
Solving parametric systems using Dixon
resultants and sparse interpolation tools

by

Ayoola Isaac Jinadu

M.Sc., University of Saskatchewan, 2017
B.Sc., Federal University of Agriculture, Abeokuta, 2012

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Mathematics

Faculty of Science

© Ayoola Isaac Jinadu 2023
SIMON FRASER UNIVERSITY

Summer 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Ayoola Isaac Jinadu

Degree: Doctor of Philosophy

Thesis title: Solving parametric systems using Dixon resultants
and sparse interpolation tools

Examining Committee: Chair: Luis Goddyn
Professor, Mathematics

Michael Monagan
Supervisor
Professor

Petr Lisoněk
Committee Member
Professor

Nils Bruin
Internal Examiner
Professor

George Labahn
External Examiner
Professor
David R. Cheriton School of Computer Science
Department of Mathematics
University of Waterloo

Date Defended: August 23, 2023

ii

Abstract

Many elimination techniques such as Gröbner bases and Triangular sets have been employed
to address the growing demand for solving parametric polynomial systems in practice.
However, experiments have shown that these elimination methods when used in computer
algebra systems such as Maple and Magma often fail on systems that have many parameters;
they can take a very long time to execute or run out of memory.

To address this problem, this thesis presents a new interpolation algorithm for solving
parametric polynomial systems (systems of n polynomial equations involving n variables
and m parameters with rational coefficients) over Q using Dixon resultants. The Dixon
resultant R of a parametric polynomial system is a multiple of the unique monic generator
of an elimination ideal of a polynomial system, and it can be expressed as the determinant
of a matrix M of polynomial entries called the Dixon matrix.

Given a black box for the Dixon resultant R = det(M) (we evaluate the Dixon matrixM at
integer points modulo primes and compute determinant of integer matrices modulo primes),
we present a new Dixon resultant algorithm that interpolates the monic square-free factors
Rj of the Dixon resultant R from monic univariate polynomial images of R.

This new Dixon resultant algorithm uses our newly developed sparse multivariate rational
function interpolation method over Q to interpolate the rational function coefficients of the
monic square-free factors modulo primes. It further uses rational number reconstruction
and Chinese remaindering to recover the rational coefficients of the Rj ’s.

We have made a hybrid Maple and C implementation of our Dixon resultant algorithm.
Our benchmarks show that our new Dixon resultant algorithm can solve many parametric
polynomial systems that other algorithms for computing R are unable to solve. However,
the new Dixon resultant algorithm may fail to produce an answer, and even when it is
successful, the returned answer might be wrong with provably low probability. Consequently,
we identify and classify all the causes of failure in our new algorithm, and we give a detailed
failure probability analysis and complexity analysis of our new Dixon resultant algorithm.

Furthermore, we consider another related problem. Let Ax = b be a parametric linear
system such that the coefficient matrix A is of full rank. In general, the solutions xi will be
rational functions in the parameters. We present a new black box algorithm for interpolating

iii

the entries xi using our new sparse multivariate rational function interpolation method.
We present timing results comparing our hybrid Maple and C implementation of our new
algorithm with four other algorithms in Maple for solving Ax = b. A failure probability
analysis and complexity analysis for our new algorithm is also presented.

Keywords: Parametric Polynomial systems; Parametric Linear Systems; Dixon Resultants;
Sparse Multivariate Rational Function Interpolation; Black Box; Kronecker Substitution;
Failure Probability.

iv

Acknowledgements

I am incredibly grateful to God who has made the completion of this thesis possible. Thank
you Lord for answering me every time I call upon you. I am nothing without your help.

To my beautiful wife Adewunmi and my amazing daughter Oreoluwa, your unwavering
support, kindness, patience and love have been the pillars of strength that sustained me
during the challenging times. Your belief in my abilities and the countless words of encour-
agement have kept me motivated throughout my PhD program. Thank you guys for being
so patient with me for many countless hours that I spent away while working on this thesis.

Many thanks to my wonderful supervisor Dr. Michael Monagan for his invaluable guid-
ance throughout this PhD journey. Your expertise, technical help and constructive feedback
have been instrumental in shaping the direction and quality of this thesis.

I would like to thank my PhD thesis committee members: Dr. George Labahn, Dr. Petr
Lisonek, and Dr. Nils Bruin, for being present at my thesis defense and providing me with
useful feedback.

I would like to thank RCCG Grace Chapel (Surrey Central CFC) for their prayers and
words of encouragement during our CFC meetings.

Finally, I would like to thank my advisor Dr. Michael Monagan and the Department of
Mathematics at SFU for providing me with travel funding which gave me the opportunity
to present my PhD work at many conferences (France, Turkey and Cuba).

v

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements v

Table of Contents vi

List of Tables x

List of Figures xi

List of Algorithms xii

1 Introduction 1
1.1 Black Box Model . 2
1.2 Motivation and Contributions . 3

1.2.1 Solving parametric polynomial systems using Dixon resultants . . . 3
1.2.2 Solving Ax = b using sparse rational function interpolation 15

1.3 Some Elimination Techniques . 20
1.3.1 Sylvester Resultant . 20
1.3.2 Macaulay Resultant . 23
1.3.3 Gröbner Bases . 28

1.4 Thesis Outline . 33
1.5 Published Work . 33
1.6 Demo of Software . 33

2 Dixon Resultants 38
2.1 Summary of Contributions . 38
2.2 Generalized Formulation . 38

2.2.1 Computing the Dixon Polynomial 39
2.2.2 Constructing a Dixon Matrix . 46
2.2.3 Dixon Resultant . 48

vi

2.2.4 Extracting a maximal rank sub-matrix M from a Dixon Matrix D . 54
2.2.5 The Failure Probability of Algorithm 5 57

3 Sparse Interpolation Tools 59
3.1 Summary of Contributions . 59
3.2 Sparse Polynomial Interpolation . 59

3.2.1 Zippel’s sparse interpolation . 59
3.2.2 Ben-Or/Tiwari Interpolation . 62
3.2.3 Using discrete logarithms in the Ben-Or/Tiwari algorithm 66

3.3 Rational Function Interpolation . 67
3.3.1 The Extended Euclidean Algorithm 67
3.3.2 The Monic Extended Euclidean Algorithm 69
3.3.3 Univariate Rational Function Reconstruction 70

3.4 Sparse Multivariate Rational Function Interpolation 75
3.4.1 Cuyt and Lee’s algorithm . 76

4 Modified Interpolation using a Kronecker Substitution 82
4.1 Summary of Contributions . 82
4.2 Introduction . 82
4.3 Using a Kronecker substitution on the parameters 83

4.3.1 Pre-computing the partial degrees of A = f/g in each variable . . . 83
4.3.2 Kronecker substitution . 86
4.3.3 Randomizing the evaluation point sequence 87

4.4 An illustrative example of our new sparse rational function interpolation
method . 88
4.4.1 Pre-computing the total degrees of f and g in A = f/g 97
4.4.2 Pre-computing the total degrees of the homogeneous polynomials fi

of f and gi of g in A = f/g . 98
4.5 New sparse multivariate rational function interpolation algorithm 101
4.6 The Failure Probability Analysis of Algorithm 10 102

5 The Dixon Resultant Algorithm 107
5.1 Summary of Contributions . 107
5.2 Introduction . 107

5.2.1 Degree bounds . 109
5.3 Algorithm DixonRes . 116

5.3.1 Probabilistic Test . 123
5.3.2 Identifying the Extraneous factors 125

5.4 Implementation Notes and Benchmarks . 126
5.4.1 Speeding up evaluation of the Dixon matrix 126

vii

5.4.2 Pre-computing deg(fi,k) and deg(gi,k) 128
5.4.3 Timings . 129
5.4.4 Optimization . 130

6 Failure Probability and Complexity Analysis 136
6.1 Summary of Contributions . 136
6.2 Introduction . 136

6.2.1 Two Useful Results . 136
6.2.2 Important Notations and Bounds . 137

6.3 Problems . 141
6.3.1 Evaluation Points . 141
6.3.2 Primes . 142
6.3.3 Monic Univariate Polynomial Images of R 145
6.3.4 Unlucky Content . 146
6.3.5 Auxiliary Univariate Rational Functions 148
6.3.6 Discovering the supports of the polynomials fi,k and gi,k 152
6.3.7 Monomial Evaluations . 155
6.3.8 Univariate Rational Functions without a Kronecker Substitution . . 156

6.4 Main Results . 157
6.5 Complexity Analysis . 163

6.5.1 The cost of a black box probe . 163
6.5.2 The number of black box probes required by our algorithm 164
6.5.3 Theoretical Comparison . 165

7 Solving Ax = b 166
7.1 Summary of Contributions . 166
7.2 Introduction . 166
7.3 The Algorithm . 166
7.4 Analysis . 168

7.4.1 Failure Probability Analysis . 168
7.4.2 Unlucky Primes and Evaluation Points 171
7.4.3 Bad Evaluation Points, Primes and Basis Shifts 172
7.4.4 Main Results . 172
7.4.5 Complexity Analysis . 175

7.5 Implementation and Benchmarks . 176
7.5.1 Implementation . 176
7.5.2 Benchmarks . 176

8 Conclusion 180

viii

Bibliography 182

A Input Parametric Systems for the data reported in Table 1.3 187
A.1 Robot arms system . 187
A.2 Circle system . 187
A.3 Geddes2 system . 188
A.4 Heron3d system . 189
A.5 Heron4d system . 189
A.6 Heron5d system . 190

B Subresultants 191

ix

List of Tables

Table 1.1 Matrix size of four generic systems using their total degrees 5
Table 1.2 Matrix size of four generic systems using their partial degrees 5
Table 1.3 Timings showing the performance of 3 elimination methods on real

parametric systems . 6
Table 1.4 Interpolating monic square-free part S versus interpolating the square-

free factors Rj . 12
Table 1.5 Number of terms in the numerator and denominator polynomials of

x̃i = Ni/Di and xi = fi/gi, and expression swell factor for computing x̃i 19

Table 3.1 EEA computations for input polynomials m and u 72
Table 3.2 MEEA computations for input polynomials m and u 74

Table 4.1 MQRFR (Algorithm 8) intermediate computations for input polyno-
mials m and u . 103

Table 5.1 Timings showing improvements for Heron5d and Tot systems 128
Table 5.2 Timings showing improvements when deg(fi,k) and deg(gi,k) are pre-

computed . 129
Table 5.3 Systems Information for our Dixon matrices and timings for DixonRes

versus Minor Expansion, Dixon-EDF and Zippel’s Interpolation . . . 132
Table 5.4 Block structure and # of probes used by Algorithm DixonRes and

Zippel’s interpolation . 133

Table 6.1 Comparing sparse algorithms in terms of # of probes and the size of
their primes . 165

Table 7.1 CPU Timings for solving Wx∗ = c with #fi,#gi ≤ 5 for 3 ≤ n ≤ 10. 178
Table 7.2 Breakdown of CPU timings for all individual algorithms for computing

bigsys . 178
Table 7.3 CPU Timings for solving three real parametric linear systems 178

x

List of Figures

Figure 1.1 Black box model for det(D) ∈ Q[x1, y1, y2, . . . , ym] 3

Figure 5.1 Maple’s POLY representation for f = 9xy3z − 4 y3z2 − 6xy2z − 8x3 − 5. 127
Figure 5.2 Maple’s SUM-OF-PROD representation for f = 9xy3z− 4 y3z2− 6xy2z−

8x3 − 5. 128

xi

List of Algorithms

1 BareissPseudocode . 16
2 Division algorithm . 29
3 Buchberger’s algorithm for computing a Gröbner basis 31

4 ConstructDixon . 48
5 ExtractMinor . 56

6 Extended Euclidean Algorithm (EEA) . 68
7 Monic Extended Euclidean Algorithm (MEEA) 69
8 Maximal Quotient Rational Function Reconstruction Algorithm (MQRFR) . 73

9 PartialDegreeBound . 85
10 TotalDegreeBound . 98
11 PolyDegreeBound . 100

12 ABound . 110
13 TotalDegrees . 113
14 MaxPartialDegrees . 114
15 MonoTotalDegrees . 115
16 PolyInterp . 118
17 BMStep . 118
19 DixonRes . 119
18 RemoveShift . 120
20 NewPrime . 121
21 GetTerms . 122
22 RatFun . 123
23 VandermondeSolver . 123
24 CheckResultant . 123
25 ExtraneousFactors . 125

26 ParamLinSolve . 169
27 MorePrimes . 170

xii

Chapter 1

Introduction

Using sparse polynomial interpolation, sparse rational function interpolation and rational
number reconstruction, we develop new algorithms for solving parametric linear and poly-
nomial systems over Q. In particular, this thesis presents a new interpolation algorithm
for solving parametric polynomial systems using Dixon resultants and a new algorithm for
solving parametric linear systems, both using sparse rational function interpolation.

We use sparse interpolation tools such as sparse rational function interpolation and
sparse polynomial interpolation because we want the complexity of our new algorithms to
depend on the actual number of terms in the objects that we are computing (a polynomial
or a rational function) instead of the maximum number of possible terms. Another reason
why sparse interpolation tools are preferred is because many multivariate polynomials and
multivariate rational functions that we have to interpolate in practice are sparse, and often
very sparse. To give the reader an idea of what sparsity means, we begin with the definition
of a sparse polynomial and a sparse rational function.

A non-zero polynomial f with t terms is generally defined as being sparse if t is relatively
much less than the maximum number of possible terms in f . However, this definition of a
sparse polynomial is somewhat imprecise, so we give the following formal definition.

Definition 1.1. Let f be a non-zero polynomial in y1, y2, . . . , ym. Let t denote the number
of non-zero terms in f such that t ≥ 1 and let d = deg(f) be the total degree of f. The
maximum number of possible terms in f is M =

(m+d
d

)
. We say that f is sparse if t <

√
M.

Example 1.2. Let f = 3y1y2y5 + 5y1y
3
3y4. Notice that t = 2, d = 5,m = 5 and M =(5+5

5
)

=
(10

5
)

= 252. Therefore, f is a sparse polynomial since t = 2 <
√
M =

√
252 ≈ 15.9.

Definition 1.3. A sparse polynomial f is normally represented as

f =
t∑

k=1
aky

dk,1
1 y

dk,2
2 · · · ydk,m

m , where ak 6= 0.

Definition 1.4. A multivariate rational function f/g with gcd(f, g) = 1 is sparse if both
polynomials f and g are sparse.

1

1.1 Black Box Model

In most science fields, such as cryptography [Goldwasser and Rothblum, 2007], a black box is
a device or a system in which its inputs and output are known, but the internal functionality
is completely unknown. It could be almost anything as long as its implementation is not
transparent.

The first black box model in computer algebra was introduced by Kaltofen and Trager
in [Kaltofen and Trager, 1990] where algorithms for computing the greatest common divisor
of two polynomials represented by two black boxes were presented. They also argued that
black box representations are space efficient. A black box can be constructed for objects
such as a polynomial, a rational function, or the determinant of a matrix of polynomials. A
function call to the black box is referred to as a black box probe.

In all of the problems addressed in this thesis, we aim to compute factors (or some
factors) of the determinant of a matrix with multivariate polynomial entries. Let D be a
matrix with multivariate polynomial entries and suppose det(D) is a sparse polynomial. The
number of terms in the factors of det(D) over Z is typically less than the number of terms
in det(D). So, using a black box model in our proposed algorithms is beneficial because we
save the memory space needed to store det(D) and we save the cost of evaluating det(D).

For our purposes, the internal functionality of a black box is assumed to be known.
That is, we are able to modify a given black box that works over Q to work modulo a
prime p. In particular, the black box for our proposed algorithm for solving parametric
polynomial systems over Q will represent a determinant computation. We will construct
the black box BB from a given matrix D of polynomials in x1, y1, y2, . . . , ym over Q to
evaluate D at a point α ∈ Zm+1

p where p is prime and then compute the determinant of
the integer matrix D(α) mod p. We will then input BB to our new algorithm for solving
parametric polynomial systems over Q which treats it as a black box and not look inside.
That is, our new algorithm for solving parametric polynomial systems over Q is only aware
that BB : (Zm+1

p , p)→ Zp.
For our proposed algorithm for solving linear systems involving parameters y1, y2, . . . , ym,

we will construct a similar black box BB for the corresponding augmented matrix so that it
accepts an evaluation point α ∈ Zmp and a prime p to output a vector of integers modulo p.
That is, BB : (Zmp , p)→ Znp where n is the rank of the coefficient matrix of the parametric
linear system.

We can also build black boxes for known objects such as polynomials and rational
functions following our usual black box construction. Therefore, in this thesis, a black box
is a computer program that takes a point α ∈ Zmp and a prime p as two inputs and outputs
the evaluation of the represented object modulo p. We note that our black box model is
similar to the modular black box model described in [Giesbrecht and Roche, 2010]. In Figure

2

1.1, the black box for det(D) ∈ Q[x1, y1, y2, . . . , ym] takes an evaluation point α ∈ Zm+1
p

and a prime p as inputs and it outputs det(D(α)) mod p.

It computes A = D(α) mod p then it computes det(A) ∈ Zp
det(D(α)) mod p

p

x1 = α1

y1 = α2

y2 = α3

...
ym = αm+1

Figure 1.1: Black box model for det(D) ∈ Q[x1, y1, y2, . . . , ym]

Example 1.5. Let prime p = 11 and let

D =
(

x1 y1

x1 + y1 y2

)
.

Suppose we input the evaluation point α = (1, 1, 1) and p to the black box for det(D), it
outputs the det(D) evaluated at α over Zp which is 10.

1.2 Motivation and Contributions

This thesis addresses two main problems, namely,

1 Solving parametric polynomial systems by computing their Dixon resultants and

2 Solving Ax = b with parameters using sparse rational function interpolation.

1.2.1 Solving parametric polynomial systems using Dixon resultants

Let X = {x1, . . . , xn} be the set of variables and let Y = {y1, . . . , ym} be the set of param-
eters with n ≥ 2 and m ≥ 1. Let F = {f̂1, f̂2, . . . , f̂n} ⊂ Q[Y][X] such that |F|= |X|. We
refer to F as a parametric polynomial system where each f̂i is a polynomial in variables X
with coefficients in the polynomial ring Q[Y]. Let I =

〈
f̂1, f̂2, . . . , f̂n

〉
be the ideal generated

by F and let J = I ∩ Q(Y)[x1] be the elimination ideal in Q(Y)[x1].
In this thesis, solving a parametric polynomial system F means we aim to eliminate

variables x2, x3, . . . , xn from F in order to obtain the resultant R of F . For our purposes,
we define the resultant of a parametric polynomial system F as follows.

3

Definition 1.6. The resultant R of a parametric polynomial system F is defined to be the
unique monic generator of the elimination ideal J = I ∩ Q(Y)[x1] and any factor ẽ is called
an extraneous factor if g = ẽR for any non-zero g ∈ J.

Note that Definition 1.6 agrees with the resultant definitions given by Kapur and Saxena
in [Kapur and Saxena, 1997] and by Minimair in [Minimair, 2014]. Based on our definition of
the resultant, some obvious facts follow: The zero polynomial is an element of the elimination
ideal J. The resultant R may be irreducible or reducible over Q(Y). If a monic polynomial
in the elimination ideal J is irreducible over Q(Y), then it must be the resultant R. In this
thesis, we do not aim to compute the roots of R.

Example 1.7. Let F = {f̂1, f̂2} ⊂ Q[y1, y2][x1, x2] where

f̂1 = x1x2 + y1, f̂2 = x2y1 + y2
2x1.

By eliminating variable x2 from F , we may compute the resultant

R = x2
1 −

y2
1
y2

2
∈ Q(y1, y2)[x1]

which is clearly reducible over Q(y1, y2).

The general methods used in elimination theory are triangular sets [Maza, 2000, Kalk-
brener, 1991, Wu], Gröbner bases [Buchberger, 2006] and resultant methods. Resultants
are classical algebraic objects for determining whether a polynomial system has a solution
(common root) or not without actually solving for the solutions of the system explicitly.
To the best of our knowledge, the resultant methods that are widely used for solving para-
metric polynomial systems are based on the Sylvester, Dixon [Dixon, 1908, 1909], Macaulay
[Macaulay, 1902, 1916] and sparse resultant formulations [Bhayani et al., 2020]. These resul-
tant methods all construct matrices (resultant matrices) whose determinant is the resultant
or a multiple of the resultant of a given parametric polynomial system. We refer to the
matrix obtained due to Dixon’s method as the Dixon matrix and its determinant as the
Dixon resultant.

Definition 1.8. A collection of polynomials {f1, f2, . . . , fn+1} is said to be generic n-degree
if there exist non-negative integers d1, d2, · · · , dn such that for i 6= j,

dk = deg(f̂i, xk) = deg(f̂j , xk) for 1 ≤ k ≤ n,

and

f̂j =
d1∑
i1=0
· · ·

dn∑
in=0

aj,i1,i2,···,inx
i1
1 · · ·x

in
n for 1 ≤ j ≤ n+ 1,

where each coefficient aj,i1,i2,···,in is a distinct indeterminate (think of parameters!) and the
total degree of fj is ∑n

j=1 dj . In plain language, generic polynomials are polynomials that

4

have every possible coefficient, all coefficients are indeterminates, and they have the same
degrees in each variable.

Using the size bounds given in [Kapur and Saxena, 1995], we compare the size of three
resultant matrices (Dixon, Macaulay and sparse resultant) using two measures, namely, the
total degree and the partial degree in each variable for four generic polynomial systems.
The number of polynomials, the total degree, and the partial degree of the polynomials in
each variable of these systems are denoted by n, d, dmax respectively in Tables 1.1 & 1.2.

n d Dixon Macaulay Sparse resultant
2 2 6 15 15
2 3 15 36 36
3 2 20 56 56
3 3 84 220 220

Table 1.1: Matrix size of four generic systems using their total degrees

n dmax Dixon Macaulay Sparse resultant
2 2 8 66 36
2 3 18 153 81
3 2 48 2024 512
3 3 162 7140 1728

Table 1.2: Matrix size of four generic systems using their partial degrees

As the reader can see from the data reported in Tables 1.1 & 1.2, the size of the Dixon
matrix is smaller when compared to the matrices obtained from the sparse and Macaulay
resultant methods. Therefore, we are interested in the Dixon resultant formulation because
of its computational advantage.

Our main motivation for studying Dixon resultants stems from the sets of parametric
polynomial systems listed in Lewis’s papers [Lewis, 2017, 2018b, 2020]. Lewis tried to solve
these polynomial systems using Gröbner bases and triangular sets in Maple and Magma,
but they often failed badly; they took a very long time to execute and often ran out of
memory. The failure of these methods is due to the intermediate expression swell (the
rational function coefficients in the parameters of the intermediate polynomials over Q are
huge) caused by the parameters.

In Table 1.3, we report the timings obtained when we attempted to solve some of the
parametric polynomial systems from [Lewis, 2017] using Gröbner bases and triangular sets
in Maple and Magma. The names of the real parametric polynomial systems are labelled
as Names in Table 1.3. The quantity #R denotes the number of terms in the resultant

5

R when its fractions in the parameters are cleared, n is the number of polynomials and m
is the number of parameters in the input parametric systems. Columns Maple-Gröbner
and Maple-Triangular contain the timings obtained using Gröbner basis and Triangular
sets in Maple. Column Magma contains the timings obtained for solving these systems in
Magma using Gröbner bases. The input parametric polynomial systems in Table 1.3 are
listed in the Appendix A of this thesis with the monomial ordering used in our experiments.

Table 1.3: Timings showing the performance of 3 elimination methods on real parametric systems

Names n m #R Maple-Gröbner Maple-Triangular Magma
Heron3d 6 6 23 0.05 s 0.37s 1.35s
Heron4d 10 10 131 0.08 s ! 42s
Heron5d 15 15 823 > 5 days ! 2.6 days
Circle 4 9 - > 5 days > 5 days > 5 days

Robot-x1 4 7 44 ! ! > 5 days

The notation ! means Maple ran out of memory and − means unknown

As the reader can see in Table 1.3, these elimination techniques are ineffective on the
selected parametric systems and our timings are consistent with the findings reported in
[Lewis, 2017].

To address this problem, a new interpolation algorithm for solving parametric polyno-
mial systems using the Dixon resultant formulation [Dixon, 1908, 1909] is proposed in this
thesis. The Dixon resultant R of a parametric polynomial system F in x1 is a multiple of
the unique monic generator of the elimination ideal J =

〈
f̂1, f̂2, . . . , f̂n

〉
∩ Q(Y)[x1] [Dixon,

1908, 1909, Kapur et al., 1994] and it can be expressed as the determinant of a matrix of
polynomial entries called the Dixon matrix (See Chapter 2). It is used to eliminate n − 1
variables from a polynomial system with n polynomial equations involving n variables.

We begin with the historical developments of Dixon resultants, and we provide examples
whenever necessary. Bezout developed a method to compute the resultant of two univariate
polynomials in 1764. His method involves the construction of a resultant matrix (the Be-
zout matrix) whose determinant produces the resultant (the Bezout resultant). The Bezout
matrix is known to be smaller in size than the Sylvester matrix. Many years later, Cayley
noticed that Bezout’s method was complicated and reformulated it [Cayley, 1857, 1865],
leading to the first case of the Dixon resultant formulation.

We describe Cayley’s reformulation of Bezout’s method as follows. Let f̂(x) and ĝ(x) be
two univariate polynomials of degree d. Form the polynomials f̂(z) and ĝ(z) by replacing x
with a new variable z. Then construct the polynomial

∆(x, z) =
∣∣∣∣∣f̂(x) ĝ(x)
f̂(z) ĝ(z)

∣∣∣∣∣ = f̂(x)ĝ(z)− f̂(z)ĝ(x).

6

Observe that ∆(z, z) = 0. So, the polynomial ∆(x, z) can be written as the product of
(x−z) and a polynomial δ whose partial degree in variables x and z is d−1. Next, compute
the degree d− 1 polynomial

δ(x, z) = ∆(x, z)
x− z

= f̂(x)ĝ(z)− f̂(z)ĝ(x)
x− z

which vanishes at every root of f̂(x) and ĝ(x) regardless of the value of z.
Thus, at every common root of f̂(x) and ĝ(x), every coefficient of δ in zi, which is a

polynomial in x, must be zero (See Example 1.9). Therefore, a system of homogeneous linear
equations can be generated by extracting the coefficients of δ(x, z) in zi. The coefficient
matrix of the formed linear system is the resultant matrix, while the right-hand side vector
is the zero vector. Note that the column vector containing the powers of x can be viewed as
a vector whose entries are indeterminates, i.e., ui = xi. Since this column vector will have
an entry u0 = x0 = 1, it follows that the linear system has a non-trivial solution. Therefore,
the determinant of the coefficient matrix must be zero, and this gives a necessary condition
for f̂(x) and ĝ(x) to have a solution [Kapur et al., 1994, Lewis, 1996].

Example 1.9. Let

f̂(x) = (x− 3)(x− 5)(x+ 4) and ĝ(x) = (x− 3)(x+ 7)(x+ 8).

The common root of both univariate polynomials is clearly 3. We have

∆(x, z) =
∣∣∣∣∣(x− 3)(x− 5)(x+ 4) (x− 3)(x+ 7)(x+ 8)
(z − 3)(z − 5)(z + 4) (z − 3)(z + 7)(z + 8)

∣∣∣∣∣
= 4 (z − 3) (x− 3) (4xz + 19x+ 19z + 61) (−z + x) .

Thus,

δ(x, z) =
(
16x2 + 28x− 228

)
︸ ︷︷ ︸

−f̂ + ĝ

z2 +
(
28x2 − 68x− 48

)
︸ ︷︷ ︸

(−x− 12)f̂ + (−4 + x)ĝ

z +
(
−228x2 − 48x+ 2196

)
︸ ︷︷ ︸
(3x+ 45)f̂ + (−3x+ 3)ĝ

.

Hence, Cayley’s resultant matrix

M =


16 28 −228
28 −68 −48
−228 −48 2196


and det(M) = 0.

Dixon presented a method to obtain the resultant of three generic polynomials in two
variables of bi-degree (d1, d2), which is a generalization of the Cayley-Bezout method for

7

computing the resultant of two univariate polynomials [Dixon, 1908, 1909]. Dixon also
described how his method can be extended to compute the Dixon resultant of a system
of n + 1 generic n-degree polynomials in n variables (See Definition 1.8 for the definition
of generic n-degree polynomials). Dixon proved that the vanishing of the Dixon resultant
is a necessary and sufficient condition for the existence of a common root to a system
of n + 1 generic n-degree polynomials in n variables [Kapur et al., 1994]. However, for
geometric problems arising in practice, the Dixon resultant is almost always zero because
these problems do not have a generic degree shape [Kapur et al., 1994]. The singularity of
a Dixon matrix is a major problem because no useful information is provided about the
existence of a common root to a given polynomial system. Therefore, Dixon’s necessary and
sufficient condition is of little use in practice. Another shortcoming of Dixon’s approach is
that it is limited to a small class of polynomial systems. In particular, if it is applied to
a polynomial system that is not a generic n-degree polynomial system, one may obtain a
rectangular Dixon matrix [Kapur and Saxena, 1995] with no suitable way to compute the
Dixon resultant.

The reader should note that a non n + 1 generic, non n-degree polynomial system can
be converted to a n + 1 generic n-degree polynomial system so that Dixon’s method can
be applied. But most often, this approach is inefficient, as higher degree polynomials are
created and the new Dixon matrix created relative to the generic polynomial system is still
singular (See [Kapur et al., 1994, Section 2.3, Page 105]). These limitations stunted the use
and popularity of the Dixon resultant formulation for years, since it can only be used to
solve a small class of polynomial systems. But in 1994, Kapur, Saxena and Yang in [Kapur
et al., 1994] addressed the shortcomings of Dixon’s method.

Kapur, Saxena and Yang proved that the determinant of any square sub-matrix M of
the Dixon matrix D such that rank(M) = rank(D) is an element of the elimination ideal
J = I ∩ Q(Y)[x1]. Thus, once a Dixon matrix is constructed, we may find any maximal
rank sub-matrix M of the Dixon matrix D, and compute its determinant. Therefore, the
requirement for a polynomial system F to be generic n-degree is no longer necessary.

Extracting a sub-matrix M of maximal rank from the Dixon Matrix D

A sub-matrix M of maximal rank can be determined from the Dixon matrix D using
fraction-free Gaussian elimination [Kapur et al., 1994] in Q[Y, x1]. However, this can result
in expression swell. Instead, we select a sub-matrix M of maximal rank from D using the
following Monte-Carlo method. We pick a random 62 bit prime p and choose an evaluation
point β ∈ Zm+1

p at random where m is the number of parameters. Then we compute
B = D(β) over Zp and identify M from B in D with high probability.

Our idea requires performing ordinary Gaussian elimination over Zp only, and in contrast
to [Kapur et al., 1994] crucially avoids doing polynomial arithmetic in Q[Y, x1]. A new
algorithm (Algorithm 5) for extracting a sub-matrix of maximal rank from a Dixon matrix

8

is presented in Subsection 2.2.4, and we give a failure probability bound for the algorithm
using the Schwartz-Zippel Lemma [Schwartz, 1980, Zippel, 1979].

Previous methods for computing Dixon resultants

Assuming the Dixon matrix obtained from a given parametric polynomial system F is nei-
ther singular nor rectangular, the dominating step in computing Dixon resultants is com-
puting the determinant of the Dixon matrix [Minimair, 2017]. To the best of our knowledge,
the first and only interpolation method that has ever been applied to Dixon resultants was
done by Kapur and Saxena [Kapur and Saxena, 1995] in 1995. They used Zippel’s sparse
interpolation from [Zippel, 1979] to interpolate the Dixon resultant R.

Zippel’s sparse interpolation does O(mdt) black box probes for the first image of R
modulo a prime, where m is the number of parameters, d is the maximum partial degree of
R, t = #R and p is chosen so that arithmetic in Zp can be done in the hardware. But one
has to recover the integer coefficients of R which may need more primes. Using the support
of the first image of R modulo a prime (the list of monomials without their coefficients),
the integer coefficients of the Dixon resultant R can be recovered using O(t) probes to the
black box for each subsequent prime [Zippel, 1979].

In 2015, Lewis developed the Dixon-EDF (Early Detection Factor) algorithm for comput-
ing the Dixon resultant because he could not solve many of the systems he listed in [Lewis,
2017] using Gröbner bases and Triangular sets in both Maple and Magma. The Dixon-EDF
algorithm is a variant of the Gaussian elimination algorithm. It is a modified row reduction
of the Dixon matrix that factors out the greatest common divisor of each pivot row at each
step. The Dixon-EDF algorithm is able to detect some factors of the Dixon resultant early.
One can interrupt it part way to switch to another method. Lewis often switches to the
Gentleman & Johnson minor expansion algorithm [Gentleman and Johnson, 1974] to finish
the computation. The drawback of the Dixon-EDF method is that it is not automatic, and
expression swell may occur when computing in Q[Y, x1]. The implementation of the Dixon-
EDF method was done in Fermat; a computer algebra system designed and implemented by
Lewis whose built-in multivariate gcd algorithm uses Zippel’s gcd algorithm [Lewis, 2004].
Another variation of the Dixon-EDF method called PRDF(Pivot Row Detection of Fac-
tors) was designed and implemented by Minimair in Maple [Minimair, 2017]. This method
requires fewer gcd computations than Lewis’ Dixon-EDF method.

A new interpolation algorithm for computing Dixon resultants

We begin with a description of our new Dixon resultant algorithm. Let the Dixon resultant
R in x1 of a parametric polynomial system F over Q be written as

R =
d̂∑

k=0
r̄k(y1, . . . , ym)xk1 ∈ Q[y1, y2, . . . , ym][x1]

9

where d̂ = deg(R, x1). If d̂ = 0, this means that the given parametric polynomial system F
does not have a solution. Now let d̂ > 0 and let C = gcd(r̄0, r̄1 · · · , r̄d̂) be the polynomial
content of the Dixon resultant R.

In practice, when R factors over Q, it often has many repeated factors with large degrees
and a large unwanted polynomial content C. To avoid unwanted factors in R, we will
compute the monic square-free factors Rj of R and not the Dixon resultant R in expanded
form. The monic square-free factorization of the Dixon resultant R is a factorization of the
form

r̂
l∏

j=1
Rjj

where each Rj can be written as

Rj = x
dTj

1 +
Tj−1∑
k=0

fjk(y1, y2, . . . , ym)
gjk(y1, y2, . . . , ym)x

djk
1 ∈ Q(y1, y2, . . . , ym)[x1]

for non-zero fjk, gjk ∈ Q[y1, y2, . . . , ym] such that

1 r̂ = C/L for some L ∈ Q[Y],

2 each Rj is monic and square-free in Q(Y)[x1],

3 gcd(Ri, Rj) = 1 for i 6= j,

4 gcd(fjk, gjk) = 1 for all 0 ≤ k ≤ Tj − 1, and

5 LC(gjk) = 1.

This monic square-free factorization exists and it is unique [von zur Gathen and Gerhard,
2013, Section 14.6]. We remark that the monic square-free factors Rj of R are not necessarily
irreducible over Q(y1, y2, . . . , ym). To give the reader an idea of what we are computing, we
give the following real example from [Lewis, 2017, Section 8, Page 247].

Example 1.10 (Robot arms parametric system Appendix A.1). Consider the parametric
system F = {f̂1, f̂2, f̂3, f̂4} ⊂ Q[y1, y2, . . . , y7][x1, x2, x3, x4] listed in Appendix A.1. Let

C = −65536
(
y2

2 + 1
)8 (

y2
2y

2
4 + 2y2

2y4y5 + y2
2y

2
5 + y2

4 − 2y4y5 + y2
5

)4
y8

4

A1 = x2
1 + 1

A2 = (y2
2y

2
3 + 2y2

2y3y6 − y2
2y

2
4 − 2y2

2y4y5 − y2
2y

2
5 + y2

2y
2
6 + y2

2y
2
7 + y2

3 + 2y3y6 − y2
4 + 2y4y5 − y2

5

+y2
6 + y2

7)x2
1 + (−4y2

2y3y7 − 4y3y7)x1 + y2
2y

2
3 − 2y2

2y3y6 − y2
2y

2
4 − 2y2

2y4y5 − y2
2y

2
5 + y2

2y
2
6

+ y2
2y

2
7 + y2

3 − 2y3y6 + 2y4y5 − y2
5 + y2

6 + y2
7 − y2

4

A3 =
(
y2

1 + 2y1y4
)
x2

1 + y2
1 − 4y1y3 + 2y1y4 + 4y2

3 − 4y3y4

A4 =
(
y2

1 − 2y1y4
)
x2

1 + y2
1 − 4y1y3 − 2y1y4 + 4y2

3 + 4y3y4.

10

By eliminating variables {x2, x3, x4} from F , we determined that the Dixon resultant R of
the robot arms system in x1 has 6,924,715 terms in expanded form and it factors as

CA24
1 A4

2A
2
3A

2
4 .

Our new Dixon resultant algorithm computes R1, R2 and R3 only where

• R1 = A1,

• R2 = monic(A2, x1) and

• R3 = monic(A3A4, x1).

Note that the largest polynomial coefficient of R1, R2 and R3 to be interpolated by our
new Dixon resultant algorithm is the leading coefficient of A2 which has only 14 terms,
unlike Kapur and Saxena in [Kapur and Saxena, 1995] who would interpolate 6,924,715
terms of R using Zippel’s algorithm. Also, observe that R1 and R2 are irreducible over
Q(y1, y2, . . . , ym) but R3 is not.

Let M be the Dixon matrix of polynomial entries in x1, y1, . . . , ym and let R = det(M)
be the Dixon resultant. Given a black box BB :

(
Zm+1
p , p

)
→ Zp for the Dixon resultant R,

we develop a new Dixon resultant algorithm that probes the black box BB and interpolates
the monic square-free factors Rj of R from monic univariate polynomial images of R in x1

using sparse multivariate rational function interpolation to recover the coefficients of Rj in
Q(Y) modulo primes, and uses Chinese remaindering and rational number reconstruction to
recover the rational coefficients ofRj . Note that an implication of using a black box model for
the Dixon resultant R is that many important properties of R such as the number of terms
and the variable degrees of R are unknown, so we have to interpolate them probabilistically
since the Dixon resultant R is unknown. Otherwise, we have to use bounds for the number
of terms and the variable degrees which are often very high.

We interpolate the Rj ’s because it is relatively cheap to compute a square-free factor-
ization of a monic polynomial image of R in x1 and the square-free factorization factors
will be consistent from one image to the next with high probability. By not interpolating
the repeated factors or the polynomial content of R, the number of polynomial terms to
be interpolated and the number of black box probes and the number of primes needed to
recover the Rj ’s are often significantly reduced. Due to this reduction, our new interpo-
lation algorithm performs favourably on real parametric systems when compared to other
algorithms for computing R directly (See Subsection 5.4.3 for benchmarks).

First Attempt

Definition 1.11. The monic square-free part S of the Dixon resultant R is the product of
the monic square-free factors Rj , that is, S = ∏l

j=1Rj .

11

In a preliminary stage of this work (when my thesis proposal was defended), we first
designed and implemented our Dixon resultant algorithm to interpolate the monic square-
free part S from monic univariate images of R in x1. But we discovered that when the
number of the monic square-free factors l > 1, interpolating the Rj ’s instead of S often
reduces the number of black box probes required. These savings are realized because there
is a further reduction in the number of terms in the largest polynomial coefficient of Rj to be
interpolated compared to the monic product S. Also, the same monic univariate polynomial
images of R in x1 that yield the first monic square-free factor R1 can be re-used to recover
subsequent monic square-free factors in R.

x1 x2 x3 x4
of black box probes required to interpolate S 222, 301 3, 137, 373 116, 741 5, 531, 491

of black box probes required to interpolate the Rj ’s 19, 241 1, 210, 889 116, 741 1, 335, 853
Savings in # of black box probes 203, 060 1, 926, 484 0 4, 195, 638

Number of Rj ’s 3 3 2 3
of terms in the largest polynomial coefficient of Rj 14 691 85 624
of terms in the largest polynomial coefficient of S 106 2, 200 85 2, 388

Table 1.4: Interpolating monic square-free part S versus interpolating the square-free factors Rj

Table 1.4 contains the number of black box probes required for interpolating the monic
square-free part S versus interpolating the monic square-free factors Rj one at a time for
the robot arms problem and it shows a significant reduction in the number of black box
probes when the main variable is x1, x2 or x4. Notice in column x3 that both methods used
the same number of black box probes. This is because the number of terms in the largest
polynomial coefficient of Rj and S is the same. Thus, no gain is realized in terms of the
number black box probes used, even though we save some time when we perform rational
function interpolation while the number of the monic square-free factors for this case is
more than 1.

Using a Kronecker substitution on the parameters

The main goal we had in mind during the design of our Dixon resultant algorithm was to
ensure that our new algorithm uses the fewest number of black box probes to interpolate
the monic square-free factors Rj of R. This is essential because a probe to the black box
entails evaluating a Dixon matrix of polynomial entries over Zp at random points and also
computing determinant of integer matrices over Zp, which are not cheap computations as
the Dixon matrix can be large.

To this end, we adapt the sparse multivariate rational function interpolation algorithm
of Cuyt and Lee for our purposes [Cuyt and Lee, 2011]. As far as we are aware, it is
the best sparse multivariate rational function algorithm because it uses fewer black box
probes than the methods in [Kaltofen and Trager, 1990, Kaltofen and Yang, 2007, de Kleine
et al., 2005]. The Cuyt and Lee algorithm must be combined with a sparse polynomial

12

interpolation algorithm to produce sets of auxiliary univariate rational functions that are
densely interpolated in normalized form (there is a constant term 1 in their denominator
coefficients) and sparse interpolation is performed using their coefficients to produce the
desired sparse multivariate rational function. To use the fewest number of black box probes
possible, we modify Cuyt and Lee’s rational function interpolation algorithm [Cuyt and Lee,
2011] to use the Ben-Or/Tiwari algorithm [Ben-Or and Tiwari, 1988] as the main sparse
polynomial algorithm in our Dixon resultant algorithm.

Let f = ∑t
k=1 akMk(y1, . . . , ym) ∈ Z[y1, . . . , ym] with ak 6= 0 be a sparse polynomial.

The Ben-Or/Tiwari algorithm interpolates f using 2T evaluation points which are of the
form {(2j , 3j , . . . , pjm) : 0 ≤ j ≤ 2T − 1} where pm is the m-th prime assuming a term
bound T ≥ t is known. Let m̂i = Mi(2, 3, . . . , pm) be the monomial evaluation. To avoid
intermediate expression swell, the Ben-Or/Tiwari algorithm must be done modulo a prime
p satisfying p > maxti=1 m̂i ≤ pdm where d = deg(f). However, such a prime p may be
too large to use machine arithmetic, thus limiting the effectiveness of our proposed Dixon
resultant algorithm to solve many parametric polynomial systems. Also, one has to deal with
the unlucky evaluation points problem posed by using the evaluation points (2j , 3j , . . . , pjn)
(See Examples 4.1 and 4.2).

To address these problems, we develop a new sparse multivariate rational function in-
terpolation method which avoids unlucky evaluation points with high probability and needs
smaller primes. Our new sparse rational function interpolation method modifies the Cuyt
and Lee’s algorithm and the Ben-Or/Tiwari algorithm to use a Kronecker substitution to
reduce the size of the prime and we evaluate at powers of a generator of Z∗p instead of
powers of primes (2j , 3j , . . . , pjn) to avoid unlucky evaluation points with high probability.
Thus, instead of interpolating the Rj ’s directly, we interpolate

Kr(Rj) = x
dTj

1 +
Tj−1∑
k=0

fjk(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)
gjk(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)x

djk
1 ∈ Q(y)[x1]

where the map Kr : Q(y1, . . . , ym)[x1] → Q(y)[x1] is a Kronecker substitution and each
ri > maxlj=1

(
maxTj−1

k=0 (deg(fjk, yi),deg(gjk, yi))
)
for 1 ≤ i ≤ m. Inverting the Kronecker

map yields the Rj . With this modification, we remark that the number of terms and the
number of black box probes needed to interpolate Rj does not change.

Identifying the extraneous factors of the monic square-free factors

We recall from Example 1.10 that

A3 =
(
y2

1 + 2y1y4
)
x2

1 + y2
1 − 4y1y3 + 2y1y4 + 4y2

3 − 4y3y4

A4 =
(
y2

1 − 2y1y4
)
x2

1 + y2
1 − 4y1y3 − 2y1y4 + 4y2

3 + 4y3y4

13

where A3 and A4 are factors of the Dixon resultant R in x1 for the robot arms system. The
monic square-free factor R3 = monic(A3A4, x1) of R is an extraneous factor.

A natural question that follows is how do we identify the extraneous factors from the in-
terpolated monic square-free factors since the Dixon resultant R is a polynomial in the elim-
ination ideal J = I ∩Q(Y)[x1]. Surely, some of the extraneous factors present in the Dixon
resultant R may have disappeared when the polynomial content was removed. Regardless,
the presence of any extraneous factor in the monic square-free factors must be identified.
We have designed a new probabilistic algorithm based on Gröbner basis to identify the
extraneous factor in the monic square-free factors. This algorithm involves specializing the
set of parameters Y at random values selected from Zp, where p is a random 62 bit prime.

For an evaluation point β ∈ Zmp selected uniformly at random for the parameters,
we create a new polynomial system G = {ĝ1, ĝ2, . . . , ĝn} by computing ĝi = f̂i(X,β) ∈
Zp[x1, x2, . . . , xn] satisfying deg(ĝi, x1) = deg(f̂i, x1) for all i. Then we compute the monic
univariate polynomial in J∗ = I∗∩Zp[x1] where I∗ = 〈ĝ1, ĝ2, . . . , ĝn〉 using a Gröbner basis,
and we use it to identify the extraneous factors in our monic-square factors Rj with high
probability (See Subsection 5.3.2 for more details).

Implementation and Experimental Comparison

We have implemented our Dixon resultant algorithm in Maple with several parts coded in
C to improve its overall efficiency. Our hybrid Maple + C code (with instructions and test
files) can be downloaded freely for use from the web at:

http://www.cecm.sfu.ca/personal/monaganm/code/DixonRes/.

