Faster Sparse Interpolation of Straight-Line Programs

Andrew Arnold”, Mark Giesbrecht”, Dan Rochef

*University of Waterloo
tUnited States Naval Academy

CASC 2013
ZIB, Berlin

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 1/22

Outline

An overview of straight-line programs
Straight-line programs
Statement of the problem
Summary of results

A new, recursive sparse interpolation algorithm
“ok” primes - primes that give us information about some of the terms of f
Building an approximation with possible errors
Recursively interpolating the error

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 1/22

An overview of straight-line programs

Outline

An overview of straight-line programs
Straight-line programs
Statement of the problem
Summary of results

Arnold (University of Waterloo) Sparse Interpolation with Less Probing

Sept 10, 2013

1/22

An overview of straight-line programs Straight-line programs
Straight-line programs

A straight-line program (SLP) is a model of algebraic computation. An SLP can
represent a polynomial (a functional representation).

Definition
Let R be a ring, and let by € R be a user-specified input. A straight-line
program (SLP) is a series instructions (I'1,...,T;), where I'; assigns a value to

b; € R, and T'; is of the form
F,-:b,-<—a[+—><] B, Oé7ﬁ€RU{b0,...,b,',1}.

The vector b is the output corresponding to input by. We say £ is the length of
our program.

Note

This definition is a restriction to single-input, division-free SLPs.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 2

/ 22

An overview of straight-line programs ~ Straight-line programs

Straight-line programs

Example: a SLP for f(z) = (22 + 22 +z+ 1)(z— 1)

by = z is our input.

bl <—b0 X b() [: 22]7 bg(—bo X b1 [Z 23],
by < by + by [=2°+ 77, by« b3+ by [=22+22 42,
by~ b3 +1 [=22422+2z+1], bs < byp—1 [=z—1],

bg < by x bs [= (22 + 22+ z+1)(z—1)].

We say this SLP computes f. Interpolating this SLP means expanding

(422 +z+1)(z-1)=2*-1.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013

3/22

An overview of straight-line programs Statement of the problem
Probing a straight-line program

The interpolation problem
We are given:
1. A SLP that computes f(z) = Yi_; ¢;iz% € R[z], where

> e < e < - < e =deg(f), and
» ci#0forl <i<s.

2. Upper bounds D > deg(f) and T > t.
Aim: Construct the terms ¢;z% of f.

» One can probe the SLP, i.e., execute the program on chosen inputs.
» Input: ¢, a symbolic n-th root of 1, for select n.

» This gives f(¢) mod (¢" —1).

» n = “the probe degree”.

Note

In the black-box polynomial model, one instead inputs all n n-th roots of 1 in
order to construct f(¢) mod ({" — 1).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013

4/22

An overview of straight-line programs ~ Statement of the problem

Probing a straight-line program

Example: Computing f(¢) mod (¢3 — 1)

by < ¢,

by « by x by [= (7], by < by x by [=¢ =1],
by — by+ by [=1+¢7, by b3+ by [=14+C¢+¢3,
by b3+1 [=2+(+(7, bs <~ bp—1 [=(¢—1],

be < ba x bs [=(24+C¢+)(¢-1)=¢—1].

Each SLP instruction entails adding/multiplying two polynomials modulo (¢" — 1)
Cost of one SLP instruction: O(n)
Cost of probe: O(¢n)

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 5/22

An overview of straight-line programs ~ Statement of the problem

Probing a straight-line program

Example: Computing f(¢) mod (¢3 — 1)

by + ¢,

by« by x by [= (7, by« by x by [=(C=1],
bs < by + b [=1+¢7, by < by +by [=1+C+7,
by — b3 +1 [=2+C+%, bs «~by—1 [=(—1],

bs < by x by [=(2+C+)¢ —-1)=¢—1]. |

Each SLP instruction entails adding/multiplying two polynomials modulo (¢" — 1)
Cost of one SLP instruction: O(n)
Cost of probe: O(¢n)

Measure of cost of interpolation
cost ~ (# of probes)x(probe degree) J

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 5/22

An overview of straight-line programs

Summary of results

Results of Monte Carlo interpolation algorithms

algorithm

of probes probe degree | "cost”
Garg and Schost O(T log D) O(T?log D) | O(T?log” D)
Giesbrecht and Roche? | O(log D) O(T2log D) | O(T?log? D)
AA, Giesbrecht, Roche | O(log T log D) | O(T log? D) | O(T log® D)

These algorithms admit a failure probability of < ¢, for a fixed parameter e.

Recall

f(z)isin O(g(z)) if f € O<g(z) Iog(g(z))c> for some constant c.

1. Interpolation of polynomials given by straight-line programs. Theoretical Comp. Sci. 2009.
2. Diversification improves interpolation. ISSAC 2011.

