Faster Sparse Interpolation of Straight-Line Programs

Andrew Arnold^{*}, Mark Giesbrecht^{*}, Dan Roche[†]

*University of Waterloo †United States Naval Academy

> CASC 2013 ZIB, Berlin

Arnold (University of Waterloo)

Sparse Interpolation with Less Probing

Outline

An overview of straight-line programs Straight-line programs Statement of the problem Summary of results

A new, recursive sparse interpolation algorithm

"ok" primes - primes that give us information about *some* of the terms of *f* Building an approximation with possible errors Recursively interpolating the error

Outline

An overview of straight-line programs Straight-line programs Statement of the problem Summary of results

A new, recursive sparse interpolation algorithm

"ok" primes - primes that give us information about *some* of the terms of *f* Building an approximation with possible errors Recursively interpolating the error

Straight-line programs

A straight-line program (SLP) is a model of algebraic computation. An SLP can represent a polynomial (a **functional representation**).

Definition

Let R be a ring, and let $b_0 \in R$ be a user-specified input. A straight-line program (SLP) is a series instructions $(\Gamma_1, \ldots, \Gamma_\ell)$, where Γ_i assigns a value to $b_i \in R$, and Γ_i is of the form

 $\Gamma_i: b_i \leftarrow \alpha \ [+-\times] \ \beta, \qquad \alpha, \beta \in R \cup \{b_0, \ldots, b_{i-1}\}.$

The vector b is the output corresponding to input b_0 . We say ℓ is the **length** of our program.

Note

This definition is a restriction to single-input, division-free SLPs.

Arnold (University of Waterloo)

Straight-line programs

Example: a SLP for
$$f(z) = (z^3 + z^2 + z + 1)(z - 1)$$

 $b_0 = z$ is our input.
 $b_1 \leftarrow b_0 \times b_0 \quad [= z^2], \qquad \qquad b_2 \leftarrow b_0 \times b_1 \quad [= z^3],$

 $\begin{array}{ll} b_3 \leftarrow b_2 + b_1 & [= z^3 + z^2], & b_4 \leftarrow b_3 + b_0 & [= z^3 + z^2 + z], \\ b_4 \leftarrow b_3 + 1 & [= z^3 + z^2 + z + 1], & b_5 \leftarrow b_0 - 1 & [= z - 1], \\ b_6 \leftarrow b_4 \times b_5 & [= (z^3 + z^2 + z + 1)(z - 1)]. \end{array}$

We say this SLP computes f. Interpolating this SLP means expanding

$$(z^3 + z^2 + z + 1)(z - 1) = z^4 - 1.$$

Arnold (University of Waterloo)

Probing a straight-line program

The interpolation problem

We are given:

- 1. A SLP that computes $f(z) = \sum_{i=1}^{t} c_i z^{e_i} \in R[z]$, where
 - $e_1 < e_2 < \cdots < e_t = \deg(f)$, and
 - $c_i \neq 0$ for $1 \leq i \leq s$.
- 2. Upper bounds $D \ge \deg(f)$ and $T \ge t$.

Aim: Construct the terms $c_i z^{e_i}$ of f.

- One can **probe** the SLP, i.e., execute the program on chosen inputs.
- lnput: ζ , a symbolic *n*-th root of 1, for select *n*.
 - This gives $f(\zeta) \mod (\zeta^n 1)$.
 - n = "the probe degree".

Note

In the black-box polynomial model, one instead inputs all *n n*-th roots of 1 in order to construct $f(\zeta) \mod (\zeta^n - 1)$.

Probing a straight-line program

Example: Computing $f(\zeta) \mod (\zeta^3 - 1)$					
$b_0 \leftarrow \zeta,$					
$b_1 \leftarrow b_0 \times b_0$	$[=\zeta^2],$	$b_2 \leftarrow b_0 \times b_1$	$[=\zeta^3=1],$		
$b_3 \leftarrow b_2 + b_1$	$[=1+\zeta^2],$	$b_4 \leftarrow b_3 + b_0$	$[=1+\zeta+\zeta^2],$		
$b_4 \leftarrow b_3 + 1$	$[=2+\zeta+\zeta^2],$	$b_5 \leftarrow b_0 - 1$	$[= \zeta - 1],$		
$b_6 \leftarrow b_4 \times b_5$	$[= (2 + \zeta + \zeta^2)(\zeta - 1) = \zeta - 1].$				

Each SLP instruction entails adding/multiplying two polynomials modulo $(\zeta^n - 1)$ Cost of one SLP instruction: $\widetilde{\mathcal{O}}(n)$ Cost of probe: $\widetilde{\mathcal{O}}(\ell n)$