We compare our new Dixon resultant algorithm with a hybrid Maple + C implementa-
tion of Zippel’s interpolation algorithm [Zippel, 1979], a Maple implementation of Gentle-
man and Johnson minor expansion algorithm [Gentleman and Johnson, 1974] and a Maple
implementation of Lewis’ Dixon-EDF algorithm for computing R. Experimental results (See
Section 5.4.3 for benchmarks) show that our new Dixon resultant algorithm outperforms
Zippel’s algorithm for interpolating the Dixon resultant R and is able to solve many para-
metric polynomial systems that other methods cannot solve.

Failure Probability Analysis and Complexity Analysis

Our Dixon resultant algorithm is probabilistic of Monte Carlo type. That is, our Dixon
resultant algorithm may fail, and, even with failure detection checks in place, the returned
monic square-free factors Rj might be incorrect. Thus, our next contribution is the failure
probability analysis of our Dixon resultant algorithm and the complexity analysis of our
Dixon resultant algorithm in terms of the number of black box probes required to interpo-
late the Rj ’s (See Chapter 6). We identify several causes of failure in our Dixon resultant

14

algorithm, and we obtain new failure probability bounds which depend on the input para-
metric polynomial systems. New bounds for the Dixon resultant R and bounds for its monic
square-free factors Rj are also obtained which are potentially useful in other applications.

1.2.2 Solving Ax = b using sparse rational function interpolation

Consider the parametric linear system Ax = b where A ∈ Z[y1, y2, . . . , ym]n×n is the coeffi-
cient matrix of full rank n and b ∈ Z[y1, y2, . . . , ym]n is the right-hand side column vector
such that the number of terms in the entries of A and b denoted by #Aij ,#bi ≤ t and
deg(Aij), deg(bi) ≤ d. Elementary linear algebra tells us that the solution vector x is unique
since the coefficient matrix A is of full rank n. In this thesis, we aim to interpolate the
solution vector of rational functions

x =
[
x1 x2 · · · xn

]T
=
[
f1
g1

f2
g2
· · · fn

gn

]T
(1.1)

such that for fk, gk ∈ Z[y1, y2, . . . , ym], gk 6= 0, gk|det(A) and gcd(fk, gk) = 1 for 1 ≤ k ≤ n.
Using Cramer’s rule, the solutions of Ax = b are given by

xi = det(Ai)
det(A) ∈ Z(y1, . . . , ym) (1.2)

where Ai is the matrix obtained by replacing the i-th column of A with b, and det(A) is a
polynomial in Z[y1, y2, . . . , ym]. Let

x̃i := det(Ai) = xi det(A) ∈ Z[y1, y2, . . . , ym].

Maple and other computer algebra systems such as Magma have an implementation of
the Bareiss/Edmonds one-step fraction free Gaussian elimination algorithm [Bareiss, 1968,
Edmonds, 1967] which triangularizes an augmented matrix B = [A|b] to obtain det(A) as a
polynomial in Z[y1, y2, . . . , ym], and then solves for the polynomials x̃i via back substitution
using Lipson’s fraction free back formula [Lipson, 1969]. Ignoring pivoting, the following
pseudocode (Algorithm 1) of the Bareiss/Edmonds algorithm and Lipson’s fraction free
back substitution formula solves Ax = b:

15

Algorithm 1: BareissPseudocode
Input: The coefficient matrix A and the column vector b with n ≥ 1 and m ≥ 1.
Output: The unique vector x ∈ Z(y1, y2, . . . , ym)n such that Ax = b.

1 B := [A|b] ; B0,0 := 1;
2 // fraction free triangularization begins
3 for k = 1, 2, . . . , n− 1 do
4 for i = k + 1, k + 2, . . . , n do
5 for j = k + 1, k + 2, . . . , n+ 1 do
6

Bi,j := Bk,kBi,j −Bi,kBk,j

Bk−1,k−1
(1.3)

7 end do
8 Bi,k := 0;
9 end do

10 end do
11 // fraction free back substitution begins
12 x̃n := B[n, n+ 1];
13 for i = n− 1, n− 2, . . . , 2, 1 do
14 Ni := Bi,n+1Bn,n −

∑n
j=i+1Bi,j x̃j ;

15 Di := Bi,i;
16

x̃i := Ni

Di
; (1.4)

17 end do
18 // simplification begins
19 for i = 1, 2, . . . , n do
20 hi = gcd(x̃i, Bn,n) ∈ Z[y1, y2, . . . , ym];

21 fi := x̃i

hi
;

22 gi := Bn,n

hi
;

23 xi := fi/gi;
24 end do

Note that the divisions by Bk,k and by Di in Algorithm 1 are exact in Z[y1, y2, . . . , ym]
and Bk,k is the determinant of the principal k × k sub-matrix of A. However, there is an
expression swell. At the last major step of triangularizing B when k = n − 1 where it
computes

Bn,n = Bn−1,n−1Bn,n −Bn,n−1Bn−1,n
Bn−2,n−2

= det(A), (1.5)

the numerator polynomial in (1.5) is the product of determinants Bn,n and Bn−2,n−2 which
are polynomials in Z[y1, y2, . . . , ym]. If the original entries Bi,j from B are sparse polynomials
in many parameters then the numerator polynomial in (1.5) may be 100 times or more larger
than det(A). The same situation also holds for the polynomials x̃i.

16

One approach to avoid this expression swell tried by Monagan and Vrbik in [Vrbik
and Monagan, 2009]. They compute the quotients of (1.3) and (1.4) directly using lazy
polynomial arithmetic without constructing the numerator polynomial in (1.5) in expanded
form.

Another approach is to interpolate the polynomials x̃i and det(A) directly from points
using sparse polynomial interpolation algorithms [Roche, 2018, Giesbrecht et al., 2006,
2009, Ben-Or and Tiwari, 1988, Zippel, 1990], and Chinese remaindering when needed.
This approach is described briefly as follows.

• Pick an evaluation point α ∈ Zmp and solve

A(α)x(α) = b(α) mod p

for x̃(α) using Gaussian elimination over Zp and also compute det(A(α)) at the same
time.

• Provided det(A(α)) 6= 0, then

x̃i(α) = xi(α)× det(A(α)).

Thus, we have images of x̃i and det(A) so we can interpolate them.

To compute the solution vector x in the simplest terms, we compute

hi = gcd(x̃i, det(A))

for 1 ≤ i ≤ n and cancel them from x̃i
det(A) to simplify the solutions. However, in practice

there may be a large cancellation in x̃i
det(A) . That is, hi may be a large factor so that the

final solution
xi = x̃i/hi

det(A)/hi
may be small. Our new algorithm will interpolate xi directly, thus avoiding any gcd com-
putations which may be expensive. To illustrate the gain realized by our new algorithm for
solving Ax = b, we give the following real example.

17

Example 1.12. Consider the following linear system of 21 equations in variables x1, x2, · · · , x21

and parameters y1, y2, . . . , y5 :


x7 + x12 =

x8 + x13 =

x21 + x6 + x11 =

x1y1 + x1 − x2 =

x3y2 + x3 − x4 =

x11y3 + x11 − x12 =

x16y5 − x17y5 − x17 =

−x20y3 + x21y3 + x21 =

−x5y3 + x6y3 + x6 − x7 =

x8y4 + x9y3 + x9 =

−x10y2 + x18y2 + x18 − x19 =

y4(x14 − x13) + x14 − x15 =

2x3(y2
2 − 1) + 4x4 − 2x5 =

2y2
1(x1 − 1)− 2x10 + 4x2 =

2y2
3(x19 − 2x20 + x21)− 2x21 =

2y2
4(x7 − 2x8 + x9)− 2x9 =

2x11(y2
3 − 1) + 4x12 − 2x13 =

2y2
4(x12 − 2x13 + x14)− 2x14 + 4x15 − 2x16 =

2y2
3(x4 − 2x5 + x6)− 2x6 + 4x7 − 2x8 =

2y2
5(x15 − 2x16 + x17)− 2x17 =

−2y2
2(2x10 + x18 + x2)− 2x18 + 4x19 − 2x20 =

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

where the solution of the above system defines a general cubic Beta-Spline in the study of

modelling curves in Computer Graphics.

Using the Bareiss/Edmonds/Lipson algorithm on page 16, we find that

• #B[n, n] = # det(A) = 1033,

• #B[n− 2, n− 2] = 672 and #B[n, n]×B[n− 2, n− 2] = 14348, so an expression swell
factor of 14348/1033 = 14.

Furthermore, we obtain the number of terms in the numerator and denominator polynomials
of x̃i = Ni/Di and xi = fi/gi, and the expression swell factor labelled swell for computing
x̃i in Table 1.5.

18

1 2 3 4 5 6 7 8 9 10 11
#Ni 586 1,172 1,197 1,827 2,142 1,666 2,072 1,320 1,320 2,650 2,543
#Di 2 3 6 9 9 9 9 9 18 18 27
#x̃i 293 586 504 693 882 686 840 536 424 879 638
swell 2 2 3 3 3 3 3 3 3 3 4
fi 1 2 4 4 4 19 16 8 8 8 2
gi 5 3 10 7 4 22 16 16 26 12 3

12 13 14 15 16 17 18 19 20 21
#Ni 3,490 3,971 5,675 7,410 4,940 7,072 11,793 12,802 11,211 9,620
#Di 36 36 117 153 153 432 672 672 672 672
#x̃i 834 1,033 871 1044 696 348 690 836 693 528
swell 4 4 7 7 7 20 17 15 16 18
fi 1 1 1 1 1 2 14 4 1 1
gi 3 3 5 5 3 3 23 7 4 7

Table 1.5: Number of terms in the numerator and denominator polynomials of x̃i = Ni/Di and
xi = fi/gi, and expression swell factor for computing x̃i

The reader should note that the largest polynomial to be interpolated in xi by our new
algorithm for solving Ax = b is g9 in x9 = f9

g9
where #g9 = 26.

The Gentleman & Johnson minor expansion algorithm [Gentleman and Johnson, 1974]
can also be used to compute the solutions xi by computing n+ 1 determinants, namely, the
numerators det(Ai) for 1 ≤ i ≤ n (Ai is as defined in (1.2)), and the denominator det(A)
only once. But then, we still have to compute gi = gcd(det(Ai), det(A)) to simplify the
solutions xi which is not cheap.

In this thesis, we avoid any gcd computations by interpolating the simplified solutions
xi = fi/gi directly using our new sparse rational function interpolation (See Chapter 4).
Similar to our approach for computing Dixon resultants, we use a black box representation
to denote any given parametric linear system. That is, a black box BB representing Ax = b

denoted by BB :
(
Zmp , p

)
→ Znp is a computer program that takes an evaluation point

α ∈ Zmp and a prime p as two inputs and outputs x(α) = A−1(α)b(α) ∈ Znp . The implication
of the black box representation of Ax = b is that important properties of x such as the
number of terms in the polynomials fk and gk, and their variable degrees are unknown so
we have to find them by interpolation.

Our new algorithm probes a given black box BB and uses our new sparse multivari-
ate rational function interpolation to interpolate the rational function entries in x modulo
primes, and then uses Chinese remaindering and rational number reconstruction to recover
their rational coefficients. We have made a hybrid Maple + C implementation of our new
algorithm for solving Ax = b which can be downloaded for use from the web at:

19

http://www.cecm.sfu.ca/personal/monaganm/code/ParamLinSolve/.

We present timing results comparing our new algorithm for solving parametric linear sys-
tems with a Maple implementation of the Bareiss/Edmonds/Lipson fraction free Gaussian
elimination algorithm with three other algorithms for solving Ax = b. Finally, we give a
detailed failure probability analysis of our new algorithm for solving Ax = b and the com-
plexity analysis of our algorithm in terms of the number of black box probes required to
interpolate x.

1.3 Some Elimination Techniques

In this section, we review some classical elimination techniques, namely, the Sylvester and
Macaulay resultants, and Gröbner bases. In Chapter 2, we will provide a detailed description
of the Dixon resultant.

1.3.1 Sylvester Resultant

The Sylvester resultant is commonly used to determine the existence of a common root of
two univariate polynomials. It has been studied extensively, and many computer algebra
systems have an efficient implementation of the algorithm. Maple has a dense modular al-
gorithm [Brown, 1971] that was implemented by Wittkopf. Before presenting the derivation
of the Sylvester resultant, we first give the following important lemma.

Lemma 1.13. [von zur Gathen and Gerhard, 2013, Lemma 6.13] Let F be a field and let
f, g ∈ F [x] be non-zero polynomials. Then gcd(f, g) 6= 1 if and only if there exists non-zero
polynomials s, t ∈ F [x] such that sf + tg = 0 with deg(s) < deg(g) and deg(t) < deg(f).

Consider the problem of determining if two polynomials f(x), g(x) ∈ F [x] of positive
degrees df and dg in variable x have a common root. Let

f(x) = a0 + a1x+ a2x
2 + · · · adf

xdf

and
g(x) = b0 + b1x+ b2x

2 + · · · bdgx
dg

where the coefficients ai, bj ∈ F , for 0 ≤ i ≤ df and 0 ≤ j ≤ dg. Suppose

t = t0 + t1x+ t2x
2 + · · · tdf−1x

df−1

and
s = s0 + s1x+ s2x

2 + · · · sdg−1x
dg−1

20

where the coefficients ti, sj ∈ F , ∀i, j. Using Lemma 1.13, we can write

sf + tg = 0,

which is equivalent to creating the following (dg + df) homogeneous linear system in terms
of the si’s and the ti’s:

s0a0 + t0b0 = 0

s1a0 + s0a1 + t1b0 + t0b1 = 0

s2a0 + s1a1 + s0a2 + t2b0 + t1b1 + t0b2 = 0
...

sdg−1adf−1 + sdg−2adf
+ tdf−1bdg−1 + tdf−2bdg = 0

sdg−1adf
+ tdf−1bdg = 0

The above system can be written in matrix form as

S(f, g)TV T = 0

where S(f, g) is the following (dg + df)× (dg + df) matrix:

S(f, g) =



adf
adf−1 . . . a0

adf
adf−1 · · · a0

adf
adf−1 · · · a0
.

adf
adf−1 · · · a0

bdg bdg−1 . . . b0

bdg bdg−1 . . . b0

bdg bdg−1 . . . b0
.

bdg bdg−1 . . . b0


and

V =
[
sdg−1, sdg−2, · · · s0, tdf−1, tdf−2, · · · t0

]
.

The matrix S(f, g) is known as the Sylvester matrix and its determinant denoted by
resx(f, g) is the Sylvester resultant of f and g with respect to x. The Sylvester matrix
S(f, g) has dg rows of ai’s, df rows of bi’s, and the blank spaces are filled with zeros. We
know from linear algebra that the system S(f, g)TV T = 0 has a non-trivial solution if and
only if det(S(f, g)) = 0.

21

Example 1.14. Let f(x) = x2 + 5x+ 6 and g(x) = −x2 − 4x− 3. The matrix

S(f, g) =


1 5 6 0
0 1 5 6
−1 −4 −3 0
0 −1 −4 −3


is the Sylvester matrix of f and g.

The following result describes how the Sylvester resultant can be used under certain
conditions to solve systems of polynomial equations.

Theorem 1.15. [Geddes et al., 1992, Theorem 9.5] Let k be an algebraically closed field
and let

f̂ =
deg(f̂)∑
i=0

f̂i(x2, x3, . . . , xr)xi1, ĝ =
deg(ĝ)∑
i=0

ĝi(x2, x3, . . . , xr)xi1

be elements of k[x1, x2, . . . , xr] of positive degrees in x1. If α = (α1, α2, . . . , αr) is a common
root of f̂ and ĝ, then

resx1(f̂ , ĝ)(α2, α3, . . . , αr) = 0.

Conversely, if resx1(f̂ , ĝ) vanishes at (α2, α3, . . . , αr), then at least one of the following holds:

(a) f̂deg(f̂)(α2, α3, . . . , αr) = · · · = f̂0(α2, α3, . . . , αr) = 0,

(b) ĝdeg(ĝ)(α2, α3, . . . , αr) = · · · = ĝ0(α2, α3, . . . , αr) = 0,

(c) f̂deg(f̂)(α2, α3, . . . , αr) = ĝdeg(ĝ)(α2, α3, . . . , αr) = 0,

(d) There exists α1 ∈ k such that α = (α1, α2, . . . , αr) is a common root of f̂ and ĝ.

The above theorem provides us a way to use Sylvester resultants to extend partial solutions
of systems of polynomial equations to full solutions under certain conditions. In particular, if
conditions (a), (b), (c) are not satisfied, then (d) assures us that the partial solutions can be
extended by one more coordinate. Also, note that Theorem 1.15 can be applied inductively
and modified to handle more than two polynomials.

The following example demonstrates how to use the Sylvester resultant to eliminate a
variable from two bivariate polynomials.

Example 1.16. Eliminating x2 from the two bivariate polynomials

f̂1 = x2x
2
1 − x1 − 1

f̂2 = x2x
2
1 + x2x1 − 2,

22

we get that
resx2(f̂1, f̂2) = x3

1 + x1.

However, the resultant of f̂1 and f̂2 is x2
1 +1, so the factor x1 of resx2(f̂1, f̂2) is an extraneous

factor.

The reader should note that the Sylvester resultant is not efficient when used to suc-
cessively eliminate n − 1 variables from a system of polynomial equations in n variables
[Lewis, 1996]. For future use in Chapter 6, we state the following facts about the Sylvester
resultant now.

Lemma 1.17. [von zur Gathen and Gerhard, 2013, Corollary 6.21] Let F be an integral
domain and let f, g ∈ F [x] be non-zero polynomials with deg(f) + deg(g) ≥ 1. Then there
exist non-zero polynomials s, t ∈ F [x] such that sf + tg = resx(f, g) where deg(s) < deg(g)
and deg(t) < deg(f).

Lemma 1.18. [Hu and Monagan, 2021, Lemma 4] Let F be an integral domain. Let f and
g be polynomials in F [y1, y2, . . . , ym] with df = deg(f, y1) > 0 and dg = deg(g, y1) > 0. Let
adf

and bdg be the leading coefficients of f and g with respect to the main variable y1. Let
Rs = resy1(f, g) be the Sylvester resultant of f and g with respect to y1. Let α ∈ Fm−1

be an evaluation point. For any prime p, let φp be the modular mapping φp(f) = f mod p.
Then the following results hold:

(i) Rs is a polynomial in F [y2, . . . , ym],

(ii) deg(Rs) ≤ deg(f) deg(g) (Bezout bound) and

(iii) deg(Rs, yi) ≤ dg deg(f, yi) + df deg(g, yi) for 2 ≤ i ≤ m.

If F is a field, and adf
(α) 6= 0 and bdg (α) 6= 0 then

(iv) resy1(f(y1, α), g(y1, α)) = Rs(α) and

(v) deg(gcd(f(y1, α), g(y1, α)), y1) > 0 ⇐⇒ Rs(α) = 0.

If F = Z, and φp(adf
) 6= 0 and φp(bdg) 6= 0 then

(vi) resy1(φp(f), φp(g)) = φp(Rs) and

(vii) deg(gcd(φp(f), φp(g)), y1) > 0 ⇐⇒ φp(Rs) = 0.

23

1.3.2 Macaulay Resultant

The material in this section follows [Cox et al., 2005, Kapur and Yagati, 1992]. Given a
system of homogeneous polynomial equations F = {f̂1, . . . , f̂n} in n variables, we describe
the classical formulation of the Macaulay resultant RM . Let di = deg(f̂i) be the total degree
of the polynomial f̂i for 1 ≤ i ≤ n. Let

D = 1 +
n∑
i=1

(di − 1) = 1− n+
n∑
i=1

di

where n = |F|. The quantity D is often called the Macaulay degree.
Consider the monomial set of all terms of degree D in all the n variables x1, x2, . . . , xn

defined by

T =
{
xα1

1 xα2
2 · · ·x

αn
n :

n∑
i=1

αi = D

}

where the cardinality of T is

|T |=
(
D + n− 1
n− 1

)
.

Note that |T | counts the number of non-negative solutions to ∑n
i=1 αi = D. Let

T1 =
{
xα1

1 xα2
2 · · ·x

αn
n :

n∑
i=1

αi = D − d1

}
,

T2 =
{
xα1

1 xα2
2 · · ·x

αn
n :

n∑
i=1

αi = D − d2 and α1 < d1

}
,

T3 =
{
xα1

1 xα2
2 · · ·x

αn
n :

n∑
i=1

αi = D − d3 and α2 < d2 and α1 < d1

}
,

...

Tn =
{
xα1

1 xα2
2 · · ·x

αn
n :

n∑
i=1

= D − dn and αi < di for 1 ≤ i ≤ n− 1
}
.

Macaulay referred to the set Ti as the reduced set of terms with respect to x1, x2, . . . , xi,
and he proved that

n∑
i=1
|Ti|= |T |.

One can also view the terms of set Ti as terms of degree D − di which are not divisible
by xd1

1 or xd2
2 or · · · or xdi−1

i−1 . Thus, a term is reduced with respect to x1, x2, . . . , xi if it is
not divisible by any of xd1

1 , x
d2
2 , . . . , x

di
i . Using the monomials from the sets Ti as multipliers

against the old polynomial system F , one can form a new square system of |T | linear
equations G = {ĝ1, ĝ2, . . . , ĝ|T |} in T unknowns which are power products of D, namely:

24

ĝ1 = T1,1f̂1

ĝ2 = T1,2f̂1

ĝ3 = T1,3f̂1

...

ĝ|T1| = T1,|T1|f̂1

ĝ|T1|+1 = T2,1f̂2

ĝ|T1|+2 = T2,2f̂2

...

ĝ|T | = Tn,|Tn|f̂n

The order in which the polynomials f̂i are considered for selection against the multipliers
from the monomial sets yields different (but equivalent) systems of linear equations G.

A resultant matrix (Macaulay matrix) A with |T | columns and ∑n
i=1|Ti|= |T | rows is

constructed from the system of linear equations G such that the columns of A are labelled
by the terms in T in some order. The first |T1| rows of A are labelled by elements of T1,

the next |T2| rows are labelled by T2, and one continues in the same fashion way up to last
row of A labelled by the last element in Tn. In a row labelled by the term t ∈ Ti, one must
arrange the coefficients of tfi+1 with the coefficient of a term t∗ in tfi+1 appearing under
the column labelled by t∗. As a reminder, the total degree of the polynomials tfi+1 is D.
We give the following example to illustrate how to construct a Macaulay resultant matrix.

Example 1.19. Let F = {f̂1, f̂2, · · · , f̂6} ⊂ Q[y1, y2, . . . , y15][x1, x2, x3] where

f̂1 = y1x
2
1 + y2x1x2 + y3x1x3 + y4x

2
2 + y5x2x3 + y6x

2
3

f̂2 = y7x
2
1 + y8x1x2 + y9x1x3 + y10x

2
2 + y11x2x3 + y12x

2
3

f̂3 = y13x1 + y14x2 + y15x3

Clearly, (d1, d2, d3) = (2, 2, 1), and the Macaulay degree

D = 1− 3 + (2 + 2 + 1) = 3.

We have that
|T |=

(
3 + 3− 1

3− 1

)
=
(

5
2

)
= 10,

25

and

T =
{
xα1

1 xα2
2 xαn

3 :
3∑
i=1

αi = 3
}

=
{
x3

1, x
2
1x2, x

2
1x3, x1x

2
2, x1x2x3, x1x

2
3, x

3
2, x

2
2x3, x2x

2
3, x

3
3

}
.

Furthermore,

T1 =
{
xα1

1 xα2
2 xα3

3 :
3∑
i=1

αi = 1
}

= {x1, x2, x3} ,

T2 =
{
xα1

1 xα2
2 xα3

3 :
3∑
i=1

αi = 1 and α1 < 2
}

= {x1, x2, x3} and

T3 =
{
xα1

1 xα2
2 xα3

3 :
3∑
i=1

αi = 2 and α2 < 2 and α1 < 2
}

=
{
x2

3, x1x3, x1x2, x2x3
}
,

so
3∑
i=1
|Ti|= |T |= 10.

Thus, the Macaulay matrix A is

x3
1 x2

1x2 x2
1x3 x1x

2
2 x1x2x3 x1x

2
3 x3

2 x2
2x3 x2x

2
3 x3

3



x1f̂1 y1 y2 y3 y4 y5 y6 0 0 0 0
x2f̂1 0 y1 0 y2 y3 0 y4 y5 y6 0
x3f̂1 0 0 y1 0 y2 y3 0 y4 y5 y6

x1f̂2 y7 y8 y9 y10 y11 y12 0 0 0 0
x2f̂2 0 y7 0 y8 y9 0 y10 y11 y12 0
x3f̂2 0 0 y7 0 y8 y9 0 y10 y11 y12

x1x2f̂3 0 y13 0 y14 y15 0 0 0 0 0
x1x3f̂3 0 0 y13 0 y14 y15 0 0 0 0
x2x3f̂1 0 0 0 0 y13 0 0 y14 y15 0
x2

3f̂3 0 0 0 0 0 y13 0 0 y14 y15

.

Let det(A) denote the determinant of the Macaulay matrix A formed from the system
of linear equations G. The construction of A solely depends on the orderings of the homo-
geneous polynomial system F . That is, a different resultant matrix is produced each time
a different ordering is chosen for the polynomial system F . Let det(Aσ) be the determinant
of a matrix constructed using a permutation σ of the polynomials in F . Let Sn be the sym-
metric group on n letters. Then |Sn|= n!, which means we have n! possible determinants.

Macaulay discussed two ways to obtain the Macaulay resultant denoted by RM from
all the possible determinants det(Aσ). First, the Macaulay resultant RM can be computed

26

by computing the gcd of all possible determinants det(Aσ). However, this is an intractable
way of computing the resultant of a polynomial system. As a result, Macaulay derived a
formula relating the Macaulay resultant RM and det(Aσ), namely,

RM = det(Aσ)
det(Bσ) , (1.6)

where Bσ is the determinant of a sub-matrix of Aσ obtained by deleting all columns labelled
by terms not divisible by any n − 1 elements of {xd1

1 , x
d2
2 , . . . , x

dn
n }, and deleting the rows

which contain at least one non-zero entry ai, the coefficients of xdi
i in f̂i, for 1 ≤ i ≤ n in

the deleted columns. We remark that computing RM using (1.6) could result in expression
swell because

det(Aσ) = RM det(Bσ)

is much bigger than RM . This is another reason why we prefer Dixon resultants.

Example 1.20 (Continuation of Example 1.19). Recall (d1, d2, d3) = (2, 2, 1) and

T =
{
x3

1, x
2
1x2, x

2
1x3, x1x

2
2, x1x2x3, x1x

2
3, x

3
2 , x

2
2x3, x2x

2
3, x

3
3

}
.

To produce a sub-matrix Bσ, we first need to select which columns to delete from matrix
Aσ = A which was constructed in Example 1.19. We do this by checking the terms in T

that are not divisible by any 2 of {x2
1, x

2
2, x3}. By inspection, one can easily see that the

elements of the set {x2
1x3, x

2
2x3} are the only terms that are divisible by two of the elements

from {x2
1, x

2
2, x3}. Thus, only columns 3 and 8 would remain after deletion.

To delete the rows, recall that the coefficients of {x2
1, x

2
2, x3} in the original polynomial

system F are {y1, y10, y15}. Thus,

Bσ =

x2
1x3 x2

2x3()
x3f̂1 y1 y4

x2f̂2 y7 y10
.

We found out that #RM = 234,# det(Aσ) = 432 and # det(Bσ) = 2, so an expression swell
of about a factor of 2.

Example 1.21 (Heron 3d system). Consider the parametric system F = {f̂1, f̂2, . . . f̂6} ⊂
Q[y1, y2, . . . , y6][x1, x2, · · · , x6] listed in Appendix section A.4. Using Macaulay resultant
to eliminate variables x2, x3, . . . , x6, we found out that Aσ is a 792 × 792 matrix and its
sub-matrix Bσ is a 600× 600 matrix.

Our attempt to quantify the expression swell factor was unsuccessful because Maple ran
out of memory when computing det(Aσ) and also det(Bσ). Using Dixon resultants, we were
able to determine that the number of terms in the Dixon resultant of F is only 23.

27

A drawback of the Macaulay resultant formulation is that it is possible that the matrices Aσ
and Bσ are singular, thus providing no information about the desired Macaulay resultant.
Another drawback of the Macaulay resultant formulation is that the sizes of the resultant
matrices are often large leading to an extraneous factor of high degree. Details on how to
address these hurdles are provided in [Kapur and Yagati, 1992].

1.3.3 Gröbner Bases

The first Gröbner basis algorithm [Buchberger, 2006] was given by Bruno Buchberger in
1965. The algorithm was named after his PhD advisor Wolfgang Gröbner. Since then, many
variations of the algorithm have been developed and implemented in computer algebra
systems such as Maple and Magma. The theory of Gröbner bases is much more extensive
and sophisticated than what we can delve into here. In this thesis, our focus is to only
review the parts of Gröbner bases that are needed to perform variable elimination from
polynomial systems. We note that the material in this section follows [Cox et al., 2015].

Monomial Orderings

Definition 1.22. Let k be a field and let M be a set of monomials in k[x1, x2, . . . , xn], i.e.,

M = {xα = xα1
1 xα2

2 · · · , x
αn
n : for allα ∈ Zn≥0}.

The vector α is called an exponent vector.

Definition 1.23. Let M be a set of monomials in k[x1, x2, . . . , xn]. An order relation < on
M is a total ordering if ∀xα, xβ, xγ

(i) Either xα < xβ or xα > xβ or xα = xβ and

(ii) xα > xβ and xβ > xγ =⇒ xα > xγ .

Definition 1.24. A monomial ordering on k[x1, . . . , xn] is a relation > on Zn≥0 satisfying

(i) > is a total ordering,

(ii) ∀α, β, γ ∈ Zn≥0, we have α > β =⇒ γ + α > γ + β and

(iii) Every non-empty subset S ⊂ Zn≥0 has a least element under > .

Definition 1.25. Let α, β ∈ Zn≥0 with α 6= β. Then α > β in lexicographical order written
as α >lex β, if the left-most non-zero element in α − β is positive. That is, the monomials
are compared first by their degree in the first variable, with ties broken by degree in the
second variable and so on.

28

Definition 1.26. Let α, β ∈ Zn≥0 with α 6= β. Let deg(α) = ∑n
i=1 αi = deg(xα). Then α > β

in graded lexicographical order written as α >grlex β, if deg(α) > deg(β) or deg(α) = deg(β)
and α >lex β. That is, monomials are compared first by their total degree, with ties broken
by lexicographic order.

Definition 1.27. For graded reverse lexicographic order with x1 > x2 > · · · > xn, monomi-
als are compared first by their total degree, with ties broken by reverse lexicographic order,
that is, by the smallest degree in xn, xn−1, · · · , x1. This order is commonly used because it
typically provides for the fastest Gröbner basis computations.

Definition 1.28. The leading term of f denoted by LT(f) is the term whose monomial is
greatest with respect to the fixed monomial order. The coefficient and monomial of this term
denoted by LC(f) and LM(f) are called the leading coefficient and the leading monomial
respectively.

Example 1.29. Consider the polynomial f = x1x
2
2x3 + x1x

4
3. The LM(f) = x1x

2
2x3 with

respect to lexicographic order with x1 > x2 > x3 and the LM(f) = x1x
4
3 with respect to

graded lexicographic order with x1 > x2 > x3.

Next, we would like to discuss testing for membership in an ideal with respect to a
monomial order using the division algorithm.

Division algorithm in k[x1, x2, . . . , xn]

Given f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn] \ {0}, to compute f ÷ {f1, f2, . . . , fs} with respect
to a monomial ordering means we seek quotients q1, q2, . . . , qs ∈ k[x1, x2, . . . , xn] and a
remainder r ∈ k[x1, x2, . . . , xn], which implies that f is expressible as f = ∑s

i=1 qifi + r.

Algorithm 2: Division algorithm
Input: A monomial ordering on Zn

≥0, a polynomial f and non-zero divisors
f1, . . . , fs ∈ k[x1, x2, . . . , xn] \ {0} .

Output: a polynomial r where no term of r is divisible by an LT(fi), and polynomials
q1, q2, . . . , qs such that f =

∑s
i=1 qifi + r.

1 (q1, q2, . . . , qs)← (0, 0, . . . , 0); (r, p)← (0, f)
2 while p 6= 0 do
3 Select the first fi such that LT(fi)|LT(p).
4 if no such i exists then
5 (r, p)← (r + LT(p), p− LT(p))

6 else t← LT(p)
LT(fi)

7 (qi, p)← (qi + t, p− tfi)
8 end if
9 end while

10 return (q1, q2, . . . , qs, r)

29

We remark that the output and the number of steps of the division algorithm depends
on the order of the fi’s. We give the following example to illustrate this.

Example 1.30. Suppose f1 = x1x2 + 1, f2 = x2 + 1 and f = x1x
2
2 − x1. Computing

f ÷ {f1, f2} with respect to <lex with x1 > x2 yields q1 = x2, q2 = −1, and a remainder
r = −x1 + 1. But computing f ÷ {f2, f1} with respect to <lex with x2 > x1 yields q1 =
x1x2 − x1, q2 = 0, and a remainder r = 0, which implies that f ∈ 〈f1, f2〉 .

Now consider the following example.

Example 1.31. Let {f1, f2} = {x2
1 + 1, x1x2 + 1}. Let I = 〈f1, f2〉 . Notice that

g = x2 − x1 = x2f1 − x1f2 =⇒ g ∈ I.

However, one cannot use the division algorithm in the above example with respect to any
monomial ordering to confirm that g is indeed an element of I. This problem will be remedied
by Gröbner bases.

Definition 1.32. Let I ⊆ k[x1, x2, . . . , xn] \ {0} be an ideal and let < be a monomial
ordering. A set G is said to be a Gröbner basis for I with respect to < if for every f ∈ I,
LT(f) is divisible by LT(g) for some g ∈ G.

Theorem 1.33. [Cox et al., 2015, Corollary 6, page 78] Fix a monomial order. Then every
ideal I ⊆ k[x1, x2, . . . , xn] has a Gröbner basis. Furthermore, any Gröbner basis for an ideal
I is a basis of I.

Example 1.34 (Example 1.31 revisited). Let {f1, f2} = {x2
1+1, x1x2+1}. Let I = 〈f1, f2〉 .

Recall
g = x2 − x1 = x2f1 − x1f2 =⇒ g ∈ I.

Thus {f1, f2, g} is a basis for I. The set G = {f1, g} is also a basis since f2 = x1g +
f1. Therefore, I = 〈f1, g〉 . Furthermore, notice that 〈LT(I)〉 = 〈x2, x

2
1〉 with respect to

lexicographical order x2 > x1. Since x1 /∈ 〈LT(I)〉 , it follows that G is a Gröbner basis for
I.

Proposition 1.35. [Cox et al., 2015, Proposition 1 and Corollary 2, page 83] Let G =
{g1, g2, . . . , gt} be a Gröbner basis for an ideal I ⊂ k[x1, x2, . . . , xn] with respect to the
monomial ordering < . Let f ∈ k[x1, x2, . . . , xn]. Then the remainder r of f ÷ G is unique
and satisfies

(i) r = 0 or no term in r is divisible by LT(gi).

(ii) There exists g ∈ I such that f = g + r.

(iii) f ∈ I ⇐⇒ r = 0.

Notice that condition (iii) in the above proposition solves the ideal membership problem.

30

Computing a Gröbner basis

Definition 1.36. Let f, g ∈ k[x1, x2, . . . , xn] \ {0},LM(f) = xα,LM(g) = xβ. Let xγ =
LCM(xα, xβ). The S-polynomial of f and g denoted by S(f, g) is defined as

S(f, g) = xγ

LT(f)f −
xγ

LT(g)g.

Definition 1.37. Let f, g ∈ k[x1, x2, . . . , xn]. We define f mod g to be the remainder of
the division f ÷ g.

Using S−polynomials, we now state Buchberger’s criterion for determining when a basis of
an ideal is a Gröbner basis.

Theorem 1.38 (Buchberger’s S−polynomial Criterion). [Cox et al., 2015, Theorem 6, page
86] Let I be an ideal with the generating set G = {g1, g2, . . . , gn}. Then G is a Gröbner
basis for an ideal I = 〈g1, g2, . . . , gn〉 with respect to a monomial ordering < if and only if

S(gi, gj) mod G = 0 for all i 6= j.

Example 1.39 (Example 1.34 revisited). Let

I =
〈
x2

1 + 1, x1x2 + 1
〉

=
〈
x2

1 + 1, x2 − x1
〉
.

Let G = {F1, F2} where F1 = x2
1 + 1 and F2 = x2 − x1. Observe that

F3 = S(F1, F2) = x2F1 − x2
1F2 = x2 + x3

1 mod G1 = 0.

So, G is a Gröbner basis for I.

Algorithm 3: Buchberger’s algorithm for computing a Gröbner basis
Input: A set of generators F = {f1, f2, . . . , fs} ⊂ k[x1, x2, . . . , xn] \ {0} and a monomial

ordering < .

Output: A Gröbner basis G = {g1, g2, · · · gt} for I = 〈f1, f2, . . . , fs〉 with respect to < .

1 G1 := F ; k := 1;
2 repeat
3 k := k + 1;
4 Gk := Gk−1;
5 for each pair {f, g} ⊂ Gk−1 do
6 r := S(f, g) mod Gk−1;
7 if r 6= 0 then Gk := Gk ∪ {r};
8 end do
9 until Gk = Gk−1

10 return Gk

31

Buchberger’s algorithm for computing a Gröbner basis terminates when

S(gi, gj) mod G = 0

for all gi, gj ∈ G for i 6= j. How can we be certain that this algorithm will always terminate?
We know this because the ideals generated by the leading term of the Gi’s will stabilize
by the ascending chain condition, which states that every strictly increasing sequence of
ideals in k[x1, · · · , xn] is finite. The ascending chain condition also implies that every ideal
of k[x1, · · · , xn] has a finite generating set (the Hilbert basis theorem), so we know that the
output of the Buchberger’s algorithm is a Gröbner basis. In general, if G is a Gröbner basis
for an ideal I, and LT(gi)|LT(gj) for i 6= j, then G \ {gj} is a Gröbner basis for I.

Definition 1.40. Let G = {g1, g2, · · · gt} be a Gröbner basis for I = 〈f1, f2, . . . , fs〉 with
respect to a monomial order > . Then G is minimal if

(i) LC(gi) = 1 for all i,

(ii) LT(gi) - LT(gj) ∀i 6= j.

Furthermore, G is reduced if

(i) LC(gi) = 1 for all i,

(ii) LT(gi) does not divide any term in gj for i 6= j.

We now state the most important result about a Gröbner basis that concerns us which
is how to use a Gröbner basis to solve a polynomial system.

Theorem 1.41 (The Elimination Theorem). [Cox et al., 2015, Theorem 2, page 122] Let
I ⊂ k[x1, x2, . . . , xn] be an ideal and let G be a Gröbner basis of I with respect to lexico-
graphical order where x1 > x2 > · · · , xn. Then G∩ k[xi, xi+1, . . . , xn] is a Gröbner basis for
the elimination ideal I ∩ k[xi, xi+1, . . . , xn] with respect to > for 1 ≤ i ≤ n.

We use the following example to demonstrate how to solve a parametric polynomial
system using Gröbner basis by computing its resultant R as defined in Definition 1.6.

Example 1.42 (Heron2d system). Let F = {f̂1, f̂2, f̂3} ⊂ Q[y1, y2, y3][x1, x2, x3] where

f̂1 = x2
2 + x2

3 − y2
3

f̂2 = (x2 − y1)2 + x2
3 − y2

2

f̂3 = −x3y1 + 2x1.

32

Using lexicographical order with x2 > x3 > x1 such that the coefficient field is Q(Y), we
obtain the Gröbner basis G = {ĝ1, ĝ2, ĝ3} where

ĝ1 = x2
1 + 1

16y
4
1 −

1
8y

2
1y

2
2 −

1
8y

2
1y

2
3 + 1

16y
4
2 −

1
8y

2
2y

2
3 + 1

16y
4
3,

ĝ2 = x3 −
2x1
y1

and

ĝ3 = x2 + −y
2
1 + y2

2 − y2
3

2y1
.

If we seek to eliminate variables x2, x3 from F then the resultant R = ĝ1.

1.4 Thesis Outline

The generalized formulation of Dixon resultants is described in Chapter 2. A new proba-
bilistic algorithm for extracting a sub-matrix of maximal rank from a given Dixon matrix
D with its failure probability analysis is also presented in Chapter 2. Chapter 3 covers the
presentation of all the background materials and the sparse interpolation tools that were
necessary for designing our new algorithms. In Chapter 4, a new sparse multivariate ratio-
nal function interpolation algorithm is developed. Our new Dixon resultant algorithm which
uses our new sparse multivariate rational function interpolation method with benchmarks
is presented in Chapter 5. The detailed failure probability analysis and the complexity anal-
ysis (in terms of the number of black box probes used) of our Dixon resultant algorithm are
given in Chapter 6. Lastly, in Chapter 7, we present a new black box algorithm for solving
a parametric linear system using our new sparse rational function interpolation method.

1.5 Published Work

Some parts of this thesis on Dixon resultants have been published in the proceedings of
CASC’ 2022 [Jinadu and Monagan, 2022a]. We have also presented some of our work on
Dixon resultants at the Maple 2022 conference, and at the ISSAC 2022 poster session (a
4-page extended abstract was published [Jinadu and Monagan, 2022b] in ACM commu-
nications). Our results on solving parametric linear systems have been published in the
proceedings of CASC’ 2023 [Jinadu and Monagan, 2023]. A journal version of our results
on Dixon resultants is currently being prepared.

1.6 Demo of Software

We demonstrate how our new two software programs work by solving Example 1.10 (the
robot arms system) and interpolating the unique solution of a simple parametric linear
system.

