
ALGORITHMS FOR COMPUTING CYCLOTOMIC

POLYNOMIALS

by

Andrew Arnold

B.Sc., University of British Columbia, 2007

THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN THE DEPARTMENT

OF

MATHEMATICS

c© Andrew Arnold 2011
SIMON FRASER UNIVERSITY

Spring, 2011

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for
Fair Dealing. Therefore, limited reproduction of this work for the purposes of
private study, research, criticism, review, and news reporting is likely to be

in accordance with the law, particularly if cited appropriately.

APPROVAL

Name: Andrew Arnold

Degree: Master of Science

Title of thesis: Algorithms for Computing Cyclotomic Polynomials

Examining Committee: Dr. Stephen Choi
Associate Professor of Mathematics (Chair) (Chair)

Michael Monagan
Senior Supervisor

Progressor of Mathematics

Peter Borwein
Supervisor

Professor of Mathematics

Petr Lisonek
Internal Examiner

Associate Professor of Mathematics

Date Approved: January 18, 2011

ii

Abstract

The nth cyclotomic polynomial, Φn(z), is the minimal polynomial of the nth primitive

roots of unity. We developed and implemented algorithms for calculating Φn(z) to study

its coefficients.

The first approach computes Φn(z) using its discrete Fourier transform. The sparse

power series (SPS) algorithm calculates Φn(z) as a truncated power series. We make three

key improvements to the SPS algorithm, ultimately resulting in a fast recursive variant of

the SPS algorithm. We make further optimizations to this recursive SPS algorithm to com-

pute cyclotomic polynomials that require very large amounts of storage. These algorithms

were used to find the least n such that Φn(z) has height greater than nk, for 1 ≤ k ≤ 7.

The big prime algorithm quickly computes Φn(z) for n having a large prime divisor p.

This algorithm was used to search for families of Φn(z) of height 1.

iii

I dedicate my thesis to my older brother Thomas, whom I will

always look up to.

iv

Acknowledgments

I’d like to thank the following people: Colin Beaumont, for lending ample computer

processor time; Roman Pearce, for always being a good sounding board; Greg Fee, whose

suggestion led to the sparse power series algorithm; and Michael Monagan, for introducing

me to this rewarding research project in the first place. I’d also like to thank the CECM

populace for tolerating my long-running abuse of computational resources and my parents,

without whose support I probably would not have pursued this research.

v

Table of contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Table of contents vi

List of tables ix

List of algorithms and procedures xi

List of figures xii

1 Introduction and preliminaries 1
1.1 Introduction . 1

1.2 The Möbius function and Euler’s φ function 2

1.3 Cyclotomic polynomials . 3

1.3.1 Cyclotomic polynomials of large height 4

1.3.2 Flat cyclotomic polynomials . 6

1.3.3 Fundamental properties of cyclotomic polynomials 6

1.3.4 The palindromic property of the cyclotomic coefficients 8

1.3.5 A naive algorithm for computing Φn(z) 11

1.4 Implementing modular arithmetic . 14

vi

TABLE OF CONTENTS vii

1.5 The Chinese remainder algorithm . 17

2 Computing Φn(z) using the fast Fourier transform 19
2.1 The discrete fast Fourier transform . 19

2.1.1 The inverse fast Fourier transform 23

2.2 Implementing the fast Fourier transform 24

2.3 Fast FFT-based polynomial division . 27

2.3.1 Reconstructing Φn(z) from multiple images 30

2.4 A second means of computing the DFT of Φn(z) 31

2.4.1 A division-free CFT . 33

2.4.2 A reduced-memory division-free CFT 35

3 Calculating Φn(z) as a truncated power series 38
3.1 A useful identity of Φn(z) . 38

3.1.1 The Möbius Inversion Formula . 38

3.2 The sparse power series algorithm . 40

3.2.1 The sparse power series algorithm for Ψn(z) 41

3.3 Improving the sparse power series method by further truncating degree . . . 42

3.3.1 A measure to compare SPS-based algorithms 42

3.3.2 A first improvement . 45

3.4 Calculating Φn(z) by way of a product of inverse cyclotomic polynomials . 46

3.4.1 A note on the performance of the iterative SPS algorithm 48

3.5 Calculating Φn(z) and Ψn(z) recursively 49

3.5.1 Implementation details of the recursive SPS algorithm 53

3.5.2 A comparison of the different SPS algorithms 53

4 Reduced-memory methods for computing A(n) 55
4.1 The big prime algorithm . 56

4.1.1 Computing coefficients of Φn(z) recursively 56

4.1.2 A big prime algorithm for Ψn(z) 58

4.1.3 Implementation details and observations 59

4.2 A challenge problem . 60

4.2.1 A new approach . 61

TABLE OF CONTENTS viii

4.3 A reduced-memory recursive SPS algorithm 63

5 Timings and results 71
5.1 Timings . 71

5.2 Heights of cyclotomic polynomials . 78

5.2.1 Cyclotomic polynomials of very large height 79

5.2.2 Flat cyclotomic polynomials . 81

5.3 Extrema of the kth cyclotomic polynomial coefficient 83

5.4 A look at the coefficients of Φn(z) . 85

A Data 88

B Source code 98
B.1 A C implementation of SPS and SPS-Psi 98

B.2 A C implementation of SPS4 . 99

Bibliography 101

List of tables

1.1 The least n for which A(n) > nc . 5

2.1 Primes and the primitive roots used in our FFT calculations 25

3.1 The number of additions and subtraction operations on our coefficient array

to compute Φn(z), for n a product of k distinct primes, using SPS1-4 54

4.1 Where the maximal coefficient of Φn(z) =
∑
an(i)zi occurs 61

5.1 A comparison of Fourier-transform-related methods of computing Φn(z) . . 73

5.2 A comparison of times to compute Φn(z) 74

5.3 Time to calculate Φn(z) using different versions of the SPS algorithm . . . 75

5.4 Time to calculate Ψn(z) using the SPS and recursive SPS algorithms 76

5.5 Time to compute A(n) using the big prime algorithm with 8-bit integers

and sparse representations of Ψm(z) and Φm(z) 77

A.1 n such that A(n) > A(m) for m < n . 88

A.2 A(n) for n a product of the k least odd primes 90

A.3 The least n for which A(n) > 2133 . 91

A.4 The least n for which A(n) > 2146 . 92

A.5 The least n of order 8 for which A(n) > 2210 93

A.6 The least n of order 9 for which A(n) > 2212 93

A.7 n such that Ā(n) = |Ψn(z)|1 > Ā(m) = |Ψm(z)|1 for all m < n 94

A.8 Φn(z) of order 5 that are flatter than all Φm(z) of order 5 for m < n 95

A.9 Φn(z) of order 5 such that A(n) = 2 for select n 96

ix

LIST OF TABLES x

A.10 ᾱ(b), the least k for which b occurs as |an(k)|; and the least n for which

|an
(
ᾱ(k)

)
| = b, for select b ≤ 927 . 97

List of algorithms and procedures

1.1 A naive algorithm for computing Φn(z) by repeated polynomial division . . 14

1.2 Multiplication modulo a 42-bit prime . 15

1.3 Dividing a two-word integer by a one-word integer. (Granlund & Moller [26]) 16

1.4 The Chinese remainder algorithm . 18

- Procedure FFT(N,ω,f) : The fast Fourier transform 21

- Procedure FFT2(N , M , q, α, A, Ω) : an implementation of the FFT 26

2.1 Calculating Φn(z) by repeated FFT-based division 28

- Procedure CFT(n,N ,q,ω,A) : Computing the Fourier transform of Φn(z) . . 32

- Procedure CFT2(n,N ,q,ω,A) : Computing the Fourier transform of Φn(z) . . 34

- Procedure CFT3(n,N ,q,ω,A) : Computing the Fourier transform of Φn(z) . . 36

- Procedure CFT4(n,N ,q,ω,A) : Computing the Fourier transform of Φn(z) . . 37

- Procedure SPS(n) : Computing Φn(z) as a quotient of sparse power series . . 41

- Procedure SPS-Psi(n) : Computing Ψn(z) as a quotient of sparse power series 42

- Procedure SPS2(n) : The first revision of the SPS algorithm 43

- Procedure SPS3(n) : The second revision of the SPS algorithm 47

- Procedure SPS4(m, e, λ, Df , D, A) : Multiply by Φm(ze) or Ψm(ze) 52

4.1 The big prime algorithm for computing A(n) 57

4.2 The big prime algorithm for computing Φn(z) 58

- Procedure SPS4b(m, e, p, λ, DIN , D, k, l, a, b): a distributed version of SPS4 64

4.3 A memory-friendly SPS4-based algorithm for computing A(n) 69

4.4 A memory-friendly SPS4-based algorithm for Ψn(z) 70

xi

List of figures

5.1 The coefficients of Φn(z) =
∑φ(n)

k=0 an(k)zk, for n = 4849845 86

5.2 The coefficients of Φn(z) =
∑φ(n)

k=0 an(k)zk, for n = 40324935 86

5.3 The coefficients of Φn(z) =
∑φ(n)

k=0 an(k)zk, for n = 1181895 87

5.4 The coefficients of Φn(z) =
∑φ(n)

k=0 an(k)zk, for n = 43730115 87

xii

Chapter 1

Introduction and preliminaries

1.1 Introduction

The nth cyclotomic polynomial, Φn(z) is the minimal polynomial of the nth primitive

roots of unity. It is a polynomial over Z with typically small integer coefficients. We let

the order of Φn(z) be the number of distinct odd prime divisors of n. We are interested

in the properties of the coefficients of Φn(z) and in particular the height of Φn(z), which

we denote by A(n) ∈ N. There are a number of open problems concerning A(n) that are

subject to active research.

One such open problem is to completely characterize flat cyclotomic polynomials.

Φn(z) is said to be flat ifA(n) = 1. Cyclotomic polynomials of order 1 are trivially flat and

Bang proved that all those of order two are flat as well. Recent efforts by Bachman, Elder,

and Kaplan [5, 12, 21] have helped classify infinite families of flat Φn(z) of order three.

More recently Kaplan has found an infinite family of flat cyclotomic polynomials of order

4. It remains open, however, whether these families encompass all flat Φn(z) of orders

three and four. Moreover, we currently do not know whether there exists a flat cyclotomic

polynomial of order five or greater.

We are equally interested in cyclotomic polynomials of large height. Erdős [13] first

proved that the heights of cyclotomic polynomials can be arbitrarily large. Erdos proved

that, given c > 0, that there exist infinitely many n such that A(n) > nc; Maier proved in

addition that the set of such n ∈ N has positive lower density. We sought to answer: what

is the least n for which A(n) > n? n2? n3? and so forth.

1

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 2

To help try to answer these questions, we developed and implemented a number of fast

algorithms to calculate cyclotomic polynomials. The first method, described in Chapter

2, computes Φn(z) through a series of exact polynomial divisions made fast via the fast

Fourier transform (FFT). This method was first implemented by Monagan [2]. In Section

2.4 we improve on this method by a constant factor. The sparse power series algorithm,

which we describe in Chapter 3, computes Φn(z) as a truncated power series. We make a

series of improvments to this algorithm to develop a recursive variant of the sparse power

series algorithm, which appears to be our fastest means of computing most cyclotomic

polynomials. These algorithms were used namely to study cyclotomic polynomials of large

height.

The big prime algorithm, described in Chapter 4, was designed for calculating Φn(z)

for n with a large prime divisor p (e.g. p ≈
√
n). This algorithm allows us to compute

A(n) without storing the entire set of coefficients of Φn(z), a limitation of our previous

algorithms. This algorithm was used to search for Φn(z) of order five that were potentially

flat. We, moreover, apply some ideas of the big prime algorithm to make a variation of

the sparse power series algorithm which also does not require immediate storage for all the

coefficients of Φn(z). This method was used to compute cyclotomic polynomials of large

height that may require tens or hundreds of gigabytes to store in entirety. In Chapter 5 we

compare our algorithms. We also present some of the cyclotomic polynomial data we have

amassed.

1.2 The Möbius function and Euler’s φ function

We define the number-theoretic functions µ and φ, which appear often in our discussion

of cyclotomic polynomials.

Definition 1.1. The Möbius function is the function µ : N→ {−1, 0, 1} satisfying µ(n) = 1

for squarefree n with an even number of prime factors, µ(n) = −1 for squarefree n with

an odd number of prime factors, and µ(n) = 0 for nonsquarefree n.

E.g. µ(6) = 1. We note that µ is a multiplicative function. That is, if gcd(a, b) = 1,

then µ(ab) = µ(a)µ(b).

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 3

Definition 1.2. The totient of a natural number n, φ(n), is the number of integers j such

that 0 ≤ j < n such that gcd(j, n) = 1.

Given n = pe11 p
e2
2 . . . pekk , an integer with k distinct prime factors p1, p2, . . . , pk, it is

well known that

φ(n) =
k∏
i=1

pek−1(p− 1) = n
∏
p|n

(1− 1
p
), (1.1)

where the latter product is over the k distinct primes p dividing n.

1.3 Cyclotomic polynomials

Definition 1.3. An element ω of a field F is said to be an nth root of unity if ωn = 1;

furthermore, we say such a root of unity is primitive if ωn = 1 and ωk 6= 1 for 0 < k < n.

That is, the nth primitive roots of unity are the nth roots of unity with multiplicative

order n. The nth complex roots of unity in C are the values

e2πij/n for 0 ≤ j < n; (1.2)

the complex primitive roots of unity are exactly those for which gcd(j, n) = 1.

Definition 1.4. The nth cyclotomic polynomial, Φn(z) ∈ C[z], is the monic polynomial

whose roots are the nth primitive roots of unity.

Φn(z) =
∏

0≤j<n
gcd(j,n)=1

(
z − e2πij/n

)
. (1.3)

We could similarly define Φn(z) over any field F containing nth primitive roots of

unity. "Cyclotomic" is latin in origin, meaning "circle dividing". Indeed, all the roots of

Φn(z) lie on the unit circle. The degree of Φn(z) is the totient of n, φ(n). As every nth root

of unity has multiplicative order d for some unique positive d dividing n, it follows that

zn − 1 =
∏
d|n

Φd(z), (1.4)

where the product is taken over all positive d dividing n.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 4

We let the index of Φn(z) be n, and the order of Φn(z) be the number of distint odd

prime divisors dividing n. In addition we define Ψn(z), the nth inverse cyclotomic polyno-

mial.

Definition 1.5. The nth inverse cyclotomic polynomial, Ψn(z), is the polynomial satisfying

Φn(z)Ψn(z) = zn − 1.

It is immediate from definitions 1.4 and 1.5 that Ψn(z) is the monic polynomial whose

n−φ(n) roots are the nth non-primitive roots of unity. We note that both Φn(z) and Ψn(z)

have no repeated roots, a fact we use in some proofs in this chapter.

Ψn(z) =
∏

0≤j<n
gcd(j,n)>1

(
z − e2πij/n

)
. (1.5)

Moree [27] introduced inverse cyclotomic polynomials and was the first to study their prop-

erties. As
1

Φn(z)
= Ψn(z)(1 + zn + z2n + . . .), (1.6)

we see that the coefficients of Ψn(z) occur in the power series expansion of 1/Φn(z).

The first six cyclotomic and inverse cyclotomic polynomials are as follows:

Φ1(z) = z − 1, Ψ1(z) = 1,

Φ2(z) = z + 1, Ψ2(z) = z − 1,

Φ3(z) = z2 + z + 1, Ψ3(z) = z − 1, (1.7)

Φ4(z) = z2 + 1, Ψ4(z) = z2 − 1,

Φ5(z) = z4 + z3 + z2 + z + 1, Ψ5(z) = z − 1,

Φ6(z) = z2 − z + 1, Ψ6(z) = z4 + z3 − z − 1.

1.3.1 Cyclotomic polynomials of large height

Definition 1.6. We denote by A(n) and S(n) the height and length of Φn(z), respectively.

That is, for Φn(z) =
∑φ(n)

k=0 an(k),

A(n) = max
0≤k≤φ(n)

|an(k)|, and S(n) =

φ(n)∑
k=0

|an(k)|. (1.8)

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 5

We similarly let Ā(n) and S̄(n) be the height and length of Ψn(z).

We see that A(n) = 1 for the first six cyclotomic polynomials. The least n for which

A(n) > 1 is n = 105. A(n) = 2, as

Φ105(z) = z48 + z47 + z46 − z43 − z42 − 2z41 − z40 − z39 + z36

+ z35 + z34 + z33 + z32 + z31 − z28 − z26 − z24 − z22 − z20 + z17 + z16

+ z15 + z14 + z13 + z12 − z9 − z8 − 2z7 − z6 − z5 + z2 + z1 + 1.

Paul Erdős [13] proved thatA(n) is not bounded by nc for any c > 0; however, his proof

does not suggest, given c, exactly how great must n be for A(n) to be greater than nc? This

was the original motivating question that spurred the author and Monagan to develop and

implement algorithms to compute cyclotomic polynomials. We were interested in studying

the growth of maxm≤nA(m) with respect to n. Φn(z) of small order and index typically

have small coefficients. These, unfortunately, are exactly the cyclotomic polynomials that

are easy to compute. Koshiba [24] computed the first ten percent of the terms of Φn(z)

for n = 111546435 and in doing so showed that A(n) > n, the first such example to

our knowledge. Monagan [2] found A(1181895) = 14102773, and verified that this was

the least n for which A(n) > n. Monagan, moreover, found examples of n satisfying

A(n) > n2 and A(n) > n4. He found such examples by computing Φn(z) for n which

were divisible by 1181895. By implementing new algorithms we have since shown that

Monagan computed the least n for which A(n) > n2 and A(n) > n4 respectively. We,

moreover, found the least n for which A(n) > nk for k = 3, 5, 6, and 7.

Table 1.1: The least n for which A(n) > nc

c n A(n)

1 1181895 14102773

2 43730115 862550638890874931

3 416690995 80103182105128365570406901971

4 1880394945 64540997036010911566826446181523888971563

5,6 17917712785 ≈ 8.103388 · 1063

7 99660932085 ≈ 6.126721 · 1087

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 6

1.3.2 Flat cyclotomic polynomials

Φn(z) is said to be flat if A(n) = 1. All cyclotomic polynomials of order 1 or 2 are flat;

however, this not true in general for Φn(z) of higher order. The first non-flat cyclotomic

polynomial, Φ105(z), is in fact the first of order at least three, as 105 = 3·5·7. Bachman [5],

Kaplan [21], and more recently Elder [12] have found infinite families of flat Φn(z) of order

three. Noe computed numerous flat Φn(z) of order 4 [30]. Kaplan [22] first constructed an

infinite family of flat Φn(z) of order four. Elder [12] has since found a broader such family.

Whether this family encompasses all flat cyclotomic polynomials of order four is unknown.

We do not yet know, however, whether there exist any flat cyclotomic polynomials of order

five or greater. For Φn(z) of order five with n < 6.5 · 108, A(n) is at least 4.

The author searched for flat cyclotomic polynomials of order five amongst candidate

Φn(z) for n of the form n = p1p2p3p4p5, a product of five odd primes satisfying pk ≡
±1 mod

∏k−1
i=1 pi, for 1 < k ≤ 5. The smallest such n is

n = 746, 443, 728, 915 = 3 · 5 · 31 · 929 · 1727939, (1.9)

for which the degree of Φn(z) is φ(n) = 384, 846, 351, 360. Even storing the coefficients of

Φn(z) to any precision, in memory, is not possible with most modern computers. The big

prime algorithm, described in detail in Chapter 4, allows us to compute A(n) in a manner

which does not require us to store all the coefficients of Φn(z) at once. With this algorithm,

we were able to find hundreds of examples of Φn(z) of order five and height 2. We were

unable, however, to find Φn(z) of order 5 and height 1.

1.3.3 Fundamental properties of cyclotomic polynomials

We see in (1.7) that Φn(z) and Ψn(z) are in Z[z] for n ≤ 6. It is not immediate from

their definitions whether this is true for all n. We show that it is.

Theorem 1.7. Φn(z) is in Z[z].

Before a proof of Theorem 1.7, we need to define the content of a polynomial.

Definition 1.8. Let f(z) = akz
k + · · ·+ a1z+ a0 be a polynomial of degree k in Z[z]. The

content of f , denoted by cont(f), is defined as

cont(f) = gcd(a0, a1, . . . , ak). (1.10)

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 7

In other words, cont(f) is the greatest integer l for which f/l is over the integers. Gauss

first proved the following result about content, which we will use in the proof of 1.7. We

refer to [31] for a proof of Lemma 1.9.

Lemma 1.9 (Gauss’s lemma). Let f, g ∈ Z[z]. Then cont(fg) = cont(f)cont(g).

We also use the following theorem.

Theorem 1.10. Let F be a field. Then F [z] forms a Euclidean domain with the valuation

function v : F [z] \ {0} → Z≥0 defined by v(f(z)) = deg(f).

In other words, if F is a field and f(z), g(z) ∈ F [z] are nonzero polynomials, then there

exist Q(z) and R(z) in F [z] such that f(z) = Q(z)g(z) + R(z) and either R(z) = 0 or

deg(R) < deg(f). We refer to [25] for a proof.

Proof of Theorem 1.7. Towards a contradiction let n be the least natural number for which

Φn(z) is not in Z[z]. As Φ1(z) = z − 1, n exceeds 1; moreover, f(z) =
∏

d|n,d<n Φd(z) is

a product of polynomials over Z and is hence over Z itself. By (1.4),

Φn(z) =
zn − 1

f(z)
, (1.11)

f(z) divides zn − 1 exactly as polynomials over C. Suppose then that Φn(z) is not over

Q in addition to Z. In which case, as Q[z] is a Euclidean domain by Theorem 1.10, there

exist Q(z), R(z) 6= 0 in Q[z] satisfying

zn − 1 = Q(z)f(z) +R(z) (1.12)

and deg(R) < deg(f). However, as f(z)Φn(z) = zn − 1 as well, we have

f(z)(Φn(z)−Q(z)) = R(z), (1.13)

contradicting that deg(R) < deg(f). Thus Φn(z) ∈ Q[z], and we can write

Φn(z) =

φ(n)∑
i=0

ai
bi
zi, (1.14)

where ai and bi are coprime integers. We can multiply out the denominators. Let M be the

least common multiple of the integers bi, for 0 ≤ i ≤ φ(n). Then MΦn(z) is a polynomial

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 8

whose content is the greatest common divisor of ai, 0 ≤ i ≤ φ(n). As, by hypothesis,

Φn(z) does not have all integer coefficients, M must be greater than 1. Thus, as ai and

bi are coprime, M does not divide ai, i.e. cont(MΦn(z)) 6= M . Moreover, as f(z) is a

product of cyclotomic polynomials, it is necessarily monic and cont(f) = 1. By Gauss’s

lemma, as (MΦn(z))f(z) = Mzn −M ,

cont(MΦn(z))cont(f) = cont(Mzn −M) = M, (1.15)

a contradiction.

From the definition of Ψn(z) we have that the f(z) appearing in the proof of Theorem

1.7 is exactly Ψn(z), giving the identity

Ψn(z) =
∏

d|n,0<d<n

Φd(z), (1.16)

hence the following corollary:

Corollary 1.11. Ψn(z) is in Z[z].

One can check that the Φn(z) appearing in 1.7 are irreducible over Q. This holds in

general. We cite this result as a theorem, and refer to [15] for a proof.

Theorem 1.12 (Garling [15]). Φn(z) is irreducible over Q.

1.3.4 The palindromic property of the cyclotomic coefficients

Lemma 1.13. Let n > 1 and let an(k) and cn(k) be the coefficients of the zk zerm of Φn(z)

and Ψn(z) respectively, so that

Φn(z) =

φ(n)∑
k=0

an(k)zk, and Ψn(z) =

n−φ(n)∑
k=0

cn(k)zk. (1.17)

Then an(k) = an(φ(n)− k) and cn(k) = −cn(n− φ(n)− k).

To prove Lemma 1.13, we use a complete characterization of an(0) = Φn(0).

Lemma 1.14.

Φn(0) =

{
−1 : if n = 1

1 : otherwise
(1.18)

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 9

Proof. Our proof is by strong induction on n. Certainly as Φ1(z) = z−1, Φ1(0) = 0−1 =

1. Fix n > 0 and suppose, for 1 ≤ d < n, that (1.18) holds for Φd(0). Evaluating both

sides of the identity zn − 1 =
∏

d|n Φd(z) at z = 0, we have

−1 =
∏
d|n

Φd(0)

= Φ1(0)Φn(0)
∏

d|n,1<d<n

Φd(0)

= −Φn(0)
∏

d|n,1<d<n

Φd(0).

(1.19)

By our induction hypothesis, Φd(0) = 1 for any d|n, 1 < d < n. It follows that Φn(0) =

1.

Proof of Lemma 1.13. An nth primitive (non-primitive) root of unity ω is such if and only

if ω−1 is as well. Thus

f(z) = zφ(n)Φn(1/z) =

φ(n)∑
k=0

an(φ(n)− k)zk (1.20)

is a polynomial of degree φ(n) whose φ(n) roots are exactly the roots of Φn(z). Thus

f(z) = cΦn(z) for some constant c. By a comparison of their leading coefficients, we see

that f(z) = (an(0)/an(φ(n))) · Φn(z). By Lemma 1.14, an(0) = 1 for n > 1. Thus, as

Φn(z) is monic, it follows that f(z) = Φn(z), and an(k) = an(φ(n)− k).