Arnold (University of Waterloo)

Sparse Interpolation with Less Probing

Sept 10, 2013

6 /22

An overview of straight-line programs Summary of results

From Monte Carlo to Las Vegas

These algorithms are Monte Carlo (probably correct, deterministic run-time). To
verify an output f* we can use the following:

Lemma (Blaser et al., 2009)

Let g = f — f* be a polynomial over an integral domain R. Suppose
1. We know g has at most T terms and degree at most D.
2. g mod (zP — 1) = 0 for some (T — 1) log, D primes p.

Then g = 0.

> # of probes: O(T log D)
> probe degree: O(T log D)
» cost: O(T2log? D)

Note

This test is at least as fast as the Garg-Schost and Giesbrecht-Roche algorithms;
however, the test is costlier than the new algorithm when T € o(log D).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 7/22

A new, recursive sparse interpolation algorithm

Outline

A new, recursive sparse interpolation algorithm
“ok” primes - primes that give us information about some of the terms of f
Building an approximation with possible errors
Recursively interpolating the error

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 7/22

A new, recursive sparse interpolation algorithm

A new, recursive sparse interpolation algorithm

Throughout the algorithm, we build a sparse polynomial 7* (initially zero)

approximating the f given by our input SLP. In each recursive step of the
algorithm we will refine £*, until f — f* = 0.

Refining our approximation f*
We interpolate the difference g = f — f* as follows:

1. With high probability, find an “ok” prime, a prime p for which at most a
small, specified proportion of the terms of g collide modulo (zP — 1).

2. Given p, look at images of the form g(z) mod (zP9 — 1), g € Z, in order to
construct a sparse polynomial ** such that g — f** has at most T/2 terms.

3. Set f* <~ f*+ ** and T < | T/2] and repeat. If T =0, return *.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 8 /22

A new, recursive sparse interpolation algorithm “ok primes”

good primes

> We say two terms ¢;z% and c;z% collide modulo (zP — 1) if p | (&1 — &2).

» Both the Garg-Schost and Giesbrecht-Roche algorithms require a good
prime p for which no terms of f collide modulo (z° — 1).

Example of a good prime
Let f(z) =1+ z+32%0. Then
f(z) mod (z° — 1) =4+ z,
f(z) mod (z" — 1) =1+ z +32°.

» 5 is not a good prime as 1 collides with 3z° modulo (2% — 1).

» f(z) mod (z” — 1) has three terms (like f), so 7 is a good prime.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013

9/22

A new, recursive sparse interpolation algorithm “ok primes”

ok primes

» An ok prime is a weaker notion of a good prime, that allows for a small
number of terms to collide.

» Ok primes will allow us to use primes of size O(T log D) instead of
O(T?log D).

Definition
o Given a polynomial g with < T terms, and a prime p, we let C,(p) denote
the number of terms of f that are involved in collisions modulo (zP — 1).
e We call p an ok prime if C;(p) < %T.
e pis a good prime if C;(p) = 0.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 10 / 22

A new, recursive sparse interpolation algorithm “ok primes”
ok primes - an example
Let g=1+2z+ 2% —22%3,
p=2
1+z+2*—22%mod (22 —-1) =1+z+1-2z
=2—z.

z* collides with 1 and —2z'3 collides with z, so C,(2) = 4.

p=3

1+z+2*-22%mod (2 -1) =1+z+2z-27
=1

z, 2% and —2z%3 collide, so C,(3) = 3.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 11 /22

A new, recursive sparse interpolation algorithm “ok primes”

“ok” primes

Lemma
Let g(z) have degree < D and < T terms, and let

A= max(217 [1%(T —1)In DW) € O(T log D).

Then p, a prime chosen at random in the range [\, 2)\] satisfies Cg(p) < %T with
probability at least .

v

Thus, if we look at f(z) mod (zP — 1) for some [log1/e| primes p € [A,2}], we
will have come across an ok prime p with probablity > 1 —e.

Cost to search for an ok prime
e Probe degree: p € O(T log D).
e # of probes: O(log1/e).

e Cost: O(T log Dlog1/e).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 12 / 22

A new, recursive sparse interpolation algorithm “ok primes”

“ok” primes

Problem

How do we know the p which minimizes C,(p)?

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 13 /22

A new, recursive sparse interpolation algorithm “ok primes”

“ok” primes

Problem

How do we know the p which minimizes C,(p)?

Lemma

Suppose g mod (z9 — 1) has sparsity s; and g mod (zP — 1) has sparsity s, > s,.
Then Cg(p) < 2C4(q).

Thus choosing the p for which the image g(z) mod (z° — 1) has the most terms
gives us Cg(p) < 22T = 2T (with probability 1 —¢).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 13 /22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

Constructing images of g = f — f*

Given an ok prime p, we then construct images g(z) mod (zP% — 1) for a set of

coprime g; > 1 chosen as follows. Let
x =max(2In(D),17), and
log D
k=[x/In(x)] € O (225 .