33

[ajinadu@cecm-maple ~]$ maple robotarms
 |\^/| Maple 2022 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2022
 \ MAPLE / All rights reserved. Maple is a trademark of
 <____ ____> Waterloo Maple Inc.
 | Type ? for help.
> with(CodeTools):

Solving the robotarms system using our Dixon resultant code

> sys := [

> aa * t2^2 * t1^2 * b2^2 * b1^2 + 2 * l1 * t1^2 * b2^2 * b1^2 + aa *
> t1^2 * b2^2 * b1^2 - 2 * l1 * t2^2 * b2^2 * b1^2 + aa * t2^2 * b2^2
> * b1^2 + aa * b2^2 * b1^2
> + 2 * l2 * t2^2 * t1^2 * b1^2 + aa * t2^2 * t1^2 * b1^2 + 2 * l2 *
> t1^2 * b1^2 + 2 * l1 * t1^2 * b1^2 + aa * t1^2 * b1^2 + 2 * l2 *
> t2^2 * b1^2 - 2 * l1 * t2^2 * b1^2
> + aa * t2^2 * b1^2 + 2 * l2 * b1^2 + aa * b1^2 - 2 * l2 * t2^2 *
> t1^2 * b2^2 + aa * t2^2 * t1^2 * b2^2 - 2 * l2 * t1^2 * b2^2 + 2 *
> l1 * t1^2 * b2^2 + aa * t1^2 * b2^2
> - 2 * l2 * t2^2 * b2^2 - 2 * l1 * t2^2 * b2^2 + aa * t2^2 * b2^2 -
> 2 * l2 * b2^2 + aa * b2^2 + aa * t2^2 * t1^2 + 2 * l1 * t1^2 + aa *
> t1^2 - 2 * l1 * t2^2 + aa * t2^2 + aa,

> 2 * l1 * t2 * t1^2 * b2^2 * b1^2 - 2 * l1 * t2^2 * t1 * b2^2 * b1^
> 2 - 2 * l1 * t1 * b2^2 * b1^2 + 2 * l1 * t2 * b2^2 * b1^2 + 2 * l2
> * t2^2 * t1^2 * b2 * b1^2
> + 2 * l2 * t1^2 * b2 * b1^2 + 2 * l2 * t2^2 * b2 * b1^2 + 2 * l2
> * b2 * b1^2 + 2 * l1 * t2 * t1^2 * b1^2 - 2 * l1 * t2^2 * t1 * b1^
> 2 - 2 * l1 * t1 * b1^2 + 2 * l1 * t2 * b1^2
> - 2 * l2 * t2^2 * t1^2 * b2^2 * b1 - 2 * l2 * t1^2 * b2^2 * b1 - 2
> * l2 * t2^2 * b2^2 * b1 - 2 * l2 * b2^2 * b1 - 2 * l2 * t2^2 * t1^
> 2 * b1 - 2 * l2 * t1^2 * b1 - 2 * l2 * t2^2 *
> b1 - 2 * l2 * b1 + 2 * l1 * t2 * t1^2 * b2^2 - 2 * l1 * t2^2 * t1
> * b2^2 - 2 * l1 * t1 * b2^2 + 2 * l1 * t2 * b2^2 + 2 * l2 * t2^2 *
> t1^2 * b2 + 2 * l2 * t1^2 * b2
> + 2 * l2 * t2^2 * b2 + 2 * l2 * b2 + 2 * l1 * t2 * t1^2 - 2 * l1
> * t2^2 * t1 - 2 * l1 * t1 + 2 * l1 * t2,

> - al^2 * x * t1^2 * b1^2 - x * t1^2 * b1^2 - l3 * al^2 * t1^2 * b1^2
> - l2 * al^2 * t1^2 * b1^2 - l1 * al^2 * t1^2 * b1^2 + l3 * t1^2 *
> b1^2 - l2 * t1^2 * b1^2
> - l1 * t1^2 * b1^2 - al^2 * x * b1^2 - x * b1^2 - l3 * al^2 * b1^2
> - l2 * al^2 * b1^2 + l1 * al^2 * b1^2 + l3 * b1^2 - l2 * b1^2 + l1
> * b1^2 - 4 * l3 * al * t1^2 *
> b1 - 4 * l3 * al * b1 - al^2 * x * t1^2 - x * t1^2 + l3 * al^2 * t1^2

> + l2 * al^2 * t1^2 - l1 * al^2 * t1^2 - l3 * t1^2 + l2 * t1^2 - l1
> * t1^2 - al^2 * x - x
> + l3 * al^2 + l2 * al^2 + l1 * al^2 - l3 + l2 + l1,

> - al^2 * y * t1^2 * b1^2 - y * t1^2 * b1^2 - 2 * l3 * al * t1^2 *
> b1^2 + 2 * l1 * al^2 * t1 * b1^2 + 2 * l1 * t1 * b1^2 - al^2 * y *
> b1^2 - y * b1^2 - 2 * l3 * al * b1^2 + 2 * l3 * al^2 * t1^2 * b1 + 2
> * l2 * al^2 * t1^2 * b1 - 2 * l3 * t1^2 * b1 + 2 * l2 * t1^2 * b1
> + 2 * l3 * al^2 * b1 + 2 * l2 * al^2 * b1 - 2 * l3 * b1 + 2 * l2 *
> b1 - al^2 * y * t1^2 - y * t1^2 + 2 * l3 * al * t1^2 + 2 * l1 * al^2 *
> t1 + 2 * l1 * t1 - al^2 * y - y + 2 * l3 * al]:
> Y := indets(sys);
 Y := {aa, al, b1, b2, l1, l2, l3, t1, t2, x, y}

> Z := [t1=x1, aa=y1, al=y2,l1=y3, l2=y4, l3=y5, x=y6, y=y7]:
> Sys := subs(Z,sys):
> elim := [t2,b1,b2];
 elim := [t2, b1, b2]

> X := [x1,y1,y2,y3,y4,y5,y6,y7];
 X := [x1, y1, y2, y3, y4, y5, y6, y7]

> read det; read newdeg; read dixon;read minor; read dixres; read nextprime; read Bmbot;

memory used=2.7MB, alloc=40.3MB, time=0.05
> printf(" The number of polynomial equations = %d \n", nops(Sys));
 The number of polynomial equations = 4
> printf(" The number of variables = %d \n", nops(elim)+1);
 The number of variables = 4
> printf(" The number of parameters = %d \n", nops(X)-1);
 The number of parameters = 7
> M := dixonmatrix(Sys, elim): # Construction of the Dixon matrix
Dixon: n=3
Dixon: matrix done
Dixon: #minors=2
Dixon: #delta=104256
Dixon: 32 x 32
> rank,rows,cols := minor(M): # Extracting a maximal minor
minor: 32 x 32
minor: #nonzero=580
memory used=68.1MB, alloc=47.0MB, time=0.33
minor: starting elimination
> printf("The rank is %d \n", rank);
The rank is 16
> Bi := M[rows,cols]: # extract minor
> L := StronglyConnectedBlocks(Bi):
> BlockStructure := map(RowDimension,L);
 BlockStructure := [8, 8]

> member(min(BlockStructure),BlockStructure,'kat'):
> if min(BlockStructure) = 1 then member(max(BlockStructure),BlockStructure,'kat'):
 fi:

> n := BlockStructure[kat]:
> R := convert(L[kat],listlist):
> deg_M := [seq(max(seq(seq(degree(R[ii][kj],var),ii=1..n),kj=1..n)), var in X)]:
> rt := [R,X,n]:
> GlobalCArray := Array(0..n-1,0..n-1,order=C_order,datatype=integer[8]):
> E := CodeTools[Usage](DixonRes(BB,X)); # My Dixon resultant code
DO BASIS SHIFT
Number of Monic Square Factors = 3
Number of probes used to obtain the degree bounds is = 4096
memory used=124.0MB, alloc=79.0MB, time=2.88
Number of probes for the first prime = 13000
 The returned answer(s) is correct with w.h.p
memory used=67.43MiB, alloc change=0 bytes, cpu time=3.52s, real time=3.51s, gc time=24.0
4ms
 2 2 2 2 2 2 2 2 2 2 2 2 2
E := (x1 y2 y3 + 2 x1 y2 y3 y6 - x1 y2 y4 - 2 x1 y2 y4 y5 - x1 y2 y5

 2 2 2 2 2 2 2 2 2 2 2 2
 + x1 y2 y6 + x1 y2 y7 - 4 x1 y2 y3 y7 + x1 y3 + 2 x1 y3 y6 - x1 y4

 2 2 2 2 2 2 2 2 2 2 2 2
 + 2 x1 y4 y5 - x1 y5 + x1 y6 + x1 y7 + y2 y3 - 2 y2 y3 y6 - y2 y4

 2 2 2 2 2 2 2 2 2
 - 2 y2 y4 y5 - y2 y5 + y2 y6 + y2 y7 - 4 x1 y3 y7 + y3 - 2 y3 y6 - y4

 2 2 2 4 4 4 2 2 2 4 2 3
 + 2 y4 y5 - y5 + y6 + y7) (x1 y1 - 4 x1 y1 y4 + 2 x1 y1 - 8 x1 y1 y3

 2 2 2 2 2 2 2 2 4 3 2 2
 + 8 x1 y1 y3 - 8 x1 y1 y4 + 16 x1 y1 y3 y4 + y1 - 8 y1 y3 + 24 y1 y3

 2 2 3 2 4 2 2 2
 - 4 y1 y4 - 32 y1 y3 + 16 y1 y3 y4 + 16 y3 - 16 y3 y4) (x1 + 1)

> printf(" The number of terms in E when fractions are cleared is %d \n",nops(expan
d(E)));
 The number of terms in E when fractions are cleared is 450
> read xtrafac;
> Ident_Factors(Sys,X,E); # This identifies the extraneous and good factors of E
 The number of terms in the largest polynomial to be interpolated is = 14
memory used=166.6MB, alloc=79.0MB, time=3.98
7, 5, JUNK(x1^2*y1^2+2*x1^2*y1*y4+y1^2-4*y1*y3+2*y1*y4+4*y3^2-4*y3*y4)
30, 14, GOOD-FACTOR(x1^2*y2^2*y3^2+2*x1^2*y2^2*y3*y6-x1^2*y2^2*y4^2-2*x1^2*y2^2*y4*y5-
x1^2*y2^2*y5^2+x1^2*y2^2*y6^2+x1^2*y2^2*y7^2-4*x1*y2^2*y3*y7+x1^2*y3^2+2*x1^2*y3*y6-x1^
2*y4^2+2*x1^2*y4*y5-x1^2*y5^2+x1^2*y6^2+x1^2*y7^2+y2^2*y3^2-2*y2^2*y3*y6-y2^2*y4^2-2*y2
^2*y4*y5-y2^2*y5^2+y2^2*y6^2+y2^2*y7^2-4*x1*y3*y7+y3^2-2*y3*y6-y4^2+2*y4*y5-y5^2+y6^2+
y7^2)
7, 5, JUNK(x1^2*y1^2-2*x1^2*y1*y4+y1^2-4*y1*y3-2*y1*y4+4*y3^2+4*y3*y4)
2, 1, GOOD-FACTOR(x1^2+1)

> quit
memory used=182.2MB, alloc=111.0MB, time=4.06

[ajinadu@cecm-maple ~]$ maple test2
 |\^/| Maple 2022 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2022
 \ MAPLE / All rights reserved. Maple is a trademark of
 <____ ____> Waterloo Maple Inc.
 | Type ? for help.

> with(LinearAlgebra):

Solving a parametric linear system using sparse rational function interpolation

> gh := Matrix([[y2+2,y3+6,0], [0,y3,y2+4]]); # 2 by 3 augmented matrix
 [y2 + 2 y3 + 6 0]
 gh := []
 [0 y3 y2 + 4]

> gg := convert(gh,listlist):
> X := convert(indets(gg),list); ## These are the parameters
 X := [y2, y3]

> rt := [gg,X, RowDimension(gg)]:
> OrderRow := rt[3]:
> n,m := rt[3],rt[3]+1:
> deg_M := [seq(max(seq(seq(degree(rt[1][ii][kj],var),ii=1..n),kj=1..m)), var in rt[2])
]:
> GlobalCArray := Array(1..n,1..m,order=C_order,datatype=integer[8]):
> read linsolve:
memory used=3.1MB, alloc=40.3MB, time=0.05
#trace(BB);

#trace(ParaLinSolve);

> gk1 := ParaLinSolve(BB,X); # This is the output of my code
All the degree bounds have been obtained
 [-y2 y3 - 6 y2 - 4 y3 - 24 y2 + 4]
 gk1 := [-------------------------, ------]
 [y2 y3 + 2 y3 y3]

> gk2 := LinearSolve(gh); # Using Maple's builtin linear solver
 [y2 y3 + 6 y2 + 4 y3 + 24]
 [- ------------------------]
 [y3 (y2 + 2)]
 gk2 := []
 [y2 + 4]
 [------]
 [y3]

> quit
memory used=7.6MB, alloc=41.3MB, time=0.07
[ajinadu@cecm-maple ~]$

Chapter 2

Dixon Resultants

2.1 Summary of Contributions

In this chapter, we describe the generalized formulation of Dixon resultants in detail. But
first, we highlight our main contributions here. In Subsection 2.2.1, we obtain a new for-
mula (2.6) for constructing the cancellation matrix Ĉ which produces the Dixon polyno-
mial ∆Xe . This new formula for constructing Ĉ effectively avoids the occurrence of in-
termediate expression swell when computing ∆Xe . Thus, Theorem 2.3 is new. In Subsec-
tion 2.2.1, we show that the Dixon resultant R is a polynomial in the elimination ideal
J =

〈
f̂1, f̂2, . . . , f̂n

〉
∩ Q(Y)[x1] (Theorem 2.13). In Subsection 2.2.4, we present a new

probabilistic algorithm for extracting a sub-matrix of maximal rank (Algorithm 5) from a
given Dixon matrix. In Subsection 2.2.5, we give a failure probability bound for Algorithm
5 using the Schwartz-Zippel Lemma.

2.2 Generalized Formulation

We first begin with our usual notations. Let X = {x1, . . . , xn} be the set of variables and let
Y = {y1, . . . , ym} be the set of parameters with n ≥ 2 andm ≥ 1. Let F = {f̂1, f̂2, . . . , f̂n} ⊂
Q[Y][X] be a parametric polynomial system where each f̂i is a polynomial in variables X
with coefficients in the polynomial ring Q[Y] such that |F|= |X|. Let I =

〈
f̂1, f̂2, . . . , f̂n

〉
be the ideal generated by F and let J = I ∩ Q(Y)[x1] be the elimination ideal in Q(Y)[x1].
Let Xe = {x̄2, · · · , x̄n} be a set of new variables corresponding to the set Xe = {x2, . . . , xn}
respectively. Let

xα = xα1
1 xα2

2 · · ·x
αn
n .

Let I = {2, . . . , n}. For each i ∈ I, let

πi(xα) = xα1
1 x̄α2

2 · · · x̄
αi
i x

αi+1
i+1 x

αi+2
i+2 · · ·x

αn
n

38

so that
π1(xα) = xα.

The evaluation map πi extended naturally to polynomials is defined as

πi(f̂(x1, x2, · · · , xn)) = f̂(x1, x̄2, · · · , x̄i, xi+1, xi+2 · · · , xn). (2.1)

Notice that for i ∈ I the evaluation map πi replaces the (i− 1) variables after x1 in f̂ ∈ F
with the x̄i’s, and the main variable x1 is never replaced.

There are four major steps involved in computing the Dixon resultant of a given paramet-
ric polynomial system F . The first major step is to construct a matrix called the cancellation
matrix C, whose entries involve the given input parametric polynomial system F . Then the
determinant of C, which is called the Dixon polynomial, is computed.

2.2.1 Computing the Dixon Polynomial

Definition 2.1. Given a parametric polynomial system F , let Xe = {x2, . . . , xn} be the set
of variables to be eliminated and let x1 be the remaining variable. Let Xe = {x̄2, x̄3 · · · , x̄n}
be the set of new variables corresponding to Xe. We define the n× n cancellation matrix

C =


π1(f̂1) π1(f̂2) . . . π1(f̂n)
π2(f̂1) π2(f̂2) . . . π2(f̂n)

...
...

...
πn(f̂1) πn(f̂2) . . . πn(f̂n)

 . (2.2)

Definition 2.2. Let

P =
n−1∏
i=1

(Xei −Xei) =
n∏
i=2

(xi − x̄i)

and let
∆Xe = det(C)

P
. (2.3)

We refer to ∆Xe ∈ Q[Y, x1][Xe, Xe] as the Dixon polynomial of F with respect to Xe.

Notice that the determinant of the cancellation matrix det(C) is a multiple of the Dixon
polynomial ∆Xe in (2.3). Thus, if n is large, and since there are 2n−1 terms in

P =
n∏
i=2

(xi − x̄i)

when expanded, then computing determinant of the cancellation matrix may result in large
intermediate expression swell. This intermediate expression swell can cause the computation
of the Dixon polynomial to become the most expensive step of the Dixon resultant method.
We address this as follows.

39

Let Rowj(C) denote the j-th row of the cancellation matrix C. To avoid intermediate
expression swell which may occur when computing ∆Xe , we will not use formula (2.3) to
compute ∆Xe . Instead, we use an idea communicated to us by Lewis [Lewis, 2018a]. We
first use a bottom up approach to construct a new cancellation matrix Ĉ using the identity

Rowj(Ĉ) = Rowj(C)− Rowj−1(C)
xj − x̄j

(2.4)

for j = n, n− 1, · · · 2 and
Row1(Ĉ) = Row1(C),

then we compute
∆Xe = det(Ĉ).

Upon simplification of identity (2.4), a new formula for getting the entries of the new
cancellation matrix Ĉij is derived in Theorem 2.3, which avoids doing polynomial divisions.
This new formula will also be used to obtain a height bound for ∆Xe in Theorem 6.5 of
Chapter 6 instead of using (2.3).

Theorem 2.3. Let F = {f̂1, f̂2, . . . , f̂n} ⊂ Z[y1, y2, . . . , ym][x1, x2, . . . , xn] and let dmax,j =
maxf̂∈F deg(f̂ , xj) denote the maximum partial degree in variable xj of all the polynomials
f̂ ∈ F . For j = 2, 3, . . . , n, and k = 1, 2, . . . , n, we have that

(i) the entries Ĉj,k of the new cancellation matrix Ĉ are polynomials and

det(Ĉ) = ∆Xe = det(C)
P

.

(ii) Furthermore, by expressing

πj(f̂k)− πj−1(f̂k) =
dmax,j∑
u=0

f̃u,j,kx
u
j , (2.5)

where
f̃u,j,k ∈ Z[x1, x̄2, . . . , x̄j−1, xj+1, . . . , xn]

for u 6= 0, and
f̃0,j,k ∈ Z[x1, x̄2, . . . , x̄j , xj+1, . . . , xn],

we obtain

Ĉj,k = πj(f̂k)− πj−1(f̂k)
xj − x̄j

=
dmax,j−1∑
i=0

dmax,j−1∑
u=i

f̃u+1,j,k x
u−i
j

 x̄ i
j . (2.6)

40

Proof. For 2 ≤ j ≤ n, observe that πj(f̂k)− πj−1(f̂k) ≡ 0 (mod ()xj − x̄j) since

πj(f̂k)− πj−1(f̂k) = f̂k(x1, x̄2, . . . , x̄j , xj+1, . . . , xn)− f̂k(x1, x̄2, . . . , x̄j−1, xj · · · , xn).

Thus, the difference quotient
πj(f̂k)− πj−1(f̂k)

xj − x̄j

has no remainder, which implies that the entries Ĉj,k are polynomials. Now let

E =



π1(f̂1) π1(f̂2) . . . π1(f̂n)
π2(f̂1)− π1(f̂1) π2(f̂2)− π1(f̂2) . . . π2(f̂n)− π1(f̂n)
π3(f̂1)− π2(f̂1) π3(f̂2)− π2(f̂2) . . . π3(f̂n)− π2(f̂n)

...
...

...
πn(f̂1)− πn−1(f̂1) πn(f̂2)− πn−1(f̂2) . . . πn(f̂n)− πn−1(f̂n)


where

Rowi(E) = Rowi(C)− Rowi−1(C).

From elementary linear algebra, we know that adding a multiple of a row of a matrix to
another row of the same matrix does not affect its determinant. Thus, we have

det(E) = det(C).

Next, since (xj − x̄j)|
(
πj(f̂k)− πj−1(f̂k)

)
, we can write

πj(f̂k)− πj−1(f̂k) = (xj − x̄j)Ĉj,k

for some polynomial Ĉj,k ∈ Z[x1, x̄2, . . . , x̄j , xj , xj+1, . . . , xn]. So, E becomes

E =



π1(f̂1) π1(f̂2) . . . π1(f̂n)
(x2 − x̄2)Ĉ2,1 (x2 − x̄2)Ĉ2,2 . . . (x2 − x̄2)Ĉ2,n

(x3 − x̄3)Ĉ3,1 (x3 − x̄3)Ĉ3,2 . . . (x3 − x̄3)Ĉ2,n
...

...
...

...
(xn − x̄n)Ĉn,1 (xn − x̄n)Ĉn,2 . . . (xn − x̄n)Ĉn,n


.

Therefore,

det(E) = det(Ĉ)
n∏
j=2

(xj − x̄j).

Using (2.3), we have

∆Xe = det(C)∏n
j=2(xj − x̄j)

= det(E)∏n
j=2(xj − x̄j)

=
det(Ĉ)∏n

j=2(xj − x̄j)∏n
j=2(xj − x̄j)

= det(Ĉ).

41

This completes part (i). We proceed with the proof of part (ii) as follows. Recall that the
formal power series representation of 1

xj − x̄j
when expanded about x̄j can be written as

1
xj − x̄j

=
∞∑
i=1

x−ij x̄
i−1
j .

Using (2.5), we have

Ĉj,k = πj(f̂k)− πj−1(f̂k)
xj − x̄j

=
dmax,j∑
u=0

f̃u,j,kx
u
j

(∞∑
i=1

x−ij x̄
i−1
j

)

=
dmax,j∑
u=0

f̃u,j,kx
u
j

(
u∑
i=1

x−ij x̄
i−1
j

)
+
dmax,j∑
u=0

f̃u,j,kx
u
j

 ∞∑
i=u+1

x−ij x̄
i−1
j


︸ ︷︷ ︸

G

.

Since the entries Ĉj,k are polynomials, we have that G = 0. Therefore,

Ĉj,k =
dmax,j∑
u=0

f̃u,j,kx
u
j

(
u∑
i=1

x−ij x̄
i−1
j

)
. (2.7)

Observe that

u∑
k=1

x̄k−1
j

xk−1
j

=
1−

(
x̄j

xj

)u
1− x̄j

xj

=
xuj − x̄uj

xu−1
j (xj − x̄j)

.

So,

xuj

(
u∑
i=1

x−i−1
j x̄ i

j

)
=
xuj
xj

(
u∑
i=1

x−ij x̄
i
j

)
=
xu−1
j

(
xuj − x̄uj

)
xu−1
j (xj − x̄j)

=
xuj − x̄uj
xj − x̄j

=
x̄uj

((
xj

x̄j

)u
− 1

)
x̄j
(
xj

x̄j
− 1

) =
x̄u−1
j

((
xj

x̄j

)u
− 1

)
(
xj

x̄j
− 1

)
= x̄u−1

j

u∑
i=1

xi−1
j

x̄i−1
j

.

Therefore, we get

xuj

(
u∑
i=1

x−i−1
j x̄ i

j

)
= x̄u−1

j

u∑
i=1

xi−1
j x̄−i+1

j =
u∑
i=1

xi−1
j x̄u−ij =

u−1∑
i=0

xij x̄
u−i−1
j .

42

Thus, (2.7) becomes

Ĉj,k =
dmax,j∑
u=1

f̃u,j,k

(
u−1∑
i=0

xij x̄
u−i−1
j

)
. (2.8)

By expanding (2.8), we get

dmax,j∑
u=1

f̃u,j,k

(
u−1∑
i=0

xij x̄
u−i−1
j

)
= f̃1,j,k + f̃2,j,k (x̄j + xj) + f̃3,j,k

(
x̄ 2
j + xj x̄j + x2

j

)
+ f̃4,j,k

(
x̄ 3
j + xj x̄

2
j + x2

j x̄j + x3
j

)
+ · · ·+

+ f̃dmax,j−1,j,k

dmax,j−2∑
i=0

xij x̄
dmax,j−2−i
j


+ f̃dmax,j ,j,k

dmax,j−1∑
i=0

xij x̄
dmax,j−1−i
j

 .
Rearranging the terms on the right-hand side of the above sum in powers of x̄j yields

Ĉj,k = x̄0
j

(
f̃1,j,k + f̃2,j,kxj + f̃3,j,kx

2
j + f̃4,j,kx

3
j + · · ·+ f̃dmax,j ,j,kx

dmax,j−1
)

+ x̄j
(
f̃2,j,k + f̃3,j,kxj + f̃4,j,kx

2
j + · · ·+ f̃dmax,j ,j,kx

dmax,j−2
)

+ x̄2
j

(
f̃3,j,k + f̃4,j,kxj + f̃5,j,kx

2
j + · · ·+ f̃dmax,j ,j,kx

dmax,j−3
)

+ x̄3
j

(
f̃4,j,k + f̃5,j,kxj + f̃6,j,kx

2
j + · · ·+ f̃dmax,j ,j,kx

dmax,j−4
)

+
...

+ x̄
dmax,j−2
j

(
f̃dmax,j−1,j,k + f̃dmax,j ,j,k x

)
+ x̄

dmax,j−1
j f̃dmax,j ,j,k.

By examining the sum on the right-hand side of the above sum, we can write

Ĉj,k = x̄0
j

dmax,j∑
w=1

f̃w,j,kx
w−1

+ x̄ 1
j

dmax,j∑
w=2

f̃w,j,kx
w−2

+ x̄2
j

dmax,j∑
w=3

f̃w,j,kx
w−3


+ x̄3

j

dmax,j∑
w=4

f̃w,j,kx
w−4

+ · · ·+ x̄
dmax,j−2
j

 dmax,j∑
w=dmax,j−1

f̃w,j,kx
w−(dmax,j−1)


+ x̄

dmax,j−1
j f̃dmax,j ,j,k.

43

Substituting i = w − 1 in the above sum yields

Ĉj,k = x̄0
j

dmax,j−1∑
i=0

f̃i+1,j,kx
i−0

+ x̄ 1
j

dmax,j−1∑
i=1

f̃i+1,j,kx
i−1

+ x̄2
j

dmax,j−1∑
i=2

f̃i+1,j,kx
i−2


+ x̄3

j

dmax,j−1∑
i=3

f̃i+1,j,kx
i−3

+ · · ·+ x̄
dmax,j−2
j

 dmax,j−1∑
i=dmax,j−2

f̃i+1,j,kx
i−(dmax,j−2)


+ x̄

dmax,j−1
j f̃dmax,j ,j,k

(
x(dmax,j−1−(dmax,j−1)

)
=

dmax,j−1∑
i=0

dmax,j−1∑
u=i

f̃u+1,j,k x
u−i
j

 x̄ i
j .

We remind the reader again that the essence of simplifying (2.8) further to get (2.6) is
to obtain a better height bound for the Dixon resultant R in Theorem 6.5. We now give the
following example to illustrate how to use (2.6).

Example 2.4. Let

f̂1 = x4
1y

4
1 − x3

2 +
100∑
j=3

y3
jx

3
j .

Then
Ĉ2,1 = π2(f̂1)− π1(f̂1)

x2 − x̄2
= x3

2 − x̄3
2

x2 − x̄2
= x̄ 2

2 + x̄2x2 + x2
2.

Using our new formula (2.6) which avoids polynomial divisions, we have

dmax,2 = 3, f̃0,2,1 = −x̄3
2, f̃1,2,1 = f̃2,2,1 = 0, f̃3,2,1 = 1.

Hence,

Ĉ2,1 = (f̃1,2,1x
0−0 + f̃2,2,1x

1−0
2 + f̃3,2,1x

2−0
2) + (f̃2,2,1x

1−1
2 + f̃3,2,1x

2−1
2)x̄2 + (f̃3,2,1x

2−2
2)x̄ 2

2

= x̄ 2
2 + x̄2x2 + x2

2.

To illustrate and quantify the gain realized by using (2.6) instead of (2.3) to construct
a cancellation matrix, we provide the following real example.

Example 2.5 (Heron 3d system). Consider the parametric system F = {f̂1, f̂2, f̂3, . . . , f̂6} ⊂
Q[y1, y2, . . . , y6][x1, x2, . . . , x4] listed in Appendix A.4. Suppose we want to eliminate vari-
ables Xe = {x2, x3, . . . , x6} from F . Let Xe = {x̄2, x̄3, . . . , x̄6} be the set of new variables
corresponding to Xe. Using (2.6), we have

44

Ĉ =



f̂1 f̂2 f̂3 f̂4 f̂5 f̂6

x2 + x̄2 x2 − 2y1 + x̄2 0 0 x2 − 2x4 + x̄2 0
x3 + x̄3 x3 + x̄3 0 0 x3 − 2x5 + x̄3 −x6y1

0 0 x4 + x̄4 x4 − 2y1 + x̄4 x4 − 2x̄2 + x̄4 0
0 0 x5 + x̄5 x5 + x̄5 x5 − 2x̄3 + x̄5 0
0 0 x6 + x̄6 x6 + x̄6 x6 + x̄6 −x̄3y1


Thus, taking the determinant of the Ĉ, we obtain the Dixon polynomial ∆Xe which is

8x2x
2
5x̄2x̄3y

3
1 − 4x2x

2
5x̄3y

4
1 + 4x2x

2
5x̄3y

2
1y

2
2 − 4x2x

2
5x̄3y

2
1y

2
3 + 8x2x5x̄2x̄3x̄5y

3
1

− 4x2x5x̄3x̄5y
4
1 + 4x2x5x̄3x̄5y

2
1y

2
2 − 4x2x5x̄3x̄5y

2
1y

2
3 + 8x2x

2
6x̄2x̄3y

3
1 − 4x2x

2
6x̄3y

4
1

+ 4x2x
2
6x̄3y

2
1y

2
2 − 4x2x

2
6x̄3y

2
1y

2
3 + 8x2x6x̄2x̄3x̄6y

3
1 − 4x2x6x̄3x̄6y

4
1 + 4x2x6x̄3x̄6y

2
1y

2
2

− 4x2x6x̄3x̄6y
2
1y

2
3 − 8x3x4x5x̄2x̄3y

3
1 + 4x3x4x5x̄3y

4
1 − 4x3x4x5x̄3y

2
1y

2
2 + 4x3x4x5x̄3y

2
1y

2
3

− 8x3x4x̄2x̄3x̄5y
3
1 + 8x3x4x̄

2
3x̄4y

3
1 − 4x3x4x̄

2
3y

4
1 + 4x3x4x̄

2
3y

2
1y

2
4 − 4x3x4x̄

2
3y

2
1y

2
6

− 4x3x4x̄3x̄5y
2
1y

2
2 + 4x3x4x̄3x̄5y

2
1y

2
3 + 4x3x5x̄2x̄3y

4
1 − 4x3x5x̄2x̄3y

2
1y

2
4 + 4x̄2x̄

2
3x̄5y

4
1

+ 4x3x5x̄2x̄3y
2
1y

2
6 + 8x3x5x̄

2
3x̄5y

3
1 − 4x3x5x̄3y

3
1y

2
3 + 4x3x5x̄3y

3
1y

2
5 − 4x3x5x̄3y

3
1y

2
6

+ 4x3x̄2x̄3x̄5y
4
1 − 4x3x̄2x̄3x̄5y

2
1y

2
4 + 4x3x̄2x̄3x̄5y

2
1y

2
6 − 4x3x̄

2
3x̄4y

4
1 + 4x3x̄

2
3x̄4y

2
1y

2
4

+ 8x3x̄
2
3y

3
1y

2
6 − 4x3x̄3x̄5y

3
1y

2
3 + 4x3x̄3x̄5y

3
1y

2
5 − 4x3x̄3x̄5y

3
1y

2
6 − 8x4x5x̄2x̄

2
3y

3
1

+ 4x4x5x̄
2
3y

2
1y

2
3 − 8x4x̄2x̄

2
3x̄5y

3
1 + 8x4x̄

3
3x̄4y

3
1 − 4x4x̄

3
3y

4
1 + 4x4x̄

3
3y

2
1y

2
4 − 4x4x̄

3
3y

2
1y

2
6

− 4x4x̄
2
3x̄5y

2
1y

2
2 + 4x4x̄

2
3x̄5y

2
1y

2
3 − 4x2

5x̄2x̄3y
4
1 + 4x2

5x̄2x̄3y
2
1y

2
2 − 4x2

5x̄2x̄3y
2
1y

2
3 − 8x2

5x̄
3
3y

3
1

+ 4x5x̄2x̄
2
3y

4
1 − 4x5x̄2x̄

2
3y

2
1y

2
4 + 4x5x̄2x̄

2
3y

2
1y

2
6 − 4x5x̄2x̄3x̄5y

4
1 + 4x5x̄2x̄3x̄5y

2
1y

2
2

− 4x5x̄
2
3y

3
1y

2
3 + 4x5x̄

2
3y

3
1y

2
5 − 4x5x̄

2
3y

3
1y

2
6 + 8x5x̄3x̄5y

3
1y

2
3 − 4x2

6x̄2x̄3y
4
1 + 4x2

6x̄2x̄3y
2
1y

2
2

− 8x2
6x̄

3
3y

3
1 + 8x2

6x̄3y
3
1y

2
3 − 4x6x̄2x̄3x̄6y

4
1 + 4x6x̄2x̄3x̄6y

2
1y

2
2 − 4x6x̄2x̄3x̄6y

2
1y

2
3 + 8x6x̄3x̄6y

3
1y

2
3

− 4x̄2x̄
2
3x̄5y

2
1y

2
4 + 4x̄2x̄

2
3x̄5y

2
1y

2
6 − 4x̄3

3x̄4y
4
1 + 4x̄3

3x̄4y
2
1y

2
4 − 4x̄3

3x̄4y
2
1y

2
6 − 4x̄2

3x̄5y
3
1y

2
3 + 8x̄3

3y
3
1y

2
6

− 4x̄2
3x̄5y

3
1y

2
6 − 48x1x3x6x̄3y

2
1 − 48x1x3x̄3x̄6y

2
1 − 48x1x6x̄

2
3y

2
1 − 48x1x̄

2
3x̄6y

2
1 + 4x̄2

3x̄5y
3
1y

2
5

+ 8x3x6x̄
2
3x̄6y

3
1 + 8x2

5x̄3y
3
1y

2
3 − 4x3x̄

2
3x̄4y

2
1y

2
6 + 4x3x4x̄3x̄5y

4
1 − 4x2

6x̄2x̄3y
2
1y

2
3 + 4x4x5x̄

2
3y

4
1

− 4x4x5x̄
2
3y

2
1y

2
2 − 4x5x̄2x̄3x̄5y

2
1y

2
3 + 4x4x̄

2
3x̄5y

4
1.

We determined that |∆Xe |= |det(Ĉ)|= 96. If we choose to compute ∆Xe using (2.3), then
|det(C)|= 928, which yields an expression swell factor of about 10.

Note that the order in which the variables to be eliminated Xe are replaced with the
corresponding new variables Xe can result in different Dixon polynomials (but they are
still equivalent) with respect to their various orderings. In this thesis, we do not focus on
exploiting the variable orderings. For more details on ordering of these variables, we refer
the reader to [Lewis, 2019] and [Chtcherba and Kapur, 2002].

45

2.2.2 Constructing a Dixon Matrix

After computing the Dixon polynomial, the second major step in the Dixon’s resultant
method is to build the Dixon matrix D from the Dixon polynomial ∆Xe .

To do this, we first need degree bounds for the Dixon polynomial ∆Xe in xi and x̄i

using (2.3). Let dmax,i = maxf̂∈F deg(f̂ , xi) denote the maximum partial degree of all the
polynomials in F with respect to the variable xi, and let the n × n cancellation matrix C
be viewed as

C =


Row1(C)(x1, x2, . . . , xn)
Row2(C)(x1, x̄2, . . . , xn)

...
Rown(C)(x1, x̄2, . . . , x̄n)


where Rowj(C)(x1, x̄2, . . . , x̄j , xj+1, . . . , xn) indicates that all the entries of the j−th row of
matrix C are polynomials in variables x1, x̄2, . . . , x̄j , xj+1, . . . , xn. Since the evaluation map
πi defined in (2.1) does not affect x1, we have that

deg(∆Xe , x1) ≤ ndmax,1.

Notice that
deg(∆Xe , x2) ≤ dmax,2 − 1,

and
deg(∆Xe , x̄2) ≤ (n− 1)dmax,2 − 1,

because x2 is only present in the first row, since it is been replaced with x̄2 from row 2 to
row n of matrix C, and after computing det(C), we also have to do a division by x2 − x̄2

from P in (2.3). Using the same reasoning, for 2 ≤ i ≤ n, it follows that

deg(∆Xe , xi) ≤ (i− 1)dmax,i − 1, (2.9)

and
deg(∆Xe , x̄i) ≤ (n− i+ 1)dmax,i − 1. (2.10)

Let V be a monomial column vector in Xe when ∆Xe is viewed as a polynomial in Xe

and let V be a monomial row vector in Xe when ∆Xe is viewed as a polynomial in Xe.

Notice that
|V | ≤

n∏
i=2

(n− i+ 1)dmax,i − 1 + 1 ≤ (n− 1)!
n∏
i=2

dmax,i,

46

because |{x̄i}|= n− 1, and the maximum number of possible monomials that appears in V
in x̄i including the constant term 1 is at most (n− i+ 1)dmax,i. Similarly, one can see that

|V | ≤
n∏
i=2

(i− 1)dmax,i − 1 + 1 ≤ (n− 1)!
n∏
i=2

dmax,i.

Writing out all the possible elements of vectors V and V would be of the form

V =
[∏n

i=2 x
(i−1)dmax,i−1
i . . . x

dmax,2−1
2 . . . x

(n−1)dmax,n−1
n · · · xn−1 . . . , x2 1

]
,

and

V =
[∏n

i=2 x̄
(n−i+1)dmax,i−1
i . . . x̄2

(n−1)dmax,2−1 . . . x̄
dmax,n−1
n x̄n−1 . . . , x̄2 1

]T
.

We remark that not all the monomials in V and V are typically present for non-generic
polynomials.

Example 2.6. Let X = {x1, x2, x3} and dmax,k = 2 for 1 ≤ k ≤ 3. Suppose we want to
eliminate Xe = {x2, x3}. The possible monomials in V and V can be expressed explicitly as

V =
[
1, x2, x3, x2x3, x

2
3, x

3
3, x2x

2
3, x2x

3
3

]
,

and
V =

[
1, x̄2, x̄3, x̄

2
2, x̄

3
2, x̄3x̄

3
2, x̄3x̄

2
2, x̄3x̄2

]
.

Hence,
|V |= |V |= 8 = (3− 1)! 22.

Lemma 2.7. Let V be a monomial column vector in variables Xe when ∆Xe is viewed as
a polynomial in Xe and let V be a monomial row vector in Xe when ∆Xe is viewed as a
polynomial in Xe. The Dixon polynomial ∆Xe can be written in bilinear form as

∆Xe = V DV (2.11)

where D is an s× t matrix with entries in Q[Y, x1] and t, s ≤ (n− 1)!∏n
i=2 dmax,i.

Proof. Since ∆Xe ∈ Q[Y, x1][Xe, Xe] is a polynomial in two disjoint set of variables Xe and
Xe, then it admits the bilinear form ∆Xe = V DV . Finally, the dimension of D follows from
the fact that |V |≤ (n− 1)!∏n

i=2 dmax,i and |V |≤ (n− 1)!∏n
i=2 dmax,i. Otherwise, the matrix

multiplication of V DV will not be possible.

Definition 2.8. The matrix D in the Lemma 2.7 is called the Dixon matrix.

47

Algorithm 4: ConstructDixon
Input: A parametric polynomial system F = {f̂1, . . . , f̂n} ⊂ Q[Y][X] and the list of

variables Xe = {x2, x3, . . . , xn} to be eliminated from F such that n ≥ 2.
Output: The Dixon matrix D as defined in Lemma 2.8.

1 Let Xe = {x̄2, x̄3, . . . , x̄n} be new variables corresponding to Xe.

2 Let Ĉ be a n× n zero matrix.
3 for j = 1, 2, · · ·n do
4 Ĉ1,j ← f̂j

5 end
6 for i = 2, · · ·n do
7 for j = 1, 2, · · ·n do
8 Construct Ĉi,j using (2.6) //Ĉ is the cancellation matrix
9 end

10 end
11 ∆Xe

← det(Ĉ) // ∆Xe
is the Dixon polynomial

12 Let V be the vector of monomials of ∆Xe in variables Xe

13 Let V be the vector of monomials of ∆Xe
in variables Xe

14 Let D be a |V |×|V | zero matrix.
15 for i = 1, 2, . . . , |V | do
16 v ← Vi

17 c← coeff(∆Xe
, v) // the coefficient of ∆Xe

with respect to v
18 for j = 1, 2, . . . , |V | do
19 v ← V j

20 Di,j ← coeff(c, v) // the coefficient of c with respect to v
21 end
22 end
23 return D

Given a parametric polynomial system F , Algorithm 4 can be used to construct the
Dixon matrix D.

2.2.3 Dixon Resultant

Definition 2.9. The Dixon resultant R of any generic polynomial system is the determinant
of its corresponding Dixon matrix D.

We illustrate the construction of a Dixon matrix with the Heron 2d system.

Example 2.10 (Heron 2d). Let F = {f̂1, f̂2, f̂3} ⊂ Q[Y][X] where

f̂1 = x2
2 + x2

3 − y2
3

f̂2 = (x2 − y1)2 + x2
3 − y2

2

f̂3 = −x3y1 + 2x1

48

with variables X = {x1, x2, x3} and parameters Y = {y1, y2, y3}. Let Xe = {x2, x3} be the
variables to be eliminated and let Xe = {x̄2, x̄3} be the new variables corresponding to Xe.
Using (2.6), we construct the cancellation matrix

Ĉ =


x2

2 + x2
3 − y2

3 (x2 − y1)2 + x2
3 − y2

2 −x3y1 + 2x1

x2 + x̄2 x2 − 2y1 + x̄2 0
x3 + x̄3 x3 + x̄3 −y1

 ,
and the Dixon polynomial

∆Xe = (−2x2y
2
1 + y3

1 − y1y
2
2 + y1y

2
3)x̄2 +

(
−2x3y

2
1 + 4x1y1

)
x̄3

+
(
x2y

3
1 − x2y1y

2
2 + x2y1y

2
3 − 2y2

1y
2
3 + 4x1x3y1

)
.

The Dixon polynomial ∆Xe expressed in bilinear form yields

V DV =
[
x2 x3 1

]
−2y2

1 0 y3
1 − y1y

2
2 + y1y

2
3

0 −2y2
1 4x1y1

y3
1 − y1y

2
2 + y1y

2
3 4x1y1 −2y2

1y
2
3



x̄2

x̄3

1

 ,
where D is the Dixon matrix (it is square and non-singular) and the Dixon resultant

R = det(D) = 2y4
1(16x2

1 + y4
1 − 2y2

1y
2
2 − 2y2

1y
2
3 + y4

2 − 2y2
2y

2
3 + y4

3).

Remark 2.11. The parametric polynomial system F considered in Example 2.10 is not
generic because for example, the coefficient of x2

2 in f̂1 is 1, which is not an independent
parameter according to our definition of generic systems on page 4. F is also not n-degree.
In particular, notice that the maximum partial degree of F in x2 and x3 is 2, but the term
x2

2x
2
3 is missing. We were able to obtain the Dixon resultant for F in x1 because the column

of the Dixon matrix D corresponding to the monomial 1 in the row vector V is non-zero.

The Dixon resultant R may not give us the necessary condition for the existence of a
solution (common root) to a polynomial system F if F is not generic n−degree because
the linear homogeneous system formed when the Dixon polynomial is evaluated at roots of
F , and viewed in powers of products of x2, . . . , xn, might not have a non-trivial solution
despite the fact that F has a solution. This is because the constructed Dixon matrix might
not contain the column corresponding to the monomial entry 1 present in the column vector
of the formed linear homogeneous system (think of the Cayley-Bezout resultant formulation
described in the introductory part of this thesis), and hence, if F only has a trivial solution
then the linear homogeneous system only has a trivial solution which implies that the Dixon

49

resultant need not vanish at all zeros of F . Furthermore, we might encounter a case where
the Dixon matrix D has a column corresponding to the monomial 1. However, the Dixon
matrix D could be singular, and in some cases, the Dixon matrix might even be rectangular
[Kapur et al., 1994]. We will discuss how to address these shortcomings in Subsection 2.2.4.

Our next goal is to show that the Dixon resultant R is a polynomial in the elimination
ideal J =

〈
f̂1, f̂2, . . . , f̂n

〉
∩Q(Y)[x1].We do this by exploiting some properties of the Dixon

polynomial ∆Xe .

Definition 2.12. Let F = {f̂1, f̂2, . . . , f̂n} be a parametric polynomial system. Let us define

∆Xe,i :=

∣∣∣∣∣∣∣∣∣∣∣

f̂1 f̂2 . . . f̂i−1 1 f̂i+1 . . . f̂n

π2(f̂1) π2(f̂2) . . . π2(f̂i−1) 1 π2(f̂i+1) . . . π2(f̂n)
...

...
...

...
...

...
πn(f̂1) πn(f̂2) . . . πn(f̂i−1) 1 πn(f̂i+1) . . . πn(f̂n)

∣∣∣∣∣∣∣∣∣∣∣∏n
i=2(xi − x̄i)

. (2.12)

That is, the Dixon polynomial ∆Xe = ∆Xe,i if f̂i = 1 for any i ∈ {1, 2, . . . , n}.

Using (2.6), we can write

∆Xe,i :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f̂1 f̂2 . . . f̂i−1 1 f̂i+1 . . . f̂n

Ĉ2,1 Ĉ2,2 . . . Ĉ2,i−1 0 Ĉ2,i+1 . . . Ĉ2,n

Ĉ3,1 Ĉ3,2 . . . Ĉ3,i−1 0 Ĉ3,i+1 . . . Ĉ3,n
...

...
...

...
...

Ĉn,1 Ĉn,2 . . . Ĉn,i−1 0 Ĉn,i+1 . . . Ĉn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

Ĉ2,1 . . . Ĉ2,i−1 Ĉ2,i+1 . . . Ĉ2,n

Ĉ3,1 . . . Ĉ3,i−1 Ĉ3,i+1 . . . Ĉ3,n
...

...
...

...
...

Ĉn,1 . . . Ĉn,i−1 Ĉn,i+1 . . . Ĉn,n

∣∣∣∣∣∣∣∣∣∣∣
.

By expanding ∆Xe,i and viewing it recursively in powers of {x̄2, x̄3, · · · x̄n}, we can write

∆Xe,j =
dmax,n−1∑
in=0

· · ·
(n−k+1)dmax,k−1∑

ik=0
· · ·

(n−1)dmax,2−1∑
i2=0

Hj
i2,i3,...,in

x̄i22 x̄
i3
3 · · · x̄

ik
k · · · x̄

in
n (2.13)

where the polynomials Hj
i2,i3,...,in

∈ Q[Y][x1, x2, . . . , xn] for 1 ≤ j ≤ n.

Theorem 2.13. Let s = (n− 1)!∏n
i=2 dmax,i. Then

1. The Dixon polynomial ∆Xe is an element of the ideal I =
〈
f̂1, f̂2, . . . , f̂n

〉
.

50

2. LetD be a square s1×s1 non-singular Dixon matrix where s1 ≤ s. The Dixon resultant
R = det(D) is an element of the ideal J =

〈
f̂1, f̂2, . . . , f̂n

〉
∩Q(Y)[x1].

To motivate the proof of Theorem 2.13, we revisit Example 2.10.

Example 2.14 (Example 2.10 revisited). Recall

f̂1 = x2
2 + x2

3 − y2
3

f̂2 = (x2 − y1)2 + x2
3 − y2

2

f̂3 = −x3y1 + 2x1

• X = {x1, x2, x3}, Y = {y1, y2, y3}, Xe = {x2, x3}, Xe = {x̄2, x̄3}.

• The cancellation matrix

Ĉ =


x2

2 + x2
3 − y2

3 (x2 − y1)2 + x2
3 − y2

2 −x3y1 + 2x1

x2 + x̄2 x2 − 2y1 + x̄2 0
x3 + x̄3 x3 + x̄3 −y1

 .

• The Dixon polynomial

∆Xe = (−2x2y
2
1 + y3

1 − y1y
2
2 + y1y

2
3)x̄2 +

(
−2x3y

2
1 + 4x1y1

)
x̄3

+
(
x2y

3
1 − x2y1y

2
2 + x2y1y

2
3 − 2y2

1y
2
3 + 4x1x3y1

)
.

• The Dixon polynomial ∆Xe expressed in bilinear form yields

V DV =
[
x2 x3 1

]
−2y2

1 0 y3
1 − y1y

2
2 + y1y

2
3

0 −2y2
1 4x1y1

y3
1 − y1y

2
2 + y1y

2
3 4x1y1 −2y2

1y
2
3



x̄2

x̄3

1

 ,

where D is the Dixon matrix. The Dixon resultant

R = det(D) = 2y4
1(16x2

1 + y4
1 − 2y2

1y
2
2 − 2y2

1y
2
3 + y4

2 − 2y2
2y

2
3 + y4

3).

Let Q1,0 Q0,1 be the polynomial coefficients of ∆Xe in variables x̄2, and x̄3 respectively and
let Q0,0 be the constant polynomial term. So,

Q0,0 = x2y
3
1 − x2y1y

2
2 + x2y1y

2
3 − 2y2

1y
2
3 + 4x1x3y1

Q1,0 = −2x2y
2
1 + y3

1 − y1y
2
2 + y1y

2
3

Q0,1 = −2x3y
2
1 + 4x1y1.

51

Using the cancellation matrix Ĉ, observe that

∆Xe,1 =
∣∣∣∣∣ x2 − 2y1 + x̄2 0

x3 + x̄3 −y1

∣∣∣∣∣ =
(
−x2y1 + 2y2

1

)
︸ ︷︷ ︸

H1
0,0

+ (−y1)︸ ︷︷ ︸
H1

1,0

x̄2

∆Xe,2 =
∣∣∣∣∣ x2 + x̄2 0
x3 + x̄3 −y1

∣∣∣∣∣ = (−x2y1)︸ ︷︷ ︸
H2

0,0

+ (−y1)︸ ︷︷ ︸
H2

1,0

x̄2

∆Xe,3 =
∣∣∣∣∣ x2 + x̄2 x2 − 2y1 + x̄2

x3 + x̄3 x3 + x̄3

∣∣∣∣∣ = (2x3y1)︸ ︷︷ ︸
H3

0,0

+ (2y1)︸ ︷︷ ︸
H3

0,1

x̄3.

Thus,
∆Xe = f̂1∆Xe,1 − f̂2∆Xe,2 + f̂3∆Xe,3.