By an analogous argument,

g(z) = zn−φ(n)Ψn(1/z) =

φ(n)∑
k=0

cn(n−φ(n)−k)zk = (cn(0)/cn(n−φ(n)))·Ψn(z). (1.21)

Given that

Φn(z)Ψn(z) =

(
φ(n)∑
k=0

an(k)zk

)
·

(
n−φ(n)−k∑

k=0

cn(k)zk

)
= zn − 1, (1.22)

we thus have that an(0)cn(0) = −1 and cn(0) = −1. Ψn(z) is monic, thus cn(n−φ(n)) = 1

and g(z) = −Ψn(z). It follows that cn(k) = cn(n− φ(n)− k).

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 10

We say that the coefficients of Φn(z) are palindromic and the coefficients of Ψn(z)

are antipalindromic. Note that Lemma 1.13 does not hold for Φ1(z) = z − 1, which is

antipalindromic and Ψn(z) = 1, which is trivially palindromic. This is because n = 1

is the only case such that the constant coefficient of Φn(z) is −1 and that of Ψn(z) is 1.

We can generalize Lemma 1.13 to products of cyclotomic polynomials, which will prove

useful later.

Lemma 1.15. Let

f(z) = Φn1(z)Φn2(z) · · ·Φnk(z) =
D∑
i=0

c(i)zi (1.23)

be a product of cyclotomic polynomials such that nj is odd for 1 ≤ j < k. Then c(i) =

(−1)Dc(D − i) for 0 ≤ i < D. In other words, if D is odd f(z) is antipalindromic, and if

D is even, f(z) is palindromic.

Proof. Since Φn(z) is monic, f(z) is monic. As before, we observe that if ω is a root of f ,

then ω−1 is too. Set

g(z) = zDf(z−1) =
D∑
i=0

c(D − i)zi. (1.24)

By an argument similar to that in the proof of Lemma 1.13, g(z) is a polynomial of degree

D with leading coefficient c(0) whose D roots are the roots of f . Thus f(z) and g(z) only

differ by a constant factor. We need only resolve c(0). To that end, we observe that φ(n) is

even for odd n > 1, and φ(1) = 1. Thus r ≡ D (mod 2), where r is the cardinality of

{j : 1 ≤ j ≤ k and nj = 1}. (1.25)

Note that the constant term of f , c(0), is the product of the constant terms of the Φnj(z)

in (1.23). Since the constant term of Φ1(z) = z − 1 is −1, and by Lemma 1.14, the

constant term of Φn(z) is 1 for n > 1, we have that c(0) = (−1)r = (−1)D. Hence

if D is even, c(0) = 1, and g(z) is monic and must equal f(z). It follows from (1.24)

that c(i) = c(D − i). If D is odd, c(0) = −1 and so f(z) = −g(z). In which case,

c(i) = −c(D − i).

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 11

1.3.5 A naive algorithm for computing Φn(z)

In this section we describe a basic algorithm for computing Φn(z). To that end, we

prove the following elementary result, which will be useful in the proof of a few cyclotomic

polynomial identities thereafter.

Lemma 1.16. Let ω be an nth primitive root of unity and let k > 0 and m = n/ gcd(k, n).

Then ωk is an mth primitive root of unity.

Proof. If ω is an nth primitive root of unity, then ωj = 1 if and only if n|j. Let d =

gcd(k, n), in which case (ωk)m = ωk(n/d) = (ωn)k/d = 1. Thus ωk is an mth root of unity.

It remains to be shown that ωk is, in addition, primitive. Suppose then that 0 < j < m =

n/d and (ωk)j = 1. In which case n|jk, hence n
d
|j k
d

and, as n
d

and k
d

are coprime, this in

turn implies that n/d divides j, contradicting our choice of j.

For the particular case where k is prime, we have the following corollary.

Corollary 1.17. Let p, q be primes such that p - n and q|n. Let ω be an nth primitive root

of unity. Then ωp is an nth primitive root of unity, and ωq is an (n/q)th primitive root of

unity.

The following two lemmas allow us to compute Φn(z) by recursion on the factors of its

index n.

Lemma 1.18. Let q|n be prime. Then

Φnq(z) = Φn(zq), and (1.26)

Ψnq(z) = Ψn(zq). (1.27)

E.g. Φ4(z) = Φ2(z2) = z2 + 1.

Lemma 1.19. Let p be a prime that does not divide n, then

Φnp(z)Φn(z) = Φn(zp), and (1.28)

Ψnp(z) = Ψn(zp)Φn(z). (1.29)

E.g. Φ6(z)Φ2(z) = (z2 − z + 1)(z + 1) = z3 + 1 = Φ2(z3).

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 12

Proof of Lemmas 1.18 and 1.19. As Φnq(z)Ψnq(z) = Φn(zq)Ψn(zq) = znq − 1, (1.27)

follows from (1.26). Equation (1.29) similarly follows from (1.28). We will prove (1.26)

and (1.28) by equating the complex roots of both sides of the respective equations.

Suppose q|n is prime and ω is a root of Φnq(z). In which case, by Corollary 1.17,

ωq is a primtive nth root of unity, and thus ω is a root of Φn(zq). As q|n, the degree of

Φnq(z) = φ(nq) = φ(n)q is exactly the degree of Φn(zq), and so the roots of Φnq(z), all of

multiplicity 1, are exactly the roots of Φn(zq). It follows that Φnq(z) = cΦn(zq) for some

constant factor c. Since both Φn(zq) and Φnq(z) are monic, they are necessarily equal.

Now suppose p - n is prime and ω is a root of Φnp(z)Φn(z). If ω is a root of Φnp(z), then

ωp is an nth primitive root of unity by Corollary 1.17 and thus is also a root of Φn(zp). If ω

is a root of Φn(z) then again by corollary 1.17 it holds that ωp also has multiplicative order

n. In either case ω is a root of Φn(z). As p - n, φ(np)+φ(n) = φ(n)(p−1)+φ(n) = φ(n)·p,

and so the degrees of Φnp(z)Φn(z) and Φn(zp) are equal. Thus the roots of Φnp(z)Φn(z),

all distinct, are the roots of Φn(zp) and the polynomials, both monic, must be equal.

We oftentimes express (1.28) of Lemma 1.19 as

Φnp(z) =
Φn(zp)

Φn(z)
=

Φn(zp)Ψn(z)

zn − 1
. (1.30)

Immediately we have that from Lemma 1.19 that for any prime p,

Φp(z) =
Φ1(zp)

Φ1(z)
=
zp − 1

z − 1
= zp−1 + zp−2 + · · ·+ z + 1. (1.31)

By lemma 1.18, if q is a prime divisor of n, then the coefficients of Φnq(z) satisfy

anq(k) =

{
an(k/q) if q|k,
0 otherwise.

(1.32)

In particular A(nq) = A(n) and S(nq) = S(n). Lemma 1.20 gives a similar result for

Φn(z) of even index.

Lemma 1.20. Let n > 1 be odd. Then Φ2n(z) = Φn(−z).

E.g. Φ10(z) = z4 − z3 + z2 − z + 1 = (−z)4 + (−z)3 + (−z)2 + (−z) + 1 = Φ5(−z).

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 13

Proof. Suppose ω is such that−ω is an nth root of unity, that is, ω is a root of Φn(−z). We

will show ω is a root of Φ2n(z). As n is odd, ωn = −(−ω)n = −1, and ω is not an nth root

of unity. Clearly ω2n = (−1)2 = 1 so ω is a (2n)th root of unity; it remains to show that ω

is primitive.

If (−ω)k = −1 for some k, then (−ω)2k = 1, and n|2k. However, as n is odd, then

if n divides 2k then n divides k and (−ω)k = (−ωn)k/n = 1, a contradiction. Thus

(−ω)k 6= −1 for any integer k. As ωk = ±(−ω)k, it follows that if (−ω)k 6= 1, then

ωk 6= 1, and thus ω is a (2n)th primitive root of unity.

As Φn(−z) and Φ2n(z) have the same degree, the roots of Φ2n(z) are exactly the roots

of Φn(−z). Since n is odd and greater than 1, φ(n) is even and hence Φn(−z) is monic.

Thus Φ2n(z) = Φn(−z).

By Lemma 1.20, if n is odd, A(2n) = A(n) and S(2n) = S(n). Lemmas 1.18−1.20

outline a means of computing Φn(z) from the first cyclotomic polynomial Φ1(z) = z − 1.

For instance, we could compute Φn(z) for n = 150 = 2 · 3 · 52 in the following manner:

Φ3(z) = Φ1(z3)/Φ1(z) = (z3 − 1)/(z − 1) = z2 + z + 1, and

Φ15(z) = Φ3(z5)/Φ3(z) = (z10 + z5 + 1)/(z2 + z + 1)

= z8 − z7 + z5 − z4 + z3 − z + 1, by Lemma 1.19.

Φ75(z) = Φ15(z5) by Lemma 1.18,

= z40 − z35 + z25 − z20 + z15 − z5 + 1.

Φ150(z) = Φ75(−z) = z40 + z35 − z25 − z20 − z15 + z5 + 1 by Lemma 1.20.

Algorithm 1.1 describes this approach.

Algorithm 1.1 is well-known and until recently was used by most computer algebra

systems. For example, in Maple 13 and in prior versions it is used by the cyclotomic

command available in the numtheory package. It is clear from algorithm 1.1 that it is

easy to compute Φn(z) given Φm(z), where m is the largest odd, squarefree divisor of

n. As such, unless otherwise specified we only consider Φn(z) of squarefree, odd index

throughout the remainder of this thesis. The brunt of the work in Algorithm 1.1 takes place

in the polynomial divisions on line 3. Using classical, quadratic polynomial division and

arbitrary-precision integers to perform polynomial division is much too slow to compute

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 14

Algorithm 1.1: A naive algorithm for computing Φn(z) by repeated polynomial di-

vision
Input: n = 2e0pe11 p

e2
2 · · · p

ek
k , where k ≥ 0; 2 < p1 < · · · < pk are prime; e0 ≥ 0; and

ei > 0 for 1 ≤ i ≤ k

Output: Φn(z)

1 m←− 1, Φm(z)←− z − 1

2 for i = 1 to k do
3 Φmpi(z)←− Φm(zpi)

Φm(z)
,m←− m · pi // Lemma 1.19

// m is now the largest odd squarefree divisor of n

4 if 2|n then Φ2m(z)←− Φm(−z),m←− 2m // Lemma 1.20

// m is now the largest squarefree divisor of n

5 s←− n/m, Φn(z)←− Φm(zs) // Lemma 1.18

return Φn(z)

Φn(z) with n in the millions. One obvious way to perform this division step faster is by

way of the discrete fast Fourier transform (FFT), which we describe in Section 2.1.

1.4 Implementing modular arithmetic

In many of our implementations of the algorithms described in this thesis we compute

Φn(z) modulo a prime q. How we implement modular arithmetic is thus very important to

the performance of our algorithms.

Reducing integers modulo q (i.e. the "%" binary operator in C code) is expensive com-

pared to other integer arithmetic operations on a modern computer processor. Typically, for

the purposes of our arithemetic, we store an integer modulo a prime q in the nonnegative

range [0, q). If 0 ≤ u, v < q, then 0 ≤ u + v < 2q and −q < u − v < q. Thus to

reduce u+ v modulo q, it suffices to take u+ v− q if u+ v exceeds q. Similarly, to reduce

u ≥ v then u− v mod q is exactly u− v, otherwise it is u− v+ q. Thus both addition and

subtraction in Zq require at most one integer addition, one subtraction and one comparison.

We prefer that 2q can fit in one machine word (i.e. q < 231 or q < 263 depending on the

architecture) such that a sum u+ v can fit in a machine word before we reduce it modulo q.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 15

Algorithm 1.2: Multiplication modulo a 42-bit prime
Input: u = [u41, u40, . . . , u1, u0]2, v = [v41, v40, . . . , v1, v0]2, two 42-bit integers

modulo a 42-bit prime q (i.e. q < 242)

Output: w = uv mod q

// U0 and V0 are obtained via bitmask operations

1 U0 ←− [u20, u19, . . . , u0]2 // U0 = u mod 221

2 V0 ←− [v20, v19, . . . , v0]2 // V0 = v mod 221

// U1 and V1 are obtained by bitshift operations

3 U1 ←− [u41, u40, . . . , u21]2 // U1 = (u− U0)/221

4 V1 ←− [v41, v40, . . . , v21]2 // V1 = (v − V0)/221

5 w ←− U1V1221 mod q, w ←− w + U1V0, if w > q then w ←− w − q
6 w ←− w + U0V1, if w > q then w ←− w − q
7 w ←− w · 221 mod q, w ←− w + U0V0, if w > q then w ←− w − q

We first implemented multiplication in Zq for q a 42-bit prime, using 64-bit machine

precision integers. Using only 64-bit integers, this is nontrivial as given 0 ≤ u, v < q, their

product uv, before reduction modulo q, potentially requires more than 64-bits of storage.

To circumvent this problem, we break u and v into sums of the form

u = U1 · 221 + U0, v = V1 · 221 + V0, (1.33)

where 0 ≤ U0, U1, V0, V1 < 221, and then multiply the respective components of (1.33),

reducing modulo q where necessary to avoid 64-bit overflow. Algorithm 7 describes this

implementation of multiplication modulo a 42-bit prime. In our notation, we let "[· · ·]2" to

denote an integer in binary representation. That is, given u0, . . . , uk ∈ {0, 1},

[uk, uk−1, . . . , u0]2 =
k∑
i=0

uk2
k. (1.34)

It should be noted that, given a binary representation of u, division by a power of 2 is

easy. If we wanted to compute a quotient Q and remainder R where u = 2sQ + R, and

0 ≤ R < 2s, then the binary representations of Q and R are merely

Q = [uk, . . . , us]2 =
k−s∑
i=0

ui+s2
i and R = [us−1, . . . , u0]2 =

s−1∑
i=0

ui2
i (1.35)

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 16

Algorithm 1.3: Dividing a two-word integer by a one-word integer. (Granlund &

Moller [26])
.

Input: d < 264, and d̄ = b(2128 − 1)/dc − 264; u = U1264 + U0, where

0 ≤ U0, U1 < 264 and U1 < d

Output: The quotient Q and remainder R satisfying u = dQ+R and R < d

// Q can be stored as a one-word integer

1 Q←− bd̄U1/2
64c+ U1

// R = u−Qd may be a two-word integer at this stage

2 R←− u−Qd
// we iterate at most 3 times

3 while R > d do Q← Q+ 1, R← R− d
return Q,R // Q,R are now both single-precision

respectively. Both Q and R can be computed by way of bit-mask operations (i.e. the

"&" operator in C code), which is faster than a division operation. Algorithm 7 requires

two division operations. Using assembly code, however, we can instead take two 64-bit

integers, 0 ≤ u, v < 264, compute their product uv and store it as a 128-bit integer in two

64-bit machine words, and then divide that product by q and take the remainder uv mod q.

This method works for primes q as large as 264 − 1.

Granlund and Montgomery [17] developed a division-free method of dividing by a fixed

integer on a computer processor using multiplication operations. This algorithm is well-

known and is implemented, for instance, in the GMP multi-precision arithmetic library.

Granlund and Moller [26] improved this method for the specific case of dividing a two-

word (128-bit) integer by a fixed, one-word integer. In our case, we are dividing by the

fixed integer q. We explain here a simpler, previous variant of their new algorithm, also

described in their paper. Suppose we want to divide an integer u = U1264 + U0, where

0 ≤ U0, U1 < 264, by a 64-bit fixed divisor d satisfying 263 < d < 264. Suppose, moreover,

that U1 < d, such that the quotient Q = bu/dc < 264, so that both the quotient and

remainder are one-word integers. We precompute

d̄ =

⌊
2128 − 1

d

⌋
− 264. (1.36)

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 17

d̄ is called the reciprocal of d. We approximate Q = bu/dc by

Q′ =

⌊
d̄U1

264

⌋
+ U1. (1.37)

It can be shown that Q′ will be fairly close to our real quotient. Let k be the integer

satisfying ⌊
2128 − 1

d

⌋
d = 2128 − k. (1.38)

We must have that 1 ≤ k ≤ d < 264. Moreover, by (1.36) we have that

k = 2128 − (264 + d̄)d. (1.39)

If we let R′ = u − Q′d be the "remainder" corresponding to our approximate quotient Q′,

then

R′ = U0 + U1264 −

(⌊
d̄U1

264

⌋
− U1

)
d,

= U0 + U1264 −
(
d̄U1 − λ

264
− U1

)
d, where λ = d̄U1 mod 264,

= U0 +
(
U1(2128 − d̄d− 264d)− λd

)
/264,

= U0 + (U1k − λd)/264.

(1.40)

As k < d and λ, U0, U1 < 264, we have that 0 ≤ R′ < 264 + 2d < 4d. Thus, if Q and

R are the actual quotient and remainder satisfying u = Qd + R, and 0 ≤ R < d, then

R′ − R < 4d and Q − 3 ≤ Q′ < Q. Thus, to correct Q′ and R′, we increment Q′ by one

and subtract R′ by d until we have R′ < d. Clearly we need at most 3 such corrections by

this method (Algorithm 1.3, page 16). This method can be extended to divisors d < 263.

Granlund and Moller [26] make further optimizations omitted here, which require fewer

double-word integer operations and reduce the number of necessary corrections to at most

2.

1.5 The Chinese remainder algorithm

In many of our algorithms for computing Φn(z), we do not compute Φn(z) itself but

rather images of Φn(z) modulo primes p1, p2, and so forth. The Chinese remainder algo-

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 18

rithm allows us to retrieve Φn(z), provided we have sufficiently many images.

Theorem 1.21 (The Chinese remainder theorem). Let q1, . . . qM ∈ Z be pairwise coprime

integers, and let ui ∈ Zqi for 1 ≤ i ≤ M . Then there exists a unique integer U ∈ Z such

that −Q
2
≤ U < Q

2
, where Q = q1 · q2 . . . qM , and

U ≡ u1 (mod q)i for 1 ≤ i ≤M. (1.41)

We omit the proof of the Chinese remainder theorem. A proof can be found in [16], for

instance.

Algorithm 1.4: The Chinese remainder algorithm
Input: q1, . . . , qM , a set of coprime positive integers; u1, . . . , uM , where ui is an

integer modulo qi
Output: u in the range −Q

2
≤ u < Q

2
satisfying u ≡ ui (mod q)i for 1 ≤ i ≤M

u← u1 mod q1

Q1 ← qi

for k ← 2 to M do
Qk ← Qk−1 · qk
Uk ← Uk−1 +Qk−1(uk − u/Qk−1 mod qk) mod Qk

return UM

Given ui and qi for 1 ≤ i ≤ M , the Chinese remainder algorithm allows us to find U

satisfying the congruences (1.41). For 1 ≤ k ≤ n, let Uk ∈ Z be the integer satisfying

Uk ≡ ui mod qi for 1 ≤ i ≤ k and −Qk
2
≤ Uk <

Qk
2

where Qk = q1 · · · qk. UM and QM

are exactly U and Q of Theorem 1.21, respectively. One can obtain Qk+1 from Qk,

Uk+1 = Uk +Qk · (Q−1
k · uk+1 − Uk mod ui) mod Qk+1 : (1.42)

where "modK" here means in the symmetric range [−K
2
, K

2
).

Chapter 2

Computing Φn(z) using the fast Fourier
transform

2.1 The discrete fast Fourier transform

Algorithm 1.1 describes a method of computing Φn(z) by way of a series of polynomial

divisions. As such, fast polynomial arithmetic should prove useful in computing Φn(z). To

that end, we detail the discrete fast Fourier transform.

Definition 2.1. Let ω ∈ F be a primitive N th root of unity and let f(z) =
∑
akz

k be a

polynomial over F . The points 1, ω, ω2, . . . , ωN−1 are called Fourier points. The N -tuple

(f(1), f(ω), f(ω2), . . . , f(ωN−1)), (2.1)

is called the N -point discrete Fourier transform (or DFT) of f . We denote this transform

by DFT(N,ω, f(z)) ∈ FN . We alternately express the discrete Fourier transform as a

polynomial:

fω(z) = DFT(N,ω, f) =
N−1∑
k=0

f(ωk)zk. (2.2)

We call the polynomial fω ∈ F [z] the Fourier polynomial of f .

We alternate between expressing the DFT as an N -tuple or a polynomial where conve-

nient throughout this chapter.

19

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 20

Using Horner’s method, the evaluation of a polynomial f of degree less than N at a

single point takes O(N) arithmetic operations in F ; computing the DFT by this method

would require O(N2) operations. We can, however, compute the DFT for particular val-

ues of N in O(N logN) operations by way of the fast Fourier transform, which we will

describe here.

Suppose that N = 2s for some s > 0, and let f and ω be as in Definition 2.1 where f ,

moreover, has that deg(f) < N . In which case, there exist polynomials g(z), h(z) ∈ F [z]

of degree less than 2s−1 for which

f(z) = g(z2) + zh(z2). (2.3)

In particular, for f(z) = a0 + a1z + · · ·+ an−1z
n−1, we have that

g(z) =
2s−1−1∑
i=0

a2iz
i and h(z) =

2s−1−1∑
i=0

a2i+1z
i, (2.4)

satisfy (2.3). As N is even, ω2 is a (N/2)th primitive root of unity by Corollary 1.17.

Suppose then that we have the (N/2)-point discrete Fourier transforms of g(z) and h(z),

DFT(N/2, ω2, g) = (g(ω0), g(ω2), . . . , g(ω2·(N/2−1))) and

DFT(N/2, ω2, h) = (h(ω0), h(ω2), . . . , h(ω2·(N/2−1))).
(2.5)

We can obtain theN -point fourier transform of f(z) (2.1) from the (N/2)-point transforms

of g and h. For j < N/2,

f(ωj) = g(ω2j) + ωj · h(ω2j). (2.6)

To obtain the latter half of the DFT of f , we observe that ωN/2 = −1 and hence ωN/2+j =

−ωj . By (2.3), it follows that

f(−z) = g((−z)2)− z · h((−z)2) = g(z2)− z · h(z2), (2.7)

in which case

f(ωN/2+j) = f(−ωj) = g(ω2j)− ωj · h(ω2j). (2.8)

If N = 2s is such that s > 1, then clearly N/2 is even, and we can express g(z) and

h(z) as a sum analogous to f in (2.3). In which case we can obtain the (N/2)-point discrete

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 21

Procedure FFT(N,ω,f) : The fast Fourier transform
Input: F , a field; N = 2s, a power of 2; ω, an N th primitive root of unity in F ;

f(z) =
∑N−1

k=0 akz
k ∈ F [z], a polynomial of degree less than N

Output: DFT(N,ω, f) ∈ FN , the discrete Fourier transform of f(z)

// evaluate constant polynomial f(z) = a0

1 if N = 1 then A0 ← a0

2 else
3 g(z)←−

∑N/2−1
k=0 a2kz

k, h(z)←−
∑N/2−1

k=0 z2k+1z
k

4 (B0, B1, . . . , BN/2−1)←− FFT(N/2,ω2,g),

5 (C0, C1, . . . , CN/2−1)←− FFT(N/2,ω2,h)

6 λ←− 1

7 for j ←− 0 to N/2− 1 do
8 t←− λCj

9 Aj ←− Bj + t, // applying (2.6)

10 AN/2+j ←− Bi − t // applying (2.8)

11 λ←− λω // λ is set to ωj+1

return (A0, A1, . . . AN−1)

Fourier transforms of g(z) and h(z) from (N/4)-point transforms in a similar manner. For

the base case N = 1, the discrete Fourier transform becomes trivial, as in such case we

evaluate the constant polynomial f = a0 to get f(1) = a0. This recursive method of

computing the DFT of f(z) is the FFT algorithm, which we describe in procedure FFT.

We measure the cost of the FFT in terms of the number of multiplications in F . It is easy

to count the exact number of multiplications the FFT requires.

Let T (N) be the number of multiplications in our field F to compute the N -point DFT

by way of the FFT, as we describe in procedure FFT. From line 1 of procedure FFT, we

have that T (1) = 0. For N > 1, we perform N multiplications in the for-loop beginning

beginning on line 7, and one multiplication to compute ω2, which we use in lines 4−5.

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 22

Thus T (N) = 2T (N/2) +N + 1 For N = 2s, we have that

T (2s) = 2T (2s−1) +N + 1,

= 2

(
2T (2s−2) +N

)
+N + 1 provided s > 1,

= 4T (2s−2) + 2N + 2.

(2.9)

Continuing to recurse in this fashion until we have T (N) entirely in terms of N and T (1),

we find that

T (2s) = 2sT (1) + sN + s = s(N + 1). (2.10)

That is, procedure FFT requires exactly s(N + 1) = (N + 1) logN multiplications to

compute a N -point DFT. As integer multiplication is more expensive than addition or sub-

traction on a computer, we are less concerned with the total number of other arithmetic

operations; however one can similarly show that the total number of arithmetic operations

of procedure FFT is O(N logN) as well.

