, and
writing the result to the output. Notice that this operation is commutative; the
data and mask can be interchanged and will still give the same result.” This
Modulate tool for sound is similar with Mask for images.

To create notes all we have to do now is to compose the Tone procedure with
the shifted w(n) defined previously:

with ( AudioTools ) :
with ( S i gna lProc e s s i ng ) :
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note := proc (n : : integer , t , am)
local q ;
q:= Tone (w(n ) , t , am) :
return q ;
end proc :

Next we put together the C-major scale notes from C to a C an octave higher
and back. For this we used the straightforward “Extend” Maple command which
concatenates arrays. The audio result may sound a bit harsh at the place where
the notes are stitched; however when we “smooth out” the notes using the above
techniques (enveloping and modulating) the result is more pleasant. For com-
parison we plot the spectrograms of three variations of the C-major scale: with
respect to pure and enveloped, modulated tones in temperate tuning (first two
spectrograms), then enveloped, modulated tones in Pythagorean tuning (third
spectrogram) (Figs. 7, 8 and 9).
with ( AudioTools ) :

with ( ArrayTools ) :

with ( S i gna lProc e s s i ng ) :

CMscale := Extend ( note ( 0 , . 5 , 1 ) , note ( 2 , . 5 , 1 ) , note ( 4 , . 5 , 1 ) , note ( 5 , . 5 , 1 ) ,

note ( 7 , . 5 , 1 ) , note ( 9 , . 5 , 1 ) , note ( 1 1 , . 5 , 1 ) , note (12 , 1 , 1 ) ,

note ( 1 1 , . 5 , 1 ) , note ( 9 , . 5 , 1 ) , note ( 7 , . 5 , 1 ) , note ( 5 , . 5 , 1 ) ,

note ( 4 , . 5 , 1 ) , note ( 2 , . 5 , 1 ) , note ( 0 , . 7 5 , 1 ) ,

i np l a c e = fa l se )

Fig. 7. C major scale with pure tones, temperate

Fig. 8. C major scale enveloped and modulated, temperate
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Fig. 9. C major scale enveloped and modulated, Pythagorean

Maple Project 5.2. Experiment with overtones: to note(k) add sine waves of
frequency integer multiples of w(k). Add/avoid some, and investigate suitable
ADSR envelopes in order to obtain instrument-like sounds.

Remark 5.3. Let us note that it is cumbersome to fully implement Pythagorean
or just tunings. Passing to another note or octave is not recurrent as in temperate
tuning. Below we show the Maple code for the Pythagorean C major scale, one
octave in length.

with ( AudioTools ) :
with ( ArrayTools ) :
with ( S i gna lProce s s ing ) :
CMscalePyth := Extend (Tone ( (1/27 )∗ ( 440∗16) , . 5 , 1 ) , Tone (9∗ (440∗16)/ (27∗8) , . 5 , 1 ) ,
Tone (81∗ (440∗16)/(27∗64) , . 5 , 1 ) , Tone ( (1/27 )∗ (440∗16)∗ (4/3 ) , . 5 , 1 ) ,
Tone ( (1/27)∗ (440∗16)∗ (3/2 ) , . 5 , 1 ) , Tone (440 , . 5 , 1 ) , Tone ( ( 1/8 )∗ ( 4 40∗9 ) , . 5 , . 9 ) ,
Tone (16∗ (2∗440)∗ (1/27) ,1 ,1 ) , Tone ( ( 1 /8 )∗ ( 4 40∗9 ) , . 5 , . 9 ) , Tone ( 440 , . 5 , 1 ) ,
Tone ( (1/27)∗ (440∗16)∗ (3/2 ) , . 5 , 1 ) , Tone ( (1/27)∗ (440∗16)∗ (4/3 ) , . 5 , 1 ) ,
Tone (81∗ (440∗16)/(27∗64) , . 5 , 1 ) , Tone (9∗ (440∗16)/ (27∗8) , . 5 , 1 ) ,
Tone ( (1/27)∗ (440∗16) , . 75 , 1 ) ,
i np l a c e = f a l s e )

Having built notes we can group these together by superposition (addition) in
order to implement the musical concept “chord”. For example, by looking at how
the A-chord is played on the guitar (strumming five strings, see Fig. 10), we see
that we need to add five sine waves of frequencies w(−15), w(−8), w(−3), w(1),
and w(4), respectively. After multiplying by an envelope function and composing
with modulation we obtain a complex sound of chord A, suitable to combine with
other chords.
with ( AudioTools ) :
with ( ArrayTools ) :
with ( S i gna lProce s s ing ) :
chA :=( t−>Create ( x−>(evalhf (1/(5)∗ env (x/( t ∗44100))∗ sin (x/44100∗2∗Pi∗w(−15))+
1/(5)∗ env (x/( t ∗44100))∗ sin (x/44100∗2∗Pi∗w(−8))+
1/(5)∗ env (x/( t ∗44100))∗ sin (x/44100∗2∗Pi∗w(−3))+
1/(5)∗ env (x/( t ∗44100))∗ sin (x/44100∗2∗Pi∗w(1))+
1/(5)∗ env (x/( t ∗44100))∗ sin (x/44100∗2∗Pi∗w(4)+ sin (x/44100∗2∗Pi∗w( 4 ) ) ) ) ) , durat ion=t ) )
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Fig. 10. Chord A on the guitar

Maple Project 5.4. Write code for all chords. One may find lists of chords in
any “....for beginners” book. For example we have used [4] which contains all
thorough guitar chords descriptions. This project can be developed further with
a deeper mathematical flavor, by studying and observing distances of the strings
frequencies in a chord composition and their connections to distances in Cayley
graphs of the group Z12 (see next section on counterpoint).

A melody example that uses the chords A, D, and E is displayed below, together
with its spectrogram. The chords are played for a duration t, e.g. chA(0.5) means
chord A is played half a second (Fig. 11).

with ( AudioTools ) :
with ( ArrayTools ) :
with ( S i gna lProc e s s i ng ) :
Melody:= Extend (chA (1 ) , chA (1 ) , chD ( 1 . 5 ) , chD ( . 5 ) ,
chA (1 ) , chA (1 ) , chE (2 ) , chA (1 ) , chA (1 ) , chE ( 1 . 5 ) ,
chD(1 ) , chA (1 ) , chE ( 2 ) ) ;
Play (Melody ) ;

Fig. 11. Melody spectrogram
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6 Counterpoint

Counterpoint in music means “note against note”. It represents a sum of compos-
ing techniques which combine two or more voices. Its roots can be traced back to
the 9th century. The first thorough study was completed by Johann J. Fux [6] who
spelled out the rules of composing with counterpoint. There are five species of
counterpoint, see [12] for self contained and clear explanations. The first species
of the counterpoint is the one we will implement with Maple. We follow in parts
[10]. Define the following partition Z12 = K ∪ D, where K = {0, 3, 4, 7, 8, 9} is
called “cantus firmus” and D = {1, 2, 5, 6, 10, 11} “decantus”. Assume voice A
plays notes at the same time as voice B such that:

• If voice A plays: x, y, z... then voice B plays: x+k, y+l, z+p... where k, l, p ∈ K.
• There are restrictions: “parallel” fifths are forbidden, i.e. consecutive distances
k, l in the sequence above can’t be both equal to 7mod12. One can read this rule
on Euler’s coordinates, see Fig. 4. This restriction can be analyzed mathemati-
cally ([10]) from a group theory vantage point, which we will explain a bit further
down. The full list of exceptions however may have to do more with the musical
esthetic that Fux embraced. For example the distances 3, 4 (minor/major third)
and 8, 9 (minor/major sixth) “are fine but no more than three in a row”, see e.g.
[12].

In [9] and [10] the peculiar choice of the partition K, D is explained beau-
tifully through actions of symmetries T of the discrete torus Z3 × Z4 such that
T 2 = id, T (D) = K and T preserves the (Cayley graph’s) distance. These con-
siderations stem from this Abstract Algebra exercise: Prove that there exists
precisely five such transformations T (Hint: T (x) = (ax + b)mod 12, then ask
T 2 = id). [10] claims each of these five symmetries correspond to a counterpoint
species.

Let us note here that we can work with the original group Z12, with the
Cayley graph generated by group elements 3 and 4. Then the set K from which
the counterpoint distances are chosen (except restrictions) consists of zero length,
unit length 3, 4,−3 = 9,−4 = 8 paths, and the two-unit path 7 = 3 + 4. This
raises the question why is 5 (path of length 2 on the graph) out? This is an
interesting subject because throughout the centuries many composers considered
the fourth as consonant, i.e. 5 should belong to K.

The code below lists the first notes of the lower guitar strings needed to play
the popular song “Greensleeve”, then its counterpointed version. We took some
liberty on note duration arrangements.
with ( AudioTools ) :

with ( ArrayTools ) :

with ( S i gna lProce s s i ng ) :

audio1 := Extend ( note ( −3 , .5 ,1) , note ( 0 , . 7 5 , 1 ) , note ( 2 , . 5 , 1 ) , note ( 4 , . 7 5 , 1 ) ,

note ( 5 , . 3 5 , 1 ) , note ( 4 , . 3 5 , 1 ) , note (2 , 1 , 1 ) , note ( −1 , .5 ,1) ,

note ( −5 ,1 ,1) , note ( − 3 , . 5 , 1 ) , . . . , i np l a c e = fa l se )

with ( AudioTools ) :
with ( ArrayTools ) :
with ( S i gna lProce s s ing ) :
audio2 :=Extend ( note ( −15 , .5 ,1) , note (−4, . 7 5 , 1 ) , note (−1, . 5 , 1) , note ( 1 , . 7 5 , 1 ) ,
note ( 1 , . 3 5 , 1) , note ( −4 , .35 ,1) , note ( −1 ,1 ,1) , note ( −4 , .5 ,1) ,
note ( −5 ,1 ,1) , note ( −7 , . 5 , 1 ) , . . . , i np l a c e = f a l s e )
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To obtain the final counterpointed melody in Maple, one can mix the two (or
more!) audio files as weighted sum.

counterpoint = α · audio1 + β · audio2, α + β = 1

Remark 6.1. One can experiment with Mask command to combine the files,
i.e. audio1 × audio 2. This is the command Modulate. It results in shifting one
audio’s frequencies by the other’s, which corresponds to Fourier transform of a
product, thus in shifting (convolution) of the frequencies.

Maple Project 6.2. Build a “composition” Maple application:
Write Notes(n, t, am) in a window editor, then compile to produce audio files.
Add sound effects such as reverberate and distortion. Write code for “automated”
compositions (e.g. Wolfram tones uses cellular automata). For advanced stu-
dents, study and explain the theory behind “Vocoder” technology [5], i.e. Tem-
po/Pitch change without affecting the listening experience.

Acknowledgements. The author thanks his nephew Philip Eitner who was avail-
able to discuss and explain guitar playing, during schools lock-down in Spring 2020
due to the Covid-2019 pandemic. Many thanks go to Paul Lombardi from the Music
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Abstract. Accurate homography estimation is a crucial step for many
computer vision applications. Nevertheless, nonlinear optical camera
imaging effects can introduce radial distortion, making unfeasible the
pinhole model for homography estimation. In this paper, an algorithm
to rectify radially distorted images using the Maple software is proposed.
First, the effect of radial distortion is modeled and analyzed. Next, an
inverse distortion model is developed. The proposed algorithm allows us
to estimate both the homography matrix and the distortion parameters
by processing images of a calibration target using the Gauss-Newton app-
roach. Successful estimation of homographies and distortion parameters
to correct real-world images is reported.

Keywords: Radial lens distortion · Homography estimation ·
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1 Introduction

Imperfection in optical lens construction introduces distortions such as chromatic
aberration, astigmatism, and geometrical distortions such as radial and tangen-
tial distortion [1,4,5]. Moreover, computer vision applications usually assume
the theoretical linear pinhole camera model. Nevertheless, when non-linear dis-
tortions (such as radial distortion) are present, the pinhole camera model can not
be directly applied. Particularly, radial distortion is a relevant issue in computer
vision [11,13] because of its impact in tasks such as 3D imaging techniques and
pattern recognition [8,10,16].

Warped images must be rectified through a model that maps between rec-
tified and distorted images. Radial distortion can be modeled as a process that
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involves a geometric mapping T : R
2 �→ R

2. That is, radial distortion devi-
ates ideal image coordinates into a new modified coordinates image pixels as
shown Fig. 1. A distorted image can be restored by applying the inverse radial
warp process. Within state-of-the-art, radial distortion is usually modeled with
polynomials [2,6,7,13,15]. This approach does not require to consider complex
functions (such as logistical or trigonometric).

In practice, the polynomials do not provide a general method to invert the
radial distortion effect [1,10,14]. For even and odd polynomial warp formulations,
their inverse can be found by approximation [2,3,6]. Additionally, there are
other existing methods that model radial distortion using a single parameter
(known as division model) which can directly be inverted [3,7,9]. In this work,
we propose an inverse process and inverse warp function to counteract the radial
distortion effects of warped images. Additionally we propose an algorithm based
on the Gauss-Newton approach to find a numerical solution for radial distortion
parameters and a proper homography.

This work is organized as follows. In Sect. 2 we consider the direct warp
transformation process to model the radial distortion effect with its radial dis-
tortion parameters. Also, we consider the transformation of the inverse warp
process to model the inverse distortion parameters and homography to coun-
teract radial distortion effects. In Sect. 3 we formulate an algorithm to find a
numerical solution for radial distortion parameters and a suitable homography.
In Sect. 4 we present experimental results using a Maple implementation of the
proposed algorithm. In Sect. 5 a discussion about the findings is given. Section 6
presents the conclusions. Furthermore, Appendix A provides a brief introduc-
tion regarding Homogeneous coordinates with Maple implementations. Finally,
the appendices B and C provide the rest of the Maple implementations for the
proposed algorithm for radial distortion correction of images.

2 Direct and Inverse Warp Process Transformation

Consider direct warp process transformation as shown in Fig. 1, where μ =
H−1 [GH[ρ]] is an ideal image point, H[·] is the homogeneous transformation
operator1, G is an homography matrix, and ρ are the ideal or undistorted ref-
erence points. Then the deviated image points μ̃, obtained by applying a warp
function, are given by

μ̃ = rd(μ,λ)μ = warp(μ,λ), (1)

where rd is a warp radial distortion function and λ is a distortion parameter
vector. Now consider μ = rd(μ̃,λ−1)μ̃ = warp(μ̃,λ−1). We propose the inverse
warp functions to counteract warped effects as follows:

1 More detailed information about homogeneous coordinates can be found in App-
endix A.
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Fig. 1. Direct and inverse warp coordinates process in radially distorted images.

ρ = H−1
[
G−1H[μ]

]

= H−1
[
G−1H[warp(μ̃,λ−1)]

]

= H−1
[
G−1H[rd(μ̃,λ−1)μ̃]

]
.

(2)

We suggest, along with the proposed inverse process, the use of an inverse-based
Fitzgibbon’s division model and an even polynomial model with three distortion
parameters specified as follows. Consider the Fitzgibbon’s division based model
deviation function given by

rd(μi, λ) = 1 + λ‖μi‖2. (3)

The forward process can be written as

μ̃i = rd(μi, λ)μi

=
(
1 + λ‖μi‖2

)
μi

=
(
1 + λ‖H−1 [GH[ρi]] ‖2

) H−1 [GH[ρi]] .

(4)

Now, for the inverse model, consider the inverse radial distortion deviation model
given by

μi = rd(μ̃i, λ)μ̃i = (1 + λ‖μ̃i‖2)μ̃i. (5)

Next the inverse process given by

ρi = H−1
[
G−1H[μi]

]

= H−1
[
G−1H[(1 + λ‖μ̃i‖2)μ̃i]

]
.

(6)
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In the same manner, consider for the three parameter polynomial deviation
model specified as

rd(μ,λ) = 1 + λ1‖μi‖2 + λ2‖μi‖4 + λ3‖μi‖6, (7)

the forward process is given by

μ̃i = rd(μi,λ)μi

=
(
1 + λ1‖μi‖2 + λ2‖μi‖4 + λ3‖μi‖6

)
μi

=
(
1 + λ1‖H−1 [GH[ρi]] ‖2 + λ2‖H−1 [GH[ρi]] ‖4 + λ3‖H−1 [GH[ρi]] ‖6

)

H−1 [GH[ρi]] .
(8)

Moreover, for even power polynomial model, the inverse deviation model is given
by

μi = rd(μ̃i,λ)μ̃i = (1 + λ1‖μ̃i‖2 + λ2‖μ̃i‖2 + λ4‖μ̃i‖6)μ̃i, (9)

and the inverse process is

ρi = H−1
[
G−1H[μi]

]

= H−1
[
G−1H[(1 + λ1‖μ̃i‖2 + λ2‖μ̃i‖4 + λ3‖μ̃i‖6)μ̃i]

]
.

(10)

Note that, with the proposed the inverse processes, we can solve numerically the
distortion parameters and the homography using the Gauss-Newton approach
to counteract the forward process warp effects.

3 Numerical Solution Algorithm for Radial Distortion
Parameters with Gauss-Newton Approach

In this section, we integrate the proposed inverse radial distortion warp functions
into the Gauss-Newton approach. This section shows the general formulation
steps to estimate of the radial distortion parameters. For simplicity of notation
we consider the inverse homography G−1 as

K = G−1 =

⎡

⎣
k1 k2 k3
k4 k5 k6
k7 k8 k9

⎤

⎦ =

⎡

⎢
⎣

k̄
T
1

k̄
T
2

k̄
T
3

⎤

⎥
⎦ , (11)

with k9 = 1. First, let a general deviation model be given by

μi = rd(μ̃,λ)μ̃, (12)

where Eq. (12) can be used with the derived deviations models from Eq. (5) and
Eq. (9). Therefore considering the inverse process from Eq. (2) we can obtain



Numerical Solution for Radial Distortion Rectification in Optical Systems 323

Algorithm 1: Distortion parameter estimation algorithm.
Input:
μ̃ /* Distorted image points */

ρ /* Exact reference points */

K0 /* Initial guess homography matrix */

λa /* Initial guess distortion parameter λa */

λb /* Initial guess distortion parameter λb */

λc /* Initial guess distortion parameter λc */

N /* Iteration max number */

ε /* Stop condition tolerance */

Output:
KΘ /* Estimated inverse homography */

λ1 /* Estimated distortion parameter λ1 */

λ2 /* Estimated distortion parameter λ2 */

λ3 /* Estimated distortion parameter λ3 */

begin
Θ0 ← Vec3,3(K0);
Θ0 ← [Θ0,k with k = 1 . . . 8, λa, λb, λc];

y ← [
ρx,i ρy,i

]T
;

for i ← 1 to N do
ŷ ← f(Θ0[1..8], Θ[9], Θ[10], Θ[11], μ̃);

JΘ ← J(Θ0[1..8], Θ[9], Θ[10], Θ[11], μ̃);

Θ = Θ0 + (JT
ΘJΘ)−1JT

Θ (y − ŷ);

/* Verify stop condition */

1 if ‖Θ − Θ0‖ < ε then

2 KΘ = Vec−1
3,3(

[
Θ 1

]T
);

3 λ1 = Θ[9];
4 λ2 = Θ[10];
5 λ3 = Θ[11];
6 return KΘ,λ1,λ2,λ3;

7 else
8 Θ0 = Θ;
9 end

end
return Error: Can’t find solution for N iterations.

end

the following expression

ρi = H−1[KH[μi]]

= H−1[KH[rd(μ̃i,λ)μ̃i]]

= H−1

⎡

⎢
⎣

⎡

⎢
⎣

k̄1
T

k̄2
T

k̄3
T

⎤

⎥
⎦ H[rd(μ̃i,λ)μ̃i]

⎤

⎥
⎦

=
1

k̄3
T H[rd(μ̃i,λ)μ̃i]

[
k̄1

T H[rd(μ̃i,λ)μ̃i]
k̄2

T H[rd(μ̃i,λ)μ̃i]

]

, (13)

or, equivalently

[
ρx,i

ρy,i

]
=

[
[k1,k2]μi+k3
[k7,k8]μi+1
[k4,k5]μi+k6
[k7,k8]μi+1

]

=

⎡

⎣
μ̃x,ird(μ̃i

T ,λ)k1+μ̃y,ird(μ̃i
T ,λ)k2+k3

μ̃x,ird(μ̃i
T ,λ)k6+μ̃y,ird(μ̃i

T ,λ)k7+1
μ̃x,ird(μ̃i

T ,λ)k4+μ̃y,ird(μ̃i
T ,λ)k5+k6

μ̃x,ird(μ̃i
T ,λ)k6+μ̃y,ird(μ̃i

T ,λ)k7+1

⎤

⎦ . (14)
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From Eq. (14) we specify the general objective function as

f(K,λ,μ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[k1,k2]μ1+k3
[k7,k8]μ1+1

...
[k1,k2]μi+k3
[k7,k8]μi+1
[k4,k5]μ1+k6
[k7,k8]μ1+1

...
[k4,k5]μi+k6
[k7,k8]μi+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)

where μi = rd(μ̃,λ)μ̃. From Eq. (14) the Jacobian for Gauss-Newton approach
is given by

J(K,λ,μ) =

⎡

⎢
⎢
⎣

∂f(K,λ,μ1)
∂k1

∂f(K,λ,μ1)
∂k2

· · · ∂f(K,λ,μ1)
∂k8

∂f(K,λ,μ1)
∂λ1

∂f(K,λ,μ1)
∂λ2

· · · ∂f(K,λ,μ1)
∂λn

...
...

...
...

...
...

∂f(K,λ,μi)
∂k1

∂f(K,λ,μi)
∂k2

· · · ∂f(K,λ,μi)
∂k8

∂f(K,λ,μi)
∂λ1

∂f(K,λ,μi)
∂λ2

· · · ∂f(K,λ,μi)
∂λn

⎤

⎥
⎥
⎦ .

(16)
Finally, the output variables y and ŷ are defined as

y =
[
ρx,1, · · · , ρx,i, ρy,1, · · · , ρy,i

]T
,

ŷ = f(K,λ,μ)) |K=K0,λ=λ0,μ=μ̃0 ,
(17)

where K0,λ0, μ̃0 are the initial guess for the Gauss-Newton approach. The Algo-
rithm 1, summarizes the steps presented in this section. In addition, the Maple
implementation can be found in Appendix C.

Table 1. Initial homographies G0 guess for each input image.

Image No. g1 g2 g3 g4 g5 g6 g7 g8

1 0.4728 0.0335 −0.0060 −0.0161 0.3903 −0.0229 −0.0192 −0.0805

2 0.4752 0.0390 0.0325 −0.0115 0.3964 −0.0238 0.0664 −0.0802

3 0.5286 0.0453 0.0330 −0.0149 0.4407 −0.0259 0.0866 −0.1050

4 0.5261 0.0368 −0.0212 −0.0219 0.4366 −0.0257 0.0599 −0.1035

5 0.5108 0.0501 0.0748 −0.0096 0.4439 −0.0245 0.0643 −0.1087

6 0.4863 0.0380 0.0015 −0.0160 0.4025 −0.0223 −0.0700 −0.0918

7 0.4935 0.0366 0.0104 −0.0156 0.4085 −0.0228 0.0928 −0.0888

8 0.4462 0.0358 0.0264 −0.0105 0.3722 −0.0217 −0.0018 −0.0687

9 0.4678 0.0285 −0.0394 −0.0221 0.3930 −0.0225 0.0620 −0.0782

10 0.4334 0.0382 0.0485 −0.0063 0.3715 −0.0215 −0.0774 −0.0727
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4 Results

We evaluated the proposed inverse process for radial distortion image rectifica-
tion using the algorithm presented in Algorithm 1 for one and three distortion
parameters (deviations models from Eq. (5) and Eq. (9) respectively). As input
for the algorithm for one and three distortion parameters, we used ten calibration
checkboard images with a slightly radial distortion, which were captured using
a Fuji DSLR Finepix s5800 camera, as shown in Fig. 2(a)–(e). A checkerboard
calibration target with squares size of 2.2 cm is employed. This target provides
54 corner points ρ0 on the checkerboard. Then, from the captured images, the
Harris corner detector is used to extract the 54 corner points μ̃0 on the image
for each checkerboard image. The image corner points μ̃0 are taken as the initial
distortion image points for the algorithm.

Fig. 2. Radial distortion rectification with one and three parameters using the proposed
method. (a)–(e) The first five of ten original radially distorted images. Rectified images
applying radial distortion correction using (f)–(j) one distortion parameter, and (k)–(o)
three distortion parameters.

The initial guess parameters for one and three distortion parameters where
set as λ = 0.5, and λ = [0.35,−0.25, 0.15]T respectively, a tolerance ε = 1 ×
10−6, and a maximum number of iterations N = 25. Also, the initial guess
homographies used for the experiment are reported in Table 1. The Algorithm 1
was applied to estimate the homography and distortion parameters for each
input image. Two cases are considered, first, when a single distortion parameter
is estimated, and, second, when three distortion parameters are estimated. For
the first case, the homography, distortion parameter, and reprojection error2 ρε

2 Reprojection error is an error measure defined as the Euclidean distance between the
estimated reference points (obtained using the estimated homography and distortion
parameters) and the exact coordinates of the reference points.
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are presented in Table 2. Similarly, the Table 3 presents the estimation results
for the second case.

Table 2. Homography and one distortion parameter estimated for each input image.

Image No. k1 k2 k3 k4 k5 k6 k7 k8 λ ρε

1 2.0750 −0.1772 0.0065 0.0874 2.5260 0.0511 0.0471 0.2014 0.0499 0.0464

2 2.0650 −0.2179 −0.0666 0.0517 2.4780 0.0499 −0.1341 0.2150 0.0499 0.0466

3 1.8480 −0.2054 −0.0587 0.0537 2.2200 0.0461 −0.1559 0.2535 0.0496 0.0541

4 1.8570 −0.1471 0.0442 0.0878 2.2580 0.0504 −0.1029 0.2449 0.0497 0.0534

5 1.9170 −0.2541 −0.1481 0.0341 2.1970 0.0408 −0.1210 0.2575 0.0488 0.0538

6 2.0160 −0.1943 −0.0160 0.0864 2.4500 0.0457 0.1500 0.2130 0.0495 0.0490

7 1.9860 −0.1822 −0.0144 0.0666 2.4090 0.0462 −0.1797 0.2328 0.0499 0.0485

8 2.2050 −0.2249 −0.0652 0.0620 2.6550 0.0495 0.0081 0.1832 0.0497 0.0431

9 2.0970 −0.1347 0.0898 0.1119 2.5230 0.0540 −0.1218 0.2073 0.0495 0.0452

10 2.2720 −0.2592 −0.1280 0.0464 2.6880 0.0484 0.1800 0.1765 0.0484 0.0430

Table 3. Homography and three distortion parameters estimated for each input image.

Image No. k1 k2 k3 k4 k5 k6 k7 k8 λ1 λ2 λ3 ρε

1 2.0770 −0.1773 0.0065 0.0875 2.5280 0.0511 0.0471 0.2014 0.0402 0.0365 −0.0400 0.0459

2 2.0670 −0.2181 −0.0667 0.0517 2.4800 0.0500 −0.1341 0.2150 0.0397 0.0371 −0.0396 0.0461

3 1.8500 −0.2055 −0.0587 0.0538 2.2210 0.0461 −0.1559 0.2535 0.0442 0.0132 −0.0088 0.0537

4 1.8580 −0.1472 0.0443 0.0879 2.2590 0.0505 −0.1029 0.2449 0.0421 0.0200 −0.0148 0.0529

5 1.9160 −0.2541 −0.1482 0.0340 2.1970 0.0408 −0.1210 0.2575 0.0511 −0.0122 0.0157 0.0537

6 2.0180 −0.1945 −0.0161 0.0865 2.4530 0.0458 0.1500 0.2130 0.0361 0.0502 −0.0540 0.0486

7 1.9880 −0.1824 −0.0144 0.0667 2.4110 0.0462 −0.1797 0.2328 0.0363 0.0462 −0.0458 0.0480

8 2.2060 −0.2250 −0.0652 0.0620 2.6570 0.0495 0.0081 0.1832 0.0399 0.0424 −0.0528 0.0427

9 2.1000 −0.1348 0.0901 0.1120 2.5250 0.0541 −0.1218 0.2073 0.0357 0.0489 −0.0492 0.0445

10 2.2740 −0.2595 −0.1284 0.0464 2.6900 0.0484 0.1800 0.1765 0.0346 0.0590 −0.0698 0.0422

The estimated parameters were used for rectification of radial distortion of
the input images. For this, the inverse transformation process by the warp func-
tions given by Eqs. (5) and (9) are applied. Then, a bilinear interpolation was
used to obtain the final representation of the rectified image. The Figs. 2(f-j)
show the result of the described distortion correction process using the parame-
ters in Table 2. Similarly, Figs. 2(k)–(o) show the corresponding corrected images
using the parameters in Table 3.

5 Discussion

Radial distortion rectification problems may be summarized as finding the poly-
nomial distortion coefficients of the model for the inverse process transformation.
For multiple distortion parameters, there is no direct deviate reverse solution,
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unlike a single distortion parameter. To counteract the natural radial distor-
tion effect, we proposed an inverse process to rectify images using the Gauss-
Newton approach to find a numerical solution for the homography and distor-
tion parameters. We formulated the inverse process transformation algorithm to
adapt smoothly distinct warp functions. The results show a proper rectification
of the input images using the proposed algorithm in two cases (estimating one
and three distortion parameters) as shown in Fig. 2. It is worth mentioning that
similar homographies and reprojection errors were obtained as shown in Tables 2
and 3.

The presented experiments suggests that models with higher degrees may
not be necessary. Using only a second-order deviation model should be sufficient
to rectify a radial distorted image using the proposed algorithm. Some caveats
regarding the algorithm’s use are the initial guess parameters needed because of
the Gauss-Netwon approach’s nature. The proposed initial settings were selected
using a uniform-random range initial guess distortion parameters. Also, a final
refinement may be needed because the algorithm does not contemplate noise
environments.

Since the proposed algorithm is tightly related to pinhole image formation,
it may be used as a pre-calibration stage delivering satisfactory results. Never-
theless, other images coming from another kind of image formation nature, the
algorithm might not work as expected. For instance, Fig. 3 shows the image cap-
tured with a fisheye lens, and the rectified image using our proposed algorithm.
Note that the image is not entirely rectified.

Fig. 3. (a) Image acquired with an Arducam OV5647 fisheye camera lens. (b) Image
corrected for radial distortion using the proposed method. Note that there is a remain-
ing radial distortion.

In summary, the proposed algorithm for radial distortion image rectification
can deal with distinct warp image models. With the Gauss-Newton approach,
the algorithm can find a numerical solution for radial distortion parameters and
the homography. The algorithm can be applied in pre-calibration stages, and
some caveats may need to be considered, such as noise environments and the
image formation nature to rectify images successfully.
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6 Conclusion

In this work, we analyzed the forward and inverse warp process, particularly
for radial distorted images. We proposed an inverse transformation process for
two deviation models with one and three distortion parameters, respectively.
Then we formulated an algorithm to achieve a numerical solution for the distor-
tion parameters and their homography. We provided Maple implementation for
the proposed algorithm, and we experimentally tested it with real images. We
showed that images from pinhole formation nature along with radial distortion
are rectified successfully using the Gauss-Netwon approach to find a numerical
solution for radial distortion parameters and a suitable homography. On the
other hand, we tested the algorithm with a fisheye formation nature, and we
found that the resulting image is not entirely rectified. As future work, this app-
roach may be used as a baseline to contemplate distinct image formation natures
such as fisheye, panoramic, and catadioptric cameras.

A Homogeneous coordinates

In this section we introduce the homogeneous coordinates and the direct lin-
ear transform (DLT) method for homography estimation. We use the homoge-
neous coordinates operator H[.] as in [12] to represent an n-dimensional point in
homogeneous coordinates. To clarify, let a Cartesian’s coordinate point u ∈ R

n

specified as

u =

⎡

⎢
⎢
⎢
⎣

u1

u2

...
un

⎤

⎥
⎥
⎥
⎦

, (18)

whose homogeneous representation is given by

v = Hs[u] =

⎡

⎢
⎢
⎢
⎣

v1
v2
...

vn+1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

u1

u2

...
s

⎤

⎥
⎥
⎥
⎦

, (19)

such that v ∈ R
n+1. Inversely to obtain the Cartesian’s coordinates from homo-

geneous coordinates representation we use the inverse homogeneous operator
defined as

u = H−1
s [v] =

s

S[v]
H−1

0 [v], (20)

where S is the scale operator which returns the last element of v and the null
inverse homogeneous operator specified as H−1

0 [v] = [v1, v2, . . . , vn]T .
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A.1 Correspondence Between Planes

Homography estimation is critical in many vision-based applications such as
camera calibration [16], perspective correction [12], among others [8]. Projective
transformations are linear operations that relate points in homogeneous coordi-
nate space. Homographies are a special kind of projective transformations that
define direct and inverse mapping relationships between planes in homogeneous
coordinates such as points, lines, and other objects. In this work, we use the point
paradigm for correspondences between two planes (Πμ,Πρ) which are denoted
as μi ↔ ρi with μi ∈ Πμ and ρi ∈ Πρ. Equally important, consider direct and
inverse mappings

ρi = H−1 [GH[μi]] , (21)

and
μi = H−1

[
G−1H[ρi]

]
, (22)

we may state the problem to estimate the homography that satisfies the equa-
tion for the direct mapping and inverse mapping given a set of correspondence
points. To estimate a homography given a pair correspondences μi ↔ ρi we may
minimize the algebraic distance

H[μi] × H[ρi] = 03, (23)

From Eq. (23), using the matrix form of cross product [H[μi]]× H[ρi] = 03 we
may write ⎡

⎣
0 −1 μy,i

1 0 −μx,i

−μy,i μx,i 0

⎤

⎦

⎡

⎣
ḡ1

T H[ρi]
ḡ2

T H[ρi]
ḡ3

T H[ρi]

⎤

⎦ = 03, (24)

where ḡi
T are the matrix rows of G, and rearranging terms from Eq. (24) we

obtain the measurements matrix M and the homography vector g specified as
follows ⎡

⎣
0T −H[ρi]T μy,iH[ρi]T

H[ρi]T 0T −μx,iH[ρi]T

−μy,iH[ρi]T μx,iH[ρi]T 0T

⎤

⎦

︸ ︷︷ ︸
M

⎡

⎣
ḡ1

T

ḡ2
T

ḡ3
T

⎤

⎦

︸ ︷︷ ︸
g

= 03. (25)

Now from Eq. (25) the third row is a linear combination of the first two rows of
the measurement matrix and promptly we may simplify it as

[
0T −H[ρi]T μy,iH[ρi]T

H[ρi]T 0T −μx,iH[ρi]T

]

︸ ︷︷ ︸
M

⎡

⎣
ḡ1

T

ḡ2
T

ḡ3
T

⎤

⎦

︸ ︷︷ ︸
g

= 03. (26)

The Eq. (26) is the principle of a well-known method for homography estimation
called the Direct Linear Transformation (DLT). As we may observe, the DLT
requires at least four correspondences points to estimate the homography matrix
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G, but we may supply more than four point correspondences and rewrite Eq. (26)
as ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0T −H[ρ1]T μy,1H[ρ1]T

0T −H[ρ2]T μy,2H[ρ2]T
...