Then, for 1 < < k, we set

q; <— “greatest power of the i-th prime not exceeding x".

Note that g; € O(log D) and [*_, g; > D.

Cost of probes used to build f**
e Probe degree: pg; € O(T log® D).
* # of probes: k € O(log D).

e Cost: O(T log® D).

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013

14 /22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

Building f** approximating g = f — f*

> If a term cz® of g avoids collision modulo (zP — 1), then in any image
g mod (zP9 — 1) the term cz® will appear as a unique term of degree
congruent to e mod p.

» Conversely, suppose there exists ¢pz®, where gy < D, satisfying
1. There is a unique term in the reduced image g mod (z” — 1) that may be an
image of ¢pz®.
2. There is a unique term in each image g mod (z°% — 1) that may be an image
of ¢pz®,

...then ¢pz® may be a term of g, and we add it to f**.

> oz is not always a term of g. If not we call ¢pz® a deceptive term.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 15 /22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

How to build f** approximating g

Example of a deceptive term

Let
g(z) = 22+ 740 4 00 | 1144 _ 141144 151144

)

and let p = 11 and consider g = 2,3,5. We have

g(z)mod (2 —1) =22 + 2" + 2° — 2*,

26

(

g(z) mod (222 —1) = 2% + 718 + 716 — 215

g(z) mod (222 —1) = 22 4 2" + %" — 2*°,
(

g(z) mod (2%° — 1) = 22 4+ 20 4 25 — 2*8,

> The first three terms of each image correspond to the terms z2, z4°, 2
appearing in g. Note there is only one term of degree {2,40,60} mod 11 in
each image.

» The remaining term in each of the 4 images has degree congruent to
4 mod 11. By Chinese remaindering on the exponents, this gives a deceptive
term —2z323 not appearing in g.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 16 / 22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

Detecting collisions

» A deceptive term can only result from a collision of three or more terms

modulo (zP — 1).

» If only two terms collide modulo zP — 1, there will be a g; such that

g mod (zP% — 1) separates those terms.

Example: g(z) =1+ 2% 4 z11+2 4 Fil12+ll+2

We recognize that a collision occurred at degree 2 modulo (z!* — 1) and ignore

those terms. Here ** would be 1 + z°°.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing

Sept 10, 2013

17 / 22

A new, recursive sparse interpolation algorithm Building an approximation with possible errors

Building an approximation f** of g = f — f**

> The polynomial £** we construct will contain the T — Cz(p) non-colliding
terms of g, plus potentially some |C4(p)/3] deceptive terms.
> g — £** will have at most Cg(p) + 1Cq(p) = 3C¢(p) terms.

> If Cg(p) < 3T, then g — £** will have sparsity less than (3)(3)T = T/2.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 18 /22

A new, recursive sparse interpolation algorithm Recursively interpolating the error

Recursively interpolating g — £**

> f** gives us a new difference f — f* — f** with smaller sparsity bound T /2.

> We set f* < f*+f** and T < | T /2], then recursively interpolate our now
updated difference g = f — *.

» We continue in this fashion some |1+ log T | times until we have f — f* = 0.

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 19 /22

A new, recursive sparse interpolation algorithm Recursively interpolating the error

Problem:

At the start of our algorithm, we look at [log 1/€| primes p; in an attempt to find
an ok prime with probability 1 — e. We now need this to succeed at each of the
|1+ log T | recursive calls now.

If we want to correctly interpolate f with probability 4, it suffices to instead
bound the failure probability at each recursive step by e = /(1 + log T). This
does not affect the "soft-Oh” cost of the algorithm.

Cost with probability of success at least 1 — i, for fixed

Interpolating f entails O (log T log D) probes of degree O(T log? D).
Cost: O(T log® D)

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 20 /22

A new, recursive sparse interpolation algorithm Recursively interpolating the error

» Final thoughts:
» Difficult to guarantee zero collisions for small probe degree - birthday paradox.
> ok primes: better performance by tolerating some errors.
» An advantage of having a recursive algorithm decrementing T is that we can
call the Giesbrecht-Roche T2 log? D algorithm once log D > T.

» Future work:
> Investigate the numerical stability of a black-box variant of the algorithm.
» Las Vegas algorithm: faster polynomial identity testing of SLPs.
» O(T log D) interpolation?

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 21 /22

A new, recursive sparse interpolation algorithm Recursively interpolating the error

Thank you for your attention

Arnold (University of Waterloo) Sparse Interpolation with Less Probing Sept 10, 2013 22 /22

	An overview of straight-line programs
	Straight-line programs
	Statement of the problem
	Summary of results

	A new, recursive sparse interpolation algorithm
	``ok'' primes - primes that give us information about some of the terms of f
	Building an approximation with possible errors
	Recursively interpolating the error