We can use the FFT to take the N -point DFT of a polynomial f whose degree exceeds

N , with some preconditioning. Every power of ω, an N th primitive root of unity, is a root

of zN − 1. By Theorem 1.10, for any field F and any polynomial f(z) ∈ F [z], there exists

Q,R ∈ F [z] satisfying

f(z) = Q(z)(zN − 1) +R(z), (2.11)

and either deg(R) < deg(zN − 1) = N or R = 0. In which case f(ωk) = R(ωk) for

any integer k. Thus to use the FFT to get the N -point DFT of f , we must first compute

R(z) = f mod (zn − 1), and then run the FFT on input R(z). Computing R(z) is easy.

For d ≥ N ,

zd = zd−N(zN − 1) + zd−N . (2.12)

It follows that zd ≡ zd mod N (mod zN − 1). Thus for f(z) =
∑D

i=0 aiz
i, we have that

f mod (zN − 1) =
N−1∑
i=0

(∑
j≡i (mod N)

0≤j≤D

ai

)
zi. (2.13)

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 23

2.1.1 The inverse fast Fourier transform

Let n = mp where p - m is prime and let N be a power of two as before. Suppose we

have Φm(z) and we want to obtain the DFT of Φn(z). By Lemma 1.19, we have that

Φn(ωk) =
Φm(ωkp)

Φm(ωk)
. (2.14)

We can compute the discrete Fourier transforms of Φn(z) and Φn(zp) inO(N logN) arith-

metic operations via procedure FFT. We can subsequently compute the Fourier transform

of Φn(z) by performing the division (2.14) for 0 ≤ k < N . One can then interpolate the N

evaluation points DFT(N,ω,Φn(z)) to obtain Φn(z), provided N > deg(Φ(n)) = φ(n).

Using a classical interpolation algorithm such as Newton or Lagrange interpolation

takes O(N2) arithmetic operations, defeating the purpose of FFT-based polynomial divi-

sion. We require a sub-quadratic interpolation algorithm.

One can take the Fourier transform of a Fourier transform. This is how we obtain a

polynomial from its Fourier transform. Recall that, given f ∈ F[z], fω is the polynomial

defined as fω(z) =
∑N−1

i=0 f(ωi)zi. Then, for f(z) = a0 + a1z + · · ·+ aN−1z
N−1,

fω(z) =
N−1∑
i=0

N−1∑
j=0

ajω
(ij mod N)zi (2.15)

Evaluating fω(z) at (ω−1)k, where 0 ≤ k < N , we have

fω(ω−k) =
N−1∑
i=0

N−1∑
j=0

ajω
i(j−k)

=
N−1∑
j=0

aj

N−1∑
i=0

ωi(j−k).

(2.16)

If k = j, then the sum
∑N−1

i=0 ωi(j−k) simplifies to N . Suppose then that k 6= j and let

d = gcd(j − k,N) and m = N/d. As 0 < j, k < N , we have that d < N hence m > 1.

By Lemma 1.16, ω(j−k) is an mth primitive root of unity, hence ωi(j−k) = ω(i mod m)(j−k),

and so
N−1∑
i=0

ωi(j−k) =
d−1∑
i=0

m−1∑
l=0

ωl(j−k) =
d−1∑
i=0

ω(j−k). (2.17)

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 24

Moreover, given m > 1, ωi−j is a root of (zm− 1)/(z− 1) = zm−1 + zm−2 + · · ·+ 1. That

is,
∑m−1

l=0 ωl(j−k) = 0, and the sum (2.17) simplifies to zero.

In summation, we have shown that fω(ω−k) = N · ak, proving the following theorem.

Theorem 2.2 (Geddes, [16]). Let f,N, ω be as in Definition 2.1. Suppose deg(f) < N .

Then (fω)ω−1(z)/N = f(z).

The transform of a polynomial fω(z) ∈ F [z],

IDFT(N,ω, f) = (1
N
fω(ω0), 1

N
fω(ω−1), . . . , 1

N
fω(ω−(N−1))), (2.18)

is accordingly called the inverse discrete Fourier transform (IDFT) of fω(z).

As DFT (N,ω, f) = DFT (N,ω, f mod (zn − 1)), we can generalize Theorem 2.2.

Corollary 2.3. Let f,N, ω be as in Definition 2.1. Then (fω)ω−1(z)/N = f(z) mod (zN −
1).

2.2 Implementing the fast Fourier transform

The fast Fourier transform, as is presented in procedure FFT, does not wholly reflect

our implementation of the algorithm. We could perform Algorithm 2.1 in the field C or

Q(ω); however, complex arithmetic is cumbersome to implement and does not lend itself

to fast computation. We implement the FFT for polynomials over the field Zq, the integers

modulo a prime q. As it is necessary that our field contains an N th primitive root of unity

for N a power of 2, we choose primes q of the form q = 2sr + 1. We call such primes

Fourier primes. Table 2.1 lists the primes we used in our computation and theN th primitive

roots of unity we used. Corollary 2.3 tells us that if we want to obtain a polynomial from its

DFT, that we require that the size of its DFT exceed its degree. For primes q < 232 of the

form, q = r · 2s + 1, s is at most 28, hence limiting us to cyclotomic polynomials of degree

at most 228 − 1. Polynomials of larger degree require that we use 64-bit integer arithmetic.

We use a dense representation to store a polynomial f ∈ Zq[z]. That is, we store a

polynomial f(z) ∈ F [z] as an array of machine-precision integers

A = [A0, A1, . . . , AN−1], (2.19)

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 25

Table 2.1: Primes and the primitive roots used in our FFT calculations

q = r ·N + 1 size of q* N th prim. root of unity in Zq

469762049 = 7 · 226 + 1 29 bits 2187

1811939329 = 27 · 226 + 1 31 bits 72705542

2013265921 = 15 · 227 + 1 31 bits 440564289

2748779069441 = 5 · 239 + 1 42 bits 243

4123168604161 = 15 · 238 + 1 42 bits 624392905782

2061584302081 = 15 · 237 + 1 41 bits 624392905781

206158430209 = 3 · 236 + 1 38 bits 10648

2027224563713 = 59 · 235 + 1 41 bits 1609812002788

1945555039024054273 = 27 · 256 + 1 61 bits 1613915479851665306

4179340454199820289 = 29 · 257 + 1 62 bits 68630377364883

6269010681299730433 = 87 · 256 + 1 63 bits 4467632415761384939

*We let the size of q be the number of bits necessary to store q as an unsigned integer, i.e. blog2(q)c+ 1.

where, given a polynomial f(z) =
∑N−1

k=0 akz
k, Ak is initially set to the value ak for 0 ≤

k < N . Our implementation of the FFT writes the N -point discrete Fourier transform of

f(z) to the array A, discarding f(z) in the process; upon completion of the FFT, Ak is set

to f(ωk). To introduce some basic array notation, given an array A and integer m we let

A+m refer to the array starting at Am. That is,

A+m = [Am, Am+1, . . .]. (2.20)

and (A+m)l = Am+l. Procedure FFT2 shows how our implementation of the fast Fourier

transform organizes the problem using an array. We require additional space for N/2 in-

tegers to rearrange the values stored in A. We effectively let A be an array of size at least

3N/2 and use W = A + N as working space. After rearranging our values such that g(z)

and h(z) of (2.4) are written to A and A + 3N/4 respectively, we recursively execute the

FFT on g and h. This approach requires the storage of 3N/2 elements of F , as opposed to

2N elements of F in procedure FFT. We have in the case thatN = 2 that we do not have to

rearrange any values in our array, as in this case f is of the form f(z) = a0 +a1z, thus g(z)

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 26

and h(z) of (2.3) are exactly the constant polynomials a0 and a1 respectively. Moreover, it

is unnecessary to recurse in such case.

Procedure FFT2(N , M , q, α, A, Ω) : an implementation of the FFT
Input:
• N = 2s and M = 2t, powers of 2 for which M ≥ N .

• q a prime of the form q = Mr + 1.

• α, set to either true or false.

• A = [A0, A1, . . .], an array of at least 3N/2 integers modulo q. Given

f =
∑N−1

i=0 aiz
i ∈ Zq[z], a polynomial of degree less than N , Ai is initialized to ai.

• Ω = [ω0, . . . , ωM/2], a an array containing precomputed powers of ω, an M th

primitive root of unity in Zq.

Result: If α is true, DFT(N,ωM/N , f), is written to [A0, . . . , AN−1]. That is, Ak is

set to f((ωkM/N) upon completion, for 0 ≤ k < N . If α is false,

DFT(N,ω−1, f) is written to [A0, . . . , AN−1].

1 if N = 1 then return else
2 if N ≥ 4 then
3 W ← A+N // W is the array with 1st entry is AN

// the terms of g(z) and h(z), where f(z) = g(z2) + zh(z2),

are stored in A and A+N/2, respectively

4 for k ← 0 to N/2− 1 do Wk ← A2k+1, Ak ← A2k

5 for k ← 0 to N/2− 1 do A3N/4+k ← Wk

6 FFT2(N/2, M , q, α, A, Ω)

7 FFT2(N/2, M , q, α, A+ 3N/4, Ω)

8 if α is true then (k, d)← (0,M/N) else (k, d)← (M/2,−M/N)

9 for j ← 0 to N/2− 1 do
10 t← A3N/4+j · Ωk mod q // Ωk = ωk is a precomputed value

11 k ← k + d

12 c← Aj

13 Aj ← c+ t mod q, AN/2+j ← c− t mod q

return

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 27

We make an additional improvement to the performance of the FFT at the cost of mem-

ory. Instead of computing powers of ω every time we recurse, we can precompute powers

of ω instead. This is particularly useful if we intend to perform many FFTs over the same

field Zq. We fix a power of 2 M = 2t, sufficiently large such that any DFT we may want

to compute is of size N ≤ M . Then, given M th primitive root of unity ω, we precompute

powers of ω and store them in an array Ω = [Ω0,Ω1, . . .] where ωk is written to Ωk. We

pass M and Ω as additional parameters into procedure FFT2. The FFT only requires the

first half of powers of ω. If we want a DFT of size N = 2s < M , then certainly N |M and

by Lemma 1.16 ζ = ωM/N is an N th primitive root of unity. The powers of ζ are exactly

the values ωk for which M/N divides k. We can, moreover, use these same precomputed

powers for the inverse FFT as well. If k < M/2, then, as ωM/2 ≡ −1 (mod q),

(ω−1)k = ωM−k = −ωM/2−k. (2.21)

We store the first M/2 + 1 powers of ω in Ω. By precomputing the powers of omega we

reduce the number of multiplications. If T (N) is the number of multiplications in our new

procedure FFT2, we have that T (N) = 2T (N/2) + N/2 and T (1) = 0. Solving for this

recurrence relation we have T (N) = N log(N)/2, or half the multiplications necessary by

procedure FFT.

2.3 Fast FFT-based polynomial division

We now have an outline of a fast algorithm to perform polynomial division. To compute

the quotient f = g/h, where f, g, h ∈ F [z], we can use the FFT to compute the DFTs of

g and h, then from those iteratively produce the DFT of f through a sequence of divisions.

This is how we go about computing Φmp(z) = Φm(zp)/Φm(z) in algorithm 2.1. The author

and Monagan first describe this approach in [2].

Algorithm 2.1 requires storage for approximately 5N/2 + M/2 integers, where N is

the least power of two greater than deg(Φn(z)) = φ(n) and M is a power of two at least

N : N integers to store each of Φm(z) and Φm(zp), stored in arrays A and B respectively;

M/2 + 1 integers for our array Ω containing precomputed powers of ω; and the additional

array of size N/2 used as work space in the FFT2 procedure. Ideally, we would like to

choose M such that for the cyclotomic polynomials of highest degree that we would like to

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 28

Algorithm 2.1: Calculating Φn(z) by repeated FFT-based division
Input:
• n = p1p2 . . . pk, a product of k distinct primes.

• N , the least power of two greater than φ(n).

•M , a power of two at least N .

• q, a prime of the form q = rM + 1.

• A = [A0, A1, . . . , A5N/2−1], an array of 5N/2 integers modulo q, whose values are

initialized to zero.

• Ω = [ω0, . . . , ωM/2], a an array containing precomputed powers of ω, an M th

primitive root of unity in Zq.

Result: The coefficients of Φn(z) are written to [A0, . . . , AN−1]

1 B ←− A+N

2 for i← 0 to p1 do Ai ← 1 // A now stores Φp1(z) =
∑p−1

i=0 z
i

3 m← p1, N∗ ← 1

4 for i←− 2 to k do
5 while N∗ ≤ φ(mpi) do N∗ ←− 2N∗

6 for j ← 0 to N∗ − 1 do Bi ←− 0

// Write Φm(zpi) mod zN
∗ − 1 to B

7 for j ← 0 to φ(m) do Bjpi mod N∗ ← Aj

8 FFT2(N∗, M , q, true, A, Ω) // Write DFT of Φm(z) to A

9 FFT2(N∗, M , q, true, B, Ω) // Write DFT of Φm(zpi) to B

10 for j ← 0 to N∗ − 1 do Aj ←− Bj/Aj // Write DFT of Φmpi(z) to A

11 FFT2(N∗, M , q, false, A, Ω) // Interpolate Φmpi(z)

12 m←− mpi

return

compute, N = M and, for such cases, the memory cost is 3N . We can always reduce the

memory cost, if necessary, by not precomputing powers of ω.

We require that Aj = Φm(ωk) mod q is nonzero for 0 ≤ k < N in order to perform the

division in line 10 of Algorithm 2.1. For Φn(z) where n is odd and squarefree, however,

this certainly holds. To prove this, we use the following basic result.

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 29

Lemma 2.4.

Φn(1) =


0 : if n = 1

p : if n = pα, where α > 0, for some prime p

1 : otherwise

(2.22)

Proof. Clearly Φ1(1) = 0. Suppose then that n = pα is a prime power. By Lemma 1.18,

Φn(1) = Φn/p(1
p) = Φn/p(1). By repeated application of Lemma 1.18, Φn(1) = Φp(1).

As Φp(z) = 1 + z + · · ·+ zp−1, we have Φn(1) = Φp(1) = p as desired.

Now suppose, towards a contradiction, that n is the least integer for which (2.22) does

not hold. nmust have at least two distinct prime factors, thus Φn(1) 6= 1. In which case, we

can write n = mpα where α ≥ 1, m > 1 and p is a prime not dividing m. By Lemma 1.19

Φmp(z) = Φm(zp)/Φm(z). As m < n, by our choice of n, m must satisfy (2.22). Thus,

given m > 1, we have that Φm(1) is nonzero, and hence Φmp(1) = Φm(1p)/Φm(1) =

Φm(1)/Φm(1) = 1. If α = 1, then Φn(z) = 1, a contradiction. Otherwise, using Lemma

1.18 again, we have that

Φmpα(z) = Φmpα−1(zp) = · · · = Φmp(z
pα−1

), (2.23)

thus Φn(1) = Φmpα(1) = Φmp(1
pα−1) = Φmp(1) = 1, again contradicting our choice of

n.

Lemma 2.5. Let n > 1 and N > 1 be coprime. Moreover, let q be a prime of the form

q = rN + 1, q - n, and suppose that ω is an N th primitive root of unity in Zq. Then

Φn(ωk) mod q 6= 0.

Proof. Towards a contradiction, let λ = ωk and suppose Φn(λ) mod q = 0. Certainly,

λN = (ωN)k ≡ 1 mod q. Moreover, given Φn(z)Ψn(z) = zn − 1, we have that

λn − 1 ≡ Φn(λ)Ψn(λ) (mod q),

≡ 0 (mod q),
(2.24)

and hence λn ≡ 1 (mod q). As n,N are coprime, there exist integers s and t such that

ns+Nt = 1. Thus

λ = λns+Nt = (λn)s(λN)t ≡ 1 (mod q). (2.25)

Thus λ mod q = 1. By Lemma 2.4, we have that Φn(1) mod q = 0 if and only if n is a

power of q. As q - n, this completes the proof.

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 30

Thus, in the case whereN = 2s and n is odd, Lemma 2.5 implies that Φn(ωk) mod q 6=
0, provided our Fourier prime q is not a divisor of n. We note that Lemma 2.5 does hold

for n = 1, as Φ1(ω0) = Φ1(1) = 0.

2.3.1 Reconstructing Φn(z) from multiple images

Our implementation of Algorithm 2.1 computes the image Φn(z) mod q, from which

we need to retrieve Φn(z). The natural candidate for the inverse image of Φn(z) mod q is

the unique polynomial f(z) =
∑φ(n)

i=0 aiz
i ∈ Z[z] for which the coefficients ai lie in the

range [−q/2, q/2) and (Φn(z) − f(z)) mod q = 0. If Φn(z) has a coefficient exceeding

q/2, then f(z) 6= Φn(z), in which case we may have to compute multiple images of Φn(z).

We can use the Chinese remainder algorithm (alg. 4, page 18) to reconstruct Φn(z) from

multiple images.

Given fj = Φn(z) mod qj =
∑φ(n)

i=0 ai,jz
i for 1 ≤ j ≤ K, we perform the Chinese

remainder algorithm on the coefficients of terms of a fixed degree. That is, for 0 ≤ i ≤
φ(n), we find the unique integer −Q

2
< ai ≤ Q

2
, where Q = q1q2 · · · qK , satisfying

ai ≡ ai,j (mod qj) for 1 ≤ j ≤ k. (2.26)

The polynomial f(z) =
∑φ(n)

i=0 aiz
i whose coefficients lie in [−Q

2
, Q

2
) and, moreover, sat-

isfying Φn(z) ≡ f(z) (mod Q). If A(n), the height of Φn(z), is less than Q/2, then

f = Φn(z). We do not necessarily know if we have computed sufficiently many images of

Φn(z). There are bounds for A(n), the height of Φn(z) (see Section 5.2.1); however, often-

case said bounds are far greater than the heightA(n) itself. It is sometimes very impractical

to compute sufficiently many images such that Q/2 exceeds a bound on A(n).

In some cases we like to guarantee f(z) = Φn(z) with extremely high probability. In

such cases we typically compute multiple images of Φn(z) and use Chinese remaindering

to compute the inverse image f(z) ∈ Z[z] after computing each new image of Φn(z). We

stop when the height of f(z) is less than Q/220. We then, in addition, use the FFT to test

that f is correct modulo an additional check prime q∗. By Lemma 1.19, if n = mp with p

prime, Φn(z)Φm(z)−Φm(zp) = 0. We letN be the least power of two greater than φ(m)p,

and compute

DFT(N,ω, f(z)),DFT(N,ω,Φm(z)), and DFT(N,ω,Φm(zp)), (2.27)

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 31

in Zq∗ , and check that

f(ωk) · Φm(ωk)− Φm((ωk)p) mod q∗ = 0 for 0 ≤ k < N. (2.28)

This additional check is less expensive than computing Φn(z) mod q∗, as it avoids having

to perform an additional inverse FFT.

2.4 A second means of computing the DFT of Φn(z)

The N -point DFT of Φm(zp),

(Φm(ω0),Φm(ωp), . . . ,Φm(ωp(N−1))), (2.29)

is merely a permutation of the DFT of Φm(z). In Algorithm 2.1, we perform three FFTs at

every division step. To compute Φmp(z) = Φm(zp)/Φm(z) we use two FFTs to compute

the DFTs of Φm(zp) and Φm(z), then an additional inverse FFT to interpolate Φmp(z).

We can forego these FFTs by directly computing the DFT of Φmp(z) directly from that of

Φm(z) by performing the division

Φmp(ω
i) =

Φm(ω(ip mod N))

Φm(ωi)
, (2.30)

where "mod N" in this context means in the nonnegative range [0, N), for 0 ≤ i < N . As

such, we can compute the DFT of Φn(z), where n = mp, directly from that of Φm(z) in

O(N) divisions modulo q. We call this method the cyclotomic Fourier transform or CFT. A

disadvantage of this approach (procedure CFT) is that we must use a DFT of fixed size for

the whole computation whereas in FFT2 we use only as large a discrete Fourier transform

as is necessary to extract the quotient at each division step.

The discrete Fourier transform of Φ1(z),

DFT (N,ω,Φ1) = (0, ω − 1, ω2 − 1, . . . , ωN−1 − 1), (2.31)

can be obtained in linear time by iteratively computing successive powers of omega. We

use Lemma 2.4 to compute Φn(1). As N = 2s is a power of two, we easily obtain (l +

p) mod N in line 8 of procedure CFT by taking the lower s bits of l + p, as discussed in

Section 1.4.

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 32

Procedure CFT(n,N ,q,ω,A) : Computing the Fourier transform of Φn(z)

Input: n = p1p2 . . . pk, a product of k ≥ 1 distinct primes; N , an integer relatively

prime to n; q, a prime such that N |φ(q); ω, an N th primitive root of unity

modulo q; A = [A0, . . . , A2N−1] an array of 2N elements of Zq

Output: CFT returns an array containing DFT(N,ω,Φn)

1 λ← 1

2 B ← A+N

// write DFT of z − 1 to A

3 for i← 0 to N − 1 do Ai ← λ− 1 mod q, λ← λω mod q

4 for j ← 1 to k do
5 (A,B)← (B,A)

6 l← pj mod N

7 for i← 1 to N -1 do
8 Ai ← Bl/Bi mod q, l← l + p mod N

// Get Φn(1) by Lemma 2.4

9 if k = 1 then A0 ← p mod N else A0 ← 1

return A

For n, a product of k distinct primes, procedure CFT can compute DFT (N,ω,Φn) in

O(kN) arithmetic operations in Zq, as opposed to O(N logN) = O(N log φ(n)) by way

of the FFT. For squarefree odd n, log2(φ(n)) is at least k. In fact, for arbitrarily large,

squarefree n, k/ log2(φ(n)) becomes arbitrarily small. That is, if we define θ(n) by

θ(n) =

{
k if n = p1p2 · · · pk, a squarefree product of k distinct primes

0 otherwise,
(2.32)

then the following holds.

Lemma 2.6.
lim
n→∞

θ(n)
log2(φ(n))

= 0. (2.33)

Proof. Suppose n > 1 is squarefree and let L > 1 be the integer satisfying L! ≤ φ(n) <

(L + 1)!. Write n = p1p2 . . . pk, where p1 < p2 < · · · < pk and pi is prime for 1 ≤ i ≤ k.

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 33

Clearly pj−1 must be at least j. As such, φ(n) =
∏k

j=1 pj−1 ≥ k!, and θ(n) = k < L+1.

Thus θ(n)/ log2(φ(n)) < (L+ 1)/ log2(L!). As L! > bL/2cbL/2c, we have

(L+ 1)/ log2(L!) < (L+ 1)/ log2(bL/2cbL/2c)

=
(L+ 1)

bL/2c
1

log2(bL/2c)

<
4

log2(bL/2c)
.

(2.34)

Taking the limit of 4/ log2(bL/2c) as L goes to infinity, we have

lim
L→∞

4

log2(bL/2c)
= 0, (2.35)

completing the proof.

Computing Φn(z) via the CFT, however, still requires O(N logN) arithmetic opera-

tions, as we use the inverse FFT to interpolate Φn(z) from its DFT. As our implementation

of the FFT (alg. 2.1) uses precomputed powers of ω to expedite the (inverse) FFT, we can

use those powers of omega instead of recomputing them as we do on line 3 of procedure

CFT. In the for loop beginning on line 4, we read from one array and write to another array.

Which array our final result is in depends on the parity of k, the number of prime divisors

of n. The CFT procedure returns the array containing the discrete Fourier transform of

Φn(z) at the end of the computation.

2.4.1 A division-free CFT

The CFT procedure is not a particularly fast method of computing the discrete Fourier

transform of Φn(z). This is because the procedure requires around kN division operations

in Zq. We perform division modulo q by first inverting the denominator by way of the

extended Euclidean algorithm and then multiplying the numerator by the inverted denomi-

nator. This is considerably slower than multiplication in Zq.

Our first improvement of the CFT was to reduce the number of divisions at the cost of

additional storage for 2N integers modulo q. We use four arrays A,B,C,D, each of size

N , in this approach. Instead of storing Φm(ωi) as one integer modulo q for 0 ≤ i < N , we

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 34

store integers Aj , Cj such that the fraction Aj/Cj = Φm(ωi). Suppose then that we wanted

a fractional representation of Φmp(ω
i) written to arrays B and D. As

Φmp(ω
i) =

Φm(ωip mod N)

Φm(ωi)
=
Aip mod NCi
AiCip mod N

, (2.36)

we merely write Aip mod NCi to Bi and AiCip mod N to Di. In this approach we have to

perform N divisions at the very end of our computation after we have a fractional repre-

sentation of the DFT of Φn(z). We call this method CFT2.

Procedure CFT2(n,N ,q,ω,A) : Computing the Fourier transform of Φn(z)

Input: n = p1p2 . . . pk, a product of k ≥ 1 distinct primes; N , an integer relatively

prime to n; q, a prime such that N |φ(q); ω, an N th primitive root of unity

modulo q; A = [A0, . . . , A4N−1], an array of 4N integers modulo q.

Output: CFT2 returns an array containing DFT(N,ω,Φn)

1 B ← A+N , C ← A+ 2N , D ← A+ 3N

2 λ← 1

// store Φ1(ωi) as Ai/Ci

3 for i← 0 to N − 1 do Ai ← λ− 1 mod q, λ← λ · ω, Ci ← 1

4 for j ← 1 to k do
5 (A,B,C,D)← (B,A,D,C)

6 l← pj mod N

7 for i← 1 to N -1 do
8 Ai ← BlDi, Ci ← BiDl, l← l + p mod N

9 if k = 1 then A0 ← p mod N else A0 ← 1

10 for i← 1 to N − 1 do Ai ← Ai/Ci// Division step

return A

Instead of delaying division until the end of the computation, we can instead move the

division step to the start of the computation.