Probing a straight-line program

Example: Computing $f(\zeta) \mod (\zeta^3 - 1)$					
$b_0 \leftarrow \zeta,$					
$b_1 \leftarrow b_0 \times b_0$	$[=\zeta^2],$	$b_2 \leftarrow b_0 \times b_1$	$[=\zeta^3=1],$		
$b_3 \leftarrow b_2 + b_1$	$[=1+\zeta^2],$	$b_4 \leftarrow b_3 + b_0$	$[=1+\zeta+\zeta^2],$		
$b_4 \leftarrow b_3 + 1$	$[=2+\zeta+\zeta^2],$	$b_5 \leftarrow b_0 - 1$	$[=\zeta-1],$		
$b_6 \leftarrow b_4 \times b_5$	$[= (2 + \zeta + \zeta^2)(\zeta - 1) = \zeta - 1].$				

Each SLP instruction entails adding/multiplying two polynomials modulo $(\zeta^n - 1)$ Cost of one SLP instruction: $\widetilde{\mathcal{O}}(n)$ Cost of probe: $\widetilde{\mathcal{O}}(\ell n)$

Measure of cost of interpolation

 $cost \approx (\# of probes)*(probe degree)$

Arnold (University of Waterloo)

Results of Monte Carlo interpolation algorithms

algorithm	# of probes	probe degree	"cost"
Garg and Schost ¹	$\widetilde{\mathcal{O}}(T \log D)$	$\mathcal{O}(T^2 \log D)$	$\widetilde{\mathcal{O}}(T^3 \log^2 D)$
Giesbrecht and Roche ²	$\widetilde{\mathcal{O}}(\log D)$	$\mathcal{O}(T^2 \log D)$	$\widetilde{\mathcal{O}}(T^2 \log^2 D)$
AA, Giesbrecht, Roche	$\widetilde{\mathcal{O}}(\log T \log D)$	$\mathcal{O}(T \log^2 D)$	$\widetilde{\mathcal{O}}(T \log^3 D)$

These algorithms admit a failure probability of $\leq \epsilon$, for a fixed parameter ϵ .

Recall

$$f(z) ext{ is in } \widetilde{\mathcal{O}}(g(z)) ext{ if } f \in \mathcal{O}igg(g(z)\log(g(z))^cigg) ext{ for some constant } c.$$

1. Interpolation of polynomials given by straight-line programs. Theoretical Comp. Sci. 2009.

2. Diversification improves interpolation. ISSAC 2011.

From Monte Carlo to Las Vegas

These algorithms are Monte Carlo (probably correct, deterministic run-time). To verify an output f^* we can use the following:

Lemma (Blaser et al., 2009)

Let $g = f - f^*$ be a polynomial over an integral domain R. Suppose 1. We know g has at most T terms and degree at most D. 2. $g \mod (z^p - 1) = 0$ for some $(T - 1) \log_2 D$ primes p.

Then g = 0.

- # of probes: $\mathcal{O}(T \log D)$
- probe degree: $\widetilde{\mathcal{O}}(T \log D)$
- cost: $\widetilde{\mathcal{O}}(T^2 \log^2 D)$

Note

This test is at least as fast as the Garg-Schost and Giesbrecht-Roche algorithms; however, the test is costlier than the new algorithm when $T \in o(\log D)$.

Outline

An overview of straight-line programs Straight-line programs Statement of the problem Summary of results

A new, recursive sparse interpolation algorithm

"ok" primes - primes that give us information about *some* of the terms of fBuilding an approximation with possible errors Recursively interpolating the error

A new, recursive sparse interpolation algorithm

Throughout the algorithm, we build a sparse polynomial f^* (initially zero) approximating the f given by our input SLP. In each recursive step of the algorithm we will refine f^* , until $f - f^* = 0$.

Refining our approximation f^*

We interpolate the difference $g = f - f^*$ as follows:

- 1. With high probability, find an "ok" prime, a prime p for which at most a small, specified proportion of the terms of g collide modulo $(z^p 1)$.
- 2. Given p, look at images of the form $g(z) \mod (z^{pq} 1)$, $q \in \mathbb{Z}$, in order to construct a sparse polynomial f^{**} such that $g f^{**}$ has at most T/2 terms.
- 3. Set $f^* \leftarrow f^* + f^{**}$ and $T \leftarrow \lfloor T/2 \rfloor$ and repeat. If T = 0, return f^* .

good primes

- We say two terms $c_1 z^{e_1}$ and $c_2 z^{e_2}$ collide modulo $(z^p 1)$ if $p \mid (e_1 e_2)$.
- ▶ Both the Garg-Schost and Giesbrecht-Roche algorithms require a good prime p for which no terms of f collide modulo (z^p − 1).

