The Dimension of a Monomial Ideal

Paul Vrbik1

1University of Western Ontario
The dimension of an ideal at a point from its variety is equivalent to the vector dimension of the tangent space there.

This is straightforward to calculate as a tangent space is usually a collection of hyperplanes (the exception being singular points where this collection is a tangent cone instead).
The ideal $\langle y - x^2 \rangle$ has dimension one at every point

$$p \in V(y - x^2) = \{(p, p^2) : p \in \mathbb{R}\}.$$
The paraboloid $\langle z - y^2 - x^2 \rangle$ has dimension \textbf{two} at every point $p \in \mathbf{V}(z - x^2 - y^2)$.
Recall from linear algebra that the dimension of a hyperplane is the number of basis vectors required to span (i.e. capture all points of) the surface.

For our purposes we only need hyperplanes generated by co-ordinate axis, or what are more typically called the x-axis, y-axis,
Example

In $\mathbb{A}^3(\mathbb{R}) = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ the z-axis is

Note $\mathbf{V}(x, y) = \mathbf{V}(\{z\}^c)$.
Using a process analogous to ‘spanning’ a hyperplane with unit vectors these axis are extensible to planes

\[
\begin{align*}
\mathbf{V}(x, y) &+ \mathbf{V}(x, z) = \mathbf{V}(x, y) + \mathbf{V}(x, z) \\
\mathbf{V}(xy) + \mathbf{V}(xz) &= \{(s, 0, 0) : s \in \mathbb{R}\} + \{(0, t, 0) : t \in \mathbb{R}\} \\
&= \{(s, t, 0) : s, t \in \mathbb{R}\}.
\end{align*}
\]
Definition (Coordinate Axis)

\[\mathbb{1}_{x_0} = (1, 0, \ldots, 0) \quad \text{“the } x_0\text{-axis”,} \]
\[\mathbb{1}_{x_1} = (0, 1, \ldots, 0) \quad \text{“the } x_1\text{-axis”,} \]
\[\vdots \]
\[\mathbb{1}_{x_\ell} = (0, 0, \ldots, 1) \quad \text{“the } x_\ell\text{-axis”.} \]

As the position of the unit (i.e. ‘1’) in \(\mathbb{1}_{x_i} \) is arbitrary. We write \(\mathbb{1}_x, \mathbb{1}_y, \mathbb{1}_z \) and let the implicit variable ordering assign the ones.
The dimension of a line is one and the dimension of the hyperplane created by removing that line is one less than the ambient space.

Definition

Let \mathbf{x} be a set of variables.

$$\forall x \in \mathbf{x}; \dim(\mathbf{V}(\{x\}^c)) := 1,$$

$$\forall x \in \mathbf{x}; \dim(\mathbf{V}(x)) := \ell.$$

($\mathbb{A}^{\ell+1}(\mathbb{R})$ has dimension $\ell + 1$.)
Definition (Span)

Let \(\langle 1_{x_0}, \ldots, 1_{x_s} \rangle_{\mathbb{R}} \) denote the span of those coordinate axis.

\[
\langle 1_{x_0}, \ldots, 1_{x_s} \rangle_{\mathbb{R}} = \{c_0 1_{x_0} + \cdots + c_s 1_{x_s} : c_0, \ldots, c_s \in \mathbb{R}\}.
\]

Proposition

Let \(x \in x \).

1. \(V(\{x\}^c) = \langle 1_x \rangle \), and

2. \(V(x) = \langle 1_y : y \in \{x\}^c \rangle \).
For principally generated ideals the variety over m (a monomial) decomposes into a union of hyperplanes, each of dimension ℓ:

\[
V(m) = V(x_0^{d_0} \cdots x_s^{d_s}) \\
= V(x_0 \cdots x_s) \\
= V(x_0) \cup \cdots \cup V(x_s).
\]

Definition

\[
\dim\left(V(x_0^{d_0} \cdots x_s^{d_s}) \right) := \ell,
\]

and

\[
\dim(V(m_0) \cup \cdots \cup V(m_s)) = \max_{\dim} V(m_0), \ldots, V(m_s).
\]
Seemingly, the dimension of a monomial ideal just requires enumerating a set of names. However, this is only due to the dimension behaving well over unions (in this setting).