For notational convenience, we extend our definition of the discrete Fourier transform

to rational functions. Given f(z) ∈ Zq(z), we let DFT (N,ω, f) refer the set of values

f(ωk) for which f(ωk) is defined, for 0 ≤ k < N .

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 35

Given the DFT of Φ1(z), we compute the DFT of 1/Φ1(z). Note that 1/Φ1(ωk) =

1/(ωk − 1) for 0 < k < N is defined whereas 1/Φ1(ω0) is not. We invert Φ1(ωi), for

i ≤ 1 ≤ N by way of the extended Euclidean algorithm. Using (2.30), we can compute

the DFT of Φmp and 1/Φmp, excluding Φmp(1) and 1/Φmp(1), from that of Φm and 1/Φm

respectively. In the last step of the computation it is unnecessary to compute the DFT of

1/Φn(z). We use Lemma 2.4 to obtain Φn(1). This approach is particularly advantageous

if we want to compute many cyclotomic polynomials, in which case we can precompute

and store the values

1/Φ1(ω1), . . . , 1/Φ1(ωN−1), (2.37)

and use these values repeatedly, thus avoiding divisions altogether. Typically we precom-

pute DFT(M,ω, 1/Φ1) for ω, an M th primitive root of unity modulo q where M = 2t, a

fixed power of two exceeding the degree of the cyclotomic polynomials we would like com-

pute. If we want to compute Φn(z), where 2s−1 ≤ φ(n) < 2s = N < M = 2t, we can eas-

ily obtain the 2s-point DFT of 1/Φ1, DFT(2s, ω2t−s , 1/Φ1) from DFT(M,ω, 1/Φ1). In our

timed implementation (see Section 5.1 for timings), we used M = 225. DFT(M,ω, 1/Φ1)

was written to disk. We read DFT(M,ω, 1/Φ1) from disk every time we ran CFT3. Our

choice of M affects performance. For Φn(z) with degree appreciably smaller than M ,

we find that the cost of DFT(M,ω, 1/Φ1) from disk outweighs the cost of performing N

divisions modulo q.

As always, there is a time-space tradeoff in effect. CFT2 requires storage for 4N inte-

gers whereas CFT3 requires 4N +M .

2.4.2 A reduced-memory division-free CFT

In CFT1-3, we read from one array and write our new result to another array. We can,

however, instead read and write to the same part of the same array. Procedure CFT4 shows

how we may modify CFT3 to do this. Let p - N be prime. As p is invertible modulo N , it

generates the multiplicative group

G = {pα mod N : α ∈ Z}. (2.38)

G is a subgroup the multiplicative group Z∗N ; moreover, this group naturally acts on ZN by

way of multiplication modulo N . One natural ordering to perform the division (2.30) for

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 36

Procedure CFT3(n,N ,q,ω,A) : Computing the Fourier transform of Φn(z)

Input: n = p1p2 . . . pk, a product of k ≥ 1 distinct primes; N , an integer relatively

prime to n; q, a prime such that N |φ(q); ω, an N th primitive root of unity

modulo q; A = [A0, . . . , A4N−1], an array of 4N integers modulo q.

Output: CFT3 returns an array containing DFT(N,ω,Φn)

1 B ← A+N , C ← A+ 2N , D ← A+ 3N

// 1/Φ1(ωi) obtained via precomputation

2 (C1, C2, . . . , CN−1)← (1/Φ1(ω), 1/Φ1(ω2), . . . , 1/Φ1(ωN−1)

3 λ← 1

4 for i← 0 to N − 1 do Ai ← λ− 1, λ← λ · ω // write DFT of Φ1 to A

5 for j ← 1 to k − 1 do
6 (A,B,C,D)← (B,A,D,C), l← pj mod N

7 for i← 1 to N -1 do
8 Ai ← BlDi mod q, Ci ← BiDl mod q, l← l + p mod N

9 p← pk, (A,B,C,D)← (B,A,D,C)

10 for i← 1 to N − 1 do Ai ← BlDi, l← l + p mod N

11 if k = 1 then A0 ← p1 mod N else A0 ← 1 // Lemma 2.4

return A

0 ≤ i < N is to group i ∈ ZN belonging to one orbit under the action of G. We denote by

G · i the orbit of i.

Suppose that we have the N -point DFTs of Φm(z) and 1/Φm(z) in arrays A and C, and

we aim to compute Φmp(ω
k) and 1/Φmp(ω

k), for all k ∈ G · i, and write the data back into

the arrays A and C. We first save the values Φm(ωi) and 1/Φm(ωi), stored in Ai and Ci
respectively. Then we set Ai to Aip mod NCi = Φm(ωip)/Φm(ωi), discarding the previous

value of Ai. We then set Ci to Φm(ωi)Cip mod N . We proceed to update arrays A and C at

indices ip, ip2, ip3, and so forth, until we reach ipl for which ipl+1 mod p = i, at which

point we need to use the previously saved values Φm(ωi) and 1/Φm(ωi).

Over the computation of DFT(N,ω,Φmp), our array A may simultaneously store val-

ues from the previous and the new DFT. In order to distinguish between the two, we could

use an additional array of bits B where Bi is set to 1 if Ai stores Φmp(ω
i) and 0 otherwise;

CHAPTER 2. COMPUTING Φn(z) USING THE FAST FOURIER TRANSFORM 37

however, it is less cumbersome to store this information in the array A itself. We store our

integers modulo q in the positive range [0, q − 1). Upon updating Ai to some new value

x mod q, we set Ai to −x. Thus we know not to update values Ai for which Ai is negative

(line 8 of CFT4)). The additional memory cost of this approach (CFT4) is one bit for every

array value Ai, stored as a two’s complement machine-precision integer.

Procedure CFT4(n,N ,q,ω,A) : Computing the Fourier transform of Φn(z)

Input: n = p1p2 . . . pk, a product of k ≥ 1 distinct primes; N , an integer relatively

prime to n; q, a prime such that N |φ(q); ω, an N th primitive root of unity

modulo q; A = [A0, . . . , A2N] an array of 2N integers

Output: CFT4 returns an array containing DFT(N,ω,Φn)

1 C ← A+N

// 1/Φ1(ωi) obtained via precomputation

2 (C1, C2, . . . , CN−1)← (1/Φ1(ω), 1/Φ1(ω2), . . . 1/Φ1(ωN−1)

// write DFT of z − 1 to A

3 λ← 1, for i← 0 to N − 1 do Ai ← λ− 1, λ← λ · ω
4 for j ← 1 to k do
5 for i← 1 to N − 1 do Ai ← |Ai|
6 i← 1, p← pi

7 while i < N do
8 while Ai < 0 do i← i+ 1

9 x← Ai, y ← Ci, l← i

10 while lp 6= i mod N do
11 z ← Al, m← lp mod N

12 Al ← −(ClAm mod q), Cl ← −(zCm mod q)

13 l← m

14 Al ← xCl, Cl ← Aly, i← i+ 1

15 if k = 1 then A0 ← p1 mod N else A0 ← 1 // Lemma 2.4

return A

Chapter 3

Calculating Φn(z) as a truncated power
series

The FFT-based approaches of chapter 2 proved most useful in computing Φn(z) and

gave us many new results on cyclotomic polynomials of large height; however, it was sur-

passed by the sparse power series algorithm, whose implementation is roughly two orders

of magnitude (i.e. 100 times) faster than any FFT-based approach. In this chapter we

present the original sparse power series (SPS) method, and the three key improvements

we made to the algorithm, ultimately resulting in a fast, recursive algorithm for computing

Φn(z).

3.1 A useful identity of Φn(z)

3.1.1 The Möbius Inversion Formula

Lemma 3.1 (See Cojocaru and Murty [11]).∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise.
(3.1)

This is a well-known result. We give a simple proof.

Proof of Lemma 3.1. We prove by induction on the factors of n. The base case µ(1) = 1 is

trivial. Now suppose (3.1) holds for m, and consider the case n = mp > 1, for some prime

38

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 39

p. If p divides m, then clearly m > 1; moreover, the squarefree divisors of n are exactly

the squarefree divisors of m, and thus∑
d|n

µ(d) =
∑
d|m

µ(d), (3.2)

the latter sum being zero by hypothesis. If p does not dividem, then the squarefree divisors

of n are all d of the form e or ep, where e is a squarefree divisor of m. As such,∑
d|n

µ(d) =
∑
d|m

µ(d) +
∑
d|m

µ(dp),

=
∑
d|m

µ(d) +
∑
d|m

µ(d)µ(p) as µ is multiplicative,

= (1 + µ(p))
∑
d|m

µ(d) = 0.

(3.3)

Theorem 3.2 (The Möbius Inversion Formula [11]). If F (n) =
∏

d|n f(d) for n ≥ 1, then

f(n) =
∏

d|n F (n/d)µ(d) for n ≥ 1.

Proof. Suppose that F (n) =
∏

d|n f(d) for n ≥ 1. Then∏
d|n

F (n/d)µ(d) =
∏
d|n

∏
e|n
d

f(e)µ(d). (3.4)

As e divides n
d

if and only if d divides n
e
, (3.4) simplifies to∏

e|n

∏
d|n
e

f(e)µ(d) =
∏
e|n

f(e)
P
d|(n/e) µ(d). (3.5)

Applying Lemma 3.1, the exponent in (3.5)
∑

d|(n/e) µ(d) is nonzero only if e = n, and the

product simplifies to f(n), completing the proof.

Applying Theorem 3.2 to the equality zn − 1 =
∏

d|n Φd(z) gives us an identity for

Φn(z).

Corollary 3.3.
Φn(z) =

∏
d|n

(zn/d − 1)µ(d). (3.6)

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 40

For n > 1, the number of squarefree divisors of n is even, hence

Φn(z) =
∏
d|n

(1− zn/d)µ(d). (3.7)

As an example, for 105 = 3 · 5 · 7,

Φ105(z) =
(1− z105)(1− z3)(1− z5)(1− z7)

(1− z15)(1− z21)(1− z35)(1− z)
.

This identity is key for the sparse power series algorithm, which we present in the next

section.

3.2 The sparse power series algorithm

In every variant of the SPS algorithm, we compute Φn(z) as the product (3.7); however,

in subsequent identities it is oftencase more convenient to write Φn(z) as some product of

terms of the form (zd − 1)±1. As we refer to these terms often, we will call the (1− zd)±1

(alternatively, (zd − 1)±1) comprising Φn(z) the subterms of Φn(z). Using that the power

series expansion of (1− zd)−1 is 1 + zd + z2d + · · · , we rewrite (3.7) as

Φn(z) =
∏

d|n,µ(d)=1

(1− zn/d)
∏

d|n,µ(d)=−1

(1 + zd + z2d + . . .) (for n > 1) (3.8)

As with the previous algorithm we use a dense representation for Φn(z): an array of

integers [a(0), a(1), . . .], where we store the coefficient of the term of degree i in a(i). We

call this array the coefficient array.

Multiplication by 1− zd on a dense polynomial can be done with a single pass over an

array. Division by 1 − zd, however, implemented naively, could potentially be quadratic

time. The sparseness of each term in (3.7) lends itself to fast power series arithmetic.

Suppose we have a power series B(z) = b(0) + b(1)z + b(2)z2 + · · ·+ b(D)zD, truncated

to degree D, and we want to compute C(z) =
∑D

i=0 c(i)z
i = B(z) · (1− zd)−1 mod zD+1.

In which case, as (1− zd)−1 = 1 + zd + z2d + . . . ,

c(i) =
∑

j≡i mod d,j<i

b(i)zi =

{
b(i) if i < d

b(i) + c(i− d) otherwise.
(3.9)

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 41

Thus we can multiply B(z) by either (1 − zd) and (1 − zd)−1 in O(D) addition and

subtraction operations in Z. More importantly, we can easily both divide and multiply a

truncated power series by (1− zd) in memory. That is, if we have the coefficients of B(z)

stored in an array, we can write the truncated power series ofB(z)(1−zd) orB(z)/(1−zd)
to the array without using additional storage. This is how we compute Φn(z) in procedure

SPS. A squarefree product of k primes n = p1p2 · · · pk has 2k divisors, thus Φn(z) has

2k subterms. Multiplying or dividing by one subterm 1 − zd requires O(φ(n)) operations

(lines 5 and 7 in procedure SPS). As such, SPS requires some O(2k · φ(n)) addition and

subtraction operations in Z. This algorithm appears in [2].

We truncate to degree φ(n)/2 in Algorithm SPS, thus retrieving only the lower half of

the coefficients of Φn(z). This is because, using the palindromic property of the cyclotomic

coefficients (Lemma 1.13), it is trivial to obtain the terms of higher degree.

Procedure SPS(n) : Computing Φn(z) as a quotient of sparse power series
The Sparse Power Series (SPS) Algorithm

Input: n = p1p2 · · · pk, a product of k distinct primes

Output: SPS(n) returns the first half of the coefficients of Φn(z)

1 D ←− φ(n)/2 + 1, a(0)←− 1

2 for 1 ≤ i ≤ D do a(i)←− 0

3 for d|n do
4 if µ(n

d
) = 1 then // multiply by 1− zd

5 for i = D down to d by −1 do a(i)←− a(i)− a(i− d)

6 else // divide by 1− zd

7 for i = d to D do a(i)←− a(i) + a(i− d)

return a(0), a(1), . . . , a(φ(n)/2)

3.2.1 The sparse power series algorithm for Ψn(z)

As Φn(z)Ψn(z) = zn − 1, it follows from (3.7) that

Ψn(z) = −
∏

d|n,d<n

(1− zd)−µ(n/d), (3.10)

which leads us to an analogous algorithm for Ψn(z), as described by procedure SPS−

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 42

Psi. We truncate to degree (n−φ(n))/2, half the degree of Ψn(z), because the coefficients

of Ψn(z) are antipalindromic. We will use this procedure in a subsequent algorithm.

Procedure SPS-Psi(n) : Computing Ψn(z) as a quotient of sparse power series

The Sparse Power Series (SPS) Algorithm for Ψn(z)

Input: n = p1p2 · · · pk, a product of k distinct primes

Output: SPS-Psi returns he first half the coefficients of Ψn(z)

1 D ←− bn−φ(n)
2
c, a(0)←− −1

2 for 1 ≤ i ≤ D do a(i)←− 0

3 for d|n such that d < n do
4 if µ(n

d
) = −1 then // multiply by 1− zd

5 for i = D down to d by −1 do a(i)←− a(i)− a(i− d)

6 else // divide by 1− zd

7 for i = d to D do a(i)←− a(i) + a(i− d)

return a(0), a(1), . . . , a((n− φ(n))/2)

Given squarefree n = p1p2 . . . pk, the SPS algorithm requiresO(2k(n−φ(n))) additions

and subtractions to compute Ψn(z).

3.3 Improving the sparse power series method by further
truncating degree

In this section we introduce the first of several improvements to the SPS algorithm. We

will denote by SPSj the jth version of the sparse power series algorithm for Φn(z), where

SPS1 refers to the original sparse power series algorithm.

3.3.1 A measure to compare SPS-based algorithms

If we have the prime factorization of squarefree n = p1p2 · · · pk, then we can generate

a divisor d|n and the value µ(n/d) in O(k) operations. Thus the overhead of constructing

and handling the 2k divisors of n in the SPS algorithm is O(2k · k) operations in Z. This

cost is negligible. The brunt of the work of procedure SPS occurs on lines 5 and 7, where

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 43

we multiply by the subterm (1 − zd) and (1 − zd)−1, respectively. As stated prior, n a

squarefree product of k primes, Φn(z) is a quotient comprised of some 2k subterms 1− zd.
As such, SPS effectively computes 2k distinct power series, each a quotient of subterms

1 − zd, each truncated to degree φ(n)/2. Thus the cost of multiplying and dividing the

subterms of Φn(z) is O(2k · φ(n)).

We have that the slowdown in computing Φnp(z) compared to Φn(z) is twofold. By

introducing a new prime factor p we double the number of subterms (1 − zd) that make

our cyclotomic polynomial. In addition, the degree of Φnp(z) is p− 1 times that of Φn(z).

We observe additional slowdown with cyclotomic polynomials of increasing degree as we

require larger (and slower) caches in the cache hierarchy to store the array of coefficients.

Procedure SPS2(n) : The first revision of the SPS algorithm
The Improved Sparse Power Series (SPS2) Algorithm

Input: n = mp, a squarefree, odd integer with greatest prime divisor p

Output: a(0), . . . , a(φ(n)
2

), the first half of the coefficients of Φn(z)

// Compute first half of Ψm(z)

1 a(0), a(1), . . . , a(bn−φ(m)
2
c)←− SPS-Psi(m)

// Construct other half of Ψm(z) using Lemma 1.13

2 D ←− max(m− φ(m), φ(n)
2

)

3 for i = dm−φ(m)
2
e to D do a(i)←− −a(m− φ(m)− i)

// Multiply by Φm(zp)

4 D ←− φ(n)
2

5 a(m− φ(m) + 1), a(m− φ(m) + 2), . . . , a(D)←− 0

6 for d|m such that 0 < d < m do
7 if µ(n

d
) = −1 then

8 for i = D down to dp by −1 do a(i)←− a(i)− a(i− dp)

9 else
10 for i = dp to D do a(i)←− a(i) + a(i− dp)

11 for i = m to D do a(i)←− a(i) + a(i−m)

return a(0), a(1), . . . a(D)

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 44

Let n = p1p2 · · · pk be a product of k distinct odd primes. Let d1, d2, . . . , d2k be the

divisors of n in the order by which an SPS algorithm SPSj iterates through them all. The

original SPS algorithm computes the truncated power series of

fs(z) =
s∏
i=1

(1− zdi)µ(n/di) (3.11)

for 0 ≤ s ≤ 2k, all truncated to degree φ(n)/2. If, however, for some t, ft(z) is a poly-

nomial of degree Dt, then we need only truncate fs, where s ≤ t, to degree at most Dt.

Moreover, if ft is a polynomial, then ft(z) is a product of cyclotomic polynomials satisfy-

ing Lemma 1.13, hence we need only truncate to degree bDt/2c in order to obtain all the

terms of ft.

More generally, if we know ft1 , . . . , ftl are polynomials of degree Dt1 , Dt2 , . . . , Dtl ,

then for s ≤ min1≤i≤l ti, we need only truncate fs(z) to degree bD/2c, where D =

min1≤i≤lDti . We call the degree to which we truncate fs the degree bound. If we truncate

fi to degreeDi, then multiplying fi−1 by 1−zdi will takeO(Di) arithmetic operations. We

consider

Tj(n) =
2k∑
i=1

Di (3.12)

a suitable measure of the relative performance of SPSj. In actuality, when we multiply by

(1−zdi) or (1−zdi)−1, we do addition or subtraction on the coefficients of terms of degree

c, d ≤ c ≤ Di. As such,

T ′j(n) =
2k∑
i=1

max(Di + 1− di, 0), (3.13)

is the exact total number of addition and subtraction operations on the coefficients a(i)

that SPSj requires. For the purposes of our analysis, the sum (3.12) is a useful means of

comparing different versions of the SPS algorithm, while, in addition, being less cumber-

some than (3.13). We later compute (3.13) to give an exact comparison of the number of

arithmetic operations on the coefficients a(i).

Definition 3.4. We call Tj(n) (3.12) and T ′j(n) (3.13) the measure of work and exact
measure of work, respectively, to compute Φn(z) using algorithm SPSj.

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 45

E.g. For the original sparse power series algorithm and given n, an odd, squarefree

product of k primes, we have T1(n) = 2k · φ(n)/2 = 2k−1φ(n).

We aim to improve the SPS algorithm by ordering the divisors of n in an intelligent

manner which allows us to decrease the degree boundDi, and hence our measure, wherever

possible over the computation of Φn(z).

3.3.2 A first improvement

Let p be the largest prime divisor of n and suppose m = n/p is greater than 1. In which

case Φmp(z) = Φm(zp)/Φm(z) by Lemma 1.19, which we reexpress as

Φmp(z) = −Ψm(z) · Φm(zp) · 1

1− zm
. (3.14)

In light of (3.7) and (3.10), we can express (3.14) as quotients of subterms (1− zd).

Φn(z) =

(∏
d|m,d<m

(1− zd)−µ(
m
d

)

)
·

(∏
d|m

(1− zdp)µ(
m
d

)

)
· 1

(1− zm)
,

=

(∏
d|m,d<m

(1− zd)µ(
n
d

)

)
·

(∏
d|m

(1− zdp)µ(
n
dp

)

)
· 1

(1− zm)
.

(3.15)

Thus to compute Φn(z), we can compute Ψm(z), the leftmost product of (3.15) to

degree bm−φ(m)
2
c, use the antipalindromic property of Ψm(z) to reconstruct its remaining

coefficients, and then multiply by the remaining subterms (1 − zd)±1 as we would in the

SPS algorithm. Procedure SPS2 describes the method.

We see for this variant of the SPS algorithm, that the measure of work reduces to

T2(n) =
(

2k−1 − 1
)(m− φ(m)

2

)
+
(

2k−1 + 1
)(φ(n)

2

)
, (3.16)

≈ 2k−2(φ(n) +m− φ(m)). (3.17)

While, again, this improvement does not change the asymptotic running time of the algo-

rithm, it saves us roughly a factor of two time in most tractable cases.

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 46

3.4 Calculating Φn(z) by way of a product of inverse cy-
clotomic polynomials

We are able to achieve yet better performance by an approach we will call the iterative

SPS algorithm or SPS3. To that end we establish the next identity. Let n = p1p2 · · · pk, a

product of k distinct odd primes. For 1 ≤ i ≤ k, let

mi = p1p2 · · · pi−1 and ei = pi+1 · · · pk. (3.18)

We set m1 = ek = 1, and let e0 = n. Note that n = eipini for 1 ≤ i ≤ k. In addition,

ei−1 = piei and mi+1 = mipi. Then by repeated application of Lemma 1.19, we have

Φn(z) =
Ψmk(z

ek)

zn/pk − 1
Φmk(z

ek−1)

=
Ψmk(z

ek)

(zn/pk − 1)

Ψmk−1
(zek−1)

(zn/pk−1 − 1)
Φmk−1

(zek−2)

. . .

=
Ψmk(z

ek)

(zn/pk − 1)
· · · Ψm2(z

e2)

(zn/p2 − 1)

Ψm1(z
e1)

(zn/p1 − 1)
Φ1(ze0)

=

(
k∏
j=1

Ψmj(z
ej)

zn/pj − 1

)
· (zn − 1).

(3.19)

As Ψm1(z
e1) = Ψ1(ze1) = 1, we have

Φn(z) =

(
k∏
j=2

Ψmj(z
ej)

)
·

(
k∏
j=1

(zn/pj − 1)−1

)
· (zn − 1) (3.20)

For example, for n = 105 = 3 · 5 · 7,

Φ105(z) = Ψ15(z)Ψ3(z7) · (z15 − 1)−1(z21 − 1)−1(z35 − 1)−1 · (z105 − 1) (3.21)

As with procedure SPS2, we first calculate half the terms of Ψmk(z
ek) = Φp1p2...pk−1

(z),

those with degree at most bφ(mk)/2c. However, unlike our previous method, we then

instead iteratively compute the product

Ψmk(z
ek) · · ·Ψm2(z

e2), (3.22)

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 47

Procedure SPS3(n) : The second revision of the SPS algorithm
The Iterative Sparse Power Series (SPS) Algorithm

Input:
•n = p1p2 . . . pk, a squarefree product of k primes

•ei =
∏k

j=i+1 pj and mi =
∏i−1

j=1 pj , for 1 ≤ i ≤ k

Output: a(0), . . . , a(φ(n)
2

), the first half of the coefficients of Φn(z)

1 a(0), a(1), a(2), . . . , a(φ(n)/2)←− 1, 0, 0, . . . , 0

2 Df ←− 0, Dg ←− mk − φ(mk), D ←− min(Dg, φ(n))

3 for j = k down to 2 do
// Multiply by Ψmj(z

ej); truncate to degree bD/2c
4 for d|mj such that d < mj do
5 if µ(n

d
) = 1 then

6 for i = bD/2c down to dej by −1 do a(i)←− a(i)− a(i− dej)

7 else
8 for i = dej to bD/2c do a(i)←− a(i) + a(i− dej)

9 Df ←− Dg

10 if j > 2 then Dg ←− Dg + (mj−1 − φ(mj−1))ej−1, D ←− min(Dg, φ(n))

11 else D ←− φ(n)

// Use Lemma 1.15 to get higher-degree terms

12 for i = bDf/2c+ 1 to bD/2c do a(i)←− (−1)Dfa(Df − i)

// Divide by (1− zn/pj); truncate to degree φ(n)/2

13 for j = 1 to k do
14 for i = n/pj to φ(n)/2 do a(i)←− a(i) + a(i− n/pj)

return a(0), a(1), . . . , a(φ(n)/2)

from the leftmost term right, i.e. we multiply the Ψmi(z
ei) in order of decreasing index.