Example of a good prime Let $f(z) = 1 + z + 3z^{10}$. Then

$$f(z) \mod (z^3 - 1) = 4 + z,$$

 $f(z) \mod (z^7 - 1) = 1 + z + 3z^3.$

- ▶ 5 is **not** a good prime as 1 collides with $3z^{10}$ modulo $(z^5 1)$.
- $f(z) \mod (z^7 1)$ has three terms (like f), so 7 is a good prime.

ok primes

- An ok prime is a weaker notion of a good prime, that allows for a small number of terms to collide.
- ► Ok primes will allow us to use primes of size O(T log D) instead of O(T² log D).

Definition

- Given a polynomial g with ≤ T terms, and a prime p, we let C_g(p) denote the number of terms of f that are involved in collisions modulo (z^p − 1).
- We call p an ok prime if $C_g(p) < \frac{3}{8}T$.
- p is a good prime if $C_g(p) = 0$.

ok primes - an example

Let
$$g = 1 + z + z^4 - 2z^{13}$$
.
 $p = 2$
 $1 + z + z^4 - 2z^{13} \mod (z^2 - 1) = 1 + z + 1 - 2z,$
 $= 2 - z.$
 z^4 collides with 1 and $-2z^{13}$ collides with z, so $C_g(2) = 4$.
 $p = 3$
 $1 + z + z^4 - 2z^{13} \mod (z^3 - 1) = 1 + z + z - 2z,$
 $= 1.$
 z, z^4 , and $-2z^{13}$ collide, so $C_g(3) = 3$.

Arnold (University of Waterloo)

"ok" primes

Lemma

Let g(z) have degree $\leq D$ and $\leq T$ terms, and let

$$\lambda = \max\left(21, \left\lceil \frac{160}{9}(T-1) \ln D \right\rceil
ight) \in \mathcal{O}(T \log D).$$

Then p, a prime chosen at random in the range $[\lambda, 2\lambda]$ satisfies $C_g(p) < \frac{3}{16}T$ with probability at least $\frac{1}{2}$.

Thus, if we look at $f(z) \mod (z^p - 1)$ for some $\lceil \log 1/\epsilon \rceil$ primes $p \in [\lambda, 2\lambda]$, we will have come across an ok prime p with probablity $\geq 1 - \epsilon$.

Cost to search for an ok prime

- Probe degree: $p \in \mathcal{O}(T \log D)$.
- # of probes: $\mathcal{O}(\log 1/\epsilon)$.
- Cost: $\mathcal{O}(T \log D \log 1/\epsilon)$.

"ok" primes

Problem

How do we know the p which minimizes $C_g(p)$?

"ok" primes

Problem

How do we know the p which minimizes $C_g(p)$?

Lemma

Suppose $g \mod (z^q - 1)$ has sparsity s_q and $g \mod (z^p - 1)$ has sparsity $s_p \ge s_q$. Then $C_g(p) \le 2C_g(q)$.

Thus choosing the p for which the image $g(z) \mod (z^p - 1)$ has the **most terms** gives us $C_g(p) < 2\frac{3}{16}T = \frac{3}{8}T$ (with probability $1 - \epsilon$).

Constructing images of $g = f - f^*$

Given an ok prime p, we then construct images $g(z) \mod (z^{pq_i} - 1)$ for a set of coprime $q_i > 1$ chosen as follows. Let

$$egin{aligned} &x = \max\left(2\ln(D), 17
ight), \ ext{and} \ &k = \left\lceil x/\ln(x)
ight
ceil \in \mathcal{O}\left(rac{\log D}{\log\log D}
ight). \end{aligned}$$

Then, for $1 \leq i \leq k$, we set

 $q_i \leftarrow$ "greatest power of the *i*-th prime not exceeding x".

Note that $q_i \in \mathcal{O}(\log D)$ and $\prod_{i=1}^k q_i > D$.

Cost of probes used to build f^{**}

- Probe degree: $pq_i \in \mathcal{O}(T \log^2 D)$.
- **#** of probes: $k \in \mathcal{O}(\log D)$.
- **Cost**: $\widetilde{\mathcal{O}}(T \log^3 D)$.

Building f^{**} approximating $g = f - f^*$

- If a term cz^e of g avoids collision modulo (z^p − 1), then in any image g mod (z^{pq} − 1) the term cz^e will appear as a unique term of degree congruent to e mod p.
- ▶ Conversely, suppose there exists $c_0 z^{e_0}$, where $e_0 \leq D$, satisfying
 - 1. There is a unique term in the reduced image $g \mod (z^{\rho} 1)$ that may be an image of $c_0 z^{e_0}$.
 - 2. There is a unique term in each image $g \mod (z^{pq_i} 1)$ that may be an image of $c_0 z^{e_0}$,

...then $c_0 z^{e_0}$ may be a term of g, and we add it to f^{**} .