In particular, the dimension can never decrease by “unioning” another hyperplane whereas for intersections this is typical.
Example

Consider $V(x, y)$, the intersection of the planes $\langle 1_y, 1_z \rangle_R$ and $\langle 1_x, 1_z \rangle_R$.

Although both $V(x)$, $V(y)$ have dimension two the dimension of the intersection, $V(x, y) = 1_z$, is one.
Intersections of hyperplanes are called coordinate subspaces for they inhabit spaces spanned by coordinate axis.

Definition (Coordinate Subspace)

When $\tilde{x} \subseteq x$,

$$V(\tilde{x}) = \bigcap_{y \in \tilde{x}} V(y)$$

is a coordinate subspace.

Our goal is to write these coordinate subspaces using unions rather than intersections so as to pick out the hyperplane of largest dimension.
Proposition

Coordinate subspaces are spanned by coordinate axis. That is, when \(\tilde{x} \subseteq x \)

\[
V(\tilde{x}) = \langle \langle 1_v : v \in \tilde{x}^C \rangle \rangle_R
\]

Proof.

\[
V(\tilde{x}) = \bigcap_{y \in \tilde{x}} V(y) = \bigcap_{y \in \tilde{x}} \langle \langle 1_v : v \in \{y\}^C \rangle \rangle_R = \langle \langle 1_v : v \in \bigcap_{y \in \tilde{x}} \{y\}^C \rangle \rangle_R
\]

\[
= \langle \langle 1_v : v \in (\bigcup_{y \in \tilde{x}} \{y\})^C \rangle \rangle_R = \langle \langle 1_v : v \in \tilde{x}^C \rangle \rangle_R.
\]

\[\square\]
We demonstrated $V(\tilde{x})$ is spanned by $|\tilde{x}^c|$ many coordinate axis; thus

$$\dim(V(\tilde{x})) := (\ell + 1) - |\tilde{x}|.$$

(Note: $|\tilde{x}^c| = |x| - |\tilde{x}| = \ell + 1 - |\tilde{x}|$.)
Dimension of a Monomial Ideal

Intuitively, the dimension of an arbitrary monomial ideal \(\langle \mathbf{m} \rangle \) is the largest subspace (i.e. \(\langle 1_v : v \in \tilde{\mathbf{x}} \rangle \) with largest \(\tilde{\mathbf{x}} \)) embedded in \(\langle \mathbf{m} \rangle \). Extracting this information from unions of the form

\[V(\tilde{x}_0) \cup \cdots \cup V(\tilde{x}_s) \]

is merely a matter of calculating the dimension of the individual hyperplanes among the union.
Unfortunately then, is that the “natural” expansion of $V(m)$ is into intersections of coordinate subspaces:

$$V(m) = \bigcap_{m \in \mathbf{m}} V(m) = \bigcap_{m \in \mathbf{m}} \bigcup_{x \in \text{indets}(m)} V(x).$$

However, we can convert between Conjunctive normal forms into Disjunctive normal forms to take a disjunction of coordinate subspaces, or

Intersections over unions of hyperplanes,

to a conjunction of coordinate subspaces, or

Unions over intersections of hyperplanes.
Example (CNF to DNF conversion)

Let \(V_t := V(t) \) for any variable \(t \in [x, y, z] \)

\[
V(xz, yz) = V_{xz} \cap V_{yz} \\
= (V_x \cup V_z) \cap (V_y \cup V_z) \\
= (V_x \cap V_y) \cup (V_x \cap V_z) \cup (V_z \cap V_y) \cup (V_z \cap V_z) \\
= V(x, y) \cup V(x, z) \cup V(y, z) \cup V(z).
\]

The dimensions of \(V(x, y) \), \(V(x, z) \), \(V(y, z) \), and \(V(z) \) are 1, 1, 1, and 2 (resp.); thus \(\dim(V(xz, yz)) = 2 \).
Proposition