We leverage Lemma 1.15 again when computing the prouduct (3.22). Suppose we

have half the terms of f(z) =
∏k

i=j+1 Ψmi(z
ei), for some j ≥ 2 and we want to compute

g(z) = f(z) ·Ψmj(z
ej) (truncated to some degree), towards the aim of obtaining Φn(z). As

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 48

both f(z) and g(z) have the (anti)palindromic property of Lemma 1.15, when computing

g(z) we need to truncate to degree at most bD/2c, where D is the lesser of

Dg

k∏
i=j−1

(mi − φ(mi))ei and φ(n), (3.23)

the former of which is the degree of g(z), the latter being half the degree of Φn(z). Thus

we apply Lemma 1.15 to generate the higher-degree terms of f(z) up to degree D. Once

we have the product (3.22) we then apply the palindromic property again to generate the

coefficients up to degree φ(n)/2, provided we do not have them already. We then divide

by the subterms (zn/pj − 1) for 1 ≤ j ≤ k, truncating, again, to degree φ(n)/2. We give

pseudocode for the method in procedure SPS3. We assume mj and ej were precomputed

in the procedure.

As we build the product g(z) (3.22) we have to truncate to increasing degree as the

computation progresses. However, given the manner we organize the product (3.22), every

time we have to increase this degree bound we nearly halve the remaining subterms. We

first compute Ψmk(z
ek), which comprises 2k−1 − 1 of the 2k subterms of Φn(z); we then

multiply by Ψmk−1
(zek−1), which has some 2k−2 − 1 subterms; and so forth. Thus the

problem is organized in a manner for which the biggest potential gains are awarded to the

most subterms possible.

3.4.1 A note on the performance of the iterative SPS algorithm

We first try to answer: for what subterms of Φn(z) is the degree bound lower using the

iterative SPS algorithm as opposed to SPS or SPS2? In the computation of g(z) (3.22), the

additional restriction that we bound the degree by φ(n)/2 is not redundant. It follows from

(3.19) that the degree of g(z) is

φ(n)+

(∑
p|n

n
p

)
−n, (3.24)

thus the degree of g(z) is greater than that of Φn(z) provided
∑

p|n 1/p > 1. Thus for

sufficiently composite n, we begin to lose the gains of the iterative SPS algorithm for some

subterms of Φn(z). For Φn(z) that are presently feasible to compute, however, it is seldom

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 49

the case that the inequality
∑

d|n 1/p > 1 holds. The smallest odd, squarefree n for which

it does is n = 3, 234, 846, 615, the product of the first nine odd primes. Thus for Φn(z)

of order 8 or less, we see gains with every subterm of g(z) when compared to the SPS

algorithm (less those appearing in Ψmk(z
ek) if we compare with Ψm(z)). For Φn(z) of

higher order, we still see gains for subterms appearing in

k∏
j=k−7

Ψmj(z
ej), (3.25)

which comprises some 2k − 2k−8 − 8 of the 2k subterms of Φn(z). Thus we have gains

compared to the SPS algorithm with all but a negligible fraction of the subterms of Φn(z).

Compared to SPS2, we have gains in roughly half of the subterms of Φn(z).

In the case of the iterative SPS (procedure SPS3), the measure of work to compute

Φn(z) reduces to

T3(n) =
k∑
j=2

((
2j−1 − 1

)
·
⌊

min
(∑k

i=j
ei(mi − φ(mi)), φ(n)

)⌋)
+ (k + 1)φ(n)/2.

This does not, unfortunately, illuminate the improved performance as a result of the new

approach. We give values of the exact measure of work T ′3(n) for explicit n (Table 3.1,

page 54) as well as numerous timings to convey how big an improvement the iterative SPS

is over the previous versions (Section 5.1).

3.5 Calculating Φn(z) and Ψn(z) recursively

The iterative SPS approach depended on the identity (3.20), which describes Φn(z)

in terms of a product of inverse cyclotomic polynomials of decreasing order and index.

We derive an analog for Ψn(z). Let mi and ei be as defined in Section 3.4, and again let

n = p1p2 · · · pk be a product of k distinct odd primes where p1 < p2 < · · · < pk.

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 50

Then by repeated application of Lemma 1.19:

Ψn(z) = Φmk(z
ek)Ψmk(z

ek−1),

= Φmk(z
ek)Φmk−1

(zek−1)Ψmk−1
(zek−2),

= Φmk(z
ek)Φmk−1

(zek−1)Φmk−1
)(zek−2)Ψmk−2

(zek−2),

. . .

= Φmk(z
ek) · · ·Φm1(z

e1)Ψm1(z
e1).

(3.26)

As m1 = 1 and Ψ1(z) = 1, we thus have that

Ψn(z) =
k∏
j=1

Φmj(z
ej). (3.27)

The identities (3.20) and (3.27) suggest a recursive method of computing Φn(z). Con-

sider the example of Φn(z), for n = 1155 = 3 · 5 · 7 · 11. To obtain the coefficients of

Φ1105(z), procedure SPS3 constructs the product

Ψ105(z)Ψ15(z11)Ψ3(z77)(z385−1)−1(z231−1)−1(z165−1)−1(z105−1)−1(z1155−1) (3.28)

from left to right. However, in light of (3.27), we know this method computes Ψ105(z) in a

wasteful manner. We can treat Ψ105(z) as a product of cyclotomic polynomials of smaller

index:

Ψ105(z) = Φ15(z)Φ5(z7)Φ1(z35),

= Φ15(z)Φ5(z7)(1− z35)
(3.29)

One could apply (3.20) yet again, now to Φ15(z) and Φ5(z7), giving us

Φ15(z) = Ψ5(z)(z5 − 1)−1(z3 − 1)−1(z15 − 1),

= (z − 1)
[
(z5 − 1)−1(z3 − 1)−1(z15 − 1)

]
,

(3.30)

Upon computing Ψ105(z), we can break the next term of (3.28), Ψ15(z11) into smaller

products in a similar fashion. We effectively compute Φn(z) by recursion into the factors

of n. We call this approach the recursive sparse power series method, and we give a

pseudocode implemetation in procedure SPS4 (page 52). This algorithm appeared in [3].

SPS4 effectively takes a product of cyclotomic polynomials f(z) and multiplies it by

either Φm(ze) (or Ψm(ze)) recursively as described above. If we are to multiply by Ψm(ze),

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 51

as Ψm(ze) is exactly a product of cyclotomic polynomials by (3.27), upon completion of

our last recursive call, we are finished (line 7 of SPS4). If, however, we are to multiply by

Φm(ze), once we have completed our last recursive call, we need to divide and multiply by

some additional subterms (lines 9 and 11), as is necessary by the identity (3.22). To avoid

unnecessary recursion, we do not recurse in the SPS algorithm to multiply by Ψ1(ze), as

Ψ1(z) = 1 (line 5).

Leveraging the palindromic property of cyclotomic coefficients in the recursive SPS

method is not as immediate as in previous cases. We need to consider the state of the

system (i.e. what degree we have truncated to) upon calling and returning from SPS4.

The difference, with respect to leveraging palindromicity, between the iterative SPS and

the recursive SPS, is that in the former we truncate to the least degree of two polynomials,

whereas in the recursive sparse power series case, we may bound by the least degree of

many polynomials. Moreover, we need to know what degree to bound to at each level of

recursion. Procedure SPS4 has an additional parameter, D, which serves as a bound on the

degree.

As before, let f(z) be a product of cyclotomic polynomials. Let Df be the degree of

f(z) and suppose, while we are in some intermediate step of the computation of Φn(z) or

Ψn(z), that we have the first bDf/2c terms of f(z), and we want next to compute the terms

of

g(z) = f(z) · Φm(ze) (or f(z) ·Ψm(ze)), (3.31)

up to degree bD/2c, for some D ∈ N. D, for our purposes, the degree of some product of

cyclotomic polynomials we will eventually obtain later at some previous level of recursion.

If we let Dg be the degree of g(z), then when computing g(z) from f(z) we need only

compute terms up to bD∗/2c, where D∗ = min(D,Dg) (line 2). Thus when we recurse in

SPS4, if Dg < D we lower the degree bound from D to Dg.

To guarantee that we can obtain higher-degree terms whenever necessary we impose the

following rule: If SPS4 is given f(z) and is to output g(z), we require that f(z) is truncated

to degree bmin(Df , D)/2c on input, and that g(z) is truncated to degree bmin(Dg, D)/2c
on output. Note, in the case that the degree bound on g(z) is always at least the bound on

f(z).

To calculate the first half of the coefficients of Φn(z), one would merely initialize the

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 52

Procedure SPS4(m, e, λ, Df , D, A) : Multiply by Φm(ze) or Ψm(ze)

A recursive algorithm to multiply a product of cyclotomic
polynomials by Φm(ze) or Ψm(ze)

Input:
•m, a positive, squarefree odd integer; λ, a boolean; D ∈ Z, a bound on the degree

• Df , the degree of f(z), a product of cyclotomic polynomials partially stored in

array A. Df is passed by value.

• An array of integers a = [a(0), a(1), a(2), . . .], for which a(i) is initialized to the

coefficient of the term of degree i of f for 0 ≤ i ≤ D′, where D′ = min(Df , D). a

is passed by reference.

Result: If λ is true, we compute g(z) = f(z)Φm(ze), otherwise, we compute

g(z) = f(z)Ψm(ze). In either case we truncate the result to degree bD∗/2c,
where D∗ is the lesser of D and Dg = deg(g). We write the coefficients of g

to array a, and return the degree of g, Dg.

1 if λ then Dg ←− Dg + φ(m)e else Dg ←− Dg + (m− φ(m))e

2 D∗ ←− min(Dg, D), e∗ ←− e, m∗ ← m

3 while m∗ > 1 do
4 p←− (largest prime divisor of m∗), m∗ ←− m∗/p

// We do not recurse to multiply by Ψ1(z) = 1.

5 if m∗ > 1 or λ is false then Df ←− SPS4(m∗, e∗, not λ, Df , D
∗, a)

6 e∗ ←− e∗p

7 if λ is false then return Dg // We have multiplied by Ψm(ze)

// Get higher degree terms as needed

8 for bDf/2c+ 1 to bD∗/2c do a(i)←− (−1)Dfa(Df − i)
// Divide by (1− zme/p) for p|m

9 for each prime p|m do
10 for i = (me/p) to bD∗/2c do a(i)←− a(i) + a(i−me/p)

11 for i = bD∗/2c down to d do a(i)←− a(i)− a(i−me) // × by 1− zme

return Dg

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 53

values of array a as

(a(0), a(1), a(2), . . . , a(φ(n)/2) = (1, 0, 0, . . . , 0)

and call SPS4(n, 1, true, 0, φ(n), a). Similarly, to calculate the first half of Ψn(z) we would

initialize

(a(0), a(1), a(2), . . . , a(bn−φ(n)
2
c)) = (−1, 0, 0, . . . , 0)

and call SPS4(n, 1, false, 0, n− φ(n), a).

We found that the overhead of the recursive function calls is negligible for tractable

cases (i.e. for Φn(z) of order less than 9). That is, if we run our implementation of the

SPS4 algorithm on Φn(z) of order 9, removing the work done on the coefficient array

appearing on lines 8−11, then the algorithm takes less than one hundredth of a second.

3.5.1 Implementation details of the recursive SPS algorithm

In procedure SPS4 we oftencase need the prime divisors of the input m. It is obviously

wasteful to factor m every time we recurse. To compute Φn(z) or Ψn(z) for squarefree n,

we first precompute the factorization of n and store it in a global array P = [p1, p2, . . . , pk].

Upon calling SPS4, every subsequent recursive call will multiply by some (inverse) cyclo-

tomic polynomial of index m|n. Our implementation of the recursive sparse power series

algorithm has an additional argument, B = [b1, b2, . . . , bk], a series of bits, that, given P ,

gives us the factorization of m. We set bi to 1 if pi divides m, and zero otherwise. For all

tractable cases, B can fit in two bytes.

Thus, in the while loop on line 3 in SPS4, we take a copy of B, call it B∗, and scan it

for nonzero bits. Each time we find a nonzero bit we set that bit to zero, and pass the value

of B∗ to the recursive call to 5. We continue in this fashion until all the bits of B∗ are set

to zero. We get the prime divisors again in a similar fashion on line 9.

3.5.2 A comparison of the different SPS algorithms

It should be noted that we have yet to prove whether SPS4 is asymptotically faster than

SPS3, or even the original SPS algorithm. It is a nontrivial problem to show how T4(n)

behaves asympotically. Trivially, we have that, for n a product of k distinct primes,

φ(n)2k−1 ≤ T4(n) ≤ (k + 1)φ(n), (3.32)

CHAPTER 3. CALCULATING Φn(z) AS A TRUNCATED POWER SERIES 54

Table 3.1: The number of additions and subtraction operations on our coefficient array to

compute Φn(z), for n a product of k distinct primes, using SPS1-4
exact measure of work (see §3.3.1)

n k T ′1(n) T ′2(n) T ′3(n) T ′4(n)

2,145 4 5,562 2511 1011 762

40,755 5 232,930 112,339 37,507 25,347

1,181,895 6 14,155,762 7,021,951 1,881,203 1,200,119

43,730,115 7 1,063,763,368 537,122,477 116,580,144 70,804,945

1,880,394,945 8 91,381,479,222 46,599,257,971 8,492,255,607 4,924,120,957

but we do not know where exactly in this range T4(n) tends. This constitutes future work.

We find, in practice, that the recursive SPS is slightly faster than the iterative SPS; however,

this improvement is not nearly as substantial as was the iterative SPS over prior versions.

The measure of work is always less (or equal) using SPS4 over SPS1-3. We include the

exact measure of work (i.e. the number of additions and subtractions on our array of coef-

ficients) using SPS1-4 to compute select Φn(z) in Table 3.1. We see that the gains of SPS4

over SPS3 are more substantial for Φn(z) of higher order, i.e. Φn(z) for which n has more

distinct odd prime divisors.

Chapter 4

Reduced-memory methods for
computing A(n)

Calculating cyclotomic polynomials of very large degree, using either an FFT-based or

SPS algorithm, can bode problematic, as oftentimes Φn(z) will not fit in main memory. In

such a case, there are a variety of approaches to calculate Φn(z).

One approach is to calculate Φn(z) modulo primes pi sufficiently small that we can

fit Φn(z) mod pi in memory and write the images to hard disk. We then reconstruct the

coefficients of Φn(z) sequentially from the images of Φn(z) mod pi. We have already seen

this approach in chapter 2. This minimizes the amount of computation we have to do on

the hard disk.

For yet larger cyclotomic polynomials, we may not even be able to store the lower-half

of its coefficients modulo a prime in memory. In this chapter we describe various ap-

proaches we used for computing such cyclotomic polynomials. In Section 4.1, we explain

the big prime algorithm, which was used to compute the heights of a particular family of

sparse cyclotomic polynomials of low height. In Section 4.2 and 4.3, we describe variations

of the sparse power series algorithm which was used to compute cyclotomic polynomials

whose coefficients require tens or hundreds of gigabytes of storage.

55

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 56

4.1 The big prime algorithm

As a motivating example, consider Φn(z) for

n = 2, 576, 062, 979, 535 = 3 · 5 · 29 · 2609 · 2269829.

This is smallest n = p1p2p3p4p5, a product of five distinct odd primes, such that

pk ≡ −1 mod
k−1∏
i=1

pi for k = 2, 3, 4, 5. (4.1)

Nathan Kaplan [20] asked whether this cyclotomic polynomial is flat. To our knowledge,

no one has yet found a flat cyclotomic polynomial of order 5. This was a natural candidate

to test for flatness. Kaplan [21] proved for n = p1p2p3 satifying (4.1) for k = 2, 3 that

A(n) = 1. In addition, for every odd n < 3 · 108 of the form n = p1p2p3p4 satisfying (4.1)

for 2 ≤ k ≤ 4, Φn(z) is flat.

4.1.1 Computing coefficients of Φn(z) recursively

For our purposes, it is not always necessary that we retrieve all the coefficients of Φn(z)

at once, particularly if we just want A(n), the height of Φn(z). Indeed, for a cyclotomic

polynomial with degree in the tens of billions or beyond, there is very little we can feasibly

do with Φn(z), so there may be no purpose to store it in memory for further computation.

Let n = mp be a squarefree, odd integer with largest prime divisor p. We can compute

A(n) by inspecting some of the coefficients of Φn(z) sequentially such that we only have

to store m coefficients of Φn(z) at any one time. This algorithm takes O(m2) = O(n
2

p2
)

integer operations, provided we have Φm(z) and Ψm(z). Clearly, such an algorithm works

best for n with a large prime divisor, hence we affectionally call it the big prime algorithm.

Recall that Ψn(z) = (zn − 1)/Φn(z). By Lemma 1.19,

Φn(z) = Φmp(z) =
Φm(zp)

Φm(z)
= Φm(zp) ·Ψm(z) · (zm − 1)−1

= Φm(zp) ·Ψm(z) · (−1− zm − z2m − · · ·).
(4.2)

Write Φm(z) =
∑φ(m)

i=0 biz
i and Ψm(z) =

∑m−φ(m)
j=0 cjz

j and Φn(z) =
∑φ(n)

s=0 an(s)zs.

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 57

From equation (4.2), we can express the coefficients as in terms of the bi and cj :

an(k) = −
∑

ip+j≡k mod m
ip+j≤k

bicj. (4.3)

This leads to the recurrence

an(k) = an(k −m)−
∑

ip+j=k

bicj, (4.4)

which is the idea for big prime method (Algorithm 4.1).

Algorithm 4.1: The big prime algorithm for computing A(n)

Input:
• n = mp, a squarefree odd integer with largest prime divisor p

• a = [a(0), a(1), . . .], an array of m integers,

• b0, b1, . . . , bφ(m)/2, the first half of the coefficients of Φm(z) =
∑φ(m)

i=0 biz
i,

• c0, c1, . . . , cm−φ(m), the coefficients of Ψm(z) =
∑m−φ(m)

i=0 ciz
i

Output: H = A(n), the height of Φn(z)

1 a(0), a(1), . . . , a(m− 1)← 0, 0, . . . , 0

2 H ← 0

3 for i←− 0 to bφ(n)
2p
c do

4 k ←− ip mod N

5 for j ←− 0 to m− φ(m) do
6 a(k)← a(k)− bicj,
7 if j < p and |a(k)| > H then H ←− |a(k)|
8 k ← k + 1 mod m

return H
The algorithm iterates through pairs (i, j) such that 0 ≤ j ≤ m − φ(m), and ip ≤

φ(n)
2

. Since there are only O(m · φ(m)) such pairs, it follows that the big prime algorithm

takes O(m · φ(m)) ∈ O(m2) arithmetic operations. We only require the first half of the

coefficients of Φm(z), as φ(m)
2

> φ(m)(p−1)
2p

= φ(n)
2p

.

We store the value of an(k) in a(k mod m), and discard that value when computing

an(k + m). If p > m− φ(m), the degree of Ψm(z), then Algorithm 4.1 does not consider

every term of Φn(z) with degree less than φ(n)/2. In particular, if there is no pair (i, j)

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 58

such that 0 ≤ i ≤ φ(m), 0 ≤ j ≤ m− φ(n), and ip+ j = k, then the big prime algorithm

will not consider the term of the degree k. It follows from (4.4) that for such k ≥ m,

an(k) = an(k − m), and for such k < m, an(k) = 0. Thus we need not consider these

terms to obtain the height A(n).

It is easy to modify Algorithm 4.1 to generate all (or half) of the coefficients of Φn(z)

(Algorithm 4.2), should we have reason to look at all the coefficients. For instance, we

may want to look at all the coefficients if we wanted to compute the S(n), the length of

Φn(z), or an l-norm of Φn(z). In such case we would discard a cyclotomic coefficient upon

looking at it. We may, however, want to compute and store Φn(z), provided we have the

storage necessary. In such case the number of comparisons and arithmetic operations in Z
increases fromO(m·φ(m)) toO(m·φ(m)+φ(n)). To compute the dense representation of

Φn(z), Algorithm 4.2 requires space for O(φ(n)) integers; however, we could compute all

the coefficients an(k) using immediate storage for only m integers if we wrote coefficients

to disk periodically every time we have computed another m terms.

Algorithm 4.2: The big prime algorithm for computing Φn(z)

Input:
• n = mp, a squarefree odd integer with largest prime divisor p

• b0, b1, . . . , bφ(m)/2, the first half of the coefficients of Φm(z) =
∑φ(m)

i=0 biz
i,

• c0, c1, . . . , cm−φ(m), the coefficients of Ψm(z) =
∑m−φ(m)

i=0 ciz
i

Output: an(0), . . . , an(φ(n)/2), the first half of the coefficients of Φn(z)

1 an(0), . . . , an(φ(n)/2)←− 0, 0, . . . , 0

2 for i←− 0 to bφ(n)
2p
c do

3 k ←− ip

4 for j ←− 0 to m− φ(m) do
5 if k ≥ m then an(k)←− an(k −m)− bicj else an(k)←− −bicj
6 k ←− k + 1

return an(0), . . . , an(φ(n)/2)

4.1.2 A big prime algorithm for Ψn(z)

Provided we have Φm(z) and Ψm(z), we can generate the terms of Ψn(z) for n = mp,

in O(m · φ(m)) arithmetic operations in Z. To do this we calculate Ψn(z) as a product of

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 59

two polynomials. One can show that

Ψmp(z) = Φm(z)Ψm(zp) (4.5)

by showing that both sides of (4.5) have the same roots. Thus if we again let Φm(z) =∑φ(m)
i=0 biz

i and Ψm(z) =
∑m−φ(m)

j=0 cjz
j , it is immediate that

Ψn(z) =
∑

i+pj=k

bicjz
k, (4.6)

where the sum is taken over 0 ≤ i ≤ φ(m) and 0 ≤ j ≤ m − φ(m). If p > φ(m), the

implementation is especially simple, as we have at most one solution to i + jp = k for a

given value k. We see, for p� φ(m), that Ψmp is sparse.

4.1.3 Implementation details and observations

As was the case with our motivating example n = 2576062979535, the big prime

algorithm and its variants were developed to calculate A(n) for large squarefree n with a

large prime divisor. The n for which we first implemented this algorithm were of the form

n = p1p2p3p4p5, a product of five distinct primes, such that pk >
∏k−1

i=0 pi for k = 2, 3, 4, 5.

For such cases, to calculate A(n) it is often advantageous to use a sparse representation

for Φm(z) and Ψm(z). For example, for n = mp where n = 2576062979535, m =

1134915 and p = 2269829, Φm(z) has degree 584192 but only 31679 terms, and Ψm(z)

has degree 550723 but only 2982 terms.

For yet larger examples of n, we cannot fit an array of m integers in main memory. For

example, we wanted to see if Φn(z) had height 1 for

n = 2876941641794034669918155 = 5 · 29 · 2029 · 2353639 · 4154714171969.

This is the smallest n = p1p2p3p4p5 with p1 = 5 that satisfies the set of congruences in

(4.1). To test if A(n) = 1 we first used the sparse power series algorithm to calculate

Φp1p2p3(z) and Ψp1p2p3(z), we then used the big prime algorithm algorithm to generate

sparse representations of Ψm(z) and Φm(z), where m = p1p2p3p4. We then calculated the

terms of Φn(z) whose degress were in a range modulo m sufficiently small that we could

fit in memory. We found that Φn(z) is not flat, as |an(k)| = 2 for

k = 266298073621 · 4154714171969 + 109596 = 184398730073579852543491,

at which point we stopped the calculation.

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 60

4.2 A challenge problem

T.D. Noe [28] asked us to compute A(n), for

n = 99660932085 = 3 · 5 · 11 · 13 · 19 · 29 · 37 · 43 · 53. (4.7)

Noe wanted to know whether A(n) > n8. The product of the least six prime divisors of

n, 1181895, is the least integer s satisfying A(s) > s; the product of the least seven prime

divisors, 43730115, the least integer satisfying A(s) > s2. n/43 and n/53 are the first two

integers satisfying A(s) > s4.

If one knew that the largest coefficient of Φn(z) =
∑φ(n)

i=0 an(i)zi occurs at degree

d, one could compute Φm(z) =
∑φ(m)

i=0 am(i)zi and Ψm(z) =
∑m−φ(m)

i=0 cm(i)zi where

m = n/53 = 1880394945 and then, given

Φn(z) = Φm(z53)Ψm(z)(1 + zm + z2m + . . .), (4.8)

we have that

an(d) =
∑

53i+j≡d mod m
53i+j≤d

am(i)cm(j). (4.9)

Given that we can take d ≤ φ(n)/2, we could compute A(n) usingO(φ(n)) arithmetic op-

erations. More generally, if we know that the degree of the term with the largest coefficient

of Φn(z) occurs in some range of length L, then we can compute A(n) in φ(n)L arithmetic

operations. We expected the largest coefficient of Φn(z) to occur at a term of degree close

to φ(n)/2. The largest coefficients of Φ1181895(z), Φ43730115(z), and Φm(z) all occur near

their respective middle terms (see Table 4.1). We were unable, however, to find a band of

terms, definitively containing the largest coefficient of Φn(z), sufficiently small to feasibly

compute A(n) by this method.