...
...

0T −H[ρi]T μy,iH[ρi]T

H[ρ1]T 0T −μx,1H[ρ1]T

H[ρ2]T 0T −μx,2H[ρ2]T
...

...
...

H[ρi]T 0T −μx,iH[ρi]T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
ḡ1

T

ḡ2
T

ḡ3
T

⎤

⎦ = 02n, (27)

which we may be solved through the singular value decomposition method
(SVD) [16]. A detailed Maple implementation for homogeneous coordinates
transformation and homography estimation by the DLT method can be found
in Appendix A.2.

A.2 Homogeneous Coordinates and DLT Maple Listings

For this Maple listings section, it is necessary to load the following libraries using
with ( LinearAlgebra ) ;
with ( ArrayTools ) ;

Listing 1.1. Homogeneous coordinates operator.
H := proc (V, s c a l e :=1)
map( v −> <v , s ca l e >, V) ;

end proc ;

Listing 1.2. Inverse homogeneous coordinates operator.
HInvPoint := proc (w, s c a l e :=1)
local n , s ;
n := S i z e (w, 1) ;
s := w[ n ] [ 1 ] ;
convert ( s c a l e ∗w[1 . . n − 1 ]/ s , Vector [ column ] ) ;

end proc ;

HInv := proc (W, s :=1)
map( x −> HInvPoint (x , s ) , W) ;

end proc ;

Listing 1.3. DLT method for homography estimation.
DLT2D := proc (Pmu, Prho , s c a l e := 1)
local Hmu, Hrho , M, zeros , u , s , vt , G;
z e ro s = Vector (3 ) ;
Hrho = H(Prho , s c a l e )
M := <seq (Matrix ( [

<zeros , −Hrho [ i ] , Pmu[ i ] ( 2 ) . Hrho [ i ]> ,
<Hrho [ i ] , zeros , −(Pmu[ i ] ( 1 ) . Hrho [ i ] ) >])ˆ%T,
i =1. . S i z e (Prho , 2 ) )>;

u , s , vt := Singu larVa lues (M, output = [ ’U’ , ’ S ’ , ’ Vt ’ ] ) ;
vt := vtˆ%T;
G := Reshape ( vt [ 1 . . , S i z e ( vt , 2) ] , [ 3 , 3 ] ) ˆ%T;
G/G(−1) ;

end proc ;
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B Support Functions Maple Listings

Listing 1.4. Simple Euclidean distance.
EuclidNorm := p −> sqrt (add(map( x −> xˆ2 , p) ) )

Listing 1.5. Symbolic gradient computing.
Gradient := proc ( f , v a r i a b l e s )
local v ;
<seq ( d i f f ( f , v ) , v in va r i a b l e s )>;

end proc ;

Listing 1.6. Symbolic Jacobian computing.
Jacobian := proc ( vfunc , v a r i a b l e s )
local v ;
<seq ( Gradient (v , v a r i a b l e s ) ˆ%T, v in vfunc )>;

end proc ;

Listing 1.7. Grid point generation function.
Grid2DGenerator := proc ( u seq , v s eq )
local p , i , j ;
p := [ ] ;
for i in u seq do
for j in v s eq do

p := [op(p) , <i , j > ] ;
end do ;

end do ;
end proc ;

C Numerical Solution for Radial Distortion Maple
Listings

Listing 1.8. Inverse radial distortion process (single parameter).
LInv1 := proc (G0, Smu, lambda )

local n , ld , Snu , i ;
n := S i z e (Smu, 2) ;
ld := map(nu −> 1 + lambda∗EuclidNorm (nu) ˆ2 , Smu) ;
Snu:= [ seq ( ld [ i ]∗Smu[ i ] , i = 1 . . n ) ] ;
return Hinv (map(nu −> ( Matr ixInverse (G0) ) . nu , H(Snu) ) ) ;

end proc ;

Listing 1.9. Inverse radial distortion process (three parameters).
LInv2 := proc (G0, Smu, lambda )

local n , ld , Snu , i ;
n := S i z e (Smu, 2) ;
ld := map(nu −> 1 + ( ( lambda [ 1 ] ) . ( EuclidNorm (nu) ˆ2) ) + ( ( lambda [ 2 ] )

. ( EuclidNorm (nu) ˆ4) ) + ( ( lambda [ 3 ] ) . ( EuclidNorm (nu) ˆ6) ) , Smu) ;
Snu := [ seq ( ld [ i ]∗Smu[ i ] , i = 1 . . n ) ] ;
return HInv (map(nu −> ( Matr ixInverse (G0) ) . nu , H(Snu) ) ) ;

end proc ;

Listing 1.10. Estimation of homography and distortion parameters.
Rec t i f yRad i a lD i s t o r t i on3 := proc (G0, mud, rho0 , lambda0 := <0.35 , −0.25 ,

0.15> , N:=25 , e p s i l o n :=0.1∗10ˆ( −5) , output := fa l se )
local i t e r a t i o n , n0 , L2 , J , J0 , f , Theta0 , y , M, yt , rhot , Theta ,

vareps i l on , K0 , K, k , lambdaa , lambdab , lambdac , lambdan , lambdav ,
i ;
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n0 := S i z e (mud, 2) ;
lambdaa := lambda0 [ 1 ] ;
lambdab := lambda0 [ 2 ] ;
lambdac := lambda0 [ 3 ] ;
lambdav := <lambda1 , lambda2 , lambda3>;
#
k [ 9 ] := 1 ;
K := Reshape (Matrix(<k [ i ] $ ( i =1 . .9 )>) , [ 3 , 3 ] ) ˆ%T;
# Forward transformation funct ion
L2 := (mu, lambda ) −> 1 + ( ( lambda [ 1 ] ) . ( EuclidNorm (mu) ˆ2) ) + ( (

lambda [ 2 ] ) . ( EuclidNorm (mu) ˆ4) ) + ( ( lambda [ 3 ] ) . ( EuclidNorm (mu)
ˆ6) ) ;

# Object ive funct ion d e f i n i t i on
f := (K, Smu, lambda , n) −> <seq ( (K[ 1 ] ) . <Smu[ i ] ( 1 ) ∗L2(Smu[ i ] , lambda

) , Smu[ i ] ( 2 ) ∗L2(Smu[ i ] , lambda ) , 1>/((K[ 3 ] ) . <Smu[ i ] ( 1 ) ∗L2(Smu[ i
] , lambda ) , Smu[ i ] ( 2 ) ∗L2(Smu[ i ] , lambda ) , 1>) , i = 1 . . n ) , seq ( (K
[ 2 ] ) . <Smu[ i ] ( 1 ) ∗L2(Smu[ i ] , lambda ) , Smu[ i ] ( 2 ) ∗L2(Smu[ i ] , lambda )
, 1>/((K[ 3 ] ) . <Smu[ i ] ( 1 ) ∗L2(Smu[ i ] , lambda ) , Smu[ i ] ( 2 ) ∗L2(Smu[ i ] ,
lambda ) , 1>) , i = 1 . . n )>;

#Jacobian funct ion d e f i n i t i on
J := (K, S , lambda , n) −> Jacobian ( f (K, S , lambda , n) , [ k [ i ] $ ( i=1

. . 8 ) , lambda [ 1 ] , lambda [ 2 ] , lambda [ 3 ] ] ) ;
K0 := Matr ixInverse (G0) ;
Theta0 := convert (Matrix ( [ Reshape (K0ˆ%T, [ 1 , 9 ] ) [ . . , 1 . . 8 ] , lambdaa ,

lambdab , lambdac ] ) , Vector [ column ] ) ;
y := convert(<Vector ( rho0 (1) ) , Vector ( rho0 (2) )>, Vector ) ;
i f evalb ( output ) then

printf ( ”%s\ t %s\ t %s\ t\n” , ” va r ep s i l on ” , ” i t e r a t i o n ” , ”approx” ) ;
printf ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;

end i f ;
# Minimize o b j e c t i v e funct ion i t e r a t i v e s tage
for i t e r a t i o n to N do
rhot := Linv2 ( Matr ixInverse (K0) , mud, <lambdaa , lambdab , lambdac>) ;
yt := convert(<Vector ( rhot (1 ) ) , Vector ( rhot (2 ) )>, Vector ) ;
J0 := eval ( J (K, mud, lambdav , n0 ) , [ lambda1 = lambdaa , lambda2 =

lambdab , lambda3 = lambdac , seq ( k [ i ] = convert ( Reshape (K0ˆ%T, [ 1 ,
9 ] ) , Vector ) [ 1 . . 8 ] [ i ] , i = 1 . . 8 ) ] ) ;

M := ( Matr ixInverse ( ( J0ˆ%T) . J0 , method = pseudo ) ) . ( J0ˆ%T) ;
Theta := Theta0 + (M . (y − yt ) ) ;
v a r ep s i l on := Norm(Theta − Theta0 , 2 , conjugate = fa l se ) ;
i f va r ep s i l on < ep s i l o n then
i f evalb ( output ) then
printf ( ”%g\ t %2d \ t <%2g , %2g , %2g>\n” , vareps i l on , i t e r a t i o n ,

lambdaa , lambdab , lambdac ) ;
end i f ;
break ;

end i f ;
#
Theta0 := Theta ;
K0 := Reshape(<Theta [ 1 . . 8 ] , 1>, [ 3 , 3 ] ) ˆ%T;
lambdan := <Theta [ 9 ] , Theta [ 1 0 ] , Theta [11 ] > ;
lambdaa := lambdan [ 1 ] ;
lambdab := lambdan [ 2 ] ;
lambdac := lambdan [ 3 ] ;
# Enable algorithm output s t a tu s i f needed
i f evalb ( output ) then
printf ( ”%g\ t %2d \ t <%2g , %2g , %2g>\n” , vareps i l on , i t e r a t i o n ,

lambdaa , lambdab , lambdac ) ;
end i f ;

end do ;
return [ Reshape(<Theta [ 1 . . 8 ] , 1 > , [ 3 ,3 ] ) ˆ%T, <lambdaa , lambdab , lambdac

> ] ;
end proc ;
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Abstract. In March 2020 the Spanish authorities ordered a nation-wide home
confinement in an effort to avoid the spread of COVID-19 pandemic. This paper
takes the current COVID-19 pandemic as motivation for a simple growth model
designed for explaining virus propagation to children and was initially prepared
in Scracth 3 for the son of the first author. The mathematical model used is that of
fractal growth trees, which are graphically rendered in order to provide a strong
visual message of the nature of exponential growth. The rendering is done in
Maple’s Turtle Graphics package. This work is situated within a history of Turtle
Geometry, starting with its beginnings in the classic Logo programming language,
and describing how it fits within the current landscape of powerful software tools.
The implementation within Maple is described, with relevant vignettes of code
included. The completeMaple version of the tale is available fromMaplePrimes.

Keywords: Turtle geometry · Fractals · Virus propagation ·Modelling · Social
conscience · Visualization · Childrens’ mathematics education
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1 Introduction

In March 2020 the Spanish authorities ordered a nation-wide home confinement in
an effort to avoid the spread of COVID-19 (a pandemic of a coronavirus disease first
identified at the end of 2019). The first author, father of a 13 year old son, decided to
prepare a very simplified justification (for children), that was initially implemented in
Scratch 3 computer language. It relates virus propagation [1] to fractal trees and it is
based on the Turtle Geometry computer graphics [2] (see Sect. 1.1 below). It shows how
one infected cat can spread a contagious illness in a cat colony (the average number of
cats infected by each ill cat can be easily changed). This justification was later written
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as a tale and recorded in a 5 min video (in Spanish) that are available from the Instituto
de Matemática Interdisciplinar (IMI) of the Universidad Complutense de Madrid web
page [3] and an improved version of the tale (in English) was presented at ESCO 2020
conference on June 2020 [4] and published in [5].

Note that the authors have experience in designing and developing applications for
teaching and decision making in medicine (with CAS), like the early contributions [6,
7], and pharmacokinetics with CAS [8]. Moreover, they developed in the 90’s aMaple1

[9–14] implementation of the Turtle Geometry [15] (that was incorporated to theMaple
Share Library).

Now, an improved new version of the tale (in English), which underlying code is
written inMaple 2020 (using an updated version of theMaple implementation of Turtle
Geometrymentioned above, that takes advantage of using exact arithmetic for storing the
geometric coordinates of the points), is available fromMaplePrimes [16]. This advantage
is important when dealing with geometric designs that somehow concatenate geometric
objects, as is the case of fractals (something alreadymentioned in [17]). The possibilities
of Maple’s Turtle Geometry package and this particular application are analysed.

We would like to explicitly remark that the model of exponential growth presented
has just an educational purpose: it tries to communicate the nature of exponential growth,
and the need to reduce the spread of the virus by limiting contact between people (or cats).
Note that there are far more sophisticated and accurate models for research purposes
(that take into account many factors that occur in practice). As a further reading, [18]
presents interesting models of real epidemics using fictional creatures.

1.1 Turtle Geometry and Logo Programming Language

Logo [19, 20] was a very powerful programming language mainly remembered because
of its peculiar turtle geometry (also known as turtle graphics) [2] and its educational use
with children: working with geometric concepts and learning programming. The Turtle
Geometry applies constructionist ideas [21].

The turtle is a graphic cursor for drawing, which basic movements (forward, back,
turn right, turn left) are not related to the usual Cartesian coordinates but to the turtle’s
position and heading at each moment. In fact the turtle is frequently introduced to
children as a little animal living and moving on the screen, what is far more intuitive
than Cartesian coordinates. The main advantages with respect to working with Cartesian
coordinates are:

• trigonometric calculations are performed internally (it is oriented to be used by
children),

• repeating a certain design elsewhere only requires to allocate the turtle in the new
position and new heading and to apply the same list of commands.

In the very beginning, the turtle was a mechanical device moving on the floor or on
a table (the monitors only displayed text characters).

1 All product names, trademarks and registered trademarks are property of their respective owners.



336 E. Roanes-Lozano and E. Roanes-Macías

Despite its extraordinary success in the ’80s (Fig. 1), Logo is now sparsely used and
considered outdated, except for some specific applications such as robotics or fractals
[22–24] and other special curves [25].

We believe there are two main reasons for such a decay:

• Logo is a very friendly programming language, easy to use and really easy for begin-
ners.Nevertheless, there isn’t nowadays an agreement onwhether introducing children
to basic computer programming is a must or not [26]. And for introducing program-
ming to children there are more modern options like the well-known Scratch 3 [27]
and Snap! [28] (both of them including turtle graphics).

• The range, availability and spread of mathematical software have increased enor-
mously. Nowadays, Dynamic Geometry Systems (DGS), and, more specifically,
GeoGebra, have possibly occupied the place left by Logo language in teaching geome-
try with the aid of technology (although they have very different approaches: roughly
speaking, DGS are based on ruler and compass constructions performed with the
mouse, meanwhile Logo is based on the use of Turtle Geometry and traditional pro-
gramming). Other areas of mathematics teaching, like algebra and calculus, are cov-
ered by computer algebra systems (CAS). Apart from the very powerful leadersMaple
[9–14] andMathematica [29], there aremany other CAS, of general purpose (Maxima,
Reduce,Axiom, SageMath,Xcas,…) aswell as specific purpose (CoCoA, Singular,…).

Fig. 1. Eight regular octagons, all sharing a vertex and each one turned 45° with respect to the
previous one, drawn using a modern version of Logo.

There are many implementations of Logo available nowadays. An updated com-
prehensive list of Logo implementations and related software, including more than 250
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references to different dialects, can be found in [30]. We could underline FMSLogo [31],
StarLogo [32, 33] and NetLogo [34].

Some Logo implementations include 3D extensions. Moreover, there are many
impressive extensions of turtle graphics, for instance to spherical [35], elliptic [36]
and hyperbolic geometries [37].

Some Logo implementations include multiple turtles. Nevertheless, the intensive
use of multiple turtles, although existent [22, 38, 39], is scarce. When multiple turtles
are available the user can activate a certain turtle and the subsequent commands will be
obeyed by this turtle, until another turtle is activated. Examples of Logo implementations
including multiple turtles are FMSLogo, StarLogo and NetLogo.

1.2 Other Implementations of Turtle Geometry

Turtle graphics-like packages or implementations could or can be found in many pro-
gramming languages. Possibly the closer descendant of Logo language is Scratch, that
includes a simplified version of turtle graphics [27, 40]. Regarding Scratch, we could
mention that:

• it is based on the use of intuitive graphical programming blocks,
• the classic turtle has been substituted by a cat,
• the costumes of the sprites (graphic cursor) can be easily changed,
• it is not difficult to develop animations,
• there are no blocks corresponding to Logo’s BACK (turtle) and RETURN (for

procedures) commands,
• it has limited recursive capabilities.

The later drawbacks are corrected in the not sowell-known computer language Snap!,
that can be considered a descendent or evolution of Scratch, with wider programming
capabilities (for instance, regarding recursion, it has a report block, similar to Logo’s
RETURN command).

Other languages including implementations of turtle geometry are:

• PythonTurtle [41], a learning environment for Python, inspired by Logo,
• Haskell (a functional language) [42], where simplified versions of turtle graphics have
been implemented [43, 44],

• Java, where different implementations of turtle graphics like Java TurtleGraphics
[45], Jurtle and Pencil Code Online [46] (the latter implemented in CoffeeScript) are
available.

Some pieces of mathematical software like the CAS Xcas include implementations
more or less standard of turtle graphics.

There are also modern attempts to put together different computer approaches, for
instance the reasoning power of ProLog with the drawing capabilities of turtle graphics
(the turtles considered as agents) [47].

Let us finally remark that the One Laptop per Child project includes turtle activities
[48]. And, for instance, Berkeley Logo (UCB Logo)} [49] is available for the XO.
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The authors have developed implementations of turtle graphics in:

• Turbo-Pascal and Turbo-C languages [50] (at that time Turbo-Prolog [51] included
a reduced implementation of turtle graphics),

• Maple, that was incorporated to the Maple Share Library [15, 17],
• Derive [52].

Other authors developed similar implementations for the CAS Reduce [53] and the
TI-92 calculator [54, 55].

Let us also mention that a peculiar implementation of turtle graphics has been
incorporated to the DGS GeoGebra [56].

Finally, there are implementations for smartphones like JTurtleLib [57].

2 Revisiting the 1994 Maple Implementation of Turtle Geometry

The idea was simple. The turtle can only draw segments. These segments are stored in
the global variable dib (a list). Each forward or backward movement adds a segment to
list dib (if the pen is down). The coordinates and heading of the turtle, the pen colour
it is using and whether the pen is down or up are stored in global variables.

Just to give the flavour of the implementation, we include afterwards the main
procedures of the implementation.

2.1 Main Procedures of the Implementation

Below the code can be found. Only procedure FullScreen() had to be updated in
order to work in Maple 2020. Some other minor changes (like substituting the fi by
end if; the od by end do; the end by end proc; and CURVES by line, from
plottools package) have been included in order to modernize the implementation
without changing it too much (maintaining the flavour of the original code).

Procedure ClearScreen() clears the screen and resets the turtle.

ClearScreen:=proc()
global XCor, YCor, Heading, PenColor, 

posicion_lapiz, dib;
XCor := 0; YCor := 0;

NULL;
 end proc: #ClearScreen

Heading := 0;
PenColor := COLOUR(RGB,0,0,0);
posicion_lapiz := 1;
dib:={};

Forwd(n) moves the turtle n steps forward in its present direction.
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Forwd:=proc(distancia:algebraic)
global XCor, YCor, dib;
local antigua_absc_tort, antigua_ord_tort, 

angulo_radianes;
angulo_radianes := Pi * (90-Heading) / 180;
antigua_absc_tort := XCor;
antigua_ord_tort := YCor;
XCor := XCor + distancia * cos(angulo_radianes);
YCor := YCor + distancia * sin(angulo_radianes);
if posicion_lapiz = 1 then

dib:={op(dib),line([evalf(antigua_absc_tort),
evalf(antigua_ord_tort)],

[evalf(XCor),
evalf(YCor)],
color=PenColor)}

end if;
NULL;

end proc: #Forwd

TurnRight(a) turns the turtle a degrees clockwise its present position. Turn-
Left(a) does the same counterclockwise.

TurnRight:=proc(angulo:algebraic)
global Heading;
Heading := Modu(Heading + angulo);
NULL;

end proc: #TurnRight

At any point we can ask Maple to plot what the turtle has drawn by typing
FullScreen() (it doesn’t automatically draw the updated situation after each new
command).

FullScreen:=proc()
display(dib,axes=none,scaling=constrained);

end proc: #FullScreen 
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2.2 List of Commands Implemented inMaple

The following list will be clear for any acquainted user of turtle geometry. There are
some pure Turtle Geometry commands:

Forwd(n),
Back(n),
Home(),  
ClearScreen(),
TurnRight(angle), 
TurnLeft(angle),
SetHeading(angle),  
SetHeadingTowards(xl,x2), 
PenUp(), 
PenDown(),
SetPenColor(color)

some Cartesian coordinates-related turtle geometry commands:

SetPosition(xl,x2),
SetX(x1),
SetY(x2)

and the auxiliary procedure (detailed in Sect. 2.1): FullScreen().

2.3 Available Information About the Status of the Turtle

There are global variables that can be accessed by the user and return information about
the status of the turtle (they are usual turtle geometry commands):

XCor, 
YCor,
Heading,
PenColor. 

2.4 Examples of the Use of the Turtle Geometry Maple Package

Many geometric designs are very easy to draw using turtle graphics. For instance the
star of Fig. 2 can be produced inMaple just typing:

> ClearScreen();
> TurnRight(90);
> for i to 9 do Forwd(100); 
> TurnRight(160)
>  end do;
> FullScreen();
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Fig. 2. A star drawn usingMaple’s Turtle Graphics package.

(after loading the package: read(‘C:/.../Maple/turtle2021.mpl‘):).
A design can be stored in a procedure. For instance, when executed, procedure T()

generates the drawing of Fig. 3.

> T:=proc()
>   Forwd(50); 
>   TurnRight(90); 
>   Forwd(20); 
>   Back(40); 
>   Forwd(20); 
>   TurnLeft(90); 
>   Back(50); 
> end proc:
> ClearScreen();
> T(); 
> FullScreen();

Fig. 3. An uppercase T letter drawn using Maple’s Turtle Graphics package.

Turtle geometry is very well suited for drawing periodic designs [58–61]. The draw-
ing of Fig. 3 has a vertical symmetry axis. If replicated horizontally, we can easily obtain
a FM1 frieze. It is very easy to implement a procedure that replicates it n times:
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> FM1:=proc(n::posint)
>  local i;
>   for i to n do T(); 
>                 PenUp(); 
>                 TurnRight(90); 
>                 Forwd(50); 
>                 TurnLeft(90): 
>                 PenDown(); 
>    end do;
>  end proc:

and now FM1(6); generates the plot of Fig. 4.

Fig. 4. An FM1 frieze drawn usingMaple’s Turtle Graphics package.

As said above, once a design is constructed, allocating it in another place or direction
is trivial. For instance,

> ClearScreen();
> TurnLeft(30);
> FM1(6);
> FullScreen();

turns the design of Fig. 4 an angle of 30° counterclockwise.
From a FM1 frieze it is easy to obtain a pm plane crystallographic group replicating

the frieze vertically. Procedure pm(n,m) generates a pm pattern with m rows and n
columns:

> pm:=proc(n::posint,m::posint)
>  local j;
>   for j to m do FM1(n); 
>                 PenUp(); 
>                 TurnLeft(90); 
>                 Forwd(n*50); 
>                 TurnRight(90): 
>                 Back(65);
>                 PenDown(); 
>    end do;
>  end proc:

For instance, pm(6,3); generates the drawing of Fig. 5.
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Fig. 5. A pm plane crystallographic group drawn usingMaple’s Turtle Geometry package

3 The Origin of this Work

The 13 year old son of the first author was very disappointed when a lockdown was
ordered in Spain (at the beginning of the pandemic). It wasn’t easy to explain to him
why he should stay at home (without meeting his friends and relatives). Therefore we
decided to develop a visual, simplified explanation of virus propagation (in the form of
a tale and a video), taking into account the audience (children and young people). The
tale and video have an elementary but clear mathematical background:

• they use fractals trees

– the number of branches at each level of the tree can be related to the average number
of animals infected by each ill animal,

– the depth of the tree can be related to the time passed till the animals stop meeting.

• they are made visual by using the Turtle Geometry,
• they insist on the social conscience.

It was initially implemented in the computer language Scratch 3. Scratch’s graphic
cursor (a cat) was used to simulate the animals infected:

4 The Original Tale (Scratch 3 Version)

As said above, the original version of the tale and a 5 min video (both in Spanish) are
available from the Instituto de Matemática Interdisciplinar (IMI) of the Universidad
Complutense de Madrid web page [3] and an improved version of the tale (in English)
was presented at ESCO 2020 conference [4]. A screenshot of part of an intermediate
page of the original tale in Spanish can be found in Fig. 6.

The complete Scratch 3 improved version of the tale (in English) can be found in
[5].
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Fig. 6. Part of an intermediate page of the original tale (in Spanish), that uses Scratch 3.

5 The Maple Version of the Tale

Surprisingly, the plots in Scratch have a low resolution (worse than modern Logo
dialects). Therefore, we decided to try to port the implementation of the fractals illustrat-
ing the virus propagation in the tale toMaple. As said above, we had already underlined
the advantages of the Maple implementation of [17] for plotting fractals.

The code turned out to be simple to translate. Two procedures are required for the
general case, and the input for the main procedure (arbolnb) are the average number
of animals infected by each ill one, the depth of the fractal considered and the length of
the first branch. The animals are represented by red squares. The complete code can be
found below.
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> arbolnb:=proc(infects,depth,length)
>  global times, infectados;
>   times:=depth;
>   ClearScreen(); 
>   infectados:=0; 
>   auxnb(1,length,infects);
> print(infectados);
>   FullScreen();
>  end proc:

> auxnb:=proc(n,l,ve)
>  local i; 
>  global times, infectados;
>   if n < times + 2 then 
>      if n=1 then PenUp()
>             else PenDown()
>       end if; 
>      Forwd(l);
>      RedDiamond(XCor,YCor);
>      infectados := infectados + 1;
>      TurnLeft(180 - 180 / ve);
>      for i to ve do auxnb(n + 1,l / 2,ve); 
>                     TurnRight(360 / ve); 
>       end do;
>      TurnLeft(360 / ve + 180 - 180 / ve); 
>      if n=1 then PenUp()
>             else PenDown()
>       end if; 
>      Forwd(-l)
> end if; 
>  end:

For instance, arbolnb(5,2,300) produces the plot of Fig. 7 and
arbolnb(3,5,300) produces the plot of Fig. 8. In the later one, many animals
are represented. The way Turtle Graphics are implemented in Maple (internally work-
ing in exact arithmetic and approximating only for the final plot) implies a lower speed
but a perfect quality (what is especially important if a scalable graphics format is used
for saving the plot).

As said above, aMaple version of the tale can be found in MaplePrimes [16].
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Fig. 7. One of the drawings of the tale produced withMaple.

Fig. 8. A dense drawing of the tale (also produced withMaple).

6 Conclusions

Turtle Geometry is almost forgotten nowadays. Nevertheless, it is a very convenient
approach to graphic generation in a lot of cases, as well as for teaching certain geometric
topics and programming.
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More concretely, our old Maple implementation (1994) has been easily updated to
work inMaple 2020 and has shown its possibilities for producing high quality plots for
the tale about virus propagation previously written by the authors.

The new Turtle Graphics file (turtle2021.mpl) and a worksheet with the exam-
ples of Sect. 5 (Maple_Turtle_Virus_6.mw) are available from the first author’s
web page, at [62] and [63], respectively.
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Abstract. A new Maple toolchain for generating rigid body dynamics in
symbolic form for robot manipulators is presented. The peculiarity com-
pared to existing tools lies in the framework of Bash scripts controlling
the full workflow of the toolchain with a high degree of automation. The
optimized Matlab code generated by Maple is automatically converted
to function files with proper documentation and input assertions. This
renders manual post-processing of the results unnecessarily. The focus
of the paper is on the implemented unit-testing framework according to
the method of test-driven development. By providing the test framework
together with the generated code in a stand-alone version, a good test
coverage and a good software quality can be achieved. The results of the
open source project provide a basis for dynamics simulations for robot
dimensional synthesis or in model-based control of robot manipulators in
research or in industrial context. The general software approach can be
applied to other fields where theoretical models are derived with Maple.

Keywords: Rigid body dynamics · Robotics · Symbolic code ·
Toolchain · Test-driven development · Maple computer algebra system

1 Introduction and State of the Art

Using a symbolic rather than numeric implementation of dynamics models
for robots is highly beneficial regarding the computational efficiency [9]. Some
aspects of the models can only be obtained in a useful way via symbolic deriva-
tion, such as the identification model [12]. Using models in simulations for a
comparison of different robots requires an automatic, general and efficient app-
roach.

To be able to find the robot that is suited best for a given task, first a set
of robot kinematics has to be created, which is the outcome of the structural
synthesis. The structural synthesis of serial robots can be performed using screw
theory [17], Denavit-Hartenberg parameters [23] or variants thereof, such as the
traveling coordinate system method [10]. The synthesis of serial chains is mostly
discussed in literature in the context of parallel robots, which contain several
serial kinematic leg chains connected to a moving platform. Leg chains are gen-
erated with the virtual-chain approach and screw theory [15] or using the theory
of linear transformations and evolutionary morphology [11]. Following [19, p. 25]
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(for parallel robots), for the assessment of the robot’s performance, the dimen-
sions of the design parameters (e.g. lengths of the links) are as important as
the kinematic structure itself (i.e. number, type and alignment of joints). This
leads to the requirement of a combined robot synthesis, as proposed in [16] for
parallel robots, to determine which robot structure is suited best for a given
task. A dimensional synthesis, i.e. an optimization of the robot’s dimensions,
has to be performed for all possible structures. First investigations on the com-
bined synthesis for serial robots [23] have shown that the approach is feasible
in principle. However, the practicability of such an extensive optimization of
hundreds of robots with several optimization parameters each and highly non-
linear models strongly depends on the implementation. The robot models and
the objective and constraints function within the optimization problem need an
efficient implementation to be able to generate substantiated results.

A simulation of the robot dynamics model (i.e. the relation of force and
motion) has to be evaluated in each iteration of the aforementioned optimiza-
tion. The rigid body dynamics for robots itself is a mathematical problem that
can be considered solved in that context for serial [12], hybrid [6,9,13,24,26] and
parallel robots [1,3,5,19]. For serial kinematic chains the Newton-Euler algo-
rithm is mainly used in software dedicated for robot dynamics [13,14,24]. Hybrid
robots, i.e. serial robots with additional closed kinematic loops, are mainly mod-
eled based on the serial chain dynamics with additional variational principles
to take closed loops into account [24] (D’Alembert, Jourdain). For parallel
robots, different definitions of the system coordinates are possible based on these
principles of energy equivalence [1,3,5].

There exist a variety of software toolchains for modeling dynamics equations
for robot manipulators. A probably non-exhaustive list contains the symbolic
tools Robotran [6,9,24], SYMORO [13], openSYMORO [14], MapleSim [31],
Neweul-M2 [18], the Peter Corke Matlab toolbox [4] and some open source tool-
boxes from single research projects, such as FloBaRoID [2], SymPyBotics (or
SageRobotics [27]) and the dVRK Dynamic Model Identification Package [30].
Several numeric tools are available for simulating the inverse and forward dynam-
ics of general multibody systems, which includes the robot manipulators in this
work. Prominent examples are MSC Adams [20], Matlab Simscape Multibody
(SimMechanics) [29], the Rigid Body Dynamics Library [8], based on Feather-
stone’s theory [7], and Drake [28]. Some symbolic programs also provide the
possibility for a numeric simulation of the systems, such as MapleSim [31].

These toolchains do not directly meet the requirements for creating a model
database required for the combined synthesis. Extensions regarding batch-
processing, unit-testing and post-processing are required, since most tools require
user interaction, which is not feasible for hundreds of robots. A key method for
ensuring software quality is systematic testing using unit testing frameworks,
which is central to test-driven development. This is often disregarded in soft-
ware for scientific projects [32]. Available toolchains presumably all give correct
results, but it is not always possible to completely verify this by the end user.
Open source tools, such as [2,14,27], typically come explicitly without warranty
raising the need for additional validation of the results. Misinterpretation of
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interfaces of not well documented, but still error-free, software modules may
introduce errors in the further use within a bigger project. Creating a robot
database with the claim to include every unique robot structure will generate all
possible test cases and will raise all existing software bugs. Not using a proper
testing environment therefore can put unnecessary risks on projects relying on
the results of the software tools.

To encounter these issues for the case of robot dynamics for the proposed
application, a new toolchain1 was developed. It is based on Maple as symbolic
engine and Bash scripts for an automation of the model generation process. This
provides the flexibility to test the implementation of different algorithms, e.g.
an efficient formulation for parallel robots [1] or an unconventional method for
hybrid robot dynamics [25]. The contributions of this paper are

– a comparison of existing tools for the symbolic form of robot dynamics,
– elaborations on performing unit testing for parts of theoretical models at the

example of robot dynamics,
– details on the implementation of the new toolchain, which may be used to

structure similar programs in other fields,
– the application of the toolchain to a robot model database.2

The remainder of the paper is structured as follows. An overview of existing
programs is given Sect. 2. Theoretical fundamentals of robot dynamics are sum-
marized in Sect. 3 with a focus on how to perform unit testing. The structure of
the toolchain is presented in Sect. 4. The robot database as application example
is introduced in Sect. 5 and Sect. 6 concludes the paper.

2 Comparison of Existing Toolboxes for Robot Dynamics

As sketched in the previous section, several tools already exist for generating
the rigid body dynamics of robots in symbolic form. An extensive comparison
of the tools is given in Table 1. Some older software packages, e.g. referenced in
[27] are left out of the comparison due to their presumed deprecation. Commer-
cial software, such as Robotran and MapleSim, is available at a mature stage
of development. Since OpenSymoro is publicly available, the necessity escapes
to use Symoro+ with similar features. A variety of open source projects for
robot manipulators is implemented in Python using the sympy library as com-
puter algebra system (CAS) which helps avoiding licensing costs for software
like Maple, Mathematica, MapleSim and Matlab. The drawback of open source
tools is the dependency on single researchers supporting them, as can be seen
by the status “unmaintained” of SymPyBotics or the GitHub list of issues of
OpenSymoro.

Robotran, MapleSim and Neweul-M2 allow the derivation of multibody
dynamics of general mechanisms, which includes both tree-like and closed-loop
systems and therefore all types of common robot manipulators. The Python tools

1 Available under free license at https://github.com/SchapplM/robsynth-modelgen.
2 The database is available at https://github.com/SchapplM/robsynth-serroblib for

serial robots, ...-serhybroblib for hybrid and ...-parroblib for parallel robots.

https://github.com/SchapplM/robsynth-modelgen
https://github.com/SchapplM/robsynth-serroblib
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mainly focus on robotic applications, e.g. only serial robots [27] or additionally
robot kinematics with closed loops [14,30]. Some have very specific focus, such
as humanoid robots [2] or dynamics model identification [2,30]. Parallel robots
(PKM, parallel kinematic machines) require a specific modeling approach (see
Sect. 3.3), which is not available in the open source tools, but can be obtained
by MapleSim or Robotran. If a general closed-loop robot model not in minimal
(platform) coordinates is used instead, this leads to a less efficient implementa-
tion, since coordinates of platform coupling joints remain in the equations.