• $c_0 z^{e_0}$ is not always a term of g. If not we call $c_0 z^{e_0}$ a **deceptive term**.

How to build f^{**} approximating g

Example of a deceptive term

Let

$$g(z) = z^2 + z^{40} + z^{60} + z^{11+4} - z^{14 \cdot 11+4} - z^{15 \cdot 11+4}$$

and let p = 11 and consider q = 2, 3, 5. We have

$$g(z) \mod (z^{11} - 1) = z^2 + z^7 + z^5 - z^4,$$

$$g(z) \mod (z^{22} - 1) = z^2 + z^{18} + z^{16} - z^{15},$$

$$g(z) \mod (z^{33} - 1) = z^2 + z^7 + z^{27} - z^{26},$$

$$g(z) \mod (z^{55} - 1) = z^2 + z^{40} + z^5 - z^{48}.$$

► The first three terms of each image correspond to the terms z², z⁴⁰, z⁶⁰ appearing in g. Note there is only one term of degree {2, 40, 60} mod 11 in each image.

► The remaining term in each of the 4 images has degree congruent to 4 mod 11. By Chinese remaindering on the exponents, this gives a deceptive term -z³²³ not appearing in g.

Arnold (University of Waterloo)

Detecting collisions

- ► A deceptive term can only result from a collision of three or more terms modulo (z^p 1).
- If only two terms collide modulo z^p − 1, there will be a q_i such that g mod (z^{pq_i} − 1) separates those terms.

Example: $g(z) = 1 + z^{59} + z^{11+2} + z^{11\cdot12+11+2}$ Using p = 11 and $(q_1, q_2, q_3) = (4, 3, 5)$, we have $g(z) \mod (z^{11} - 1) = 1 + 2z^2 + z^4$ $g(z) \mod (z^{44} - 1) = 1 + z^{15} + 2z^{13}$ $g(z) \mod (z^{33} - 1) = 1 + z^{26} + 2z^{13}$ $g(z) \mod (z^{55} - 1) = 1 + z^4 + z^{13} + z^{35}$

We recognize that a collision occurred at degree 2 modulo $(z^{11} - 1)$ and ignore those terms. Here f^{**} would be $1 + z^{59}$.

Building an approximation f^{**} of $g = f - f^{**}$

► The polynomial f^{**} we construct will contain the T - C_g(p) non-colliding terms of g, plus potentially some [C_g(p)/3] deceptive terms.

•
$$g - f^{**}$$
 will have at most $C_g(p) + \frac{1}{3}C_g(p) = \frac{4}{3}C_g(p)$ terms.

• If $C_g(p) < \frac{3}{8}T$, then $g - f^{**}$ will have sparsity less than $(\frac{4}{3})(\frac{3}{8})T = T/2$.

Recursively interpolating $g - f^{**}$

- f^{**} gives us a new difference $f f^* f^{**}$ with smaller sparsity bound T/2.
- ▶ We set $f^* \leftarrow f^* + f^{**}$ and $T \leftarrow \lfloor T/2 \rfloor$, then recursively interpolate our now updated difference $g = f f^*$.
- We continue in this fashion some $\lfloor 1 + \log T \rfloor$ times until we have $f f^* = 0$.

Problem:

At the start of our algorithm, we look at $\lceil \log 1/\epsilon \rceil$ primes p_i in an attempt to find an ok prime with probability $1 - \epsilon$. We now need this to succeed at each of the $\lfloor 1 + \log T \rfloor$ recursive calls now.

If we want to correctly interpolate f with probability μ , it suffices to instead bound the failure probability at each recursive step by $\epsilon = \mu/(1 + \log T)$. This does not affect the "soft-Oh" cost of the algorithm.

Cost with probability of success at least $1 - \mu$, for fixed μ Interpolating f entails $\widetilde{\mathcal{O}}(\log T \log D)$ probes of degree $\mathcal{O}(T \log^2 D)$. **Cost**: $\widetilde{\mathcal{O}}(T \log^3 D)$

Arnold (University of Waterloo)

Sparse Interpolation with Less Probing

- Final thoughts:
 - Difficult to guarantee zero collisions for small probe degree birthday paradox.
 - ok primes: better performance by tolerating *some* errors.
 - An advantage of having a recursive algorithm decrementing T is that we can call the Giesbrecht-Roche $T^2 \log^2 D$ algorithm once $\log D \gg T$.
- Future work:
 - Investigate the numerical stability of a black-box variant of the algorithm.
 - Las Vegas algorithm: faster polynomial identity testing of SLPs.
 - O(T log D) interpolation?

Thank you for your attention