Our first approach, prior to the development of SPS2-4, was to compute the first half

of the terms of Φn(z) modulo 32-bit primes using the SPS algorithm, and then to use

Chinese remaindering to obtain Φn(z) from its images. One difficulty is storage. One

image requires 76 GB of space. Thus our array of coefficients could not fit in memory, and

we had to write results of intermediate computation to disk. Knowing the height of Ψm(z)

and Φm(z) and considering (4.8), we knew that A(n) < 2320, and that we may require as

many as ten images of Φn(z) requiring some 760 GB of storage total. As Φn(z) has order

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 61

Table 4.1: Where the maximal coefficient of Φn(z) =
∑
an(i)zi occurs

n φ(n)/2 i ≤ φ(n)/2 for which |an(i)| = A(n)

1,181,895 241,920 222,192

43,730,115 8,709,120 8,709,112

1,880,394,945 365,783,040 365,783,040

9, the SPS algorithm takes some 29 = 512 passes through our coefficient array to compute

one image. The hard disk bodes a bottleneck in the computation; each image took roughly

2 weeks to compute. During the computation of the fifth image the hard disk crashed and

we abandoned this approach.

4.2.1 A new approach

In our second attempt, we sought to minimize our use of the hard disk. We used a

variant of the SPS2 algorithm. In addition, the problem was broken up in a manner that

allowed us to distribute the computation over multiple desktop computers. We used three

computers, two with 6 GB of RAM and one with 4 GB of RAM.

Half of the proper natural divisors of n are divisible by p = 53. If we compute the

truncated product of all the subterms (1 − zd)±1 of Φn(z) for which 53 - d, then for the

remainder of the computation of Φn(z) we can partition our array of coefficients into 53

sections, grouping terms by their degree modulo 53. We first compute

Ψm(z) mod z(m−φ(m))/2+1 =

(m−φ(m))/2∑
k=0

cm(k)zk (4.10)

using the recursive SPS algorithm. After which we compute the coefficients of Ψm(z)(1 +

zm + z2m + . . .) mod zφ(n)/2+1 in 53 sections. For 0 ≤ i < 53, we computed

Fi(z) =
∑

0≤53j+i≤φ(n)/2

cm(j mod m), (4.11)

where j mod m above is taken in the range 0 ≤ j < m and cm(k) is set to zero for

k > m − φ(m). The terms cm(k), for k > (m − φ(m))/2, half the degree of Ψm(z),

were obtained from the lower-degree terms of Ψm(z) using the antipalindromic property of

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 62

Ψm(z). The coefficients of the Fi are merely those of Ψm(z)(1− zm)−1 rearranged, as

52∑
i=0

ziFi(z
53) ≡ Ψm(z)(1 + zm + z2m + . . .) (mod zφ(n)/2+1) (4.12)

Thus, by (4.8),
52∑
i=0

ziFi(z
53)Φm(z53) ≡ Φn(z) (mod zφ(n)/2+1). (4.13)

Thus, to compute the coefficients of Φn(z), it suffices to compute Fi(z)Φm(z) for 0 ≤ i <

53. We multiply each of the Fi by the subterms of Φm(z) by way of the SPS algorithm, here

truncating to degree bφ(n)
2·53
c. We computed images of Ψm(z), Fi(z), and Fi(z)Φm(z) mod-

ulo 32 or 64-bit primes and wrote them to disk. Chinese remaindering was only performed

on the coefficients of Fi(z)Φm(z) at the end of the computation. The two computers with 6

GB of memory computed five images modulo 64-bit primes, and the other computer with

4 GB of memory computed 10 images modulo 32-bit primes.

The lower half of the terms of Ψm(z) required 2.3 (4.6) GB of memory taken modulo

a 32 (64-bit prime). One of the 53 sections of the lower-degree terms of Φn(z) required

roughly 1.4 GB (2.8 GB) of memory taken modulo a 32 (64-bit) prime. To construct the

Fi(z), we would load Ψm(z) into memory and compute the terms of Fi(z) in order of

increasing degree, periodically writing the terms of Fi(z) to disk so as not to exhaust main

memory. Once sufficiently many images of Fi(z) were computed, we then computed the

images of Fi(z)Φm(z), one image at a time. These images were again written to disk. We

could not store all the images of Fi(z)Φm(z) entirely in memory, so we reconstructed the

coefficients of Fi(z)Φm(z) in suitably small segments.

In order to distribute the computation over three computers, each computer we used

computed images of Ψm(z). Computing the images of Ψm(z), however, comprises a very

small part of the computation. With the recursive SPS algorithm the images of Ψm(z) were

computed in under an hour. The entirety of the computation took roughly two days on three

computers.

We found that

A(99660932085) = 61267208717407836670896202324395260\

12472525473338153078678961755149378773915536447185370,

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 63

which is roughly 2291.6 or n7.98. We used this approach again to compute A(n) for

n = 100280245065 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31,

the product of the least 10 odd primes. Monagan computed A(n) for n = 3 · 5 · 7 · 11 · 13 ·
17 · 19 · 23 · 29 using the FFT. He did not attempt to compute A(100280245065) because of

the high memory cost required by a FFT-based approach. Φ100280245065(z) is a polynomial

of degree exceeding 30 billion. We computed

A(100280245065) = 3801279432840044716805495560269576. (4.14)

4.3 A reduced-memory recursive SPS algorithm

The method we describe in the previous section is, in effect, a distributed version of the

SPS2 algorithm. As in the SPS2 algorithm, we compute Φmp(z) as

Φmp(z) = −Ψm(z) · 1

1− zm
· Φm(zp). (4.15)

As in SPS2, when multiplying by the subterms of Φn(z) appearing in Ψm(z), we truncated

to half the degree of Ψm(z). The key difference between our new approach and SPS2 is

that we observed that when multiplying by the subterms of Φm(zp), that we can break our

intermediate truncated power series into p smaller truncated power series of nearly equal

size. We break the terms of our polynomial into p sets and run our computation on each of

these p sets separately.

For large cyclotomic polynomials which cannot be stored in main memory using a

dense representation, it would be ideal to have an algorithm that minimizes disk I/O as in

the case of the approach of the previous section, while at the same time requiring (nearly)

the same number of coefficient operations as the recursive sparse power series algorithm.

We describe such an approach.

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 64

Procedure SPS4b(m, e, p, λ, DIN , D, k, l, a, b): a distributed version of SPS4
Input: m, e, DIN , and D, nonnegative integers; p, a prime; λ, a boolean value;

k < l, integers for which 0 < k ≤ l < p and l ≡ DIN − k mod p;

a = [a(0), a(1), . . .], and b = [b(0), b(1), . . .], two arrays of integers

Result: Let H(z) =
∑p−1

i=0 z
iFi(z

p) be a product of cyclotomic polynomials of odd

index and let DIN = deg(H). Let H∗(z) = H(z)Φn(zep) if λ is true.

Otherwise, let H∗(z) = H(z)Ψn(zep). Let Fi(z) and F ∗i (z), where

0 ≤ i < p, be the polynomials for which H(z) =
∑p−1

i=0 z
iFi(z

p) and

H∗(z) =
∑p−1

i=0 z
iF ∗i (zp). The first half of the coefficients of Fk(z) and

Fl(z) are stored to arrays a and b on input and that of F ∗k (z) and F ∗l (z) are

written to a and b on output.

1 if λ then DOUT ←− DOUT + φ(m)ep else DOUT ←− DOUT + (m− φ(m))ep

2 D∗ ←− min(DOUT , D), e∗ ←− e, m∗ ← m

3 while m∗ > 1 do
4 q ←− (largest prime divisor of m∗), m∗ ←− m∗/q

5 if m∗ > 1 or λ is false then
6 DIN ←− SPS4b(m∗, e∗, p, not λ, DIN , D

∗, k, l, a, b)

7 e∗ ←− e∗q

8 if λ is false then return DOUT // We have multiplied by Ψm(ze)

// Get higher degree terms as needed

D∗ ←− bD∗
2p
c, i = bDIN

2p
c, j ← bDIN−k

p
c − i

9 while i ≥ 0 and j ≤ D∗ do
10 a(j)←− (−1)DINa(i), if k 6= l then a(j)←− (−1)DINa(i)

11 i←− i− 1, j ←− j + 1

12 for each prime q|m do
13 for i = (me/q) to D∗ do
14 a(i)←− a(i) + a(i−me/q), if k 6= l then b(i)←− b(i) + b(i−me/q)

15 for i = D∗ down to d do
16 a(i)←− a(i)− a(i−me), if k 6= l then b(i)←− b(i)− b(i−me)

return DOUT

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 65

We compute Φn(z) as the product

Ψm(z) · Φm(zp) · (zm − 1)−1, (4.16)

in order from the leftmost term right. We first compute the lower half of the terms Ψm(z)

by way of the recursive SPS algorithm. Once we have the truncated power series of Ψm(z),

we break up the power series into p power series F0(z), F1(z), . . . , Fp−1(z) where, given

Ψm(z) =
∑
cm(i)zi, the Fi(z) satisfy

Fi =
∑

cm(i+ pj)zj, (4.17)

and thus

Ψm(z) =

p−1∑
j=0

zjFi(z
p). (4.18)

To compute the coefficients of

Ψm(z) · Φm(zp), (4.19)

we can compute the product F ∗i (z) = Fi(z)Φm(z) for 0 ≤ i < p, to give us the coefficients

of Ψm(z)Φm(zp), much like what we did to compute A(99660932085); however, in this

fashion we can truncate the degrees of the Fi in a fashion similar to that seen in the recursive

SPS algorithm. Let 0 ≤ l1 ≤ l < p be such that l ≡ m − φ(m) − l1 (mod p). Suppose

for now that l1 6= l. We can show that the coefficients of G(z) = zl1Fk(z
p) + zlFl(z

p) are

antipalindromic. Note that the terms of G(z) are merely a subset of the terms of Ψm(z).

A term of zl1Fl1(z
p) is of the form cm(k)zk, where k = l1 + pj for some j and 0 ≤ k ≤

m − φ(m). As m − φ(m) − k ≡ l (mod p), we have that cm(m − φ(m) − k)zm−φ(m)−k

is a term of zlFl(zp) and, moreover, by the antipalindromic property of the coefficients of

Ψm(z), cm(k) = −cm(m− φ(m)− k).

Thus, if we write Fk(z) =
∑
fk(j)z

j and Fl =
∑
fl(j)z

j , then

fk(i) = cm(jp+ l1),

= −cm(m− φ(m)− (jp+ l1)),

= −cm(m− φ(m)− l1 − jp)),

= −cm(bm−φ(m)−l1
p

cp+ l − jp),

= −fl(bm−φ(m)−l1
p

c − j).

(4.20)

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 66

Similarly, fl(j) = −fk(bm−φ(m)−l
p

c − j).. As k < l, m− φ(m)− l < m− φ(m)− k.

If there exists some k such that

m− φ(m)− l < kp ≤ m− φ(m)− k,

then, as m− φ(m)− l ≡ k (mod p) and m− φ(m)− k ≡ l (mod p), we have

m− φ(m)− l = (k − 1)p+ k and m− φ(m)− k = kp+ l,

and l − k = (m− φ(m)− k)− (m− φ(m)− l) = p+ (l − k), an obvious contradiction.

Thus

bm−φ(m)−k
p

c = bm−φ(m)−l
p

c. (4.21)

More generally, if H(z) =
∑D

j=0 h(j)zj is a product of cyclotomic polynomials of odd

index where deg(h) = D ≡ m− φ(m) (mod p), then, letting

Fi =
∑

fi(j)z
j =

∑
h(i+ jp)zj, (4.22)

we have

fk(j) = (−1)D − fl(bm−φ(m)−k
p

c − j) and fl(j) = (−1)D − fk(bm−φ(m)−k
p

c − j).
(4.23)

Similarly, if k ≡ m− φ(m)− k (mod p), then

fk(j) = (−1)D − fk(bm−φ(m)−k
p

c − j). (4.24)

Using this property we can, as we have with every SPS algorithm, obtain the higher-

degree terms of H(z) from its lower degree terms. To ensure we have the lower-half of the

terms of H(z), we compute the terms of each Fj up to degree bD
2p
c.

Procedure SPS4b details this variant of the recursive SPS algorithm, which is a dis-

tributed analog to the recursive SPS4. The procedure handles the cases for which k 6= l and

k = l. We include source code in the appendix of an implementation of SPS4b. To compute

the coefficients of Ψm(z)Φm(zp) we would call SPS4b(m, 1, p,m−φ(m), φ(n), k, l, Fk, Fl)

for every pair 0 ≤ k ≤ l < p such that l ≡ m− φ(m)− k (mod p).

We note that this method is easily generalized to compute the coefficients of Ψn(z) =

Φm(z)Ψm(zp); moreover, in the case of Ψn(z), we need not perform the additional step of

multiplying by (zm − 1)−1.

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 67

Once we have polynomials F ∗i (z) =
∑
f ∗i (j)zj , for 0 ≤ i < p, satisfying

p∑
i=0

ziF ∗i (zp) = Ψm(z)Φm(zp), (4.25)

it remains to multiply Ψm(z)Φm(zp) by (zm−1)−1 = (−1− zm− z2m− . . .) to obtain the

coefficients of Φn(z). We can do this with an array of m integers. Note that the coefficient

of the term of degree k of Ψm(z)Φm(zp) is f ∗k mod p(bk/pc). Thus for the coefficient of the

term of degree k of Φn(z), an(k), it holds that

an(k) = −
∑

0≤j≤k
j≡k (mod m)

f ∗j mod pbj/pc,

= an(k −m)− f ∗k mod pbk/pc.

(4.26)

Thus, we can obtain the terms of Φn(z) is a manner very similar to the big prime algo-

rithm. We initialize an array of m integers to zero, then we iterative through the terms of

Ψm(z)Φm(zp) in order of increasing degree.

Algorithm 4.3 shows how we organize in memory the problem of computing A(n) in

the manner we described using an array of sizem+sp, for some integer s > 0. As in chapter

2, given an array a = [a(0), a(1), . . .] and integer t > 0, we let a+t denote the array whose

first integer is a(t). That is, (a + t) = [a(t), a(t + 1), . . .] and (a + t)(i) = a(t + i). This

method has allowed us to compute A(n) for n > 1010. We used this algorithm to compute

the values of A(n) appearing in tables A.4 and A.5, for instance. We have implemented

versions of Algorithm 4.3 that compute Φn(z) using 64, 128, and 192-bit integers. We

also have a version which computes Φn(z) =
∑
an(i)zi modulo 64-bit primes, for this

version we need to write the coefficients of Φn(z) mod q to disk as we compute them

such that we can perform Chinese remaindering on the images of Φn(z). Algorithm 4.3

requires immediate storage (i.e. storage in main memory, as opposed to disk) for m + sp

integers, for some integer s > 0. In the for-loop beginning on line 6 of the algorithm, we

require bm−φ(m)
2p
cp immediate storage for coefficients of Ψm(z) and an additional bφ(n)

p
c+2

integers to store the coefficients of Fk(z) and Fl(z). However, as φ(n)/p < φ(m), we find

that

bm−φ(m)
2p
cp+ bφ(n)

p
c+ 2 ≤ (m−φ(m)

2
+ p− 1) + φ(m) + 1 < m+ p,

which fits within our memory constraints.

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 68

It should be noted that the computation of the F ∗i (z) satisfying (4.25) could be per-

formed in parallel. That is, the for-loop of Algorithm 4.3 beginning on line 6 could be done

in parallel. Running the algorithm in parallel would require additional immediate storage

as we would need to store many of the F ∗i (z) in main memory at once. Since the devel-

opment of the algorithms of chapter 3, however, we find the computation of cyclotomic

polynomials is a problem limited by space rather than by time; any cyclotomic polynomial

that, using a dense representation, can be stored in main memory is already easy to com-

pute. Moreover, this method is not easily distributed over multiple computers, as we did

to compute A(99660932085), as described in the previous section. This is because the last

phase of Algorithm 4.3, multiplying by (zm − 1)−1, is sequential. We would require that a

computer have access to all the polynomials F ∗i (z).

Algorithm 4.4 shows the analogous algorithm for Ψn(z). This algorithm again requires

storage for m+p integers: bφ(m)
2p
cp integers for the coefficients of Φm(z), and bn−φ(n)

p
c+ 2

integers to store the coefficients of Fk(z) and Fl(z), where here, the Fi(z) satisfy

p−1∑
i=0

ziFi(z
p) = Φm(z). (4.27)

Thus our memory requirement for this algorithm is

bφ(m)
2p
cp+ bn−φ(n)

p
c+ 2 ≤ (φ(m)/2 + p− 1) + (m− φ(n)/p+ 1)

= m+ p+ φ(m)(1
2
− p− 1p),

(4.28)

which is at most m + p − φ(m)/6, given p ≤ 3. This algorithm, unlike its counterpart

for Φn(z), does not require us to write to disk, as we do not have to multiply by another

subterm (zm − 1)−1 at the end of the computation. In Algorithm 4.4 we merely compute

the F ∗i (z) satisfying ∑
ziF ∗i (zp) = Φm(z)Ψm(zp) = Ψmp(z). (4.29)

We compute the F ∗i (z) in pairs F ∗k (z), F ∗l (z) where l = (φ(m) − k) mod p. Then, as the

coefficients of F ∗k (z) and F ∗l (z) are merely a subset of those of Ψm(z), we look through

the coefficients of F ∗k (z) and F ∗l (z) and then discard them, whereas in Algorithm 4.3 we

would write the intermediate polynomials to disk. We used Algorithm 4.4 to compute the

heights of Ψn(z) of order 9, for squarefree odd n, 5 · 109 < n < 18 · 109.

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 69

Algorithm 4.3: A memory-friendly SPS4-based algorithm for computing A(n)

Input:
• n = mp, a squarefree odd integer with largest prime divisor p

• a = [a(0), a(1), . . .], an array of m+ sp integers, where s > 0, initialized to zero.

Output: A(n), the height of Φn(z) =
∑
an(i)zi

1 a(0)←− 1, H ←− 0

2 SPS4(m, 1, false, 0,m− φ(m), a) // Compute Ψm(z)

3 D ←− bm−φ(m)
2p
c, D∗ ←− bφ(n)

2p
c

4 for i←− m−φ(m)
2

to (D + 1)p− 1 do a(i)←− −a(m− φ(m)− i)
5 b←− a+ (D + 1)p, c←− b+ (D∗ + 1)

6 for k ←− 0 to p− 1 do
7 l←− m− φ(m)− k mod p

8 if k ≤ l then
// Write Fk(z), Fl(z) to arrays b, c

9 for i←− 0 to D do b(i)←− a(k + ip), c(i)←− a(l + ip)

// Compute F ∗k (z) and F ∗l (z)

10 SPS4b(m, 1, p, true ,m− φ(m), φ(n), k, l, b, c)

11 Write the first D∗ coefficients of F ∗k (z) =
∑
f ∗k (i)zi and

F ∗l (z) =
∑
f ∗l (i)zi, stored in arrays b and c respectively, to disk.

// Multiply by (zm − 1)−1

12 for i←− 0 to m− 1 do a(i)←− 0

13 b←− a+m

14 for i←− 0 to φ(n)/2 do
15 if (sp)|i then
16 Write f ∗k (j), for 0 ≤ k < p and i/p ≤ j < i/p+ s, from disk to array b.

17 a(i mod m)←− a(i)− f ∗i mod p(bi/pc) // a(i mod m) now stores an(i)

18 if |a(i mod m)| > H then H ←− a(i mod m)

return H

CHAPTER 4. REDUCED-MEMORY METHODS FOR COMPUTING A(n) 70

Algorithm 4.4: A memory-friendly SPS4-based algorithm for Ψn(z)

Input:
• n = mp, a squarefree odd integer with largest prime divisor p

• a = [a(0), a(1), . . .], an array of at least m+ p− φ(m)(1
2
− p−1

p
) integers,

initialized to zero.

Output: Ā(n), the height of Ψn(z) =
∑
cn(i)zi

1 a(0)←− 1, H ←− 0

2 SPS4(m, 1, false, true,m− φ(m), a) // Compute Ψm(z)

3 D ←− bφ(m)
2p
c, D∗ ←− bn−φ(n)

2p
c

4 for i←− m−φ(m)
2

to (D + 1)p− 1 do a(i)←− −a(m− φ(m)− i)
5 b←− a+ (D + 1)p, c←− b+ (D∗ + 1)

6 for k ←− 0 to p− 1 do
7 l←− φ(m)− k mod p

8 if k ≤ l then
// Write Fk(z), Fl(z) to arrays b, c

9 for i←− 0 to D do b(i)←− a(k + ip), c(i)←− a(l + ip)

// Compute F ∗k (z) and F ∗l (z)

10 SPS4b(m, 1, p, false ,m− φ(m), φ(n), k, l, b, c)

11 for i←− 0 to D∗ do
12 if |b(i)| > H then H ←− |b(i)|
13 if k 6= l and |c(i)| > H then H ←− |c(i)|;

return H

Chapter 5

Timings and results

All of our cyclotomic polynomial data is available online at

http://www.cecm.sfu.ca/~ada26/cyclotomic/

5.1 Timings

The timings from this section were taken using a 2.67 GHz Intel Core i7 computer with

6 GB of RAM. All times are rounded to one hundredth of a second. The SPS algorithms

and its variants all use 64-bit integers for the coefficients. Unless otherwise specified, we

did timings without using an overflow check. All of our implementations are written in C

and inline assembly.

Table 5.1 gives a comparison of our implementations of the different algorithms of

chapter 2. We measure the time for each method to compute Φn(z) for different values

of n. The test cases n were taken from Table A.1, which list Φn(z) of particularly large

height. For our timings of each version of the cyclotomic Fourier transform (CFT), we

measured the time it took to compute the discrete Fourier transform of Φn(z) by way of

procedure CFT (or CFT2-4), plus the time to interpolate Φn(z) from its Fourier transform

by way of the inverse FFT (procedure FFT2). In each timed implementation, we only

computed one image Φn(z) mod q, for q a 64-bit prime. As we explain in Section 2.4.1,

our implementations of CFT3 and CFT4 we read DFT (M,ω, 1/Φ1(z)), where M = 225,

from disk, to avoid having to perform division in Zq. For smaller values of n in Table 5.1,

71

CHAPTER 5. TIMINGS AND RESULTS 72

the time to load 225 integers from disk outweighs the cost of divisions. We see, however,

for larger n, that CFT3 is the best of the listed methods.

Table 5.2 compares the SPS methods to CFT3, our fastest method of chapter 2; Maple

11’s cyclotomic command (whose timings are under the column entitled Maple11),

which used classical polynomial arithmetic to compute Φn(z); and the big prime algorithm

for computing A(n) (Algorithm 4.1). For the big prime algorithm (column Bigprime64 in

Table 5.2), we first compute Φm(z) and Ψm(z), where n = mp for some prime p, using

the SPS algorithm, and then compute A(n) by way of the big prime algorithm. In this

implementation of the big prime algorithm we use a dense representation of Φm and Ψm.

We use a dense representation for these timings because the Φn(z) used for these timings

were all dense. We see that the big prime algorithm slows appreciably as n increases. This

is because the algorithm is effectively quadratic time. It should be noted, however, that the

algorithm was not intended for these cases. In every timed implementation in Table 5.2, we

use 64-bit machine integers to store the coefficients of Φn(z).

Tables 5.3 and 5.4 compare the different versions of the sparse power series method to

compute Φn(z) and Ψn(z) respectively. We tested our code on the least squarefree n with

k prime factors greater than 2j for 3 ≤ k ≤ 8 and 27 ≤ j ≤ 30. We also included a few

examples of Φn(z) of order 9. For all the cases chosen here, A(n) < 263. We also include,

in Table 5.3 timings for an implementation of the SPS algorithm that checks if integer

overflow occurs in the coefficient arithmetic. This overflow check was implemented using

inline assembly.

Table 5.5 gives timings of the big prime algorithm (Algorithm 4.1) on its intended

inputs: Φn(z) for which n = mp has a large prime divisor p. All the n in Table 5.5

were candidates for a flat Φn(z) of order 5. We used the SPS algorithm to compute dense

representations of Φm(z) and Ψm(z) by way of the SPS algorithm, and then converted these

polynomials to a sparse representation. As we knew these polynomials had small height,

we stored the coeffcients as 8-bit integers.