Some multibody tools have graphical user interfaces that reduce the need of
expert knowledge. For the batch creation of a robot database, this strength can
become a weakness, if it is not possible to automatically generate the dynamics
equations from a standardized description of the robot. A new toolchain was
developed, partly to avoid dependencies on dedicated commercial tools (while
allowing the dependency on a commercial CAS), partly due to the fact that most
open source tools were not accessible at the begin of the work in 2015. Since
an institutional license was available, the core tools of the proposed toolchain
are Maple for the symbolics engine and Matlab for the model evaluation and
simulations. This design decision distinguishes the proposed toolchain from the
Python toolboxes which have no commercial dependencies.

Table 1. Comparison of different tools for symbolic robot dynamics (legend below)

Name Ref. Area (1) License (2) CAS (3) IM (4) FlB (5) Year UI (6)

Robotran [6] Multibody Comm. (7) MBS (8) Yes Yes 1990 GUI/CMD

Robotica [22] OL Rob. OSS Mathematica No No 1994 CMD+Vis.

Symoro+ [13] OL/CL Rob. Comm. Mathematica Yes No 1997 GUI

MapleSim [31] Multibody Comm. Maple ? ? 2000 GUI

Neweul-M2 [18] Multibody Pr. (9) Matlab No Yes 2007 GUI/CMD

ParaDyn [5] OL/PKM Pr. (10) Maple Yes No 2009 CMD

RVC toolbox [4] OL Rob OSS Matlab No No 2012 CMD+Vis.

OpenSymoro [14] OL/CL Rob. OSS Python Yes Yes 2014 CMD+Vis.

SymPyBotics [27] OL Rob. OSS Python Yes No 2014 CMD+Vis.

FloBaRoID [2] OL Rob. OSS Python Yes Yes 2016 CMD+Vis.

dVRK DMI [30] OL/CL Rob. OSS Python Yes No 2019 CMD

Proposed OL/CL/PKM OSS Maple Yes Yes 2019 CMD
Legend for Table 1 (referenced by round brackets in table headings and rows):
1: Area of application: multibody: general m.b. dynamics; OL Rob.: open loop robots; CL Rob.:
closed-loop robots; PKM: parallel kinematic machines (parallel robots).
2: OSS: Open source software; comm.: commercial software; pr.: proprietary tool.
3: Additional license required for Mathematica, Matlab Symbolics Toolbox or Maple.
4: Identification model of the inverse dynamics (linear in the dynamics parameters).
5: Floating base model for the inverse dynamics (non-fixed base link with six DoF).
6: UI: User interface; GUI: graphical; CMD: command line; Vis.: visualisation of the results
(but no visual interface for input).
7: Free for teaching and academic research.
8: Dedicated CAS for multibody systems (see [24]), accessed via web-based service.
9: Access to the software provided for project partners from industry and academia.
10: The tool was used for several projects from 2009 to 2017 at the author’s institute.
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Fig. 1. Examples of different types of robots with annotation of coordinates q, θ, x.
Cylinders and cuboids mark revolute and prismatic joints.

3 Robot Dynamics and Unit Testing Framework

The following section contains a high-level summary of the kinematic and dynam-
ics models of the three types of robots implemented in the proposed toolchain.
The modeling usually starts from a kinematic sketch of the robot, which may
originate from an existing CAD model. Detailed derivations and explanations
can be obtained from standard textbooks, such as [3,12,19,24], and the research
papers that are referenced. The theory is the basis for the unit testing framework
and therefore every part of the model (structured into numbered properties) is
followed by an elaboration on how to perform a unit test on it. It is assumed
that the model is derived symbolically but tests are performed numerically, since
the output of the tool are functions which implement single terms of the model.
A symbolic check for equality of two expressions is often not feasible, especially
if the derivation is by different approaches. The structure of this section enables
to follow the transfer from theory to test cases and allows an adaption of the
approach to theoretical models from other fields. The theoretical framework is
restricted to rigid body dynamics for three different types of robots, which each
require a specific approach to derive efficient models. The three types of robots
are sketched in Fig. 1. Serial robots (Fig. 1,a) are discussed in Sect. 3.1, serial-
hybrid robots (Fig. 1,b) in Sect. 3.2 and parallel robots (Fig. 1,c) in Sect. 3.3.

3.1 Serial-Link Robots

Fundamentals for serial robots are taken from the standard textbook [12]. The
derivation of the theory is structured according to the basic dynamics principles
of Newton-Euler and Lagrange, which start with the relations of position
and velocity (kinematics), over the definition of energy to forces (dynamics).

The following list of examples is not exhaustive for serial robots, but gives
an impression on how to prove the validity of the results for all steps of the
derivation of the kinematic and dynamics equations. The theoretical properties
and test cases of the models are partly summarized in Fig. 2. For a good test
coverage, each property block should have a dashed connection to a test case
block.
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Fig. 2. Overview of the properties and tests for serial robots

Property 1. The end effector pose x can be calculated via x=f(q) for a given
vector of n joint coordinates q. The forward kinematics is implemented using
homogenous transformation matrices and the modified Denavit-Hartenberg
parameters from [12] for a minimal-parameter representation of the joint trans-
formations. The pose x is without loss of generality a vector of position and
three Euler angles expressing orientation.

Test 1. The function f(q) can be validated graphically with plots, such as
Fig. 1,a. A CAD model can facilitate this, if available, but this is not mandatory.

Property 2. The velocity of the end effector follows the linear relation v=Jg(q)q̇
and ẋ=J(q)q̇, which represents the differential kinematics. The velocity v con-
tains linear velocity and angular velocity, while ẋ contains the time derivative of
the representation of orientation instead of the angular velocity. The geometric
Jacobian matrix Jg(q) can be derived by a geometric formula or by performing
the partial derivative Jg = ∂v(q, q̇)/∂q̇ based on the kinematics of velocities of
the rigid bodies in the robot. The latter is beneficial for hybrid robots.

Test 2. The implementation of the Jacobian can be tested as follows: Let q1

and Δq be arbitrary vectors in IRn with ‖Δq‖ � 1 and q2 = q1+Δq. The pose
difference Δx = x2−x1 = f(q2)−f(q1) can also be obtained by using the Jaco-
bian with Δx′ = J(q1)Δq. The dash only denotes the second implementation.
If the implementation of the Jacobian is correct, we have ‖Δx−Δx′‖<ε. This
relation is trivial from a mathematical point of view, since the test only uses
differential calculus from the derivation of J in Property 2. However, this has
to be explicitely implemented as a test to ensure the correctness of the imple-
mentation of J(q). Throughout this paper the threshold ε≈ 10−9 is used to
check for numeric equality. This accounts for linearization error within differ-
ential relations and rounding errors of floating point numbers in the numerous
operations.

Property 3. The inverse dynamics equation τ = M(q)q̈+c(q, q̇)+g(q) for the
rigid body robot model in joint coordinates of the robot gives torques τ of the
joints required to perform the motion q, q̇, q̈. The general equation describes
both prismatic and revolute joints. The inertia matrix M takes inertial couplings
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into account, c denotes the vector of centrifugal and Coriolis forces and g contains
the influence of gravitational effects. The equation can be obtained either by the
Newton-Euler algorithm or the Lagrangian equations of the second kind.

Test 3. Both methods are implemented in the proposed toolbox. Doing this
allows to compare the results of the two implementation by ‖τ−τ ′‖<ε. For the
numeric test, random numbers are used for joint positions q, velocities q̇ and
accelerations q̈ as well as for kinematic parameters (lengths, constant angles)
and dynamics parameters (masses, center of masses, inertia).

Test 4. Several properties of the dynamics equations can be exploited to perform
further tests on the implementations of the single terms. A Coriolis matrix C
can be obtained from the mass matrix M using Christoffel symbols. It follows
the relation c′(q, q̇) = C(q, q̇)q̇. This can be exploited by the test ‖c−c′‖<ε.

Test 5. The term Ṁ(q, q̇)−2C(q, q̇) has to be a skew matrix.

Test 6. The kinetic energy can be derived symbolically using mechanics princi-
ples as Ekin(q, q̇). The mass matrix (in generalized coordinates q) is connected
with the kinetic energy via E′

kin = q̇TM(q)q̇. Comparing the two implementa-
tions leads to the test inequality ‖Ekin−E′

kin‖<ε.

Test 7. The gravitational model can be tested with a forward dynamics simu-
lation. An ODE simulation is performed for q̈ = −M−1(q)[c(q, q̇)+g(q)] using
the Runge-Kutta numerical integration ode45. This gives a time series q(t), q̇(t)
and q̈(t). The sum of energies over this trajectory is calculated using the poten-
tial energy Epot(q), which has to be implemented within the Lagrange approach.
The test now checks, if the sum of energies Etotal = Ekin+Epot stays constant,
by using the inequality ‖Etotal(t = 0)−Etotal(t = tend)‖<ε.

Property 4. The dynamics equations can be formulated in different sets of
parameters: barycentric parameters pB (mass, center of mass, inertia), inertial
parameters pI (mass, first and second moments of mass) and a minimal parame-
ter vector pM which is a linear combination of the inertial parameters, regrouping
parameters with the same effect on the dynamics. The latter implementation is
very efficient and essential for the identification of the parameters of a real robot.
The former approaches are more intuitive. The inertial parameters only occur in
a linear relation in the dynamics equations, allowing to write τ ′ = ΦI(q, q̇, q̈)pI

and τ ′′ = ΦM(q, q̇, q̈)pM. This identification model of the dynamics requires a
specific approach to the derivation of velocity and energy.

Test 8. To compare the different implementations regarding sets of parameters,
a consistent set of parameters pB, pI and pM is created using the parallel axis
theorem. Then the tests ‖τ−τ ′‖<ε and ‖τ−τ ′′‖<ε are performed.

Test 9. It is tested numerically if ΦMpM is a minimal form of ΦIpI. Via QR
decomposition it is checked that the information matrix for a virtual identi-
fication problem with random virtual trajectory samples q1, q̇1, q̈1, q2, ... has
rank([ΦT

I (q1, q̇1, q̈1),ΦT
I (q2, q̇2, q̈2), ...]T) = dim(pM).
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Property 5. The internal cut forces from the rigid body dynamics are calculated
with wT = [wT

0 ,wT
1 , ...,wT

n ]
T, where wi contains the stacked cut force and cut

moment for rigid body i (cut at the corresponding joint) from the Newton-Euler
approach.

Property 6. The geometric approach for the 6×n Jacobian matrix Jg can be
extended to obtain a 6× 6(n+1) cut force Jacobian Jg,cut. The internal cut
forces from an external wrench (force and moment) can be obtained using this
matrix with w′ = JT

g,cut(q)[f
T
ext,m

T
ext]

T.

Test 10. Further, it has to be ensured that the implementations of kinematics
and dynamics match each other. For the test, we set q̈ = q̇ = 0 and set only one
mass of the robot to be non-zero. Here, fext = fgrav is the force resulting from
the test mass gravity and mext = 0. Both expressions for the cut force have to
be identical, which can be tested numerically with ‖w−w′‖<ε.

3.2 Serial-Hybrid Robots

Serial-hybrid robots consist of a serial main structure connecting the base and
the end effector with additional closed kinematic loops, as depicted in Fig. 1,b.
The closed loops are used to constrain degrees of freedom or to shift the position
of motors within the structure [21]. The kinematics of closed loops require a
different approach than of open loops. The joint coordinates are separated into
the generalized (active joint) coordinates q and passive joints coordinates θ. The
theory can be viewed in detail in the textbooks [12,24] and e.g. in [6,9,13,21,26].

Property 7. The default approach uses loop equations in the implicit formula-
tion h(q,θ) = 0. For simple mechanisms, such as the planar parallelograms in
Fig. 1,b, an inverse geometric model can be formulated explicitely as θ = θ(q).
The kinematic model of serial-hybrid robots is set up with the extended version
of the modified DH parameters [3,12] taking the branching in the kinematic tree
structure into account. Additionally to the open loop model, the loop closing
conditions are modeled as symbolic equations for h(q,θ) and θ(q) by hand.

Test 11. While creating the model, visual plausibility is checked with a kinematic
sketch as in Fig. 1,b.

Test 12. After this, the test ‖h(q,θ)‖<ε is performed. The passive joint coor-
dinates θ(q) are obtained symbolically or – if not possible – numerically using
the Newton-Raphson algorithm on h = 0. The kinematic parameters and test
configurations for q can not be chosen randomly as in the serial robot case, but
have to be chosen as plausible values by visual inspection or from CAD data.

Property 8. The kinematic constraints can be formulated in the differential form
θ̇ = Jθ q̇. The constraints Jacobian Jθ can be obtained from the implicit form h
of the constraints as Jθ = −(∂h/∂θ)−1(∂h/∂q). Using the elimination approach
[25], θ(q) is available in symbolic form and the differential relation J ′

θ = ∂θ/∂q
[21] can be obtained.
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Test 13. The two implementations (implicit and explicit form) are tested with
the identity of Jθ and J ′

θ up to rounding errors ε.

Property 9. Creating the robot model requires the definition of an open-loop
tree structure with the coordinates qOL, which contains the coordinates q and
θ. For this model, all tests and definitions from Sect. 3.1 can be used.

Test 14. Velocities of the rigid bodies of the robot are now generated by both
models based on Property 2. For the elimination approach v = Jg(q)q̇ and for
the open-loop structure (implicit approach) v′ = Jg,OL(qOL)q̇OL is used. The
entities q and qOL as well as q̇ and q̇OL are chosen consistently with random
numbers like in Test 12. Using this within the test ‖v−v′‖<ε proves the validity
of the implementation of the velocities within the algorithm. The velocity and
Jacobians can be set up for any rigid body of the mechanism, not limited to the
end effector link.

The same approach can be performed for the accelerations.

Property 10. The dynamics equations are again deduced by two different
approaches to allow testing the results. Using the elimination approach [25], the
passive joints θ are completely eliminated from the symbolic equations already
at the kinematics stage. The Lagrangian equations of the second kind are used
to deduce the dynamics τ (q, q̇, q̈) in the closed-loop robots minimal coordinates
q. The projection approach leads to τ ′ = τq+Jθτθ , where τq and τθ are the
components of the open-loop dynamics τOL(qOL, q̇OL, q̈OL) corresponding to the
entries of q and θ in qOL.

Test 15. The implementations are again tested numerically via ‖τ−τ ′‖<ε. Ran-
dom values for q, q̇, q̈ and consistent values for θ, θ̇, θ̈ are selected.

Some other tests on the dynamics from Sect. 3.2, such as the test of energy
consistency, are also applied.

3.3 Parallel Robots

Parallel robots, as given in Fig. 1,c have a similar modeling approach as hybrid
robots since they also contain closed kinematic loops. A detailed overview on
the dynamics is given in [3]. Usually the platform coordinates x are chosen as
minimal coordinates of the system [19]. The relation between platform velocity
v and the time derivative ẋ of the platform coordinates has to be regarded in the
algorithm [1,19] and is considered in the implementation, but is omitted here
for the sake of brevity and only entities related to ẋ are presented.

Property 11. For the symbolic derivation of the dynamics the two-step projection
approach from [1] with a claim on high efficiency is used and gives the dynamics
τx(x, ẋ, ẍ, qOL) and the inverse Jacobian matrix J−1(x, qOL) with q̇ = J−1ẋ.
The dynamics τx in platform coordinates can be projected into the active joint
coordinates with τ = JTτx . This represents the actuator force necessary to
achieve the robot motion given by x, ẋ and ẍ – a value necessary for simulation
and control.
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Property 12. This implementation is verified by a second approach, which is
taken from [5] and presents a more general approach than standard algorithms
[19]. It mainly corresponds to a general form of the state-of-the-art approach for
the dynamics of closed kinematic loops from [6] with focus on using the platform
coordinates x. The implicit definition of the constraints h(x, qOL) = 0 is only
partially implemented symbolically due to the high computational demand in the
general case. Again, qOL includes the active joint coordinates q and the passive
joints coordinates θ of the kinematic leg structure (without the platform).

Property 13. The differential formulation hxẋ+hqOL q̇OL = 0 with hx = ∂h/∂x
and hqOL = ∂h/∂qOL can be obtained from the constraints equations. This
leads to the inverse Jacobian matrix J−1

OL = −h−1
qOL

hx for the full joint vector,
relating q̇OL = J−1

OLẋ. Selecting only the rows corresponding to the active joint
coordinates gives the inverse Jacobian matrix J ′−1, where the dash only marks
the second implementation in demarcation of the first one.

Test 16. The gradient matrices hx and hqOL are tested against the constraints
formulation h by defining Δx and ΔqOL with ‖Δx‖�1 and ‖ΔqOL‖�1. Let x1

and qOL,1 be arbitrary random numbers with h1 = h(x1, qOL,1)�=0. The values
x2 = x1+Δx, qOL,2 = qOL,1+ΔqOL and h2 = h(x2, qOL,2) are calculated. As a
second step, h′

2 = h1+hxΔx+hqOLΔqOL is calculated and the two implemen-
tations are tested with ‖h2−h′

2‖<ε. This of course is (again) mathematically
trivial, but necessary, as elaborated upon in Test 2. Due to the complexity of
the terms the implementation is otherwise prone to errors.

Test 17. Both implementations J−1 and J ′−1 from Properties 11 and 13 are
tested for equality up to rounding errors of ε within the numerical computation.

Similar tests can be defined for the second time derivative of the constraints
equation, which is used to determine the acceleration relations.

Property 14. The second implementation of the dynamics of parallel robots [5]
is determined numerically. The approach is very similar to the case of hybrid
robots using the constraints Jacobians [6,24]. Expressed in platform frame, it
results τ ′

x = τP(x, ẋ, ẍ)+J−T
OL (qOL,x)τOL(qOL, q̇OL, q̈OL). The dependencies on

qOL and x and their time derivatives are added for clarity. These quantities have
to fulfill the constraints equations h = 0, ḣ = 0 and ḧ = 0. The dynamics of the
platform as a rigid body in Cartesian space is considered with the term τP and
τOL contains the open-loop dynamics of the single leg chains that are deduced
with the methods presented in Sect. 3.1.

Test 18. Both implementations are then tested using the inequality ‖τx−τ ′
x‖<ε.

Other tests for the dynamics, such as energy consistency by time-integration
of the forward dynamics, can be performed as presented in Sect. 3.1.
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4 Description of the Proposed Toolchain

The fundamentals of kinematics and dynamics of Sect. 3 are implemented in a
toolchain to obtain the robot models for serial, hybrid and parallel robots follow-
ing the requirements introduced at the end of Sect. 1. The program is structured
within several Maple worksheets which each contain only a limited set of fun-
damental equations, corresponding to one of the numbered properties in Sect. 3.
This allows a convenient debugging with the graphical user interface of Maple.
All intermediate symbolic expressions are exchanged between worksheets via
data files which are saved in one worksheet and read in the next. Therefore each
worksheet can run independently, once previous parts are generated. This struc-
tural decision can be justified also by the experiences with another toolbox [5],
which was implemented solely based on Maple procedures. This made debugging
and extending the tool an impossible task regarding 280 interleaved procedures.

The proposed toolchain has three workflows corresponding to the robot type,
where the serial robot case is the most central one. The workflow for parallel
robots is modular. It first generates the corresponding serial kinematic leg chain
which is then used by the approach of Property 11 in Sect. 3.3. The use of the
Lagrange equations of the second kind allows a modular reuse of the worksheets
for serial robots also for hybrid robots using the elimination approach. The second
implementation for hybrid robots of Property 10 in Sect. 3.2 is implemented in a
modular way similar to parallel robots using the workflow of the open-loop tree
structure first and then applying the worksheets for the implicit constraints.

The overall workflow is summarized in Fig. 3. As step 1, serial robots are
described with an input definition file using DH parameters from [12] and paral-
lel robots by an additional definition file referring to the leg chain and alignment
of the base joint. For hybrid robots, a separate manually created worksheet for
the constraints of Sect. 3.2 is necessary. Step 2 comprises (automatically) running
all Maple worksheets. To enable batch and partially parallel processing, all work-
sheets (.mw files) are saved separately in a text format (with .mpl extension),
which can be run by the terminal application of Maple. Every worksheet exports
the symbolic expressions of the model equations as optimized code in Matlab
syntax using the Maple CodeGeneration package. Following basic principles for
software quality [32], in step 3 the automatically generated optimized Matlab
code for all symbolic expressions is post-processed to reach a certain standard.
A Bash script creates a function file with a header comment with short descrip-
tion of the function and its inputs and outputs, assertions to prevent unexpected
user input, compiler information, statistics of the code generation and finally the
optimized code itself. After all function files are (automatically) generated, the
unit test framework is run in step 4. If all tests are passed, the results can be
used for their designated purpose in step 5.

Fig. 3. Overview of the overall workflow of the toolchain
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5 Application to a Model Database Framework

As introduced in Sect. 1, one of the purposes of the toolchain is to create an
algorithm that is able to determine the best robot for a given task. In a first
step of structural synthesis all possible structures have to be identified and their
description stored systematically. Then all robot models have to be generated in
symbolic form. Finally, the batch-optimization of all robots is performed and the
best robot is selected. All serial kinematic chains are generated using the app-
roach from [23], which is similar to the evolutionary morphology from [11]. Leg
chains for parallel robots are created with the same approach with modifications
on the requirements from parallel robot structural synthesis [11,15]. This leads
to a database of the kinematic descriptions, i.e. Denavit-Hartenberg parameters
for serial robots [12]. For parallel robots lists of possible leg chains and align-
ments of the base and platform coupling joints are stored. The databases are
saved in text-based csv-tables to facilitate software version control using Git.

The models in the serial robot database are created as Matlab functions
by batch-processing the robot definition files with the proposed toolchain. This
stored input and output data, referenced in the footnotes on p. 3 of the paper,
can be regarded as a case study for the validity of the toolchain. At the current
stage, 616 unique kinematic chains (with 3 to 6 joints) are stored, which by
elimination of isomorphisms represent all possible structures [23]. The database
contains approximately 36 thousand Matlab files with 6 million lines of auto-
matically generated code. The size of the complete database is around 300MB
and therefore still feasible. Generating all robot models takes about 5 days of
CPU time on a standard desktop computer. Due to partially parallel execution,
all model files for one serial robot can be generated within one hour. By also gen-
erating the whole database with the tools SymPyBotics [27] and OpenSymoro
[14], the inverse dynamics of Property 3 is validated against another reference.
The number of operations of these different implementations are counted in the
generated code and are compared in Fig. 4. The proposed Maple toolchain (with
Newton-Euler) has a similar efficiency as the Python-based references. Using
Lagrange is less efficient, as expected from literature [12].

Fig. 4. Comparison of the number of operations for inverse dynamics of the proposed
toolbox with two methods (Lagrange, Newton-Euler) and two reference toolboxes
(SymPyBotics, OpenSymoro) over all 616 serial kinematics on the horizontal axis.
Sorted by increasing total number of joints and then by number of revolute joints.
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Fig. 5. Examples of hybrid robots implemented in the program framework.

Code generation for parallel robots shows that the selected symbolic app-
roach [1] of Property 11 in Sect. 3.3 is very efficient for simple kinematic struc-
tures with a low number of kinematic parameters (resulting from a low number of
mechanical joints). For general kinematic leg chains with revolute joints instead
of universal and spherical joints, the necessary computation time can reach sev-
eral days and is not feasible any more. The case of parallel robots with platform
coupling joints that are not spherical is not included in the symbolic approach
[1]. In summary, only symbolic code for 91 parallel robot models was included
in the database, which in total consists of a few thousand symmetric parallel
robots with 3 to 6 platform degrees of freedom (DoF). To perform dynamics
simulations for parallel robots therefore the approach [5] of Property 12 in an
extended formulation is used, allowing also robots with non-spherical coupling
joints.

Only some examples of industrial robots with closed loops are implemented
manually, such as robot palletizers (see Fig. 1,b or Fig. 5,a) and the 2-DoF pick-
and-place machine for conveyor belts from Fig. 5,b. An automated systematic
synthesis of serial-hybrid robots or parallel robots based on serial-hybrid leg
chains as (the manually created example) in Fig. 5,c is not implemented yet.

6 Conclusion

The presented new toolchain for robot dynamics stands out against existing tools
by focusing on an integral approach of a complete workflow from a robot defi-
nition to a stand-alone dynamics model implementation. Quality requirements,
such as automatic documentation and testing, are explicitly considered. No addi-
tional steps have to be performed by the user, such as manually post-processing
toolbox output or testing the results beyond integration tests. This allows the
deployment as a model generator for an extensive robot database which is used
for a dimensional synthesis over all existing robots to find the best robot for a
specified task.
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Abstract. In 2005, NormanWildberger presented a concept for a geometry with-
out transcendental functions in his book Divine Proportions: Rational Geometry
for Universal Geometry. Inspired by ancient Babylonian and Greek mathematics,
he introduced spreads and quadrances instead of angles and lengths to describe tri-
angles and more. With this concept, most tasks and proofs of Euclidean geometry
can easily be carried out without sine and cosine functions andwithout introducing
a differential calculus. Using Maple, we introduce the concept and definitions in
this paper and then compare some basic calculations to the way they are normally
solved. This concept has a clear didactic advantage and shows some parallels to
the way surveyors carry out their calculations, avoiding transcendental functions
wherever they can.

Keywords: Rational trigonometry · Linear algebra · Geometry

1 Norman J. Wildberger’s Dream

Inspired by ancient Greek and Babylonian mathematics [4, 5, 8] N. J. Wildberger intro-
duced concepts for trigonometry, algebra [11] and calculus [12] using only rational
numbers. For engineering math, this method makes no difference in accuracy but it is
easier to understand and avoids logical problems of infinite objects. Trigonometry can
be fully developed avoiding transcendent functions like sine, cosine, and tangent.

The two main ideas following Euclid are:

• Square areas are more powerful than distances.
• Angles as linear scale length on the unit circle iswithout integral calculus a problematic
concept.

Solution: Quadrances as squares over distances instead of distances and spreads
instead of angles as the squared ratio of the side opposite the spread to the hypotenuse
in a rectangular triangle.

Result: All canonical problems in/with triangles can be solved with simple algebra
with rational numbers and at most square roots.

These ideas can easily be extended to standard 3D or hyperbolic geometry (and e.g.
be applied in special relativity) [6, Chapter 22, 13].

Wildberger laid down this new concept of geometry in his bookDivine Proportions:
Rational Trigonometry toUniversalGeometry in 2005 [6].We followhis vector approach
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as in his Introduction to Hyperbolic Geometry 39 [13]. All calculations as shown are
carried out in Maple 2020. Maple inputs begin with “ >”, outputs are shown in blue. A
complete Maple worksheet can be found in the Application Center of Maplesoft [16].

2 Re-definitions (Vector Version)

We chose the vector version of the formulation of rational trigonometry, since the proofs
of the theorems only follow from the calculations with vectors with abstract components,
which can be easily performed with Maple.

At first we introduce two vectors to define the necessary mathematical objects
> �u := 〈x1, y1〉 : �v := 〈x2, y2〉 :

2.1 Quadrance

The quadrance is the squared area over a distance. (Compare the discussion of this
definition in [6, p4].) For vectors: the sum of the squared coordinates. We define for
Maple

> Q := �w → ‖�w‖22
e.g.
> Q(

−→u )

2.2 Spread

In a rectangular triangle, the spread is the squared ratio of the opposite to the hypotenuse.
(Note: The spread is essentially the square of the sine of the angle between the two
vectors, but our purpose is to avoid transcendent functions and stay with rational
numbers.)

For vectors:
> s := (�u, �v) → 1 − (�u.�v)2

Q(�u)·Q(�v) :
> s(�u, �v) : % = simplify(%, symbolic)

Example:
Spread between two intersecting lines or two vectors.
> u := 〈1, 3〉 : v := 〈4, 2〉 :
> uv := u.v

‖v‖22
· v : h := u − uv :

> s(u, v) = Q(h)
Q(u) ;



Rational Trigonometry Using Maple 367

Note that for two intersecting lines all four spreads in the point of intersection are
identical. Compare the application below (Fig. 1).

Fig. 1. Two vectors or intersecting lines and the construction of the spread s.

For the practical measurement of spreads in a seminar, we designed a setsquare with
a spread measuring scale and printed it out on foil (Fig. 2).

Fig. 2. A protractor spread ruler or set square with a nonlinear spread scale.
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3 Five Laws for Rational Trigonometry

First, we introduce three vectors
> �u := 〈x1, y1〉 : �v := 〈x2, y2〉 : �w := �u − −→v :

3.1 Pythagoras’ Theorem (PT)

�u⊥�v ⇔
> Q(�u) + Q(�v) = Q(�w) : simplify(lhs(%)−rhs(%))

2 = 0

We find that the PT is only a consequence of the orthogonality of two vectors. In the
accompanying Maple worksheet we show a nice geometric proof as animation.

3.2 Triple Quad Formula (TQF)

�u‖�v ⇔
>

(
Q

(−→u ) + Q
(−→v ) + Q(

−→w )
)2 = 2

(
Q(

−→u )
2 + Q(

−→v )
2 + Q(

−→w )
2
)

:
> simplify

(√
lhs(%)−rhs(%)

4 , symbolic

)
= 0

We find that the TQF is only a consequence of the parallelism of the two vectors. If
we extend the two vectors by adding a third zero–coordinate, we see that the TQF states
simply that the cross product is also zero.

Example: Quadrances for two parallel vectors (Fig. 3).
> u := 〈5, 0〉 : v := 〈3, 0〉 : w := u − v :
> (Q(u) + Q(v) + Q(w))2 = 2

(
Q(u)2 + Q(v)2 + Q(w)2

)
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Fig. 3. The figure shows the two example vectors, their difference and the related quadrances.

3.3 Cross Law (CL)

The CL replaces in some sense the cosine law.
> (Q(�u) + Q(�v) − Q(�w))2 = 4 · Q(�u) · Q(�v) · (1 − s(�u, �v)) : simplify(%)

Example: A triangle defined by two vectors (Fig. 4).
> u := 〈1, 3〉 : v := 〈4, 2〉 : w := u − v :
> (Q(u) + Q(v) − Q(w))2 = 4 · Q(u) · Q(v) · (1 − s(u, v))
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Fig. 4. Two example-vectors, their spread, their difference vector and the related quadrances.

3.4 Spread Law (SL)

The SL replaces in some sense the sine law.
su
Qu

= sv
Qv

= sw
Qw

>
s(�v,�w)
Q(�u) − s(�w,�u)

Q(�v) = 0, s(�v,�w)
Q(�u) − s(�u,�v)

Q(�w)
= 0, s(�w,�u)

Q(�v) − s(�u,�v)
Q(�w)

= 0:
simplify([%1,%2,%3], symbolic)

Example: A triangle defined by two vectors (Fig. 5).
> u := 〈1, 3〉 : v := 〈4, 2〉 : w := u − v :
>

s(u,v)
Q(w)

,
s(v,w)
Q(u) ,

s(u,w)
Q(v)
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Fig. 5. Two example-vectors, their difference, their related spreads and related quadrances.

3.5 Triple Spread Formula (TSF)

The TSF replaces in some sense the sum of angles rule of triangles.
(su + sv + sw)2 = 2 · (

s2u + s2v + s2w
) + 4 · su · sv · sw

> (s(�v, �w) + s(�u, �w) + s(�u, �v))2 −2 · (s2(�v, �w) + s2(�u, �w) + s2(�u, �v))−4 · s(�v, �w) ·
s(�u, �w) · s(�u, �v) = 0 : simplify(%, symbolic)

Example: A triangle defined by two vectors (Fig. 6).
> u := 〈1, 3〉 : v := 〈4, 2〉 : w := u − v :
> (s(v,w) + s(u,w) + s(u, v))2 −2 · (s2(v,w) + s2(u,w) + s2(u, v)

)−4 · s(v,w) ·
s(u,w) · s(u, v) = 0
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Fig. 6. The two example-vectors, their difference and their spreads.

4 An Application

A simplified determination of the height of a lighthouse. The spreads s1, s2 and the
quadrance Q3 are measured and we look for the quadrance H or the related height h
(Fig. 7).

Fig. 7. A surveyor’s simplified method for determining the height of a tower. Here the famous
lighthouse of St. Peter-Böhl in Germany [15].

In this example the spreads s1 and s2 are measured from two standpoints at equal
heights with quadrance Q3. For the old fashioned, transcendental calculations, the



Rational Trigonometry Using Maple 373

spreads are converted into angles and quadrances into distances. (In practice, of course,
the other way around until we have the appropriate devices to measure.)

4.1 The Rational Way

The calculation is easily done inMaple using the Triple Spread Formula for themeasured
values:

> s1 := 0.10 : s2 := 0.35 : Q3 := 540.10
> solve

({
(s1 + s2 + s3)2 = 2 · (s21 + s22 + s23

) + 4 · s1 · s2 · s3
}); assign(%1)

and the Spread Law twice.

> solve
({

s3
Q3

= s1
Q1

})
; assign(%);

> solve
({

s2
H = 1

Q1

})
; assign(%);

> h := evalf
(√

H
)

We find roughly the real height of the well-known lighthouse.

4.2 The Transcendent Way

The converted values (si → αi, Qi → qi) are
> α1 := 0.322 : α2 := 2.509 : q3 := 23.240 :
From the sum of angles law it follows
> solve({α1 + α2 + α3 = Pi}); assign(%);

And from the sine law
> solve

({
q1

sin(α1)
= q3

sin(α3)

})
; assign(%);

And finally
> h := q1 · sin(α2)

A similar result. The slight difference comes from the cancellation of decimals.
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> s1 ≈ sin2(α1), s2 ≈ sin2(α2), s3 ≈ sin2(α3)

5 Conclusion

We introducedWildberger’s consistent and systematic approach to trigonometry byusing
only rational numbers.

The concept reminds of a concept of surveying-mathematics to avoid the computa-
tions of trigonometric functions wherever possible.

It is easier to understand and to apply and as accurate as normal engineering
mathematics.

It could be useful as didactic and methodological concept in schools and even
universities before and independent of the introduction of differential calculus.

Acknowledgement. I would like to thank the referees for helpful comments and Lars Schmeink
for carefully reading the manuscript.
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Abstract. In 1992, Koepf proposed a symbolic approach to compute power
series. This algorithm was extended for a larger family of expressions thanks
to Petkovsek’s and van Hoeij’s algorithms (1993 and 1998) which com-
pute hypergeometric term solutions of any given holonomic recurrence equa-
tion (RE). Mark van Hoeij’s algorithm whose outputs are bases is avail-
able in Maple through the command LREtools[hypergeomsols], and
Koepf’s algorithm through convert and the built-in module FormalPower
Series. LREtools[hypergeomsols] is internally used by convert/
FormalPowerSeries.

