
Faster Sparse Interpolation of Straight-Line Programs

Andrew Arnold*, Mark Giesbrecht*, Dan Roche†

*University of Waterloo
†United States Naval Academy

CASC 2013
ZIB, Berlin

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 1 / 22

Outline

An overview of straight-line programs
Straight-line programs
Statement of the problem
Summary of results

A new, recursive sparse interpolation algorithm
“ok” primes - primes that give us information about some of the terms of f
Building an approximation with possible errors
Recursively interpolating the error

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 1 / 22

An overview of straight-line programs

Outline

An overview of straight-line programs
Straight-line programs
Statement of the problem
Summary of results

A new, recursive sparse interpolation algorithm
“ok” primes - primes that give us information about some of the terms of f
Building an approximation with possible errors
Recursively interpolating the error

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 1 / 22

An overview of straight-line programs Straight-line programs

Straight-line programs

A straight-line program (SLP) is a model of algebraic computation. An SLP can
represent a polynomial (a functional representation).

Definition
Let R be a ring, and let b0 ∈ R be a user-specified input. A straight-line
program (SLP) is a series instructions (Γ1, . . . , Γ`), where Γi assigns a value to
bi ∈ R, and Γi is of the form

Γi : bi ← α [+−×] β, α, β ∈ R ∪ {b0, . . . , bi−1}.

The vector b is the output corresponding to input b0. We say ` is the length of
our program.

Note
This definition is a restriction to single-input, division-free SLPs.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 2 / 22

An overview of straight-line programs Straight-line programs

Straight-line programs

Example: a SLP for f (z) = (z3 + z2 + z + 1)(z − 1)

b0 = z is our input.

b1 ← b0 × b0 [= z2], b2 ← b0 × b1 [= z3],

b3 ← b2 + b1 [= z3 + z2], b4 ← b3 + b0 [= z3 + z2 + z],

b4 ← b3 + 1 [= z3 + z2 + z + 1], b5 ← b0 − 1 [= z − 1],

b6 ← b4 × b5 [= (z3 + z2 + z + 1)(z − 1)].

We say this SLP computes f . Interpolating this SLP means expanding

(z3 + z2 + z + 1)(z − 1) = z4 − 1.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 3 / 22

An overview of straight-line programs Statement of the problem

Probing a straight-line program

The interpolation problem

We are given:

1. A SLP that computes f (z) =
∑t

i=1 ciz
ei ∈ R[z], where

I e1 < e2 < · · · < et = deg(f), and
I ci 6= 0 for 1 ≤ i ≤ s.

2. Upper bounds D ≥ deg(f) and T ≥ t.

Aim: Construct the terms ciz
ei of f .

I One can probe the SLP, i.e., execute the program on chosen inputs.

I Input: ζ, a symbolic n-th root of 1, for select n.
I This gives f (ζ) mod (ζn − 1).
I n = “the probe degree”.

Note
In the black-box polynomial model, one instead inputs all n n-th roots of 1 in
order to construct f (ζ) mod (ζn − 1).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 4 / 22

An overview of straight-line programs Statement of the problem

Probing a straight-line program

Example: Computing f (ζ) mod (ζ3 − 1)

b0 ← ζ,

b1 ← b0 × b0 [= ζ2], b2 ← b0 × b1 [= ζ3 = 1],

b3 ← b2 + b1 [= 1 + ζ2], b4 ← b3 + b0 [= 1 + ζ + ζ2],

b4 ← b3 + 1 [= 2 + ζ + ζ2], b5 ← b0 − 1 [= ζ − 1],

b6 ← b4 × b5 [= (2 + ζ + ζ2)(ζ − 1) = ζ − 1].

Each SLP instruction entails adding/multiplying two polynomials modulo (ζn − 1)

Cost of one SLP instruction: Õ(n)

Cost of probe: Õ(`n)

Measure of cost of interpolation

cost ≈ (# of probes)∗(probe degree)

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 5 / 22

An overview of straight-line programs Statement of the problem

Probing a straight-line program

Example: Computing f (ζ) mod (ζ3 − 1)

b0 ← ζ,

b1 ← b0 × b0 [= ζ2], b2 ← b0 × b1 [= ζ3 = 1],

b3 ← b2 + b1 [= 1 + ζ2], b4 ← b3 + b0 [= 1 + ζ + ζ2],

b4 ← b3 + 1 [= 2 + ζ + ζ2], b5 ← b0 − 1 [= ζ − 1],

b6 ← b4 × b5 [= (2 + ζ + ζ2)(ζ − 1) = ζ − 1].