Let Q be a row vector such that

Q = [Q1, Q2, Q3] = [Q1,0, Q0,1, Q0,0] .

Observe that Q = V D. Also,

Q1,0 = f̂1H
1
1,0 − f̂2H

2
1,0 + f̂3(0)

Q0,1 = f̂1(0)− f̂2(0) + f̂3H
3
0,1

Q0,0 = f̂1H
1
0,0 − f̂2H

2
0,0 + f̂3H

3
0,0.

The adjoint matrix of the Dixon matrix D is

E =


−4y2

1 (−y1y3 + 2x1) (y1y3 + 2x1) 4x1 y
2
1
(
y2

1 − y2
2 + y2

3
)

2y3
1
(
y2

1 − y2
2 + y2

3
)

4x1 y
2
1
(
y2

1 − y2
2 + y2

3
)

E2,2 8y3
1x1

2y3
1
(
y2

1 − y2
2 + y2

3
)

8y3
1x1 4y4

1


where

E2,2 = −y2
1 (y1 − y2 + y3) (y1 + y2 + y3) (y1 − y2 − y3) (y1 + y2 − y3) .

Finally, one can easily check that

R = QE3 = Q1,0E3,1 +Q0,1E3,2 +Q0,0E3,3

where E3,i are the entries of the the third column E3 of the adjoint matrix E.

We are now ready to give the proof of Theorem 2.13.

52

Proof of Theorem 2.13. We begin with claim (1). Recall

∆Xe =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f̂1 f̂2 . . . f̂n

Ĉ2,1 Ĉ2,2 . . . Ĉ2,n

Ĉ3,1 Ĉ3,2 . . . Ĉ3,n
...

...
...

...
Ĉn,1 Ĉn,2 . . . Ĉn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the above determinant along its first row and using (2.12) yields

∆Xe =
n∑
j=1

(−1)1+j f̂j∆Xe,j . (2.14)

Thus, the proof of claim (1) is complete. Now we prove claim (2). For claim (2), it suffices
to only show that R ∈

〈
f̂1, f̂2, . . . , f̂n

〉
since R ∈ Q(Y)[x1] by definition. By substituting

(2.13) into (2.14), we obtain

∆Xe =
dmax,n−1∑
in=0

· · ·
(n−k+1)dmax,k−1∑

ik=0
· · ·

(n−1)dmax,2−1∑
i2=0

Qi2,i3,...,in x̄
i2
2 x̄

i3
3 · · · x̄

ik
k · · · x̄

in
n (2.15)

where
Qi2,i3,...,in =

n∑
j=1

(−1)1+j f̂jH
j
i2,i3,...,in

∈ Q[Y][x1, x2, . . . , xn]. (2.16)

By viewing ∆Xe in (2.15) as a polynomial in Xe, we can write

∆Xe = QV (2.17)

where the entries of the 1×s1 row vector Q are the polynomials Qi2,i3,...,in , and V is a s1×1
monomial column vector in Xe = {x̄2, x̄3, . . . , x̄n}. For convenience, we assume s1 = s and
write

Q = [Q1, Q2, . . . , Qs1] = [Q0,0,...,0, Q0,0,...,1, . . . , Q(n−1)dmax,2−1,...,dmax,n−1].

Thus, by comparing (2.11) which says

∆Xe = V DV ,

and (2.17), it follows that
Q = V D.

Since D is a non-singular square matrix, it follows the row vector V has a monomial 1 and
the column vector corresponding to it in D is non-zero [Kapur et al., 1994]. Otherwise, D

53

would be singular. Therefore, we have

QD−1 = V.

Let E denote the adjoint matrix of D. So,

QE = det(D)V = RV

where R = det(D). Notice that one of the entries of the row vector RV is R and it is equal
to one of the entries of the row vector QE. Thus, our claim follows since entries of the row
vector QE belong to

〈
f̂1, f̂2, . . . , f̂n

〉
and Qk ∈

〈
f̂1, f̂2, . . . , f̂n

〉
by (2.16).

2.2.4 Extracting a maximal rank sub-matrix M from a Dixon Matrix D

As discussed in the introduction section of this thesis, the Dixon resultant method has
shortcomings. The shortcomings include the singularity of a square Dixon matrix which
provides no information about the solutions of the polynomial system, and the problem of
computing the determinant of a rectangular Dixon matrix. We will construct the Dixon
matrix for the Heron 3d system from Example 2.5 to illustrate one of the shortcomings.

Example 2.15 (Heron 3d system). Constructing the Dixon matrix for F from the Dixon
polynomial given in Example 2.5, we obtain the following rectangular 16×14 Dixon matrix

D =



0 0 0 0 A 0 0 0 0 0 0 0 0 C

0 0 A 0 0 0 0 0 0 0 0 C 0 0
0 0 0 0 A 0 0 0 0 0 0 0 0 C

0 0 0 A 0 0 0 0 0 0 0 0 C 0
0 0 0 0 A 0 0 0 0 0 0 0 0 C

0 0 −A 0 0 0 0 A 0 0 −B −C 0 0
0 −A 0 0 0 0 0 0 0 0 C 0 0 0
−A 0 0 0 0 A −B 0 C 0 0 0 0 0
0 0 0 0 B 0 0 0 A 0 0 0 0 F

0 0 0 0 0 0 0 0 0 A 0 0 0 G

0 0 B 0 0 0 0 −B 0 0 E F G 0
0 0 0 0 −C 0 −A 0 0 0 0 0 0 K

0 B −C 0 0 0 0 0 0 0 F K 0 0
0 0 0 0 C 0 0 −A 0 0 0 0 0 K

0 0 0 C 0 0 0 0 0 0 G 0 K 0
B 0 0 0 0 0 −B E 0 G 0 0 0 0



,

54

where rank(D) = 13 and

A = 8y3
1, B = 4y4

1 − 4y2
1y

2
4 + 4y2

1y
2
6

C = −4y4
1 + 4y2

1y
2
2 − 4y2

1y
2
3, K = 8y3

1y
2
3

E = 8y3
1y

2
6, F = −4y3

1y
2
3 + 4y3

1y
2
5 − 4y3

1y
2
6

G = −48y2
1x1.

These shortcomings were addressed by Kapur, Saxena and Yang in [Kapur et al., 1994].
They proved that the determinant of any sub-matrix of the Dixon matrix D of maximal
rank is an element of the elimination ideal I ∩ Q(Y)[x1]. So, once a Dixon matrix D is
constructed, the third major step is to identify a sub-matrix of maximal rank, and the final
major step is to compute R = det(M). Hence, the requirement for F to be generic n-degree
is no longer necessary.

Our new approach to select a sub-matrix M of a Dixon matrix D such that rank(M) =
rank(D) proceeds as follows. For simplicity, suppose D is a t × t matrix, and let Dmax =
maxtj=1 deg(Dij).We pick a random 62 bit prime p and choose an evaluation point β ∈ Zm+1

p

uniformly at random. Then we compute B = D(β) and identify a sub-matrix of maximal
rank from B in D with high probability. Our approach requires Gaussian elimination over
Zp only and in contrast to [Kapur et al., 1994] crucially avoids doing polynomial arithmetic
in Q[Y, x1].

We also remark that our algorithm (Algorithm 5) for extracting a sub-matrix of maximal
rank does not explicitly switch rows. Instead, we use an ordered list to store the row indices
ofB, which is updated each time row operations are performed (See Lines 19-20 of Algorithm
5). This was done to improve the overall performance of our code.

Example 2.16. Consider the 4× 5 rectangular Dixon matrix

D =


0 y2

1 + 2x1 − y2 0 0 y2
1 + x1 − y2

0 0 0 x1y3y2 + y2
1 + y3 0

x1y3y2 0 0 0 0
0 y2

1 + x1 − y2 y3 0 0

 .

Using Algorithm 5, we obtain a maximal rank sub-matrix

M =


x1y3y2 0 0 0

0 y2
1 + 2x1 − y2 0 0

0 y2
1 + x1 − y2 y3 0

0 0 0 x1y3y2 + y2
1 + y3


such that rank(M) = rank(D) = 4.

55

Algorithm 5: ExtractMinor
Input: A rectangular matrix D where Di,j ∈ Q[x1, y1, . . . , ym].
Output: A sub-matrix M of D such that rank(M) = rank(D).

1 Let nr and nc be the row and column dimension of D respectively.
2 Pick a 62 bit prime p and a random evaluation point β ∈ Zm+1

p

3 B ← D(β) // B is the integer matrix over Zp obtained by evaluating D at
x1 = β1, y1 = β2, . . . , ym = βm+1.

4 Initialize T = [1, 2, . . . , nr] and (P,C)← ([] , []) // T, P,C are ordered lists.
5 rank(B)← 0
6 (r, c)← (1, 0)
7 while k ≤ nr and c < nc do
8 c← c+ 1 // Next column

Search for a non-zero pivot:
9 E ← 0

10 while E = 0 do
11 for i from k to nr do do
12 if BTi,c 6= 0 then
13 E ← BTi,c //A pivot is found in column c of B.
14 break;
15 end
16 end
17 if i = nr and E = 0 then c← c+ 1 end // A non-zero pivot is not found, so we

try the next column.
18 end

Swap rows and update the pivot columns and rows :
19 (Tk, Ti)← (Ti, Tk), rank(B)← rank(B) + 1.
20 (P,C)← (P ∪ Tk, C ← C ∪ c)

Row operations :
21 for i from k + 1 to r do
22 for j = c+ 1 to nc do

23 BTi,j ← BTi,j −
BTi,c

BTk,c
BTk,j mod p

24 end
25 BTi,c ← 0
26 end
27 k ← k + 1 // Next row
28 end
29 Let M be a r × r zero matrix where r = rank(D).
30 for i from 1 to rank(B) do
31 for j from 1 to rank(B) do
32 Mi,j ← DPi,Cj

33 end
34 end
35 return M

56

2.2.5 The Failure Probability of Algorithm 5

Here, our main goal is to give a failure probability bound for Algorithm 5. In order to do
this, we first need the Schwartz-Zippel Lemma [Schwartz, 1980, Zippel, 1979].

Lemma 2.17 (Schwartz-Zippel Lemma). Let K be a field and let f 6= 0 ∈ K[y1, y2, . . . , ym].
Let F be a finite subset of K. If α is chosen uniformly at random from Fm then

Pr[f(α) = 0] ≤ deg(f)
|F |

.

We motivate the failure probability analysis for Algorithm 5 using the following example.

Example 2.18. Consider the 4× 5 rectangular matrix

D =


x2

1y1 1 0 0 0
2x1y1 2 0 0 0

1 0 5 x2
1 0

7 8 10 4x1 0

 .

Performing fraction free Gaussian elimination on D yields

J =


x2

1y1 1 0 0 0
0 2x2

1y1 − 2x1y1 0 0 0
0 0 10x2

1y1 − 10x1y1 2x4
1y1 − 2x3

1y1 0
0 0 0 −20x4

1y1 + 60x3
1y1 − 40x2

1y1 0

 .

Using the pivots from J, a correct sub-matrix M of D such that rank(M) = rank(D) is

M =


x2

1y1 1 0 0
2x1y1 2 0 0

1 0 5 x2
1

7 8 10 4x1

 .

However, Algorithm ExtractMinor (Algorithm 5) may return an incorrect sub-matrix

Mc =


x2

1y1 1 0
2x1y1 2 0

1 0 5


with rank(Mc) = 3 < rank(D) = rank(M) = 4, if the input random prime p = 262 − 57,
and the evaluation point β selected at random in Line 2 of Algorithm 5 is β = (2, 5) ∈ Z2

p.
Therefore, it is important that we give a failure probability bound for Algorithm 5.

57

Theorem 2.19. Let D be a s× s Dixon matrix of polynomials in Z[Y][x1] and let Dmax =
maxsi,j=1 deg(Dij). Let p be a prime such that rank(D) = rank(D mod p). Let β be an
evaluation point chosen at random from Zm+1

p and let B = D(β). Then

Pr[rank(B) < rank(D)] ≤ sDmax
p

.

Proof. Let r = rank(D) and let M be a r × r sub-matrix of D such that rank(M) = r,

which can be found using fraction free Gaussian elimination in Q[Y, x1]. Since M is of full
rank, it follows that det(M) 6= 0. Clearly,

deg(det(M)) = rDmax ≤ sDmax.

In Algorithm ExtractMinor (Algorithm 5), we have to compute B = D(β), and then perform
row operations on B over Zp using ordinary Gaussian elimination to extract a sub-matrix
of maximal rank. Thus, Algorithm 5 will return an incorrect sub-matrix of maximal rank if

rank(B) < r =⇒ det(M(β)) = 0.

By Lemma 2.17, it follows that

Pr[rank(B) < rank(D)] ≤ Pr[det(M(β)) = 0] ≤ deg(M)
p

≤ sDmax
p

.

Example 2.20 (Example 2.18 revisited). In Example 2.18, notice that Dmax = 3 and
assume that s = 5. Since p = 262 − 57, we have that

Pr[rank(B) < rank(D)] ≤ 3× 5
p
≤ 3.25× 10−18.

In Theorem 2.19, we assumed that rank(D) = rank(D mod p) in order to get a failure
probability bound. This is because p can also cause Algorithm 5 to return an incorrect sub-
matrix of maximal rank. Thus, it is important to bound Pr[rank(D mod p) < rank(D)].

To do this, suppose Algorithm 5 selects a random prime p from a list of primes P =
{p1, p2, · · · , pN} and pmin = min(P). Then

Pr[rank(D mod p) < rank(D)] ≤
logpmin‖det(M)‖∞

N

where ‖det(M)‖∞ denotes the largest integer coefficient of the determinant of a sub-matrix
M of maximal rank. We did not include this failure probability bound in Theorem 2.19
because we do not have the tools to bound ‖det(M)‖∞ now. A bound for ‖det(M)‖∞ is
provided in Theorem 6.5(iv) of Chapter 6.

58

Chapter 3

Sparse Interpolation Tools

3.1 Summary of Contributions

The materials in this chapter are background materials. However, we have made a hybrid
Maple implementation of Zippel’s sparse interpolation algorithm to interpolate the Dixon
resultant R in expanded form (see Subsection 5.4.3 for benchmarks). We have also imple-
mented the Maximal Quotient Rational Function Reconstruction algorithm (Algorithm 8)
modulo a prime for performing dense rational function interpolation in one variable in C.

3.2 Sparse Polynomial Interpolation

In this section, we review two sparse polynomial interpolation algorithms, namely, Zippel’s
sparse interpolation algorithm and the Ben-Or/Tiwari algorithm. Both algorithms can be
used to interpolate the Dixon resultant R. We will modify the Ben-Or/Tiwari algorithm to
serve as the primary sparse polynomial algorithm in our proposed Dixon resultant algorithm
and in the new black box algorithm for solving parametric linear systems. For an extensive
bibliography on sparse polynomial interpolation, we advise the reader to see [Roche, 2018].

3.2.1 Zippel’s sparse interpolation

Zippel’s sparse interpolation algorithm was developed in 1979 to originally compute GCD
problems in Z[y1, y2, . . . , ym]. It is the primary built-in algorithm in many computer algebra
systems for performing multivariate polynomial GCD computation. Zippel’s algorithm is a
probabilistic algorithm which interpolates the desired sparse multivariate polynomial one
variable at a time. The interpolation of the target polynomial f can be done recursively, and
at the base of the recursion for one variable, we use dense polynomial interpolation [von zur
Gathen and Gerhard, 2013, Section 5.2, page 101]. We demonstrate how the algorithm works
with the following example.

59

Example 3.1. Let prime p = 3137 and suppose

f = 2y2
1y

2
2 + y2

3 + 5 ∈ Zp[y1, y2, y3]

is represented by a black box that outputs f(α) mod p when we input an evaluation point
α ∈ Z3

p and a prime p to it. Let us assume that the partial degrees of f in y1, y2, y3 denoted
by dy1 , dy2 , dy3 are given. So, we have dy1 = dy2 = dy3 = 2. We interpolate f as follows.

Using dy1 + 1 = 3 probes to the black box, we begin by picking two random points
say β1 = 2, θ1 = 3 in order to densely interpolate f(y1, β1, θ1). Now we pick αi ∈ Zp for
1 = 1, 2, . . . , dy1 at random, and compute

zi = f(αi, β1, θ1)

for i = 1, 2, 3 to interpolate y1. For simplicity, suppose αi = i for i = 1, 2, 3. Then

z1 = 22, z2 = 46, z3 = 86.

By performing dense interpolation using Newton’s algorithm or Lagrange algorithm [von zur
Gathen and Gerhard, 2013], one finds

f(y1, 2, 3) = 8y2
1 + 14.

Now we assume that if we interpolate f(y1, β2, θ2), it will have the same support as f(y1, β1, θ1).
That is, we assume f(y1, y2, y3) has no linear term in y1. This assumption is called the sparse
assumption. So with high probability, the skeleton polynomial (the current structure of f)
will be

Gy1 = A2(y2, y3)y2
1 +A0(y2, y3)

where A2(y2, y3), A0(y2, y3) ∈ Zp[y2, y3]. Thus, f(y1, β2, θ1) can be viewed as

f(y1, β2, θ1) = A2(β2, θ1)y2
1 +A0(β2, θ1),

so we only need to solve for A0 and A2. Suppose β2 = 3, and the two points 3, 4 are selected
at random for y1. We form the system of linear equations:

9A2 +A0 = f(3, 3, 3) = 176

16A2 +A0 = f(4, 3, 3) = 302

where θ1 = 3. Solving the above system yields {A2 = 18, A0 = 14}, so

f(y1, 3, 3) = f(y1, β2, θ1) = 18y2
1 + 14.

60

Notice that we used two probes on y1, whereas densely interpolating f(y1, 3, 3) would require
three probes. Since the degree dy2 = 2, we need one more image to interpolate the polynomial
coefficients in y2. Let β3 = 4, θ1 = 3, and let the random points selected for y1 be 5, 6.
Repeating the same process as before, we obtain the following system of linear equations

25A2 +A0 = f(5, 4, 3) = 814

36A2 +A0 = f(6, 4, 3) = 1166

which yields {A2 = 32, A0 = 14}. Hence,

f(y1, 4, 3) = 32y2
1 + 14.

We now proceed to interpolate the coefficients in y2. Since all the constant terms of f(y1, βi, 3)
for 1 ≤ i ≤ 3 are all 14, no interpolation is needed since the same value 14 will be returned
if any interpolation is done. Now, using the points (2, 8), (3, 18), (4, 32) whose x components
are the βi’s, and the y components are the leading coefficients of f(y1, βi, 3), we densely
interpolate the polynomial 2y2

2 ∈ Zp[y2]. So,

f(y1, y2, 3) = 2y2
2y

2
1 + 14.

Thus, the updated skeleton polynomial now becomes

Gy1,y2 = B2(y3)y2
2y

2
1 +B0(y3)

where B2(y3), B0(y3) ∈ Zp[y3]. In order to solve for B0, B2, we only need two evaluation
points to set up a system of linear equations. Let θ1 = 4, α1 = 8, α2 = 9 and let γ1,= 6, γ2 =
7. We set up a linear system by equating

f(αi, γi, θ1) = Gy1,y2(αi, γi, θ1)

which yields:

900B2 +B0 = f(8, 6, 4) = 1821

832B2 +B0 = f(9, 7, 4) = 412.

Solving the above systems yields {B2 = 2, B0 = 21}, so

f(y1, y2, 4) = 2y2
1y

2
2 + 21.

61

Since dy3 = 2, we need 2 more images to interpolate the polynomial coefficients of
y3. Repeating the interpolating process as before for θ2 = 5, α1 = 9, α2 = 10 and letting
γ1,= 8, γ2 = 9, we get

f(y1, y2, 5) = 2y2
1y

2
2 + 30.

We now have enough images to interpolate y3. Notice that the leading coefficients
of all the images f(y1, y2, θi) are 2, so no interpolation is needed. However, interpola-
tion has to be performed using the non-identical constant coefficients. Using the points,
(3, 14), (4, 21), (5, 30), we finally obtain y2

3 + 5. Hence, f = 2y2
1y

2
2 + y2

3 + 5 and we are done.

Remark 3.2. The polynomial in the above example was interpolated using 11 black box
probes. However, if dense interpolation were performed, it would require a total of 27 probes
to the black box. Also, note that in the process of trying to get more images at the sparse
interpolation step, it is possible that the coefficient matrix of the linear system formed
is singular since we use random evaluation points. This issue can be fixed by using more
random evaluation points to add more equations until the determinant of the coefficient
matrix of the linear system is not zero.

The number of probes required by Zippel’s algorithm is derived as follows. Let f ∈
Zp[y1, y2, . . . , xn] where p is prime. Let dxi denote the partial degrees of f in each variable
xi, and let tj be an upper bound on the number of non-zero terms in f after it is evaluated
at xj+1 = αj+1, . . . , xn = αn. At the base of the recursion, we need dy1 +1 evaluation points
to perform dense interpolation in y1. This yields the first skeleton polynomial in y1. Thus
only dy2 images are needed to interpolate y2. For each of the dy2 images, only t1 probes are
needed. Repeating the process, it follows that the total number of black box probes is

O(dy1 + dy2t1 + dy3t2 + · · · dxntn−1).

Zippel’s sparse interpolation requires O(Dt) black probes to interpolate f where D =∑n
i=1 di.

Remark 3.3. Let n be the number of variables in the polynomial f to be interpolated.
It might not be obvious from Example 3.1 that the gain of Zippel’s method over dense
interpolation is exponential in n. To see this, if a polynomial f with d = 10, n = 10 and
t = 10 is to be interpolated, then using dense interpolation requires 1110 points, which
means a gain of a factor of ≥ 107 is realized if Zippel’s method is used.

3.2.2 Ben-Or/Tiwari Interpolation

The Ben-Or/Tiwari sparse interpolation algorithm is a deterministic algorithm (not ran-
domized) for interpolating sparse polynomials, and unlike, Zippel’s algorithm, it does not

62

interpolate the target polynomial one variable at a time. The algorithm requires that a term
bound T ≥ t be known where t is the number of terms in the polynomial f to be inter-
polated. It does 2T probes to the black box in order to interpolate f. The Ben-Or/Tiwari
algorithm is as follows. Consider the black box representation of

f =
t∑
i=1

aiMi(y1, y2, . . . , yn) ∈ Z[y1, y2, . . . , yn]

where the integer coefficients ai 6= 0, the monomials

Mi =
n∏
j=1

y
ei,j

j

and ei,j denotes the exponent of yj in Mi. The Ben-Or/Tiwari algorithm uses 2T prime
point sequence of the form {(2j , 3j , . . . , pjn) : 0 ≤ j < 2T} to interpolate f, where pn
denotes the n-th prime. Let mi = Mi(2, 3, . . . , pn) be a monomial evaluation. Then the
black box evaluations

vj = f(2j , 3j , 5j , . . . , pjn) =
t∑
i=1

ai(2j)
ei,1(3j)ei,2 · · · (pjn)ei,n =

t∑
i=1

aim
j
i .

We have that mk 6= mj ⇐⇒ k 6= j since mk and mj have different factorizations.
The Ben-Or/Tiwari interpolation algorithm can be divided into two main steps, namely,

first finding the value of t and the monomial evaluations mi, then solving for the ai coef-
ficients. Once the monomial evaluations mi are known, the monomials Mi are obtained by
performing repeated trial divisions by the successive primes p1 = 2, p2 = 3, · · · , pn to recover
the exponents in the Mi’s. For the second step, after we have determined mi and t, we set
up the transposed Vandermonde system:

V a =


1 1 · · · 1
m1 m2 · · · mt

...
...

...
...

mt−1
1 mt−1

2 · · · mt−1
t




a1

a2
...
at

 =


v0

v1
...

vt−1

 = v (3.1)

where the transpose matrix of V, denoted by V T is a Vandermonde matrix and the deter-
minant of V denoted by det(V) = ∏

1≤i<j≤t(mi −mj). Since the monomial evaluations are
distinct (mi 6= mj), it follows that V −1 exists which implies that (3.1) has a unique solution.

Using transposed Vandermonde systems to solve for the coefficients was actually pro-
posed by Zippel in [Zippel, 1990] where he discussed how to choose powers of random eval-
uation points of the form αj in the sparse interpolation step of his algorithm when solving
for the unknown coefficients. Zippel also shows how to solve the transposed Vandermonde

63

system using O(t2) arithmetic operations and O(t) space. This is a huge improvement be-
cause solving a system of linear equations, say with t unknown coefficients using classical
algorithms such as Gaussian elimination costs O(t3) arithmetic operations and uses O(t2)
space. For the sake of brevity, we will not present the details involved in solving for the
coefficients ai using Zippel’s quadratic algorithm. However, a modified version of Zippel’s
quadratic algorithm will be presented in Chapter 4.

Now we discuss how to find the mi and t, which means we find the exponents ei,j ’s.
As we have discussed earlier, this is the first major step of the Ben-Or/Tiwari algorithm.
Ben-Or/Tiwari’s idea to determine the exponents begins with a linear generator λ(z), the
monic univariate polynomial

λ(z) =
t∏
i=1

(z −mi) = zt + λt−1z
t−1 + · · ·+ λ1z + λ0

whose roots are the monomial evaluations mi where λi ∈ Z.
To determine the t coefficients λ0, λ1, . . . , λt−1 of the linear generator λ(z), we first

construct and solve an associated linear system involving the coefficients λi as follows. Let
L ≥ 0. Now, consider the sum

t∑
i=1

aim
L
i λ(mi) =

t∑
i=1

aim
L
i

 t∑
j=0

λjm
j
i


=

t∑
i=1

t∑
j=0

aiλjm
L+j
i =

t∑
j=0

λj

(
t∑
i=1

aim
L+j
i

)

= λ0

(
t∑
i=1

aim
L
i

)
+ λ1

(
t∑
i=1

aim
L+1
i

)
+ · · ·+ λt−1

(
t∑
i=1

aim
L+t−1
i

)

+ λt

(
t∑
i=1

aim
L+t
i

)
.

Observe that
t∑
i=1

aim
L
i λ(mi) =

t∑
i=1

aim
L
i

t∏
i=1

(mi −mi) = 0.

Hence,

λ0

(
t∑
i=1

aim
L
i

)
+ λ1

(
t∑
i=1

aim
L+1
i

)
+ · · ·λt−1

(
t∑
i=1

aim
L+t−1
i

)
+
(

t∑
i=1

aim
L+t
i

)
= 0.

Let vL+k = ∑t
i=1 aim

L+k
i . Then it follows that

λ0vL + λ1vL+1 + λ1vL+1 + · · ·λt−1vL+t−1 + vL+t = 0 for L ≥ 0,

64

which gives λ0vL + λ1vL+1 + λ1vL+1 + · · ·λt−1vL+t−1 = −vL+t for L ≥ 0. Since we need to
solve for t coefficients (the λi’s), we take L = 0, 1, 2, . . . , t− 1 to form the system of linear
equations in λi :

Htλ =


v0 v1 · · · vt−1

v1 v2 · · · vt
...

...
...

...
vt−1 vt · · · v2t−2




λ0

λ1
...

λt−1

 =


−vt
−vt+1

...
−v2t−1

 = v.

The square T × T matrix

HT =



v0 v1 · · · vT−1

v1 v2 · · · vT
...

...
...

...
vT−2 vr−1 · · · v2rT−3

vT−1 vT · · · v2T−2


is a Hankel matrix of size T.

Theorem 3.4. [Ben-Or and Tiwari, 1988, Main theorem in Section 4, page 303] If T ≥ t

then rank(HT) = t.

The linear system Htλ = v can be solved using Gaussian elimination which does O(t3)
arithmetic operations. But in coding theory, the Berlekamp-Massey Algorithm [Atti et al.,
2006] solves the linear system using O(t2) arithmetic operations with O(t) space. Moreover,
one can modify the Extended Euclidean Algorithm (EEA) to also solve it [von zur Gathen
and Gerhard, 2013]. Thus, obtaining the values for the λi means that we have recovered the
monomial evaluations. The following pseudocode summarizes the Ben-Or/Tiwari algorithm.

The Ben-Or/Tiwari algorithm
Input: A black box for the polynomial f = ∑t

i=1 aiMi(y1, y2, . . . , yn) ∈ Z[y1, y2, . . . , yn].
Output: f = ∑t

i=1 aiMi(y1, y2, . . . , yn) ∈ Z[y1, y2, . . . , yn].

1. Compute vj = f(2j , 3j , . . . , pjn) ∈ Z via the black box for j = 0, 1, 2, . . . , 2t− 1.

2. Compute λ(z) using the Berlekamp-Massey algorithm (BMA)[Atti et al., 2006].

3. Compute the roots m1,m2, . . . ,mt of λ(z).

4. Obtain the exponents ei,j for Mi for 1 ≤ j ≤ n by factoring mi via repeated trial
divisions by the successive primes 2, 3, . . . , pn. For example, 88200 = 23325272 which
yields the monomial y3

1y
2
2y

2
3y

2
4.

5. Let Vij = mj−1
i for 1 ≤ i, j ≤ t and let v = [v0, v1, . . . , vt−1]. Solve the t× t transposed

Vandermonde system V a = v for the coefficients ai.

65

6. Output ∑t
i=1 aiMi(y1, y2, . . . , yn)

Remark 3.5. Recall that vj = f(2j , 3j , . . . , pjn). Notice that the size of the evaluations vj
may be as large as pnd(2T−1) where d = deg(f) which is O(Td log pn) bits long, so as the
parameters grow large, this bound will be very large to handle in practice. To avoid large
intermediate integers, the algorithm must be performed over Zp where p > mi ≤ pdn so that
the monomial evaluations mi are uniquely determined.

3.2.3 Using discrete logarithms in the Ben-Or/Tiwari algorithm

Consider the black box representation of the polynomial

f =
t∑

k−1
aiMi(y1, y2, . . . , yn) ∈ Z[y1, y2, . . . , yn]

where di = deg(f, yi) and d = deg(f). Murao and Fujise in [Murao and Fujise, 1996] were
the first to modify the Ben-Or/Tiwari algorithm to use the discrete logarithm approach in
order to improve the prime requirement from p > mi ≤ pdn to be p > (d+1)n. Thus, the size
of the prime p needed is now O(n log d) bits long. Such a prime p can be easily determined
by picking small primes qi satisfying 2|q1, qi > di and gcd(qi, qj) = 1 for 1 ≤ i 6= j ≤ n such
that p = 1 +∏n

i=1 qi [Kaltofen, 2010, Subsection 2.1].
Now that we know how to get our working prime p = 1 +∏n

i=1 qi, we pick a generator
α of Z∗p at random and set ωk = α

p−1
qk =⇒ ωqk = 1. We probe the black box and compute

evaluations vj = f(ωj1, ω
j
2, . . . , ω

j
n) for 0 ≤ j ≤ 2T − 1 where T ≥ t. Then we input these

evaluations to the Berlekamp-Massey algorithm to obtain a feedback polynomial λ(z) whose
roots over Zp are the monomial evaluations mi = Mi(ω1, ω2, . . . , ωn) ∈ Zp. So the prime
point sequence {(2j , 3j , . . . , pjn)} which served as evaluation points in the Ben-Or/Tiwari
algorithm is replaced with point sequence {(ωj1, ω

j
2, . . . , ω

j
n)} for 0 ≤ j ≤ 2T − 1.

The exponent in all the variables present in a monomialMi can be recovered as follows: Let

Mi =
n∏
j=1

y
ei,j

j

so that mi = Mi(ω1, ω2, . . . , ωn). Then we can write

mi =
n∏
j=1

ω
ei,j

j = α
(p−1)ei,1

q1
+

(p−1)ei,2
q2

+···+
(p−1)ei,n

qn .

Applying logα to both sides of the above equation yields

logαmi = logα

(
α
∑n

k=1
(p−1)ei,k

qk

)
=

n∑
k=1

(p− 1)ei,k
qk

.

66

Let x = logαmi. We have

ei,k = x

(
p− 1
qk

)−1
mod qk.

Observe that (
p− 1
qk

)−1

exists since gcd(qi, qj) = 1. Hence, step (d) of the Ben-Or/Tiwari algorithm is replaced
with solving the discrete logarithm problem x = logαmi. We note that solving the discrete
logarithm problem x = logαmi is equivalent to solving for x ∈ [0, p− 2] such that αx = mi in
Zp. In general, no efficient algorithm (i.e., polynomial time in log p) is known for solving the
discrete logarithm problem. However, the discrete logarithm problem can be solved using the
Pohlig-Hellman algorithm [Pohlig and Martin, 1978] which costs O

(∑k
i=1 di

(
log p+√p

i

))
[Hu and Monagan, 2016] for a prime decomposition of p− 1 = ∏k

i=1 p
di
i . To use the Pohlig-

Hellman algorithm, we must choose p so that p − 1 has small prime factors, thus keeping
the cost of computing the discrete logarithms low. Thus, the algorithm works because p− 1
has small prime factors and the monomial evaluations do not collide, i.e. mi 6= mj for i 6= j.

Remark 3.6. In our proposed new sparse rational function algorithm which will be pre-
sented in Chapter 4, we reduce the size of the primes needed for our new algorithm which
requires that we map a multivariate rational function A = f/g to become a univariate ratio-
nal function Kr(A) ∈ Zp(y) using a Kronecker substitution Kr. Thus, we only have to inter-
polate univariate polynomials in Zp[y] which means the point sequence {(ωj1, ω

j
2, . . . , ω

j
n)}

for 0 ≤ j ≤ 2T − 1 cannot be used. Instead, we pick a prime p of the form p = 2ks + 1
where s is small, and we pick a generator α for Z∗p in order to compute vj = H(αj) for
0 ≤ j ≤ 2T − 1, where H ∈ Zp[y] is one of the polynomials to be interpolated in Kr(A).
More detail will be provided in Chapter 4.

3.3 Rational Function Interpolation

In this section, we describe the problem of interpolating a rational function in the univariate
case because it is the main ingredient in our work. We begin with the discussion of the
Extended Euclidean Algorithm, as it is the basic component in most rational function
reconstruction algorithms.

3.3.1 The Extended Euclidean Algorithm

The classical Euclidean algorithm computes the greatest common divisor of two integers.
It can also be used to compute the greatest common divisor (gcd) of polynomials in F [x]
where F is a field. The Euclidean algorithm is one of the important algorithms in computer
algebra, and it has many nice properties and applications that go far beyond computing a

67

gcd . The Euclidean algorithm performs the division algorithm repeatedly for say l times,
and outputs the last non-zero remainder as the greatest common divisor.

Lemma 3.7. [von zur Gathen and Gerhard, 2013, Lemma 3.8] For 0 ≤ i ≤ l + 1, we have
sim+ uti = ri in Algorithm 6. In particular, slm+ utl = gcd(m,u) up to a unit.

The above result tells us that the classical Euclidean algorithm can be extended so that
it produces elements sl and tl and not only the gcd . This extension is what is referred to
as the Extended Euclidean Algorithm (EEA). The main property of the EEA is that it
produces si, ti such that sim + uti = ri at every division step. When the EEA terminates,
we have slm+ utl = rl where rl = gcd(m,u).

Algorithm 6: Extended Euclidean Algorithm (EEA)
Input: m,u ∈ F [x] where F is a field and deg(m) ≥ deg(u) ≥ 0.
Output: rl, sl, tl ∈ F [x] such that slm+ utl = rl where l ∈ N.

1 r0 ← m, s0 ← 1 t0 ← 0.
2 r1 ← u, s1 ← 0, t1 ← 1.
3 i← 1
4 while ri 6= 0 do
5 qi ← ri−1 quo ri

6 ri+1 ← ri−1 − qiri

7 si+1 ← (si−1 − qisi)
8 ti+1 ← (ti−1 − qiti)
9 i← i+ 1

10 end
11 l← i− 1
12 return rl, sl, tl ∈ F [x].

For 0 ≤ i ≤ l + 1, the elements ri, si, ti are generally referred to as the ith row of the
EEA [von zur Gathen and Gerhard, 2013]. The ri’s are the remainders and qi’s are the
quotients. The total cost of the EEA is O(deg(m) deg(u)) arithmetic operations in F , for
any m,u ∈ F [x].

Lemma 3.8. [Khodadad and Monagan, 2006, Lemma 2.2] Let F be a field and let m,u ∈
F [x] such that deg(m) > deg(u) ≥ 0. In the EEA for m and u, we have deg(ri) + deg(ti) +
deg(qi) = deg(m) for 1 ≤ i ≤ l where l is the total number of division steps.

We give the following lemma which describes some nice properties of the EEA.

Lemma 3.9. [von zur Gathen and Gerhard, 2013, Lemma 3.8] For 0 ≤ i ≤ l, we have

1. gcd(f, g) ∼ gcd(ri, ri+1) ∼ rl,

2. sif + tig = ri,

68

3. siti+1 − tisi+1 = (−1)i,

4. gcd(ri, ti) ∼ gcd(f, ti),

5. f = (−1)i(ti+1ri − tiri+1),

6. g = (−1)i+1(si+1ri − siri+1),

with the convention that rl+1 = 0. Here a ∼ b means that a and b are associates.

Theorem 3.10. [von zur Gathen and Gerhard, 2013, Corollary 3.9] Let a, b ∈ D where D
is a Euclidean domain. Then there exist s, t ∈ D such that sa+ tb = gcd(a, b).

3.3.2 The Monic Extended Euclidean Algorithm

Let gcd(m,u) denote a greatest common divisor of m and u. Since it is possible to have
more than one gcd(m,u), the question of deciding which gcd to choose arises naturally.
Whenever this happens, they differ by a unit. An extra condition may be imposed on gcd
computations if we want it to be unique. For example, we force the gcd to be positive when
computing the gcd of two integers. We are always concerned with computing the gcd of
polynomials, and we want it to be unique for our purposes. Thus, we ensure that our gcd
is unique by making it monic.

Algorithm 7: Monic Extended Euclidean Algorithm (MEEA)
Input: m,u ∈ F [x] where F is a field and deg(m) ≥ deg(u) ≥ 0.
Output: rl, sl, tl ∈ F [x] such that l ∈ N.

1 ρ0 ← lc(m), r0 ← m/ρ0, s0 ← ρ−1
0 , t0 ← 0.

2 ρ1 ← lc(u), r1 ← u/ρ1, s1 ← 0, t1 ← ρ−1
1 .

3 i← 1
4 while ri 6= 0 do
5 qi ← ri−1 quo ri

6 ri+1 ← ri−1 − qiri

7 si+1 ← (si−1 − qisi)
8 ti+1 ← (ti−1 − qiti)
9 if ri+1 6= 0 then

10 ρi+1 ← lc(ri+1)
11 ri+1 ← ri+1/ρi+1

12 si+1 ← si+1/ρi+1

13 ti+1 ← ti+1/ρi+1

14 end
15 i← i+ 1
16 end
17 l← i− 1
18 return rl, sl, tl ∈ F [x].

69

Similar to the EEA, the elements ri, si, ti form the ith row of the MEEA [von zur Gathen
and Gerhard, 2013] for 0 ≤ i ≤ l+ 1. The ri’s are the remainders and qi’s are the quotients.
The elements sl and tl satisfying

slf + tlg = gcd(f, g)

are referred to as the Bezout coefficients of f and g. Since the main objective of the MEEA
is to guarantee uniqueness of the gcd, we restate Lemma 3.9 as follows for the entries of the
Monic Extended Euclidean Algorithm.

Lemma 3.11. [von zur Gathen and Gerhard, 2013, Lemma 3.15] Using the notations of
Algorithm 7 for 0 ≤ i ≤ l,we have

1. gcd(f, g) = gcd(ri, ri+1) = rl.

2. siti+1 − tisi+1 = (−1)i(ρ0ρ1 · · · ρi+1)−1.

3. gcd(ri, ti) = gcd(f, ti).

4. f = (−1)i(ρ0ρ1 · · · ρi+1)(ti+1ri − tiri+1).

5. g = (−1)i+1(ρ0ρ1 · · · ρi+1)(si+1ri − siri+1).

3.3.3 Univariate Rational Function Reconstruction

Let F be a field and let (α1, α2, · · · , αd) ∈ F d such that αi 6= αj for i 6= j and d > 0.
Univariate rational function interpolation (Cauchy interpolation) is the problem of finding
a rational function

B(x) = f(x)
g(x) ∈ F (x)

with f, g ∈ F [x] such that

g(αi) 6= 0, B(αi) = f(αi)
g(αi)

= yi for 1 ≤ i ≤ d.

Without loss of generality, we require g to be monic [von zur Gathen and Gerhard,
2013] and gcd(f, g) = 1. Newton or Lagrange interpolation algorithm [von zur Gathen and
Gerhard, 2013, Section 5.2] can be used to find the unique polynomial u(x) ∈ F [x] of degree
less than d such that u(αi) = yi for 1 ≤ i ≤ d. The implication of this is that

u(x) ≡ yi (mod (x− αi)).

Thus, for 1 ≤ i ≤ d, we have

B(x) = f(x)
g(x) ≡ u(x) (mod (x− αi)). (3.2)

70

Let

m(x) =
d∏
i=1

(x− αi).

By the Chinese remainder theorem [von zur Gathen and Gerhard, 2013], (3.2) becomes

B(x) ≡ u(x) (mod m(x)) and gcd(m, g) = 1.

Therefore, with the help of the Chinese remainder theorem, the rational function interpo-
lation problem now becomes a new problem of finding the rational function B(x) = f(x)

g(x) ∈
F (x), given a polynomial m(x) of degree d and the unique polynomial u(x) of degree less
than d. This problem is what we refer to as the rational function reconstruction prob-
lem [von zur Gathen and Gerhard, 2013]. We restate the rational function reconstruction
problem formally.

Problem 3.12. Let m,u ∈ F [x] with d = deg(m) > 0, and du = deg(u) such that du < d.
We seek a rational function B ∈ F (x) where

B(x) = f(x)
g(x) ,

with the property that
f

g
≡ u mod m

such that gcd(f, g) = gcd(m,u) = 1, g is monic, and deg(f) + deg(g) < d.

Let N,D be degree bounds such that N ≥ deg(f) and D ≥ deg(g), with N + D < d. We
consider the following 2 cases:

1 Degree Bounds Known

If N and D are known, the univariate rational function B(x) = f(x)
g(x) can be recovered

using the EEA [von zur Gathen and Gerhard, 2013, Theorem 5.16]. For the sake of
brevity, this theorem will not be stated here, but the main steps involved are:

(i) Construct polynomials m(x) and u(x) such that deg(m) = d and deg(u) < d,

and use the polynomials m(x) and u(x) as inputs in the EEA.
(ii) Terminate the EEA when deg(rk) ≤ N.
(iii) The output should be rk

tk
with deg(tk) ≤ D and gcd(tk,m) = 1.

(iv) To uniquely determine B(x) = f(x)
g(x) , make tk monic so that rk

tk
≡ B(x) = f(x)

g(x) .

The method described above uses O(d2) arithmetic operations in F. Another approach is
to set up a linear system of d = N + D + 1 equations involving d unknowns which can be
solved using Gaussian elimination. This method is expensive as it uses O(d3) arithmetic
operations in F .

71

Example 3.13. Let F = Z19 and let

B = f

g
= 3x2 + 4

x+ 2 .

Suppose we aim to reconstruct B = f/g ∈ F (x) with degree bounds N = 2 and D = 1. So,
using d = 4 > N + d, suppose we are given values B(15) = 13, B(13) = 10, B(6) = 14 and
B(2) = 4. We construct

m = (x− 15)(x− 13)(x− 6)(x− 2) = x4 + 2x3 + 13x2 + 4x+ 3,

and the interpolating polynomial

u = 13x3 + x+ 12.

The following table shows the values of ri, ti when the EEA is called with inputs m and u.

Table 3.1: EEA computations for input polynomials m and u

i ri ti

0 x4 + 2x3 + 13x2 + 4x+ 3, 0
1 13x3 + x+ 12 1
2 10x2 + 7 16x+ 13
3 9x+ 2 2x2 + 4x+ 1
4 10 2x3 + 14x2 + 18x+ 18
5 0 2x4 + 4x3 + 7x2 + 8x+ 6

Observe that in row 2 of Table 3.1, the degree of r2 = N = 2 and deg(t2) = D = 1. So, the
correct output is

r2
t2

= 10x2 + 7
16x+ 13 .

Making t2 monic, we obtain our desired rational function

B = f

g
= 3x2 + 4

x+ 2 .

2 Degree Bounds Unknown

For a black box representation of a univariate rational function, the degree bounds N
and D are unknown. We modify the EEA to use maximal quotient rational function
reconstruction to discover the degree of the numerator f and the denominator g with
high probability, provided we use more than enough evaluation points, say d points
with d > deg(f) + deg(g) + 1. Maximal quotient rational function reconstruction by
Khodadad & Monagan [Khodadad and Monagan, 2006] can be used to find the desired

72

univariate rational function with high probability. Maximal quotient rational function
reconstruction is based on Monagan’s work [Monagan, 2004] for reconstructing a ra-
tional number from its integer image modulo another integer. We note that Paul Wang
was the first one who presented an algorithm based on the EEA that allows rational
number reconstruction [Wang, 1981].

Algorithm 8: Maximal Quotient Rational Function Reconstruction Algorithm (MQRFR)
Input: m,u,∈ F [x] where F is a field and deg(m) > deg(u) ≥ 0 or u = 0 and deg(m) ≥ 1 .
Output: Either f, g ∈ F [x] satisfying

f/g ≡ u mod m, gcd(u, g) = gcd(f, g) = 1, lc(g) = 1,

and deg(f) + deg(g) + 1 < deg(m), or FAIL implying that no such solution exists.
Remark : The degree requirement deg(f) + deg(g) + 1 < deg(m) is met by requiring that

one of the quotients qi in the Euclidean algorithm has degree at least 2.
1 if u = 0 then return (f, g)← (0, 1) end
2 (r0, r1)← (m,u) (t0, t1)← (0, 1)
3 (f, g)← (r1, t1) qmax ← 1
4 i← 1
5 while ri 6= 0 do
6 qi ← ri−1 quo ri

7 if deg qi > qmax then
8 qmax ← deg qi

9 (f, g)← (ri, ti)
10 end
11 (ri+1, ti+1)← (ri−1 − qiri, ti−1 − qiti)
12 i← i+ 1
13 end
14 if qmax ≤ 1 or gcd(f, g) 6= 1 then
15 return FAIL
16 end
17 return (f/lc(g), g/lc(g)).