However, using van Hoeij’s algorithm one cannot compute m-fold hypergeo-
metric term solutions of holonomic REs, for integers m > 1. Given a field K of
characteristic zero, a term a(n) is said to be m-fold hypergeometric if the term
ratio a(n+m)/a(n) is rational over K. Note that the hypergeometric term case
corresponds to m = 1. If one adds for example an odd hypergeometric function,
like arcsin(z), and an even hypergeometric function, like cos(z) (which both are
two-fold hypergeometric), then van Hoeij’s algorithm cannot find those by solv-
ing the resulting recurrence equation. Due to this limitation, the computation of
many power series is missed by Maple, in particular, linear combinations of power
series having m-fold hypergeometric term coefficients are generally not detected.

We overcome these issues by using a new algorithm called mfoldHyper, pro-
posed in the first author’s Ph.D. thesis to compute bases of the subspace of m-
fold hypergeometric term solutions of holonomic REs. It turns out that mfold-
Hyper linearizes the computation of hypergeometric type power series, i.e. every
linear combination of hypergeometric type power series is detected. This paper
describes our Maple implementation of an algorithm that conclusively extends
Maple’s capabilities regarding the computation of hypergeometric type power
series.

Keywords: Hypergeometric type power series · m-fold hypergeometric term ·
Holonomic recurrence equation

1 Introduction

By connection to the generalized hypergeometric series, the term “hypergeometric
type” had been introduced in [5] to denote expressions whose power series coefficients
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lead to a two-term recurrence relation with polynomial coefficients. The type of such
series is defined as the positive difference of the indeterminate sequence indices in the
equation. However, despite the fact that we keep this terminology, we are considering
a much larger family of expressions, mostly linear combinations of holonomic mero-
morphic functions. Indeed, the original definition does not consider arbitrary holonomic
recurrence equations1, and therefore neglects the possibility to have finitely many dif-
ferent types for the same power series. Specifically, we have the following definition.

Definition 1 (Hypergeometric type power series). Let K be a field of characteristic
zero. For an expansion around z0 ∈ K, a series s(z) is said to be of hypergeometric
type if it can be written as

s(z) := T (z) +
J∑

j=1

sj(z), sj =
∞∑

n=nj,0

aj,n(z − z0)n/pj (1)

where n is the summation variable, T (z) ∈ K[z, 1/z, ln(z)], nj,0 ∈ Z, J, pj ∈ N, and
aj,n is such that there exists a positive integer mj so that aj,n+mj

/aj,n ∈ K(n).
Thus a hypergeometric type power series is a linear combination of Laurent-

Puiseux series whose coefficients are m-fold hypergeometric terms2. A hypergeometric
function is a function that can be expanded as a hypergeometric type power series. T
is called the Laurent polynomial part of the expansion, and the pj’s are its Puiseux
numbers.

The presence of ln(z) in a hypergeometric type expansion is justified by the solution of
the underlying holonomic differential equation (see [4]). The definition in [5] reduces
to the case T = 0 and J � m, where m is the unique type (m1 = · · · = mJ = m)
encountered in Definition 1.

Algorithmic attempts were proposed [1] to determine the Puiseux numbers in
expression (1), but this was limited and could not be taken into account in the gen-
eral case. This is why commonly used approaches to Puiseux number calculation are
based on heuristic tests on the input function. But this generally only works in the case
where one deals with a single Puiseux number (all the pj’s are identical in (1)). Based
on a symbolic approach, our algorithm offers a clear procedure to determine all differ-
ent Puiseux numbers involved in a power series expansion. Note that the scope here
is more general than what could be done using the Frobenius method (see [7]) which
rather forces Puiseux numbers to appear additively (zn+r, r ∈ Q) in the power of the
indeterminate.

Likewise, instead of checking expressions, our algorithm also proposes a symbolic
approach to determine the Laurent polynomial part in (1).

1 We recall that a recurrence equation is said to be holonomic if it is linear and homogeneous
having polynomial coefficients.

2 An m-fold hypergeometric term is implicitly defined in Definition 1 by the property of hyper-
geometric type series coefficients. This is admitted in the remaining part of the paper.
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Remark 1.

– An m-fold hypergeometric term an encodes m linearly independent hypergeomet-
ric terms. These can be enumerated by the m different representations of the corre-
sponding ratios as

an+m+l

an+l
∈ K(n), 0 � l � m − 1. (2)

– Without loss of generality, we assume z0 = 0 since the non-zero case easily reduces
to it. This is also implemented.

A generic representation of hypergeometric type functions for which we compute power
series is

f(z) = T0(z) +
I∑

i=1

Ti(z) · fi(z), (3)

where T0(z), Ti(z) ∈ K[z, 1/z, ln(z)], and the fi’s are of hypergeometric type. The
linear combination of hypergeometric type power series found by our algorithm is what
stops the recursive aspect3 of representation (3). Therefore having an expression f(z)
of the form (3) does not guarantee that its power series representation has I hypergeo-
metric type power series, and T0(z) is not necessarily equal to T (z) in (1). For a better
view of this fact, let us first recall the steps (with ramifications in the last step) of the
method described in [5]. Given an expression f(z), the algorithm proceeds as follows.

(Step 1) Compute a holonomic differential equation satisfied by f(z).
(Step 2) Convert the obtained differential equation into a recurrence equation for the

power series coefficients of f(z).
(Step 3) Find all m-fold hypergeometric term solutions of the resulting recurrence equa-

tion, and use some initial values to find a linear combination corresponding to the
power series of f(z).

Although we have implementations that can be used to improve the efficiency (the
function HolonomicDE in our Maple package FPS is generally faster than Maple’s
DEtools[FindODE] for expressions of the form (3)) for (Step 1), this article puts
emphasis on (Step 3), given that (Step 2) is straightforward.

Let f(z) be as in (3). One may think of using Koepf’s algorithm on every sum-
mand of f(z), but this will not always work as some fi in (3) could lead to a recurrence
equation with more than two terms in (Step 2). In such a situation, the current Maple
implementation internally uses van Hoeij’s algorithm. The issue with the latter algo-
rithm is the fact that it only looks for hypergeometric term solutions (m = 1) which
is just a particular case of what should be considered; also, it may find hypergeometric
terms that are equivalent to all the needed m-fold hypergeometric terms but by using
unnecessary extension fields. Usually when this happens, the current Maple implemen-
tation fails to find a linear combination for the power series representation sought.

We give some details explaining why Maple fails to find the power series of
z2 sin (z) + z4 ln

(
1 + z + z2 + z3

)
.

3 Recursive because hypergeometric type functions are used in (3).
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Example 1.

> f:=zˆ2*sin(z)+zˆ4*ln(1+z+zˆ2+zˆ3):
> convert(f,FormalPowerSeries,z,n)

z2 sin (z) + z4 ln
(
z3 + z2 + z + 1

)

Hence no representation is found. Sometimes this could happen if the holonomic dif-
ferential equation to be used has an order larger than 4, but this is not the case since a
holonomic recurrence equation can be found without such a specification.

Example 2. The resulting differential equation is converted into the following recur-
rence equation:

> RE:=FormalPowerSeries[SimpleRE](f,z,a(n))
RE := 12 (n− 5) (n− 4) (n− 3) (n− 2) a (n) + 3 (n− 21)2 a (n− 17)

+ (n− 20) (11n− 221) a (n− 16) + (n− 19)
(
3n3 − 174n2 + 3364n− 21685

)

a (n− 15) + (n− 18)
(
11n3 − 606n2 + 11080n− 67263

)
a (n− 14)

+ (n− 17)
(
19n3 − 1006n2 + 17597n− 101774

)
a (n− 13)

+ (n− 16)
(
23n3 − 1190n2 + 20137n− 111758

)
a (n− 12)

+ 2 (n− 15)
(
11n3 − 550n2 + 8904n− 46849

)
a (n− 11)

+ 2 (n− 14)
(
7n3 − 334n2 + 5120n− 25155

)
a (n− 10)

+ (n− 13)
(
54n3 − 1900n2 + 22141n− 84715

)
a (n− 9)

+ (n− 12)
(
170n3 − 5316n2 + 54793n− 185801

)
a (n− 8)

+ (n− 11)
(
359n3 − 10198n2 + 95556n− 295473

)
a (n− 7)

+ (n− 10)
(
567n3 − 14774n2 + 127704n− 366363

)
a (n− 6)

+ (n− 9)
(
703n3 − 16454n2 + 128059n− 331272

)
a (n− 5)

+ (n− 8)
(
643n3 − 13694n2 + 96543n− 225156

)
a (n− 4)

+ 8 (n− 5) (n− 7)
(
58n2 − 816n+ 2811

)
a (n− 3)

+ 16 (n− 5) (n− 6) (16n− 123) (n− 4) a (n− 2)

+ 24 (n− 3) (n− 4) (n− 5) (3n− 19) a (n− 1) = 0 (4)

Since (4) has more than two terms, LREtools[hypergeomsols] is internally
used.

Example 3.

> LREtools[hypergeomsols](RE,a(n),{},output=basis)
[
(−1)n

n − 4
,
(−i)n

n − 4
,

in

n − 4
,

in

Γ (n − 1)
,

(−i)n

Γ (n − 1)

]
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It is not difficult to prove that the above basis of hypergeometric terms can be
used to represent the power series sought, but this is missed by convert/Formal
PowerSeries. Moreover, using this built-in command on individual summands
does not give much improvement on the result because the same issue occurs for
z4 · ln(1 + z + z2 + z3) whose recurrence equation also has more than two terms.
Example 7 shows by using our implementation that ‘simpler’ (no extension field used)
coefficients exist over the rationals.

It may happen, moreover, that the power series coefficients of two distinct hyper-
geometric type functions reduce to a single m-fold hypergeometric term computed in
(Step 3). This is another reason why calling convert/FormalPowerSeries for
individual summands does not always give the best possible representation.

Example 4. Applying convert/FormalPowerSeries to each summand of
sin(z)3 − cos(z)3 yields

> F:=sin(z)ˆ3-cos(z)ˆ3:
> map(f->convert(f,FormalPowerSeries,z,n),F)
∞∑

n=0

(
−1/4

3n sin (1/2nπ)
n!

+ 3/4
sin (1/2nπ)

n!

)
zn

+
∞∑

n=0

(−1/8 (3 i)n − 1/8 (−3 i)n − 3/8 in − 3/8 (−i)n) zn

n!
(5)

which is much more simplified avoiding algebraic extensions using our implemen-
tation as follows:

> FPS[FPS](F,z,n)

( ∞∑

n=0

− (−1)n (9n + 3) z2 n

4 (2 n)!

)
+

( ∞∑

n=0

3 (−1)n
(
32 n+2 − 1

)
z2 n+3

4 (2 n + 3)!

)

Note that the latter output is not the same as what is obtained using the internal
command directly.

> convert(F,FormalPowerSeries,z,n)

∞∑

n=0

((−3/8 + 3/8 i) (−i)n − (3/8 + 3/8 i) in − (1/8 + i/8) (−3 i)n − (1/8 − i/8) (3 i)n) zn

n!

Many more examples of this kind can be provided.

As one can see, our algorithm is implemented in our Maple package FPS under the
name FPS, presented as the main function of the package4.

The main ingredient of our approach is algorithm mfoldHyper from [8, Chapter 7]
that we implemented with the same name. This algorithm computes a basis of the sub-
space of all m-fold hypergeometric term solutions of any given holonomic recurrence
equation.

4 FPS contains some other results that will not be discussed in this paper.
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Example 5. We come back to the power series sought in Example 1. A basis of
m-fold hypergeometric term solutions of (4) can be represented as

> FPS[mfoldHyper](RE,a(n))
[[

1,
{

(−1)n

27 (n − 4)

}]
,

[
2,

{
(−1)n

9 (n − 2)
,
(2n − 1)n (−1)n

72 (2n)!

}]]

Note that each 2-fold solution above corresponds to two hypergeometric terms. By
default, the algorithm computes terms corresponding to l = 0 in (2). Once we know
that 2-fold hypergeometric term solutions exist, we can call the algorithm again to get
the other representations.

Example 6.

> FPS[mfoldHyper](RE,a(n),ml=[2,1])
{

(−1)n

27 (2n − 3)
,
n (−1)n

(2n)!

}

Finally with all these m-fold hypergeometric terms we look for a linear combination
using appropriate initial values and get the representation

Example 7.

> FPS[FPS](f,z,n)
∞∑

n=0

(−1)n zn+5

n + 1
+

∞∑

n=0

(−1)n z2n+6

n + 1
+

∞∑

n=0

(−1)n z2n+3

(2n + 1)!

Observe that some shifts may be applied to the coefficients according to the starting
point obtained from the Laurent polynomial part of the series. This is always used even
when the corresponding Laurent polynomial part is zero, because it leads to appropriate
starting points.

Note that (Step 3) can be divided into two important sub-steps. Indeed, finding
a linear combination after obtaining m-fold hypergeometric terms requires a certain
number of initial values and evaluations that can be determined from the obtained basis
of m-fold hypergeometric terms. If a precise matching between evaluations and initial
values is not correctly made then the representation sought might be missed. Therefore
the algorithm (see [10], [8]) behind our method could work as a decision procedure to
decide whether a given holonomic meromorphic function is of hypergeometric type.

On the other hand, it is proved in [8, Theorem 7.2, 7.3] that the exp-like and the
rational function series types considered in [5] are both of hypergeometric type. There-
fore it is not necessary to split our development into these particular cases.

In the following sections we give an overview of algorithm mfoldHyper and some
details about the steps of our algorithm. Many examples where the current Maple
convert/FormalPowerSeries misses results will be presented.
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2 An Overview of Algorithm mfoldHyper

m-fold hypergeometric terms have sometimes been referred to as m-hypergeometric
sequences in [6], m-interlacings of hypergeometric sequences (see the conclusion of
[11]) that are also considered as a particular case of Liouvillian sequences in [2]. We use
the phrase m-fold hypergeometric term from the most recent paper about this notion in
[3]. However, none of the approaches described in these previous works corresponds to
the method used by mfoldHyper. Indeed, most of the effort on finding m-fold hyperge-
ometric term solutions of holonomic recurrence equations has been focused on extend-
ing Petkovšek’s or van Hoeij’s algorithm. Specifically, the aim is usually to compute
right factors of the form τm − r(n), where τ denotes the shift operator, and r(n) is
a rational function over a field of characteristic zero, of the given recurrence operator,
and adapt the steps of Petkovšek’s or van Hoeij’s algorithm to the m-fold case. As men-
tioned in [6], these approaches usually increase the complexity dramatically, which may
explain the lack of implementations. mfoldHyper uses a completely different strategy,
the algorithm in [9], Petkovšek’s or van Hoeij’s algorithm, can be used as a black box.
The method results from a study of holonomic recurrence equations. In the sequel, we
give the theorem upon which mfoldHyper is based and present its steps towards com-
puting m-fold hypergeometric term solutions of holonomic recurrence equations.

Definition 2 (m-fold holonomic recurrence equation). Let m be a positive integer.
A holonomic recurrence equation is said to be m-fold holonomic if it has at least two
non-zero terms, and the difference between every pair of indices in the equation is a
multiple of m.

Example 8.

– Hypergeometric type power series considered in [5] lead to an m-fold holonomic
recurrence equation with two terms.

– One can always write an m-fold holonomic recurrence equation as

Pmd(n)an+md + Pm(d−1)an+m(d−1) + · · · + P0(n)an = 0 (6)

An important point to notice is that representation (6) is just a particular notation. We
may have many different representations of m-fold holonomic recurrence equations
in the equation of study, and these have to be considered separately. The following
definition is used to identify these differences.

Definition 3 (m-fold distinct holonomic recurrence equations). Let m be a positive
integer. Two m-fold holonomic recurrence equations are said to be m-fold distinct, if
the difference between any index taken from one and another taken from the second is
not a multiple of m.

Example 9.

RE1 : P1,3 · an+7 + P1,2 · an+4 + P1,1 · an+1 = 0,
RE2 : P2,4 · an+11 + P2,3 · an+8 + P2,2 · an+5 + P2,1 · an+2 = 0. (7)

RE1 and RE2 are 3-fold holonomic distinct.
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We can now state the fundamental theorem behind algorithm mfoldHyper (see [8,
Theorem 7.1]).

Theorem 1 (Structure of holonomic recurrence equations having m-fold hyperge-
ometric term solutions). Let m ∈ N, K a field of characteristic zero, and hn be an
m-fold hypergeometric term which is not u-fold hypergeometric over K for all positive
integers u < m. Then hn is a solution of a given holonomic recurrence equation, if
that equation can be written as a linear combination of m-fold holonomic recurrence
equations; such that hn is solution of each of the m-fold distinct holonomic recurrence
equations of that linear combination.

Remark 2. In Theorem 1 the aim of the assumption that the recurrence equation should
be written as a linear combination of m-fold holonomic recurrences is to eliminate those
with only one (non-zero) term which are not taken into account by Definition 2.

Combined with the fact that the given recurrence equation order plays the role of a
bound for the value of m (see [2,8]), Theorem 1 leads to the following main steps to
determine a basis of the subspace of all m-fold hypergeometric term solutions.

Algorithm 1. Compute a basis of m-fold hypergeometric term solutions of a given
holonomic recurrence equation (RE)

– Set m = 1.
– Repeat

1. If the given RE is a linear combination of m-fold holonomic REs then go to item 2.
Otherwise go to item 4.

2. Compute bases of m-fold hypergeometric term solutions of each m-fold distinct
holonomic RE in the linear combination found in item 1. These latter are computed
after applying the substitution that transforms m-fold holonomic REs to 1-fold holo-
nomic REs and allows computations of m-fold hypergeometric terms as hypergeo-
metric term. Petkovšek’s or van Hoeij’s algorithm can then be used. However, we
recommend the algorithm in [9] for the purpose of computing power series.

3. Collect all m-fold hypergeometric terms that are linearly dependent to an element of
each basis of m-fold hypergeometric term solutions computed in item 2.

4. Increment m and go back to item 1.
– Until m = d.
– Return the collected m-fold hypergeometric terms.

Example 10. Consider the recurrence equation

(2 + n)·(4 + n)·(6 + n)·an+6−2·(2 + n)·(4 + n)·an+4+4·(2 + n)·an+2−8·an = 0.
(8)

– For m = 2, we find that (8) is 2-fold, we then apply the substitution
{
2 · k = n

sk = a2·k
, (9)



384 B. Teguia Tabuguia and W. Koepf

that transforms (8) into the recurrence equation

(2 + 2 · k) · (4 + 2 · k) · (6 + 2 · k) · sk+3 − 2 · (2 + 2 · k) · (4 + 2 · k) · sk+2

+ 4 · (2 + 2 · k) · sk+1 − 8 · sk = 0. (10)

We solve (10) using the algorithm in [9] and substitute the initial variable back to
get the following basis of 2-fold hypergeometric terms solutions

{
1
n!

}
. (11)

– For m = 4, we find a combination of two 4-fold holonomic REs, namely,

−2 · (2 + n) · (4 + n) · an+4 − 8 · an = 0,

and
(2 + n) · (4 + n) · (6 + n) · an+6 + 4 · (2 + n) · an+2 = 0.

These lead to the same basis of 4-fold hypergeometric term solutions, which is
{

(−1)n

(2 · n)!

}
. (12)

– No more linear combination is found. Therefore the final output is
[[

2,
{

1
n!

}]
,

[
4,

{
(−1)n

(2 · n)!

}]]
. (13)

Our Maple package has an implementation of Algorithm 1 under the name
mfoldHyper.

Example 11. (8) is obtained by computing the recurrence equation for the power series
of exp(z2) + cos(z2). Let us recover the solution as in (13).

> RE:=FPS[FindRE](exp(zˆ2)+cos(zˆ2),z,a(n)):
FindRE is our variant of FormalPowerSeries[SimpleRE].
> FPS[mfoldHyper](RE,a(n))

[[
2,

{
(n!)−1

}]
,

[
4,

{
(−1)n

(2n)!

}]]

Of course, such a solution cannot be detected by van Hoeij’s algorithm.
> LREtools[hypergeomsols](RE,a(n),{},output=basis)

0
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3 Computing Hypergeometric Type Power Series

Having presented how mfoldHyper works, we can now give some details about how our
procedure builds a hypergeometric type power series from a given expression. Remem-
ber, as mentioned in the introduction, we consider a much larger family of expressions
than what is described in [5] or currently internally used by Maple. The decision prop-
erty of the algorithm in [10] could not be reached by previous approaches since m-
fold hypergeometric terms were barely accessible. However, we highlight a possible
gap between the algorithm and its implementation since limitations can be encountered
due to unavailability of computer algebra tools to deal with hypergeometric terms over
larger algebraic extension fields; an example will be presented. Nevertheless, as our
Maxima implementation (see [8])5, our Maple implementation demonstrates an impor-
tant improvement that covers a very large family of hypergeometric type functions given
as in (3), which can also be used to show equivalences between them.

Once a holonomic recurrence equation satisfied by the power series coefficients of
a given expression is computed, determining the following items is the essential focus
of our procedure.

– Puiseux numbers.
– Laurent polynomial part and starting points.
– A basis (in its complete form6) of m-fold hypergeometric term solutions of the

obtained holonomic recurrence equation.
– A linear combination of hypergeometric type power series.

We use our Maple implementation to describe these steps for some interesting exam-
ples.

Consider f(z) = arctan(z) + ln(1 + z2) + exp(z3), we want to find the power
series representation of f around z0 = 0. This first example is used to give some details
about the way we get the complete basis of m-fold hypergeometric terms and how to
find the needed linear combination of hypergeometric type power series. The recurrence
equation found is the following.

Example 12.

> f:=arctan(z)+ln(1+zˆ2)+exp(zˆ3):
> RE:=FPS[FindRE](f,z,a(n))

5 Currently being discussed for integration into the system.
6 Complete form means that all representations of m-fold hypergeometric terms are given. These

are m linearly independent terms.



386 B. Teguia Tabuguia and W. Koepf

RE := 6 (n− 1)n (n− 3) a (n)− 18 (n− 9)2 a (n− 9)− 9 (n− 8) (n− 7)

a (n− 8)− 36 (n− 8) (n− 7) a (n− 7) + 6 (n− 18) (n− 6)2 a (n− 6)

+ 3 (n− 5)
(
n2 − 25n+ 102

)
a (n− 5)

+ 3 (n− 4)
(
4n2 − 71n+ 267

)
a (n− 4) + 6 (n− 3)

(
2n2 − 24n+ 57

)
a (n− 3)

+ 2 (n− 2)
(
5n2 − 51n+ 118

)
a (n− 2) + (n− 1)

(
11n2 − 93n+ 166

)
a (n− 1)

+ 2 (n− 1) (n− 2) (n+ 1) a (n+ 1) + 2 (n+ 2) (n+ 1) (n− 1) a (n+ 2) = 0. (14)

Using mfoldHyper, we find the following basis of hypergeometric terms (incom-
plete form).

Example 13.

> FPS[mfoldHyper](RE,a(n))
[[

2,
{
1/2

(−1)n

n

}]
,
[
3,

{
(n!)−1

}]]

This reveals that we have one more 2-fold hypergeometric term, and two more 3-fold
hypergeometric terms. They can be computed using mfoldHyper as follows.

Example 14.

> FPS[mfoldHyper](RE,a(n),ml=[2,1])
{

(−1)n

2n + 1

}

> foldl(‘union‘,{},
> seq(FPS[mfoldHyper](RE,a(n),ml=[3,i]),i=1..2))

{
1

(3n + 1) (1/3)n
,

1
(3n + 2) (2/3)n

}

Hence we obtain the basis of m-fold hypergeometric term solutions in its complete
form. We emphasize on repeated use of mfoldHyper because thanks to [9], it rep-
resents all its outputs in appropriate normal forms. We recall that (1/3)n denotes the
Pochhammer symbol or rising factorial.

We have 2-fold and 3-fold hypergeometric terms, therefore we expect series expan-
sions with the following powers

z2n, z2n+1, z3n, z3n+1, z3n+2. (15)

We need to know the number of evaluations to make with the obtained m-fold
hypergeometric terms, and the number of initial coefficients of the Taylor expansion



Power Series Representations of Hypergeometric Type Functions 387

of f(z) that should be used. This way we will get a linear system of 5 unknowns rep-
resenting the coefficients of the linear combination sought. Note that integer roots of
the recurrence equation leading coefficient are automatically taken into account when
computing the coefficients thanks to the appropriate integer shifts applied in [9]. We
establish (see [8, Chapter 8]) that the number of initial coefficients to be used from the
Taylor expansion of f(z) can be taken as

⎛

⎝
∑

m∈{m1,...,mµ}
lm − 1

⎞

⎠ · lcm(m1, . . . , ·mµ) + mµ − 1 (16)

where the mi, i = 1, . . . , μ, μ ∈ N are the types involved in the hypergeometric type
power series; lmi

is the number of coefficient of type mi; and mµ is the maximum of
these types. This number corresponds to the number of linear equations which might
be reduced sometimes, but in general taking a lower number of equations may result in
missing of the representation sought. Applied to our example one gets (2 + 1− 1) · (2 ·
3) + (3 − 1) = 14. We finally obtain the following power series representation.

Example 15.

> FPS[FPS](f,z,n)
∞∑

n=0

(−1)n z2n+2

n + 1
+

∞∑

n=0

(−1)n z2n+1

2n + 1
+

∞∑

n=0

z3n

n!
Remark 3.

– Sometimes the linear system has many solutions leading to different (but equivalent)
representations of the same power series. We have observed that in certain cases
our Maxima implementation yields a different representation than our Maple imple-
mentation. This could be explained by the way both CASes represent solutions of
linear systems. Our Maple implementation uses Solve[Linear] and sometimes
solve.

– Although the number of initial coefficients can be computed using limit computa-
tions, in our implementation we rather use Maple’s series command. Note, how-
ever, that this command does not always give expansions of the required orders due
to internal cancellations, therefore it is always important to check the degree of the
obtained Taylor polynomial. That is one difference we encountered between Maple
and Maxima which mostly handles Taylor polynomials as desired.

Our next example is f(z) := −1+(1+z2) ·exp(z)+arcsech(
√

z). In the previous
case, we could neither expect shifted starting points nor Puiseux numbers. With this
new example one may expect the hypergeometric type part of the expansion starting
summations at 1 (or with z1 instead of z0) since a constant term appears in f . One also
observes that a possible Puiseux number is 2 as

√
z appears. However, our procedure

does not make any checking on its inputs, everything is deduced from the holonomic
recurrence equations which encode all this information.
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Example 16. The computed recurrence equation is
> f:=(1+zˆ2)*exp(z)+arcsech(sqrt(z))-1:
> FPS[FindRE](f,z,a(n))

− 9 (n− 1)n (2n+ 1) a (n)− 2 (2n− 7) (n− 4) a (n− 4) + (n− 3)
(
4n2 − 52n+ 103

)
a (n− 3)

+ (n− 2)
(
14n2 − 67n+ 49

)
a (n− 2)− (n− 1)

(
14n2 − 112n+ 95

)
a (n− 1)

+ 2 (5n− 12) (n+ 1)2 a (n+ 1) + 4 (n+ 1) (n+ 2)2 a (n+ 2) = 0. (17)

Observe that 7/2 (or 1/2 after normalizing the equation) is a root of the trailing poly-
nomial coefficient of (17). What we have established is that for hypergeometric type
power series, the least common multiple of the leading and trailing polynomial coef-
ficient root denominators should be taken as the Puiseux number of the representation
sought. Thus by computing the power series of f(zp), where p denotes that Puiseux
number, and replacing z by z1/p in the final representation will automatically generate
all the Puiseux numbers of the representation. Hence next we compute a holonomic
recurrence equation for f(z2).

Example 17.

> FPS[FindRE](subs(z=zˆ2,f),z,a(n))

− 4 (n− 10) (n− 11) a (n− 11) + 2 (n− 9)
(
n2 − 32n+ 190

)
a (n− 9)

+ (n− 7)
(
7n2 − 109n+ 362

)
a (n− 7)− (n− 5)

(
7n2 − 154n+ 589

)
a (n− 5)

− 9 (n− 5) (n− 2) (n− 3) a (n− 3) + (5n− 39) (n− 1)2 a (n− 1)

+ 2 (n− 1) (n+ 1)2 a (n+ 1) = 0 (18)

Remark that all the rational roots of the leading and trailing polynomial coefficient are
now integers. This is even more advantageous since it allows mfoldHyper to get nicer
formulas for m-fold hypergeometric terms.

For computing starting points, by developing a procedure to find finite sequence
(coefficients of the Laurent polynomial part) solutions of holonomic recurrence equa-
tions, we established that the algorithm behind the following Maple code could gener-
ally give the starting point and the Laurent polynomial part of a hypergeometric type
power series.

L P o l y P a r t := proc (CRE, f , z , n )
l o c a l d ,M, N, P0 ;
d e s c r i p t i o n ”Compute t h e Lauren t po l y nom ia l p a r t ”
” o f a h yp e r g eome t r i c t y p e power s e r i e s ”
” from norma l i z e d po l ynom ia l c o e f f i c i e n t s ” ;
d := numelems (CRE)−1;
M:= f o l d l ( ‘ un ion ‘ ,{} , i s o l v e ( subs ( n=n−d , CRE[ − 1 ] ) ) ) ;
M:=map ( rhs ,M) ;
N:= f o l d l ( ‘ un ion ‘ ,{} , i s o l v e (CRE [ 1 ] ) ) ;
N:=map ( rhs ,N ) ;
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i f numelems (N)<1 then
P0 : = 0 ;
N:=min (M)

e l s e
N:=max (N) + 1 ;
P0 := conver t ( s e r i e s ( f , z =0 ,N) , polynom )

end i f ;
re turn P0 , N

end proc :

Normalized polynomial coefficients means that the coefficients are collected with the
recurrence equation written with an (index n) as trailing term. For the present example
we find the following Laurent polynomial part and starting point

ln (2) − 1/2 ln (z) , 1. (19)

We mention that mis-consideration of starting points may lead to wrong power series
representations. This could explain why in some examples the built-in Maple approach
gives an incorrect representation for exp(z) + ln(1 + z). Some other similar examples
can be found.

Finally using the other steps described in the first example, we get the representation
below.

Example 18.

> FPS[FPS](f,z,n)

ln (2) − 1/2 ln (z)

+
∞∑

n=0

−
(− (n + 1)!n2 + 2−2n−2 (2n + 1)! − (n + 1)!n − (n + 1)!

)
zn+1

((n + 1)!)2

Our implementation groups coefficients with same z-powers together.

Remark 4. As we mentioned earlier, rational functions are all of hypergeometric type.
However some of their power series representations need extension fields where com-
putations cannot easily be handled. The main issue with such cases relies on the linear
system to be solved to find the corresponding linear combination of hypergeometric
type power series.

Example 19. Consider for example f(z) = 1/(1 + z + z4). We find the recurrence
equation

> f:=1/(1+z+zˆ4):
> RE:=FPS[FindRE](f,z,a(n))

RE := (n + 1) a (n) + (n + 1) a (n − 3) + (n + 1) a (n + 1) = 0,

and the following hypergeometric term (m = 1 only) solutions
> FPS[mfoldHyper](RE,a(n),C)
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[[
1,

{ (
RootOf

(
Z 4 + Z 3 + 1, index = 1

))n
,

(
RootOf

(
Z 4 + Z 3 + 1, index = 2

))n
,
(
RootOf

(
Z 4 + Z 3 + 1, index = 3

))n
,

(
RootOf

(
Z 4 + Z 3 + 1, index = 4

))n }]]
. (20)

The argument C in mfoldHyper is used to allow computations over extension fields.
This happens in the algorithm whenever no solution exists over the rationals. When
looking for a linear combination by solving the underlying linear system, we get the
following error message.

Error, (in evala/Normal/preproc0) numeric exception: division by zero
This is a particular issue that we should try to overcome while finalizing our imple-

mentation.
Let us now present more examples describing our algorithm.

Example 20.

> FPS[FPS](sin(2*arcsin(z))+cos(3*arccos(z)),z,n)

4 z3 − 3 z +

( ∞∑

n=0

−2 (2 n)! 4−n z2 n+1

(2 n − 1) n!2

)

> FPS[FPS](cosh(z)+z*cos(z)+sin(zˆ3),z,n)
∞∑

n=0

z2n

(2n)!
+

∞∑

n=0

(−1)n z2n+1

(2n)!
+

∞∑

n=0

(−1)n z6n+3

(2n + 1)!

> FPS[FPS](exp(z)+hypergeom([a, b], [c],
> zˆ2),z,n,fpstype=SpecialFunctions)

∞∑

n=0

zn

n!
+

∞∑

n=0

(b)n(a)nz2n

n! (c)n

For special functions like the generalized hypergeometric function, the approach used
to compute holonomic differential equations must slightly be modified. That is why in
this previous example the option fpstype=SpecialFunctions is used.

Example 21.

> FPS[FPS](1/((p-zˆ2)*(q-zˆ3)),z,n)
∞∑

n=0

−
(
qp−1−n/2 − pq−1/3−n/3

)
zn

p3 − q2
+

∞∑

n=0

−
(
p3/2 − q

)
p−n−3/2z2n+1

p3 − q2

+
∞∑

n=0

−q−1−np
(
q2/3 − p

)
z3n

p3 − q2
+

∞∑

n=0

(
q2/3 − p

)
q−n−2/3z3n+1

p3 − q2

> FPS[FPS](arctan(sqrt(z))+arcsinh(zˆ(1/3)),z,n)
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∞∑

n=0

(−1)n (2n)! 4−nz2/3n+1/3

(2n + 1) (n!)2
+

∞∑

n=0

(−1)n zn+1/2

2n + 1

As one can observe, our implementation linearizes the computation of hypergeometric
type power series. None of the above examples can directly be computed using the
built-in Maple convert/FormalPowerSeries.

4 Conclusion

We have presented an algorithm and its Maple implementation to compute hypergeo-
metric type power series as defined in Definition 1. We have shown that this extends
Maple’s capabilities to consider more expressions for which power series could not be
directly computed before. We believe that this is an important advancement that should
be integrated into computer algebra systems.

Besides other important steps like computing Puiseux numbers, the Laurent poly-
nomial part, or finding a linear combination of hypergeometric type power series, the
main ingredient of the algorithm is mfoldHyper which computes m-fold hypergeomet-
ric term solutions of holonomic recurrence equations. The latter was the main deficiency
of the algorithm in [5] on which Maple’s original implementation is based.

There are further types of series considered in [8]. The question is, what to do
when it turns out that a given expression is not of hypergeometric type, or is even
non-holonomic. We mention for example the case where the given expression is not
of hypergeometric type but holonomic. That means a recurrence equation can be com-
puted. Some trivial cases like exp(z + z2) · cos(z) are well handled as we could find a
recursive representation that could be used for fast computations of larger order Taylor
expansions.

Example 22.