CHAPTER 5. TIMINGS AND RESULTS 73

Table 5.1: A comparison of Fourier-transform-related methods of computing Φn(z)

method

n alg. 2.1 CFT1 CFT2 CFT3 CFT4

171717 0.29 0.45 0.13 0.25 0.26

255255 0.31 0.52 0.13 0.24 0.25

279565 0.63 0.88 0.26 0.29 0.31

327845 0.63 0.88 0.29 0.29 0.35

707455 0.81 1.78 0.60 0.41 0.49

886445 1.70 3.60 1.18 0.69 0.97

983535 0.81 2.11 0.62 0.42 0.57

1181895 0.83 2.11 0.61 0.42 0.53

1752465 1.72 4.26 1.19 0.70 1.06

3949491 3.93 8.72 2.56 1.42 2.20

8070699 9.32 17.77 5.46 3.29 4.64

10163195 20.24 35.86 11.42 6.37 9.77

13441645 20.14 35.94 11.40 6.36 9.81

15069565 42.59 72.59 23.67 13.52 20.94

30489585 43.44 83.04 24.18 13.94 22.84

37495115 94.86 148.25 54.91 29.61 45.04

40324935 43.39 83.20 24.28 14.04 23.27

43730115 94.83 169.10 50.59 29.69 48.49

CHAPTER 5. TIMINGS AND RESULTS 74

Table 5.2: A comparison of times to compute Φn(z)

method

n Maple11 CFT3 bigprime64 SPS SPS2 SPS3 SPS4

171717 99.54 0.25 0.00 0.00 0.00 0.00 0.00

255255 315.17 0.24 0.08 0.00 0.00 0.00 0.00

279565 586.99 0.29 0.04 0.00 0.00 0.00 0.00

327845 1241.75 0.29 0.04 0.00 0.00 0.00 0.00

707455 - 0.41 0.11 0.00 0.00 0.00 0.00

886445 - 0.69 0.16 0.01 0.00 0.00 0.00

983535 - 0.42 0.44 0.01 0.00 0.00 0.00

1181895 - 0.42 0.66 0.01 0.00 0.00 0.00

1752465 - 0.70 0.67 0.02 0.01 0.00 0.00

3949491 - 1.42 4.72 0.06 0.03 0.01 0.01

8070699 - 3.29 12.33 0.16 0.08 0.02 0.02

10163195 - 6.37 43.17 0.26 0.13 0.04 0.03

13441645 - 6.36 43.58 0.35 0.18 0.05 0.05

15069565 - 13.52 49.73 0.40 0.21 0.06 0.05

30489585 - 13.94 390.77 1.11 0.58 0.16 0.13

37495115 - 29.61 201.61 1.07 0.57 0.15 0.14

40324935 - 14.04 393.81 1.48 0.76 0.19 0.16

43730115 - 29.69 579.30 1.72 0.95 0.23 0.19

CHAPTER 5. TIMINGS AND RESULTS 75

Table 5.3: Time to calculate Φn(z) using different versions of the SPS algorithm
order(Φn) n SPS* SPS SPS2 SPS3 SPS4

3

134217737 1.08 0.89 0.62 0.45 0.47

268435465 1.71 1.41 0.97 0.69 0.72

536870913 2.78 2.71 1.56 0.95 1.07

1073741829 5.56 4.72 3.25 1.92 2.20

4

134217733 2.13 1.58 0.87 0.55 0.61

268435461 2.49 1.80 0.94 0.47 0.54

536870915 5.97 4.48 2.39 1.42 1.48

1073741837 16.59 11.09 6.63 3.87 4.32

5

134217755 3.89 2.11 1.17 0.44 0.46

268435479 6.32 3.62 2.06 0.72 0.79

536870973 14.29 7.66 4.39 1.48 1.67

1073741835 22.53 16.07 7.96 2.32 2.69

6

134218455 5.30 2.53 1.50 0.30 0.33

268435695 11.46 5.69 3.24 0.66 0.71

536871237 24.86 13.65 7.01 1.54 1.71

1073742117 48.16 25.09 13.58 3.18 3.37

7

134232945 9.96 4.65 2.35 0.54 0.50

268453185 19.35 8.92 4.61 1.48 1.05

536872245 41.67 16.33 10.53 1.89 1.94

1073746605 96.13 45.80 25.72 4.23 4.27

8

140645505 16.58 8.10 4.39 1.60 1.13

269023755 37.25 17.19 8.85 2.84 2.05

536958345 79.90 35.40 18.90 6.00 3.79

1074800265 160.89 74.00 38.97 10.19 6.65

9
3234846615 700.58 437.94 246.75 82.00 49.89

4127218095 1042.55 566.40 316.39 96.69 59.29

* with overflow check

CHAPTER 5. TIMINGS AND RESULTS 76

Table 5.4: Time to calculate Ψn(z) using the SPS and recursive SPS algorithms
order(Φn) n SPS-Psi SPS4

3

134217737 0.04 0.00

268435465 0.30 0.00

536870913 1.15 0.02

1073741829 2.27 0.01

4

134217733 0.15 0.01

268435461 1.54 0.13

536870915 1.98 0.24

1073741837 2.29 0.10

5

134217755 1.10 0.09

268435479 2.72 0.09

536870973 5.25 0.17

1073741835 13.12 0.58

6

134218455 3.73 0.17

268435695 7.42 0.35

536871237 13.40 0.50

1073742117 27.58 1.09

7

134232945 8.18 0.34

268453185 17.32 0.82

536872245 32.79 1.17

1073746605 61.20 2.13

8

140645505 18.91 0.81

269023755 35.96 1.40

536958345 72.40 2.59

1074800265 144.81 4.60

CHAPTER 5. TIMINGS AND RESULTS 77

Table 5.5: Time to compute A(n) using the big prime algorithm with 8-bit integers and

sparse representations of Ψm(z) and Φm(z)

n factorization of n time to compute A(n)

746443728915 3 · 5 · 31 · 929 · 1727939 0.27

746444592885 3 · 5 · 31 · 929 · 1727941 0.29

1147113361785 3 · 5 · 29 · 1741 · 1514671 0.51

2576062979535 3 · 5 · 29 · 2609 · 2269829 0.77

7157926096635 3 · 5 · 29 · 4349 · 3783629 1.18

36654908721735 3 · 5 · 29 · 6959 · 12108659 1.90

44151142013985 3 · 5 · 59 · 5309 · 9396929 2.97

69589277763735 3 · 5 · 29 · 7829 · 20433689 2.13

98219673468435 3 · 5 · 29 · 6089 · 37082009 1.66

117714212390685 3 · 5 · 59 · 3539 · 37584179 1.97

313993273392885 3 · 5 · 59 · 7079 · 50119319 3.94

314037624291735 3 · 5 · 59 · 14159 · 25061429 7.88

457276728348885 3 · 5 · 89 · 8009 · 42768059 6.74

1349266102959585 3 · 5 · 59 · 8849 · 172290029 4.92

4990007947050435 3 · 5 · 149 · 22349 · 99900029 31.65

16628239064490285 3 · 5 · 179 · 10739 · 576684299 18.24

24901063029411285 3 · 5 · 89 · 37379 · 499009649 31.62

27949574611135785 3 · 5 · 89 · 26699 · 784149629 22.85

CHAPTER 5. TIMINGS AND RESULTS 78

5.2 Heights of cyclotomic polynomials

We have amassed a library of data concerning the heights and lengths of cyclotomic and

inverse cyclotomic polynomials. This library comprises A(n) and S(n) for squarefree, odd

n belonging to the following, (with the number of such n in "[]" brackets):

• n < 108 with three prime factors [13,337,070].

• n < 3 · 108 with four prime factors [18,561,168].

• n < 6.6 · 108 with five prime factors [10,305,306].

• n < 1.05 · 109 with six prime factors [2,056,713].

• n < 2.65 · 109 with seven prime factors [346,584].

• n < 6 · 109 with eight prime factors [19,086].

• n < 1.8 · 1010 with nine prime factors [341].

• n, a product of the least ten odd primes.

We have, in addition, computed the height and lengths of Ψn(z) for odd, squarefree n

amongst the following:

• n < 108 with three prime factors [13,337,070].

• n < 108 with four prime factors [5,744,524].

• n < 5 · 108 with five prime factors [7,511,764].

• n < 1.059 with six prime factors [2,056,713].

• n < 2.65 · 109 with seven prime factors [346,584].

• n < 6 · 109 with eight prime factors [19,086].

• n < 1.8 · 1010 with nine prime factors [341].

This data is available online at:

http://www.cecm.sfu.ca/~ada26/cyclotomic.

CHAPTER 5. TIMINGS AND RESULTS 79

5.2.1 Cyclotomic polynomials of very large height

Table A.1 shows the values A(n) for which A(n) > A(m) for all 1 ≤ m < n. This

table is not exhaustive for n > 5.4 · 1010. That is, there may exist n > 5.4 · 1010 for which

A(n) > A(m) for all m < n. Monagan [2] used the FFT-based Algorithm 2.1 to compute

the values A(n) appearing in Table A.1 for n ≤ 43730115 and for n = 1880394945 and

n = 2317696095. I used the sparse power series algorithm to show that A(1880394945)

and A(2317696095) were bigger than A(m) for all lessers integers m. The SPS algorithm,

moreover, was used to fill in the gap in the table for 43730115 < n < 1880394945. Lastly,

the disk-based methods of Section 4.3 were used to compute A(n) for n > 2317696095

appearing in the table.

To show that A(n) exceeds A(m) for m < n, we needed bounds on A(n). Bang [7]

showed that for n = pq, a product of two primes, that A(n) = 1; and for n = pqr, a

product of three primes, that A(n) < p. Bloom [9] later proved for n = pqrs, a product

of four primes with p < q < r < s, that A(n) < p(p − 1)(pq − 1). Bateman, Pomerance,

and Vaughan [8] proved a generalized albeit slightly weaker result: for n = p1p2 · · · pk, a

product of k distinct primes with p1 < p2 < · · · < pk,

A(n) ≤ A(p1p2 · · · pk−1)
k−2∏
j=0

S(p1p2 · · · pj) (5.1)

Using S(p1p2 · · · pj) ≤ A(p1p2 · · · pj) · p1p2 · · · pj and Bang’s results, they inductively

obtain that

A(p1p2 · · · pk) ≤
k−2∏
i=1

p2k−i−1−1
i (5.2)

For example, A(p1p2p3p4p5p6) ≤ p15
1 p

7
2p

3
3p

1
4. We use this bound to narrow what orders of

cyclotomic polynomials we need look at to search for values of A(n) for which A(n) >

A(m) for all m < n. For instance, given n = p1p2p3p4p5, a product of five primes where

p1 < p2 < p3 < p4 < p5, we have that p1 < n1/5, p1p2 < n2/5, and p1p2p3 < n3/5, which

gives us the bound

A(n) ≤ p7
1p

3
2p3 = (p1)5 · (p1p2)2 · (p1p2p3) < (n1/5)5 · (n2/5)2 · n3/5 = n11/2. (5.3)

CHAPTER 5. TIMINGS AND RESULTS 80

In general, for primes 2 < p1 < p2 < · · · < pk,

A(p1p2 · · · pk) ≤
k−2∏
i=1

n(2k−i−1−1)/k = n(2k−1)/k−1. (5.4)

This bound holds for all k > 0. This bound alone was not sufficient to allow us to produce

Table A.1. For instance, by (5.4), for Φn(z) of order 7, A(n) < n57/7. Thus, for instance,

if n is an odd squarefree product of seven primes for which n > A(99660932085)7/57 ≈
6.038 ·1010, thenA(n) is potentially larger thanA(99660932085) if we strictly consider the

bound (5.4). It is certainly intractible to compute all Φn(z) of order 7 for 6.038·1010 < n <

99660932085 ≈ 99.66 · 1010. It is a nontrivial problem just to generate all the squarefree,

odd products of seven primes n that appear in that range.

We can bound the heights of cyclotomic polynomials more accurately using that, given

n = mp for some prime p - m, Φn(z) = Φm(zp)Ψm(z)/(zm − 1). Certainly any term of

Φm(zp) multiplied by a term of Ψm(z) will have a coefficient with absolute value at most

A(m)Ā(m), where Ā(m) denotes the height of Ψm(z). Counting how many such products

of terms of Φm(zp) and Ψm(z) can have the same degree, we have that

|Φm(zp)Ψm(z)|1 ≤ A(m)Ā(m) · (bm−φ(m)
p
c+ 1) (5.5)

We can bound the coefficient of the term of degree l of Φn(z) = Φm(zp)Ψm(z)(1 + zm +

z2m + . . .) by

|Φm(zp)Ψm(z)|1(bl/mc+ 1).

Since the largest coefficient of Φn(z) must occur at some term of degree k ≤ φ(n)/2, we

have that

A(n) ≤ A(m)Ā(m) · (bm−φ(m)
p
c+ 1)(bφ(n)

2m
c+ 1). (5.6)

As (bm−φ(m)
p
c + 1) < m and (bφ(n)

2m
c + 1) < n/(2m) + 1 = p/2 + 1 < p, we can relax

(5.6) to

A(n) ≤ A(m)Ā(m)n (5.7)

Similarly, given Ψn(z) = Ψm(zp)Φm(z), we have

Ā(n) ≤ A(m)Ā(m)(bφ(m)
p
c+ 1) (5.8)

Here our library of cyclotomic polynomial data becomes useful. Having computed (at

the time of writing this), A(m) and Ā(m) for all m < 109, a squarefree, odd product

CHAPTER 5. TIMINGS AND RESULTS 81

of six primes, we find for such m, A(m)Ā(m) < 296. Thus if Φn(z) is of order 7 and

n < 99660932085, then if n has a prime divisor p for which m = n/p < 109, then

A(n) < 296n < 10133 < A(99660932085). In order to rule out the remaining Φn(z)

of order 7, we use Maple to generate all n, a squarefree, odd products of 7 primes, for

n < 99660932085. This can be done in a matter of minutes. There are 5,816 such n. For

each of these n, we bound A(n) using 5.7, for every p|n, applying the bound recursively

on m = n/p if necessary. For these remaining n, we computed that A(n) < 2120, which is

considerably less than A(99660932085) > 2291. We similarly were able to show that A(n),

for Φn(z) of orders 8 and 9, for n < 99660932085, is less than A(99660932085) as well.

Excluding n less than roughly 10000, those n for which we obtain the largest heights

also typically yield the largest lengths. Table A.1 also gives logn(A(n)), which was of

interest to us. Our results include the smallest n such that A(n) > n, A(n) > n2, A(n) >

n3, and A(n) > n4. Table A.2 (page 90) shows A(n) for n, a product of the s smallest

odd primes, for 1 ≤ s ≤ 9. Table A.7 (page 94) shows Ψn(z) of particularly large height.

Many of the integers n appearing in Table A.1 appear in A.7 as well.

The heights of cyclotomic polynomials show a somewhat uneven distribution. For

instance, we computed tens of examples of Φn(z) of order 8, n < 5 · 109, for which

2133 < A(n) < 2136; however, there does not exist Φn(z) of order 8, n < 5 · 109 for which

2103 < A(n) < 2133. Table A.3 lists the least n for which 2132 < A(n), and their prime fac-

torizations. Note that each of the n listed share 3, 5, 11, and 13 as prime divisors, and that

many of the n share other prime divisors. Using Algorithm 4.3, we found similar families

of Φn(z) of order 8 whose heights were greater than 2146 (Table A.4) and 2210 (Table A.5),

as well as a family of Φn(z) of order 9 and height exceeding 2212 (Table A.6).

5.2.2 Flat cyclotomic polynomials

If p is a prime, then Φp(z) = 1 + z + · · · + zp−1 is trivially flat. All cyclotomic

polynomials of order 2 are also flat. This is easy to verify using the following identity (see

Lenstra, [19]). Given primes p, q, let u, v be the integers such that 0 < u < p, 0 < v < q,

and uq + vp = pq + 1. Then

Φpq(z) =
u−1∑
i=0

v−1∑
j=0

ziq+jp −
p−1∑
i=u

q−1∑
j=v

ziq−jp−pq. (5.9)

CHAPTER 5. TIMINGS AND RESULTS 82

One can check that the degrees of the terms in each sum are distinct.

Cyclotomic polynomials of order three and greater are not, in general, flat.

Flat cyclotomic polynomials of order 3

There are 1, 566, 382 natural numbers n < 108 of the form n = pqr, a product of

three distinct odd primes, such that A(n) = 1. Bachman [6] proved that A(pqr) = 1 if

q ≡ −1 (mod p) and r ≡ −1 (mod pq). Kaplan [21] proved a more general result, that

A(pqr) = 1 when r ≡ ±1 (mod pq). For n = pqr < 108, we find that A(n) = 1 if

q ≡ 1 (mod p) and r ≡ ±2 (mod pq). The aforementioned families account for 414, 832

of these flat cyclotomic polynomials of order 3.

Flat cyclotomic polynomials of order 4

Noe [30] has calculated flat cyclotomic polynomials of order 4, for index n < 5 · 106.

We extend his result to n < 3 · 108. There are 1, 389 such n for which Φn(z) is flat, and

each of these n = p1p2p3p4 satisfies

p2 ≡ −1 (mod p1), p3 ≡ ±1 (mod p1p2), p4 ≡ ±1 (mod p1p2p3). (5.10)

In addition, any cyclotomic polynomial Φn(z) of order four, with n = p1p2p3p4 < 3 · 108

satisfying (5.10), is flat.

Are there flat cyclotomic polynomials of order 5 or greater?

For n < 6.5 · 108, there is no cyclotomic polynomial Φn(z) of order 5 with height less

than 4. Table A.8 shows the cyclotomic polynomials of order 5 and index n such that Φn(z)

is flatter than any cyclotomic polynomial of order 5 and smaller index, for n < 6.5 · 108.

In an attempt to find a flat cyclotomic polynomial of order 5, we computed A(n) for n, a

product of 5 distinct primes such that for p dividing n, n/p satisfies the set of congruences

(5.10). That is, we computed A(n) for n = p1p2p3p4p5 satisfying

p2 ≡ −1 (mod p1), p3 ≡ −1 (mod p1p2),

p4 ≡ ±1 (mod p1p2p3), p5 ≡ ±1 (mod p1p2p3p4).
(5.11)

We only consider n satisfying (5.11) for which, given (p1, p2, p3, p4), p5 is minimal for

its congruence class modulo p1p2p3p4, because of the following theorem from Kaplan:

CHAPTER 5. TIMINGS AND RESULTS 83

Theorem 5.1 (Kaplan, [22]). Let m > 0 and let p, q be primes such that m < p < q and

p ≡ q (mod m). Then A(mp) = A(mq).

We have calculated A(n) for all such n < 263. There are 5349 such n. Of these,

A(n) = 2 for 5212 cases and A(n) = 3 for the remaining ones. We list the smallest indices

n of this form for which we have computed A(n) = 2 in Table A.9. The data for all 5349

cases can be found at our website.

5.3 Extrema of the kth cyclotomic polynomial coefficient

Let Φn(z) =
∑
an(k)zk. Let a(k) = maxn |an(k)|, and let a∗(k) = maxn an(k) and

a∗(k) = minn an(k) be the one-sided bounds. We also define

a∗∗(k) = max
squarefree n

an(k) and a∗∗(k) = min
squarefree n

an(k).

It is clear that a∗∗(k) ≤ a∗(k) and a∗∗(k) ≥ a∗(k).

Bachman [4] showed that for a constant A0, and for sufficiently large k,

log a(k) = A0

√
k

(log k)1/4

(
1 +O

(
log log k√

log k

))
.

Gallot et al. [14] computed a(k) for k ≤ 30. We calculated a(k) for k ≤ 172 using

a brute-force approach we detail below. Noe [29] calculated a(k), for k ≤ 1000 using a

brute-force approach for k ≤ 128, and a superior, fast method due to Grytczuk and Tropak

[18] for larger k.

We verify his computation up to k ≤ 172, and for those k find the smallest index n

for which we obtain |an(k)| = a(k). It is immediate from the identity (3.8) that an(k)

depends on the divisors of n that are less than or equal to k. In particular, if p and q are

distinct primes that are greater than k, then an(k) = anpq(k) and anp(k) = anq(k). Thus to

calculate a∗∗(k), we need only consider an(k) for n of the form n = m and n = mq, where

m is a product of distinct primes less than or equal to k, and q is first prime greater than k.

We used this brute-force approach to calculate a∗∗(k) and a∗∗(k) for 0 ≤ k ≤ 172. This

entailed inspection of Φn(z) for every squarefree n that is a product of primes less than or

equal to 173, the 40th prime. There are 240 > 1012 such n. We used a variant of the SPS

CHAPTER 5. TIMINGS AND RESULTS 84

algorithm to obtain the first 211 terms of Φn(z); instead of truncating the power series of

Φn(z) to degree φ(n)/2, we truncate the power series to degree 210. For those applicable

n with more than roughly 15 distinct prime factors, it is not reasonable to iterate through

all the divisors d|n in search of those for which d ≤ 210. Rather, we iterate through the

divisors with the least number of prime divisors first. Any product of four odd primes will

exceed 210, thus we need only consider divisors that are products of three or less primes.

Moreover, it is easy to verify that for d = p1p2 ≤ 210, a product of two distinct odd primes

with p1 < p2, that p1 ≤ 11. Similarly, for odd d = p1p2p3 ≤ 210, an odd product of 3

primes satisfying p1 < p2 < p3, we have p1 = 3.

Given odd n, we use Lemma 1.20 to obtain the truncated power series of Φ2n(z). Since

Φ2n(z) = Φn(−z) for odd n > 1, it follows that

a2n(2k) = an(2k), and a2n(2k + 1) = −an(2k + 1).

Given a∗∗n (d), for 0 ≤ d ≤ k, one can obtain a∗(k) by inspection. Suppose that a∗(k) >

a∗∗(k), then there exists some non-squarefree n for which an(k) > a∗∗(k). Write n = md,

where m is the squarefree part of n. By Lemma 1.18, Φn(z) = Φm(zd), and so if d|k,

an(k) = am(k/d), otherwise an(k) = 0. Thus a∗(k) = maxd|k a
∗∗(k/d). Similarly,

a∗(k) = mind|k a∗∗(k/d). Typically we find that a∗(k) = a∗∗(k). k = 118 is the least

k > 0 such that a(k) > k, as a∗(118) = 124.

Another related problem is, given b ∈ Z, find minimal k such that there exists n such

that an(k) = b. We define

α(b) = min
an(k)=b

k (for b ∈ Z) and

ᾱ(b) = min
|an(k)|=b

k = min(α(b), α(−b)) (for b ≥ 0),

where the minima are taken over all pairs (n, k) such that n > 0, k ≥ 0.

In our computation of a(k) we have simultaneously computed α(b), for −927 ≤ b ≤
927, and the smallest n for which an(α(b)) = b. Again by Lemma 1.18, we need only

consider squarefree n to compute α(b). Suppose b 6= 0 and anp2(k) = b. Then, as anp2(k) 6=
0, p must divide k by Lemma 1.18, and anp(k/p) = b. Thus α(b) ≤ k/p < k. Given that

we know the maxima and minima of an(k) for fixed k ≤ 172, if the minimum k we have

found for which ∃n 3 an(k) = b is less than or equal to 172, then we know we have

CHAPTER 5. TIMINGS AND RESULTS 85

the exact value of α(b). The same holds if the minimum such k equals 173; however, we

cannot be certain that we have the smallest n for which an(173) = b.

Table A.10 shows ᾱ(b) and least n such that |an(ᾱ(b))| = b for select values of b.

We extend results by Bosma [10], and by Grytczuk and Tropak [18]. Grytczuk and Tropak

found results for |b| ≤ 10. Bosma calculated results for |b| ≤ 50. We have in fact calculated

the smallest k such that an(k) = b for −927 ≤ b ≤ 927. All of these results can be found

at our website.

5.4 A look at the coefficients of Φn(z)

We include here plots of Φn(z) for n = 4849845 (Figure 5.1), the product of the first 7

odd primes; n = 40324935 (Figure 5.2), a product of seven primes, for which Φn(z) has

large height; n = 1181895 (Figure 5.3), the least n such that A(n) > n; and n = 43730115

(Figure 5.4), the least n for which A(n) > n2. The plots were produced using Maple. We

only plot a subset of the coefficients of Φn(z). We randomly chose a set of roughly 25,000

terms of Φn(z) of degree less than φ(n)/2 and then used the palindromic property to extend

the set to include higher-degree terms as well.

It appears that for some values of n, the coefficient plots appear "noisy," whereas, at

least in the cases where for Φn(z) of particularly large height, the coefficients exhibit a

general structure. We see, in the plot of the coefficients of Φ4849845(z) that the coefficients

form poorly-defined bands. In the the other plots these bands are much more well-defined.

Each of the twelve bands in Figure 5.2 contains terms whose degree belongs to a particular

congruence class modulo 12. Similarly, the plots of Φ1181895(z) and Φ43730115(z) have eight

bands, each of which comprise terms of degree belonging to one congruence class modulo

8. This suggests, for instance, that the height of (1− z8)Φ43730115(z) could be appreciably

less than that of Φ43730115(z). Indeed, we computed the height of (1 − z8)Φ43730115(z)

to be 1, 544, 959, 736, 747, which is more than a factor of 105 less than A(43730115) =

862, 550, 638, 890, 874, 931. We note, moreover, that the plots of Φn(z) for n = 1181895

and n = 43730115 = 1181895 · 37 appear somewhat similar.

CHAPTER 5. TIMINGS AND RESULTS 86

Figure 5.1: The coefficients of Φn(z) =
∑φ(n)

k=0 an(k)zk, for n = 4849845

Figure 5.2: The coefficients of Φn(z) =
∑φ(n)

k=0 an(k)zk, for n = 40324935

CHAPTER 5. TIMINGS AND RESULTS 87

Figure 5.3: The coefficients of Φn(z) =
∑φ(n)

k=0 an(k)zk, for n = 1181895

Figure 5.4: The coefficients of Φn(z) =
∑φ(n)

k=0 an(k)zk, for n = 43730115

Appendix A

Data

Table A.1: n such that A(n) > A(m) for m < n

n A(n) dlog2A(n)e lognA(n)

1 1 0 -

105 2 1 0.14894

385 3 2 0.18454

1365 4 2 0.19204

1785 5 3 0.21496

2805 6 3 0.22569

3135 7 3 0.24172

6545 9 4 0.25007

10465 14 4 0.28513

11305 23 5 0.33596

17255 25 5 0.32994

20615 27 5 0.33178

26565 59 6 0.40026

40755 359 9 0.55423

106743 397 9 0.51683

171717 434 9 0.50384

255255 532 10 0.50415

Continued on Next Page. . .