Each SLP instruction entails adding/multiplying two polynomials modulo (ζn − 1)

Cost of one SLP instruction: Õ(n)

Cost of probe: Õ(`n)

Measure of cost of interpolation

cost ≈ (# of probes)∗(probe degree)

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 5 / 22

An overview of straight-line programs Summary of results

Results of Monte Carlo interpolation algorithms

algorithm # of probes probe degree ”cost”

Garg and Schost1 Õ(T logD) O(T 2 logD) Õ(T 3 log2 D)

Giesbrecht and Roche2 Õ(logD) O(T 2 logD) Õ(T 2 log2 D)

AA, Giesbrecht, Roche Õ(logT logD) O(T log2 D) Õ(T log3 D)

These algorithms admit a failure probability of ≤ ε, for a fixed parameter ε.

Recall

f (z) is in Õ(g(z)) if f ∈ O
(
g(z) log(g(z))c

)
for some constant c .

1. Interpolation of polynomials given by straight-line programs. Theoretical Comp. Sci. 2009.

2. Diversification improves interpolation. ISSAC 2011.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 6 / 22

An overview of straight-line programs Summary of results

From Monte Carlo to Las Vegas
These algorithms are Monte Carlo (probably correct, deterministic run-time). To
verify an output f ∗ we can use the following:

Lemma (Blaser et al., 2009)

Let g = f − f ∗ be a polynomial over an integral domain R. Suppose

1. We know g has at most T terms and degree at most D.

2. g mod (zp − 1) = 0 for some (T − 1) log2 D primes p.

Then g = 0.

I # of probes: O(T logD)

I probe degree: Õ(T logD)

I cost: Õ(T 2 log2 D)

Note
This test is at least as fast as the Garg-Schost and Giesbrecht-Roche algorithms;
however, the test is costlier than the new algorithm when T ∈ o(logD).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 7 / 22

A new, recursive sparse interpolation algorithm

Outline

An overview of straight-line programs
Straight-line programs
Statement of the problem
Summary of results

A new, recursive sparse interpolation algorithm
“ok” primes - primes that give us information about some of the terms of f
Building an approximation with possible errors
Recursively interpolating the error

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 7 / 22

A new, recursive sparse interpolation algorithm

A new, recursive sparse interpolation algorithm

Throughout the algorithm, we build a sparse polynomial f ∗ (initially zero)
approximating the f given by our input SLP. In each recursive step of the
algorithm we will refine f ∗, until f − f ∗ = 0.

Refining our approximation f ∗

We interpolate the difference g = f − f ∗ as follows:

1. With high probability, find an “ok” prime, a prime p for which at most a
small, specified proportion of the terms of g collide modulo (zp − 1).

2. Given p, look at images of the form g(z) mod (zpq − 1), q ∈ Z, in order to
construct a sparse polynomial f ∗∗ such that g − f ∗∗ has at most T/2 terms.

3. Set f ∗ ← f ∗ + f ∗∗ and T ← bT/2c and repeat. If T = 0, return f ∗.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 8 / 22

A new, recursive sparse interpolation algorithm “ok primes”

good primes

I We say two terms c1z
e1 and c2z

e2 collide modulo (zp − 1) if p | (e1 − e2).

I Both the Garg-Schost and Giesbrecht-Roche algorithms require a good
prime p for which no terms of f collide modulo (zp − 1).

Example of a good prime

Let f (z) = 1 + z + 3z10. Then

f (z) mod (z5 − 1) = 4 + z ,

f (z) mod (z7 − 1) = 1 + z + 3z3.

I 5 is not a good prime as 1 collides with 3z10 modulo (z5 − 1).

I f (z) mod (z7 − 1) has three terms (like f), so 7 is a good prime.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 9 / 22

A new, recursive sparse interpolation algorithm “ok primes”

ok primes

I An ok prime is a weaker notion of a good prime, that allows for a small
number of terms to collide.