> f:=exp(z+zˆ2)*cos(z):
> FPS[FPS](f,z,n,fpstype=Holonomic)

∞∑

n=0

A (n) zn,

A (n+ 4) = −4A (n) + 4A (n+ 1) + (−4n − 8)A (n+ 2) + (−2n − 6)A (n+ 3)

(n+ 3) (n+ 4)

, 0 ≤ n, [A (0) = 1, A (1) = 1, A (2) = 1, A (3) = 2/3] (21)

> FPS[Taylor](f,z,0,6)

1 + z + z2 + 2/3 z3 + 1/3 z4 + 2/15 z5

> T:=Time():FPS[Taylor](f,z,0,1000):Time()-T

250ms

> T:=Time():series(f,z=0,1000):Time()-T

9332ms



392 B. Teguia Tabuguia and W. Koepf

On the other hand, we also look for techniques to consider more special functions.
We mention Mathieu functions (see this Maple link7) for which we are able to recover
differential equations that they satisfy using our code FPS[LinearDE] which does
not necessarily look for polynomial coefficients inside the differential equation sought.

Example 23.

> FPS[LinearDE](MathieuC(a, q, x),F(x))

(−2 q cos (2x) + a)F (x) +
d2

dx2
F (x) = 0

> FPS[LinearDE](MathieuFloquet(a, q, xˆ2),F(x))

−4x3
(
2 q cos

(
2x2

) − a
)
F (x) − d

dx
F (x) + x

d2

dx2
F (x) = 0

Further steps to consider rely on change of variables transformations (when possi-
ble) of such types of equations to holonomic equations. We are grateful to have gotten
a question regarding Mathieu functions during our presentation at the 2020 Maple con-
ference.
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Rational Cone of Norm-Invariant Vectors
Under a Matrix Action

Juan Tolosa(B)
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Abstract. Starting from one example suggested by Dr. Robert Lopez in
a Maple webinar, we study directions along which the norms of vectors
are preserved under a matrix, regarded as a linear map. In particular, we
find families of 2× 2 matrices for which these directions are determined
by integer vectors. We also explore a few examples of 3× 3 matrices.

We used Maple both to explore this topic and to generate the included
figures.

1 Introduction

In the 2015 Webinar talk Eigenpairs in Maple [3], Dr. Robert Lopez discussed
how to use Maple to find eigenvalues and eigenvectors (eigenpairs) of a matrix
A. An eigenvector of A is a (nonzero) vector whose direction is preserved under
multiplication by A. As an aside, by the end of the talk, Dr. Lopez, posed the
question: what about preserving the magnitude of the vector, rather than its
direction? In other words, what about (nonzero) vectors v such that

‖v‖ = ‖Av‖, (1)

where ‖v‖ is the Euclidean norm?
In search of an example, Dr. Lopez used a “for loop” in Maple, looking for

integer matrices A which had vectors v with integer coordinates, satisfying the
equation ‖v‖2 = ‖Av‖2. He came up with the following example:

A =
(

4 3
−2 −3

)
.

Regarded as a map from R
2 to itself, this matrix preserves the norms, but

not the directions, of the vectors with integer coordinates v1 = 〈1,−1〉 and
v2 = 〈17,−19〉.

Exploring this intriguing idea, I obtained several families of such “nice” 2×2
matrices, then considered a few 3×3 examples, and discussed a couple of related
quadratic Diophantine equations. A detailed account is in [4].

c© Springer Nature Switzerland AG 2021
R. M. Corless et al. (Eds.): MC 2020, CCIS 1414, pp. 394–409, 2021.
https://doi.org/10.1007/978-3-030-81698-8_26
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First of all, here are some general comments.

• Since ‖λv‖ = |λ| · ‖v‖, the entire line generated by any nonzero solution of
(1) will consist of vectors whose norm is preserved by A; let us call these lines
the norm-preserving lines.

• If A has an eigenvalue of 1, or −1, then the corresponding eigenspace will
consist entirely of solutions of (1) as well.

• If A is orthogonal, then it acts as an isometry and norm is always preserved.
Therefore, every line through the origin is norm-preserving. In the 2 × 2 case
these isometries are typically rotations.

The interesting case, though, is when there are nonzero solutions of (1) that
are not eigenvectors (and also when A is not orthogonal). This may happen even
if A has an eigenvalue ±1. For example,

A =
(

1 −8
0 3

)

has eigenvalue 1 with eigenline determined by v = 〈1, 0〉, but also has another
norm-preserving line, determined by w = 〈9, 2〉. Along this line, A acts like a
rotation.

2 The 2 × 2 Case

We are interested in nonzero solutions of equation (1) for a general real-valued
2 × 2-matrix

A =
(

a b
c d

)
.

Equation (1) is equivalent to ‖v‖2 = ‖Av‖2, or (v,v) = (Av, Av), where (v,w)
is Euclidean inner product. The right-hand side becomes

‖Av‖2 = (Av, Av) = (v, AtAv) = (v, Bv),

where At is the transpose of A, and B = AtA. Thus, equation (1) is equivalent
to

(v, (B − I)v) = 0, (2)

where I is the identity matrix. Denoting v = 〈x, y〉 the coordinates of v, the
left-hand side of (2) is the quadratic form

Φ(x, y) = (a2 + c2 − 1)x2 + 2(ab + cd)xy + (b2 + d2 − 1)y2; (3)

with this notation, (1), or (2), is equivalent to Φ(x, y) = 0.
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Does every matrix A have norm-preserving lines at all? It turns out, a con-
dition is needed:

Theorem 1. Norm-preserving lines exist if and only if

a2 + b2 + c2 + d2 ≥ 1 + det(A)2. (4)

The details of the proof are in [4]. Geometrically, this condition reflects
the fact that for the existence of such lines, the ellipse (or degenerate ellipse)
(v, Bv) = 1 must intersect the unit circle. In terms of the eigenvalues of
B = AtA (which are real and non-negative), λ1 ≤ λ2, this happens if, and
only if, λ1 ≤ 1 ≤ λ2. Indeed, by the extreme properties of eigenvalues (see, for
example, [1]), we have

λ1 = min
‖v‖=1

‖Av‖2 = min
‖v‖=1

(v, Bv)

≤ max
‖v‖=1

‖Av‖2 = max
‖v‖=1

(v, Bv) = λ2.

Figure 1 illustrates the intersection of this ellipse with the unit circle, for
R. Lopez’s matrix.

Fig. 1. Illustration of R. Lopez’s example.

The norm-preserving lines will then pass through the intersections of the
ellipse with the unit circle (see Fig. 2 below).

Families of matrices with integer solutions.

We want to find matrices

A =
(

a b
c d

)

with integer (or occasionally rational) entries, for which the norm-preserving
lines can be determined by nonzero vectors v = 〈x, y〉 with integer coordinates
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x, y; we will call these integer solution lines. For such matrix, the Diophantine
equation Φ(x, y) = 0, with Φ(x, y) given by (3), must have nontrivial solutions.

If either a2 + c2 = 1, or b2 + d2 = 1, it is not hard to get families of matri-
ces with rational entries and integer solution lines. For example, for the two-
parameter family

A =
(

3
5 b
4
5 d

)
,

we get norm-preserving lines determined by v1 = 〈1, 0〉 and

v2 = 〈5(1 − b2 − d2), 2(3b + 4d)〉.

The interesting case, however, is when the columns of A are not unit vectors.
Assuming, for example, that b2 + d2 �= 1, and working with the correspond-
ing Diophantine equation, we obtained in [4] the following four two-parameter
families of matrices: (

a a ± 1
c c ± 1

)
.

Incidentally, their transposes,
(

a c
a ± 1 c ± 1

)
,

also have integer solution lines.
For each family, we get in [4] concrete formulas for the integer solution vec-

tors. The example of Robert Lopez corresponds to the family

A =
(

a a − 1
c c − 1

)
, (5)

for a = 4 and c = −2. For this particular family, the norm-preserving lines are
determined by the vectors

v1 = 〈1,−1〉
and

v2 = 〈(a − 1)2 + (c − 1)2 − 1, 1 − a2 − c2〉.
We get similar formulas for the remaining cases.

Figure 2 illustrates the case a = 2, c = −3; the two length-preserving lines are
shown. The direction vectors are v1 = 〈1,−1〉 and v2 = 〈4,−3〉. As expected,
the solution lines pass through the intersections of the ellipse ‖Av‖ = 1 with the
unit circle. The solution lines in Fig. 1 are not depicted, since they are rather
close to each other. If the ellipse is tangent to the unit circle, as for example
when a = 3, c = −2, we get only one integer solution line.
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Fig. 2. Norm-preserving directions shown.

3 The 3 × 3 Case

The 3 × 3 case is considerably more complicated, as well as more interesting.
If A is a 3 × 3 real-valued matrix, also regarded as a linear map from R

3 to
itself, then in general ‖Av‖2 = 1 is an ellipsoid, in terms of the coordinates of
v = 〈x, y, z〉. As in the 2 × 2 case, we have

‖Av‖2 = (Av, Av) = (v, Bv),

where B = AtA is a symmetric matrix with real nonnegative eigenvalues. The
equation for norm-preserving vectors, ‖Av‖ = ‖v‖, or (v, Bv) = (v,v), is equiv-
alent to the equation of the cone

(v, (B − I)v) = 0, (6)

where I is the identity matrix.
Like in the 2×2 case, if we denote the eigenvalues of B by 0 ≤ λ1 ≤ λ2 ≤ λ3,

then there is a solution of (6) if and only if

λ1 ≤ 1 ≤ λ3, (7)

which guarantees a nonempty intersection of the ellipsoid (or degenerate ellip-
soid) ‖Bv‖2 = 1 with the unit sphere ‖v‖2 = 1.

If condition (7) is satisfied, then the cone determined by (6) will pass through
this intersection of the ellipsoid and the unit sphere. As an illustration, for the
matrix in Example 1 below, Fig. 3 (a) shows the ellipsoid ‖Av‖2 = 1 and the
unit sphere, and Fig. 3 (b) has the added solution cone ‖Av‖ = ‖v‖; compare
with Fig. 2 for the 2 × 2 case.

Unlike the 2 × 2 case, in the 3 × 3 case one cannot hope that in general all
the lines in the cone (6) for a given matrix A with integer or rational coefficients
will turn out to be integer solution lines. Examples 2 and 3 show that, however,
we can still get infinitely many such lines.
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Fig. 3. Illustration for Example 1: (a) ellipsoid and unit sphere; (b) same, plus solution
cone.

3.1 Example 1: No Integer Solution Lines

Let us consider the symmetric matrix

A =

⎛
⎝1 1 1

2
1 1

2 1
1
2 1 1

⎞
⎠ (8)

The form ‖Av‖2 = (Av, Av) = (v, Bv) will in this case have matrix

B = AtA = A2 =

⎛
⎝

9
4 2 2
2 9

4 2
2 2 9

4

⎞
⎠

so that Eq. (6) will be

5
4
x2 + 4xy + 4xz +

5
4
y2 + 4yz +

5
4
z2 = 0. (9)
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This equation has infinitely many real-valued solutions, which constitute the
solution cone shown in Fig. 3 (b). However, there are no integer solution lines,
that is, there exist no nontrivial vectors v with integer coordinates such that
‖Av‖ = ‖v‖.

In order to prove that, we solve (9) for z, and get

z = −8
5
(x + y) ±

√
39x2 + 48xy + 39y2

5
.

Therefore, there will be integer solution lines if and only if the discriminant
39x2 + 48xy + 39y2 is a perfect square. But this actually never happens, as is
proved in [4] using congruences modulo 4:

Theorem 2. The Diophantine equation

39x2 + 48xy + 39y2 = u2 (10)

has no nontrivial solutions, that is, no nonzero integer solutions.

3.2 Example 2: A Dense Set of Integer Solution Lines

Consider the symmetric matrix

A =

⎛
⎝1 2 2

2 1 2
2 2 1

⎞
⎠ . (11)

Here

B = AtA = A2 =

⎛
⎝9 8 8

8 9 8
8 8 9

⎞
⎠

so that Eq. (6) will be

8x2 + 16xy + 16xz + 8y2 + 16yz + 8z2 = 0,

or (after dividing by 8)
(x + y + z)2 = 0. (12)

In our case, the cone degenerates into the plane x + y + z = 0. Picking, for
example, v1 = 〈1, 0,−1〉 and v2 = 〈0, 1,−1〉, we conclude that every integer
norm-preserving line is generated by αv1 + βv2, with integer coefficients α, β
such that α2 + β2 > 0. This constitutes a dense set of integer solution lines, in
the plane x + y + z = 0. The ellipsoid ‖Av‖2 = 1 lies inside the unit sphere,
and is tangent to it along the intersection of the sphere with the solution plane;
Fig. 4 depicts the situation.
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Fig. 4. Solution cone is degenerate.

3.3 Example 3: Infinitely Many Integer Solution Lines

Finally, let us consider an example when there are still infinitely many integer
solution lines, yet we cannot guarantee they are dense in the cone of all solution
lines. Consider the matrix

A =

⎛
⎝1 2 3

2 1 1
1 1 1

⎞
⎠ . (13)

One eigenvalue of A is −1, with eigenvector =〈−1, 1, 0〉, which therefore provides
one integer solution line. Are there any other such lines? The matrix B = AtA
is

B =

⎛
⎝6 5 6

5 6 8
6 8 11

⎞
⎠

and consequently Eq. (6) becomes

5x2 + 10xy + 12xz + 5y2 + 16yz + 10z2 = 0.

Solving for x yields

x = −y − 6
5
z ±

√
−20yz − 14z2

5
. (14)

We conclude that there will be integer solutions lines if and only if the discrim-
inant −20yz − 14z2 is a perfect square. This leads to the Diophantine equation

− 20yz − 14z2 = u2. (15)

An excellent tool for exploration of Diophantine equations is the Maple isolve
command. In this case, we obtain
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> intSols:=isolve(-14∗z2 - 20∗y ∗ z = u2, {m, n, p});

intSols :=
{

u =
20pmn

igcd(20mn,−m2 − 14n2, 20n2)
,

y =
p(−m2 − 14n2)

igcd(20mn,−m2 − 14n2, 20n2)
,

z =
20pn2

igcd(20mn,−m2 − 14n2, 20n2)

}
.

Setting p = 1, this provides the following simplified expressions for y, z, u:

y = −m2 − 14n2; z = 20n2, u = 20mn,

where m,n are arbitrary integers. And using (14), we find two corresponding
values for x:

x1 = m2 + 4mn − 10n2 and x2 = m2 − 4mn − 10n2.

These formulas generate infinitely many solutions. For example, choosing m =
1 and n = 2, we obtain the integer solution vectors 〈−31,−57, 80〉 and
〈−47,−57, 80〉.

It remains to check that indeed all solutions can be generated in this way.
A detailed solution of the Diophantine equation (15) carried up in [4] leads

to the following expression, which does contain all solutions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x =
1
10

(r2 − 10v2 ± 4vr)

y = − 1
10

(14v2 + r2)

z = 2v2,

where v and r are arbitrary integers.
It is not hard to reconcile both solutions (and, therefore, show that Maple

indeed provides all solutions): it suffices to set

v2 = 10n2 and r2 = 10m2.

Here are a few more sample solutions:
Using Maple’s formulas (after dividing by the gcd):

• For m = 1 and n = 1, we get 〈−1,−3, 4〉 and 〈−13,−15, 20〉.
• For m = 4 and n = 1: 〈−1,−3, 2〉 and 〈11,−15, 10〉.

Using the second set of formulas:

• For (v, r) = (1, 1) we obtain〈
−1

2
,−3

2
, 2

〉
∼ 〈1, 3,−4〉 and

〈
−13

10
,−3

2
, 2

〉
∼ 〈13, 15,−20〉.

• For (v, r) = (1, 4) we get the vectors〈
11
5

,−3, 2
〉

∼ 〈11,−15, 10〉 and 〈1, 3,−2〉;
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3.4 A General Method

There is a method for obtaining infinitely many integer solution lines, which
can be applied to a general 3 × 3 matrix with integer or rational coefficients;
the drawback is that one must know (at least) one nontrivial solution. This is
an idea by T. Piezas [5]. Namely, if we know one particular integer solution
(y, z, u) = (m,n, p) of the Diophantine equation

ay2 + byz + cz2 = du2,

then a two-parameter family of solutions is given by

y = (am + bn)s2 + 2cnst − cmt2,

z = −ans2 + 2amst + (bm + cn)t2,
u = p(as2 + bst + ct2),

where s and t are arbitrary integers.
For example, for the matrix

A =

⎛
⎝1 2 3

3 4 5
2 3 4

⎞
⎠ ,

equation (6) for v = 〈x, y, z〉 is

13x2 + 40xy + 52xz + 28y2 + 76yz + 49z2 = 0,

which solved with respect to x produces

x =
−20y

13
− 2z ±

√
36y2 + 52yz + 39z2

13
, (16)

so to get integer solutions we need to solve the Diophantine equation

36y2 + 52yz + 39z2 = u2. (17)

Setting z = 0, it is not hard to guess the particular solution (y, z, u) = (m,n, p) =
(1, 0, 6). The corresponding two-parameter solution family looks like

y = 36s2 − 39t2

z = 72st + 52t2

u = 216s2 + 312st + 234t2. (18)

Each choice of (s, t) produces two integer solution lines v = 〈x, y, z〉, using the
two x-values provided by (16). For example, for (s, t) = (1, 1) we get〈

−2402
13

,−3, 124
〉

∼ 〈−2402,−39, 1612〉, and 〈−302,−3, 124〉;

and (s, t) = (1, 2) yields〈
−4976

13
,−120, 352

〉
∼ 〈−4976,−1560, 4576〉, and 〈−656,−120, 352〉.
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4 Questions for Further Study, Applications

• Unlike the case of eigenpairs, the solution lines to equation (1) are very much
dependent on the chosen norm in R

n. It would be interesting to discuss similar
solutions for other norms in Euclidean space.

• We have only grazed the case of a 3 × 3 matrix A. Can we find solvability
conditions of (1) in terms of the coefficients of A, as we did in the 2× 2 case?
Can one find nontrivial families of integer matrices A for which (1) has integer
solutions?

• Application to toral automorphisms. Many of the 2×2 integer matrices
we studied, for example, the subfamily

A =
(

q + 1 q
q q − 1

)
, (19)

with q an integer, are symmetric and have determinant −1; therefore, they
can be regarded also as linear automorphisms of the (flat) 2-torus, which
possess very interesting dynamical properties; see, for example [2], p. 42.
Nontrivial such automorphisms have eigenvectors with irrational slopes; on
the other hand, the integer solution lines of (19) bisect the eigendirections.
We can therefore use integer arithmetic to compute iterates of vectors in the
stable and in the unstable manifolds of such automorphisms. For example,
the matrix

A =
(

3 2
2 1

)
(20)

has integer solution lines generated by v1 = 〈1,−1〉 and v2 = 〈−1, 3〉, and
irrational eigenvalues

λ1 = 2 +
√

5 and λ2 = 2 −
√

5.

If we choose the equal-norm vectors

v1 = 〈1,−1〉 and v3 =
1√
5
v2 =

1√
5
〈−1, 3〉,

then u = v1 + v3 will be along the unstable direction of A, and w = v1 − v3

will be along the stable direction. Therefore, on the one hand

Anu = λn
1u = (1 +

√
5)nu,

and on the other hand

Anu = Anv1 +
1√
5
Anv2.

For example,

A10u =
(

1346269 832040
832040 514229

)
u =

=
〈

514229 +
1√
5
1149851, 317811 +

710647√
5

〉
,
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provides a way to compute (2 +
√

5)10u using only integer arithmetic. A
similar calculation can be used for iterates of vectors in the stable direction.

5 Sample Maple Code Used

In Sect. 3.3 we showed how one can use Maple to successfully solve a Diophantine
equation. Here I want to showcase other Maple commands used in my research
of this topic. Most of them are suitable for motivated Linear Algebra students.
With the hope this part might be used for that purpose, you will find some
redundancy here, and even comments of additional interesting results one gets
during the process.

Calculation of the cone of norm-invariant directions:

> restart; with(LinearAlgebra):
> A:=<a, b; c, d>; v:= <x, y>;

Cone ‖Av‖2 − ‖v‖2 = 0:

> one:=Norm(A.v, 2, conjugate=false)^2 - Norm(v,2,conjugate=false)^2;

> cone:=collect(one, {x^2, y^2});

A second way to generate the cone, via quadratic forms:

> B:=Transpose(A).A- IdentityMatrix(2);
expand(DotProduct(v, B.v, conjugate=false)):
QuadForm:=collect(%, {x^2, y^2});

Calculations for one of our two-parameter families of matrices.

> restart; with(LinearAlgebra):
v:=<x,y>;
A:=<a,a-1; c,c-1>;
B:=Transpose(A).A;

> quadFormProto:=expand(Transpose(v).B.v):
quadForm:= collect(quadFormProto, {x^2, y^2});
quadFormZero:=collect(quadForm - x^2 - y^2, {x^2, y^2});

Rewriting denominator (and checking):

> den:=(a^2+c^2-2*a-2*c+1); denToo:=(a-1)^2+(c-1)^2-1;
differenceIs:=expand(den-denToo);
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Find length-preserving lines:
> solve(quadFormZero=0,y);
Corresponding slopes:
>m1:=-1; m2:= -(a^2+c^2-1)/((a-1)^2+(c-1)^2-1);
Particular case: matrix in R. Lopez’s paper:
> Alopez:= eval(A, {a=4, c=-2});
The corresponding slopes are m1 = -1 and
>m20:=eval(m2, {a=4, c=-2});
Corresponding symmetric matrix B = AtA, and its eigenvalues; as expected,

1 lies between them:

> B0:= Transpose(Alopez).Alopez;
Eigenvalues(B0); evalf(%);

Corresponding quadratic form:
quadForm0:=eval(quadForm, {a=4, c=-2});
Here is the plot for this particular case, which corresponds to Fig. 1 in the

paper. First I show the ellipse ‖Av‖2 = 1, the unit circle, and the solution lines.
For Fig. 1 in the paper, I removed the solution lines (second plot below).

> with(plots): with(plottools):
Window:= x = -1..1, y= -1..1;

> p1:=plot(m1*x, Window,color=blue):
p2:=plot(m20*x, Window,color=blue):
p3:=implicitplot(quadForm0=1, Window,
color= blue, grid = [100, 100], gridrefine=2):
p4:=plot([cos(t), sin(t), t=0..2*Pi], color=black):
display(p1, p2, p3, p4, scaling=constrained);
display(p3, p4);

Another particular case is the matrix
(

3 2
−2 −3

)
,

which has only one solution line. This answers a question from one reviewer:
In the 2D case, is it true that, if there is such a vector v, there are always two
such? This example shows the answer is negative. As the picture generated below
shows, the ellipse is tangent to the unit circle from the inside, so there is only
one norm-preserving direction. On the other hand, if there are two solution lines,
and one of them is integer, then the second one must necessarily be integer as
well, if the matrix A has integer or rational coefficients.1

1 The code is purposefully redundant: p1 and p2 are the same, since both solutions
lines coincide.
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> partic:= {a=3, c=-2};
A0:=eval(A, partic);
m20:=eval(m2, partic);

> B0:= Transpose(A0).A0; Eigenvectors(B0);
> quadForm0:=eval(quadForm, partic);
> p1:=plot(m1*x, Window,color=blue):

p2:=plot(m20*x, Window,color=blue):
p3:=implicitplot(quadForm0=1, Window,

color= blue, grid = [100, 100], gridrefine=2):
p4:=plot([cos(t), sin(t), t=0..2*Pi], color=black):

display(p1, p2, p3, p4, scaling=constrained);

The third particular case correspond to Fig. 2 in the paper, which is also
generated below:

> partic:= {a=2, c=-3};
A0:=eval(A, partic);
m20:=eval(m2, partic);
B0:= Transpose(A0).A0; Eigenvalues(B0); evalf(%);

> p1:=plot(m1*x, Window,color=blue):
p2:=plot(m20*x, Window,color=blue):
p3:=implicitplot(quadForm0=1, Window,
color= blue, grid = [100, 100], gridrefine=2):
p4:=plot([cos(t), sin(t), t=0..2*Pi], color=black):
display(p1, p2, p3, p4, scaling=constrained);

Here is an example of using Maple to experiment with the 3 × 3-case; the
corresponding solution cone produces a lengthy expression.

> restart; with(Student[LinearAlgebra]): with(plots):
vv:=<x,y,z>; uno:=Norm(vv,2)^2;

> A:=<q,q+1, q+2; s,s+1, s+2; r, r+1, r+2>;
determinantOfAIs:=Determinant(A);

> uu:=A.vv; normImage:=Norm(uu,2)^2;
sols:=solve(normImage=uno,x);

The particular choice of the parameters below leads to a degenerate matrix,
for which we manage to find integer solution lines. Two of the eigenvectors of A
are messy.

> A0:= eval(A, {q=1, r=2, s=3});
> eigsA0:= Eigenvalues(A0);

approxEigsA0:=evalf(eigsA0);
Eigenvectors(A0);

> solPart:=eval(sols, {q=1, r=2, s=3});
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The set of these solutions is an entire cone in 3-space. Let us pick particular
lines in this cone (four sets); the first pair of solutions actually has rational coor-
dinates; we use the rational slopes obtained, to create the two integer solution
vectors:

> solOne:=eval(solPart, {y=1, z=0});
solTwo:=eval(solPart, {y=0, z=1});

> rationalLine1:=simplify(solOne[1]);
rationalLine12:=simplify(solOne[2]);

> v1:=<-20+6, 13, 0>; v2:= <-20 -6, 13, 0>;

A direct check that the norm of v1 = 〈−14, 13, 0〉 is preserved, leads to the
interesting identity 102 + 112 + 122 = 132 + 142 = 365; the direct check for v2 is
less interesting:

> v1Is:=v1;a1:=norm(v1, 2); w1:=A0.v1; b1:= Norm(w1, 2);
v2Is:=v2;
a2:=norm(v2, 2); w2:=A0.v2; b2:= Norm(w2, 2);

Here is Example 1 in the paper, and the corresponding pictures used to
generate Fig. 3 (a) and (b). As shown in [4], the corresponding discriminant is
not a perfect square, so we have no solution lines. To plot, we try both explicit
and implicit plots. The second plot generated below, suitably rotated, is Fig. 3
(a) in the paper.

> restart; with(Student[LinearAlgebra]): with(plots):

vv:=<x,y,z>; uno:=Norm(vv,2)^2;

a:=1; b:=1/2;

A:=<a,a, b; a, b,a; b,a,a>;

> eigsOfA:=Eigenvalues(A); Eigenvectors(A);

> ImageIs:=A.vv;

normImage:=Norm(ImageIs, 2)^2:

quadForm:=expand(normImage);

quadFormZero:=expand(normImage-uno);

> sols:=solve(quadFormZero=0, z)

> maxVal:=2.0:

p1imp:=implicitplot3d(quadForm = 1, x=-maxVal..maxVal, y=-maxVal..maxVal,

z=-maxVal..maxVal, grid=[50,50,50], style=surface):

p1:=plot3d({explicit[1], explicit[2]}, x=-2..2, y=-2..2,

view=-2..2, grid=[220,220]):

sphere:=<sin(u)*sin(v), sin(u)*cos(v), cos(u)>:

p2:=plot3d([sphere], u=0..Pi, v=0..2*Pi,

axes=boxed, scaling=constrained, transparency = 0.4):

display(p1,p2);

display(p1imp, p2, axes=none);
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And the second plot below, suitably rotated, produced Fig. 3(b):

> zFunction:=solve(quadFormZero=0, z);

p3:= plot3d({zFunction[1], zFunction[2]}, x=-2..2, y=-2..2, view= -2..2,

axes=normal, scaling=constrained):

display(p1,p2,p3);

display(p1imp, p2, p3, axes=none);

Here is Example 2; the solution cone in this case degenerates into a plane. As
expected, when solving explicitly, both solutions coincide. The last plot, suitably
rotated, produces Fig. 4 in the paper.

> restart; with(Student[LinearAlgebra]): with(plots):

vv:=<x,y,z>; uno:=Norm(vv,2)^2;

A:= <1,2,2;2,1,2;2,2,1>;

> Eigenvectors(A);

B:=Transpose(A).A;

> ImageIs:=A.vv;

normImage:=Norm(ImageIs, 2)^2;

quadForm:=expand(normImage);

quadFormZero:=expand(normImage-uno);

factor(quadFormZero);

> sols:=solve(quadFormZero=0,z);

> zFunction:=solve(quadFormZero=0, z);

> p1:= implicitplot3d(quadForm = 1, x=-1.1..1.1, y=-1.1..1.1,

z=-1.1..1.1, grid=[50,50,50], style=surface):

smaller:=x=-1.1..1.1, y=-1.1..1.1, view=-1.1..1.1:

sphere:=<sin(u)*sin(v), sin(u)*cos(v), cos(u)>:

p2:=plot3d([sphere], u=0..Pi, v=0..2*Pi, axes=boxed,

scaling=constrained, transparency = 0.5):

p3:= plot3d(zFunction[1], smaller, axes=normal, scaling=constrained):

display(p1, p2, p3, axes=none);
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Abstract. Suppose we wish to predict a physical system’s behaviour.
We represent the system by model structure S (a set of related mathe-
matical models defined by parametric relationships between variables),
and parameter set Θ. Each parameter vector in Θ corresponds to a com-
pletely specified model in S. We use S with system data in estimating
the “true” (unknown) parameter vector. Inconveniently, S may approxi-
mate our data equally well for multiple parameter vectors. If we cannot
distinguish between alternatives, we may be unable to use S in decision
making. If so, our efforts in data collection and modelling are fruitless.

This outcome occurs when S is not structurally global identifiable
(SGI). Fortunately, we can test various structure classes for SGI prior to
data collection. A non-SGI result may inform a remedy to the problem.

We aim to assist SGI testing with suitable Maple 2020 procedures. We
consider a class of “state-space” structure where a state-variable vector x
is described by constant-coefficient, ordinary differential equations, and
outputs depend linearly on x. The “transfer function” approach is suit-
able here, and also for the “compartmental” subclass (mass is conserved).

Our use of Maple’s “Explore” permits an interactive consideration of a
parent structure, and variants of this produced by user choices. Results of
the SGI test may differ for different variants. Our approach may inform
the interactive analysis of structures from other classes.

Keywords: Experimental design · Input-output relationships · Inverse
problems · Laplace transform · Structural property · Symbolic algebra

1 Introduction

Suppose we wish to predict the behaviour of some physical system so that (for
example) we can investigate the system’s response to novel situations. Should
we wish to utilise our system knowledge, we would formulate a mathematical
model structure (“structure” for brevity), say S, to represent the system. Broadly
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speaking, a structure has two main parts. The first is a collection of parametric
relationships (e.g. differential equations) relating system features (state vari-
ables, x, which may not be observable), any inputs (or controls, u), and observ-
able quantities (outputs, y). The second is a parameter space Θ. Prior to pre-
dicting system behaviour with S, we must estimate the true parameter vector
θ∗ ∈ Θ from system observations.

Parameter estimation may return multiple (even infinitely-many) equally
valid estimates of θ∗. Inconveniently, distinct estimates may lead S to produce
very different predictions, either for state variables, or for outputs beyond the
range of our data. In such a case, an inability to distinguish between alternative
estimates renders us unable to confidently use S for prediction. Consequently, if
we cannot address the question which motivated our study, our efforts in data
collection and modelling are unproductive.

The problem of non-unique parameter estimates may follow inexorably from
the combination of a study design (including planned inputs), and S. (To explain
further, features of S, such as outputs and initial conditions, may follow from the
study design. We illustrate this effect for an “open-loop” system where outputs
do not influence state variables or inputs in Fig. 1.) If so, we can anticipate this
problem by testing S subject to its planned inputs for the property of structural
global identifiability (SGI). We emphasise that such a test does not require data.
Instead, we assume that “data” is provided by S under idealised conditions. These
conditions depend on the class of structure under consideration. However, typical
assumptions include: an infinite, error-free data record is available; and, our
structure correctly represents the system. When S is an uncontrolled structure,
we also assume that the initial state is not an equilibrium state. Solving algebraic
equations derived from S will show whether it is possible (but not certain) for
us to obtain a unique estimate of θ∗ under our idealised conditions. We do not
expect a better result for real (noisy, limited) data.

There are other potential rewards for testing S for SGI. Test results may
guide the reparameterisation of S into some alternative S′, which may enable
parameter estimation to produce a more favourable result than that achievable
for S. Similarly, when a structure is not SGI under a given experimental design,
one can iteratively examine the potential for alternative designs—which may
produce a modified form of S—to produce more useful results.

Fig. 1. An illustration of how experimental design in the study of an open-loop system
can determine features of a model structure S aiming to represent the system.
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Despite these benefits, the testing of structures for SGI remains uncommon in
various domains. This may reflect the specialised nature of identifiability analy-
sis, which requires skills unlike those employed in mathematical modelling. Based
on experience, we expect that modellers seeking to scrutinise their model struc-
tures will appreciate easy-to-use software tools. We may characterise such tools
as those which do not require a somewhat esoteric knowledge of mathematics,
or extensive experience with a symbolic algebra package.

We shall use procedures written in the Maple 2020 programming language
[8] to illuminate the testing of structures for SGI. We demonstrate key concepts
through a consideration of continuous-time, uncontrolled, linear time-invariant
state-space (henceforth, for brevity, ULTI) structures.1 More particularly, we
consider the “compartmental” (that is, subject to conservation of mass condi-
tions) subclass of ULTI structures, which arise in various modelling applica-
tions. Some standard test methods may not be appropriate for compartmental
structures, which guides our choice of test method here. From an educational
standpoint, testing LTI structures for SGI motivates the study of various topics,
including: systems theory; the Laplace transform; and algebraic equations.

To further extend the value of our procedures, we incorporate these into a
routine which automates the testing of a “parent” structure for SGI, requiring
the user only to define the structure. Further, when used with Maple’s Explore,
this routine permits an interactive assessment of the SGI test results obtained
for variants of the parent structure (where these variants may be determined
by alternative experimental designs). Experimentation only requires the user to
specify (via input boxes) the initial conditions of state variables, and which of
these are observed, producing a modified structure and a new application of the
SGI test. We are unaware of any other software designed for this purpose.

We also intend to assist those conversant with identifiability analysis. We note
recent concerns around reproducibility in computational biology (see, for exam-
ple, Laubenbacher and Hastings [6]). Reproducibility is impeded when symbolic
algebra packages behave inconsistently (as noted for Maple’s assume command
by Armando and Ballarin [1]). We intend that our routines will facilitate the
checking of SGI test results obtained from either an alternative testing method,
or from code written in another language. We also seek to aid reproducibility
with procedures designed to eliminate a source of potential error in structure
specification, or to aid the user in recognising other specification errors. This
can assist the user in checking that test results are relevant to the structure
of interest. Additionally, procedures designed for the analysis of LTI structures,
possibly with appropriate modification, can assist the testing of linear switch-
ing structures (LSSs, which are piecewise LTI) for SGI. (We have explored this
previously in the particular context of structures representing biochemical inter-
actions studied on a flow-cell optical biosensor: [12–15].)