Let $\mathcal{Y} = \{\tilde{y}_0, \ldots, \tilde{y}_s\} \in \mathcal{P}(\mathcal{P}(x_0, \ldots, x_\ell))$ then

$$\exists X : \bigcup_{\tilde{x} \in X} V(\tilde{x}) = \bigcap_{\tilde{y} \in \mathcal{Y}} V(\tilde{y}).$$

And amazingly, there is an explicit writing for this conversion.

$$X = \{\{\tilde{y}_0, \ldots, \tilde{y}_s\} : (y_0, \ldots, y_s) \in \tilde{y}_0 \times \cdots \times \tilde{y}_s\} \quad (1)$$
Proof.

\[p \in \bigcup_{\tilde{x} \in \mathbf{X}} \mathbf{V}(\tilde{x}) \]

\[\iff p \in \bigcup_{\tilde{x} \in \mathbf{X}} \bigcap_{x \in \tilde{x}} \mathbf{V}(x) \]

\[\iff \exists \tilde{x} \in \mathbf{X} : \forall x \in \tilde{x}; \ p \in \mathbf{V}(x) \]

\[\iff \exists \tilde{x} \in \mathbf{X} : \forall x \in \tilde{x}; \ p \in \mathbf{V}(x) \]

\[\iff \exists \{y_0, \ldots, y_s\} : (y_0, \ldots, y_s) \in \tilde{y}_0 \times \cdots \times \tilde{y}_s ; \forall x \in \tilde{x}; \ p \in \mathbf{V}(x) \]

\[\iff \exists (y_0, \ldots, y_s) \in \tilde{y}_0 \times \cdots \times \tilde{y}_s ; \forall x \in \tilde{x}; \ p \in \mathbf{V}(x) \]

\[\iff \exists (y_0, \ldots, y_s) \in \tilde{y}_0 \times \cdots \times \tilde{y}_s ; \ p \in \mathbf{V}(y_0) \cap \cdots \cap \mathbf{V}(y_s) \]

\[\iff \forall \tilde{y} \in \mathbf{Y}; \exists y \in \tilde{y} : p \in \mathbf{V}(y) \]

\[\iff p \in \bigcap_{\tilde{y} \in \mathbf{Y}} \bigcup_{y \in \tilde{y}} \mathbf{V}(y) \]

\[\iff p \in \bigcap_{\tilde{y} \in \mathbf{Y}} \mathbf{V}(\tilde{y}). \]
Example

Let $\mathcal{Y} = \{\text{indets}(xz), \text{indets}(yz)\} = \{\{x, z\}, \{y, z\}\}$ so that

$$\mathbf{V}(xz, yz) = \bigcap_{\tilde{y} \in \mathcal{Y}} \mathbf{V}(\tilde{y}).$$

$$\exists X = \{(\tilde{y}_0, \tilde{y}_1) : (y_0, y_1) \in \{x, z\} \times \{y, z\}\}$$

$$= \{\{x, y\}, \{x, z\}, \{z, y\}, \{z, z\}\}$$

$$= \{\{x, y\}, \{x, z\}, \{y, z\}, \{z\}\}$$

so that $\mathbf{V}(xz, yz) = \bigcup_{\tilde{x} \in \mathcal{X}} \mathbf{V}(\tilde{x})$ and thus

$$\mathbf{V}(xy, yz) = \mathbf{V}(x, y) \cup \mathbf{V}(x, z) \cup \mathbf{V}(y, z) \cup \mathbf{V}(z).$$
Theorem

Any monomial variety can be decomposed into a union of coordinate subspaces.

\[\forall m_0, \ldots, m_s \in [x]; \exists n_0, \ldots, n_t \in [x]: \]
\[V(m_0, \ldots, m_s) = V(n_0) \cup \cdots \cup V(n_t). \]

Proof.

Let \(\tilde{y}_i = \text{indets}(m_i) \) and \(\{n_0, \ldots, n_t\} = \left\{ \prod_{x \in \tilde{x}_i} x : \tilde{x} \in X \right\} \) in last Proposition.