88

APPENDIX A. DATA 89

Table A.1: n such that A(n) > A(m) for m < n – Continued

n A(n) dlog2A(n)e lognA(n)

279565 1182 11 0.56415

327845 31010 14 0.81432

707455 35111 15 0.77704

886445 44125 15 0.78093

983535 59815 15 0.79709

1181895 14102773 24 1.17731

1752465 14703509 24 1.14795

3949491 56938657 26 1.17568

8070699 74989473 27 1.14016

10163195 1376877780831 41 1.73239

13441645 1475674234751 41 1.70710

15069565 1666495909761 41 1.70265

30489585 2201904353336 42 1.64919

37495115 2286541988726 42 1.63180

40324935 2699208408726 42 1.63449

43730115 862550638890874931 60 2.34738

169828113 31484567640915734941 65 2.36915

185626077 42337944402802720258 66 2.37364

416690995 80103182105128365570406901971 97 3.35316

437017385 86711753206816303264095919005 97 3.34912

712407185 111859370951526698803198257925 97 3.28132

1250072985 137565800042644454188531306886 97 3.20311

1311052155 192892314415997583551731009410 98 3.21195

1880394945 64540997036010911566826446181523888971563 136 4.40034

2317696095 67075962666923019823602030663153118803367 136 4.35946

7981921311 454 149 4.50989

336118538773092209637015999240106863272841

12436947159 633 149 4.43815

620313483920410424364276653674197598804995

Continued on Next Page. . .

APPENDIX A. DATA 90

Table A.1: n such that A(n) > A(m) for m < n – Continued

n A(n) dlog2A(n)e lognA(n)

17917712785 8103387856491540894577 213 6.23300

281647309209796702857224359740676324982827

22084622735 9492813291464815330681 213 6.18492

848221029648678194321867848264652910092651

53753138355 18502043917986583739321 214 5.98926

241526591953999236378383078987405925610051

There may exist other values 5.4 · 1010 < n < 99660932085 not in this table for which

A(m) < A(n) for all m < n.

66253868205 **18612363044507322761861 214 5.93924

417215546362953753512534494470558327433458

87840494385 **29548576895748088003903 215 5.89111

000673018543140934099969472801769477958727

99660932085 6126 292 7.98172

720871740783667089620232439526012472525473

338153078678961755149378773915536447185370

**We have yet to verify that there does not exist m < n for which A(m) ≥ A(n)

Table A.2: A(n) for n a product of the k least odd primes
k n A(n) lognA(n)

1 3 1 0

2 15 1 0

3 105 2 0.14894

4 1155 3 0.15579

5 15015 23 0.32604

6 255255 532 0.50415

7 4849845 *669606 0.87138

8 111546435 † 8161018310 1.23166

9 3234846615 † 2888582082500892851 1.94122

10 100280245065 38012794328400447168054955602695764 3.05238

*(Koshiba, 2002 [23]), † (Monagan, [2])

APPENDIX A. DATA 91

Table A.3: The least n for which A(n) > 2133

n factorization of n log2A(n)

∗ † 1880394945 3 · 5 · 11 · 13 · 19 · 29 · 37 · 43 135.56734

∗ ‡ 2317696095 3 · 5 · 11 · 13 · 19 · 29 · 37 · 53 135.62292

∗2580076785 3 · 5 · 11 · 13 · 19 · 29 · 37 · 59 135.02048

∗2667537015 3 · 5 · 11 · 13 · 19 · 29 · 37 · 61 135.22702

† ‡ 2693538705 3 · 5 · 11 · 13 · 19 · 29 · 43 · 53 134.92366

∗2929917705 3 · 5 · 11 · 13 · 19 · 29 · 37 · 67 134.84010

†2998467615 3 · 5 · 11 · 13 · 19 · 29 · 43 · 59 135.21922

†3100110585 3 · 5 · 11 · 13 · 19 · 29 · 43 · 61 134.76555

†3405039495 3 · 5 · 11 · 13 · 19 · 29 · 43 · 67 134.92482

3436583865 3 · 5 · 11 · 13 · 19 · 37 · 43 · 53 134.43396

∗3629599545 3 · 5 · 11 · 13 · 19 · 29 · 37 · 83 134.51619

‡3695785665 3 · 5 · 11 · 13 · 19 · 29 · 53 · 59 134.33890

‡3821066535 3 · 5 · 11 · 13 · 19 · 29 · 53 · 61 134.51534

3825631095 3 · 5 · 11 · 13 · 19 · 37 · 43 · 59 134.87970

3955313505 3 · 5 · 11 · 13 · 19 · 37 · 43 · 61 134.34529

‡4196909145 3 · 5 · 11 · 13 · 19 · 29 · 53 · 67 134.15068

†4218183255 3 · 5 · 11 · 13 · 19 · 29 · 43 · 83 134.55022

4253640105 3 · 5 · 11 · 13 · 19 · 29 · 59 · 61 134.18318

4344360735 3 · 5 · 11 · 13 · 19 · 37 · 43 · 67 134.57789

∗4416741615 3 · 5 · 11 · 13 · 19 · 29 · 37 · 101 134.48033

4672030935 3 · 5 · 11 · 13 · 19 · 29 · 59 · 67 134.06365

∗4679122305 3 · 5 · 11 · 13 · 19 · 29 · 37 · 107 134.18126

4715312745 3 · 5 · 11 · 13 · 19 · 37 · 53 · 59 133.80302

∗4766582535 3 · 5 · 11 · 13 · 19 · 29 · 37 · 109 134.32245

4830404865 3 · 5 · 11 · 13 · 19 · 29 · 61 · 67 133.99686

4875153855 3 · 5 · 11 · 13 · 19 · 37 · 53 · 61 134.43302

†5132969985 3 · 5 · 11 · 13 · 19 · 29 · 43 · 101 133.93216

‡5199156105 3 · 5 · 11 · 13 · 19 · 29 · 53 · 83 133.81052

5245312215 3 · 5 · 11 · 13 · 29 · 37 · 43 · 53 134.50069

*multiple of 43730115, †multiple of 50821485, ‡multiple of 62640435

APPENDIX A. DATA 92

Table A.4: The least n for which A(n) > 2146

n factorization of n log2A(n)

∗ † 7981921311 3 · 7 · 13 · 17 · 23 · 37 · 43 · 47 148.34860

∗ ‡ 9000889989 3 · 7 · 13 · 17 · 23 · 37 · 43 · 53 148.30726

† ‡ 9838182081 3 · 7 · 13 · 17 · 23 · 37 · 47 · 53 148.04066

∗11378483571 3 · 7 · 13 · 17 · 23 · 37 · 43 · 67 147.56776

11433562959 3 · 7 · 13 · 17 · 23 · 43 · 47 · 53 147.98987

∗12397452249 3 · 7 · 13 · 17 · 23 · 37 · 43 · 73 147.59878

†12436947159 3 · 7 · 13 · 17 · 23 · 37 · 47 · 67 148.82845

†13550703621 3 · 7 · 13 · 17 · 23 · 37 · 47 · 73 147.62967

‡14024642541 3 · 7 · 13 · 17 · 23 · 37 · 53 · 67 147.21488

∗14095733379 3 · 7 · 13 · 17 · 23 · 37 · 43 · 83 147.40376

14453749401 3 · 7 · 13 · 17 · 23 · 43 · 47 · 67 147.01078

‡15280580679 3 · 7 · 13 · 17 · 23 · 37 · 53 · 73 147.05584

†15406964391 3 · 7 · 13 · 17 · 23 · 37 · 47 · 83 147.46299

15748115019 3 · 7 · 13 · 17 · 23 · 43 · 47 · 73 147.24087

16298908899 3 · 7 · 13 · 17 · 23 · 43 · 53 · 67 147.58593

∗16473326961 3 · 7 · 13 · 17 · 23 · 37 · 43 · 97 147.04948

‡17373810909 3 · 7 · 13 · 17 · 23 · 37 · 53 · 83 146.91472

∗17492295639 3 · 7 · 13 · 17 · 23 · 37 · 43 · 103 147.04717

17758512681 3 · 7 · 13 · 17 · 23 · 43 · 53 · 73 148.58602

17815086471 3 · 7 · 13 · 17 · 23 · 47 · 53 · 67 146.67615

17905391049 3 · 7 · 13 · 17 · 23 · 43 · 47 · 83 147.04902

*multiple of 169828113, †multiple of 185626077, ‡multiple of 209323023

APPENDIX A. DATA 93

Table A.5: The least n of order 8 for which A(n) > 2210

n factorization of n log2A(n)

17917712785 5 · 7 · 17 · 19 · 29 · 31 · 41 · 43 212.30000

22084622735 5 · 7 · 17 · 19 · 29 · 31 · 41 · 53 212.52831

23161921405 5 · 7 · 17 · 19 · 29 · 31 · 43 · 53 211.82151

27918296665 5 · 7 · 17 · 19 · 29 · 31 · 41 · 67 211.48422

29280164795 5 · 7 · 17 · 19 · 29 · 31 · 43 · 67 212.13758

30633508955 5 · 7 · 17 · 19 · 29 · 41 · 43 · 53 212.12651

32746164745 5 · 7 · 17 · 19 · 31 · 41 · 43 · 53 211.15845

32918588605 5 · 7 · 17 · 19 · 29 · 31 · 41 · 79 211.26572

34524373415 5 · 7 · 17 · 19 · 29 · 31 · 43 · 79 211.73429

36089505445 5 · 7 · 17 · 19 · 29 · 31 · 53 · 67 210.93612

37085498555 5 · 7 · 17 · 19 · 29 · 31 · 41 · 89 211.25376

38725379245 5 · 7 · 17 · 19 · 29 · 41 · 43 · 67 210.78141

38894547265 5 · 7 · 17 · 19 · 29 · 31 · 43 · 89 211.15920

41396095055 5 · 7 · 17 · 19 · 31 · 41 · 43 · 67 211.72594

42085790495 5 · 7 · 17 · 19 · 29 · 31 · 41 · 101 211.07185

42553297465 5 · 7 · 17 · 19 · 29 · 31 · 53 · 79 210.71104

42919172485 5 · 7 · 17 · 19 · 29 · 31 · 41 · 103 210.87071

44138755885 5 · 7 · 17 · 19 · 29 · 31 · 43 · 101 210.97029

45012790655 5 · 7 · 17 · 19 · 29 · 31 · 43 · 103 211.26476

45661268065 5 · 7 · 17 · 19 · 29 · 41 · 43 · 79 210.63322

Table A.6: The least n of order 9 for which A(n) > 2212

n factorization of n log2A(n)

53753138355 3 · 5 · 7 · 17 · 19 · 29 · 31 · 41 · 43 213.49108

66253868205 3 · 5 · 7 · 17 · 19 · 29 · 31 · 41 · 53 213.49966

69485764215 3 · 5 · 7 · 17 · 19 · 29 · 31 · 43 · 53 213.20507

83754889995 3 · 5 · 7 · 17 · 19 · 29 · 31 · 41 · 67 212.90437

87840494385 3 · 5 · 7 · 17 · 19 · 29 · 31 · 43 · 67 214.16649

APPENDIX A. DATA 94

Table A.7: n such that Ā(n) = |Ψn(z)|1 > Ā(m) = |Ψm(z)|1 for all m < n

n Ā(n) logn Ā(n)

*1 1 -

561 2 0.109507

1155 3 0.155791

2145 4 0.180721

3795 5 0.195286

5005 7 0.228442

8645 9 0.242393

11305 21 0.326210

31395 26 0.314658

33495 38 0.349125

*40755 202 0.500057

*106743 341 0.503696

267995 530 0.501881

285285 836 0.535666

*327845 23247 0.791630

*983535 25685 0.735831

*1181895 9166109 1.146496

*3949491 43061336 1.157286

8273265 46017937 1.107731

*10163195 1085807040539 1.717668

*40324935 1187030460179 1.587581

*43730115 439343761754389367 2.309032

*169828113 24011100366340974489 2.354847

*416690995 53280749421315341163554911273 3.332621

*1250072985 98339426540513481131872876038 3.187087

*1880394945 32415199783443679596598721580288327891505 4.368089

*n also appears in Table A.1

APPENDIX A. DATA 95

Table A.8: Φn(z) of order 5 that are flatter than all Φm(z) of order 5 for m < n

n factorization of n A(n)

15015 3 · 5 · 7 · 11 · 13 23

23205 3 · 5 · 7 · 13 · 17 21

31395 3 · 5 · 7 · 13 · 23 15

574665 3 · 5 · 7 · 13 · 421 14

774795 3 · 5 · 7 · 47 · 157 13

1331715 3 · 5 · 7 · 11 · 1153 12

2666895 3 · 5 · 7 · 11 · 2309 9

3725085 3 · 5 · 7 · 13 · 2729 7

40765935 3 · 5 · 7 · 43 · 9029 6

48713385 3 · 5 · 7 · 47 · 9871 5

76762245 3 · 5 · 7 · 59 · 12391 4

APPENDIX A. DATA 96

Table A.9: Φn(z) of order 5 such that A(n) = 2 for select n
n factorization of n

1147113361785 3 · 5 · 29 · 1741 · 1514671

2294224451565 3 · 5 · 29 · 1741 · 3029339

2576062979535 3 · 5 · 29 · 2609 · 2269829

7157926096635 3 · 5 · 29 · 4349 · 3783629

7157929880265 3 · 5 · 29 · 4349 · 3783631

14031384951165 3 · 5 · 29 · 6089 · 5297431

15456385821615 3 · 5 · 29 · 2609 · 13618981

36654908721735 3 · 5 · 29 · 6959 · 12108659

39282436838685 3 · 5 · 59 · 3541 · 12535141

44151142013985 3 · 5 · 59 · 5309 · 9396929

44151151410915 3 · 5 · 59 · 5309 · 9396931

46392857518515 3 · 5 · 29 · 7829 · 13622461

50859294230685 3 · 5 · 89 · 2671 · 14263141

55013978795385 3 · 5 · 29 · 6961 · 18168211

57276587912835 3 · 5 · 29 · 8699 · 15136259

64441098282135 3 · 5 · 29 · 13049 · 11352629

64441109634765 3 · 5 · 29 · 13049 · 11352631

69589277763735 3 · 5 · 29 · 7829 · 20433689

73341424450815 3 · 5 · 29 · 13921 · 12111269

85914891329415 3 · 5 · 29 · 8699 · 22704391

91637282399415 3 · 5 · 29 · 6959 · 30271651

96836813004615 3 · 5 · 29 · 11311 · 19681139

98219673468435 3 · 5 · 29 · 6089 · 37082009

98284212060735 3 · 5 · 29 · 6091 · 37094191

103395514616565 3 · 5 · 29 · 16529 · 14380231

117714212390685 3 · 5 · 59 · 3539 · 37584179

126365409450465 3 · 5 · 29 · 6091 · 47692529

128365940429115 3 · 5 · 29 · 6961 · 42392489

138626726606985 3 · 5 · 29 · 19139 · 16650929

193622281319715 3 · 5 · 29 · 22619 · 19678531

APPENDIX A. DATA 97

Table A.10: ᾱ(b), the least k for which b occurs as |an(k)|; and the least n for which

|an
(
ᾱ(k)

)
| = b, for select b ≤ 927

b ᾱ(b) n

1 0 1

2 7 105

3 17 323323

4 23 1062347

5 30 37182145

10 52 30704573184285

20 70 152125131763605

30 82 307444891294245705

40 89 1352450076803386856295

50 95 3929160775540133527939545

100 112 23806785138997669045785703155

150 123 11992411764462614086353260819346129198105

200 132 162938425981534060763635083977029188109663335

250 140 39578916714398066291594920195861812535

300 143 2326975571029326286598990252532796074781464457755

350 149 15701405093677855556359423959350086682055

400 153 5412131370764127757636390017210695

450 156 5164937585070868627377648466117945

500 158 5921057432644596149106845426292101971454108035

550 160 6107547430523166106559029534206813844570772855

600 163 50967866897743398269290966947741571435

650 165 6624549404839993711376965674960470522517962455

700 167 41211036991280460777846257111155083155

750 168 6450026725692689439637105956685700602210255445

800 170 523848308647668419809505921108741216619845

850 172 478027623633935332367679979002868198488865

900 173 *480644324429304014052020896687401734836765

927 173 *1269140374116844321897058519227927779943780451272073121291475705

*There may exist smaller n for which |an(k)| = b.

Appendix B

Source code

B.1 A C implementation of SPS and SPS-Psi
#define Long long long int

/* SPS

Input:

-n>0, a squarefree integer with at most 10 prime divisors

-phi_n = phi(n)

-omega, the number of prime divisors of n

-P, an array containing the prime divisors of n

-lambda, a boolean

-A, an array of integers

Output:

-if lambda is nonzero, procedure SPS writes the first half of the

coefficients of Phi_n(z), the nth cyclotomic polynomial to array

A, else SPS writes the first half of the coefficients of

Psi_n(z), the nth inverse cyclotomic polynomial to A.

*/

Long SPS(Long n, Long phi_n, char omega, Long P[10], char l, Long *A){

Long d,i,j,k,D; char isnumer;

/* D is the degree bound */

D = lambda ? phi_n/2 : (n-phi_n)/2;

/* Omega is the number of d|n we must iterate through */

Omega = (1<<omega)-1;

98

APPENDIX B. SOURCE CODE 99

for(i=0; i<Omega; i++){

d = 1; k = i;

if(l){ isnumer = 1; } else { isnumer = 0; }

/* generate the divisor d|n*/

for(j=0; j<omega; j++){

if(k % 2) d *= P[j]; else isnumer = !isnumer; k /= 2; }

/* multiply by 1-x^d */

if (isnumer) for(k=deg; k>=d; k--) A[k] -= A[k-d];

/* divide by 1-x^d */

else for(k=d; k<=deg; k++) A[k] += A[k-d];

}

}

B.2 A C implementation of SPS4
#define Long long long int

/* SPS4

Input:

-m,e : squarefree integers

-phi_m = phi(m)

-lambda : a boolean

-Df, degree of input polynomial f

-D, the least degree of a polynomial we know will occur at a later

stage of computation

-A, an array containing the terms of f up to degree

floor(min(Df,D)/2)

-P, a list of distinct primes, in increasing order, that contains

all the prime divisors of m

-mark, an integer whose ith bit is 1 if P[i] divides m

Output:

-If lambda is nonzero, SPS4 computes the terms of g=f*Phi_m(z^e),

where Phi_m is the mth cyclotomic polynomial, up to degree

floor(min(Dg,D)/2), where Dg is the degree of g. The

computed coefficients of g are written to array A.

-If lambda=0, SPS4 instead computes the terms of g=Psi_m(z^e),

where Psi_m is the mth inverse cyclotomic polynomial.

-SPS4 returns Dg, the degree of g */

APPENDIX B. SOURCE CODE 100

Long SPS4(Long m, Long phi_m, Long e, char lambda, Long Df, Long D,

Long * A, Long P[10], int mark){

Long i,k,d;

Long Dg = Df+e*(lambda ? phi_m : m - phi_m);

Long D1 = Dg < D ? Dg : D;

Long e1 = e, m1 = m, mark1=mark;

for(k=mark,i=0; k>0; k=k>>1,i++){

if(k&1){

m1/=P[i]; phi_m/=P[i]-1; mark1 -= (1<<i);

if(m1>1 || !lambda){

Df = SPS4(m1, phi_m, e1, !lambda, Df, D1, A, P, mark1); }

e1 *= P[i];

}}

if (!lambda) return Dg;

/* Generate higher-degree terms */

Long halfDf = Df>>1; D1=D1>>1;

k=halfDf+1; i=Df-halfDf-1;

if(Df & 1){ while(i>=0 && k<=D1){ A[k] = -A[i]; i--; k++; }}

else { while(i>=0 && k<=D1){ A[k] = A[i]; i--; k++;}}

/* multiply by 1/(1-z^(me/p)) for p|m */

for(k=0, m=m*e; mark>0; k++,mark=mark>>1){

if(mark & 1){ d=m/P[k];

for(i=d; i<=D1; i++){ A[i] = A[i]+A[i-d]; }

}}

/* multiply by 1-z^(me) */

for(i=D1; i>=m; i--){ A[i] = A[i] - A[i-m]; }

return Dg;

}

Bibliography

[1] Intel 64 and IA-32 Architectures Optimization Reference Manual. available online at

http://www.intel.com/Assets/PDF/manual/248966.pdf.

[2] Andrew Arnold and Michael Monagan. Calculating cyclotomic polynomials. To

appear in Mathematics of Computation. Available at http://www.cecm.sfu.

ca/~ada26/cyclotomic/PDFs/CalcCycloPolysApr2010.pdf.

[3] Andrew Arnold and Michael Monagan. A high-performance algorithm for calculat-

ing cyclotomic polynomials. In PASCO ’10: Proceedings of the 4th International

Workshop on Parallel and Symbolic Computation, pages 112–120, New York, NY,

USA, 2010. ACM.

[4] G. Bachman. On the coefficients of cyclotomic polynomials. Mem. Amer. Math. Soc.,

106(510):vi+80, 1993.

[5] G. Bachman. Flat cyclotomic polynomials of order three. Bull. London Math. Soc.,

38(1):53–60, 2006.

[6] G. Bachman. Flat cyclotomic polynomials of order three. Bull. London Math. Soc.,

38(1):53–60, 2006.

[7] A. S. Bang. Om ligningen φn(x) = 0. Nyt Tidsskrift for Mathematik, (6):6–12, 1895.

[8] P.T. Bateman, C. Pomerance, and R.C. Vaughan. On the size of the coefficients of

the cyclotomic polynomial. In Topics in classical number theory, Vol. I, II (Budapest,

1981), volume 34 of Colloq. Math. Soc. János Bolyai, pages 171–202. North-Holland,

Amsterdam, 1984.

101

BIBLIOGRAPHY 102

[9] D.M. Bloom. On the coefficients of the cyclotomic polynomials. Amer. Math.

Monthly, 75:372–377, 1968.

[10] W. Bosma. Computation of cyclotomic polynomials with Magma. In Computational

algebra and number theory (Sydney, 1992), volume 325 of Math. Appl., pages 213–

225. Kluwer Acad. Publ., Dordrecht, 1995.

[11] Alina Cojocaru, J W Bruce, and Ram Murty. An Introduction to Sieve Methods and

Their Applications; electronic version. Cambridge Univ. Press, Cambridge, 2005.

[12] S. Elder. Flat cyclotomic polynomials : A new approach.

[13] P. Erdős and R.C. Vaughan. On the coefficients of the cyclotomic polynomial. Bull.

Amer. Math. Soc., 52:179–184, 1946.

[14] Y. Gallot, P. Moree, and H. Hommerson. Value distribution of cyclotomic polynomial

coefficients. Available at http://arxiv.org/abs/0803.2483.

[15] D. J. H. Garling. A course in Galois theory. Cambridge University Press, Cambridge,

1986.

[16] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer

Academic Publishers, Boston, 1992.

[17] Torbjorn Granlund and Peter L. Montgomery. Division by invariant integers using

multiplication. In In Proceedings of the SIGPLAN ’94 Conference on Programming

Language Design and Implementation, pages 61–72, 1994.

[18] A. Grytczuk and B. Tropak. A numerical method for the determination of the cyclo-

tomic polynomial coefficients. In Computational number theory (Debrecen, 1989),

pages 15–19. de Gruyter, Berlin, 1991.

[19] Jr H.W. Lenstra. Vanishing sums of roots of unity. In Proceedings, Bicentennial

Congress Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, volume

101 of Math. Centre Tracts, pages 249–268, Amsterdam, 1979. Math. Centrum.

[20] N. Kaplan. Personal correspondence.

BIBLIOGRAPHY 103

[21] N. Kaplan. Flat cyclotomic polynomials of order three. J. Number Theory,

127(1):118–126, 2007.

[22] Nathan Kaplan. Flat cyclotomic polynomials of order four and higher. Integers,

10:A30, 357–363, 2010.

[23] Y. Koshiba. On the calculations of the coefficients of the cyclotomic polynomials.

Rep. Fac. Sci. Kagoshima Univ., (31):31–44, 1998.

[24] Y. Koshiba. On the calculations of the coefficients of the cyclotomic polynomials. II.

Rep. Fac. Sci. Kagoshima Univ., (33):55–59, 2000.

[25] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag,

New York, third edition, 2002.

[26] Niels Moller and Torbjorn Granlund. Improved division by invariant integers. IEEE

Transactions on Computers, 99(PrePrints), 2010.

[27] Pieter Moree. Inverse cyclotomic polynomials. J. Number Theory, 129(3):667–680,

2009.

[28] T.D. Noe. Personal correspondence.

[29] T.D. Noe. Maximum possible magnitude of the xn coefficient of a cyclotomic poly-

nomial. Sequence A138474 in N. J. A. Sloane (Ed.), The On-Line Encyclopedia of

Integer Sequences (2008), published electronically at http://www.research.

att.com/~njas/sequences/A138474.

[30] T.D. Noe. Numbers n such that phi(n,x) is a flat cyclotomic polynomial of order four.

Sequence A117318 in N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer

Sequences (2008), http://www.research.att.com/~njas/sequences/

A117318.

[31] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge

University Press, Cambridge, second edition, 2003.