1 Broadly, a state-space structure has features as shown for Structure S in Fig. 1. A
ULTI structure includes a collection of linear, constant-coefficient ordinary differen-
tial equations that describe the time evolution of state variables.
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The remainder of this chapter is organised as follows. We present essential
definitions pertinent to LTI state-space structures, and an outline of concepts
useful in testing a (general state-space) structure for SGI in Sect. 2. We shall
focus on the “transfer function” (TF) approach—one of the earliest methods, yet
found in relatively recent textbooks (e.g. [4]), and one which suits our interest in
compartmental structures. Section 3 summarises our implementation of the TF
approach in Maple 2020 by outlining our procedures and presenting code listings.
We demonstrate the use of our code and its output by application to a test-
case structure in Sect. 4. Section 5 offers concluding remarks. In Appendix 1 and
Appendix 2 we provide the Maple code used to draw a compartmental diagram,
and launch the interactive SGI test, respectively.

We conclude this section by introducing notation.

1.1 Notation

We denote the field of real numbers by R, and its subset containing only positive
(non-negative) values by R+ (R̄+). The natural numbers {1, 2, 3, . . .} are denoted
by N. The field of complex numbers is denoted by C. Given field F and some
indeterminate w, F(w) denotes the field of rational functions in w over F. Given
r, c ∈ N and F, we use F

r×c to denote the set of matrices of r rows and c columns
having elements in F.

We use a bold lower-case (upper-case) symbol such as a (A) to denote a
vector (matrix), and a superscript � associated with any such object indicates
its transpose. Given vector x, ẋ denotes its derivative with respect to time. To
specify the (i, j)-th element of a matrix, say A, we may use a lower-case symbol
such as ai,j , or (A)i,j when this is easier to interpret. For n ∈ N, we use In to
represent the n × n identity matrix.

2 Preliminaries

In this section we present selected concepts necessary for the development to fol-
low. We begin in Sect. 2.1 by introducing features of ULTI structures. In Sect. 2.2
we provide general definitions for structural global identifiability, and outline a
process for testing a general state-space structure for this property. We provide
details of how to adapt this for ULTI structures in Sect. 2.3. These details inform
the Maple code we shall present subsequently.

2.1 Linear Time-Invariant State-Space Structures

LTI state-space structures are appropriate for modelling aspects of various physi-
cal applications. These include quantifying the interconversion of forms of matter
in the pyrolysis of oil-bearing rock (e.g. [16]), or predicting the time evolution
of drug concentrations in distinct compartments (say, tissues) of a living subject
(e.g. Godfrey [5]). A key assumption is that the system’s state variables (say con-
centrations) change (e.g. due to metabolic processes, including elimination from
the system) according to first-order kinetics (for examples, see Rescigno [9]).
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Definition 1. An uncontrolled linear time-invariant (ULTI) state-space
structure M with indices n, k ∈ N and parameter set Θ ⊂ R

p (p ∈ N) has
mappings

A : Θ → R
n×n, C : Θ → R

k×n, x0 : Θ → R
n .

The state variables and outputs at any time belong to the “state space” X = R
n

and “output space” Y = R
k, respectively. Then, given some unspecified θ ∈ Θ,

M has “representative system” M(θ) given by

ẋ(t;θ) = A(θ)x(t;θ) , x(0;θ) = x0(θ) ,

y(t;θ) = C(θ)x(t;θ) .
(1)

An uncontrolled positive LTI state-space structure with indices n, k ∈ N

is a ULTI state-space structure having representative system of the form given
in (1), where states and outputs are restricted to non-negative values. That is,
the structure has X = R̄

n
+ and Y = R̄

k
+.

An uncontrolled compartmental LTI state-space structure with
indices n, k ∈ N is an uncontrolled positive LTI state-space structure composed
of systems having system matrices subject to “conservation of mass” conditions:

– all elements of C are non-negative, and
– for A = (ai,j)i,j=1,...,n,

aij ≥ 0 , i, j ∈ {1, . . . , n} , i �= j ,

aii ≤ −
n∑

j=1
j �=i

aji , i ∈ {1, . . . , n} . (2)

2.2 Structural Identifiability of Uncontrolled Structures

In their consideration of LTI state-space structures, Bellman and Åström [2]
outlined what we may consider as the ‘classical’ approach to testing structures
for SGI. Essentially, this involves solving a set of test equations informed by the
structure’s output, and using the solution set to judge the structure as SGI or
otherwise. We pursue this approach following the treatment of ULTI structures
in [15], which was influenced by Denis-Vidal and Joly-Blanchard [3].

Definition 2 (From Whyte [18, Definition 7]). Suppose we have a structure
of uncontrolled state-space systems M , having parameter set Θ (an open subset
of R

p, p ∈ N), and time set T ⊆ [0,∞). For some unspecified θ ∈ Θ, M has
representative system M(θ), which has state function x(·;θ) ∈ R

n and output
y(·;θ) ∈ R

k. Adapting the notation of Fig. 1 for this uncontrolled case, suppose
that the state-variable dynamics and output of system M(θ) are determined by
functions f(x, ·;θ) and g(x, ·;θ), respectively. Suppose that M satisfies condi-
tions:
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1. f(x, ·;θ) and g(x, ·;θ) are real and analytic for every θ ∈ Θ on S (a connected
open subset of Rn such that x(t;θ) ∈ S for every t ∈ [0, τ ], τ > 0).

2. f(x0(θ), 0;θ) �= 0 for almost all θ ∈ Θ.

Then, for some finite time τ > 0, we consider the set

I(M) �
{

θ
′ ∈ Θ : y(t;θ

′
) = y(t;θ) ∀t ∈ [0, τ ]

}
. (3)

If, for almost all θ ∈ Θ:

I(M) = {θ}, M is structurally globally identifiable (SGI);
I(M) is a countable set, M is structurally locally identifiable (SLI);
I(M) is not a countable set, M is structurally unidentifiable (SU).

In testing structures from various classes (including the LTI class) for SGI
we employ a variant of Definition 2 that is easier to apply. We take advantage of
the fact that certain “invariants”, φ(θ), (see Vajda, [10]), completely determine
our output function. As such, we may replace (the functional equation) Eq. (3)
with a system of algebraic equations in these invariants.

Definition 3 (Whyte [18, Definition 8]). Suppose that structure M satisfies
Conditions 1 and 2 of Definition 2. Then, for some arbitrary θ ∈ Θ, we define

I(M,φ) �
{

θ
′ ∈ Θ : φ(θ

′
) = φ(θ)

}
≡ I(M) , (4)

and determination of this allows classification of M according to Definition 2.

Remark 1. In the analysis of (say, uncontrolled) LSS structures, there are some
subtleties to Definition 3. It is appropriate to consider the response on indepen-
dent time intervals between switching events as the same parameter vector does
not apply across all such intervals. It is appropriate to re-conceptualise invari-
ants as a collection of features across the time domain; each interval between
switching events contributes features which define the structure’s output on that
interval ([12,13]).

When Definition 3 is appropriate for the class of structure at hand, we may
employ this at the end of a well-defined process, which we summarise below.

Proposition 1 (A general algorithm for testing a structure for SGI,
from Whyte [18, Proposition 1]).

Given some model structure M with parameter set Θ, having representative sys-
tem M(θ) for unspecified θ ∈ Θ:

Step 1 Obtain invariants φ(θ): there are various approaches, some having condi-
tions (e.g. that M is structurally minimal, see Remark 2) that may be difficult
to check.

Step 2 Form alternative invariants φ(θ′) by substituting θ′ for θ in φ(θ).
Step 3 Form equations φ(θ′) = φ(θ).
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Step 4 Solve these equations to obtain θ′ ∈ Θ in terms of θ to determine
I(M,φ).

Step 5 Scrutinise I(M,φ) so as to judge M according to Definition 3.

The particularities of Proposition 1 depend on both the class of the struc-
ture under investigation, and the testing method we will employ. In the next
subsection we provide an overview of the TF method, which is appropriate for
the compartmental LTI structures of interest to us here.

2.3 The Transfer Function Method of Testing Uncontrolled LTI
State-Space Structures for SGI

The TF method makes use of the Laplace transform of a structure’s output
function (causing an alternative name, e.g. [5]). As such, it is appropriate to
recall the Laplace transform of a real-valued function.

Definition 4. Suppose some real-valued function f is defined for all non-
negative time. (That is, f : R̄+ → R, t → f(t).) We represent the (unilateral)
Laplace transform of f with respect to the transform variable s ∈ C by

L{f}(s) �
∫ ∞

0

f(t) · e−stdt ,

if this exists on some domain of convergence D ⊂ C.

When applying the TF to the output of a controlled LTI structure, we must
check to ensure that D exists. However, given an ULTI structure having finitely-
valued parameters (a physically realistic assumption), each component of x or
y is a sum of exponentials with finite exponents which depend linearly on t.
As such, the Laplace transform does exist on some domain of convergence, the
specific nature of which is unimportant for our purposes here. (We direct the
reader interested in details to Sects. 2.3.1 and 3.1 of Whyte [18].)

Given ULTI structure S having representative system S(θ) informed by
A(θ) ∈ R

n×n and C(θ) ∈ R
k×n, we may write the Laplace transform of the

output function of S(θ) as:

L{y(·;θ)}(s;θ) = H2(s;θ) , (5)

where (5) exists on domain of convergence C0, and the “transfer matrix” is2

H2(s;θ) � C(θ)
(
sIn − A(θ)

)−1

x0(θ) ∈ R(s)k×1 . (6)

The elements of H2 (“transfer functions”) are rational functions in s. We refer
to these functions as “unprocessed” if we have not attempted certain actions. We
must undertake one or more of these in order to obtain invariants from H2 for
testing S for SGI. We shall describe these steps and their result for the case of
compartmental ULTI structures in the following definition.
2 We have adapted the notation of [11, Chapter 2] to include x0, as otherwise initial-

condition parameters do not appear in the SGI test.
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Definition 5 (Canonical form of a transfer function (adapted from [18,
Definition 9])). Given compartmental ULTI structure S of n ∈ N states, sup-
pose that associated with S(θ) is a transfer matrix H2 (as in (6)), composed of
unprocessed transfer functions. (Recall that we know L{y} exists on some domain
C0 ⊂ C, and hence that H2 is defined.) Given element (H2(s;θ))i,j ∈ C(s), we
must cancel any common factors between the numerator and denominator poly-
nomials (“pole-zero cancellation”). Following this, we may choose to obtain the
associated transfer function in “canonical form” by rewriting it to ensure that
the denominator is monic. The result is an expression of the form:

(H2(s;θ))i,j =
ωi,j,r+p(θ)sp + · · · + ωi,j,r(θ)

sr + ωi,j,r−1(θ)sr−1 + · · · + ωi,j,0(θ)
, ∀s ∈ C0 ,

r ∈ {1, . . . , n} , p ∈ {0, . . . , r − 1} .

(7)

The coefficients ωi,j,0, . . . , ωi,j,r+p in (7) contribute invariants towards φ(θ).
We may prefer to retain a non-monic denominator if this is desirable, such

as when coefficients of s are polynomial in θ, but would not be if the denominator
was rewritten to become monic. Given a non-monic denominator, we obtain all
coefficients of the transfer function to use as invariants. In our procedures we
give the user choice on whether or not to require that transfer functions have
monic denominators.

Remark 2. Various approaches to testing an LTI structure S for SGI (e.g. the
similarity transform method) are only applicable to a “structurally minimal” S.
We see that S is not structurally minimal if we can reduce it to a structure S̃ of
n1 < n state variables (and, say, parameter set Θ̃) where, for almost all θ ∈ Θ,
there is some θ̃ ∈ Θ̃ such that the outputs of S(θ) and S̃(θ̃) are identical. The
TF method has the advantage of not requiring structural minimality. Instead,
undertaking any possible pole-zero cancellation in transfer functions (as required
by Definition 5) allows the test to access the parameter information available in
a structurally minimal form of S.

In the testing of an uncontrolled LSS structure for SGI using procedures
presented here, checking for pole-zero cancellation in the constituent LTI struc-
tures in effect after the first switching event is typically not trivial. This has
led to indirect ([14]) and direct ([15]) approaches involving far greater algebraic
complexity.

In the next section we present the Maple procedures we shall use in testing
a ULTI structure for SGI. The source code is available for download from [17].

3 An Implementation of the Transfer Function Method
for Uncontrolled LTI State-Space Structures

In Sect. 3.1 we show our procedures for an implementation of the TF method in
order of use (according to a general scheme such as Proposition 1), and explain
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certain key features in our specific context. In Sect. 3.2 we combine these com-
ponent procedures into a complete SGI test procedure. We validated our pro-
cedures by applying them to structures scrutinised in the literature (e.g. two
variants of a three-compartment LTI structure in DiStefano [4, Example 10.3]),
and confirming that our results were equivalent.

3.1 Component Procedures

Procedures process_matrix (Listing 1.1), collect_invariants (Listing 1.2)
and identifiability_eqn_list (Listing 1.4) were adapted from Maple 2015
([7]) routines presented in Whyte [15, Appendix B]. Here we have updated those
original routines for Maple 2020 [8]. We have also taken steps to make the orig-
inal routines more efficient and concise, such as by replacing some loops with
map commands, or using more appropriate types of data structures. Further,
we have improved upon process_matrix; previously the routine merely flagged
a non-monic denominator in a transfer function. The revised procedure uses
the logical parameter canonical_form, which specifies whether or not transfer
function denominators should be made monic. This choice may influence the pro-
cedure’s output: a processed transfer function matrix. As this matrix is passed
to collect_invariants, we have adapted this procedure accordingly.

Remark 3. Aside from its role in the ‘classical’ approach to testing structures
for SGI, historically there was another reason to ensure that each transfer func-
tion had a monic denominator. This step enabled the comparison of elements
of transfer matrices drawn from two different structures. If each pair of ratio-
nal functions have the same coefficients, then the two structures produce the
same output. (Finding the parameter vectors which cause this equality relates
to whether or not two structures have the property of “structural indistinguisha-
bility”, a generalisation of structural identifiability; we test for the former using
methods similar to those used for the latter.) However, given the symbolic alge-
bra packages available now, monic denominators are not essential. Our code
permits the user to allow non-monic denominators in transfer functions by set-
ting canonical_form:=false.

Procedure process_matrix (Listing 1.1, the start of Step 1 of Proposi-
tion 1 in this setting) prepares the transfer matrix associated with a structure
S (transfer_matrix) for the extraction of invariants. (Recall the discussion in
Sect. 2.3.) The sort_order list parameter directs sort in how to order param-
eters and the complex variable (say s) which appear in the processed transfer
functions. For each of these, the procedure returns the numerator and denomi-
nator polynomials, stored in a matrix.

Listing 1.1. Procedure process_matrix for processing a matrix of transfer functions
obtained from a LTI structure to enable the subsequent extraction of invariants.
1 process_matrix :=proc ( sort_order : : l i s t (symbol ) , t rans fer_matr ix : : Matrix ,

canonical_form : : truefalse , s : : symbol:=" s " , $ )
2 local i :=0 , j :=0 , colMAX , rowMAX, current_element , leading_denom_coeff ,

processed_matrix , new_numer , new_denom ;
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3 description "Prepare matr i ces o f t r a n s f e r f unc t i on s f o r ex t r a c t i on o f
i nva r i an t s . This i nvo l v e s pole−zero canc e l l a t i on , and conver s ion o f
t r a n s f e r f unc t i on s in to t h e i r canon i ca l form (by ensur ing denominators
are monic ) i f ' ' canonical_form ' ' i s s e t to t rue . " ;

4 rowMAX, colMAX:=LinearAlgebra [ Dimensions ] ( t rans fer_matr ix ) ;
5 processed_matrix :=Matrix (rowMAX, colMAX) ;
6 for i to rowMAX do ;
7 for j to colMAX do ;
8 current_element :=normal ( t rans fer_matr ix [ i , j ] ) ;
9 leading_denom_coeff := l coe f f (denom( current_element ) , s ) ;

10 i f ( canonical_form=true and leading_denom_coeff <>1) then new_numer:=eval

(numer( current_element ) / leading_denom_coeff ) ;
11 new_denom:=eval (denom( current_element ) / leading_denom_coeff ) ;
12 else new_numer:=numer( current_element ) ;
13 new_denom:=denom( current_element ) ;
14 f i ;
15 new_numer:= sort ( col lect (new_numer , s ) , sort_order , p lex ) ;
16 new_denom:= sort ( col lect (new_denom , s ) , sort_order , p lex ) ;
17 processed_matrix [ i , j ] := [ new_numer , new_denom ] ;
18 od ;
19 od ;
20 return processed_matrix ;
21 end proc ;

Procedure collect_invariants (Listing 1.2, the conclusion of Step 1 of
Proposition 1) extracts the coefficients from a processed transfer matrix, includ-
ing the invariants. (Later in Listing 1.6 we process the returned object to disre-
gard any numeric coefficients.)

Listing 1.2. Procedure collect_invariants which extracts the invariants from a
processed transfer matrix.
1 c o l l e c t_ i nva r i a n t s :=proc ( processed_matrix : : Matrix , s : : symbol , $ )
2 local i :=0 , j :=0 , colMAX , rowMAX, l a t e s t , c o e f f_se t :={} ,

element_numer_coeffs , element_denom_coeffs ;
3 description "Extract the i nva r i an t s from a matrix o f t r a n s f e r

f unc t i on s placed in the canon i ca l form . " ;
4 rowMAX, colMAX:=LinearAlgebra [ Dimensions ] ( processed_matrix ) ;
5 for i from 1 to rowMAX do ;
6 for j from 1 to colMAX do ;
7 l a t e s t :={};
8 element_numer_coeffs :={ coef fs ( processed_matrix [ i , j ] [ 1 ] , s ) } ;
9 element_denom_coeffs :={ coef fs ( processed_matrix [ i , j ] [ 2 ] , s ) } ;

10 l a t e s t :=element_numer_coeffs union element_denom_coeffs ;
11 co e f f_se t := coe f f_se t union l a t e s t ;
12 od ;
13 od ;
14 return map(primpart , c o e f f_se t ) ;
15 end proc ;

The procedure theta_prime_creation (Listing 1.3, the start of Step 2 of
Proposition 1) is new. This routine intends to remove a point in SGI analysis
at which human error could cause a mismatch between the ordering of param-
eters in θ and θ′, potentially causing an inaccurate test result. The list of the
structure’s parameters theta is modified to return the alternative parameter
list theta_prime. This process ensures that there is a clear relationship between
corresponding elements of θ and θ′ (to aid interpretation of (4)), and the corre-
spondences are correct. When theta_mod_type equals “underscore”, an element
of theta_prime is defined by adding an underscore suffix to the correspond-
ing theta element (line 6). Alternatively, when theta_mod_type equals “Caps”
theta_prime is populated by capitalised versions of theta (line 7). This option



420 J. M. Whyte

is appropriate when theta only contains entries which begin with a lower-case
alphabetic character.

Listing 1.3. Procedure theta_prime_creation creates a recognisable alternative
parameter from each element of the original parameter vector θ.
1 theta_prime_creation :=proc ( theta : : l i s t (symbol ) , theta_mod_type : : identical ( "

underscore " , "Caps" ) :="Caps" , $ ) : : l i s t (symbol ) ;
2 local i , theta_prime , common_params ;
3 description "A l i s t o f symbols theta i s modi f i ed to c r ea t e l i s t theta_prime

such that the connect ion between o r i g i n a l and a l t e r n a t i v e parameters i s
apparent . For theta_mod_type= ' 'Caps ' ' ( the d e f au l t ) , modify to upper

case . For theta_mod_type= ' ' underscore ' ' , append an underscore (_) to
each symbol . To s p e c i f y a subsc r ip t ed parameter in theta , use two
underscores , e . g . k__1, not k [ 1 ] . " ;

4 theta_prime :=Array( theta ) ;
5 for i from 1 to numelems( theta ) do ;
6 i f ( theta_mod_type=" underscore " ) then theta_prime [ i ] := convert ( St r ingToo l s [

I n s e r t ] ( theta [ i ] , length ( theta [ i ] ) , "_" ) ,symbol ) ;
7 e l i f ( theta_mod_type="Caps" ) then theta_prime [ i ] := convert ( St r ingToo l s [

UpperCase ] ( theta [ i ] ) , symbol ) ; f i ;
8 od ;
9 # Check that the use o f theta_mod_type has c reated elements o f theta_prime

which d i f f e r from a l l e lements o f theta . ( For example , us ing
theta_mod_type="Caps " , i f theta conta ined upper−case symbols , then ,
inappropr i a t e l y , theta_prime would a l s o conta in these . )

10 common_params:=convert ( theta , set ) intersect convert ( theta_prime , set ) ;
11 i f (numelems(common_params) >0) then error " Inappropr ia t e theta parameter ( s )

f o r nominated theta_mod_type : " , common_params f i ;
12 return convert ( theta_prime , l i s t ) ;
13 end proc ;

Procedure identifiability_eqn_list (Listing 1.4, concluding Step 2 and
Step 3 of Proposition 1) uses the structure’s invariants φ(θ), and parameter
vectors θ and θ′, and returns the necessary SGI test equations φ(θ) = φ(θ′).

Listing 1.4. Procedure identifiability_eqn_list forms the SGI test equations.
1 i d e n t i f i a b i l i t y_ e qn_ l i s t :=proc ( i n va r i an t s : : l i s t , theta : : l i s t (symbol ) ,

theta_prime : : l i s t (symbol ) , $ )
2 description "Use a s t ruc ture ' s i n va r i an t s in forming equat ions

nece s sa ry f o r the s t r u c t u r a l g l oba l i d e n t i f i a b i l i t y t e s t . " ;
3 return i n v a r i an t s =~ subs ( theta =~ theta_prime , i n va r i an t s ) ;
4 end proc ;

Procedure classify_solutions (Listing 1.5) is also new. It addresses Step 5
of Proposition 1 by scrutinising the solutions of the SGI test equations.

Listing 1.5. Procedure classify_solutions classifies the structure as SGI, SLI, SU,
or "unknown" if classification is not possible.
1 c l a s s i f y_ s o l u t i o n s := proc ( s o l s e t : : l i s t , theta : : l i s t (symbol ) , theta_prime : :

l i s t (symbol ) , $ )
2 local num_soln_families :=numelems( s o l s e t ) , i , l h s i d e s , rh s ide s ,

free_param_by_soln :=Vector ( num_soln_families ) , c l a s s i f i c a t i o n :=[ "
Unknown : i n sp e c t s o l u t i o n s " ,magenta ] , d i f f e r e n c e , RootOf_check ,
RootOf_count ;

3 description "Use the s o l u t i on s e t o f the SGI t e s t equat ions in c l a s s i f y i n g
the s t ru c tu r e under i n v e s t i g a t i o n . " ;

4 # I n i t i a l l y the s t ru c tu r e i s u n c l a s s i f e d . I t i s SGI i f there i s exac t l y one
s o l u t i on family , and i t i s theta_prime equa l s theta .

5 i f ( num_soln_families =1 and verify ( s o l s e t [ 1 ] , theta_prime=~theta )=true ) then

c l a s s i f i c a t i o n :=[ "SGI" , green ] ; return ( c l a s s i f i c a t i o n ) ; f i ;
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6 # The s t ru c tu r e i s SU i f any o f the s o l u t i on f am i l i e s conta in f r e e
parameters . I f so , the d i f f e r e n c e o f the l e f t and r ight−hand−s i d e s o f
an equat ion in s o l s e t i s zero . Look f o r f r e e parameters over each
s o l u t i on fami ly in s o l s e t in turn . As soon as we f i nd a f r e e parameter ,
c l a s s i f y the s t ru c tu r e as SU and ex i t the rout ine .

7 for i from 1 to num_soln_families do ;
8 l h s i d e s := map( lhs , s o l s e t [ i ] ) ;
9 r h s i d e s := map( rhs , s o l s e t [ i ] ) ;

10 d i f f e r e n c e := simplify ( l h s i d e s − r h s i d e s ) ;
11 free_param_by_soln [ i ] := select ( x −> x = 0 , d i f f e r e n c e ) ;
12 i f (numelems( free_param_by_soln [ i ] ) >0) then c l a s s i f i c a t i o n :=[ "SU" , red ] ;

return ( c l a s s i f i c a t i o n ) ; f i ;
13 od ;
14 # I f the f low has continued to t h i s point , any s o l u t i on fami ly in s o l s e t

does not have f r e e parameters ( not SU) and does not have a unique
s o l u t i on ( not SGI) . I f the re are mul t ip l e f am i l i e s , or a fami ly
conta ins roots , the s t ru c tu r e i s SLI .

15 i f ( num_soln_families > 1) then c l a s s i f i c a t i o n := [ "SLI ( mul t ip l e s o l u t i o n s ) "
, ye l low ] ; return ( c l a s s i f i c a t i o n ) ; f i ;

16 # I f we reach t h i s point , we have a s i n g l e s o l u t i on fami ly . Does i t conta in
roo t s ?

17 r h s i d e s := map( rhs , s o l s e t ) ;
18 RootOf_check:= map( type , rh s ide s ,RootOf) ;
19 RootOf_count := select ( x −> x = true , RootOf_check ) ;
20 i f (RootOf_count >0) then c l a s s i f i c a t i o n :=[ "SLI ( s o l u t i on conta ins 'RootOf ' )

" , ye l low ] ; return ( c l a s s i f i c a t i o n ) ; f i ;
21 # I f we reach t h i s point , we have not c l a s s i f i e d the s t ru c tu r e .
22 return ( c l a s s i f i c a t i o n ) ;
23 end proc ;

Remark 4. The procedures classify_solutions, identifiability_eqn_list,
and theta_prime_creation are not restricted to use in testing LTI structures for
SGI. Also, each of the procedures in this section may be used in testing a controlled
LTI state-space structure for SGI.

In the next subsection we combine our component procedures into a complete
procedure for testing a ULTI state-space structure for SGI. Subsequent use of this
with Explore allows us to interactively test a parent structure and its variants.

3.2 A Complete SGI Test Procedure for ULTI State-Space
Structures

Given some defined structure, Listing 1.6 forms the transfer matrix H2(s;θ),
then draws on Listings 1.1 to 1.5 in applying steps of the SGI test. We call
our procedure Uncontrolled_Lin_Comp_Fig (Appendix 1) to draw a (modified)
compartmental diagram associated with the structure as part of the output,
which also shows θ, θ′, the solution set of the SGI test Eqs. (4), and a classifi-
cation of the structure. Use of the procedure via Listing 1.8 produces text-input
boxes which permit the user to modify values of observation gains (elements of
C) and initial conditions. Also, drop-down menus permit the user to select the
value of theta_mod_type used in creating θ′, or the select the diagram layout
style from the options provided by DrawGraph.

Listing 1.6. Explore_SGI_test combines routines from Section 3.1 resulting in a
procedure suitable for testing an ULTI structure for SGI.
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1 Explore_SGI_test :=proc (A : : Matrix , obs_gains : : l i s t , ICs : : l i s t ,
outflow_params : : l i s t , layout_sty le , theta_mod_type : : identical ( "
underscore " , "Caps" ) , s : : symbol , canonical_form : : truefalse ,
t r a c i ng : : truefalse , $ )

2 local C, n , x0 , x_colour , y_colour , outgraph , G, prel im1 , H2 , H2_proc ,
theta , sort_order , c o e f f_co l l e c t i o n , ph i_ l i s t , i , eqn_l ist ,

ph i1vec_l i s t , new_list , theta_prime , s o l s e t , c l a s s i f i c a t i o n ,
solset_Matrix , textmatr ix , t extp lo t1 , t extp lo t2 , t e x tp l o t 3 ;

3 description "A procedure ( f o r use with Explore ) to a l low i n t e r a c t i v e
t e s t i n g o f a parent ( cont inuous time , uncontro l l ed , l i n e a r , time−
i n va r i an t s tate −space s t r u c tu r e and va r i an t s der ived from i t . The
user c r e a t e s va r i an t s by s e t t i n g the s t ruc ture ' s i n i t i a l

c ond i t i on s ( ICs ) or obse rvat i on ga ins ( obs_gains ) to constants ,
i n c l ud ing zero . The output i n c l ude s the o r i g i n a l parameters theta
and a l t e r n a t i v e parameters theta_prime , the s o l u t i o n s e t o f the

t e s t equat ions , and a type o f compartmental diagram showing the
dependenc ies between outputs and s t a t e v a r i a b l e s . " ;

4 interface ( r t a b l e s i z e = 15) ;
5 C:=LinearAlgebra [ DiagonalMatrix ] ( obs_gains ) ;
6 n:=LinearAlgebra [ RowDimension ] (A) ;
7 x0:=Vector [ column ] ( ICs ) ;
8 x_colour :="LightBlue " ;
9 y_colour :="LightGreen" ;

10 outgraph :=Uncontrolled_Lin_Comp_Fig (A, C, x0 , x_colour , y_colour ,
outflow_params , t r a c i ng ) ;

11 G:=GraphTheory [ DrawGraph ] ( outgraph , layout=layout_sty le , s t y l e s h e e t =[
v e r t exh i gh l i gh tbo rde r=fa lse , ve r texborder=fa l se ] ) ;

12 pre l im1 :=LinearAlgebra [ MatrixAdd ] ( LinearAlgebra [ Ident i tyMatr ix ] ( n) , A,
s , −1) ;

13 H2:=LinearAlgebra [ Mult ip ly ] (C, LinearAlgebra [ Mult ip ly ] ( LinearAlgebra [
Matr ixInverse ] ( pre l im1 ) , x0 ) ) ;

14 # Ensure that we have a t r a n s f e r matrix , not a s c a l a r ( as could happen
when C i s a row vector ) or a vec tor

15 i f ( type (H2 , `+`)=true ) then H2:=convert ( [H2 ] , Matrix ) ; else
16 H2:=ArrayTools [ Reshape ] (H2 , [ n , 1 ] ) ; f i ;
17 theta :=convert ( `union ` ( indets (A) , indets ( x0 ) , indets (C) ) , l i s t ) ;
18 sort_order :=[ s , op( theta ) ] ;
19 H2_proc:=process_matrix ( sort_order ,H2 , canonical_form , s ) ;
20 c o e f f_ c o l l e c t i o n :=convert ( c o l l e c t_ i nva r i a n t s (H2_proc , s ) , l i s t ) ;
21 # Here r e t a i n only the c o e f f i c i e n t s that depend on system parameters :

exc lude e lements that are type numeric .
22 ph i_ l i s t :=remove( type , c o e f f_co l l e c t i o n ,numeric ) ;
23 theta_prime := theta_prime_creation ( theta , theta_mod_type ) ;
24 eqn_l i s t := i d e n t i f i a b i l i t y_ e qn_ l i s t ( ph i_l i s t , theta , theta_prime ) ;
25 s o l s e t := solve ( eqn_l ist , theta_prime ) ;
26 c l a s s i f i c a t i o n := c l a s s i f y_ s o l u t i o n s ( s o l s e t , theta , theta_prime ) ;
27 so l set_Matr ix :=convert ( s o l s e t ,Matrix ) ;
28 # Display the outputs as an array o f ob j e c t s .
29 textmatr ix :=Matrix ( [ [ " theta " ,op( theta ) ] , [ " theta_prime" ,op( theta_prime )

] ] ) :
30 t ex tp l o t 1 := p l o t s [ t e x tp l o t ] ( [ 0 , 0 , textmatr ix ] , axes=none ) :
31 t ex tp l o t 2 := p l o t s [ t e x tp l o t ] ( [ 0 , 0 , so l set_Matr ix ] , axes=none , t i t l e="

So lu t i on s f o r theta_prime in terms o f theta " ) :
32 t ex tp l o t 3 := p l o t s [ t e x tp l o t ] ( [ 0 , 0 , c l a s s i f i c a t i o n [ 1 ] , ' font '=[ " t imes " , "

roman" , 2 0 ] ] , axes=none , t i t l e=" Structure c l a s s i f i c a t i o n : " ,
background=c l a s s i f i c a t i o n [ 2 ] ) :

33 p l o t s [ d i sp l ay ] (Array ( 1 . . 4 , 1 . . 1 , [ [ t e x tp l o t 1 ] , [ t e x tp l o t 2 ] , [G] , [
t e x tp l o t 3 ] ] ) ) ;

34 end proc ;

4 Towards Interactive Inspection of the Effect of
Changing Experimental Designs on the SGI Test

We consider a parent compartmental ULTI state-space structure (as in Defini-
tion 1) of three compartments, as we may find in pharmacological applications.
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We assume that we can observe each state variable. We may obtain simpler vari-
ants of the structure (reflecting changes to the experimental design, but not the
nature of the physical system) by setting any parameter in x0 or C to a non-
negative constant. We employ notation for parameters in A (rate constants)
common to pharmacological applications: kij , (i �= j, j �= 0) relates to the flow
of mass from xj to xi, and k0j relates to the outflow of mass from xj to the
environment (see Godfrey [5, Chapter 1].)

We specify the structure by:

x(·;θ) =
⎡

⎣
x1(·;θ)
x2(·;θ)
x3(·;θ)

⎤

⎦ , x0(θ) =

⎡

⎣
x01

x02

x03

⎤

⎦ , y(·;θ) =
⎡

⎣
y1(·;θ)
y2(·;θ)
y3(·;θ)

⎤

⎦ ,

A(θ) =

⎡

⎣
−(k21 + k01) k12 0

k21 −(k12 + k32) k23
0 k32 −k23

⎤

⎦ , C(θ) =

⎡

⎣
c1 0 0
0 c2 0
0 0 c3

⎤

⎦ ,

(8)

where the parameter vector is

θ =
(
k01 k12 k21 k23 k32 x01 x02 x03 c1 c2 c3

)� ∈ R̄
11
+ .

For simplicity, we have chosen to consider a parent structure that has a
diagonal C. By setting any ci = 0 (i = 1, 2, 3), we readily produce an alterna-
tive structure (associated with an alternative experimental design) which mod-
els observations that are independent of xi. For drawing the compartmental
diagram associated with the parent structure or its variants (using procedure
Uncontrolled_Lin_Comp_Fig, Appendix 1), A directs us to record the parame-
ters associated with flows out of the system with outflow_params �

[
k01, 0, 0

]
.

Figure 2 shows the SGI test results (the result sections of the Explore win-
dow) for the parent structure illustrated by (8). The top panel shows θ and
θ′ for ease of comparison. The third panel presents a compartmental diagram
of the structure under consideration. The bottom panel shows the structure’s
classification.

The second panel shows the solution set of the test equations. Here we see that
some parameters are uniquely identifiable (e.g. K01 = k01). Other parameters are
free (e.g. X20 = X20), leading to the structure’s classification as SU. The solution
also provides other insights. We note that we may rearrange the expression for
C1 to yield C1X20 = c1x20. That is, whilst we cannot uniquely estimate c1 and
x20 individually, we may be able to obtain a unique estimate of their product.
This insight may guide the reparameterisation of the parent structure so as to
remove one contributor to the structure’s SU status.

We can readily consider variants of the parent structure. Using the appro-
priate input box on the Explore dashboard, setting c1 = 1 results in an SGI
structure. Alternatively, modifying the parent structure by setting c1 = c2 = 1
and c3 = 0 yields an SLI structure.
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Fig. 2. Key features of the output window produced by application of Maple’s Explore
to Explore_SGI_test (Listing 1.6) in the study of our parent structure having repre-
sentative system (8).

Remark 5. Our procedures were designed for ULTI structures, however, we can
also accommodate the experimental case where the initial condition of any state
variable is set by an impulsive input, and there are no other applied inputs.