I Ok primes will allow us to use primes of size O(T logD) instead of
O(T 2 logD).

Definition

• Given a polynomial g with ≤ T terms, and a prime p, we let Cg (p) denote
the number of terms of f that are involved in collisions modulo (zp − 1).

• We call p an ok prime if Cg (p) < 3
8T.

• p is a good prime if Cg (p) = 0.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 10 / 22

A new, recursive sparse interpolation algorithm “ok primes”

ok primes - an example

Let g = 1 + z + z4 − 2z13.

p = 2

1 + z + z4 − 2z13 mod (z2 − 1) = 1 + z + 1− 2z ,

= 2− z .

z4 collides with 1 and −2z13 collides with z , so Cg (2) = 4.

p = 3

1 + z + z4 − 2z13 mod (z3 − 1) = 1 + z + z − 2z ,

= 1.

z , z4, and −2z13 collide, so Cg (3) = 3.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 11 / 22

A new, recursive sparse interpolation algorithm “ok primes”

“ok” primes

Lemma

Let g(z) have degree ≤ D and ≤ T terms, and let

λ = max

(
21,
⌈
160
9 (T − 1) lnD

⌉)
∈ O(T logD).

Then p, a prime chosen at random in the range [λ, 2λ] satisfies Cg (p) < 3
16T with

probability at least 1
2 .

Thus, if we look at f (z) mod (zp − 1) for some dlog 1/εe primes p ∈ [λ, 2λ], we
will have come across an ok prime p with probablity ≥ 1− ε.

Cost to search for an ok prime

• Probe degree: p ∈ O(T logD).
• # of probes: O(log 1/ε).
• Cost: O(T logD log 1/ε).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 12 / 22

A new, recursive sparse interpolation algorithm “ok primes”

“ok” primes

Problem

How do we know the p which minimizes Cg (p)?

Lemma

Suppose g mod (zq − 1) has sparsity sq and g mod (zp − 1) has sparsity sp ≥ sq.
Then Cg (p) ≤ 2Cg (q).

Thus choosing the p for which the image g(z) mod (zp − 1) has the most terms
gives us Cg (p) < 2 3

16T = 3
8T (with probability 1− ε).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 13 / 22

A new, recursive sparse interpolation algorithm “ok primes”

“ok” primes

Problem

How do we know the p which minimizes Cg (p)?

Lemma

Suppose g mod (zq − 1) has sparsity sq and g mod (zp − 1) has sparsity sp ≥ sq.
Then Cg (p) ≤ 2Cg (q).

Thus choosing the p for which the image g(z) mod (zp − 1) has the most terms
gives us Cg (p) < 2 3

16T = 3
8T (with probability 1− ε).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 13 / 22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

Constructing images of g = f − f ∗

Given an ok prime p, we then construct images g(z) mod (zpqi − 1) for a set of
coprime qi > 1 chosen as follows. Let

x = max (2 ln(D), 17) , and

k =
⌈
x/ ln(x)

⌉
∈ O

(
logD

log logD

)
.

Then, for 1 ≤ i ≤ k , we set

qi ←− “greatest power of the i-th prime not exceeding x”.

Note that qi ∈ O(logD) and
∏k

i=1 qi > D.

Cost of probes used to build f ∗∗

• Probe degree: pqi ∈ O(T log2 D).

• # of probes: k ∈ Õ(logD).

• Cost: Õ(T log3 D).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 14 / 22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

Building f ∗∗ approximating g = f − f ∗

I If a term cze of g avoids collision modulo (zp − 1), then in any image
g mod (zpq − 1) the term cze will appear as a unique term of degree
congruent to e mod p.

I Conversely, suppose there exists c0z
e0 , where e0 ≤ D, satisfying

1. There is a unique term in the reduced image g mod (zp − 1) that may be an
image of c0z

e0 .
2. There is a unique term in each image g mod (zpqi − 1) that may be an image

of c0z
e0 ,

...then c0z
e0 may be a term of g , and we add it to f ∗∗.