Let l denote the total number of division steps for the EEA with inputs m and u. The
maximal quotient rational function reconstruction algorithm returns a rational function
ri
ti
≡ B = f

g with deg ri + ti minimal for i = 1, 2, · · · l, because Lemma 3.8 guarantees
the maximality of the quotient degree as long as d is large enough. Thus, we recover the
univariate rational function represented by a black box using the following steps.

1. Pick (α1, α2, · · · , αd) ∈ Zdp at random where p is prime with d = deg(f) + deg(g) + 2.

2. Compute m(x) = ∏d
i=1(x − αi) ∈ Zp[x], and the interpolating polynomial u(x) with

d = deg(m) > deg(u) ≥ 0.

73

3. Call the MQRFR algorithm with input polynomials m and u.

Note that Algorithm 8 is probabilistic, which means it could output a wrong answer.
Thus, the evaluation points must be chosen randomly from Zp and p must be large so that
the output is correct with high probability.

Example 3.14. Let F = Z19 and let

B = f

g
= 3x2 + 4

x+ 2 .

Suppose we seek a rational function B = f/g ∈ F (x) with d = 5,

m = x(x− 1)(x+ 1)(x− 2)(x+ 3) = x5 + x4 + 12x3 + 18x2 + 6x,

and the interpolating polynomial

u = 12x4 + 7x3 + 16x2 + 16x+ 2.

The following table shows the values of qi, ri, ti when the MEEA is called with inputs m
and u.

Table 3.2: MEEA computations for input polynomials m and u

i qi ri ti

0 − x5 + x4 + 12x3 + 18x2 + 6x 0
1 x+ 2 x4 + 18x3 + 14x2 + 14x+ 16 8
2 x2 + 18x x2 + 14 13x+ 7
3 x+ 13 x+ 6 7x3 + 7x2 + 5x+ 3
4 x+ 6 1 x4 + 14x3 + 11x2 + 16x+ 10
5 − 0 18x5 + 18x4 + 7x3 + x2 + 13x

Observe that in row 2 of Table 3.2, the degree of quotient q2 is maximal when compared to
other qi’s. So we get

r2
t2

= x2 + 14
13x+ 7 , (d = 5 > deg(f) + deg(g) = 3).

Making g monic, we have that

B = f

g
= 3x2 + 4

x+ 2 .

Also, notice in Table 3.2 that

deg qi + deg ri + deg ti = 5 = deg(m) for 1 ≤ i ≤ 4,

74

which illustrates Lemma 3.8.

Note that if F = Q, then our rational function computations must be done modulo suffi-
ciently many primes to recover the rational coefficients in Q(x) using Chinese remaindering
and rational number reconstruction [Monagan, 2004].

3.4 Sparse Multivariate Rational Function Interpolation

Let A = f/g be a sparse multivariate rational function where f and g are polynomials in
y1, y2, . . . , ym. Suppose that A = f/g is represented by a black box. Let the degree of A be
deg(A) = deg(f) + deg(g) and let t = max(#f,#g) be the maximum number of terms in
A = f/g.

Kaltofen and Trager developed a method in [Kaltofen and Trager, 1990] that evaluates
the numerator and denominator of A separately. Their central idea is to separately evaluate a
rational function A ∈ F (y1, y2, · · · , ym) where F is a field of characteristic 0, is to interpolate
a bivariate function T (x, y) such that

T (x, y) = A(x, a2x+ b2 + y(α2 − a2α1 − b2) · · · , amx+ bm + y(αm − amα1 − bm))

= f(x, a2x+ b2 + y(α2 − a2α1 − b2) · · · , amx+ bm + y(αm − amα1 − bm))
g(x, a2x+ b2 + y(α2 − a2α1 − b2) · · · , amx+ bm + y(αm − amα1 − bm))

(3.3)

where (b2, b3, · · · , bm), (a1, a2, a3, · · · , am) ∈ S ⊂ Fm−1 are chosen randomly, and (α1, α2, · · · , αn)
is the evaluation point. Evaluating the bivariate function T (x, y) at x = α1 and y = 1 pro-
duces the desired separation f(α1, α2, · · · , αm) and g(α1, α2, · · · , αm).

Kaltofen and Yang presented a more efficient black box multivariate rational function
separation algorithm in [Kaltofen and Yang, 2007]. This algorithm interpolates the univari-
ate rational function

T (x) = A(x, xβ2 − β2σ1 + σ2, · · · , xβm − βmσ1 + σm)

= f(x, xβ2 − β2σ1 + σ2, · · · , xβn − βmσ1 + σm)
g(x, xβ2 − β2σ1 + σ2, · · · , xβm − βmσ1 + σm)

, (3.4)

for an evaluation point σ = (σ1, σ2, · · · , σm), such that β = (β2, β2, · · · , βm) is a point chosen
at random. One clearly sees that T (σ1) = f(σ1,σ2,···,σm)

g(σ1,σ2,···,σm) is the desired output. This black box
separation algorithm can be combined with any sparse polynomial interpolation algorithm
to interpolate A, by simultaneously interpolating the numerator and denominator of A from
the evaluations f(σ1, σ2, · · · , σm) and g(σ1, σ2, · · · , σm). Kaltofen and Yang’s method uses
O(deg(A)) probes to interpolate T (x). Using the Ben-Or/Tiwari algorithm to interpolate f
and g needs O(t) probes which implies O(t deg(A)) probes are needed to recover A = f/g.

The RATZIP algorithm by Monagan and De Kleine in [de Kleine et al., 2005] requires
O(mt deg(A)) probes to the black box in order to interpolate A. This algorithm reconstructs
A from monic univariate images using a sparse, one variable at a time, rational function

75

interpolation algorithm. For example, suppose A = f/g in variables y1, y2 is to be interpo-
lated. The algorithm first reconstructs A at y1, then normalizes the leading coefficient of
the denominator so that it is monic. Then it uses enough points to interpolate the second
variable y2 so that

A ≡
∑df

i=0
ai(y2)
bi(y2) y

i
1

y
dg

1 +∑dg−1
i=0

ni(y2)
di(y2)y

i
1

where df = deg(f, y1) and dg = deg(g, y1).
Let f = ∑deg(f)

i=0 fi and let g = ∑deg(g)
i=0 gi such that the polynomials fi and gi are

homogeneous and deg(fi) = deg(gi) = i. Let tmax = maxi(#fi,#gi). To ensure that the
smallest number of black box probes are used to interpolate a sparse multivariate rational
function A = f/g in our proposed algorithms, we modify Cuyt and Lee’s [Cuyt and Lee,
2011] sparse multivariate rational function algorithm for our purposes. This is because Cuyt
and Lee’s method requires O(tmax deg(A)) probes to interpolate A if the Ben-Or/Tiwari
algorithm is used as the main sparse polynomial interpolation algorithm to interpolate f
and g. Thus, Cuyt and Lee’s method uses a factor of O(d) less probes than Kaltofen and
Yang’s method. For example, in Example 3.15, Cuyt and Lee’s method needed 42 probes in
comparison with Kaltofen and Yang’s method which required 56 probes to interpolate f/g.
Unfortunately, Cuyt and Lee’s algorithm is more complicated than Kaltofen and Yang’s
method.

3.4.1 Cuyt and Lee’s algorithm

Let K be a field and let A = f/g be a sparse multivariate rational function where f, g ∈
K[y1, . . . , ym] such that gcd(f, g) = 1. Cuyt and Lee’s algorithm [Cuyt and Lee, 2011] to
interpolate f/g must be combined with a sparse polynomial interpolation algorithm to
interpolate the sparse polynomials f and g.

The first step in their algorithm is to introduce a homogenizing variable z to form the
auxiliary function

f(y1z, . . . , ymz)
g(y1z, . . . , ymz)

,

which can be written as

f(y1z, . . . , ymz)
g(y1z, . . . , ymz)

=
f0 + f1(y1, . . . , ym)z + · · ·+ fdeg(f)(y1, . . . , ym)zdeg(f)

g0 + g1(y1, . . . , ym)z + · · ·+ gdeg(g)(y1, . . . , ym)zdeg(g) , (3.5)

and then normalize it using either f0 6= 0 or g0 6= 0. Observe that if z = 1 in (3.5) then f =∑deg(f)
j=0 fj(y1, y2, . . . , ym) and g = ∑deg(g)

j=0 gj(y1, y2, . . . , ym), where deg(fj) = deg(gj) = j.

If A = f/g is represented by a black box, it is easy to detect the presence of g0. This
can be done by inputting (0, 0, . . . , 0) to the black box and the output A(0, 0, . . . , 0) ∈ K
confirms the occurrence of g0. However, it is not uncommon to have f0 = g0 = 0. Thus in

76

the case when both constant terms g0 and f0 are zero, Cuyt and Lee choose a basis shift
β 6= 0 ∈ Km such that g(β) 6= 0 and form a new auxiliary rational function as

f̂(y1z, . . . , ymz)
ĝ(y1z, . . . , ymz)

:=f(y1z + β1, . . . , ymz + βm)
g(y1z + β1, . . . , ymz + βm) =

∑deg(f)
j=0 f̂j(y1, . . . , ym)zj∑deg(g)
j=0 ĝj(y1, . . . , ym)zj

.

The introduction of the basis shift β leads to the production of a constant term in f̂/ĝ
so that f̂/ĝ can be normalized using either f̂0 or ĝ0. Thus, we may write

f̂(y1z, . . . , ymz)
ĝ(y1z, . . . , ymz)

=
∑deg(f)
j=0

f̂j(y1,...,ym)zj

ĝ0

1 +∑deg(g)
j=1

ĝj(y1,...,ym)zj

ĝ0

.

Note that ĝ0 = c̃× g(β1, β2, . . . , βm) 6= 0 for some c̃ ∈ K.
If a rational function A = f/g ∈ Q(y1, y2, . . . , ym) is represented by a black box, we can

recover it by first densely interpolating the univariate auxiliary rational functions

Â(αj , z) =
f̂0
ĝ0

+ f̂1(αj)
ĝ0

z + · · ·+ f̂deg(f)(αj)
ĝ0

zdeg(f)

1 + ĝ1(αj)
ĝ0

z + · · ·+ ĝdeg(g)(αj)
ĝ0

zdeg(g)
∈ Zp(z) for j = 0, 1, 2, · · ·

for α ∈ Zmp from the black box, and then use the coefficients of Â(αj , z) via sparse in-
terpolation to recover f/g. In order to densely interpolate Â(αj , z), we use the Maximal
Quotient Rational Function Reconstruction algorithm (MQRFR) [Monagan, 2004] which
requires ≥ deg(f) + deg(g) + 2 black box random probes on z.

Note that the use of a basis shift in the formation of the auxiliary rational function does
not affect the total degrees and the leading coefficients of the numerator and denominator
of the rational function A = f/g, but it does affect the lower degree coefficients because
the sparsity of A = f/g is destroyed. The effect of this basis shift can be removed by
adjusting the coefficients of the lower degree terms in the numerator and denominator of
Â(αj , z) using the contributions from the higher degree terms, before sparse interpolation
is performed. We explain how this works using the numerator part of A = f/g. Let

f =
deg(f)∑
j=0

fj(y1, y2, . . . , ym),

and let

f(y1z + β1, . . . , ymz + βm)
g(y1z + β1, . . . , ymz + βm) =

f0 + f1(y1, . . . , ym)z + · · ·+ fdeg(f)(y1, . . . , ym)zdeg(f)

g0 + g1(y1, . . . , ym)z + · · ·+ gdeg(g)(y1, . . . , ym)zdeg(g) .

Since the basis shift β does not affect the leading coefficients and the total degrees of
f(y1z+β1, . . . , ymz+βm) and g(y1z+β1, . . . , ymz+βm) in z, suppose we have interpolated

77

the leading term polynomial

fdeg(f)(y1, y2, . . . , ym) = fdeg(f)(y1, y2, . . . , ym)

in the numerator part and the basis shift β applied is known. Then we move on to interpo-
late the next lower degree term denoted by fdeg(f)−1(y1, y2, . . . , ym). Recall that the sparse
representation form of f is written as

f =
s∑

k=1
aky

dk,1
1 y

dk,2
2 · · · ydk,m

m .

Notice that in the expansion of f(y1z + β1, y2z + β2, . . . , ymz + βm)

=
s∑

k=1
ak(y1z + β1)dk,1(y2z + β2)dk,2 · · · (ymz + βm)dk,m

=
deg(f)∑
j=0

 ∑
dk,1+dk,2+···dk,m=j

ak(y1z + β1)dk,1 · · · (ymz + βm)dk,m

 ,
the coefficient of zdeg(f)−1 is being contributed to by the expansions of

∑
dk,1+dk,2+···dk,m=deg(f)

ak(y1z + β1)dk,1(y2z + β2)dk,2 · · · (ymz + βm)dk,m (3.6)

and ∑
dk,1+dk,2+···dk,m=deg(f)−1

ak(y1z + β1)dk,1 · · · (ymz + βm)dk,m . (3.7)

Since fdeg(f)(y1z + β1, . . . , xmz + βm) can be written as

fdeg(f)(y1z + β1, . . . , xmz + βm)

=
∑

dk,1+dk,2+···dk,m=deg(f)
ak(y1z + β1)dk,1(y2z + β2)dk,2 · · · (ymz + βm)dk,m

=
deg(f)∑
j=0

uj(y1, y2, · · · , ym)zj ,

we remove the effect of β for the coefficient of zdeg(f)−1 in the numerator by computing

fdeg(f)−1(y1, y2, . . . , ym) = fdeg(f)−1(y1, y2, . . . , ym)− udeg(f)−1(y1, y2, · · · , ym). (3.8)

We emphasize that we do not actually have (3.8) since the sparse multivariate rational
function A = f/g is represented by a black box. Thus, for inputs αi = (αi1, αi2, · · · , αim) to

78

the black box representing f/g, the images

fdeg(f)−1(αi1, αi2, · · · , αin) = fdeg(f)−1(αi1, αi2, · · · , αim)− udeg(f)−1(αi1, αi2, · · · , αim)

are computed via the dense univariate rational functions in z to interpolate fdeg(f)−1, and
these values must be stored in order to be reused when interpolating the lower degree
polynomials fi(y1, y2, . . . , ym), until one gets to the constant term. Continuing in similar
fashion for the rest of the terms in the denominator and numerator, one successfully recovers
the rational function A = f/g.We give the following example to help the reader understand
the reconstruction of a sparse multivariate rational function using Cuyt and Lee’s method,
with the Ben-Or/Tiwari algorithm serving as the primary sparse interpolation algorithm.

Example 3.15. Let

A(x, y, z) = f(y1, y2, y3)
g(y1, y2, y3) = y2

1 + y2
2 + y2

3 + y3
y1y2y3

be a rational function represented by a black box B, which outputs FAIL if a division by 0
occurs. In other words, A(0, 0, 0) = f(0,0,0)

g(0,0,0) = 0
0 . Suppose we want to interpolate A. Since A

is represented by B, the only information available to use is the number of variables n = 3.
Let prime p = 3137.

1. We first compute B(0, 0, 0). Since A(0, 0, 0) is not defined, B(0, 0, 0) returns FAIL so
we need to use a basis shift β.

2. We pick a random basis shift β ∈ Z3137 untilA(β) 6= 0.Here, we use β = (2811, 1186, 1298).

3. Algorithms for computing deg(f) and deg(g) probabilistically will be presented in the
next chapter. For this example, we assume that the total degrees deg(f) = 2 and
deg(g) = 3, and the maximum number of terms t = max(#f,#g) = 4 are known.

4. Since we need to perform dense interpolation of auxiliary functions in the new ho-
mogenizing variable z, we pick random evaluation points in Z3137 for z. Let

{2909, 2799, 1325, 2016, 6, 3003, 2348}

be the seven (deg(f)+deg(g)+2) random points needed to perform univariate rational
interpolation using the MQRFR algorithm. Let T denote the number of auxiliary
rational functions needed. In this case, T = 6 < 2t.

We input the prime p and the evaluation points

(2iz + 2811, 3iz + 1186, 5iz + 1298)

79

for i = 0, 1, 2, · · · , T − 1 to the black box at each point

z = 2909, 2799, 1325, 2016, 6, 3003, 2348,

and then densely interpolate the auxiliary rational functions. The interpolated auxil-
iary functions Fi = Ni/Di for i = 0, 1, 2, . . . , 5 are:

F0(z) = 58z2 + 1900z + 2967
z3 + 2158z2 + 1860z + 595

F1(z) = 2826z2 + 1608z + 2967
580z3 + 900z2 + 683z + 1

F2(z) = 365z2 + 3014z + 2967
1715z3 + 608z2 + 884z + 1

F3(z) = 2669z2 + 2785z + 2967
1258z3 + 2255z2 + 3024z + 1

F4(z) = 320z2 + 1478z + 2967
96z3 + 1091z2 + 1367z + 1

F5(z) = 1414z2 + 43z + 2967
2880z3 + 1768z2 + 2912z + 1 .

5. Starting from the highest degree in the numerator of Fi which is 2, we collect the
sequence of coefficients of z2 which is given by

v = [58, 2826, 365, 2669, 320, 1414].

Then we input v to the Berlekamp-Massey Algorithm (BMA) to obtain the feedback
polynomial λ(z) = z3 + 3099z2 + 361z + 2237 ∈ Zp[z].

6. Next we compute the roots of λ(z). We obtain m̂ = {4 = 22, 9 = 32, 25 = 52}.
Performing repeated trial divisions on the elements of m̂, we obtain {y2

1, y
2
2, y

2
3}. Next,

we set up and solve the transposed Vandermonde system

V a =


1 1 1

m̂1 = 4 m̂2 = 9 m̂3 = 25
m̂2

1 = 16 m̂2
2 = 81 m̂2

3 = 625



a1

a2

a3

 =


58

2826
365

 = v.

Thus, we recover
f2 = 1065y2

1 + 1065y2
2 + 1065y2

3.

7. The next lower total degree in the numerator of A = f/g is 1 (the final degree in our
example is 1 as there is no constant term), so we move on to interpolate any degree
one polynomial in f. However, we need to remove the effect of the basis shift. We
do this as follows. Suppose we compute Hi = f2(2iz + β1, 3iz + β2, 5iz + β3) ∈ Zp[z]

80

directly for 0 ≤ i ≤ 5, such that

H0(z) = 58z2 + 835z + 877

H1(z) = 2826z2 + 2557z + 877

H2(z) = 365z2 + 1485z + 877

H3(z) = 2669z2 + 1414z + 877

H4(z) = 320z2 + 897z + 877

H5(z) = 1414z2 + 275z + 877.

8. Next, we compute
v = [1065, 2188, 1529, 1371, 581, 2905]

where vi = Coeff(Ni, z
1) − Coeff(Hi, z

1) for 0 ≤ i ≤ 5. Applying the BMA on v

yields the feedback polynomial λ(z) = z − 5. Clearly, the root of λ(z) is 5, so the
corresponding monomial is y3. Thus, f1 = 1065y3.

9. The same process can be repeated for the denominator part.

We note that it took 42 probes to the black box to reconstruct

A = f/g ≡ 1065y2
1 + 1065y2

2 + 1065y2
3 + 1065y3

1065y1y2y3
∈ Z3137(y1, y2, y3).

Finally, we normalize A using 1065−1 to get our desired rational function A = f/g.

We emphasize again that the interpolation of the numerator and denominator polyno-
mials can be done at the same time. Also, if we were to use Kaltofen and Yang’s separation
algorithm [Kaltofen and Yang, 2007] to interpolate A(x, y, z), it would take 56 probes to
the black box to reconstruct A = f/g.

81

Chapter 4

Modified Interpolation using a
Kronecker Substitution

4.1 Summary of Contributions

All the materials presented in this chapter are new. Our main contribution in this chapter is
a new sparse multivariate rational function interpolation method for interpolating a sparse
multivariate rational function A = f/g over Q represented by a black box which requires
the same number of black box probes as the Cuyt and Lee’s sparse multivariate rational
function algorithm (previously described in Subsection 3.4.1).

This new sparse multivariate rational function interpolation method modifies the Cuyt
and Lee’s algorithm and the Ben-Or/Tiwari sparse polynomial interpolation algorithm to
use a Kronecker substitution and a new set of randomized evaluation points.

The use of a Kronecker substitution in our new approach leads to a reduction in the
size of the prime p required for our algorithm to work, and consequently transforms the
problem of interpolating a multivariate rational function in Zp(y1, y2, . . . , ym) to the prob-
lem of interpolating one univariate rational function in Zp(y). We also randomize our new
evaluation point sequence in order to avoid unlucky evaluation points with high probability.

Probabilistic algorithms for computing the degrees required to interpolate A = f/g are
also presented. We note that parts of this chapter have been published in the Proceedings
of CASC ’22 [Jinadu and Monagan, 2022b].

4.2 Introduction

Let A = f/g be a sparse multivariate rational function over Q represented by a black box.
In this thesis, we adapt the sparse multivariate rational function interpolation algorithm of
Cuyt and Lee to interpolate A because it requires the fewest number of black box probes
when combined with the Ben-Or/Tiwari algorithm as the primary sparse polynomial inter-
polation algorithm. However, the use of the Ben-Or/Tiwari algorithm poses the following
two problems, namely,

82

1 The working prime p needed to interpolate f = ∑t
k=1 akMk(y1, . . . , ym) ∈ Z[y1, . . . , ym]

over Zp must satisfy p > tmax
i=1

m̂i ≤ pdeg(f)
m so that the monomial evaluations m̂i =

Mi(2, 3, . . . , pm) are unique and can be uniquely determined where pm is the m-th
prime. Unfortunately, such a prime p may be too large for machine arithmetic use
if the total degree d is large. This is the main drawback of using the Ben-Or/Tiwari
algorithm point sequence (2i, 3i, . . . , pim) for i = 0, 1, 2,

Example 4.1. Suppose m = 6, deg(f, yi) = 10 and deg(f) = 60 (the total degree of
the Dixon resultant R of the robot arms system described in Example 1.10 is 128).
Then p > 1360 = 6.8× 1066 which is larger than a 64 bit prime.

2 Using the Ben-Or/Tiwari algorithm point sequence (2j , 3j , . . . , pjn) can result in un-
lucky evaluation. We give the following example to help the reader understand what
an unlucky evaluation point means.

Example 4.2. Let a, b ∈ Z[y1, y2, y3]. Suppose that a = āg and b = b̄g such that
ā 6= 0 and g = gcd(a, b). Suppose b̄ = ā + (y2 − y3). Consider the evaluation point
β = (20, 30). Suppose we want to compute g(y1, 1, 1). Observe that gcd(ā, b̄) = 1 but

gcd(ā(y1, 1, 1), b̄(y1, 1, 1)) = ā(y1, 1, 1).

Thus, in order to use the fewest number of black box probes possible in our proposed
Dixon resultant algorithm, by using the Ben-Or/Tiwari algorithm as the primary sparse
polynomial algorithm in Cuyt and Lee’s algorithm, these two problems must be addressed.
We address these problems in the next section.

4.3 Using a Kronecker substitution on the parameters

Our goal now is to reduce the size of the prime needed in our sparse rational function inter-
polation algorithm. Our idea to reduce the size of the prime is based on using a Kronecker
substitution to map a multivariate rational function into a univariate rational function, and
then we evaluate at powers of a generator α of Z∗p instead of powers of prime (2j , 3j , . . . , pjn).

To invert a Kronecker substitution, we first need to determine the partial degrees of f
and g for all the variables involved in a multivariate rational function A = f/g. Thus, we
first discuss how to compute the partial degrees of A = f/g with high probability for all
the variables involved in A.

4.3.1 Pre-computing the partial degrees of A = f/g in each variable

LetA = f/g ∈ Q(y1, y2, y3, . . . , ym) be a multivariate rational function in variables y1, . . . , ym

represented by a black box B. Let dfi
= deg(f, yi) and dgi = deg(g, yi) be the partial degrees

83

of f and g in variables yi respectively for 1 ≤ i ≤ m. Let A be viewed as

A = f/g =
∑dfi
k=0 ak(y1, . . . , yi−1, yi+1, yi+2, . . . , ym)yki∑dgi
k=0 bk(y1, . . . , yi−1, yi+1, yi+2, . . . , ym)yki

(4.1)

such that f, g ∈ Q[y1, y2, . . . , yi−1, yi+1, yi+2, . . . , ym][yi]. Let p be a prime and let z be a new
variable. Let α = (α1, . . . , αi−1, αi, αi+1, . . . , αm) ∈ (Zp \ {0})m−1 be selected at random.

To obtain the partial degrees deg(f, yi) and deg(g, yi), we pick θ ∈ Zp \ {0} at random,
and we use enough random distinct points (at least dfi

+ dgi + 2 points) for z selected from
Zp to interpolate the univariate rational function

Hi(z) := Hfi
/Hgi = A(α1, . . . , αi−1, θz︸︷︷︸

the i-th component

, αi+1, · · · , αm) ∈ Zp(z)

such that deg(Hfi
, z) = dfi

and deg(Hgi , z) = dgi with high probability.
Algorithm 9 implements this approach and it uses Algorithm MQRFR (Algorithm 8) to

discover the partial degrees of f and g with high probability. However, if LC(f, yi)(α) = 0 or
LC(g, yi)(α) = 0, then the wrong partial degrees would be obtained. We give the following
example to illustrate this.

Example 4.3. Let

A = f/g = (2− y3)y2
1y2 + y1

y1 + y2

and suppose we want to determine deg(f, y1) and deg(g, y1). Let α = (α2, α3), where αj 6= 0
for j = 2, 3 and prime p = 3137. Let z be a new variable. Clearly, we have

H1(z) = Hf1/Hg1 = A(θz, α2, α3) = (2− α3) (θz)2 α2 + θz

θz + α2
= α2θ

2 (2− α3) z2 + θz

θz + α2
.

Observe that if α3 = 2, then LC(f, y1)(α2, 2) = (2 − 2)α2 = 0, for any α2 ∈ Zp \ {0}. So,
the wrong partial degree of f in y1 will be returned in this case, because

H1(z) = Hf1/Hg1 = A(θz, α2, 2) = θz

θz + α2
.

Since LC(f, yi)(α) = 0 or LC(g,i)(α) = 0 implies that LC(f)(α)LC(g)(α) = 0, we have that

Pr[LC(f, yi)(α)LC(g, yi)(α) = 0] ≤ deg(LC(f, yi)) + deg(LC(g, yi))
p− 1 ≤ deg(f) + deg(g)

p− 1

by the Schwartz-Zippel Lemma (Lemma 2.17). Thus, it is important that we pick prime
p� deg(f) + deg(g), and the evaluation point α randomly.

Given a black box B for A = f/g ∈ Q(y1, y2, . . . , ym) and an input prime p such
that p � deg(f) + deg(g), Algorithm 9 probes the black box B with evaluation points

84

(α1, . . . , αi−1, θγd, αi+1, . . . , αm) to output the black box evaluations

ad = A(α1, . . . , αi−1, θγd, αi+1, . . . , αm)

in Line 6 for d = 1, 2, . . . in order to interpolate the unique polynomial u ∈ Zp[z] of degree
< d and to compute the product polynomial m(z) = ∏d

j=1(z−γj) ∈ Zp[z]. It then attempts
to discover the partial degrees deg(f, yi) and deg(g, yi) for any i such that 1 ≤ i ≤ m using
the polynomials m(z) and u(z) as inputs to the Algorithm MQRFR in Line 11. Algorithm
9 breaks out of the main for loop (Line 4-18) and returns the partial degrees with high
probability if the output of Algorithm MQRFR in Line 12 labelled as h(z) 6= FAIL.

Algorithm 9: PartialDegreeBound
Input: A prime p� deg(f) + deg(g) and the black box B

(
Zm

p , p
)
→ Zp for the rational

function f(y1,y2,...,ym)
g(y1,y2,...,ym) over Q which returns "division by zero" if g(γ) = 0 for some

point γ ∈ Zm
p and i such that 1 ≤ i ≤ m.

Output: (deg(f̄), deg(ḡ)) where deg(f̄) = deg(f, yi) and deg(ḡ) = deg(g, yi) with high
probability.

1 Pick α = (α1, . . . , αi−1, αi+1, . . . , αm) ∈ (Zp \ {0})m−1 and θ ∈ Zp \ {0} at random.
2 Let z be a new variable.
3 m(z)← 1
4 for d = 1, 2, · · · do
5 Pick γd ∈ Zp at random such that γd 6= γj for 1 ≤ j < d.

6 ad ← B ((α1, . . . , αi−1, θγd, αi+1, · · · , αm), p) ∈ Zp. // Next black box evaluation.
7 if ad = "division by zero" then restart the algorithm (go to line 1) end.
8 if d ≥ 2 then
9 Interpolate the polynomial u(z) ∈ Zp[z] of degree < d using points

(γi, ai : 1 ≤ i ≤ d).
10 Compute m(z) = (z − γi)×m(z) ∈ Zp[z]. // m(z) =

∏d
i=1(z − γi) ∈ Zp[z].

11 h(z)← MQRFR (m,u, p). // d = deg(m) > deg(u) ≥ 0.
12 if h(z) 6= FAIL then
13 Let h(z) = f̄(z)

ḡ(z) with gcd(f̄ , ḡ) = 1.
14 return (deg(f̄ ,) deg(ḡ))
15 end
16 end
17 d← d+ 1
18 end

We remark that if LC(f, yi)(α) 6= 0 and LC(g, yi)(α) 6= 0, and the black box for A = f/g

does not output "division by zero", then Algorithm 9 computes the partial degrees of f and
g in variable yi for 1 ≤ i ≤ m with high probability (See Section 4.6 for a failure probability
bound).

85

4.3.2 Kronecker substitution

Using a Kronecker substitution in Cuyt and Lee’s method, we reduce the problem of in-
terpolating a sparse multivariate rational function to many univariate rational function
interpolations.

Definition 4.4. Let K be an integral domain and let A = f/g ∈ K(y1, . . . , ym). Let
r = (r1, r2, . . . , rm−1) ∈ Zm−1 with ri > 0. Let Kr : K(y1, . . . , ym)→ K(y) be the Kronecker
substitution

Kr(A) = f(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)
g(y, yr1 , yr1r2 , . . . , yr1r2···rm−1) .

Let di = max{(deg(f), yi), deg(g, yi)} for 1 ≤ i ≤ m. Provided we choose ri > di for
1 ≤ i ≤ m− 1, then Kr is invertible, g 6= 0 and Kr(A) = 0 ⇐⇒ f = 0.

Unfortunately, we cannot use the original presentation and definition of the auxiliary
rational function given by Cuyt and Lee to interpolate the univariate mapped function
Kr(A). Thus, we need a new method to interpolate the corresponding auxiliary rational
function relative to the mapped univariate rational function Kr(A), and not the original
sparse multivariate rational function A = f/g.

Using a new variable z, we define our new auxiliary rational function

F (y, z) = f(zy, zyr1 , . . . , zyr1r2···rm−1)
g(zy, zyr1 , . . . , zyr1r2···rm−1) ∈ K[y](z). (4.2)

We need to guarantee the existence of a constant term in the denominator of F (y, z). So, we
use a basis shift β ∈ (K \ {0})m, and instead formally define an auxiliary rational function
with a Kronecker substitution as follows.

Definition 4.5. Let K be a field and let f/g ∈ K(y1, . . . , ym) such that gcd(f, g) = 1. Let
r = (r1, . . . , rm−1) with ri > di = max{(deg(f), yi), deg(g, yi)}. Let z be the homogenizing
variable and let Kr be the Kronecker substitution. Let β ∈ Km be a basis shift. We define

F (y, z, β) := fβ(y, z)
gβ(y, z) = f(zy + β1, zy

r1 + β2, . . . , zy
r1r2···rm−1 + βm)

g(zy + β1, zyr1 + β2, . . . , zyr1r2···rm−1 + βm) ∈ K[y](z)

as an auxiliary rational function with a Kronecker substitution Kr.

We will often refer to F (y, z, β) simply as an auxiliary rational function.
Notice in the above definition that for β = 0,

F (y, 1, 0) = f0(y, 1)
g0(y, 1) = Kr(A).

Thus, the univariate rational function Kr(A) can be recovered using the coefficients of zi

in F (αi, z, β) for some evaluation point α ∈ Z∗p and i ≥ 0. If g has a constant term, then
one can use β = (0, . . . , 0).

86

Although the degree of y of the mapped univariate rational functionKr(A) is exponential
in m, the degree of the auxiliary function F (y, z) in z through which the univariate rational
function Kr(A) is interpolated remains the same. Consequently, the number of terms and
the number of probes needed to interpolate A = f/g does not change. To uniquely recover
the exponents in y and to also make our discrete logarithm computations in Z∗p feasible, we
follow [Kaltofen, 2010] and pick a prime p > ∏m

j=1 rj such that p−1 = 2ks where s is small.
Any prime p of the form p− 1 = 2ks where s is small is said to be a smooth prime. A prime
p is said to be y-smooth if the largest prime factor of p− 1 is at most y.

Example 4.6. In Example 4.1, m = 6,deg(f, yi) = 10, so, using a Kronecker substitution
now implies that p > 116 = 1.7× 106 which is small.

4.3.3 Randomizing the evaluation point sequence

Let p be a prime. Since we map a multivariate rational function A = f/g in variables
y1, y2, . . . , ym to become a univariate rational function Kr(A) ∈ Zp(y) using a Kronecker
substitution Kr, we are now tasked to interpolate univariate polynomials in Zp[y].

Let H = ∑t
j=1 ajMj(y) be one of the univariate polynomials to be interpolated in

either the numerator or denominator of Kr(A). We avoid unlucky evaluation point with
high probability for our purposes, by randomizing the evaluation points αj for j ≥ 0. The
implication of doing this in our new sparse rational function method is that we do not want
to lose the total degree of the numerator and the denominator of the univariate auxiliary
rational functions in z with high probability. This modification is done as follows.

We pick a random shift ŝ ∈ [0, p − 2] and compute vj = H(αŝ+j) for 0 ≤ j ≤ t −
1. Changing the point sequence from αj to αŝ+j does not affect the way we recover the
univariate monomials Mi in y of H using our new approach. However, solving for the
coefficients ai means we now have to solve the shifted transposed Vandermonde system [Hu
and Monagan, 2016]

V a =


m̂ŝ

1 m̂ŝ
2 · · · m̂ŝ

t

m̂ŝ+1
1 m̂ŝ+1

2 · · · m̂ŝ+1
t

...
...

...
...

m̂ŝ+t−1
1 m̂ŝ+t−1

2 · · · m̂ŝ+t−1
t




a1

a2
...
at

 =


v0

v1
...

vt−1

 = v,

where m̂j
i = Mi(αj). We solve for the coefficients ai by first using Zippel’s O(t2) algorithm

[Zippel, 1990] to solve the transposed Vandermonde system

Wc =


1 1 · · · 1
m̂1 m̂2 · · · m̂t

...
...

...
...

m̂t−1
1 m̂t−1

2 · · · m̂t−1
t




c1

c2
...
ct

 =


v0

v1
...

vt−1

 = v,

87

which yields c = W−1v. Notice that

V = WD =


1 1 · · · 1
m̂1 m̂2 · · · m̂t

...
...

...
...

m̂t−1
1 m̂t−1

2 · · · m̂t−1
t




m̂ŝ

1 0 · · · 0
0 m̂ŝ

2 · · · 0
...

...
...

...
0 0 · · · m̂ŝ

t


where D is a t × t diagonal matrix with entries Dii = m̂ŝ

i . Thus, we obtain the unknown
coefficients ai using ai = m̂−ŝi ci since

V a = v =⇒ (WD)a = v =⇒ (Da) = W−1v = c =⇒ a = D−1c.

Note that the number of arithmetic operations performed in Zp to solve a shifted transposed
Vandermonde system isO(t2+t log(ŝ)) where log(ŝ) is the cost of inverting m̂ŝ

i . Therefore, for
our new sparse rational function interpolation method which uses a Kronecker substitution,
we randomize our points by picking any generator α ∈ Z∗p, and a random shift ŝ ∈ [0, p− 2]
where p is prime to compute

F (αŝ+i, z, β) =fβ(αŝ+i, z)
gβ(αŝ+i, z) = f(zαŝ+i + β1, zα

(ŝ+i)r1 + β2, . . . , zα
(ŝ+i)r1r2···rm−1 + βm)

g(zαŝ+i + β1, zα(ŝ+i)r1 + β2, . . . , zα(ŝ+i)r1r2···rm−1 + βm)
∈ Zp(z)

for i = 0, 1, 2, · · · . Randomizing our evaluation points ensures that deg(fβ(αŝ+i, z)) =
deg(f) and deg(gβ(αŝ+i, z)) = deg(g) with high probability.

4.4 An illustrative example of our new sparse rational func-
tion interpolation method

We demonstrate how our new sparse rational function interpolation method works with the
following example. The new algorithm is presented in Section 4.5. We advise the reader to
first go through this example before checking the steps involved in the new algorithm.

Suppose we are given a black box for the sparse multivariate rational function

A = f/g = y11
1 + y11

2 + y11
3 + y5

4 + y5
5 + y8

y11
6 + y11

7 + y11
8 + y6

∈ Z(y1, y2, . . . , y8),

and we want to interpolate A. Let

f11 = y11
1 + y11

2 + y11
3 , f5 = y5

4 + y5
5, f1 = y8 and g11 = y11

6 + y11
7 + y11

8 and g1 = y6.

So, f = f11 + f5 + f1 and g = g11 + g1.

Suppose we have discovered the total degrees of f and g denoted by deg(f) = deg(g) = 11
with high probability (we will discuss how to do this in Subsection 4.4.1), and the maximum

88

partial degrees of f and g in each variable denoted by di for 1 ≤ i ≤ 8 have been discovered
using Algorithm 9. Then we use r = (d1 + 1, d2 + 1, . . . , d8 + 1) = (12, 12, 12, 6, 6, 12, 12, 12).

For our new sparse rational function interpolation method, we use a smooth prime
p = 3·230+1 > ∏8

i=1 ri whereas the Ben-Or/Tiwari algorithm requires p > 1911 = 1.1×1014.

We use a Kronecker substitution Kr : Zp(y1, . . . , ym)→ Zp(y) where

Kr(A) = f(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)
g(y, yr1 , yr1r2 , . . . , yr1r2···rm−1) = y8957952 + y51840 + y8640 + y1584 + y132 + y11

y98537472 + y8211456 + y684288 + y62208 .

So, Kr(A) is what we want to interpolate. Suppose we pick α = 5 which is a generator
for Z∗p and let ŝ = 2 ∈ [0, p− 2] be picked at random. Let the random basis shift be
β = (85132797, 34637621, 26107038, 10607916, 37522487, 4922352, 51780437, 52449057).

Step 1: Using the Berlekamp-Massey algorithm (BMA), suppose we know that the
(minimum) number of auxiliary rational functions needed to interpolate Kr(A) is 6, and
suppose we directly compute (one must interpolate these univariate rational functions be-
cause the black box only accepts list of integers and a prime. We also do not know what A
is) the auxiliary rational functions

F (αŝ+i, z, β) =fβ(αŝ+i, z)
gβ(αŝ+i, z) = f(zαŝ+i + β1, zα

(ŝ+i)r1 + β2, . . . , zα
(ŝ+i)r1r2···rm−1 + βm)

g(zαŝ+i + β1, zα(ŝ+i)r1 + β2, . . . , zα(ŝ+i)r1r2···rm−1 + βm)
∈ Zp(z)

for 0 ≤ i ≤ 5, so that

fβ(αŝ+0, z) = 504456095z11 + 1271576935z10 + 2894674426z9 + 1922536865z8 + 2566228163z7

+ 2781003124z6 + 2961517103z5 + 2105161407z4 + 2174550986z3 + 2221014634z2

+ 1642140628z + 2484490329

fβ(αŝ+1, z) = 1799751883z11 + 51851774z10 + 1692905233z9 + 1926634179z8 + 99438716z7

+ 1281205593z6 + 1758033894z5 + 2591331267z4 + 147591147z3 + 1020284629z2

+ 375656678z + 2484490329

fβ(αŝ+2, z) = 690622067z11 + 2722183515z10 + 1348427258z9 + 1220429635z8 + 1781861026z7

+ 113355454z6 + 2572143706z5 + 1003239085z4 + 1984454376z3 + 267259118z2

+ 1976525844z + 2484490329

fβ(αŝ+3, z) = 2531520139z11 + 875452800z10 + 506750217z9 + 2482068730z8 + 1109636639z7

+ 1808481201z6 + 1953791611z5 + 1567806275z4 + 2686077811z3 + 1383825822z2

+ 1185059664z + 2484490329

89

fβ(αŝ+4, z) = 1902062431z11 + 1144884717z10 + 1283699848z9 + 1928785662z8 + 1621964187z7

+ 1791281689z6 + 2892449471z5 + 2166912829z4 + 2462053546z3 + 199748103z2

+ 2233025122z + 2484490329

fβ(αŝ+5, z) = 3066602361z11 + 850554450z10 + 1398158196z9 + 1025235762z8 + 192614344z7

+ 1797193281z6 + 1209785003z5 + 2020073210z4 + 1967922306z3 + 2214513559z2

+ 772210495z + 2484490329

gβ(αŝ+0, z) = 1580679741z11 + 3116990146z10 + 1057902518z9 + 3198338027z8 + 286841619z7

+ 2890513996z6 + 1809795283z5 + 2072664216z4 + 1193173354z3 + 2003803474z2

+ 2713215529z + 1

gβ(αŝ+1, z) = 46861898z11 + 2102486493z10 + 2997800097z9 + 1246736249z8 + 411444783z7

+ 1280104659z6 + 1416745533z5 + 2733211723z4 + 2806481616z3 + 2308132560z2

+ 2788585009z + 1

gβ(αŝ+2, z) = 298845476z11 + 2898326650z10 + 3005507166z9 + 275950621z8 + 897554295z7

+ 2246083541z6 + 1104481969z5 + 1029137782z4 + 1858508920z3 + 1918855279z2

+ 2704579471z + 1

gβ(αŝ+3, z) = 1565430745z11 + 2205463094z10 + 1710958486z9 + 2563730374z8 + 2292970312z7

+ 1336214124z6 + 2211218900z5 + 2783288643z4 + 2930129794z3 + 1176308200z2

+ 3036359035z + 1

gβ(αŝ+4, z) = 46844537z11 + 2791209780z10 + 429168896z9 + 99940710z8 + 1386582108z7

+ 1060098921z6 + 2458077644z5 + 2171712250z4 + 48510025z3 + 653163610z2

+ 3002106356z + 1

gβ(αŝ+5, z) = 30453847z11 + 2861695808z10 + 3122487314z9 + 910916656z8 + 148650945z7

+ 2086024934z6 + 344222140z5 + 1261916191z4 + 683211027z3 + 2211776667z2

+ 1000246311z + 1

For the sake of brevity, suppose we only want to interpolate f. Since deg(f) = 11, we will
attempt to interpolate all homogeneous polynomials fk in f of degrees k = 11, 10, 9, 8, . . . , 0,
in that order using the coefficients of fβ(αŝ+i, z).

Step 2: First, we check if deg(fβ(αŝ+i, z)) = 11 for all i, and then we collect the leading
coefficient sequence

v = [504456095, 1799751883, 690622067, 2531520139, 1902062431, 3066602361] ,

90

such that vi = LC(fβ(αŝ+i, z)) for 0 ≤ i ≤ 5. Next, we run the BMA on v which generates
the feedback polynomial

λ11(z) = z3 + 1905095726z2 + 2338018633z + 1009320183 ∈ Zp[z].

Step 3: Computing the roots of λ11(z) yields the monomial evaluations

m̂ = {48828125, 1303095659, 3185431436}.

Using the baby step method due to Shanks [Shanks, 1971] and the Pohlig-Helman algo-
rithm [Pohlig and Martin, 1978], we solve the discrete logarithms {5e1 = 48828125, 5e2 =
1303095659, 5e3 = 3185431436} in Z∗p to obtain the exponents {e1 = 11, e2 = 132, e3 =
1584}. Thus, the corresponding monomials in y are {y11, y132, y1584}.

Step 4: Now we solve for the coefficients of the monomials in y that we just found. Since
we only have three univariate monomials, we only need the first three entries from v to solve
for their coefficients. To do this, we set up the 3×3 shifted transposed Vandermonde system

V a =


m̂ŝ+0

1 = 2199625621 m̂ŝ+0
2 = 2208617479 m̂ŝ+0

3 = 2865126349
m̂ŝ+1

1 = 406005153 m̂ŝ+1
2 = 1548294981 m̂ŝ+1

3 = 305961711
m̂ŝ+2

1 = 1902207400 m̂ŝ+2
2 = 676383069 m̂ŝ+2

3 = 1310850391



a1

a2

a3

 = v

where

v =


504456095
1799751883
690622067


and then solve for the coefficients ai. As explained in Subsection 4.3.3, this can be done by
first solving the transposed Vandermonde system

Wc =


1 1 1

m̂1 = 48828125 m̂2 = 67242306 m̂3 = 86401899
m̂2

1 = 2199625621 m̂2
2 = 2208617479 m̂2

3 = 2865126349



c1

c2

c3

 = v

using Zippel’s quadratic algorithm. Solving Wc = v yields

{c1 = 1679199919, c2 = 545880638, c3 = 1500601011},

and then we compute ai = ci

mŝ
i

for 1 ≤ i ≤ 3. The ai’s are

a1 = 2686038870, a2 = 2686038870, a3 = 2686038870.

91

Step 5: Now we invert the Kronecker map Kr using base conversion to obtain

y11 7→ y1, y
132 7→ y11

2 , and y1584 7→ y11
3 .

Thus, the highest degree homogeneous polynomial of degree 11 in f is

f11 = 2686038870y11
1 + 2686038870y11

2 + 2686038870y11
3 .