5 Concluding Remarks

We have presented Maple 2020 code to allow the interactive testing of a parent
ULTI structure and its variants for SGI. Whilst we believe this to be a novel
contribution, there are still opportunities to improve upon the presentation here.
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– We used the workaround of an Array so that Explore could display mul-
tiple objects (not merely test results) in our interactive panel. This choice
limited our control over object layout. Our presentation may be improved by
designing an interactive application which uses “embedded components”.

– A diagram produced by Uncontrolled_Lin_Comp_Fig will be more informa-
tive if it could show each edge labelled with the appropriate parameter. At
present, DrawGraph is limited to showing numerical weights on edges. Hence,
it will be useful to produce a new procedure (based on DrawGraph) that does
not have this restriction.

We also see opportunities to further the contributions of this chapter. An
extension of Uncontrolled_Lin_Comp_Fig to suit controlled LTI structures will
require modifications to include the influence of inputs on states. Certain com-
plexities in the testing of controlled structures (see [18, Section 4]) will necessitate
substantial changes to how our interactive application processes arguments. For
example, it may be desirable to consider an SGI test where output is available for
(the often realistic case of) a limited number of inputs that do not permit us to
obtain the structure’s invariants. The testing of structures of non-linear systems
for SGI will require new methods for extracting invariants, and for displaying
any edges which depend on state variables in a non-linear manner.
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code (for LATEX’s listings package) by Maplesoft’s Erik Postma. Appreciation also goes
to an anonymous reviewer for helpful comments which informed or inspired various
improvements to the original Maple code.

Appendix 1 Maple Code for Drawing a Modified
Compartmental Diagram

We use Listing 1.7 in drawing a modified compartmental diagram of the model
structure currently under investigation. When the Explore window associated
with Listing 1.8 is launched, the diagram displayed is updated in response to
user selections from the drop-down “layout” menu or changes to the input boxes
which set parameter values.

Listing 1.7. Maple code which uses the definition of a model structure and some user-
specified parameters drawn from this in drawing a modified compartmental diagram
1 Uncontrolled_Lin_Comp_Fig :=proc (A : : Matrix , C : : Matrix , x0 : : Vector , x_colour : :

string , y_colour : : string , outflow_params : : l i s t , t r a c i ng : : truefalse , $ )
2 local AugmentedA , Cmod, num_xy, zero_row_padding , AdjacencyA , AugA_rows ,

outflow_mat , outf low_detect , outf low_col , outflow_det_cols , AugA_cols ,
i , j , m, n , x0_l ist , xseq , xvertex_colour ing , yvertex_colour ing ,
vertex_colour ing , num_outflows , out f low_labe l s , num_outrows , x l abe l s ,
y l abe l s , outf low_tag_indices , l a b e l s_ l i s t , G, out f low_indices ,
out f low_colour ;

3 description "Combine matr i ces A and C and i n i t i a l s t a t e vector x0 o f a
de f ined l i n e a r time−i nva r i an t continuous−time s t ru c tu r e to produce a
diagram showing i n t e r c onne c t i on s o f s t a t e v a r i a b l e s ( x ) , i n i t i a l
cond i t i ons , out f lows , and dependence o f outputs (y ) on x . " ;
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4 n:=LinearAlgebra [ RowDimension ] (A) ;
5 i f ( type (C, Vector [ row ] )=true ) then Cmod:=convert (C,Matrix ) ;
6 else Cmod:=C; f i ;
7 m:=LinearAlgebra [ RowDimension ] (Cmod) ;
8 # As A i s s p e c i f i e d us ing the compartmental model l ing convention , cons t ruc t

an adjacency matrix from transpose (A) . This a l l ows us to use the
convent ions o f graph theory , and hence Maple ' s GraphTheory without
mod i f i c a t i on .

9 AugmentedA:=LinearAlgebra [ Transpose ] (A) ;
10 # Add to AugmentedA new columns showing dependence o f y on x .
11 AugmentedA:=<AugmentedA | LinearAlgebra [ Transpose ] (Cmod) >;
12 num_xy:=LinearAlgebra [ ColumnDimension ] ( AugmentedA) ;
13 zero_row_padding :=LinearAlgebra [ ZeroMatrix ] (m, num_xy) ;
14 AugmentedA:=<AugmentedA , zero_row_padding >;
15 i f ( t r a c i ng=true ) then print ( "AugmentedA with outputs " , AugmentedA) ; f i ;
16 # Note out f lows by the presence o f outflow_params in A' s main d iagona l .
17 i f ( outflow_params <>[]) then

18 AugA_rows:=LinearAlgebra [ RowDimension ] ( AugmentedA) ;
19 outflow_mat :=Matrix (AugA_rows , 0 ) ;
20 for i from 1 to n do ;
21 outf low_detect :={−outflow_params [ i ] } intersect {op(A[ i , i ] ) } ;
22 i f ( outf low_detect <>{}) then outf low_col :=Matrix (AugA_rows , 1 ) ; outf low_col [ i

, 1 ] :=op( outf low_detect ) ; outflow_mat:=<outflow_mat | outf low_col >; f i ;
od ;

23 i f ( t r a c i ng=true ) then print ( "outflow_mat" , outflow_mat ) ; f i ;
24 # Append th i s to AugmentedA to add columns f o r the out f l ows ; each ge t s a

node , made i n v i s i b l e l a t e r .
25 AugmentedA:=<AugmentedA | outflow_mat >;
26 i f ( t r a c i ng=true ) then print ( "AugA with out f l ows " , AugmentedA) ; f i ;
27 # Now add some more zero padding rows
28 outf low_det_cols :=LinearAlgebra [ ColumnDimension ] ( outflow_mat ) ;
29 AugA_cols:=LinearAlgebra [ ColumnDimension ] ( AugmentedA) ;
30 zero_row_padding :=LinearAlgebra [ ZeroMatrix ] ( outflow_det_cols , AugA_cols ) ;
31 AugmentedA:=<AugmentedA , zero_row_padding >;
32 i f ( t r a c i ng=true ) then print ( "AugA f u l l y padded" , AugmentedA) ; f i ;
33 f i ; # end o f block f o r p ro c e s s i ng out f l ows
34 AdjacencyA:=AugmentedA ;
35 # Create an adjacency matrix f o r the graph , s e t t i n g d iagona l e lements to

zero to avoid s e l f −l oops
36 for i to LinearAlgebra [ RowDimension ] ( AdjacencyA ) do ;
37 for j to LinearAlgebra [ ColumnDimension ] ( AdjacencyA ) do ;
38 i f ( AdjacencyA [ i , j ]<>0) then i f ( i=j ) then AdjacencyA [ i , j ] :=0 ;
39 else AdjacencyA [ i , j ] :=1 ; f i ; f i ;
40 od ; od ;
41 # Def ine the co l ou r ing o f v e r t i c e s by type
42 xvertex_colour ing :=seq ( x_colour , 1 . . n ) ;
43 # We need to e s t a b l i s h which outputs are a c t i v e as a r e s u l t o f user inputs .
44 yvertex_colour ing :=seq ( y_colour , 1 . .m) ;
45 vertex_co lour ing :=[ xvertex_colour ing , yvertex_colour ing ] ;
46 # Inc lude any out f low with an " i n v i s i b l e " node .
47 num_outflows:=LinearAlgebra [ ColumnDimension ] ( outflow_mat ) ;
48 i f ( num_outflows>0) then outf low_colour :="white " ;
49 vertex_co lour ing :=[op( vertex_co lour ing ) , seq ( outf low_colour , 1 . . num_outflows )

] ;
50 out f l ow_labe l s := out f low ; f i ;
51 G:=GraphTheory [ Graph ] ( AdjacencyA , v e r t e x c o l o r=vertex_co lour ing ) ;
52 # Customise the vertex l a b e l s
53 xseq :=[ seq ( x [ i ] , i =1. .n ) ] ; xseq :=map( convert , xseq , symbol ) ;
54 x0_l i s t :=convert ( x0 , l i s t ) ; x0_l i s t :=map( convert , x0_l i st , symbol ) ;
55 x l ab e l s :=convert (Vector [ row ] ( n) , l i s t ) ;
56 for i from 1 to n do ; x l a b e l s [ i ] := convert ( St r ingToo l s [ Join ] ( [ xseq [ i ] , x0_l i s t

[ i ] ] , " : " ) ,symbol ) ; od ;
57 i f ( t r a c i ng=true ) then print ( " x l a b e l s " , x l a b e l s ) ; f i ;
58 y l ab e l s :=seq ( y [ i ] , i =1. .m) ;
59 l a b e l s_ l i s t :=[op( x l a b e l s ) , y l a b e l s ] ;
60 i f ( t r a c i ng=true ) then print ( " l a b e l s_ l i s t " , l a b e l s_ l i s t ) ; f i ;
61 i f ( num_outflows>0) then out f low_ind ices :=[ `$` (num_xy+1. .num_xy+num_outflows

) ] ;
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62 outf low_tag_indices :=[ seq ( ` i f ` ( outflow_params [ i ] <> 0 , i , NULL) , i = 1 . .
numelems( outflow_params ) ) ] ;

63 i f ( t r a c i ng=true ) then print ( " outf low_tag_indices " , outf low_tag_indices ) ; f i

;
64 l a b e l s_ l i s t :=[op( l a b e l s_ l i s t ) , seq ( o [ i ] , i=outf low_tag_indices ) ] ;
65 i f ( t r a c i ng=true ) then print ( " f i n a l l a b e l s_ l i s t " , l a b e l s_ l i s t ) ; f i ;
66 f i ;
67 G:=GraphTheory [ Re l abe lVe r t i c e s ] (G, l a b e l s_ l i s t ) ;
68 return G;
69 end proc

Appendix 2 Maple Code to Launch an Explore Window

Listing 1.8 presents the Explore command which launches our interactive SGI
test dashboard by invoking Listing 1.6. Here we consider the case of three
state variables and three outputs; the user can readily change these details.
To explain the parameters: A is the structure’s A(θ), p1, p2, p3 are the obser-
vation gain parameters on the leading diagonal of C(θ), and p4, p5, p6 are
the initial state parameters in x0(θ). Initially, each of p1,. . . ,p6 are assigned
a parameter symbol appropriate for their relationship to θ. Each of these six
parameters may be changed through a text-input box. Parameter p7 supplies
a graph output style understood by DrawGraph, initially (the widely applica-
ble) “default”. Output from other options (such as “spring”) may be easier to
interpret, but return an error when any of p1, p2, or p3 are set to zero, caus-
ing the removal of a link between a state variable and its corresponding out-
put. Parameter p8 takes one of the two pre-defined values for theta_mod_type,
which dictates the method employed in creating theta_prime from theta (used
by theta_prime_creation). The user changes p7 and p8 values by select-
ing an option from the relevant drop-down menu. If logical-type parameter
tracing:=true, Maple will show the output of steps used in constructing the
structure’s compartmental diagram.

Listing 1.8. Maple code using Maple’s Explore with Explore_SGI_routine (Listing
1.6) to produce an interactive panel.
1 Explore ( Explore_SGI_test (A, [ p1 , p2 , p3 ] , [ p4 , p5 , p6 ] , outflow_params , p7 ,

p8 , s , canonical_form , t r a c i ng ) , parameters = [ [ p1 , c o n t r o l l e r =
textarea , l a b e l = "x1 obse rvat i on gain " , placement=l e f t ] , [ p2 ,
c o n t r o l l e r = textarea , l a b e l = "x2 obse rvat i on gain " , placement=l e f t ] , [
p3 , c o n t r o l l e r = textarea , l a b e l = "x3 obse rvat i on gain " , placement=l e f t
] , [ p4 , c o n t r o l l e r = textarea , l a b e l = "x1 i n i t i a l cond i t i on " , placement
=l e f t ] , [ p5 , c o n t r o l l e r = textarea , l a b e l = "x2 i n i t i a l cond i t i on " ,
placement=l e f t ] , [ p6 , c o n t r o l l e r = textarea , l a b e l = "x3 i n i t i a l
cond i t i on " , placement=l e f t ] , [ p7=[ de fau l t , b i p a r t i t e , c i r c l e , planar ,
spe c t r a l , spr ing , t r e e ] , l a b e l=Layout , placement=l e f t ] , [ p8=["Caps" , "
underscore " ] , l a b e l="theta_mod_type" , placement=l e f t ] ] , i n i t i a l v a l u e s = [
p1 = c__1, p2 = c__2, p3 = c__3, p4 = x__10 , p5 = x__20 , p6 = x__30 , p7
= de f au l t ] , s i z e = [650 , 750 ] , e choexpre s s i on = false , i n s e r t = true ,
t i t l e = "A use o f ' Explore ' to i n t e r a c t i v e l y t e s t va r i an t s o f a parent
uncontro l l ed , l i n e a r time−i nva r i an t s t ru c tu r e f o r s t r u c t u r a l g l oba l
i d e n t i f i a b i l i t y " , overview = "Explore i s used to generate the s o l u t i o n s
f o r the t e s t o f a s t ru c tu r e f o r SGI . S ta r t i ng from a parent s t ruc ture ,
by s p e c i f y i n g va lues ( or parameters in theta ) we may change which

s t a t e s are observed , and which have non−zero i n i t i a l c ond i t i on s . " ) ;
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Abstract. In this paper, we show that by using Maple software, some
direct searching computation could derive a solution to Problem 6 of the
1988 International Mathematics Olympiad, which asks to prove that if a
and b are integers such that ab+1 divides a2+b2, then (a2+b2)/(ab+1)
is the square of an integer.

Keywords: International Mathematics Olympiad · Maple software ·
Integer · Square

1 Problem 6 of the IMO 1988

The 29th International Mathematical Olympiad was held on July 9–21, 1988
at Canberra, Australia. 268 contestants from 49 countries participated in the
Olympiad, and 17 people of them got the golden prize. Problem 6 of IMO 1988
was called “The Legend Problem 6 of IMO” (see [1]) since only 11 among 268
participants answered it correctly (that means that they obtained 7 points, the
highest score, for this question), which is significantly lower than the correct
ratios of other problems of this Olympiad and also the problems of other years.
To see this, recall that in this year, the numbers of people (in percentages) who
got 7 points on Problem 1 to Problem 6 are:

36.57%, 26.87%, 11.57%, 24.63%, 32.09%, 4.10%,

and the averages for 1981 to 2000 are as follows:

30.70%, 31.02%, 13.97%, 25.47%, 25.98%, 11.90%,
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Problem 6 of the IMO 1988 reads as follows:

Problem. Let a and b be positive integers such that ab + 1 divides a2 + b2, show
that (a2 + b2)/(ab + 1) is the square of an integer.

There are already many discussions on solving this problem on the internet,
for example, see [2–4]. Most discussions concentrate on training the techniques
for solving this hard IMO problem. In this paper, we show that by using Maple
software as a computation tool for searching solutions of the derived Diophantine
equation

a2 + b2 = k · (ab + 1), (1)

an intuitive approach to the IMO problem can be constructed from the Maple
computation data.

The paper is organized as follows: In Sect. 2 we present a Maple program to
generate solutions to the IMO problem and describe some properties we observed
from the data, in Sect. 3 we give a simple proof for the IMO problem based
on the Maple experiment, in Sect. 4 we construct a recursion formula for the
Diophantine equation related to Problem 6 of IMO 1988.

2 Maple Experiment

The maple computation is starting from the following short program:

Sab:=[]
for a to 1000 do

for b to 1000 do
if a^2+b^2 mod a*b+1 = 0 then

Sab:=[op(Sab),[a,b,(a^2+b^2)/(a*b+1)]]
end if

end do
end do;

Sab

This procedure will yield the following result Sab in 1 s:

[[1, 1, 1], [2, 8, 4], [3, 27, 9], [4, 64, 16], [5, 125, 25],

[6, 216, 36], [7, 343, 49], [8, 2, 4], [8, 30, 4], [8, 512, 64],

[9, 729, 81], [10, 1000, 100], [27, 3, 9], [27, 240, 9], [30, 8, 4],

[30, 112, 4], [64, 4, 16], [112, 30, 4], [112, 418, 4], [125, 5, 25],

[216, 6, 36], [240, 27, 9], [343, 7, 49], [418, 112, 4], [512, 8, 64],

[729, 9, 81], [1000, 10, 100]

]

The list Sab contains 27 integer triples (a, b, k) that satisfies the Diophantine
equation a2 + b2 = k(ab + 1). It is apparent that if (a, b, k) is a solution of this
Diophantine equation, then (b, a, k) is also a solution of the equation. Try the
above program for a from 1 to 10000 and for b from a to 10000, the computation
outputs the following 31 triples in about 93 s:
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[[1, 1, 1], [2, 8, 4], [3, 27, 9], [4, 64, 16], [5, 125, 25], [6, 216, 36],

[7, 343, 49], [8, 30, 4], [8, 512, 64], [9, 729, 81], [10, 1000, 100],

[11, 1331, 121], [12, 1728, 144], [13, 2197, 169], [14, 2744, 196],

[15, 3375, 225], [16, 4096, 256], [17, 4913, 289], [18, 5832, 324],

[19, 6859, 361], [20, 8000, 400], [21, 9261, 441], [27, 240, 9],

[30, 112, 4], [64, 1020, 16], [112, 418, 4], [125, 3120, 25],

[216, 7770, 36], [240, 2133, 9], [418, 1560, 4], [1560, 5822, 4]

]

Do further experiment for a from 1 to 100000 and for b from a to 100000.
Then, the computation took 16990 s (on a desktop computer with Intel R© 2
Duo CPU T7500, 2.0 GB RAM, Maple 15). The results contains 65 solutions
(a, b, k) with a ≤ b. The result can be rearranged into 46 chains G1, G2, . . . , G46

as follows:

G1: [1, 1, 1];

G2: [2, 8, 4]�[8, 30, 4]�[30, 112, 4]�[112, 418, 4]�[418, 1560, 4]

�[1560, 5822, 4]�[5822, 21728, 4]�[21728, 81090, 4];

G3: [3, 27, 9]�[27, 240, 9]�[240, 2133, 9]�[2133, 18957, 9];

G4: [4, 64, 16]�[64, 1020, 16]�[1020, 16256, 16];

G5: [5, 125, 25]�[125, 3120, 25]�[3120, 77875, 25];

G6: [6, 216, 36]�[216, 7770, 36];

G7: [7, 343, 49]�[343, 16800, 49];

G8: [8, 512, 64]�[512, 32760, 64];

G9: [9, 729, 81]�[729, 59040, 81];

G10: [10, 1000, 100]�[1000, 99990, 100];

Gk for k = 11, 12, . . . , 46:

[11, 1331, 121]; [12, 1728, 144]; [13, 2197, 169]; [14, 2744, 196];

[15, 3375, 225]; [16, 4096, 256]; [17, 4913, 289]; [18, 5832, 324];

[19, 6859, 361]; [20, 8000, 400]; [21, 9261, 441]; [22,10648, 484];

[27,19683, 729]; [28,21952, 784]; [29,24389, 841]; [30,27000, 900];

[31,29791, 961]; [32,32768,1024]; [33,35937,1089]; [34,39304,1156];

[35,42875,1225]; [36,46656,1296]; [37,50653,1369]; [38,54872,1444];

[39,59319,1521]; [40,64000,1600]; [41,68921,1681]; [42,74088,1764];

[43,79507,1849]; [44,85184,1936]; [45,91125,2025]; [46,97336,2116];

Note here (a, b, k) ∈ Gp if and only if k = p2, the initial element of the chain Gp

is (p, p3, p2), and (a, b, k) � (a′, b′, k′) if b = a′ and k = k′ (we may call (a′, b′, k′)
the successor of (a, b, k)). From the above data, we can observe the following
facts:
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1. For any positive integer p, the following three integers

a = p, b = p3, k = p2 (2)

form a solution of the Diophantine equation a2 + b2 = k(ab + 1). Indeed, this
property can be verified very easily.

2. It seems that, for any positive integer k, if (a, b, k) is a solution of the Dio-
phantine equation, then there exists an integer c so that c > b and (b, c, k) is
also a solution of the Diophantine equation.

3. Further, if a < b < c and (a, b, k), (b, c, k) are solutions of the Diophantine
equation, then we have

a2 + b2 = k(ab + 1), b2 + c2 = k(bc + 1), (3)

and therefore,

c2 − a2 = kb(c − a), and c = −a + kb. (4)

4. Assume that a < b and k > 1. If (a, b, k) is a solution of a2 + b2 = k(ab + 1),
then

− a + kb ≥ −a + 2b = 2b − a > a. (5)

Let c = −a+kb. Then c > b and (b, c, k) is indeed a solution of the Diophantine
equation, since

b2 + c2 − k(bc + 1) = b2 + (−a + kb)2 − k (b(−a + kb) + 1)
= −abk + a2 + b2 − k = −k(ab + 1) + a2 + b2 = 0. (6)

5. For any integer k with k = p2 where p is an integer with p > 1, a monotonely
increasing sequence of integers:

s1(k) < s2(k) < s3(k) < · · · < sn(k) < · · · ,

can be constructed recursively, from the two initial values

s1(k) = p, s2(k) = p3, (7)

and the following recursive formular

sn+1 = ksn − sn−1, (8)

so that all following triples

(s1(k), s2(k), k), (s2(k), s3(k), k), · · · , (sn(k), sn+1(k), k), · · ·

are solutions of the Diophantine equation a2 + b2 = k(ab + 1).
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3 A Solution to the Problem 6

Based on the observation from the Maple experiment described in the previ-
ous section, now we can give proof to Problem 6 of IMO 1988. Note that from
a solution (a, b, k) (a < b, k > 1) we constructed another solution (b, c, k) so
that b < c, and therefore, an infinitely many “increasing” solutions can be con-
structed. “Decreasing” solutions (but finitely many in this direction) can also be
constructed in a similar way. Namely, we can prove a proposition as follows:

Proposition 1. If a < b, k > 1, and (a, b, k) is a solution of the Diophantine
equation a2 + b2 = k(ab + 1), then (ka − b, a, k) and (b,−a + kb, k) are also
solutions of this equation.

The proof is very easy, so we omit it here. Noticed here we do not need to
assume that k = p2 for some integer p. Let

S(k) :=
{
(a, b, k)|a2 + b2 = k(ab + 1)

}
.

Then Proposition 1 implies that

S(k) �= ∅ =⇒ #S(k) = ∞. (9)

A Solution of the 1988 IMO Problem 6. Define a partial order � on S(k)
as follows: (a1, b1, k), (a2, b2, k) ∈ S(k), then

(a1, b1, k) � (a2, b2, k) ⇔ a1 ≤ a2.

Therefore, for a < b and k > 1, we have

(ka − b, a, k) � (a, b, k) � (b,−a + kb, k). (10)

It is clear that � is also a total order on S(k), since for any given triples
(a1, b1, k), (a2, b2, k) ∈ S(k), we have either (a1, b1, k) � (a2, b2, k) or (a2, b2, k) �
(a1, b1, k). Apparently, the infinite set S(k) has a minimal element in order �,
and (a, b, k) is a minimal solution if and only if ka − b = 0. Thus,

k =
a2 + b2

ab + 1
=

a2 + (ka)2

ka2 + 1
, (11)

which immediately implies that

k(ka2 + 1) = a2 + k2a2, (12)

and hence, k = a2, i.e., k is the square of an integer. �
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4 Recursion Formula for the Diophantine Equation

In the previous section, we have seen that

#S(k) =
{

0, if k �= p2,
∞, if k = p2,

(13)

and, for k = p2 the set S(k) = S(p2) is formed by (sn, sn+1, p
2), n = 1, 2, . . .

with initial values
s1 = p, s2 = p3, (14)

and the following recursion formula

sn+1 = p2sn − sn−1. (15)

A direct way to reconstruct sn is a generating function (cf. [5]). For this, we
may assume that

sn = Axn + Byn, n = 1, 2, . . . , (16)

where x, y are two zeros of the characteristics equation

z2 − p2z + 1 = 0, (17)

that is,

x =
1
2

(
p2 +

√
p4 − 4

)
, y =

1
2

(
p2 −

√
p4 − 4

)
, (18)

and A,B are numbers determined by

A · p2 +
√

p4 − 4
2

+ B · p2 −
√

p4 − 4
2

= p2, (19)

A ·
(

p2 +
√

p4 − 4
2

)2

+ B ·
(

p2 −
√

p4 − 4
2

)2

= p3. (20)

It is easy to learn that

A = −
p2

(
p2 − 2 p −

√
p4 − 4

)

√
p4 − 4

(
p2 +

√
p4 − 4

) , B =
p2

(
p2 − 2 p +

√
p4 − 4

)

√
p4 − 4

(
p2 −

√
p4 − 4

) . (21)

Therefore, we have

sn(p2) = −
p2

(
p2 − 2 p −

√
p4 − 4

)

2n
√

p4 − 4
· (p2 +

√
p4 − 4)n−1

+
p2

(
p2 − 2 p +

√
p4 − 4

)

2n
√

p4 − 4
· (p2 −

√
p4 − 4)n−1. (22)
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The above formula can also be produced by using Maple recurrence equation
solver rsolve directly.

We can also use Maple to construct polynomial form of sn = sn(p2). For this
we can compute sn for n = 3, 4, . . . recursively. The result for n = 3, 4, . . . , 15 is
as follows:

s3 = p5 − p,

s4 = p7 − 2p3,

s5 = p9 − 3p5 + p,

s6 = p11 − 4p7 + 3p3,

s7 = p13 − 5p9 + 6p5 − p,

s8 = p15 − 6p11 + 10p7 − 4p3,

s9 = p17 − 7p13 + 15p9 − 10p5 + p

s10 = p19 − 8p15 + 21p11 − 20p7 + 5p3,

s11 = p21 − 9p17 + 28p13 − 25p9 + 15p5 − p,

s12 = p23 − 10p19 + 36p15 − 56p11 + 35p7 − 6p3,

s13 = p25 − 11p21 + 45p17 − 84p13 + 70p9 − 21p5 + p,

s14 = p27 − 12p23 + 55p19 − 120p15 + 126p11 − 56p7 + 7p3,

s15 = p29 − 13p25 + 66p21 − 165p17 + 210p13120 − p9 + 28p5 − p,

We can find that for a fixed n, sn is a polynomial of p of degree 2n − 1:

sn(p2) = p2n−1 − (n − 2)p2n−5 + · · · =
∑

0≤j<(2n−1)/4

cn,jp
2n−1−4j , (23)

and
cn,1 = −(n − 2), cn,2 =

1
2
(n − 3)(n − 4), (24)

and the absolute values of cn,j for other n, j also appear in the Pascal’s Triangle
(also known as the Yanghui triangle in China). To see this, we display the Pascal’s
Triangle in the following form:

1
1 1
1 2 1
1 3 3 [1]
1 4 [6] 4 1
1 [5] 10 10 5 (1)

[1] 6 15 20 (15) 6 1
1 7 21 (35) 35 21 7 1
1 8 (28) 56 70 56 28 8 1
1 (9) 36 84 126 126 84 36 9 1

(1) 10 45 120 210 252 210 120 45 10 1
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This form of Pascal’s Triangle can be seen in [6]. Some numbers are marked
by brackets [ ] or ( ), we will explain immediately. Looking at the Pascal’s
Triangle in this form as an infinite matrix, we may find that for fixed n, the
absolute values of sn are distributed in a line passing the element 1 at position
(n, 1) and the element n − 2 at position (n − 1, 2). For example, for

s7(p2) = p13 − 5p9 + 6p5 − p, (25)

the absolute values of its coefficients 1, 5, 6, 1, marked by brackets [ ] in the
Pascal’s Triangle, are appearing precisely on a line passing through bracketed
numbers [1], [5], [6], and [1], and the absolute values of the coefficients

s11(p2) = p21 − 9p17 + 28p13 − 25p9 + 15p5 − p, (26)

marked by brackets ( ), are appearing on the line through bracketed numbers
(1), (9), (28), (35), (15) and (1) in the Pascal’s Triangle. The observation
can be summarized as the following proposition:

Proposition 2. Let p > 1 be an integer sn = sn(p2) the sequence constructed
by

s1 = p, s2 = p3, and sn+1 = −sn−1 + p2 · sn.

Then

sn(p2) =
∑

0≤j<(2n−1)/4

(−1)j
(

n − 1 − j

j

)
· p2n−1−4j . (27)

This proposition can be proved by mathematical induction according to s1 =
p, s2 = p3 and sn+1 = p2sn − sn−1. Since our main purpose in this paper is to
give a solution to Problem 6 of the IMO 1988, we leave the proof of Proposition 2
to readers. Note also that from the recursion formula (15) and (14) it is easy to
prove that the sum of the absolute values of coefficients of sn(p2) equals to the
n-th Fibonacci number Fn, i.e.,

s1 = p −→ 1 = 1 = F1,

s2 = p3 −→ 1 = 1 = F2,

s3 = p5 − p −→ 1 + 1 = 2 = F3,

s4 = p7 − 2p3 −→ 1 + 2 = 3 = F4,

s5 = p9 − 3p5 + p −→ 1 + 3 + 1 = 5 = F5,

s6 = p11 − 4p7 + 3p3 −→ 1 + 4 + 3 = 8 = F6,

s7 = p13 − 5p9 + 6p5 − p −→ 1 + 5 + 6 + 1 = 13 = F7,

s8 = p15 − 6p11 + 10p7 − 4p3 −→ 1 + 6 + 10 + 4 = 21 = F8,

s9 = p17 − 7p13 + 15p9 − 10p5 −→ 1 + 7 + 15 + 10 = 34 = F9,

s10 = p19 − 8p15 + 21p11 − 20p7 + 5p3 −→ 1 + 8 + 21 + 20 + 5 = 55 = F10.
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A proof of this fact can be derived from the following equality:

�n/2�∑

j=0

(
n − j

j

)
= Fn+1 (28)

A proof of (28) can be found from Maplesoft’s Application webpage [7].

5 Conclusion

In this paper, we presented a simple Maple program for searching the solution of
the Diophantine equation derived from the IMO 1988 Problem 6, and via obser-
vation of the data, we gave proof to the IMO problem. We also demonstrated a
connection between the general solution of the IMO problem and the Pascal’s
Triangle. The Maple experiment shows that sufficient numeric solutions of a very
difficult Diophantine equation, like Problem 6 of IMO 1988, is very crucial for
making a correct answer to the question.

Acknowledgment. The authors would like to express their appreciation to the anony-
mous reviewers for their valuable comments and suggestions.
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Abstract. The impossible triangle, invented independently by Oscar
Reutersvärd and Roger Penrose in 1934 and 1957, is a famous geometry
configuration that cannot be realized in our living space. Many people
admitted that this object could be constructed in the four-dimensional
Euclidean space without rigorous proof. In this paper, we prove that
the isometric embedding problem can be decided by finite points on the
configuration, then applying Menger and Blumenthal’s classical method
of Euclidean embedding of finite metric space we determined the lowest
Euclidean dimension, and finally using Maple obtained the coordinates
of the isometric embedding. Our investigation shows that the impossible
triangle is impossible to be isometrically embedded in the dimension four
Euclidean space, but there is an isometric embedding to the dimension
five space.

Keywords: Isometric embedding · Impossible triangle · Euclidean
space · Simplex

1 Introduction

The impossible triangle was firstly painted in 1934 by the Swedish painter Oscar
Reutersvärd who was born in 1915 in Stockholm and was trained in arts by a
Russian immigrant professor of the Academy of Arts in St.Petersburg at that
time. Oscar Reutersvärd drew his version of triangle as a set of cubes in parallel
projection, as shown in Fig. 1(left). Actually, he started this figure by placing a
perfect six-pointed star shape in the middle, and around the star, he added nine
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cubes, filling the empty spaces between the stars for creating the 3D illusion. He
soon realized that what he’d drawn was paradoxical: something that couldn’t be
built in the real world. (See [1]).

Reutersvärd was diagnosed with dyslexia at a young age, which prevented
him from accurately estimating the size and distance of objects, but he was
determined to follow in the footsteps of his artistic family. He continued to design
thousands of impossible figures throughout his life. Reutersvärd’s achievements
were honored in 1982 by a series of Swedish postage stamps.

A different version of this impossible triangle was independently created
by the English physicist and mathematician Roger Penrose in 1954. Unlike
Reutersvärd’s figure, he painted triangle as three bars connected with right
angles (later known as the Penrose tribar or Penrose triangle), as shown in
Fig. 1(right).

Fig. 1. (Left): The impossible figure drawn by Oscar Reutersvärd. (Right). The impos-
sible structure in L. S. Penrose and R. Penrose’s article published in 1958 in the British
Journal of Psychology [2].

L. Penrose and R. Penrose sent a copy of the article to M.C. Escher. Note,
neither Penrose nor Escher had known about artworks by Reutersvärd at that
time (cf. [3]). Escher created his famous lithographs “Ascending and Descending”
in 1960 and “Waterfall” in 1961. M.C. Escher provided many popular examples of
impossible figures in his drawings and woodcuts. Perhaps the weirdest structure
to mathematicians is the impossible cube in “Belvedere” (1958) as shown in
Fig. 2(left). To understand impossible figures, we need first to understand two-
dimensional representations of three-dimensional objects. A simple line drawing,
such as the Necker cube illustrated in Fig. 2(right), could be interpreted in two
ambiguous ways. The Belvedere’ toy cube can be regarded as a version of the
Necker cube where the edges cross in inconsistent ways.
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Fig. 2. (Left): The toy cube held in hands of the boy in M.C. Escher’s lithograph
“Belvedere” (1958). (Right): The Necker Cube is first published as a rhomboid in 1832
by Swiss crystallographer Louis Albert Necker. It is a wire-frame drawing of a cube in
isometric perspective. When two lines cross, the picture does not show which is in front
and which is behind, that makes the picture can be interpreted two different ways.

Impossible figures are helpful to psychology research on human visual percep-
tion (see [7]). The Gestalt psychologists used the impossible triangle and cube
to explain the Law of Pragnanz, that the human mind loves to simplify, and
quickly make sense of objects, and therefore, human see the whole image, before
the sum of its parts. This theory emphasizes that human perceives objects as
wholes rather than as parts. On the reverse, they say that the Gestalt approach
to psychology reveals some interesting insights about impossible figures and why
they are so captivating.

Some artists find mind-bending ways to bring the Penrose Triangle and other
impossible figures into three-dimensional reality. They create a clever design on
certain objects so that they look like the proper impossible figure when viewed
from the correct angle. An example is the Impossible Triangle sculpture in Perth,
Australia, shown in Fig. 3, created in November 1999 by artist Brian McKay in
collaboration with architect Ahmad Abas. Another impossible triangle is located
in the center of belgian village Ophoven, built by dutch artist and mathematician
Mathieu Heamekers in 1995.

As we have seen, for the Impossible Triangle sculpture, there are only two
appropriate positions from where people could see the proper Penrose triangle.
It is curious to ask that if there are other ways to install a certain structure,
say, in higher dimensional space, so that people (in the usual three-dimensional
space) can see the impossible figure from a larger viewing angle? The question
can be rephrased more precisely as below: if anybody can build a geometric
configuration in four or higher-dimensional Euclidean space so that people could
see an image of the impossible triangle in the real world?