I c0z
e0 is not always a term of g . If not we call c0z

e0 a deceptive term.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 15 / 22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

How to build f ∗∗ approximating g

Example of a deceptive term

Let
g(z) = z2 + z40 + z60 + z11+4 − z14·11+4 − z15·11+4,

and let p = 11 and consider q = 2, 3, 5. We have

g(z) mod (z11 − 1) = z2 + z7 + z5 − z4,

g(z) mod (z22 − 1) = z2 + z18 + z16 − z15,

g(z) mod (z33 − 1) = z2 + z7 + z27 − z26,

g(z) mod (z55 − 1) = z2 + z40 + z5 − z48.

I The first three terms of each image correspond to the terms z2, z40, z60

appearing in g . Note there is only one term of degree {2, 40, 60} mod 11 in
each image.

I The remaining term in each of the 4 images has degree congruent to
4 mod 11. By Chinese remaindering on the exponents, this gives a deceptive
term −z323 not appearing in g .

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 16 / 22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

Detecting collisions

I A deceptive term can only result from a collision of three or more terms
modulo (zp − 1).

I If only two terms collide modulo zp − 1, there will be a qi such that
g mod (zpqi − 1) separates those terms.

Example: g(z) = 1 + z59 + z11+2 + z11·12+11+2

Using p = 11 and (q1, q2, q3) = (4, 3, 5), we have

g(z) mod (z11 − 1) = 1 + 2z2 + z4

g(z) mod (z44 − 1) = 1 + z15 + 2z13

g(z) mod (z33 − 1) = 1 + z26 + 2z13

g(z) mod (z55 − 1) = 1 + z4 + z13 + z35

We recognize that a collision occurred at degree 2 modulo (z11 − 1) and ignore
those terms. Here f ∗∗ would be 1 + z59.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 17 / 22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

Building an approximation f ∗∗ of g = f − f ∗∗

I The polynomial f ∗∗ we construct will contain the T − Cg (p) non-colliding
terms of g , plus potentially some bCg (p)/3c deceptive terms.

I g − f ∗∗ will have at most Cg (p) + 1
3Cg (p) = 4

3Cg (p) terms.

I If Cg (p) < 3
8T , then g − f ∗∗ will have sparsity less than (4

3)(3
8)T = T/2.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 18 / 22

A new, recursive sparse interpolation algorithm Recursively interpolating the error

Recursively interpolating g − f ∗∗

I f ∗∗ gives us a new difference f − f ∗ − f ∗∗ with smaller sparsity bound T/2.

I We set f ∗ ← f ∗ + f ∗∗ and T ← bT/2c, then recursively interpolate our now
updated difference g = f − f ∗.

I We continue in this fashion some b1 + logT c times until we have f − f ∗ = 0.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 19 / 22

A new, recursive sparse interpolation algorithm Recursively interpolating the error

Problem:

At the start of our algorithm, we look at dlog 1/εe primes pi in an attempt to find
an ok prime with probability 1− ε. We now need this to succeed at each of the
b1 + logT c recursive calls now.

If we want to correctly interpolate f with probability µ, it suffices to instead
bound the failure probability at each recursive step by ε = µ/(1 + logT). This
does not affect the ”soft-Oh” cost of the algorithm.

Cost with probability of success at least 1− µ, for fixed µ

Interpolating f entails Õ (logT logD) probes of degree O(T log2 D).

Cost: Õ(T log3 D)

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 20 / 22

A new, recursive sparse interpolation algorithm Recursively interpolating the error

I Final thoughts:
I Difficult to guarantee zero collisions for small probe degree - birthday paradox.
I ok primes: better performance by tolerating some errors.
I An advantage of having a recursive algorithm decrementing T is that we can

call the Giesbrecht-Roche T 2 log2 D algorithm once logD � T .

I Future work:
I Investigate the numerical stability of a black-box variant of the algorithm.
I Las Vegas algorithm: faster polynomial identity testing of SLPs.
I O(T logD) interpolation?

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 21 / 22

A new, recursive sparse interpolation algorithm Recursively interpolating the error

Thank you for your attention

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 22 / 22

	An overview of straight-line programs
	Straight-line programs
	Statement of the problem
	Summary of results

	A new, recursive sparse interpolation algorithm
	``ok'' primes - primes that give us information about some of the terms of f
	Building an approximation with possible errors
	Recursively interpolating the error