Step 6: Next, we move on to interpolate f10 (a homogeneous polynomial of degree 10
in f) using the coefficients of z10 in fβ(αŝ+i, z). However, we remind the reader that the
coefficients of z10 in fβ(αŝ+i, z) for all i have to be adjusted in order to remove the effect
of the basis shift. Thus, computing the univariate polynomials

Hi(z) = f11(zαŝ+i + β1, zα
(ŝ+i)r1 + β2, . . . , zα

(ŝ+i)r1r2···rm−1 + βm)

directly for i = 0, 1, 2, · · · , 5, (these univariate polynomials must be interpolated to avoid
expression swell). We obtain

H0(z) = 504456095z11 + 1271576935z10 + 2894674426z9 + 1922536865z8 + 2566228163z7

+ 2781003124z6 + 1711435757z5 + 1891039209z4 + 2684787759z3 + 3036780286z2

+ 224593306z + 2783755731

H1(z) = 1799751883z11 + 51851774z10 + 1692905233z9 + 1926634179z8 + 99438716z7

+ 1281205593z6 + 2790993731z5 + 1678491156z4 + 2884452674z3 + 2128925856z2

+ 1058209323z + 2783755731

H2(z) = 690622067z11 + 2722183515z10 + 1348427258z9 + 1220429635z8 + 1781861026z7

+ 113355454z6 + 1833567179z5 + 2795550342z4 + 679811099z3 + 2271350410z2

+ 2609405332z + 2783755731

H3(z) = 2531520139z11 + 875452800z10 + 506750217z9 + 2482068730z8 + 1109636639z7

+ 1808481201z6 + 1330250644z5 + 2885672376z4 + 1641102280z3 + 2927081373z2

+ 3020245364z + 2783755731

H4(z) = 1902062431z11 + 1144884717z10 + 1283699848z9 + 1928785662z8 + 1621964187z7

+ 1791281689z6 + 2899006778z5 + 1953636377z4 + 2325234854z3 + 1116772202z2

+ 2665504468z + 2783755731

H5(z) = 3066602361z11 + 850554450z10 + 1398158196z9 + 1025235762z8 + 192614344z7

+ 1797193281z6 + 1018282945z5 + 2140833910z4 + 2250676795z3 + 2314588079z2

+ 1320761667z + 2783755731

92

Step 7: To interpolate a possible degree 10 polynomial in f using the coefficients of z10

in both Hi(z) and fβ(αs+i, z), we compute v = [0, 0, 0, 0, 0, 0] where

vi = Coeff(fβ(αs+i, z), z10)− Coeff(Hi(z), z10) for 0 ≤ i ≤ 5.

The above computation is the coefficient adjustment that must be done to correct the
contributions due to the basis shift β. Unfortunately, we do not have a homogeneous poly-
nomial of degree 10 in f since all the entries of v are zero. Observe that the sequence of
coefficients of zj in Hi(z) are the same as the sequence of coefficients of zj in fβ(αŝ+i, z)
for j = 9, 8, 7, 6, So,

vi = Coeff(fβ(αŝ+i, z), zj)− Coeff(Hi(z), zj) = 0, for 0 ≤ i ≤ 5.

This implies that there are no homogeneous polynomials of degree 9, . . . , 6 in f.
Step 8: Now, we will attempt to interpolate any possible homogeneous polynomial of

total degree 5 in f. Observe that

v = [1250081346, 2188265636, 738576527, 623540967, 3214668166, 191502058]

where vi = Coeff(fβ(αŝ+i, z), z5)− Coeff(Hi(z), z5) for 0 ≤ i ≤ 5.
Step 9: Next, we run the BMA on v which generates the feedback polynomial

λ5(z) = z2 + 744046774z + 2377407692 ∈ Zp[z].

Computing the roots of λ5(z) yields the monomial evaluations m̂ = {2469640426, 7538273}.
Step 10: Next, we solve the discrete logarithms {5e1 = 2469640426, 5e2 = 7538273} in

Z∗p to obtain the exponents {e1 = 51840, e2 = 8640}. Thus, the corresponding monomials
in y are {y51840, y8640}.

Step 11: Based on the two univariate monomials that we found, we only need the first
two entries from v to solve for their coefficients. Next, we set up the 2×2 shifted transposed
Vandermonde system

V a =
[
mŝ+0

1 = 2113008848 mŝ+0
2 = 3142478809

mŝ+1
1 = 2617252129 mŝ+1

2 = 21544114

] [
a1

a2

]
=
[
1250081346
2188265636

]
= v,

in order to solve for their coefficients ai. But first, we solve the transposed Vandermonde
system

Wc =
[

1 1
m̂1 = 2469640426 m̂2 =, 7538273

] [
c1

c2

]
=
[
1250081346
2188265636

]
= v

93

using Zippel’s quadratic algorithm to get {c1 = 1019250191, c2 = 230831155}. Then we
compute ai = ci

mŝ
i

for 1 ≤ i ≤ 2. The ai’s are a1 = 2686038870, a2 = 2686038870.

Step 12: Inverting the Kronecker map Kr yields

y51840 7→ y5
5, y

8640 7→ y5
4.

Thus
f5 = 2686038870y5

4 + 2686038870y5
5.

Step 13: Before we attempt to interpolate any possible polynomial of total degree 4 in
f, we must first update the H polynomials by computing

Hi(z) = Hi(z) + f5(zαs+i + β1, zα
(s+i)r1 + β2, . . . , zα

(s+i)r1r2···rm−1 + βm)

directly for i = 0, 1, 2, · · · , 5, because of the contributions by the polynomials f11 and f5

due to the basis shift β. We get

H0(z) = 504456095z11 + 1271576935z10 + 2894674426z9 + 1922536865z8 + 2566228163z7

+ 2781003124z6 + 2961517103z5 + 2105161407z4 + 2174550986z3 + 2221014634z2

+ 2880688883z + 2554986495

H1(z) = 1799751883z11 + 51851774z10 + 1692905233z9 + 1926634179z8 + 99438716z7

+ 1281205593z6 + 1758033894z5 + 2591331267z4 + 147591147z3 + 1020284629z2

+ 3614696z + 2554986495

H2(z) = 690622067z11 + 2722183515z10 + 1348427258z9 + 1220429635z8 + 1781861026z7

+ 113355454z6 + 2572143706z5 + 1003239085z4 + 1984454376z3 + 267259118z2

+ 223656964z + 2554986495

H3(z) = 2531520139z11 + 875452800z10 + 506750217z9 + 2482068730z8 + 1109636639z7

+ 1808481201z6 + 1953791611z5 + 1567806275z4 + 2686077811z3 + 1383825822z2

+ 80104098z + 2554986495

H4(z) = 1902062431z11 + 1144884717z10 + 1283699848z9 + 1928785662z8 + 1621964187z7

+ 1791281689z6 + 2892449471z5 + 2166912829z4 + 2462053546z3 + 199748103z2

+ 179979030z + 2554986495

H5(z) = 3066602361z11 + 850554450z10 + 1398158196z9 + 1025235762z8 + 192614344z7

+ 1797193281z6 + 1209785003z5 + 2020073210z4 + 1967922306z3 + 2214513559z2

+ 2891090635z + 2554986495

94

Step 14: For the sake of brevity, we note that the sequence of coefficients of zj in Hi(z)
are the same as the sequence of coefficients of zj in fβ(αŝ+i, z) for j = 4, 3, 2. So there are
no polynomial terms of degree 4, 3, 2 in f.

Step 15: To determine a possible polynomial of degree 1 in f, we compute

v = [1982677218, 372041982, 1752868880, 1104955566, 2053046092, 1102345333]

where vi = Coeff(fβ(αŝ+i, z), z1)−Coeff(Hi(z), z1) for 0 ≤ i ≤ 5.Applying the Berlekamp-
Massey Algorithm to v generates the feedback polynomial

λ1(z) = 460205760 + z ∈ Zp[z].

Step 16: Computing the roots of λ1(z) yields the monomial evaluation m̂ = {2761019713}.
Next, we solve the discrete logarithms {5e1 = 2761019713} to obtain the exponent {e1 =
8957952}. Thus, the corresponding monomial in y is y8957952. Next, we set up the shifted
transposed Vandermonde system

V a =
[
mŝ

1 = 2761019713
] [
a1
]

=
[
1982677218

]
= v.

Solving the above system yields a = 2686038870 and inverting the Kronecker map yields
f1 = 2686038870y8.

Step 17: Next we update the H polynomials for 0 ≤ i ≤ 5 by computing

Hi(z) = Hi(z) + f1(zαs+i + β1, zα
(s+i)r1 + β2, . . . , zα

(s+i)r1r2···rm−1 + βm)

in order to interpolate f0 of f. Fortunately, there is no constant term in f.
Step 18: We repeat the same process for the denominator part and we are done.

It took 144 = 6× (11 + 11 + 2) probes to the black box to reconstruct

A = f/g ≡ 2686038870
(
y11

1 + y11
2 + y11

3 + y5
4 + y5

5 + y8
)

2686038870
(
y11

6 + y11
7 + y11

8 + y6
) ∈ Zp(y1, y2, . . . , y8).

Finally, we multiply the numerator and denominator by 2686038870−1 to get A.

Remark 4.7. Suppose

f =
deg(f)∑
i=0

fi(y1, . . . , ym) and g =
deg(g)∑
j=0

gj(y1, . . . , ym)

where fi and gj are homogeneous polynomials and deg(fi) = i and deg(gj) = j. Based on
the above example, we make the following two important remarks.

95

1 Notice that the leading degree polynomials fdeg(f) and gdeg(g) in f and g respectively
are the first polynomials to be interpolated using the leading coefficients of the auxil-
iary rational functions in z, before we interpolate the lower total degree polynomials
fdeg(f)−1, fdeg(f)−2,fdeg(f)−3, · · · f0 and gdeg(g)−1, gdeg(g)−2,gdeg(g)−3, · · · g0 in that order.
However, if f and g are very sparse, but the number of auxiliary rational functions com-
puted to interpolate fdeg(f) or gdeg(f) is high, then a lot of unnecessary computation
will be done in an attempt to perform coefficient adjustments in order to interpolate
non-existent polynomials. This coefficient adjustment computation becomes particu-
larly expensive when interpolating a large number of multivariate rational function
coefficients (Our proposed Dixon resultant algorithm).

Example 4.8. Suppose

f =
deg(f)∑
i=0

fi(y1, y2, . . . , ym) = f100000 + f0,

where deg(f) = 100000. After interpolating f100000, one will attempt to interpolate
polynomials f99999,99998 , . . . , f0, whereas the only polynomial that needs to be inter-
polated is the constant term f0. This is because f is represented by a black box, and
we do not know the total degrees of the polynomials fi and gi beforehand. We will
address this issue in Subsection 4.4.2.

2 Since A = f/g is represented by a black box, we do not know the size of the supports
of the polynomials fi and gi. Let #fi and #gi denote the size of the supports of
the polynomials fi and gi respectively. By design, we discover #fdeg(f) and #gdeg(g)

first, by inputting the sequence of leading coefficients from fβ(αs+i, z) and gβ(αs+i, z)
respectively from the auxiliary rational functions F (αs+i, z, β) for i = 0, 1, . . . , to the
BMA to generate some polynomials λ1(z) and λ2(z), and then wait until both the
degrees of λ1(z) and λ2(z) are unchanged.

Let t be the number of auxiliary functions in Zp(z) needed to determine #fdeg(f) and
#gdeg(g), and to interpolate the polynomials fdeg(f) and gdeg(g). If the sequence of
coefficients from the already computed t auxiliary functions are used to interpolate
the lower total degree polynomials, it is possible that the wrong lower total degree
polynomials are interpolated. This is because #fi could be greater than #fdeg(f) or
#gj could be greater than #gdeg(g), where i 6= deg(f) and j 6= deg(g). Thus, more
auxiliary coefficients are needed to interpolate the correct fi or gi.

We handle this problem by running the Berlekamp-Massey Algorithm on the sequence
of corresponding coefficients from the auxiliary rational functions to generate a feed-
back polynomial λ(z), and we check if deg(λ, z) < i

2 [Kaltofen et al., 2000]. The
condition deg(λ, z) < i

2 ensures that λ(z) is correct with high probability. If the con-

96

dition is not satisfied, then more auxiliary rational functions are needed. More detail
about obtaining the correct number of terms is presented in Subsection 6.3.6.

4.4.1 Pre-computing the total degrees of f and g in A = f/g

Given a multivariate rational function A = f/g in variables y1, y2, . . . , ym represented by
a black box B, we describe how to find the total degrees of the polynomials f and g. As
we have demonstrated in the working example (Section 4.4), the total degrees of f and g
are needed in order to densely interpolate the auxiliary rational functions with a Kronecker
substitution Kr in variable z whose coefficients are needed to recover A. We discuss how to
do this as follows.

Let α, β ∈ (Zp \ {0})m. Let p be a prime and let z be a new variable. Using enough
random points for z from Zp, the total degrees of f and g that we seek can be obtained by
interpolating the univariate rational function h(z) where

h(z) := f̄(z)
ḡ(z) = f(β1z + α1, . . . , βmz + αm)

g(β1z + α1, . . . , βmz + αm) (4.3)

such that α, β are selected at random. We emphasize that α, β ∈ (Zp \ {0})m are selected
at random to ensure that deg(f̄) = deg(f) and deg(ḡ) = deg(g) with high probability.
Algorithm 10 implements this approach. To give reader an idea of how this approach works,
we give the following example.

Example 4.9. Consider the rational function

A = f/g = y2
2 + y3
y1 + y3

such that deg(f) = 2 and deg(g) = 1. If A is represented by a blackbox then we need to
interpolate h(z) = f̄(z)

ḡ(z) as described in (4.3) in order to determine the total degrees of f
and g with high probability. Computing h(z) directly yields

h(z) = f̄(z)
ḡ(z) = f(β1z + α1, β2z + α2, β3z + α3)

g(β1z + α1, β2z + α2, β3z + α3)

= z2β2
2 + (2α2β2 + β3) z + α2

2 + α3
(β1 + β3) z + α1 + α3

.

Thus, deg(f̄) = deg(f) = 2 and deg(ḡ) = deg(g) = 1. However, if α = (0, 0, 0), then

h(z) = z2β2
2 + β3z

(β1 + β3) z = zβ2
2 + β3

β1 + β3

which gives the wrong degrees because deg(f̄) = 1 6= deg(f) and deg(ḡ) = 0 6= deg(g).

97

Algorithm 10: TotalDegreeBound
Input: A prime p and the black box B

(
Zm

p , p
)
→ Zp for the rational function f(y1,y2,...,ym)

g(y1,y2,...,ym)
over Q which returns "division by zero" if g(γ) = 0 for some point γ ∈ Zm

p .

Output: (deg(f̄), deg(ḡ)) where deg(f̄) = deg(f) and deg(ḡ) = deg(g) with high
probability.

1 Pick α and β in (Zp \ {0})m at random.
2 Let z be a new variable.
3 m(z)← 1.
4 for d = 1, 2, · · · do
5 Pick θd ∈ Zp at random such that θd 6= θj for 1 ≤ j < d.

6 ad ← B ((β1θd + α1, β2θd + α2, . . . , βnθd + αm), p) ∈ Zp

7 if ad = "division by zero" then restart the algorithm (go to line 1) end.
8 if d ≥ 2 then
9 Interpolate u(z) ∈ Zp[z] of degree < d using points (θi, ai : 1 ≤ i ≤ d).

10 Compute m(z) = (z − θd)×m(z) ∈ Zp[z]. // m(z) =
∏d

i=1(z − θi) ∈ Zp[z].
11 h(z)← MQRFR (m,u, p). // d = deg(m) > deg(u) ≥ 0
12 if h(z) 6= FAIL then
13 Let h(z) = f̄(z)

ḡ(z) such that gcd(f̄(z), ḡ(z)) = 1.
14 return (deg(f̄),deg(ḡ))
15 end
16 end
17 d← d+ 1
18 end

Algorithm 10 discovers the total degrees deg(f) and deg(g) with high probability (see
Section 4.6 for probability of failure).

4.4.2 Pre-computing the total degrees of the homogeneous polynomials
fi of f and gi of g in A = f/g

Let A = f/g be a sparse rational function in y1, y2, . . . , ym over Q and suppose A is repre-
sented by a black box B. Let

f =
deg(f)∑
i=0

fi(y1, y2, . . . , ym) and g =
deg(g)∑
j=0

gj(y1, y2, . . . , ym)

where fi and gj are homogeneous polynomials such that deg(fi) = i and deg(gj) = j. We
discover the total degrees deg(fi) and deg(gi) with high probability as follows.

Let p be a sufficiently large prime and suppose we have obtained the total degrees deg(f)
and deg(g) correctly. Then pick α ∈ (Zp\{0})m at random, and use enough random distinct

98

points for z selected from Zp \ {0} to interpolate the univariate rational function

W (z) = N

D
=
∑df

j=0 N̄i(z)∑dg

i=0 D̄i(z)
= f(α1z, . . . , αmz)
g(α1z, . . . , αmz)

∈ Zp(z),

where df = deg(N) and dg = deg(D). Now, if df = deg(f) and dg = deg(g), then deg(fi) =
deg(N̄i) and deg(gi) = deg(D̄i) with high probability. But, if there is no constant term
in f or g, which we do not know beforehand, then deg(f) 6= df or deg(g) 6= dg because
e = deg(gcd(N,D)) might be greater than zero.

Since we do not know what e is, it follows that, if e = deg(f)−df = deg(g)−dg with high
probability, then deg(fi) = deg(N̄i) + e and deg(gi) = deg(D̄i) + e with high probability.
We provide the following example to help the reader understand the approach.

Example 4.10. Let

A = f

g
= y3

1 + y1y2
y2

2 + y3

where f3 = y3
1, f2 = y1y2, g2 = y2

2 and g1 = y3. Then

W (z) = f(α1z, α2z, α3z)
g(α1z, α2z, α3z)

= α3
1z

3 + α1α2z
2

α2
2z

2 + α3z
= z(α3

1z
2 + α1α2z)

z(α2
2z + α3) = α3

1z
2 + α1α2z

α2
2z + α3

.

So, N = α3
1z

2 + α1α2z and D = α2
2z + α3. Thus, df = 2 and dg = 1. We already know

that deg(f) = 3 and deg(g) = 2 so we may compute e = deg(f) − df = deg(g) − dg = 1
which implies that deg(f3) = 2 + e = 3, deg(f2) = 1 + e = 2, and deg(g2) = 1 + e = 2 and
deg(g1) = 0 + e = 1. However, if

A = f

g
= y3

1 + y1y2
y2

2 + y3 + a

then f3 = y3
1, f2 = y1y2, g2 = y2

2, g1 and g0 = a 6= 0, then we get

W (z) = f(α1z, α2z, α3z)
g(α1z, α2z, α3z)

= α3
1z

3 + α1α2z
2

α2
2z

2 + α3z + a
,

as long as the working prime p - a. So,

N = α3
1z

2 + α1α2z, and D = α2
2z + α3 + a

Clearly, deg(f) = df and deg(g) = 2 = dg, and we have that

• deg(f3) = 3, deg(f2) = 2,

• deg(g2) = 2, deg(g1) = 1, and deg(g0) = 0.

99

With high probability (see Section 4.6 for probability of failure), we obtain deg(fi) and
deg(gi) using Algorithm 11.

Algorithm 11: PolyDegreeBound
Input: The total degrees deg(f) and deg(g), a prime p and the black box B

(
Zm

p , p
)
→ Zp

for the rational function f(y1,y2,...,ym)
g(y1,y2,...,ym) over Q which returns "division by zero" if

g(γ) = 0 for some evaluation point γ ∈ Zm
p . Let

f =
deg(f)∑

i=0
fi(y1, y2, . . . , ym) and g =

deg(g)∑
j=0

gj(y1, y2, . . . , ym)

where fi and gj are homogeneous such that deg(fi) = i and deg(gj) = j.

Output: [deg(fi) : 0 ≤ i ≤ deg(f)] and [deg(gi) : 0 ≤ i ≤ deg(g)] with high probability.
1 Pick (α1, α2, · · · , αm) ∈ (Zp \ {0})m at random.
2 Let z be a new variable.
3 m(z)← 1.
4 for d = 1, 2, · · · do
5 Pick θd ∈ Zp at random such that θd 6= θi for 1 ≤ i < d.

6 ad ← B ((α1θi, α2θi, . . . , αmθi), p) ∈ Zp

7 if ad = "division by zero" then restart the algorithm (go to line 1) end.
8 if d ≥ 2 then
9 Interpolate the unique polynomial u(z) ∈ Zp[z] of degree < d using points

(θi, ai : 1 ≤ i ≤ d).
10 Compute m(z) = (z − θd)×m(z) ∈ Zp[z]. // m(z) =

∏d
i=1(z − θi) ∈ Zp[z].

11 h(z)← MQRFR (m,u, p). // deg(m) > deg(u) ≥ 0
12 if h(z) 6= FAIL then
13 Let h(z) = f̄(z)

ḡ(z) such that f̄ =
∑deg(f̄)

i=0 f̄i and ḡ =
∑deg(ḡ)

i=0 ḡi

14 e1 ← deg(f)− deg(f̄)
15 e2 ← deg(g)− deg(ḡ)
16 if e1 = e2 then
17 return [deg(f̄i) + e1 : 0 ≤ i ≤ deg(f)], [deg(ḡi) + e1 : 0 ≤ i ≤ deg(g)]
18 else
19 return FAIL
20 end
21 end
22 end
23 d← d+ 1
24 end

The following pseudocode (Section 4.5) highlights the steps involved to interpolate a
sparse multivariate rational function A = f/g using our new sparse rational function in-
terpolation method. More details will be presented later when we apply our new sparse
multivariate rational function interpolation algorithm to interpolate many rational function

100

coefficients over Q in our proposed Dixon resultant algorithm, and in our proposed black
box algorithm for solving parametric linear systems.

4.5 New sparse multivariate rational function interpolation
algorithm

Input: The black box B : (Zmp , p) → Zp for the rational function A = f/g in y1, . . . , ym

over Q which returns "division by zero" if g(γ) = 0 for some evaluation point γ ∈ Zmp .
Remark: The input prime p for the black box will be determined while the algorithm
is executing. In particular, it will be determined when the partial degrees of f and g are
discovered for all variables involved with high probability.
Output: A = f/g mod p with high probability.

a Let f = ∑deg(f)
i=0 fi(y1, . . . , ym) and g = ∑deg(g)

i=0 gi(y1, . . . , ym) where fi and gi are
homogeneous polynomials such that deg(fi) = deg(gi) = i. Let tmax = max(#fi,#gi).

b Compute the total degrees deg(f) and deg(g) using Algorithm 10, the maximum
partial degrees di = max(deg(f, yi),deg(g, yi)) for 1 ≤ i ≤ m using Algorithm 9, and
the total degrees deg(fi) and deg(gi) using Algorithm 11.

c Pick a smooth prime p = 2ks+1 > ∏j=1(di+1), a random shift ŝ ∈ [0, p−2], and any
generator α for Z∗p. Note that p is our working prime that will be used in the black
box B for A.

d Let Kr : Zp(y1, . . . , ym)→ Zp(y) be the Kronecker substitution with ri > di.

e Let β = (0, 0, . . . , 0) ∈ Zm be a basis shift.

While B (β, p) = "division by zero" or B(β, p) = 0 do

Pick a new random basis shift β ∈ (Zp \ {0})m.

end do

f Pick deg(f) + deg(g) + 2 random points for z and probe the black box to interpolate
the auxiliary rational functions

F (αŝ+i, z, β) =fβ(αŝ+i, z)
gβ(αŝ+i, z) = f(zαŝ+i + β1, zα

(ŝ+i)r1 + β2, . . . , zα
(ŝ+i)r1r2···rm−1 + βm)

g(zαŝ+i + β1, zα(ŝ+i)r1 + β2, . . . , zα(ŝ+i)r1r2···rm−1 + βm)

where F (αŝ+i, z, β) ∈ Zp(z) such that gβ(αŝ+i, z) is of the form 1 +∑deg(g)
k=1 akz

k for
i = 0, 1, 2, . . . , 2tmax − 1.

g Interpolate the polynomials fdeg(f) and gdeg(g) first using the sequence of leading
coefficients LC(fβ(αŝ+i, z)) and LC(gβ(αŝ+i, z)) respectively.

101

h Remove the effect of the basis of shift β by adjusting the coefficients of zk in fβ(αs+i, z)
and zj in gβ(αs+i, z), before interpolating the homogeneous polynomials fk and gj for
k = deg(f)− 1, deg(f)− 2, . . . , 0 and j = deg(g)− 1,deg(g)− 2, . . . , 0 respectively.

i Construct polynomials f = ∑deg(f)
i=0 fi(y1, . . . , ym) and g = ∑deg(g)

i=0 gi(y1, . . . , ym).

j Output A = f/g mod p.

4.6 The Failure Probability Analysis of Algorithm 10

Let deg(f) and deg(g) denote the actual total degrees of f and g in the multivariate rational
function A = f/g represented by a black box B, and let deg(f̄) and deg(ḡ) denote the output
degrees of Algorithm 10. We first remind the reader that Algorithm 10 is designed to output
deg(f̄) and deg(ḡ) such that deg(f̄) = deg(f) and deg(ḡ) = deg(g).

Since Algorithm 10 calls the MQRFR algorithm (Algorithm 8) at every step d in Line
11, a univariate rational function h(z) = f̄(z)/ḡ(z) satisfying the degree restriction d >

deg(f̄)+deg(ḡ)+1 is produced only when a maximal quotient of degree 2 or more is found.
For example, if d = 2, we have that deg(m) = 2 and 0 ≤ deg(u) ≤ 1. So, if deg(u) = 0,
a maximal quotient of degree 2 can be found, and a univariate rational function satisfying
the degree requirement 0 ≤ deg(f̄) + deg(ḡ) ≤ 1 will be produced.

Thus, Algorithm 10 will always attempt to find the total degrees deg(f) and deg(g)
with high probability as long as the number of evaluation points used is 2 or more (d ≥ 2).
However, Algorithm 10 may fail by returning the wrong numerator and denominator total
degrees for f and g in A = f/g from the wrong univariate rational function h(z), when a
quotient of degree 2 or more occurs for d < deg(f) + deg(g) + 2 during the call to MQRFR
algorithm. Therefore, we need to find a bound for the failure probability of Algorithm 10.
First, we give an example to illustrate the failure.

Example 4.11. Consider the bivariate rational function

A = f/g = y2
2 + 2y1
y1 + 2y2

.

Suppose we want to determine the total degrees deg(f) = 2 and deg(g) = 1 using Algorithm
10. Algorithm 10 will attempt to find the total degrees of f and g using d = 2, 3, 4, 5, . . . ,
evaluation points. If everything goes right, Algorithm 10 terminates at d = 5, and outputs
the correct total degrees of f and g. But at d = 2 or 3 or 4, the wrong total degree may be
returned. We consider the following case when d = 4 in which this error can happen using
the notation of Algorithm 10.

Let p = 3137 and let the evaluation points chosen for z be

θ1 = 2909, θ2 = 2799, θ3 = 1325, θ4 = 2016.

102

Suppose β = (27, 1445) ∈ Z2
p and let α = (3, 6) ∈ Z2

p as defined in Line 1 of Algorithm 10.
We have that the images ai obtained in Line 6 will be

a1 = 1551, a2 = 1550, a3 = 2753, a4 = 1460.

The product polynomial in Line 10 will be

m(z) =
4∏
i=1

(z − θi) = z4 + 362z3 + 857z2 + 1679z + 607 ∈ Zp[z]

and in Line 9, the interpolating polynomial

u(z) = 1165z3 + 382z2 + 2710z + 2246

which is obtained using the points {(θi, ai) : 1 ≤ i ≤ 4}. We present the intermediate
computations that occur when we input both m and u as inputs to the MQRFR algorithm
in Line 11 of Algorithm 10.

Table 4.1: MQRFR (Algorithm 8) intermediate computations for input polynomials m and u

i qi ri ti

0 − z4 + 362z3 + 857z2 + 1679z + 607 0
1 517z + 749 1165z3 + 382z2 + 2710z + 2246 1
2 2750z + 755 1375z2 + 1036z + 2922 2388 + 2620z
3 1512z2 + 2483z + 1680 1447 689z2 + 88z + 836
4 − 0 2853z4 + 713z3 + 1298z2 + 3125z + 147

Notice that the maximal quotient occurs in row 3 as highlighted in Table 4.1. So, Algorithm
10 outputs the wrong degrees 0 and 2 from

r3/t3 = 1447
689z2 + 88z + 836 ≡

767
z2 + 1794z + 1358

for f and g in f/g as highlighted in Table 4.1 when d = 4.

Remark 4.12. Suppose

A(z, y1, . . . , ym) = f(y1z + α1, . . . , ymz + αm)
g(y1z + α1, . . . , ymz + αm) =

∑deg(f)
k=0 Mk(y1, . . . , ym)zk∑deg(g)
k=0 Nk(y1, . . . , ym)zk

.

Let d = deg(f) + deg(g) + 1 and let β ∈ Zmp . Let

A(z, β) = f̂(z)
ĝ(z) ∈ Zp(z).

103

We know that there exist polynomials u and m satisfying deg(m) > deg(u) such that

f̂(z)
ĝ(z) ≡ u(z) mod m(z),

where u(θj) = A(θj , β) for 1 ≤ j ≤ d and m(z) = ∏d+1
j=1(z − θj). Now let

Ŵj = A(θj , y1, y2, . . . , ym) = f(y1θj + α1, . . . , ymθj + αm)
g(y1θj + α1, . . . , ymθj + αm) for 1 ≤ j ≤ d.

Using polynomial interpolation, we know there exists a unique functionH ∈ Zp(y1, . . . , ym)[z]
of degree at most d in z such that H(θj , y1, y2, . . . , ym) = Ŵj . Let

H(z, y1, . . . , ym) =
d−1∑
k=0

Nk(y1, . . . , ym)
Dk(y1, . . . , ym)z

k ∈ Zp(y1, . . . , ym)[z]

and let L = LCM{Dk ∈ Zp[y1, y2, . . . , ym] : 0 ≤ k ≤ d − 1}. It is not hard to show that
deg(Nk) ≤ deg(f)+(d−1) deg(g) and deg(Dk) ≤ ddeg(g). Clearing fractions of H, we have
that Ĥ = HL. Note that the total degree of Ĥ in y1, y2, · · · ym is at most

deg(f) + 2d2 deg(g). (4.4)

Thus Ĥ(z, y1, . . . , ym) ≡ L(y1, . . . , ym)A(z, y1, . . . , ym) mod (z − θj) which implies that
L(y1, y2, · · · ym)A(z, y1, y2, · · · ym) ≡ Ĥ(z, y1, y2, · · · ym) mod m(z). Hence,

L(β) f̂(z)
ĝ(z) ≡ Ĥ(z, β) mod m =⇒ Ĥ(z, β) = k̂u(z) for some k̂ ∈ Zp.

Thus, inputting m(z) and u(z) to the MQRFR algorithm is equivalent to calling the
MQRFR algorithm with inputs m(z) and Ĥ ∈ Zp[y1, . . . , ym][z], and then evaluating the
intermediate remainders which are rational functions at (y1, y2, · · · ym) = (β1, β2, . . . , βm).

Example 4.13 (Continuation of Example 4.11). We found out that inputting

Ĥ =
(
4y3

1 + 3121y2
1y2 + 3100y1 y

2
2 + 22y3

2

)
z3

+
(
1448y3

1 + 482y2
1y2 + 2291y1 y

2
2 + 1690y3

2 + 3077y2
1 + 360y1y2 + 2972y2

2

)
z2

+ (1889y3
1y

2
2 + 1923y2

1y
3
2 + 709y1 y

4
2 + 2564y5

2 + 2121y2
1y

2
2 + 2210y1 y

3
2 + 2210y4

2

+ 291y3
1 + 1973y2

1y2 + 1263y1 y
2
2 + 99y3

2 + 239y2
1 + 1703y1y2 + 2450y2

2 + 900y1 + 2211y2)z

+ 641y4
1 + 1418y3

1y2 + 2433y2
1y

2
2 + 680y1 y

3
2 + 2127y4

2 + 1547y3
1 + 3008y2

1y2 + 2879y1 y
2
2

+ 2965y3
2 + 1976y2

1 + 1630y1y2 + 1630y2
2 + 1569y1 + y2 + 2942.

104

and the product polynomial

m(z) =
4∏
i=1

(z − θi) = z4 + 362z3 + 857z2 + 1679z + 607 ∈ Zp[z]

to the MQRFR algorithm produces a remainder r∗3 ∈ Zp(y1, y2)[z] whose degree in z is one
and LC(r∗3) = f1f2 where

f1 = 3059y1 y
6
2 + 2981y7

2 + 1505y6
2 + 2567y1 y

4
2 + 1423y5

2 + 2956y2
1y

2
2 + 362y1 y

3
2 + 1584y4

2

+ y3
1 + 4y2

1y2 + 740y1 y
2
2 + 1522y3

2,

f2 = 16(y1 + 2y2)
y4

2
.

However, computing LC(r∗3)(y1 = β1, y2 = β2) = 0 implying that the remainder r∗3 is a
constant. The evaluation points β caused the deg(r3, z) to drop by 1. This is why r3 in
Table 4.1 is a constant and not a degree 1 polynomial in z. We are now ready to give a
failure probability bound for Algorithm 10.

Proposition 4.14. Let A = f/g ∈ Z(y1, y2, . . . , ym) where f = ∑deg(f)
i=0 fi and g =∑deg(g)

i=0 gi such that i = deg(fi) = deg(gi) and deg(f) ≥ deg(g). Let p be a prime such
that p does not divide fdeg(f) and gdeg(g). If no evaluation point causes the black box for
A = f/g to output a division by 0, and the random evaluation point β 6= 0 selected in Line
1 of Algorithm 10 does not cause both fdeg(f) and gdeg(g) to vanish then

Pr[Algorithm 10 returns one or more wrong degrees] ≤ 529 deg(f)7

p
.

Proof. Let D = deg(f) + deg(g) + 1 and let 2 ≤ d ≤ D + 1. Let m(z) and u(z) be as
constructed in Lines 10-9 of Algorithm 10 where deg(m(z)) = d and deg(u(z)) = d− 1. For
simplicity, suppose rd0 = m(z) and let rd1 = u(z). Recall that the number of division steps
l ≤ deg(u) + 1 = d [von zur Gathen and Gerhard, 2013].

Let {rdi , 2 ≤ i ≤ d} be the respective remainder sequence generated at each step d in
Line 11 of Algorithm 10 with the assumption that r2

2 6= 0 when the MQRFR algorithm is
called with inputs rd0 = m(z) and rd1 = u(z). Notice that we exclude the final remainder rdd
in the MQRFR algorithm from {rdi , 2 ≤ i ≤ d} because rdd = 0 for 2 < d ≤ D + 1. Lines
1− 3 of the MQRFR algorithm takes care of this special case when a zero rational function
can be returned. Thus, we cannot output a zero rational function at step d of Algorithm
10 whenever d ≥ 2 and deg u ≥ 0. Let Ni,d(y1, y2, . . . , ym)

Mi,d(y1, y2, . . . , ym) be the leading coefficients of the

remainders rdi and let

h(z) = rdi (z)
tdi (z)

= f̄(z)
ḡ(z)

105

with deg(f̄) = deg(rdi (z)) and deg(ḡ) = deg(tdi (z)), where the polynomials rdi , tdi are gen-
erated from the MQRFR algorithm for each step d in Algorithm 10 for 2 ≤ i ≤ d. Note
that a quotient of degree 2 or more is generated when the degree of one of the remainders
in the remainder sequence {rdi , 2 ≤ i ≤ d} has degree 1 or more lower than its actual de-
gree, which happens when their leading coefficient vanishes. Clearly, Ni,d(y1,y2,...,ym)

Mi,d(y1,y2,...,ym) vanishes
when Ni,d(β) = 0 and Mi,d(β) 6= 0.

If we define ∆d =
d∏
i=2

Ni,d(x1, x2, . . . , xn), then ∆d(β) = 0 whenever Ni,d(β) = 0 for

some i. Let ∆ =
D∏
d=1

∆d+1. Using Theorem B.2 and (4.4), we have that

deg(Ni,d) ≤ i(deg(m, z) + deg(u, z)) max (deg(m, {y1, y2, · · · ym}),deg(u, {y1, y2, · · · ym}))

≤ i(2d− 1)
(
deg(f) + 2d2 deg(g)

)
.

Therefore, using the Schwartz-Zippel Lemma, it follows that

Pr[Algorithm 10 returns one or more wrong degrees] = Pr[∆(β) = 0] ≤ deg(∆)
p

≤
∑D+1
d=2

∑d
i=2 deg(Ni,d)
p

≤
∑D+1
d=2

∑d
i=2 i(2d− 1)

(
deg(f) + 2d2 deg(g)

)
p

≤ 529 deg(f)7

p
.

106

Chapter 5

The Dixon Resultant Algorithm

5.1 Summary of Contributions

All the materials presented in this chapter are new. The main contribution of this chapter
is the design and implementation of a new Dixon resultant algorithm for solving parametric
polynomial systems over Q. A preliminary version of our Dixon resultant algorithm with
benchmarks has been published in the Proceedings of CASC ’22 [Jinadu and Monagan,
2022a]. The algorithm was also presented at Maple conference ’22 and at the ISSAC ’22
poster session (a 4-page extended abstract was published [Jinadu and Monagan, 2022b]).
A journal paper presenting the improved version of the algorithm with new benchmark
polynomial systems, including its failure probability analysis and complexity analysis is
currently being prepared.

The improved version of our new algorithm with the benchmarks (real parametric poly-
nomial systems) will be presented in this chapter, and we compare our new Dixon resultant
algorithm with a Maple implementation of the Gentleman & Johnson minor expansion algo-
rithm [Monagan, 2023b], a Maple implementation of the Dixon-EDF algorithm [Monagan,
2023b] and a hybrid Maple+C implementation of Zippel’s sparse interpolation algorithm
for interpolating the Dixon resultant R. The failure probability analysis and the complexity
analysis of our new Dixon resultant algorithm will be presented in Chapter 6.

5.2 Introduction

To avoid ambiguity, any sub-matrix M of a Dixon matrix D such that rank(M) = rank(D)
will always be referred to as a Dixon matrix.

Let M be a Dixon matrix with polynomial entries in x1, y1, y2, · · · ym and let R be the
Dixon resultant R = det(M). As we have discussed in the introductory chapter of this
thesis, our goal is to get rid of the unwanted repeated factors and the polynomial content
of R, by interpolating the monic square-free factors Rj of the Dixon resultant R and not
R directly. We remind the reader that the monic square-free factorization of the Dixon

107

resultant R is a unique factorization of the form r̂
∏l
j=1R

j
j where

Rj = x
dTj

1 +
Tj−1∑
k=0

fjk(y1, y2, . . . , ym)
gjk(y1, y2, . . . , ym)x

djk
1 ∈ Q(y1, y2, . . . , ym)[x1] (5.1)

for non-zero fjk, gjk ∈ Q[y1, y2, . . . , ym] such that

1 r̂ = C/L for some L ∈ Q[Y],

2 each Rj is monic and square-free in Q(Y)[x1],

3 gcd(Ri, Rj) = 1 for i 6= j.

4 gcd(fjk, gjk) = 1 for all 0 ≤ k ≤ Tj − 1 and

5 LC(gjk) = 1.

Let M be a Dixon matrix of polynomials in Z[x1, y1, . . . , ym]. For our Dixon resultant
algorithm, our black box BB : (Zm+1

p , p)→ Zp is a program that takes an evaluation point
α ∈ Zm+1

p and a prime p as inputs and outputs det(M(α)) mod p.
We have designed our new Dixon resultant algorithm to probe the black box representing

R = det(M) in order to interpolate the monic square-free factors Rj of R from monic
univariate polynomial images of R in x1, using our new sparse multivariate rational function
interpolation from Chapter 4 to recover the coefficients of Rj in Q(Y) modulo primes, and
then use Chinese remaindering and rational number reconstruction to recover their rational
coefficients.

For the purpose of a simpler description, in this thesis we assume that there is one monic
square-free factor to be interpolated. That is, our Dixon resultant algorithm is presented
to interpolate only one square-free factor Rj . However, our implementation of our Dixon
resultant algorithm handles more than one monic square-free factor. Let

S = xdT
1 +

T−1∑
k=0

fk(y1, . . . , ym)
gk(y1, . . . , ym)x

dk
1 (5.2)

be the one monic square-free factor to be interpolated where the polynomials fk and gk can
be expressed in the form

fk =
deg(fk)∑
i=0

fi,k(y1, . . . , ym) and gk =
deg(gk)∑
j=0

gj,k(y1, . . . , ym) (5.3)

such that fi,k and gj,k are homogeneous polynomials and deg(fi,k) = i and deg(gj,k) = j.

Based on our new sparse rational function interpolation method, we remind the reader
that the interpolation of the multivariate rational function coefficients fk(y1, . . . , ym)

gk(y1, . . . , ym) of the

108

monic square-free factor S is reduced to the interpolation of univariate rational functions

Kr(fk/gk) = fk(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)
gk(y, yr1 , yr1r2 , . . . , yr1r2···rm−1) ∈ Q(y)

in our Dixon resultant algorithm, where r = (r1, r2, . . . , rm−1) ∈ Zm−1 with

ri >
T−1max
k=0

(max(deg(fk, yi), deg(gk, yi)),

and Kr is the Kronecker substitution and T is given in 5.2. The corresponding auxiliary
rational function with a Kronecker substitution Kr is

Fk(y, z, β) := fβk (y, z)
gβk (y, z)

= fk(zy + β1, zy
(r1) + β2, . . . , zy

(r1r2···rm−1) + βm)
gk(zy + β1, zy(r1)i + β2, . . . , zy(r1r2···rm−1) + βm)

. (5.4)

The implication of the black box representation of the Dixon resultant R = det(M) is
that vital information such as the number of terms and the variable degrees are unknown.
We need to know

(i) deg(R, x1) needed for univariate polynomial interpolation,

(ii) the degrees [d0, . . . , dT−1] as defined in (5.2), to ensure that there are no missing terms
in the interpolated univariate monic polynomial images of R,

(iii) the total degrees deg(fk) and deg(gk) for 0 ≤ k ≤ T − 1, which are needed to densely
interpolate the univariate auxiliary rational functions Fk(αŝ+i, z, β) for = 0, 1, . . . ,

(iv) the maximum partial degrees maxT−1
k=0 (max(deg(fk, yi), deg(gk, yi)) of S with respect

to each variable yi which are needed to apply a Kronecker substitution, and

(v) the total degrees of the polynomials fi,k and gi,k.

We can discover (i) − (v) before the start of our Dixon resultant algorithm with high
probability, but we cannot discover #fi,k and #gi,k in advance. They are discovered while
the algorithm is executing. Thus, the first step in our Dixon resultant algorithm is to discover
these degrees.

5.2.1 Degree bounds

The first degrees that must be discovered are deg(R, x1) and the list of degrees [d0, . . . , dT]
as defined in (5.2). Let p be a large prime and let α ∈ Zmp be a random evaluation point. We
have designed Algorithm 12 to discover deg(R, x1) and degrees [d0, . . . , dT] by interpolating
a univariate polynomial g(x1) ∈ Zp[x1] from g(δi) := R(δi, α) via black box calls to BB
for i = 1, 2, 3, The algorithm stops when deg(g) = deg(R, x1) and the support of

109

g(x1) ∈ Zp[x1] yields [d0, . . . , dT]. Algorithm 12 then uses one extra random point from Zp
to check if the degrees are correct with high probability.

Algorithm 12: ABound
Input: A prime p and a black box BB : (Zm+1

p , p)→ Zp for the Dixon resultant
R ∈ Zp[x1, y1, y2, . . . , ym].

Output: The list of degrees [d0, . . . , dT] as defined in (5.2) and deg(R, x1).
1 Pick α ∈ Zp \ {0}m at random.
2 D̂ ← −1
3 for t = 1, 2, 3, · · · do
4 Pick δt ∈ Zp at random such that δt /∈ {δ1, δ2, . . . , δt−1}.
5 Ht ← BB ((δt, α), p)//probes to the black box
6 Interpolate the polynomial g ∈ Zp[x1] of degree < t with points (δi, Hi) for 1 ≤ i ≤ t.
7 if D̂ = deg(g, x1) then
8 // Break out of the main for loop (terminate) when degree does not change.
9 Probabilistic check : Pick θ ∈ Zp at random. // An extra point.

10 if BB ((θ, α), p) = g(θ) then
11 g ← g/lc(g, x1) // Make g monic.
12 f̂ ← g/gcd(g, dg

dx1
) // f̂ is the monic square-free part of g.

13 Let f̂ = xdT
1 +

∑T−1
k=0 akx

dk
1 with ak 6= 0.

14 return [d0, . . . , dT] and D̂.
15 else
16 Go to Line 1 // restart the algorithm
17 end
18 else
19 D̂ ← deg(g, x1)
20 end
21 end

Note that the returned output by Algorithm 12 might be incorrect. We give the following
three examples to illustrate how this can happen.

Example 5.1. Let the Dixon resultant

R = (y1 − a1)(y2 − a2)x4
1 + 5x2

1 + 7.

If the random point α selected in Line 1 is α = (a1, a2), then

LC(R)(α) = 0 and g(x1) = 5x2
1 + 7 =⇒ deg(g) = 2 < deg(R, x1) = 4.

Example 5.2. Let the Dixon resultant

R = x2
1 +

2∑
j=1

y4
j +

4∏
j=1

(x1 − δj).

110

Since deg(R, x1) = 4, we need 5 points to interpolate a univariate polynomial g ∈ Zp[x1] of
degree 4, plus one extra point to confirm that deg(g) = deg(R, x1) with high probability.

However, at t = 3, suppose the first three random points picked by Algorithm 12 in Line
4 are δ1, δ2, δ3. Then the interpolated polynomial produced in Line 6 is

g(x1) = x2
1 +

2∑
j=1

α4
j .

Algorithm 12 is going to pick another point to check if it has the correct answer. At t = 4,
suppose the next random point picked is δ4, so the four successive random points to be used
are δ1, δ2, δ3, δ4. Again, Algorithm 12 interpolates

g(x1) = x2
1 +

2∑
j=1

α4
j

and it terminates since deg(g) has stabilized. But deg(g) = 2 < deg(R, x1) = 4 which
implies that Algorithm 12 terminated too early. This early termination problem led us to
add a probabilistic check in Lines 9-10 to ensure that the returned degrees are correct with
high probability. However, it is also possible that our probabilistic check fails by confirming
that we have obtained the correct degree even though deg(g) 6= deg(R, x1). To see this, let

θ ∈ Zp be selected at random as in Line 9. Observe that g(θ) = θ2 +
2∑
j=1

α4
j and

BB ((θ, α), p) = R(θ, α) = θ2 +
2∑
j=1

α4
j +

4∏
j=1

(θ − δj).

Thus, if θ = δj for any j such that 1 ≤ j ≤ 4, then g(θ) = BB ((θ, α), p) , which implies
that the check will confirm that we have the correct degree even though it is wrong.