Some people argued (cf. [4]) that since each local part of the Penrose triangle
is 3-dimensional, so lies in some 3-dimensional subspace, and that the edges are
straight lines, every piece lies on the same 3-dimensional subspace, so if we don’t
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Fig. 3. An Impossible Triangle sculpture was designed by artist Brian McKay and
architect Ahmad Abas, which was built in Claisebrook Square in East Perth, Australia.
It is 13.5 m high, and has remained an East Perth landmark for 20 years.

allow the edges to bend, the figure is also not possible in higher dimensions when
it is not possible in the 3-dimensions.

An opposing viewpoint is that figures like the Penrose triangle which seems
impossible in our three-dimensional space might be possible in the fourth dimen-
sion. For example, Blue Sam [5] indicated as the surface of the Penrose triangle
is (up to taking a smooth approximation at the edges) a smooth 2-manifold, so
by the Whitney Embedding Theorem, it must be embeddable in 5-dimensional
space. Sam also claimed that if we are not bothered about keeping the edges
straight, the embedding can be done in three dimensions, and therefore he
believed in the four dimension space it is possible to construct an embedding
with straight edges. Vlad Alexeev [6] claimed that the bars of a four-dimensional
impossible triangle can be connected at right angles and it will not be distorted
from any point of view as distinct from the three-dimensional impossible trian-
gle. However, to the best of our knowledge, we have not found a rigorous proof
of the embedding neither to 5 nor 4 dimensional space in literature.

In this paper, we will construct an explicit embedding of the Penrose triangle
in the Euclidean space. We will prove that the minimal n for constructing an
isometric embedding of the Penrose triangle in R

n is n = 5. The paper is orga-
nized as follows: In Sect. 2 we show that the embedding problem can be reduced
to a set of finite points, and the finite points can be isometrically embedded into
the Euclidean space R

n with minimal n = 5, in Sect. 3 we solve the system of
equations derived from the reduced embedding problem, so to give an explicit
embedding of the Penrose triangle into R

n for n = 5, in Sect. 4 we present an
intuitive explanation to the five-dimensional configuration of the Penrose trian-
gle, and show an analog isometric embedding of the Möbius band to R

4.

2 The Minimal Isometric Embedding

In view of mathematics, making an imagined object in higher-dimensional
Euclidean space R

n means to construct points set S that is isometric to the
configuration in imagination, or topologically looks like the imagined object,
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and to see a point set of higher dimensional space from the usual R3 just means
to compute the image of certain function f : Rn → R

3 that acts like a camera
we used every day for taking 2D images of 3D objects. As we often take several
photos of a three-dimensional object from several different view angles to obtain
more information on the 3D shape, it is also necessary to take several 3D images
of one higher dimensional object to percept its whole structure.

The idea for lifting the impossible figures in higher dimensional space is very
natural. As we all know, any 2D animal living in a plane world R

2 is not able to
build a Möbius trip from a paper band, since any movement of the paper in the
plane world just cannot twist the paper band, and lift it as depicted in Fig. 4.
Though the task to twist and lift a paper band is an impossible mission for any
2D animals, human in R

3 can do this job very easily, and mathematicians even
can write down the coordinates of points on the Möbius band as in [8].

twist

tfil tfil

dnabsuiböMdnabrepap

Fig. 4. When making a Möbius band from a paper band, the twist and lift operations
must be done in the three dimensional space.

For constructing the Penrose triangle, we may start from three equal copies
of an L-shape object L, formed by two perpendicular cylinders in the three-
dimensional space, as depicted in Fig. 5. Just like that in the plane world 2D
animals cannot twist or lift up a paper band, in our living 3D space we can
connect L1, L2 at point A without problem, but we cannot connect L1, L3 at C
and L2, L3 at B simultaneously. So the real difficulty for making the Penrose
triangle is that we are not able to move the three objects out of the 3D space
where we are living.

Now imagine that some of us (say, Yog Sothoth) happened to know the
gate to a higher dimensional world, then he could build the Penrose triangle
from the 3D components L1, L2, L3 in some higher dimensional space which is
invisible to us. To show that he had done the craft correctly, Yog could also cut
his product again into several pieces 3D figures, possibly new ones, as shown
in Fig. 6, and brought them back to the three-dimensional world where we are
living, as evidence of his work in the higher dimensional space.
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L1

L2 L3 P ⊂ R
n

Fig. 5. L1, L2, L3 in the left are three equal copies of 3D materials for making the
Penrose triangle. If anybody knows the gate to the higher dimension, he could take
L1, L2, L3 out of the three dimensional space and construct a right Penrose triangle in
some higher dimensional space with the 3D components.

In mathematics, the above actions can be understood as decomposing an
object that is impossible into finitely many 3D components, and constructing
the impossible configuration (an isometric embedding) in R

n for some n > 3 with
the components, and then partitioning the point set into some disjoint parts that
can be displayed in the three-dimensional space (a piecewise isometric immersion
of the impossible configuration in R

3).
For doing the isometric embedding and piecewise immersion, we may decom-

pose the Penrose triangle into the union of three regular cubes and three right
cylinders as depicted in Fig. 7. Whereas altogether the cubes and cylinders have
24 vertices, we use the 24 lower case Greek letters to denote them. The cubes
and cylinders are constructed as follows. Notice that the Penrose is a non-convex
polytope, and its convex hull P (i.e., the smallest convex set that contains the
Penrose triangle) has six extremals. Here a point P is called an extremal point
of a convex set K ⊂ R

n, if there exists no P1, P2 ∈ K such that P1 �= P2 ∈ K
and P = c · P1 + (1 − c)P2 for some c ∈ (0, 1). Let α, β, λ, o, φ, ω denote the six
extremals of P Let C1, C2, C3 be the maximal cylinders contained in the Penrose
triangle. It is clear that

A1 = C2 ∩ C3, A2 = C3 ∩ C1, A3 = C1 ∩ C2,

are three disjoint regular cubes contained in the Penrose triangle,

Bi = Ci \ (A1 ∪ A2 ∪ A3), i = 1, 2, 3,

are three right cylinders contained in the Penrose triangle, and the three cubes
and three cylinders form a disjoint partition of the Penrose triangle. We may
write

A1 = αβγδεζηθ,A2 = ικλμνξoπ,A3 = ρσςτυφχψω, (1)



444 Z. Zeng et al.

Fig. 6. If any body had built a proper Penrose triangle in higher dimensional space
R

n from three equal 3D objects L1, L2, L3, they could cut their product into two 3D
objects L̂1, L̂2 and brought back to the real world.

and
B2 = γηθδ-νικξ,B1 = νιμπ-χυτψ,C3 = ρυτσ-εζηθ. (2)

Without loss of generality, we may assume that the cubes are isometric to [0, 1]×
[0, 1]×[0, 1], and the cylinders are isometric to [0, 1]×[0, 1]×(0, a), for appropriate
a ≥ 3. Note that The last requirement a ≥ 3 is pre-assumed according to the
most of drawings of Reutersvärd or Penrose’s impossible figures. For convenience,
we shall denote the Penrose triangle with αβ = 1, γκ = a by notation Δ(a).

Note also that the Penrose triangle Δ(a) is contained in the polytype shell
formed by removing the convex hull (we shall denote it by Q) of the six points
{η, θ, ι, ν, τ, υ} from P, the convex hull of {α, β, λ, o, φ, ω}. That is,

Δ(a) ⊂ P \ Q (a ≥ 3). (3)

For convenience, we shall call the extremals of P and Q the extremal point of
Δ(a). As we have seen from Fig. 7, the decomposition

Δ(a) = (A1 ∪ A2 ∪ A3) ∪ (B1 ∪ B2 ∪ B3), (4)

where Bi (i = 1, 2, 3) are the closure of Bi, shows that Δ(a) is a polyhedral-
complex (cf. [9]). Therefore, if we can isometrically embed the vertices of the
cubes A1, A2, A3 and cylinders B1, B2, B3, that is, the 24 points α, β, γ, · · · , ω ∈
Δ(a), into any Euclidean space R

n, then we can construct a Penrose triangle
configuration in that space, too. Indeed, we can prove that the extremals of
Δ(a) are essential for constructing such isometric embedding. Namely, we have
the following result.

Theorem 1. Assume that Δ(a) is the Penrose triangle as in Fig. 7, so that
αβ = 1, γκ = a ≥ 3, and

F : {α, β, η, θ; ι, λ, o, ν; τ, υ, φ, ω} → R
n
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Fig. 7. The Penrose triangle Δ(a) is decomposed into the disjoint union of three regular
cubes A1, A2, A3 and three right (open) cylinders B1, B2, B3.

is any isometric embedding, then F can be extended to an isometric mapping:

F̂ : Δ(a) → R
n.

Proof(outline) Without loss of generality we may assume that

X1 = F (α), X2 = F (β), Y1 = F (θ), Y2 = F (η);
X3 = F (λ), X4 = F (o), Y3 = F (ι), Y4 = F (ν);
X5 = F (ω), X6 = F (φ), Y5 = F (τ), Y6 = F (υ).

(5)

Let G,H : R × R
n → R

n be functions defined by

G(V, W ) =
a + 1

a + 2
V +

1

a + 2
W, H(V, W ) =

a

a + 1
V +

1

a + 1
W.

Then we can construct points Yi, Zi, Ui(i = 1, 2, · · · , 6) in the space R
n as

follows:
Z1 = G(X1,X6), Z2 = G(X2,X3), Z3 = G(X3,X2),
Z4 = G(X4,X5), Z5 = G(X5,X4), Z6 = G(X6,X1),

(6)

U2 = H(X2, Y6), U4 = H(X4, Y2), U6 = H(X6, Y4),
U1 = H(X1, Y3), U3 = H(X3, Y5), U5 = H(X5, Y1).

(7)

Figure 8 shows the generated points. We can verify the following facts:

1. the following three polyhedra

X1X2Z2U1Z1U2Y2Y1, Y3Z3X3U3Y4U4X4Z4,
Z6U5Y5Y6X6U6Z5X5
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are regular cubes of edge length equals 1, all isometric to the 3D cube [0, 1]×
[0, 1] × [0, 1];

2. the following three polyhedra

U1Z2Y2Y1-Y3Z3U4U4, U3Z4Y4Y3-Y5Z5U6Y6,
U5Z6Y6Y5–Y1Z1U2Y2

are right cylinders, all isometric to [0, 1] × [0, 1] × (0, a);
3. the set of the following 24 points

X1,X2, Y2, U1, Y1, U2, Z2, Z1; Z3, Y3,X3, U3,
Z4, U4,X4, Y4; Y6, U5, Z5, Z6, X6, U6, Y5,X5

is isometric to {α, β, · · · , ω} ⊂ Δ(a), up to appropriate permutation;
4. and finally, the cylinders

X1X2U2Z1-U3X3X4Z4, X3X4U4Z3-U5X5X6Z6,
X5X6U6Z5-U1X1X2Z2

are mutually perpendicular, all isometric to [0, 1] × [0, 1] × [0, a + 2]. There
union F̂ (Δ(a)) forms a Penrose triangle (actually, tribar) in R

n. 	

In the rest of this section, we prove that the 12 extremal points of the Penrose

triangle Δ(a) can be isometrically embedded in R
n for n = 5, and n = 5 is the

least dimension for embedding the Penrose triangle into Euclidean space. For
this, we need to consider the metric on the extremals of Δ(a). Let

X12 := {α, β, θ, η;λ, o, ι, ν;ω, φ, τ, υ}

be the set of the 12 extremals of Δ(a). As Δ(a) can be isometrically immersed
(projected) in the three dimensional Euclidean space R

3, in a piecewise way, as
depicted in Fig. 6 and Fig. 7, we can define the distance d(x, y) between any two
extremal points x, y ∈ Δ(a) by

d(x, y) := max
I∈Π

D(I(x), I(y)), (8)

here Π is the set of all piecewise isometric immersion of Δ(a) in R
3, and D(X,Y )

is the usual distance between two points X,Y in the three dimensional Euclidean
space. It is clear that (X12, d) is a metric space, i.e.,

d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x),
d(x, y) + d(y, z) ≥ d(x, z),

(9)

hold for all x, y, z ∈ X12. Since Π contains all projection from all possible 3D
components of Δ(a) to R

3, we have the following inequality:

d(x, y) ≥ max
P∈Π(x,y)

D(P (x), P (y)) (10)
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Fig. 8. X1, X2, · · · , X6; Y1, Y2, · · · , Y6 are the images of F , an isometric map from the
12 extremals of the Penrose triangle Δ(a) to R

n, and three cubes are generated from
Xi, Yi(1 ≤ i ≤ 6) and functions G, H.

here Π(x, y) is the set of all mapping that projects a 3D polyhedral component
of Δ(a) which contains x, y to R

3.
Taking an example for x = α, y = β, it is easy to see that any projection

P : Δ(a) → R
3 we have D(P (α), P (β)) ≤ αβ = 1, and there is also a projection

that project the component A1 ⊂ Δ(a) to

P (α) = (0, 0, 0), P (β) = (1, 0, 0),

thus d(α, β) ≥ D(P (α), P (β)) = 1. For points x = α, y = o, we see that α, o ∈
C1 = A1 ∪ B3 ∪ A2, and a point initially at position α ∈ Δ(a) can move to
position o ∈ Δ(a) as follows: first along u = αβ to the position β ∈ Δ(a),
then turn 90◦ on the place αβγ, continue to move along the line v = βγκλ to
the position λ ∈ Δ(a), then turn 90◦ on the plane κλo, and move to position
o ∈ Δ(a) finally. Apply the following Pythagoras Theorem we can compute the
distance between α and o is

√
a2 + 4a + 6.

Theorem 2. Assume that a point X started to move along the direction u for a
straight distance a, then move along the direction v for a straight distance b, and
so on, and move along the direction w for a distance c, and finally arrived the
point Y . Assume that u,v, · · · ,w are pair-wisely perpendicular to each other,
Then the straight length between points X and Y is

√
a2 + b2 + · · · + c2.
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The 12 × 12 distance matrix for (X12, d) can be expressed as a block matrix
as follows:

Md =

⎛
⎝

M1 M2 MT
2

MT
2 M1 M2

M2 MT
2 M1

⎞
⎠ , (11)

where

M1 =

⎛
⎜⎜⎝

α β θ η

α 0 1
√

2
√

3
β 1 0

√
3

√
2

θ
√

2
√

3 0 1
η

√
3

√
2 1 0

⎞
⎟⎟⎠, (12)

is the 4 × 4 distance matrix on point set {α, β, θ, η},

M2 =

⎛
⎜⎜⎝

λ o ι ν

α a2,1 a2,2 a1,0 a1,1

β a2,0 a2,1 a1,1 a2,2

θ a1,2 a1,1 a0,1 a0,0

η a1,1 a1,0 a0,2 a0,1

⎞
⎟⎟⎠, (13)

and
ai,j :=

√
(a + i)2 + j (i, j = 0, 1, 2)

for shorter.
Isometric embeddability in the Euclidean space has been well understood

since the classical works of Menger, von Neumann, Schoenberg, and others (see,
e.g., [10–13]). Given a set of finite points X = {p0, p1, · · · , pN}, and a metric
d : X × X → R≥0, the problem of isometric embedding (X, d) in the Euclidean
space R

n can be characterized by the Cayley-Menger determinant of X (and its
subset). For (X, d), let di,j = d(pi, pj) for i, j = 0, 1, · · · , N . The Cayley-Menger
determinant is defined by

D(X) := det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 · · · 1
1 0 d20,1 d20,2 · · · d20,N

1 d21,0 0 d21,2 · · · d21,N

1 d22,0 d22,1 0 · · · d22,N
...

...
...

...
. . .

...
1 d2N,0 d2N,1 d2N,2 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Following result can be found in [11].

Theorem 3. (Blumenthal, [11]) A finite metric space (X, d) is Euclidean with
dimension n if and only if there are p0, p1, · · · , pn ∈ X such that

(i) (−1)j+1D(p0, . . . , pj) > 0 for 1 ≤ j ≤ n, and
(ii) D(p0, · · · , pn, x) = D(p0, · · · , pn, y)

= D(p0, · · · , pn, x, y) = 0 for all x, y ∈ X.
(14)
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Applying the above theorem, we can search maximal subset p0, p1, · · · , pn of
X12 that satisfies the conditions (i) and (ii) of the Theorem3. As #X12 = 12 and
X12 has only 212 = 4096 subsets, we wrote a Maple program to find all subsets
of X12 which satisfy (i) and (ii) simultaneously. The first step is to generate all
4096 subsets of X12 by using powerset(X12) in Maple package combinat, and
the second step is a loop to check if a subset S ∈ powerset(X12) satisfies (i)
and (ii). It is clear that if a subset S1 failed in checking, and S1 ⊂ S2, then
S2 is void to check. Since the computation is very straightforward, we omit to
print the Maple program here for saving space. The searching result is that
there are altogether 64 different subsets satisfying the required conditions, and
each of them contains 6 points. Actually, we have used Maple software running
on a notebook computer with Intel(R) Core(TM) i7 CPU and 8 GB and found
that the 64 subsets of p0, p1, · · · , p5 that satisfy the conditions (i) and (ii) of
Theorem 3 can be represented as members of the Cartesian product

{α, θ} × {β, η} × {λ, ι} × {o, ν} × {ω, τ} × {φ, υ}.

Applying Maple computation, we can prove the isometric embeddability of
X12 in the five-dimensional Euclidean space R

5 as follows.

Theorem 4. The point set X12 with distance matrix Md given by (11) can be
isometrically embedded into R

n for n ≥ 5, and n = 5 is the least dimension for
the isometric embedding.

Proof. Here we prove this theorem by a constructive method. Consider points
α, β, λ, o, ω, φ ∈ X12. Then for D(α, β),−D(α, β, λ) and D(α, β, λ, o) we have:

+ det

⎛
⎝

α β

0 1 1
1 0 1
1 1 0

⎞
⎠α

β
= 2 > 0, (15)

− det

⎛
⎜⎜⎝

α β λ

0 1 1 1
1 0 1 (a + 2)2 + 1
1 1 0 (a + 2)2

1 (a + 2)2 + 1 (a + 2)2 0

⎞
⎟⎟⎠

α
β
λ

= 4(a + 2)2 > 0, (16)

+ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1

1 0 1 (a+2)2+1 (a+2)2+2

1 1 0 (a+2)2 (a+2)2 + 1

1 (a+2)2+1 (a+2)2 0 1

1 (a+2)2+2 (a+2)2 + 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 8(a + 2)2 > 0,

(17)
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For −D(α, β, λ, o, ω) and D(α, β, λ, o, ω, φ), using notation

a2,0 = a + 2, a2,1 =
√

(a + 2)2 + 1, a2,2 =
√

(a + 2)2 + 2.

for better print quality. Then applying the built-in Maple commands det for
computing determinants and factor for factorizing polynomials, we have

−det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1

1 0 1 a2
2,1 a2

2,2 a2
2,1

1 1 0 a2
2,0 a2

2,1 a2
2,2

1 a2
2,1 a2

2,0 0 1 a2
2,1

1 a2
2,2 a2

2,1 1 0 a2
2,0

1 a2
2,1 a2

2,2 a2
2,1 a2

2,0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 4 (a + 3) (a + 1)
(
3 a2 + 12 a + 13

)
> 0,

(18)
and

+ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1

1 0 1 a2
2,1 a2

2,2 a2
2,1 a2

2,0

1 1 0 a2
2,0 a2

2,1 a2
2,2 a2

2,1

1 a2
2,1 a2

2,0 0 1 a2
2,1 a2

2,2

1 a2
2,2 a2

2,1 1 0 a2
2,0 a2

2,1

1 a2
2,1 a2

2,2 a2
2,1 a2

2,0 0 1

1 a2
2,0 a2

2,1 a2
2,2 a2

2,1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 24 (a + 3)2 (a + 1)2 > 0. (19)

Do this computation with Maple further, it is easily verified that

D(α, β, λ, o, ω, φ, x) = 0, D(α, β, λ, o, ω, φ, x, y) = 0, (20)

hold for all x, y ∈ {η, θ, ι, ν, τ, υ}. Indeed, according to symmetry, we need only
to check this for x ∈ {η, θ}, y ∈ {ι, ν}. Combine (15) to (20) and Theorem 3,
we proved that X12 can be isometrically embedded into R

5. This implies also
that the Penrose triangle cannot be isometrically embedded into R

4 as people
generally believed. 	


3 Solving Embedding Equations Using Symbolic
Computation

Theorem 4 confirms the existence of an isometric embedding of (the 12 extremal
points on) the Penrose triangle in space R

5. One may use the general method
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given by Blumenthal [11] or Lu Yang and Jingzhong Zhang [14] to create
an explicit representation of the embedding, i.e., the concrete coordinates
(xi, yi, zi, ui, vi) ∈ R

5 (i = 1, 2, · · · , 12) as the images of

X12 = {α, β, η, θ, ι, λ, ν, o, τ, υ, ϕ, ω}
in R

5 under the isometric embedding. Due to the symmetry of the Penrose
triangle, we can also find a solution of the embedding equations using symbolic
computation. We will show this in this section. Suppose that the Penrose triangle
has been realized in the five-dimensional Euclidean space, then the projection of
the configuration in the R

n along any direction (an oriented straight line) into
the three-dimensional space would be the three cubes (that is a rigid movement
of [0, 1] × [0, 1] × [0, 1] ⊂ R

4) connected by three bars (that is isometric to the
cylinder [0, 1]× [0, 1]× [0, a]. As depicted in Fig. 7, we may assume the cubes are

Δ := αβγδεεζη, Π := ικλμνξ oπ, Σ := ρυτσφχψω.

With a unitary orthogonal transform, we may change that the vertex δ on the
first cube Δ is lying on the origin (0, 0, 0, 0, 0), and the coordinates of other
vertices are

α = (1, 0, 0, 0, 0), β = (1, 1, 0, 0, 0), γ = (0, 1, 0, 0, 0),
ε = (1, 0, 1, 0, 0), ζ = (1, 1, 1, 0, 0),
η = (0, 1, 1, 0, 0), θ = (0, 0, 1, 0, 0).

(21)

As shown in Fig. 9, the original design of Reutersvärd, the cube Π can move
along a straight line �s (in the appropriate space, here, we assume it is a line in
the R

5) to Δ, so that Π coincides Δ with

ρ → α, υ → β, τ → γ, σ → δ,
φ → ε, χ → ζ, ψ → η, ω → θ,

(22)

after movement, and the other cube Π can be moved to Δ along a line �p so
that

ι → α, κ → β, λ → γ, μ → δ,
ν → ε, ξ → ζ, o → η, π → θ.

(23)

Without loss of generality, we may assume that line �s and line �p are lying
in the plane

{(x, y, z, u, v)|x = 0, y = 0, z = 0} ⊂ R
5,

and the coordinates of vertices δ ∈ Δ,μ ∈ Σ, σ ∈ Π are

δ = (0, 0, 0, u1, v1), μ = (0, 0, 0, u2, v2), σ = (0, 0, 0, u3, v3), (24)

respectively. We can take u1 = 0, v1 = 0 as in (21), here we use this form just
for symmetry. Therefore, the coordinates of all other 21 vertices of Δ,Π,Σ can
be determined by (21) and (24). In particular, we have

α = (1, 0, 0, u1, v1), β = (1, 1, 0, u1, v1), λ = (0, 1, 0, u2, v2),
o = (0, 1, 1, u2, v2), ω = (0, 0, 1, u3, v3), φ = (1, 0, 1, u3, v3).

(25)
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α

β
γ

ε

ζ
η

ρ

φ

ω

ψ

χ

υ

λ

o

κ

ξ

ν
π

�

�s

�
�

�
�

�
�p

Δ
↗

↙ Π

Σ↘

Fig. 9. �s, �p are two lines in R
5 so that the cube Σ can be moved to coincide Δ in

parallel to �s, and the cube can be moved to Δ in parallel to �p. Some vertices of the
cubes Δ, Π, Σ are not marked in the picture. When viewing Δ, Π, Σ as necker cubes,
take ζ, ξ, χ to the front-most positions. We may assume that �s is the line determined
by points (0, 0, 0, 0, 0) and (0, 0, 0, u3, v3), and �p is the line determined by (0, 0, 0, 0, 0)
and (0, 0, 0, u2, v2), here u2, u2, u3, v3 are numbers in (27).

Using the coordinates to compute the distance αβ, αλ, αo, αω, αφ, we establish
the following system of equations:

1 + (u1 − u2)
2 + (v1 − v2)

2 − (a + 2)2 = 0,

1 + (u1 − u3)
2 + (v1 − v3)

2 − (a + 2)2 = 0,

1 + (u2 − u3)
2 + (v2 − v3)

2 − (a + 2)2 = 0,
u1 = 0, v1 = 0.

(26)

Using Maple software it is easy to solve this system of equations. It is clear
that (26) has infinitely many solutions, from each solution we can construct
an equilateral triangle ABC of edge

√
a2 + 4a + 3 in the plane by taking A =

(0, 0), B = (u2, v2), C = (u3, v3). For our purpose we need only one real solution,
so we take the following symmetric one:

u2 = u3 =
√

3
2

√
a2 + 4a + 3, v2 = −v3 =

1
2

√
a2 + 4a + 3, (27)

and therefore, we can write the coordinates of the 24 vertices of the cube Δ,Π,Σ
as follows:

α = (1, 0, 0, 0, 0), ι = (1, 0, 0,
√

3b/2, b/2), ρ = (1, 0, 0,
√

3b/2,−b/2),

β = (1, 1, 0, 0, 0), κ = (1, 1, 0,
√

3b/2, b/2), υ = (1, 1, 0,
√

3b/2,−b/2),

γ = (0, 1, 0, 0, 0), λ = (0, 1, 0,
√

3b/2, b/2), τ = (0, 1, 0,
√

3b/2,−b/2),

δ = (0, 0, 0, 0, 0), μ = (0, 0, 0,
√

3b/2, b/2), σ = (0, 0, 0,
√

3b/2,−b/2),
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ε = (1, 0, 1, 0, 0), ν = (1, 0, 1,
√

3b/2, b/2), φ = (1, 0, 1,
√

3b/2,−b/2),

ζ = (1, 1, 1, 0, 0), ξ = (1, 1, 1,
√

3b/2, b/2), χ = (1, 1, 1,
√

3b/2,−b/2),

η = (0, 1, 1, 0, 0), o = (0, 1, 1,
√

3b/2, b/2), ψ = (0, 1, 1,
√

3b/2,−b/2),

θ = (0, 0, 1, 0, 0), π = (0, 0, 1,
√

3b/2, b/2), ω = (0, 0, 1,
√

3b/2,−b/2).
(28)

here b =
√

a2 + 4a + 3.
The distance matrix of the above 24 points is as follows:

DM24 =

⎛
⎝

D M M
MT D M
MT MT D

⎞
⎠ , (29)

where

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
√

2 1 1
√

2
√

3
√

2

1 0 1
√

2
√

2 1
√

2
√

3
√

2 1 0 1
√

3
√

2 1
√

2

1
√

2 1 0
√

2
√

3
√

2 1

1
√

2
√

3
√

2 0 1
√

2 1
√

2 1
√

2
√

3 1 0 1
√

2
√

3
√

2 1
√

2
√

2 1 0 1
√

2
√

3
√

2 1 1
√

2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
√

b2 + 1
√

b2 + 2
√

b2 + 1
√

b2 + 1
√

b2 + 2
√

b2 + 3
√

b2 + 2
√

b2 + 1 b
√

b2 + 1
√

b2 + 2
√

b2 + 2
√

b2 + 1
√

b2 + 2
√

b2 + 3
√

b2 + 2
√

b2 + 1 b
√

b2 + 1
√

b2 + 3
√

b2 + 2
√

b2 + 1
√

b2 + 2
√

b2 + 1
√

b2 + 2
√

b2 + 1 b
√

b2 + 2
√

b2 + 3
√

b2 + 2
√

b2 + 1
√

b2 + 1
√

b2 + 2
√

b2 + 3
√

b2 + 2 b
√

b2 + 1
√

b2 + 2
√

b2 + 1
√

b2 + 2
√

b2 + 1
√

b2 + 2
√

b2 + 3
√

b2 + 1 b
√

b2 + 1
√

b2 + 2
√

b2 + 3
√

b2 + 2
√

b2 + 1
√

b2 + 2
√

b2 + 2
√

b2 + 1 b
√

b2 + 1
√

b2 + 2
√

b2 + 3
√

b2 + 2
√

b2 + 1
√

b2 + 1
√

b2 + 2
√

b2 + 1 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can use Maple to verify the following inequalities

D(α, β) = −1 < 0,

D(α, β, λ) = 2
(
b2 + 2

) (
b2 + 1

)
> 0,
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D(α, β, λ, o) = −4 b4 − 16 b2 − 12 < 0,

D(α, β, λ, o, ω) = 8 b6 + 28 b4 + 24 b2 > 0,

D(α, β, λ, o, ω, φ) = −16 b6 − 36 b4 < 0, (30)

and that the equality

D(α, β, λ, o, ω, φ, x) = D(α, β, λ, o, ω, φ, x) = D(α, β, λ, o, ω, φ, x, y) = 0,

holds for any x, y from all other 18 points given in (28). Note that the inequal-
ity (30) implies that the 24 points can not be embedded into R

n for n < 5.

Remark 1. Let proj : R5 → R
3 be the projection defined by the following matrix:

proj :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

0
√

3/3
√

3/3

0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

Then, the eight points α, β, γ, δ, ε, ζ, η, θ, the vertices of Δ ⊂ R
5, are mapped

to the following points in R
3:

[1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 1], [1, 1, 1], [0, 1, 1], [0, 0, 1],

respectively, clearly they are vertices of a cube (say, Δ′) in R
3; the eight points

ι, κ, λ, μ, ν, ξ, o, π (i.e., the vertices of Π ⊂ R
5) are mapped to the vertices of a

three-dimensional cube (say, Π ′):

[1, b, 0], [1, 1+b, 0], [0, 1+b, 0], [0, b, 0], [1, b, 1], [1, 1+b, 1], [0, 1+b, 1], [0, b, 1],

respectively, and the eight points ρ, υ, τ, σ, φ, χ, ψ, ω (the vertices of Σ ⊂ R
5) are

mapped to the vertices of a three-dimensional cube (say, Σ′):

[1, 0, b], [1, 1, b], [0, 1, b], [0, 0, b], [1, 0, 1+b], [1, 1, 1+b], [0, 1, 1+b], [0, 0, 1+b],

respectively. It is also clear that in the space R
3, we can move Δ′ to Π ′ by

Lp : (x, y, z) −→ (x, y + b, z), and move the cube Δ′ to Σ′ by Ls := (x, y, z) −→
(x, y, z + b).

Therefore, what we have seen from the impossible in the three-dimensional
space, can be understood as an shadow of a five-dimensional geometric object
in the three-dimensional world, under the projection defined by (31).
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4 Epilogue

We have proved, the Penrose triangle has an isometric embedding in lowest
dimension Euclidean space R

5, as a subset of P \ Q, the difference set of two
simplexes, where P is formed by α, β, λ, o, ω, φ, and Q formed by θ, η, ι, ν, τ, υ.
Figure 10 gives an intuitive explanation of this fact.

(a) P (b) Q

(c) P \ Q (d) a Penrose triangle

Fig. 10. (a): P: the convex hull of the Penrose triangle, also a simplex formed by
α, β, λ, o, ω, φ in the space R

5; (b): Q, the simplex formed by points θ, η, ι, ν, τ, υ in R
5;

(c): Δ(a) ⊂ P \ Q; (d): the piecewise isometric immersion of the Penrose triangle in
the three dimensional space as we see.
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Fig. 11. (left): the Möbius band in space R
3; (right): an isometric embedding of the

Möbius band in R
4.

It is clear that dim(P\Q) = 5, otherwise Δ(a) could be isometrically embed-
ded into lower dimensional space. Therefore, viewing it from the R

5, the Penrose
triangle is a bounded set of co-dimension 2, locally flat, with genus 0, like a non-
planar closed space curve in R

3. Note also that

extremal(P) = {α, β, λ, o, ω, φ},

and
extremal(Q) = {θ, η, ι, ν, τ, υ}

are members of the product set, which implies that P and Q can be viewed as two
simplices in R

5, therefore, and, the Penrose triangle Δ(a) as a three dimensional
topological manifold, is indeed a polyhedral belt contained in the shell P \ Q.

As we have seen, Maple software is used to construct the 4,096 subsets of
a 12-point set X12 and find all subsets that satisfy conditions (i) and (ii) in
Theorem 3. Maple is also used to compute determinants of n × n matrices
(for n up to 7) and factorizations. In Sect. 3 we have used Maple in solving a
polynomial system of equations of 4 variables.

To conclude the paper, we indicate that the way we have used to embed
the Penrose triangle into space R

n can be applied to construct a flat isometric
embedding of the Möbius band into R

4. Namely, let

A = (0, 0, a, a), B = (1, 0, a, a), C = (0, a, 0, a),
D = (1, a, 0, a), E = (0, a, a, 0), F = (1, a, a, 0), (32)

then, the rectangles ABCD,CDEF,EFAB in the 4-dim space form a Möbius
band in R

4 so that every interior point of the rectangles has a flat neighbor-
hood, as shown in Fig. 11. See [15] for more works on isometric embeddings and
immersions of Möbius bands. We wonder if a similar method can be applied to
construct an isometric embedding of the impossible cube (Fig. 2(left)) into R

n

so that the embedded cube produces a weird view from three-dimensional space.
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In “A Poly-algorithmic Quantifier Elimination Package in Maple” in the proceed-
ings of Maple Conference 2019, it is claimed that one can distribute quantifiers
from Qn−m+1xn−m+1, . . . , Qixi for some n − m + 1 ≤ i ≤ n into a boolean
disjunction or conjunction B in order to propagate Virtual Term Substitution
(VTS). However, it would be an error to distribute an existential quantifier into
a conjunction, or similarly distribute a universal quantifier into a disjunction in
order to achieve quantifier elimination (QE). One notes that ∀x (A(x)∨B(x)) ⇒
(∀xA(x) ∨ ∀xB(x)), but the two expressions are not equivalent, and in partic-
ular the latter does not imply the former, which is what would be required for
the distributivity. Similarly ∃x (A(x)∧B(x)) � (∃xA(x)∧ ∃xB(x)). Hence the
tree structure for VTS suggested in the paper is valid within any one block
of quantifiers, i.e. those quantifiers that share the same quantifier symbol, but
the quantifier free equivalent of tree must be collapsed to one QE problem for
a next subsequent block. This is as elimination of an existential quantifier in
VTS canonically forms a disjunction of the results of virtual substitution, where
further distributivity is allowable (and similar for a universal quantifier). There-
fore what is Fig. 2 from that work should be replaced by a “layered tree”—
demonstrated in Fig. 1. The poly-algorithm discussed in the work is valid within
any one block of quantifiers, so Fig. 2 from that work is perfectly canonical if the
quantifiers are homogeneous, i.e. share the same quantifier symbol Q ∈ {∀,∃}.
In fact, the package now uses the poly-algorithm within the last block of quan-
tifiers having used solely VTS for elimination beforehand, so the sentiment of
the work remains for the package QuantifierElimination, under these slightly
more restrictive circumstances.

c© Springer Nature Switzerland AG 2021
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