Example 5.3. Let the Dixon resultant R = (x1 + y1 − a)2. If the random point α selected
in Line 1 of Algorithm 12 is α = a then the interpolated polynomial g(x1) = x2

1. Notice
that this yields the correct degree of R in x1 but the monic square-free part f̂ ∈ Zp[x1] of
g(x1) in Line 12 is x1 which implies that [d0, d1] = [1]. However, the correct list of degrees
[d0, d1] = [0, 1]. Therefore, Algorithm 12 will return the incorrect list of degrees.

Theorem 5.4. LetR ∈ Z[x1, y1, . . . , ym] be the Dixon resultant and let S ∈ Z(y1, . . . , ym)[x1]
be its only monic square-free factor where ‖S‖∞ and ‖R‖∞ denote the largest integer coeffi-
cient of S and R respectively. If a prime p is chosen at random from a list of pre-computed N
primes P = {p1, p2, . . . , pN} such that pmin = min(P) then the probability that Algorithm
12 returns the wrong degrees is at most

3 deg(R) deg(R, x1)
p

+
deg(R, x1)

(
logpmin‖S‖∞+ logpmin‖R‖∞

)
N

.

111

Proof. Let g = R(x1, α) be the interpolated polynomial as defined in Line 6 where α ∈ Zmp

is the random evaluation point picked in Line 1 of Algorithm 12. Let f̂ = xdT
1 +

T−1∑
k=0

akx
dk
1

be the monic square-free part of g as defined in Line 12 of Algorithm 12. Clearly, Algorithm
12 returns the wrong degrees if

1. deg(g) < deg(R, x1) or

2. the coefficients ak = 0 for any k (the monic square-free part f̂ loses its support) or

3. g(x1) 6= R(x1, α) but BB ((θ, α), p)− g(θ) = 0.

We obtain the failure probability bounds for each of the cases as follows.
Case 1: Clearly, deg(g) < deg(R, x1) if p|LC(R) or LC(R)(α) = 0. Therefore,

Pr[deg(g) < deg(R, x1)] = Pr[p divides one term of LC(R)] + Pr[LC(R)(α) = 0]

≤ deg(LC(R))
p

+
logpmin‖R‖

N
≤ deg(R)

p
+

logpmin‖R‖
N

. (5.5)

Case 2 : Since R is assumed to have only one square free factor S, we can write R = ŵSk

for some k ≥ 1. Thus, the coefficients ak of f̂ vanishes for any k, if fk(α) = 0 and gk(α) 6= 0
or p|fk and p - gk where fk and gk are the coefficients of S (as defined in (5.3)). Therefore,

Pr[the coefficients ak = 0 for any k]

≤ Pr[
T−1∏
k=0

fk(α) = 0] + Pr[p divides one coefficient of fk for any k]

≤
∑T−1
k=0 deg(fk)

p
+
T logpmin‖fk‖∞

N

≤ T deg(R)
p

+
T logpmin‖fk‖∞

N

≤ deg(R, x1) deg(R)
p

+
deg(R, x1) logpmin‖S‖

N
. (5.6)

Case 3 : Finally, if g(x1) 6= R(x1, α) then

Pr[BB ((θ, α), p)− g(θ) = 0] = Pr[R(θ, α)− g(θ)) = 0] ≤ deg(R, x1)
p

. (5.7)

Adding (5.5), (5.6) and (5.7) proves our claim.

Remark 5.5. The reader should note that bounds for ‖S‖∞ and ‖R‖∞ are provided in
Theorem 6.5 of Chapter 6.

Next, we compute deg(fk) and deg(gk) for 0 ≤ k ≤ T − 1 using Algorithm 13. The
reader should note that Lines 4-16 of Algorithm 13 were added to emphasize that, at step

112

Algorithm 13: TotalDegrees
Input: A prime p and a black box BB : (Zm+1

p , p)→ Zp for the Dixon resultant
R ∈ Zp[x1, y1, y2, . . . , ym], degree D̂ = deg(R, x1), the list of degrees [d0, . . . , dT]
and T.

Output: (deg(fk), deg(gk) : 0 ≤ k ≤ T − 1) with high probability where fk and gk are as
defined in (5.2)

1 Pick β ∈ Zp \ {0}m
, δ ∈ ZD̂+1

p and α ∈ (Zp \ {0})m at random.
2 (m, t, r)← (1, 0, 0)
3 h(z)← FAIL
4 for k = 0, 1, 2, . . . , T − 1 do
5 if t ≥ 2 and h(z) 6= FAIL then
6 Let E = {Coeff(Gj , x

dk
1) : 1 ≤ j ≤ t}

7 Interpolate u ∈ Zp[z] using points (θi, Ei : 1 ≤ i ≤ t)
8 h(z)← MQRFR(m,u, p) //deg(m) > deg(u).
9 if h(z) 6= FAIL then

10 Let h(z) = a(z)
b(z) ∈ Zp(z) with gcd(a, b) = 1.

11 (deg(f̄k), deg(ḡk))← (deg(a), deg(b))
12 end
13 else
14 for t = r + 1, r + 2, · · · do
15 Pick θt ∈ Zp \ {0} at random such that θt /∈ {θ1, θ2, . . . , θt−1}.
16 for j from 0 to D̂ do
17 Wj ← BB ((δj , θtα1 + β1, θtα2 + β2, · · · , θtαm + βm), p) //probes to the

black box
18 end
19 Interpolate Bt ∈ Zp[x1] using points (δi,Wi : 0 ≤ i ≤ D̂); O(D̂2)
20 if deg(Bt, x1) 6= D̂ then return FAIL end
21 Bt ← Bt/lc(Bt, x1). // Make Bt monic.
22 Compute Gt = Bt/gcd(Bt,

dBt

dx1
); . O(D̂2)

23 if t ≥ 2 then
24 Let E = {Coeff(Gj , x

dk
1) : 1 ≤ j ≤ t}

25 Interpolate u ∈ Zp[z] using points (θi, Ei : 1 ≤ j ≤ t) O(t2)
26 m(z)← m× (z − θt)
27 h(z)← MQRFR(m,u, p) //deg(m) > deg(u) ≥ 0 .O(t2)
28 if h(z) 6= FAIL then
29 Let h(z) = a(z)

b(z) ∈ Zp(z) with gcd(a, b) = 1.
30 (deg(f̄k), deg (̄gk))← (deg(a), deg(b))
31 r ← t.
32 break;
33 end
34 end
35 end
36 end
37 end
38 return (deg(f̄k),deg(ḡk)) for 0 ≤ k ≤ T − 1.

113

Algorithm 14: MaxPartialDegrees
Input: A prime p and a black box BB : (Zm+1

p , p)→ Zp for the Dixon resultant
R ∈ Zp[x1, y1, y2, . . . , ym], degree D̂ = deg(R, x1), number of terms T, the list of
degrees [d0, . . . , dT] and i satisfying 1 ≤ i ≤ m.

Output: The maximum partial degree maxT−1
k=0 (max(deg(fk, yi), deg(gk, yi)) of S with high

probability where fk, gk and S are as defined in (5.2).
1 Pick β ∈ Zp \ {0}, δ ∈ ZD̂+1

p and α = (α1, α2, . . . , αi−1, αi+1, . . . , αm) ∈ (Zp \ {0})m−1 at
random.

2 (m, t, r)← (1, 0, 0)
3 h(z)← FAIL
4 for k = 0, 1, 2, . . . , T − 1 do
5 if t ≥ 2 and h(z) 6= FAIL then
6 Let E = {Coeff(Gj , x

dk
1) : 1 ≤ j ≤ t}

7 Interpolate u ∈ Zp[z] using points (θi, Ei : 1 ≤ i ≤ t)
8 h(z)← MQRFR(m,u, p) //deg(m) > deg(u).
9 if h(z) 6= FAIL then

10 Let h(z) = a(z)
b(z) ∈ Zp(z) with gcd(a, b) = 1.

11 ek ← max{deg(a), deg(b)}.
12 end
13 else
14 for t = r + 1, r + 2, · · · do
15 Pick θt ∈ Zp \ {0} at random such that θt /∈ {θ1, θ2, . . . , θt−1}.
16 for j from 0 to D̂ do
17 Wj ← BB ((δj , α1, α2, · · · , αi−1, βθt, αi+1, αi+2, . . . , αm), p) . //probes to the

black box
18 end
19 Interpolate Bt ∈ Zp[x1] using points (δi,Wi : 0 ≤ i ≤ D̂); O(D̂2)
20 if deg(Bt, x1) 6= D̂ then return FAIL end
21 Bt ← Bt/lc(Bt, x1). // Make Bt monic.
22 Compute Gt = Bt/gcd(Bt,

dBt

dx1
); . O(D̂2)

23 if t ≥ 2 then
24 Let E = {Coeff(Gj , x

dk
1) : 1 ≤ j ≤ t}

25 Interpolate u ∈ Zp[z] using points (θi, Ei : 1 ≤ j ≤ t) O(t2)
26 m(z)← m× (z − θt)
27 h(z)← MQRFR(m,u, p) //deg(m) > deg(u) ≥ 0 .O(t2)
28 if h(z) 6= FAIL then
29 Let h(z) = a(z)

b(z) ∈ Zp(z) with gcd(a, b) = 1.
30 ek ← max{deg(a),deg(b)}.
31 r ← t.
32 break;
33 end
34 end
35 end
36 end
37 end
38 return maxT−1

k=0 (ek)

114

Algorithm 15: MonoTotalDegrees
Input: A prime p and a black box BB : (Zm+1

p , p)→ Zp for the Dixon resultant
R ∈ Zp[x1, y1, y2, . . . , ym], degree D̂ = deg(R, x1), number of terms T, list of
degrees [d0, . . . , dT] and the total degrees (deg(fk), deg(gk) : 0 ≤ k ≤ T − 1).

Output: The list of degrees [(Efk
, Efk

) : 0 ≤ k ≤ T − 1)] with high probability where
Efk

= [deg(fi,k) : 0 ≤ i ≤ deg(fk))] and Egk
= [deg(gi,k) : 0 ≤ i ≤ deg(gk))]

where the homogeneous polynomials fi,k and gi,k are as defined in (5.3).
1 Pick δ ∈ ZD̂+1

p and α ∈ (Zp \ {0})m at random.
2 Initialize (m, t, r)← (1, 0, 0) and initialize h−1(z)← FAIL.
3 for k = 0, 1, 2, . . . , T − 1
4 if t ≥ 2 and hk−1(z) 6= FAIL then
5 Let E = {Coeff(Gj , x

dk
1) : 1 ≤ j ≤ t}

6 Interpolate u ∈ Zp[z] using points (θi, Ei : 1 ≤ i ≤ t)
7 hk(z)← MQRFR(m,u, p) //deg(m) > deg(u).
8 if hk(z) 6= FAIL then
9 Let hk(z) = ak(z)

bk(z) such that gcd(ak, bk) = 1 where ak =
∑deg(ak)

i=0 āi,k and
bk =

∑deg(bk)
i=0 b̄i,k and deg(ai,k) = deg(bi,k) = i.

10 (ek1 , ek2)← (deg(fk)− deg(ak), deg(g)− deg(bk))
11 if ek1 = ek2 then return (Ak, Bk) for 0 ≤ k ≤ T − 1 where
12 Ak = [deg(ai,k) + ek1 : 0 ≤ i ≤ deg(fk))] // deg(ai,k) = deg(fi,k).
13 Bk = [deg(bi,k) + ek1 : 0 ≤ i ≤ deg(gk))] // deg(bi,k) = deg(gi,k).
14 else return FAIL;
15 end
16 end
17 else
18 for t = r + 1, r + 2, · · · do
19 Pick θt ∈ Zp \ {0} at random such that θt /∈ {θ1, θ2, . . . , θt−1}.
20 Wj ← BB ((δj , α1θt, α2θt · · · , αmθt), p) for 0 ≤ j ≤ D̂. //probes to BB
21 Interpolate Bt ∈ Zp[x1] using points (δi,Wi : 0 ≤ i ≤ D̂); O(D̂2)
22 if deg(Bt, x1) 6= D̂ then return FAIL end
23 Bt ← Bt/lc(Bt, x1). // Make Bt monic.
24 Compute Gt = Bt/gcd(Bt,

dBt

dx1
); . O(D̂2)

25 if t ≥ 2 then
26 Let E = {Coeff(Gj , x

dk
1) : 1 ≤ j ≤ t}

27 Interpolate u ∈ Zp[z] using points (θi, Ei : 1 ≤ j ≤ t) O(t2)
28 m(z)← m× (z − θt)
29 hk(z)← MQRFR(m,u, p) //deg(m) > deg(u) ≥ 0 .O(t2)
30 if hk(z) 6= FAIL then
31 Let hk(z) = ak(z)

bk(z) such that gcd(ak, bk) = 1 where ak =
∑deg(ak)

i=0 āi,k

and bk =
∑deg(bk)

i=0 b̄i,k and deg(ai,k) = deg(bi,k) = i.
32 (ek1 , ek2)← (deg(fk)− deg(ak), deg(g)− deg(bk))
33 if ek1 = ek2 then return (Ak, Bk) for 0 ≤ k ≤ T − 1 where
34 Ak = [deg(ai,k) + ek1 : 0 ≤ i ≤ deg(fk))] // deg(ai,k) = deg(fi,k).
35 Bk = [deg(bi,k) + ek1 : 0 ≤ i ≤ deg(gk))] // deg(bi,k) = deg(gi,k).
36 else return FAIL;
37 end
38 r ← t.
39 break;
40 end
41 end
42 end
43 end
44 end
45 return [(Ak, Bk) : 0 ≤ k ≤ T − 1]

k of the main for loop, the coefficients of the previous computed polynomial images Gt at
step k− 1 can be re-used if sufficient. More probes to the black box BB are only necessary
when Algorithm 13 needs more polynomial images of R to discover the degrees.

We remark that it is possible that our algorithms for pre-computing the needed degrees
may output a smaller degree value but never a larger degree value. Finally, we compute the
maximum partial degrees maxT−1

k=0 (max(deg(fk, yi), deg(gk, yi)) of S as defined in (5.2) with
respect to each variable yi for 1 ≤ i ≤ m and the the total degrees of the homogeneous
polynomials fi,k and gi,k using Algorithms 14 and 15 respectively.

5.3 Algorithm DixonRes

We now present our Dixon resultant algorithm labelled as Algorithm DixonRes (Algorithm
19). It calls Algorithms NewPrime (Algorithm 20) and MQRFR, and Subroutines Poly-
Interp, RatFun, Remove-Shift, VandermondeSolver and BMStep. The MQRFR algorithm
(Algorithm 8) is the Maximal Quotient Rational Function Reconstruction algorithm. Algo-
rithm 19 to interpolate S involves eight major steps, namely:

1. The computation of the degrees [d0, . . . , dT] as defined in (5.2) by Algorithm 12,
the total degrees of the polynomials fk, gk by Algorithm 13, the maximum partial degrees
Dyi = max(maxT−1

k=0 (deg(fk, yi), deg(gk, yi))) of S as defined in (5.2) for 1 ≤ i ≤ m and
the total degrees of the homogeneous polynomials fk, gk by Algorithm 15 in Lines 1-5 of
Algorithm 19.

2. The use of a Kronecker substitution (Lines 5-7) to reduce the interpolation of the mul-
tivariate rational function coefficients fk

gk
of S to a univariate rational function interpolation.

This consequently leads to a reduction in the size of the prime needed by our Dixon resultant
algorithm, because the prime p needed by our algorithm must satisfy p > ∏m

i=1(Dyi + 1),
which is typically much smaller than the prime required for the Ben-Or/Twari sparse inter-
polation algorithm to work in practice.

3. The selection of a basis shift β 6= 0 ∈ Zmp if needed by our Dixon resultant algorithm
in Lines 8-13. A non-zero basis shift may not be needed, if there is a non-zero integer in
the leading coefficient of the Dixon resultant R = det(M) in x1, that the input prime does
not divide. With high probability, we are assured of the presence of a constant term in the
denominator polynomials gk, which is needed for normalizing the corresponding auxiliary
rational functions. We detect if a basis shift is needed at the start of the algorithm by
checking if the degree of R(x1, β) where β = (0, 0, · · · 0) ∈ Zmp is equal to deg(R, x1) using
random evaluation points for x1 via the black box representing R. If both degrees are the
same then our algorithm does not need a basis shift.

Example 5.6. IfR = (y1−y2)x2
1+x1+5 then we need a basis shift since deg(R(x1, 0, 0), x1) =

1 < deg(R, x1). But if R = (y1 − y2 + 7)x2
1 + x1 + 5, and the input prime p 6= 7 then we do

not need a basis shift since deg(R(x1, 0, 0), x1) = deg(R, x1).

116

4. The interpolation of many univariate monic square-free polynomial images Hi in x1

of S via probes to the black box BB. This is done by calls to Subroutine PolyInterp in
Line 20. We remark that Hi in Line 20 is a list of emax monic polynomial images in x1,

since we need at most emax = 2 + maxT−1
k=0 deg(fk) + deg(gk) points to produce an auxiliary

rational function Aj = Nj

N̂j
∈ Zp(z) where deg(Nj) = deg(fk) and deg(N̂j) = deg(gk) with

high probability using Algorithm 8.
5. The dense interpolation of auxiliary univariate rational functions Aj (Think of Aj =

Fk(αs+j , z, β) where Fk is as defined in (5.4)) using the coefficients of the monic images Hi.

These univariate rational functions are the intermediate functions whose coefficients are
used to interpolate the rational function coefficients of S, and they are produced in Line 24
via calls to Subroutine Ratfun which uses Algorithm 8. By design, these univariate rational
functions must have a constant term in their denominator, so a basis shift β may be needed
to force the production of a constant term (See Lines 8-13).

6. The discovery of the number of terms in the rational function coefficients of S using
the Berlekamp Massey algorithm (BMA). By design, the leading term polynomials fdeg(fk),k

and gdeg(gk),k, referred to as Fk and Gk, respectively, in Lines 28-29 are interpolated first
by calls to Subroutine BMStep, before the lower total degree polynomial terms can be
interpolated. In Subroutine BMStep, the size of the supports #Fk and #Gk are discovered
with high probability when the BMA returns the feedback polynomials, say λ1, λ2 ∈ Zp[z]
respectively. The roots of λ1 and λ2, determine the supports of Kr(Fk) and Kr(Gk) in y.
The univariate functions Kr(Fk) and Kr(Gk) in y are the mapped images of Fk and Gk

since a Kronecker substitution Kr was used.
Note that Subroutine BMStep generates a feedback polynomial λ(z) using an input

P, a sequence of coefficients of length i, collected from the coefficients of the auxiliary
rational functions Aj . Line 2 of Subroutine BMStep will not cause the algorithm to return
FAIL if deg(λ, z) < i

2 . The condition deg(λ, z) < i
2 ensures that λ(z) is correct with high

probability. Otherwise, it returns FAIL indicating that we do not have the correct term
bound, so more univariate polynomial images and auxiliary rational functions are needed.
Algorithm 19 then computes more polynomial images and auxiliary rational functions, so
that the process is repeated until a new term bound is found.

The next step is to assemble polynomials Fk and Gk by solving for their coefficients using
Subroutine VandermondeSolver (Section 4.3.3), an algorithm that solves shifted transposed
Vandermonde systems using Zippel’s quadratic algorithm.

7. The interpolation of the lower total degree polynomials fi,k and gi,k in Lines 31-32 by
calls to Subroutine RemoveShift. Before the polynomials fi,k and gi,k can be interpolated,
Subroutine RemoveShift adjusts the coefficients of the auxiliary rational functions in order
to remove the effect of the basis shift β that was contributed by the higher total degree
polynomials fj,k and gj,k for j > i, whenever β 6= 0.

117

8. Performing sparse interpolation using additional primes in Line 41 whenever the
rational number reconstruction process fails on the integer coefficients of the first image of
S for the first prime. Algorithm 20 (an algorithm similar to Algorithm 19 which does not
use a Kronecker substitution Kr since the first image of S has been found) uses the support
obtained for the first prime to get more images if additional primes are needed to recover S.
We remark that one 62 bit prime was often enough to interpolate the Rj ’s in our benchmark
systems. Finally, we check if the returned answer is correct using a probabilistic approach.

Subroutine 16: PolyInterp
Input: A prime p and the black box BB :

(
Zm+1

p , p
)
→ Zp for the Dixon resultant

R = det(M) with m ≥ 1, a list of m− tuple evaluation points
Z = [Zj ∈ Zm

p : 1 ≤ j ≤ emax], degree emax ≥ 2, list of degrees d = [d0, . . . , dT] as
defined in (5.2) and degree D̂ = deg(R, x1).

Output: A list of emax monic univariate polynomials
H = [monic(Hj) ∈ Zp[x1] : 1 ≤ j ≤ emax] or FAIL.

1 Pick δ ∈ ZD̂+1
p at random with δi 6= δj for i 6= j.

2 for j = 1, 2, . . . , emax do
3 Compute Gj = (BB ((δi, Zj), p) : 1 ≤ i ≤ D̂+ 1). // D̂+ 1 probes to the black box BB.
4 Interpolate Bj ∈ Zp[x1] using points (δi, Gj,i : 1 ≤ i ≤ D̂ + 1); O(D̂2)
5 if deg(Bj , x1) < D̂ then return FAIL end
6 Compute the square-free part Hj = Bj/gcd(Bj ,

dBj

dx1
); . O(D̂2)

7 if supp(Hj) 6= d then return FAIL end
8 end
9 return [monic(H1), . . . ,monic(Hemax)].

Subroutine 17: BMStep
Input: A list of points P = [Pj ∈ Zp : 1 ≤ j ≤ i and i is even] , a generator α for Z∗p, a

random shift ŝ ∈ [0, p− 2] and r which defines the Kronecker substitution Kr.

Output: A non-zero multivariate polynomial F̄ ∈ Zp[y1, y2, . . . , ym] or FAIL.
1 Run the Berlekamp-Massey algorithm [Atti et al., 2006] on P to obtain λ(z) ∈ Zp[z];O(i2)
2 if deg(λ, z) = i

2 then return FAIL end // More images are needed
3 Compute the roots of λ in Zp[z] to obtain the monomial evaluations m̂i. Let m̂ ⊂ Zp be the

set of monomial evaluations m̂i and let t = |m̂|; . O(t2 log p)
4 if t 6= deg(λ, z) then return FAIL end // λ(z) is wrong.
5 Solve αei = m̂i for ei with ei ∈ [0, p− 2] // The exponents are found here.
6 Let M̂ = [yei : i = 1, 2 · · · , t] // These are the monomials
7 F ←VandermondeSolver (m̂, [P1, · · ·Pt], ŝ, M̂) // F ∈ Zp[y]; . O(t2)
8 F̄ ← K−1

r (F) ∈ Zp[y1, . . . , ym].// Invert the Kronecker map Kr.

9 return F̄

118

Algorithm 19: DixonRes
Input: The black box BB :

(
Zm+1

p , p
)
→ Zp for the Dixon resultant

R = det(M) ∈ Q[x1, y1, y2, . . . , ym] with m ≥ 1.
Output: The monic square-free factor S ∈ Q(y1, . . . , ym)[x1] of R where S is as defined in

(5.2) or FAIL.
1 Compute d = [d0, . . . , dT] as defined in (5.2) and D̂ = deg(det(M), x1) using Algorithm 12.
2 Compute deg(fk) and deg(gk) for 0 ≤ k ≤ T − 1 as defined in (5.2) using Algorithm 13.
3 Let emax = maxT−1

k=0 ek where ek = deg(fk) + deg(gk) + 2 and assume e0 ≥ e1, · · · ≥ eT−1.

4 Compute Dyi
= maxT−1

k=0 (max(deg(fk, yi), deg(gk, yi))) for 1 ≤ i ≤ m using Algorithm 14.
5 Initialize ri = Dyi + 1 for 1 ≤ i ≤ m.
6 Compute [(Efk

, Efk
: 0 ≤ k ≤ T − 1)] using Algorithm 15 where

Efk
= [deg(fi,k) : 0 ≤ i ≤ deg(fk))] and Egk

= [deg(gi,k) : 0 ≤ i ≤ deg(gk))] where the
homogeneous polynomials fi,k and gi,k are as defined in (5.3).

7 Pick a random smooth prime p >
∏m

j=1 ri. // p is the prime to be used by BB.
Let Kr : Zp(y1, . . . , ym)[x1]→ Zp(y)[x1] be the Kronecker substitution Kr(S) where S is as
defined in (5.2)) and r = (r1, r2, . . . , rm−1).

8 Let β = (0, 0, . . . , 0) ∈ Zm
p .

9 Interpolate G = R(x1, β) using D̂ + 1 points for x1 via black box BB; O(D̂2)
10 while deg(G) < D̂ do
11 Choose a random basis shift β ∈ Zm

p .

12 Interpolate G = R(x1, β) using D̂ + 1 points for x1 via BB; . O(D̂2)
13 end
14 Pick a random shift ŝ ∈ [0, p− 2] and any generator α for Z∗p.
15 Pick θ ∈ Zemax

p at random with θi 6= θj for i 6= j.

16 Let z be the homogenizing variable and initialize k = 0.
17 for i = 1, 2, · · · while k ≤ T − 1
18 Ŷi ← (αŝ+i−1, α(ŝ+i−1)r1 , . . . , α(ŝ+i−1)(r1r2···rm−1)). // Implements Kr

19 Let Z = [Ŷiθj + β ∈ Zm
p : 1 ≤ j ≤ emax] be the evaluation points.

// Compute the monic univariate images Hi ∈ Zp[x1] where |Hi|= emax.

20 Hi ← PolyInterp
(
BB, (Z, p) , emax, d, D̂

)
. O(emaxD̂

2)
21 if Hi = FAIL then return FAIL end
22 if i ∈ {2, 4, 8, 16, 32, · · ·} then
23 for j = 1, 2, . . . , i do

// Compute the auxiliary rational functions Aj(αŝ+j−1, z) = Nj

N̂j
∈ Zp(z)

24 Aj ← RatFun(Hj , θ, dk, ek, p); .O(e2
k)

25 if deg(Nj , z) 6= deg(fk) or deg(N̂j , z) 6= deg(gk) then return FAIL end
// αŝ+j−1 is a bad evaluation point or β is a bad basis shift or prime p is
unlucky (see Definitions 6.21 & 6.22.)

26 end
27 Let Fk = fdeg(fk),k and Gk = gdeg(gk),k as defined in (5.3).
28 Fk ← BMStep([coeff(Nj , z

deg(fk)) : 1 ≤ j ≤ i], α, ŝ, r);O(i2 + #F 2
k log p)

29 Gk ← BMStep([coeff(N̂j , z
deg(gk)) : 1 ≤ j ≤ i], α, ŝ, r);O(i2 + #G2

k log p)
30 if Fk 6= FAIL and Gk 6= FAIL then
31 fk ← RemoveShift(Fk, β, Efk

, ŝ, α, [Ŷ1, . . . , Ŷi], [N1, . . . , Ni], r)
32 gk ← RemoveShift(Gk, β, Egk

, ŝ, α, [Ŷ1, . . . , Ŷi], [N̂1, . . . , N̂i], r)
33 if fk 6= FAIL and gk 6= FAIL then
34 k ← k + 1// The k-th rational function coefficient of S is interpolated.
35 end
36 end
37 end
38 end
39 Ŝ ← xdT

1 +
∑T−1

k=0
fk(y1,...,ym)
gk(y1,...,ym)x

dk
1 // Assemble Ŝ = S mod p where S is as defined in (5.2)

40 Apply rational number reconstruction on the coefficients of Ŝ mod p to get S
41 if S = FAIL then S ←NewPrime(BB, Ŝ, d, D̂, p) else return S end

Subroutine 18: RemoveShift
Input: A multivariate polynomial Fk ∈ Zp[y1, . . . , ym], a basis shift β ∈ Zm

p , list of degrees
Efk

, a random shift ŝ ∈ [0, p− 2], a generator α for Z∗p, a list of m-tuple evaluation
points [Ŷj ∈ Zm

p : 1 ≤ j ≤ i], a list of univariate polynomials [Nj ∈ Zp[z] : 1 ≤ j ≤ i]
and r which defines the Kronecker substitution Kr.

Output: A polynomial fk ∈ Zp[y1, . . . , ym] where fk is as defined in (5.3) or FAIL
1 (A, fk, d)← (Fk, Fk, deg(Fk))
2 Initialize Hj = 0 for 1 ≤ j ≤ i.
3 for d̄ ∈ Efk

do
4 if β 6= 0 then
5 Pick θ ∈ Zd+1

p at random.
6 for j = 1, 2, · · · , i do
7 for t = 1, 2, . . . , d+ 1 do
8 Let Zj,t = A(y1 = Ŷj,1θt + β1, . . . , ym = Ŷj,mθt + βm) be the polynomial

evaluations of A .O(md#A).
9 end

10 Interpolate W j ∈ Zp[z] using points (θt, Zj,t : 1 ≤ t ≤ d+ 1); O(d2)
11 Hj ← Hj +W j ; . O(d)
12 end
13 end
14 if d̄ 6= 0 then
15 P ←

[
coeff(Nj , z

d̄ : 1 ≤ j ≤ i
]
.

16 if β 6= 0 then
17 for j = 1, 2, · · · , i do
18 Pj ← Pj − coeff(Hj , z

d̄)
// The Pj ’s are adjusted to remove the effect of the basis shift β.

19 end
20 end
21 if [Pj = 0 : 1 ≤ j ≤ i] then
22 A← 0 // There is no monomial of total degree d̂.
23 else
24 A← BMStep([P1, . . . , Pi], α, ŝ, r); . O(i2 + #A2 log p)
25 if A = FAIL then return FAIL end // More Pj ’s are needed.
26 end
27 else
28 A← coeff(N1, z

0) // We get the constant term.
29 if β 6= 0 then A← A− coeff(Γ1, z

0) end
30 end
31 (fk, d)← (fk +A, d̂+ 1).
32 end
33 return fk

120

Algorithm 20: NewPrime
Input: The black box BB :

(
Zm+1

q , q
)
→ Zq for the Dixon resultant R, the first image

Ŝ = xdT
1 +

∑T−1
k=0

fk(y1,y2,...,ym)
gk(y1,y2,...,ym)x

dk
1 ∈ Zp(y1, . . . , ym)[x1] of S obtained from

Algorithm 19 with respect to a smooth prime p where S is as defined in (5.2), the
list of degrees d = {d0, d1, . . . , dT } and D̂ = deg(R, x1) > 0.

Remark : Additional primes are required to interpolate the monic square-free factor of R.
Output: The monic square-free factor F̄ ∈ Q(y1, . . . , ym)[x1] of R or FAIL.

1 Let B1 = [fdeg(fk)−1,k, . . . , f0,k] and B2 = [gdeg(gk)−1,k, . . . , g0,k] where fi,k, gi,k are as
defined in (5.3).

2 ek ← deg(fk) + deg(gk) + 2 for 0 ≤ k ≤ T − 1.
3 Let emax = maxT−1

k=0 ek and let P ← p.

4 Let Nmax = maxT−1
k=0

{
max0≤i≤deg(fk){#fi,k},max0≤i≤deg(gk){#gi,k}}

}
.

5 do
6 Get a new 62 bit prime q 6= p. // The black box BB uses a new prime q.
7 Let β = (0, 0, . . . , 0) ∈ Zm

q .

8 Interpolate G = R(x1, β) using D̂ + 1 points for x1 via black box BB; O(D̂2)
9 while deg(G) < D̂ do

10 Choose a random basis shift β ∈ Zm
q .

11 Interpolate G = R(x1, β) using D̂ + 1 points for x1 via BB; O(D̂2)
12 end
13 Pick α ∈ (Zq \ {0})m, θ ∈ Zemax

q and shift ŝ ∈ [0, q − 2] at random.
14 for i = 1, 2, . . . , Nmax do
15 Let Ŷi = (αŝ+i−1

1 , αŝ+i−1
2 · · · , αŝ+i−1

m). // No Kronecker substitution is required.
16 Let Z = [θj Ŷi + β ∈ Zm

q : 1 ≤ j ≤ emax] be the evaluation points.
17 H ← PolyInterp

(
BB (Z, q) , d, emax, D̂

)
//|H|= emax; O(emaxD̂

2)
18 if H = FAIL then return FAIL end
19 end
20 for k = 0, 1, . . . , T − 1 do
21 (n̂, M̂)← (#fdeg(fk),k, supp(fdeg(fk),k))
22 (n̄, M̄)← (#gdeg(gk),k, supp(gdeg(gk),k))
23 (m̂, m̄)← ([M̂i(α) : 1 ≤ i ≤ n̂], [M̄i(α) : 1 ≤ i ≤ n̄]); O(m(deg(fk)n̂+ deg(gk)n̄))
24 if the monomial evaluations m̂i = m̂j or m̄i = m̄j then return FAIL end.
25 for j = 1, 2, . . . , Nmax do
26 Bj ← RatFun(Hj , θ, dk, ek, q)// Let Bj = Nj(z)/N̂j(z) ∈ Zq(z). O(e2

k)
27 if deg(Nj , z) 6= deg(fk) or deg(N̂j , z) 6= deg(gk) then return FAIL
28 end
29 Let ai = LC(Nj , z) and let bi = LC(N̂j , z) for 1 ≤ i ≤ Nmax.

30 Fk ←VandermondeSolver(m̂, [a1, . . . , an̂], ŝ, M̂); . O(n̂2)
31 Gk ←VandermondeSolver(m̄, [b1, . . . , bn̄], ŝ, M̄); . O(n̄2)
32 Fk ← GetTerms(Fk, α, β, ŝ, B1, Ŷ1, . . . , ŶNmax], [N1, . . . , NNmax], q)
33 Gk ← GetTerms(Gk, α, β, ŝ, B2, [Ŷ1, . . . , ŶNmax], [N̂1, . . . , N̂Nmax], q)
34 if Fk = FAIL or Gk = FAIL then return FAIL end
35 end
36 T̂ ← xdT

1 +
∑T−1

k=0
Fk(y1,y2,...,ym)
Gk(y1,y2,...,ym)x

dk
1 ∈ Zq(y1, . . . , ym)[x1]

37 Solve
{
F̂ ≡ Ŝ mod P and F̂ ≡ T̂ mod q

}
using Chinese remaindering.

38 Set P = P × q. // Product of primes
39 Apply rational number reconstruction on the coefficients of F̂ mod P to get F .
40 if F 6= FAIL then return F else (Ŝ, p)← (F̂ , q) end
41 end

121

Subroutine 21: GetTerms
Input: A multivariate polynomial Fk ∈ Zq[y1, . . . , ym], evaluation points α ∈ (Zq \ {0})m,

β ∈ Zm
q , a random shift ŝ ∈ [0, q − 2], list of lower total degree polynomials

B1 = [fdeg(fk)−1,k, . . . , f0,k] obtained using the first prime from Algorithm 19, a list
of m− tuple evaluation points [Ŷj ∈ Zm

q : 1 ≤ j ≤ Nmax], a list of univariate
polynomials [Nj ∈ Zq[z] : 1 ≤ j ≤ Nmax] and a prime q.

Output: A polynomial fk = fk mod q where fk is as defined in (5.3) or FAIL.
1 (A, fk, d̂)← (Fk, Fk, deg(Fk)).
2 Set H = (0, 0, , . . . , 0) ∈ ZNmax

q .

3 D ← [deg(e) : e ∈ B1], M̂ ← [supp(e) : e ∈ B1] // supp means support.
4 for h = 1, 2, . . . , |D| do
5 d← Dh

6 if β 6= 0 then
7 Pick θ ∈ Zd̂+1

q at random.
8 for j = 1, 2, · · · , Nmax do
9 for t = 1, 2, . . . , d̂+ 1 do

10 Zj,t ← A(y1 = Ŷj,1θt + β1, . . . , ym = Ŷj,mθt + βm);O(md̂#A)
11 end
12 Interpolate W j ∈ Zq[z] using points (θt, Zj,t : 1 ≤ t ≤ d̂+ 1); O(d̂2)
13 Hj ← Hj +W j ; . O(d̂)
14 end
15 end
16 if d 6= 0 then
17 P ←

[
coeff(Nj , z

d) : 1 ≤ j ≤ Nmax
]

18 if β 6= 0 then
19 for j = 1, 2, . . . , Nmax do
20 Pj ← Pj − coeff(Hj , z

d)
21 end
22 end
23 m̂← [M̂i(α) : 1 ≤ i ≤ n̂] where n̂ = #M̂h; . O(mn̂d̂)
24 if any monomial evaluations m̂i = m̂j then return FAIL end.
25 A← VandermondeSolver(m̂, P, ŝ, M̂h); . O(n̂2)
26 else
27 A← coeff(N1, z

0) // We use only one point to get the constant term
28 if β 6= 0 then
29 A← A− coeff(Γ1, z

0)
30 end
31 (fk, d̂)← (fk +A, deg(A) + 1).
32 end
33 end
34 return fk.

122

Subroutine 22: RatFun
Input: A prime p and a list of univariate polynomials H = [Hj ∈ Zp[x1] : 1 ≤ j ≤ emax],

an evaluation point θ ∈ Zemax
p , degree dk and degree ek such that 2 ≤ ek ≤ emax.

Output: A univariate rational function A(z) = N(z)
N̂(z) ∈ Zp(z).

1 m(z)←
∏ek

i=1(z − θi) ∈ Zp[z]; . O(ek)
2 Interpolate u ∈ Zp[z] using points (θi, coeff(Hi, x

dk
1) : 1 ≤ i ≤ ek); O(e2

k)
3 A(z)← MQRFR(m,u, p); . O(e2

k)
4 Let A(z) = N(z)

N̂(z) ∈ Zp(z) and normalize A(z) s.t. N̂(z) = 1 +
∑deg(N̂,z)

j=1 ajz
j .

5 return A(z).

Subroutine 23: VandermondeSolver
Input: Vectors m̂, v ∈ Zt

p, a random shift ŝ ∈ [0, p− 2] and monomials [M1, . . . ,Mt]
Output: A non-zero multivariate polynomial F =

∑t
i=1 aiMi ∈ Zp[y1, . . . , ym].

1 Let Vij = m̂ŝ+j−1
i for 1 ≤ i, j ≤ t. // A shifted transposed Vandermonde matrix

2 Solve the shifted transposed Vandermonde system V a = v using Zippel’s O(t2) algorithm.
3 Compute ai = ai

m̂ŝ
i

for 1 ≤ i ≤ t.

4 return F =
∑t

i=1 aiMi

5.3.1 Probabilistic Test

The following algorithm (Algorithm 24) uses a probabilistic strategy to determine if the
returned Rj ’s by our Dixon resultant algorithm are correct with high probability.

Algorithm 24: CheckResultant
Input: The black box BB :

(
Zm+1

q , q
)
→ Zq for the Dixon resultant

R ∈ Zq[x1, y1, y2, . . . , ym], deg(R, x1) and the monic square-free factors
Rj ∈ Q(y1, y2, . . . , ym)[x1] as defined in (5.1) such that deg(Rj , x1) > 0 for
1 ≤ j ≤ l.

Output: true (if all the Rj ’s are correct) or false otherwise.
1 repeat
2 Pick a new 62 bit prime q at random.
3 Pick α ∈ Zm

q at random.
4 Pick β ∈ Zdeg(R,x1)+1

q at random.
5 for i = 1, 2, . . . ,deg(R, x1) + 1 do
6 δi ← BB ((βi, α), q) // probes to the black box.
7 end
8 Interpolate the unique polynomial F ∈ Zq[x1] using {(βi, δi) : 1 ≤ i ≤ deg(R, x1) + 1}.
9 until gjk 6= 0 for all j and k where gjk is as defined in (5.1) and deg(F) = deg(R, x1).

10 Compute the monic square-free factorization ŵ
∏l

j=1 F
j
j of F in Zq[x1] where ŵ ∈ Zq.

11 for j = 1, 2, . . . , l do
12 if Fj 6= Rj(x1, α) ∈ Zq[x1] then return false end
13 end
14 return true

123

Example 5.7. Let p = 3137 be the input prime in our Dixon resultant algorithm and let

R = (y1 + y2)x2
1 + y1 + 3138y2

be the Dixon resultant. The only monic square-free factor is

S = x2
1 + y1 + 3138y2

y1 + y2
.

At termination, our Dixon resultant algorithm will return the incorrect answer x2
1 +1 as the

output for S because the rational number reconstruction process will succeed with respect
to this input prime p. Using Algorithm 24, we detect that the returned answer is wrong as
follows. Suppose we pick a new prime q = 231 − 1, and evaluation points α = (2, 7) ∈ Z2

q

and β = (1351727965, 581869303, 1742863087) ∈ Z3
q at random. Probing the black box

representing R to interpolate the monic square-free polynomial F1 ∈ Zq[x1], we get

F1 = x2
1 + 238611735 6= S(x1, α) = x2

1 + 1 ∈ Zq[x1],

which confirms that we have the incorrect answer from our Dixon resultant algorithm.

Note that it is possible that the Rj ’s are correct, but our probabilistic test fails, that is,
it wrongly verifies that we have an incorrect answer. Similarly, it is possible that the Rj ’s
are incorrect, but our probabilistic test wrongly verifies that we have a correct answer. We
give the following example to illustrate this.

Example 5.8. Let p and q be primes such that p, q 6= 2 and let R = (y1+1)x1+(pq+y1+2)
be the Dixon resultant. Clearly, the only monic square-free factor of R is

S = x1 + (pq + y1 + 2)
y1 + 1 .

Let p be the first prime used in our Dixon resultant algorithm and suppose that the ratio-
nal number reconstruction process succeeds on the coefficient of the returned answer with
respect to p. Then the output of Dixon resultant algorithm will be

x1 + (y1 + 2)
y1 + 1 .

For simplicity, let α = 0 be the evaluation point selected at random in Line 3. If the random
prime picked in Line 2 of Algorithm 24 is q then Algorithm 24 will wrongly verify that we
have the correct answer. That is, in Line 12, we will have

F1 = x1 + 2 = S(x1, α)

because q divides an integer coefficient of S.

124

We will give a failure probability bound for Algorithm 24 in Theorem 6.39 when we
perform the failure probability analysis of our Dixon resultant algorithm.

5.3.2 Identifying the Extraneous factors

After checking that the monic square-free factors obtained by our Dixon resultant algorithm
are correct with high probability using Algorithm 24, the extraneous factors are identified
using the following algorithm.

Algorithm 25: ExtraneousFactors
Input: A parametric polynomial system F = {f̂1, f̂2, . . . , f̂n} ⊂ Q[x1, . . . , xn][y1, . . . , ym]

and the monic square-free factors Rj ∈ Q(y1, y2, . . . , ym)[x1] as defined in (5.1)
such that the Rj ’s are relatively prime and deg(Rj , x1) > 0 for 1 ≤ j ≤ l.

Output: The set of factors H such that
1. for each h ∈ H, h is monic and irreducible in Q[y1, . . . , ym][x1],

2. for each h ∈ H, h divides one of the Rj ’s and

3.
∏

h∈H h = g where g is the generator of
〈
f̂1, f̂2, . . . , f̂n

〉
∩Q[y1, . . . , ym][x1].

Remark : Conditions 2 and 3 hold with high probability.
1 Let Ej = Rj ∈ Z[y1, y2, . . . , ym][x1] for 1 ≤ j ≤ l // We clear the fractions in the Rj ’s.
2 repeat
3 Pick a random 62 bit prime p and an evaluation point α ∈ Zm

p at random.
4 Evaluate the input system F at y1 = α1, y2 = α2, · · · , ym = αm to obtain a new

polynomial system G = {ĝ1, ĝ2 · · · , ĝn} ⊂ Zp[x1, x2, · · ·xn].
5 Compute the unique polynomial R ∈ 〈g1, g2, . . . , gn〉 ∩ Zp[x1] using a Gröbner basis.
6 until LC(Ej , x1) 6= 0 for 1 ≤ j ≤ l and deg(gi, x1) = deg(f̂i, x1) for 1 ≤ i ≤ n, and

deg(R) > 0.
7 Factor Ej over Q for 1 ≤ j ≤ l and let A be the set all of irreducible polynomial factors

obtained.
8 Let H be an empty set.
9 for h ∈ A do

10 if h(x1, α) divides R over Zp then
11 H ← H ∪ h // h divides g with high probability.
12 else
13 // h does not divide g with high probability.
14 end
15 end
16 return H

Notice that Algorithm 25 continues to pick a new random prime p and a new ran-
dom evaluation point α ∈ Zmp in Lines 2-6 until LC(E, x1) 6= 0 where E ∈ ∏l

j=1Rj ∈
Z[y1, y2, . . . , ym][x1], and until we obtain a new polynomial system G = {ĝ1, ĝ2 · · · , ĝn} ⊂
Zp[x1, x2, · · ·xn] such that deg(gj , x1) = deg(f̂j , x1) for 1 ≤ j ≤ n when the input para-

125

metric polynomial system F is evaluated at y1 = α1, y2 = α2, · · · , ym = αm, and until
deg(R) > 0 where R is the unique polynomial in 〈g1, g2, . . . , gn〉 ∩ Zp[x1] computed in Line
5 using a Gröbner basis. Otherwise, the evaluation point α ∈ Zmp or the prime p picked at
random in Line 3 of Algorithm 25 may cause the algorithm to wrongly identify a correct
irreducible polynomial factor of Rj over Q as an extraneous factor, or it may cause the
algorithm to wrongly identify all the irreducible factors of the Rj ’s over Q as the correct
irreducible factors. We illustrate these potential problems with the following two examples.

Example 5.9. Let
F = {f̂1, f̂2} = {(y2 − y1)x2

1 + 1, x2
2 − 1}

and let α = (10, 10) be an evaluation point. Then the new polynomial system without
parameters obtained when F is evaluated at α over Z3137 is

G = {ĝ1, ĝ2} = {1, x2
2 + 3136}.

Notice that deg(ĝ1, x1) < deg(f̂1, x1) and the Gröbner basis for < ĝ1, ĝ2 > is {1} so R = 1.
Thus, all the irreducible factors of the Rj ’s with positive degree in x1 will be identified as
an extraneous factor.

Example 5.10. Let p 6= 2 be a prime and let

F = {f̂1, f̂2} = {x2
1 + ax1 + x2y1 + 2, x2

1 + x2y1 + 2}

be a parametric polynomial system. If the random prime p chosen in Line 3 of Algorithm 25
divides the integer coefficient a of f̂1 ∈ F then the unique generator R computed in Line 5
of Algorithm 25 will be the zero polynomial. This will cause all the irreducible polynomial
factors of the Rj ’s of F with positive degree in x1 to be identified as the correct factors.

5.4 Implementation Notes and Benchmarks

We have implemented our new Dixon resultant algorithm in Maple. To improve the overall
efficiency, we have implemented in C, major subroutines such as evaluating a Dixon matrix
at integer points modulo prime p, computing the determinant of an integer matrix over
Zp, solving a t × t shifted Vandermonde system and performing dense rational function
interpolation using the MQRFR algorithm modulo a prime. Thus, each probe to the black
box is computed using C code. Our C code supports primes up to 63 bits in length.

5.4.1 Speeding up evaluation of the Dixon matrix

In our experiments, the most expensive step in our algorithm was, and still is, evaluating
the Dixon matrix M at α modulo a prime. Let p be a prime and let M be a t× t matrix of

126

polynomials in Z[z1, ..., zn]. We need to compute det(M(α)) mod p for many α ∈ Znp . Often,
over 80% of the time is spent computing M(α) mod p. The Maple command

> Eval(M,{seq(z[i]=alpha[i]}) mod p;

does what we want, however, because we want our implementation to handle many variables
and fail with low probability, we want to use the largest primes the hardware can support
which are 63 bit primes if we use signed 64 bit integers. Unfortunately, Eval uses hardware
arithmetic for p < 231, otherwise, it uses software arithmetic which is relatively very slow.
Also, Eval evaluates each polynomial in M independently, that is, if M1,1 = 2z3

1z2 and
M2,2 = z3

1 + 5z3 say, Eval computes α3
1 twice. To speed up evaluations, we have written

a C program to compute M(α) for p < 263 using hardware arithmetic. In Maple, we first
precompute a vector of degrees

D =
[

max
1≤i,j≤t

deg(Mij , zk) : 1 ≤ k ≤ n
]
.

For each α ∈ Znp we call our C program from Maple with inputs M,α,D, p. To save multi-
plications, our C program first computes power arrays

Pk =
[
αik : 0 ≤ i ≤ Dk

]
for 1 ≤ k ≤ n

then uses these Pk to evaluate Mi,j(α) for 1 ≤ i, j ≤ t. Maple uses two data structures
for polynomials, the SUM-OF-PROD data structure and the POLY data structure. POLY
was added to Maple in 2013 by Monagan and Pearce [Monagan and Pearce, 2015] to speed
up polynomial arithmetic. Figure 1 shows the POLY data structure for the polynomial
f = 9xy3z−4 y3z2−6xy2z−8x3−5. Figure 2 shows how the same polynomial is represented
in the SUM-OF-PROD data structure. All boxes in Figures 1 and 2 represent arrays. The
first entry in each box is a header word; it encodes the object type and the array length.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Figure 5.1: Maple’s POLY representation for f = 9xy3z − 4 y3z2 − 6xy2z − 8x3 − 5.

In POLY, if M = zd1
1 zd2

2 · · · zdn
n is a monomial in f , then M is encoded as the integer

d2nb +∑n−1
i=0 2ibdi where d = deg(M) = ∑n

i=1 di and b = b64/(n + 1)c. For example, the
monomial xy3z with d = 5, b = 16, n = 3 is encoded as the integer 5 · 248 + 232 + 3 · 216 + 1.
This is depicted as 5131 in Figure 1. This encoding allows Maple to compare two monomials
in the graded monomial ordering using a single 64 bit integer comparison. Also, provided
overflow does not occur, Maple can multiply two monomials using a single 64 bit integer
addition.

127

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Figure 5.2: Maple’s SUM-OF-PROD representation for f = 9xy3z − 4 y3z2 − 6xy2z − 8x3 − 5.

When does Maple use POLY instead of SUM-OF-PROD? If a polynomial f has (i) all
integer coefficients, (ii) more than one term, (iii) is not linear, and (iv) all monomials in
f can be encoded in a 64 bit integer using B bits for di and 64 − nB bits for d, then it
is encoded using POLY otherwise the SUM-OF-PROD representation is used. In a typical
Dixon matrix both representations are used so we have to handle both and we need to know
the details of both representations.

Also important for efficiency is how to multiply in Zp. We do not use the hardware
division instruction which is very slow. Instead, we use Roman Pearce’s assembler imple-
mentation of Möller and Granlund [Möller and Granlund, 2010] which replaces division with
two multiplications and other cheap operations.

Table 5.1: Timings showing improvements for Heron5d and Tot systems

System Eval Determinant Total C-Eval New Total
Heron5d 70.17s (66.2%) 9.74s (9.18%) 106.07s 18.02s (3.89x) 42.82s (2.48x)

Tot 635.75s (83.3%) 37.66s (4.9%) 763.2s 32.36s (19.64x) 150s (5.08x)
This experiment was performed on an Intel Xeon E5-2680 v2 processor using 1 core (cecm jude server).

Table 5.1 shows the improvement obtained using our C code for evaluating a Dixon
matrixM at integer points modulo a prime for the Tot and Heron5d systems. Column Eval

contains the timings obtained using Maple’s Eval command, and column C-Eval represents
the timings obtained when our C code was used. Column Determinant indicates the amount
of time spent computing the determinant of integer matrices modulo a prime. Column Total
contains the total CPU timings using Eval, and column New Total is the new total CPU
timings for both polynomial systems when our C code for performing matrix evaluations
was used.

5.4.2 Pre-computing deg(fi,k) and deg(gi,k)

We did not pre-compute the total degrees deg(fi,k) and deg(gi,k) of the lower degree ho-
mogeneous polynomials fi,k, gi,k in our old benchmarks when our CASC paper [Jinadu and

128

Monagan, 2022a,b] was accepted for publication. Since then, we have re-designed our Dixon
resultant algorithm to pre-compute these degrees. The timings reported in Table 5.2 show
the improvement when these total degrees were not precomputed (row Before), and the new
timings (row After) obtained when the degrees deg(fi,k) and deg(gi,k) were precomputed in
our Dixon resultant algorithm.

Table 5.2: Timings showing improvements when deg(fi,k) and deg(gi,k) are pre-computed

Robot-t2 Robot-b1 Robot-b2 Tot Flex-v1 Flex-v2 Pose Perimeter
Before 316.99s 27.78s 241.61s 82.11s 201s 461.4s 461.4s 49.97s
After 222.60s 18.33s 171.97s 49.04s 100.99s 154.20s 243.88s 18.99s

This experiment was performed on an Intel Xeon E5-2680 v2 processor using 1 core (cecm jude server).

5.4.3 Timings

We present two tables (Tables 5.3 and 5.4) for our Dixon resultant algorithm. Table 5.3
contains basic information about our benchmark polynomial systems. This includes the
names of the real parametric polynomial systems (Column System) on which we tested
our code, the number of equations in each parametric polynomial system (Column #Eq),
the number of variables n and the number of parameters m (Column n/m), the dimension
of the Dixon matrix D obtained, and the rank of a sub-matrixM of D such that rank(M) =
rank(D) (Column dim(D)/Rank).

The timings for comparing our new Dixon resultant algorithm with three other methods
for computing R are also reported in Table 5.3. In particular, we report the timings for our
new Dixon resultant algorithm in Column DixonRes, the timings of an efficient Maple
implementation of the Gentleman & Johnson minor expansion method in Column Minor,
the timings of a hybrid implementation of Zippel’s sparse interpolation algorithm in Maple
+ C in Column Zippel and the timings of a Maple implementation of the Dixon-EDF algo-
rithm in Column EDF. The implementation of the Dixon-EDF algorithm involves sorting
the matrixM by placing the sparsest columns at the left of the matrix, removing the gcd of
each row before starting the elimination and it has a pivot selection algorithm. We remind
the reader that the Dixon-EDF algorithm was introduced by Lewis in [Lewis, 2017].

To make the comparison between our Dixon resultant algorithm and Zippel’s sparse
interpolation algorithm for computing R fair, we have implemented the most expensive
part of Zippel’s algorithm, which is the routine that solves for the coefficients of the Dixon
resultant R in C (Subroutine VandermonderSolver). We use our C code for evaluating matrix
of polynomials at α modulo a prime p.

Table 5.3 also contains the number of terms in the product of all the monic square-free
factors in expanded form after clearing the denominators (Column #S). Additionally, it
includes the number of terms in the Dixon resultant R in expanded form (Column #R). In

129

Column 6 labelled tmax = max(#fjk,#gjk), we report the number of terms present in the
largest polynomial coefficient of an Rj to be interpolated by our Dixon resultant algorithm.
The number of monic square-free factors with respect to each Dixon resultant R is reported
in Column # of Rj’s. All our experiments were performed on a 24 core Intel Gold 6342
processor with 256 gigabytes of RAM using only 1 core (cecm maple server) running at
2.8GHz (base) and 3.5GHz (turbo) and the first smooth prime used in our code is the 62
bit prime p = (250)(61)(67) + 1.

As the reader can see in Columns 8, 10, 11 and 12, our new Dixon resultant (DixonRes)
algorithm outperforms Zippel’s sparse interpolation and the Gentleman & Johnson algo-
rithm on most of our benchmark systems. This was expected because #R is much larger
than tmax. Another reason why this is the case is because more primes are needed to recover
integer coefficients in R compared to the Rj ’s. Our algorithm is not always faster than the
Dixon-EDF algorithm. The evaluation cost of the Dixon matrix is still the bottleneck of our
algorithm while the determinant computation takes typically 10% of the total time.

5.4.4 Optimization

In our experiments, we found out some Dixon matrices have a block diagonal form and
often, the determinant of all the blocks produce the same Dixon resultant R. For the timings
recorded in Tables 5.3 and 5.4, we always compute the determinant of the smallest block
after confirming that all the blocks produce the same Dixon resultant. We give the following
example to illustrate how we do this.

Example 5.11 (Continuation of Example 2.15). The Dixon matrix D from Example 2.15 is
rectangular so extracting its sub-matrix of maximal rank yields a M , a matrix of rank 13 =
rank(D). The matrix M is diagonally decomposable , so we obtain the block decomposition
form of M using Maple’s command StronglyConnectedBlocks which yields the form

M =

 B1 0
0 B2


such that

B1 =



−A −B 0 0 −C 0
0 −A −B K 0 0
0 0 −A −C 0 0
B E 0 0 F G

0 0 B F A 0
0 0 0 G 0 A



130

and

B2 =



−A −C 0 0 0 0 0
0 E B −B F G 0
0 −B −A A −C 0 0
0 0 A 0 C 0 0
B F C 0 K 0 0
0 G 0 0 0 K C

0 0 0 0 0 C A


where A,B,C,E, F,G,K ∈ Q[y1, y2, y3 · · · , y6][x1].

Our idea to check if one block Bi is enough to compute the Dixon resultant R is as
follows. We choose a prime p, say p = 3137 and random points

{y1 = 2372, y2 = 2491, y3 = 2088, y4 = 1484, y5 = 107, y6 = 2780}

from Z6
p. Then we interpolate

det(B1, x1) = 936x2
1 + 1801 and det(B2, x1) = 2827x2

1 + 2507.

Making both det(B1, x1) and det(B2, x1) monic in Zp[x1] yields

x2
1 + 508,

which means that one block is sufficient to compute R with high probability.

Thus, the number of terms in S and R recorded in Tables 5.3 and 5.4 are obtained using
the smallest block obtained from the block decomposition of a sub-matrix of maximal rank.
Details about the block structure of all the Dixon matrices for our benchmark systems
are provided in Table 5.4. The details include block sizes of each Dixon matrix M and
the number of black box probes required by our Dixon resultant algorithm to successfully
interpolate the Rj ’s.

The number of black box probes done to obtain all degree bounds needed, and the
number of black box probes needed to get the first image of the Rj ’s by our Dixon resultant
algorithm are reported in Columns degree and image-1 respectively. If the rational number
reconstruction process fails on the first image, then more primes are needed. The number
of black box probes used for each subsequent prime is reported in Column image-2. The
number of primes used to interpolate the monic square-free factors is labelled as #pi.

As the reader can see in column #pi, one 62 bit prime is typically enough to recover the
Rj ’s. In Table 5.4, the number of black box probes used by Zippel’s algorithm to interpolate
R is denoted by Z-probes.

131

T
ab

le
5.
3:

Sy
st
em

s
In
fo
rm

at
io
n
fo
r
ou

r
D
ix
on

m
at
ric

es
an

d
tim

in
gs

fo
r
D
ix
on

R
es

ve
rs
us

M
in
or

Ex
pa

ns
io
n,

D
ix
on

-E
D
F
an

d
Zi
pp

el
’s

In
te
rp
ol
at
io
n

Sy
st
em

#
E
q

n
/m

di
m
D
/R

an
k

#
S

t m
ax

#
R

#
of

R
j
’s

D
ix
on

R
es

M
in
or

Z
ip
pe

l
E
D
F

R
ob

ot
-x

1
4

4/
7

(3
2
×

32
)/

16
45

0
14

69
24

71
5

3
3.

53
s

14
42
.4

5s
>

10
5 s

96
2.
79

s
R
ob

ot
-x

2
4

4/
7

(3
2
×

48
)/

12
13

01
6

69
1

16
96

38
76

3
13

0.
90
s

!
>

10
5 s

>
10

5 s
R
ob

ot
-x

3
4

4/
7

(3
2
×

32
)/

16
33

4
85

63
85

20
5

2
10
.7

7s
16

8.
88
s

>
10

5 s
25

.6
0s

R
ob

ot
-x

4
4

4/
7

(3
2
×

48
)/

12
11

73
7

62
4

16
80

18
77

3
10

1.
28
s

!
>

10
5 s

>
10

5 s
To

t
4

4/
5

(8
5
×

94
)/

56
89

30
34

8
52

98
2

2
26

.0
2s

!
28

4.
83

s
51

46
.3
5s

St
or
ti

6
5/

2
(2

4
×

11
3)
/2

0
12

4
32

2
0.

07
4s

75
.2
4s

0.
01

3s
0.
09

8s
A
lli
e-
2

3
2/

2
(1

3
×

13
)/

13
40

3
20

4
2

0.
07

3s
1.
06

s
0.
02

8s
0.
08

9s
A
lli
e-
3

4
3/

2
(6

3
×

63
)/

55
22

2
7

49
23

4
3.

21
s

>
10

4 s
12
.0

6s
36

.0
6s

A
lli
e-
4

5
4/

2
(3

13
×

31
3)
/2

37
61

4
8

-
9

36
7.

80
s

N
A

N
A

>
10

5 s
A
lli
e-
5

6
5/

2
(1

56
3
×

15
63

)/
96

7
21

00
10

-
12

46
91

4.
83

s
N
A

N
A

N
A

La
co
ne

lli
5

5/
6

(2
8
×

21
)/

11
20

5
91

2
2

0.
05

8s
8.
02

s
0.
28

5s
0.
07

2s
A
ut
o

5
5/

3
(3

2
×

18
)/

18
23

6
66

6
3

0.
06

3s
15

.9
9s

0.
57

8s
0.
13

5s
C
irc

le
9

8/
5

(8
8
×

58
)/

43
18

00
85

37
31

12
29

66
28

6
33

59
.4
9s

>
10

5 s
10

5 s
23

72
4.
30

s
H
ai
re
r

11
11
/
2

(9
6
×

85
)/

40
39

8
17

15
92

3
0.
19

5s
>

10
4 s

2.
10

s
2.
57

s
Pi
zz
a-
R
ol
l

7
6/

2
(2

88
×

10
08

)/
26

4
16

55
33

73
22

3
29

4.
96

s
N
A

54
7.
68

s
36

62
.4
0s

To
ot
hy

7
6/

2
(7

98
×

20
92

)/
54

4
16

94
48

10
46

2
5

40
86

.3
3s

>
10

4 s
48

51
.6
0s

>
10

5 s
H
er
on

4d
10

10
/
10

(1
03
×

75
)/

63
13

1
13

0
14

71
1

0.
54

8s
2.
67

s
7.
90

s
0.
08

7s
H
er
on

5d
15

14
/
16

(4
14
×

70
7)
/3

13
82

3
82

2
46

05
99

1
4.

49
s

!
>

10
5 s

0.
43

1s
H
er
on

6d
21

21
/
21

(4
98

1
×

25
73

)/
17

97
62

03
62

02
-

1
99
.2

9s
N
A

N
A

32
.9
7s

H
er
on

7d
28

28
/
28

(3
54

61
×

16
30

6)
/
10

34
3

52
55

3
52

55
2

-
1

67
15
.2

0s
!

N
A

!
Pe

nd
ul
um

3
2/

3
(4

0
×

40
)/

33
46

67
24

3
19

89
9

3
22
.5

5s
11

95
.2
5s

36
.8
4s

2.
74

s
Fl
ex
-v
1

3
3/

15
(8
×

8)
/
8

56
85

24
81

45
77

3
2

56
.8

5s
2.
28

s
17

84
.2
7s

0.
75

1s
Fl
ex
-v
2

3
3/

15
(8
×

8)
/
8

12
10

1
25

17
45

77
3

2
85

.0
8s

2.
29

s
31

56
.2
4s

0.
75

3s
Pe

rim
et
er

6
6/

4
(1

6
×

16
)/

16
19

80
30

3
96

98
1

10
.5

0s
8.

23
s

35
.5
3s

0.
1s

Le
e

4
3/

3
(2

8
×

28
)/

22
29

25
32

5
29

25
1

17
.1
4s

>
10

4 s
6.
28

s
1.
69

s
H
aw

es
1

4
3/

2
(5

8
×

54
)/

46
78

3
23

0
2

1.
14

s
>

10
3 s

0.
59

1s
1.
91

s
Bi
se
ct
or

3
3/

3
(1

2
×

11
)/

11
13

6
31

13
6

1
1.
29

s
0.
13

2s
0.
06

6s
0.
18

7s
Si
ft-

Ex
4

4/
11

(8
×

9)
/
8

16
61

4
13

62
22

38
06

3
37

.6
8s

60
.3
2s

>
10

4 s
12

.4
0s

3d
co
ni
c

4
2/

13
(4
×

4)
/
4

44
74

24
3

17
43

0
2

2.
35

s
0.
07

4s
11

5.
56

s
0.
02

0s
M
or
le
y

4
4/

4
(3

5
×

35
)/

35
17

9
23

17
9

1
2.
00

s
>

10
5 s

1.
31

s
0.
37

0s
G
ed

de
s2

4
3/

2
(3

6
×

34
)/

24
14

25
27

15
33

3
6.
18

s
>

10
5 s

0.
74

3s
1.
90

s
G
ed

de
s3

4
4/

8
(2

6
×

26
)/

22
24

15
30

2
45

01
2

5.
54

s
0.
00

9s
16

.4
4s

0.
04

2s
!=

ra
n

ou
t

of
m

em
or

y,
N

A
=

N
ot

A
tt

em
pt

ed

132

T
ab

le
5.
4:

Bl
oc
k
st
ru
ct
ur
e
an

d
#

of
pr
ob

es
us
ed

by
A
lg
or
ith

m
D
ix
on

R
es

an
d
Zi
pp

el
’s

in
te
rp
ol
at
io
n

Sy
st
em

B
lo
ck

St
ru
ct
ur
e

de
gr
ee

im
ag
e-

1
im

ag
e-

2
#
p
i

Z-
pr
ob

es
R
ob

ot
-x

1
[8
,8

]
40

96
13

00
0

-
1

D
N
F

R
ob

ot
-x

2
[1

2]
62

24
70

57
96

-
1

D
N
F

R
ob

ot
-x

3
[8
,8

]
43

56
91

00
0

-
1

D
N
F

R
ob

ot
-x

4
[1

2]
60

28
52

99
84

-
1

D
N
F

H
er
on

4d
[1
8,

17
,1

4,
14

]
24

4
93

60
-

1
10

44
65

H
er
on

5d
[3
5,

34
,4

7,
44

,3
3,

41
,3

6,
43

]
34

6
62

92
8

-
1

D
N
F

H
er
on

6d
”x

”
32

2
29

43
60

-
1

D
N
F

Pe
nd

ul
um

[1
7,

16
]

13
26

1
11

49
20

53
04

0
2

12
82

29
To

t
[3

1,
25

]
50

71
26

40
00

-
1

74
20

99
Fl
ex
-v
1

[8
]

20
44

63
76

32
-

1
20

05
02

3
Fl
ex
-v
2

[8
]

51
16

26
64

94
8

-
1

33
10

87
1

Pe
rim

et
er

[1
6]

13
42

22
58

28
-

1
22

10
75

St
or
ti

[2
0]

42
6

81
6

-
1

27
9

A
lli
e-
2

[1
3]

47
6

90
0

-
1

85
1

A
lli
e-
3

[5
5]

44
41

86
58

-
1

38
72

3
A
lli
e-
4

[2
37

]
20

56
3

40
23

0
-

1
D
N
F

M
an

oc
ha

[5
]

58
6

20
97

00
-

1
11

17
16

La
co
ne

lli
[1

1]
19

7
28

0
-

1
57

45
Le

e
[2

2]
26

26
37

70
0

16
25

0
11

52
37

8
H
aw

es
1

[4
6]

24
97

48
96

81
6

2
41

60
A
ut
o

[1
8]

47
7

95
2

-
1

13
28

0
H
er
m
er
t

[1
4]

44
9

12
80

-
1

14
11

23
Va

na
bu

el
[7
,7
,7
,7

]
90

0
17

40
-

1
12

26
66

5
St
or
ti2

[2
72

]
12

68
72

25
31

64
42

19
4

11
26

14
63

C
irc

le
[4

3]
58

41
1

45
83

59
2

17
62

92
0

2
D
N
F

C
on

ic
[5

]
58

6
20

97
00

-
1

11
17

16
El
lip

se
[2

72
,2

72
]

12
64

33
25

22
88

42
04

8
6

30
86

98
A
lie

-5
[9

67
]

84
47

7
16

55
04

27
58

4
2

D
N
F

”x
”

=
[1

00
,9

8,
93

,1
41

,1
33

,8
9,

12
4,

94
,1

31
,1

29
,1

07
,1

24
,9

3,
10

0,
12

3,
11

8]
an

d
D

N
F=

D
id

N
ot

Fi
ni

sh

133

T
ab

le
5.
3
C
on

ti
nu

ed
:S

ys
te
m
s
In
fo
rm

at
io
n
fo
r
ou

r
D
ix
on

m
at
ric

es
an

d
tim

in
gs

fo
r
D
ix
on

R
es

ve
rs
us

M
in
or

Ex
pa

ns
io
n,

D
ix
on

-E
D
F

an
d
Zi
pp

el
’s

In
te
rp
ol
at
io
n

Sy
st
em

#
E
q

n
/
m

di
m
D
/R

an
k

#
S

t m
ax

#
R

#
of
R
j
’s

D
ix
on

R
es

M
in
or

Z
ip
pe

l
E
D
F

H
aw

es
4

6
6/

3
(1

17
×

15
4)
/
60

26
89

4
19

74
37

30
1

2
25

4.
58

s
>

10
4 s

39
9.
72

s
15

33
.6
0

D
at
um

7
6/

19
(4
×

4)
/4

34
50

01
20

39
24

60
25

46
46

1
21

15
7.
34

s
10

52
.4
8s

>
10

5 s
>

10
5 s

El
lip

se
7

6/
2

(8
00
×

21
84

)/
54

4
13

50
35

52
65

2
71

44
.5
9s

>
10

5 s
37

71
.8
1s

19
94

4.
01

s
Im

ag
e3
d

10
10
/
9

(1
78
×

15
2)
/
13

0
13

0
84

14
56

1
0.
53

5s
0.
49

1s
1.
33

s
0.
10

2s
To

po
5

5/
6

(6
×

6)
/6

66
21

15
0

1
0.
33

s
0.
03

0.
13

s
0.
01

4s
En

ne
pe

r
3

3/
2

(1
1
×

11
)/

9
23

11
25

7
1

0.
08

9s
0.
02

5s
0.
00

7s
0.
01

3s
C
yc
lo

3
3/

3
(8
×

8)
/8

31
3

44
69

8
2

0.
70

5s
0.
05

4s
0.
10

4s
0.
02

5s
Ba

se
po

in
t

3
3/

2
(1

2
×

12
)/

5
51

6
51

1
0.
09

7s
0.
00

2s
0.
00

6s
0.
00

7s
W
ol
fie

4
4/

8
(1

3
×

13
)/

12
24

06
8

54
82

24
06

8
1

13
9.
39

s
2.
10

s
24

4.
80

s
41

.0
2s

N
ac
ht
we

y
6

6/
5

(1
1
×

18
)/

11
24

4
10

6
24

4
1

2.
14

s
0.
29

2s
0.
53

1s
0.
08

7s
Pa

ve
lle

4
4/

19
(5
×

5)
/
14

89
35

89
2

0.
49

2s
0.
00

2s
0.
04

1s
0.
02

7s
W
ei
n1

3
3/

18
(5
×

5)
/5

21
89

4
10

60
3

80
53

8
1

18
3.
22

s
0.
32

2s
37

92
.6
0s

1.
99

s
W
ei
n2

3
3/

18
(5
×

5)
/5

80
53

8
10

60
3

80
53

8
1

11
35

.6
8s

0.
30

7s
38

51
.4
0s

1.
99

s
H
er
on

3d
6

6/
6

(1
6
×

14
)/

13
23

22
23

1
0.
09

9s
0.
00

4s
0.
03

6s
0.
04

4s
H
aw

es
2

4
4/

5
(9
×

8)
/8

67
1

80
67

1
1

0.
91

0s
0.
01

8s
0.
29

4s
0.
07

2s
H
er
m
er
t

14
14
/
12

(2
0
×

31
)/

14
11

2
8

59
76

2
0.
11

4s
1.
62

s
19

.2
5s

0.
08

8s
Va

na
ub

el
9

9/
5

(2
8
×

28
)/

28
11

4
32

16
6

1
0.
18

7s
0.
81

6s
73

9.
20

s
0.
01

3s
St
or
ti2

5
4/

2
(4

00
×

40
0)
/
27

2
13

50
35

52
65

2
26

58
.4
2s

>
10

5 s
93

7.
83

s
42

98
4.
92

s
C
on

ic
3

3/
12

(5
×

5)
/4

24
24

91
2

65
48

1
9.
44

s
0.
00

5s
14

.7
4s

0.
11

4s
H
er
on

2d
3

3/
3

(3
×

3)
/3

7
6

7
1

0.
04

3s
0s

0.
00

5s
0.
26

s
Br

ic
ar
d

6
6/

11
(4

1
×

44
)/

29
31

27
83

38
98

6
11

11
77

5
2

54
91

.8
0s

22
6.
20

s
>

10
4 s

62
4.
60

s
G
ed

de
s4

4
4/

8
(2

6
×

26
)/

22
57

25
2

55
40

87
24

4
3

45
7.
74

s
>

10
5 s

>
10

4 s
41

6.
40

s
!=

ra
n

ou
t

of
m

em
or

y,
N

A
=

N
ot

A
tt

em
pt

ed

134

T
ab

le
5.
4
C
on

ti
nu

ed
:B

lo
ck

st
ru
ct
ur
e
an

d
#

of
pr
ob

es
us
ed

by
A
lg
or
ith

m
D
ix
on

R
es

an
d
Zi
pp

el
’s

in
te
rp
ol
at
io
n

Sy
st
em

B
lo
ck

St
ru
ct
ur
e

de
gr
ee

im
ag
e-

1
im

ag
e-

2
#
p
i

Z-
pr
ob

es
H
er
on

2d
[3

]
94

28
8

-
1

11
9

N
ac
ht
we

y
[1

1]
61

1
39

78
0

18
02

0
2

12
73

9
C
yc
lo

[8
]

16
84

15
70

8
69

30
2

32
93

Ba
se
po

in
t

[5
]

16
1

48
0

-
1

23
1

W
ol
fie

[1
2]

27
72

23
22

54
0

-
1

55
01

49
Pa

ve
lle

[5
]

90
1

12
76

8
-

1
17

31
W
ei
n1

[5
]

78
6

25
58

16
0

-
1

27
18

97
8

W
ei
n2

[5
]

10
51

11
90

66
76

-
1

27
40

21
8

D
at
um

[4
]

65
2

29
73

19
68

-
1

D
N
F

H
er
on

3d
[6
,7

]
16

0
13

92
-

1
75

7
H
aw

es
2

[8
]

16
26

51
00

-
1

10
88

7
H
aw

es
4

[6
0]

92
26

29
50

00
11

80
00

4
47

34
70

Im
ag

e3
d

[1
3,

14
,1

4,
15

,1
8,

19
,1

8,
19

]
43

6
12

32
0

-
1

27
95

9
To

po
[6

]
61

0
73

92
-

1
45

47
En

ne
pe

r
[9

]
29

5
61

6
-

1
25

7
H
er
on

7d
”y

”
41

2
32

33
86

8
-

1
-

Bi
se
ct
or

[1
1]

14
20

36
78

4
-

1
22

55
Si
ft-

Ex
[8

]
15

25
81

99
84

-
1

D
N
F

To
ot
hy

[2
72
,2

72
]

91
45

1
18

22
80

30
38

0
4

41
22

06
3d

co
ni
c

[4
]

14
18

48
67

2
-

1
D
N
F

M
or
le
y

[3
5]

38
37

20
60

8
90

16
2

16
35

1
G
ed

de
s2

[2
4]

13
60

1
27

03
0

45
05

2
70

18
G
ed

de
s3

[5
]

10
00

14
61

24
-

1
14

95
43

G
ed

de
s4

[2
2]

89
71

23
61

60
0

10
17

60
0

2
D
N
F

H
ai
re
r

[4
0]

55
2

15
20

-
1

22
10

7
Pi
zz
a-
R
ol
l

[1
32
,1

32
]

30
09

9
59

89
8

99
83

4
23

48
39

Br
ic
ar
d

[1
7,

12
]

30
91

16
04

66
40

-
1

D
N
F

D
N

F=
D

id
N

ot
Fi

ni
sh

”y
”

=
[3

43
,3

38
,3

75
,3

19
,2

99
,3

05
,3

24
,3

03
,3

20
,3

29
,3

53
,3

18
,3

29
,3

53
,3

74
,3

43
,3

18
,3

42
,3

24
,2

99
,3

03
,3

42
,3

20
,3

05
,2

87
,3

02
,3

15
,3

38
,3

19
,3

15
,2

87
,3

02
]

135

Chapter 6

Failure Probability and
Complexity Analysis

6.1 Summary of Contributions

In this chapter, we present the failure probability analysis and the complexity analysis of our
new Dixon resultant algorithm. Our main contribution includes the classification of several
causes of failure in our Dixon resultant algorithm with new failure probability bounds. New
bounds for the Dixon resultant R and bounds for its monic square-free factors Rj which are
potentially useful in other applications are obtained. Constructed examples are also given
to illustrate possible failure scenarios. A journal paper containing the results of this chapter
is currently being prepared. All the results in this chapter are new unless explicitly cited.

6.2 Introduction

6.2.1 Two Useful Results

Definition 6.1. Let f = ∑t
i=1 aiNi ∈ Z[y1, y2, . . . , ym] where ai 6= 0, t = #f ≥ 1 and Ni

is a monomial in variables y1, y2, . . . , ym. The height of f denoted by ‖f‖∞ is defined as
‖f‖∞= maxti=1|ai|. We also define ‖H‖∞= maxdT

k=0 (‖fk‖∞, ‖gk‖∞) where H = ∑dT
k=0

fk
gk
xk1

and fk, gk ∈ Z[y1, y2, . . . , yn] with gcd(fk, gk) = 1.

We state the following two important results for later use.

Theorem 6.2. [Hu and Monagan, 2021, Proposition 2] Let A be a s× s matrix with Aij ∈
Z[y1, . . . , ym], satisfying the term bound #Aij ≤ t and the coefficient bound ‖Aij‖∞≤ h.

Then
‖det(A)‖∞ < s

s
2 tshs.

Lemma 6.3. [Gelfond, 2015, Lemma 2, page 135] Let f, g ∈ Z[y1, y2, . . . , ym]. If g|f then

‖g‖∞≤ e
∑m

i=1 deg(f,yi)‖f‖∞

136

where e ≈ 2.718 is the Euler number.

6.2.2 Important Notations and Bounds

The failure probability analysis of our Dixon resultant algorithm will depend on the input
parametric polynomial system F = {f̂1, f̂2, f̂3, · · · , f̂n} ⊂ Z[y1, y2, . . . , ym][x1, x2, . . . , xn].
Thus, our first goal is to obtain height and degree bounds for the Dixon resultant R and
its monic square-free factor Rj . For simplicity, the following notation (Notations 6.4) will
remain unchanged and will be used consistently throughout this chapter.

Notations 6.4. Let F = {f̂1, f̂2, f̂3, · · · , f̂n} ⊂ Z[y1, y2, . . . , ym][x1, x2, . . . , xn] be a para-
metric polynomial system. For convenience, let the Dixon resultant

R =
d̂∑

k=0
r̄k(y1, . . . , ym)xk1 ∈ Z[y1, y2, . . . , ym][x1]

and let the monic square-free factors

Rj = x
dTj

1 +
Tj−1∑
k=0

fjk(y1, y2, . . . , ym)
gjk(y1, y2, . . . , ym)x

djk
1 ∈ Z(y1, y2, . . . , ym)[x1]

for fjk, gjk 6= 0 in Z[y1, y2, . . . , ym] where gcd(fjk, gjk) = 1 and d̂ = deg(R, x1) > 0. Let

S = xdT
1 +

T−1∑
k=0

fk(y1, . . . , ym)
gk(y1, . . . , ym)x

dk
1 ∈ Z(y1, y2, · · · , ym)[x1]

be the one monic square-free factor to be interpolated by our Dixon resultant algorithm
(Algorithm 19) such that gcd(fk, gk) = 1, so S := R1. Furthermore, let

1 H = maxf̂∈F‖f̂‖∞,

2 Nmax = maxf̂∈F #f̂ ,

3 dmax,i = maxf̂∈F deg(f̂ , xi) for 1 ≤ i ≤ n,

4 Dmax,k = maxf̂∈F deg(f̂ , yk) for 1 ≤ k ≤ m.

5 dmax = maxni=1 dmax,i,

6 Dmax = maxmi=1Dmax,i,

7 DRy = ∑m
k=1 deg(R, yk),

8 M be a s× s Dixon matrix where s = (n− 1)!∏n
i=2 dmax,i and

9 Tmax = maxsi,j=1 #Mij .

137

Theorem 6.5. We have

(i) deg(R, x1) ≤ nsdmax,1.

(ii) deg(R, yk) ≤ nsDmax,k for 1 ≤ k ≤ m.

(iii) ‖∆Xe‖∞≤ n
n
2HnNn

max where ∆Xe is the Dixon polynomial (Definition 2.2).

(iv) ‖R‖∞ ≤ T smaxn
n
2 (HNmax)nss s

2 .

(v) ‖Rj‖∞≤ ensdmax,1+2DRy ‖R‖∞ where e ≈ 2.718 is the Euler number.

Proof. For claim (i), we have

deg(R, x1) ≤ s× max
1≤i,j≤s

{deg(Mij , x1)} ≤ s× deg(∆Xe , x1) ≤ nsdmax,1.

Similarly, for claim (ii), we have

deg(R, yk) ≤ s× max
1≤i,j≤s

{deg(Mij , yk)} ≤ s× deg(∆Xe , yk) ≤ nsDmax,k.

We prove clam (iii) as follows. Recall Definition 2.2, which says that the Dixon polynomial

∆Xe = det(C)∏n
j=2(xj − x̄n)

where C is the old cancellation matrix. Let

B =
n∑
j=1

deg(det(C), xi) +
n∑
j=2

deg(det(C), x̄j) +
m∑
k=1

deg(det(C), yk).

Since dmax,1 ≤ dmax, it follows that

B ≤ ndmax,1 + dmax

n∑
i=2

(i− 1) + dmax

n∑
i=2

(n− i+ 1) + n
m∑
k=1

Dmax,k ≤ n2dmax + n
m∑
k=1

Dmax,k.

Now let P = ∏n
i=2(xi − x̄i). Since ‖P‖∞= 1 and P | det(C) in (2.3), using Lemma 6.3, we

have that one possible bound for ‖∆Xe‖∞, namely

‖∆Xe‖∞ ≤ eB n
n
2HnNn

max ≤ en2dmax+n
∑m

k=1 Dmax,k n
n
2HnNn

max. (6.1)

However, the above bound is too large. Instead, we obtain a tighter bound for ‖∆Xe‖∞
using the formula we derived for creating the new cancellation matrix Ĉ in (2.6), which was
used in our algorithm for constructing a Dixon matrix in order to avoid expression swell.
Recall

Ĉj,k =
dmax,j−1∑
i=0

dmax,j−1∑
u=i

f̃u+1,j,k x
u−i
j

 x̄ i
j

138

where
f̃u,j,k ∈ Z[x1, x̄2, . . . , x̄j−1, xj+1, . . . , xn]

for u 6= 0 and
f̃0,j,k ∈ Z[x1, x̄2, . . . , x̄j , xj+1, . . . , xn].

Since f̃u,j,k does not contain variables xj and x̄j for u 6= 0, we get

‖Ĉj,k‖∞≤ ‖f̃u,j,k‖∞≤ ‖f̂k‖∞≤ H. (6.2)

Now, using Theorem 6.2, we have

‖∆Xe‖∞≤ ‖det(Ĉ)‖∞≤ n
n
2 ‖Ĉij‖n∞Nn

max ≤ n
n
2HnNn

max, (6.3)

which is tighter than the bound obtained for ‖∆Xe‖∞ in (6.1). Therefore,

‖R‖∞ ≤
(
Tmax ‖Mij‖∞

√
s
)s ≤ T smaxn

n
2 (HNmax)nss

s
2 ,

by Theorem 6.2, since R = det(M) and

‖Mij‖∞ ≤ ‖∆Xe‖∞.

This proves claim (iv). Finally, we prove claim (v). Let

L = LCM{gjk ∈ Z[x1, y1, . . . , ym] : 0 ≤ k ≤ Tj − 1}

(clearing fractions of Rj in y1, y2, . . . , ym) and let

Hj = LRj ∈ Z[x1, y1, . . . , ym]

where Rj = x
dTj

1 +
Tj−1∑
k=0

fjk(y1, y2, . . . , ym)
gjk(y1, y2, . . . , ym)x

djk
1 . Since Hj |R, by Lemma 6.3, we have that

‖Hj‖∞ ≤ edeg(R,x1)+DRy ‖R‖∞ ≤ ensdmax,1+DRy ‖R‖∞.

Let Hj = ∑Tj

k=0 ak(y1, . . . , ym)xdk
1 . Thus, we have

Hj

L
= x

dTj

1 +
Tj−1∑
k=0

ak(y1, . . . , ym)
L

xdk
1 .

Let hk = gcd(ak, L). Observe that

ak/hk
L/hk

= fjk
gjk

.

139

So, fjk|ak and gjk|L, which implies that gjk|LC(R). Using Lemma 6.3, we get

‖fjk‖∞ ≤ eDRy ‖ak‖∞ ≤ eDRy ‖Hj‖∞ ≤ ensdmax,1+2DRy ‖R‖∞

and
‖gj,k‖∞ ≤ eDRy ‖LC(R)‖∞ ≤ eDRy ‖R‖∞.

Therefore,

‖Rj‖∞ ≤
Tj−1
max
k=0

(max (‖fjk‖∞, ‖gjk‖∞)) ≤ ensdmax,1+2DRy ‖R‖∞.

Note that the height bound ‖Rj‖∞ obtained in Theorem 6.5(v) is a worst case because
‖Rj‖∞ is always smaller than ‖R‖∞ in our experiments. It is very rare for factors of R to
have larger coefficients than R.

Remark 6.6. Recall that in (2.8), we first derived

Ĉj,k =
dmax,j∑
u=1

f̃u,j,k

(
u−1∑
i=0

xij x̄
u−i−1
j

)
︸ ︷︷ ︸

Wu

.

Clearly
‖Wu‖∞= 1 and #Wu ≤ u ≤ dmax,j ≤ dmax,

so
‖Wuf̃u,j,k‖∞≤ min(#Wu,#f̃u,j,k)‖Wu‖∞‖f̃u,j,k‖∞≤ dmax‖f̃u,j,k‖∞≤ Hdmax.

Hence, we have

‖Ĉj,k‖∞≤ ‖f̃u,j,k‖∞
dmax,j∑
u=1

u ≤ Hd2
max (6.4)

which is still large when compared to (6.2). Thus, (2.8) had to be simplified further in order
to get a better bound. Using (6.4) would mean that

‖R‖∞ ≤
(
s

1
2nT

1
nmax n

1
2Hd2

maxNmax

)ns
which is worse than the bound obtained for ‖R‖∞ in Theorem 6.5(iv) by a factor of d2ns

max.

Theorem 6.7. We have
DRy ≤ nmsDmax.

140

Proof. This follows from Theorem 6.5(ii) since

DRy =
m∑
k=1

deg(R, yk)

and Dmax = mmax
i=1

Dmax,i.

6.3 Problems

Having obtained all the needed degree and height bounds, we proceed with the classification
of several causes of failure in our Dixon resultant algorithm.

6.3.1 Evaluation Points

The first step in our Dixon resultant algorithm is to interpolate many monic univariate
polynomial images of the Dixon resultant R in x1, and then we compute their monic square-
free factorization using Subroutine PolyInterp (Subroutine 16). To ensure that our monic
square-free factors are consistent from one image to the next with high probability, it is
important that we avoid using some evaluation points.

Definition 6.8. Let p be a prime that does not divide any integer coefficient of R and
Rj . Let α ∈ Zmp be an evaluation point. We say that α ∈ Zmp is bad if LC(R)(α) = 0. We
also refer to α ∈ Zmp as an evaluation point that causes missing terms if any numerator
coefficient of an Rj vanishes. That is fjk(α) = 0 and gjk(α) 6= 0 for some j and k.

Example 6.9. Let the Dixon resultant

R = (y1 − a)x2
1 + y2(y1 − b)x1 + (c− y2).

Since R has only one monic square-free factor, we have

S := R1 = x2
1 + y2(y1 − b)

y1 − a
x1 + (c− y2)

y1 − a
.

Let p be any prime such that p - a⇒ p - LC(R). By inspection, one sees that the evaluation
points {(α1, α2) ∈ Z2

p : α1 = a, and α2 ∈ Zp} are bad and {(α1, α2) ∈ Z2
p : α1 = b or α2 = c}

cause missing terms.

Lemma 6.10. Let p be a prime that does not divide any integer coefficient of R and Rj .
If an evaluation point α ∈ Zmp is chosen at random then

Pr[α is bad or causes missing terms] ≤
2nsDRydmax,1

p
. (6.5)

141

Proof. Using Lemma 2.17 (the Schwartz-Zippel Lemma), we have that

Pr[α is bad] = Pr[LC(R)(α) = 0] ≤ deg(LC(R))
p

≤
DRy

p
. (6.6)

Now we address the case when the evaluation point α causes missing terms. Let l = #Rj ’s
to be interpolated and let

∆(y1, . . . , ym) =
l∏

j=1

Tj−1∏
k=0

fjk.

Since Tj is the number of the rational function coefficients in each Rj , we have l∑
j=1

Tj

 ≤
 l∑
j=1

dTj

 ≤ l∑
j=1

deg(Rj , x1) ≤ deg(R, x1) ≤ nsdmax,1.

Therefore,

deg(∆) =
l∑

j=1

Tj−1∑
k=0

deg(fjk) ≤
l∑

j=1
Tj

m∑
i=1

deg(Rj , yi) ≤ nsDRydmax,1.

Thus, by Lemma 2.17,

Pr[α causes missing terms] = Pr[∆(α) = 0] ≤ deg(∆)
p

≤
nsDRydmax,1

p
. (6.7)

Adding (6.6) and (6.7) completes our proof.

6.3.2 Primes

Let φp : Z[y1, . . . , ym][x1] → Zp(y1, . . . , ym)[x1] be the modular mapping φp(Rj) = Rj mod
p. For the remainder of this chapter, let Ps = {pN1 , pN2 , . . . , pNs} be the list of pre-computed
smooth primes to be used in Algorithm 19 such that psmin = minNs

i=1{pNi} and Ns = |Ps|,
and let P = {p1, p2, . . . , pN} be the list of pre-computed primes (not necessarily smooth)
to be used in Algorithm 20 such that pmin = minNi=1{pi}, where N = |P |. For simplicity, we
will also assume that N ≥ Ns and pmin ≥ psmin .

Generating random primes

For efficiency purposes, we used 62 bit primes in our Dixon resultant algorithm because of
our hybrid Maple+C implementation of our algorithm. Thus, the list of primes P and Ps
both contain 62 bit primes with pmin, psmin > 261.

In order to obtain a low failure probability for our Dixon resultant algorithm, we want
N,Ns ≥ 109. However, it is not efficient to generate the lists of primes P and Ps with more

142

than a billion primes as this computation will take a very long time. We discuss how to
generate a random prime from the lists of primes P and Ps without creating the lists.

A random 62 bit prime from [261, 262] can be generated by first choosing a random integer
c ∈ [261, 262], then we pick the prime before or after the random integer c. Unfortunately, we
do not currently have an algorithm that can generate a 62 bit smooth prime uniformly at
random without creating the list of smooth primes Ps. We believe we have enough smooth
primes for our Dixon resultant algorithm to fail with low probability because Monagan
[Monagan, 2023a] estimates that there are about 1010 smooth primes in (260, 263) based on
Algorithm RandomSmoothPrime which generates a random smooth prime (not uniformly)
p ∈ (260, 263).

Algorithm RandomSmoothPrime
repeat

Pick qi ∈ [750, 2500] for 1 ≤ i ≤ 6 at random.

p← 1 +
6∏
i=1

qi.

until p ∈ (260, 263) and p is prime.

Now we characterize the primes that must be avoided in our Dixon resultant algorithm.

Definition 6.11. We say a prime p is bad if p divides LC(R).We also say a prime p causes
missing terms if p divides any integer coefficient of Rj .

Example 6.12. Suppose the Dixon resultant

R = 15y2x
2
1 + (7y1 − 49)x1 + 7

and let
S = x2

1 + (7y1 − 49)
15y2

x1 + 7
15y2

.

The primes 3, 5 are bad and prime 7 causes missing terms.

Example 6.13. Suppose the Dixon resultant

R = (3137y2 + 3)x2
1 + (7y1 + 1)x1 + 7

and let
S := R1 = x2

1 + (7y1 + 1)
3137y2 + 3x1 + 7

3137y2 + 3 .

Notice that φ3137(LC(R)) = 3 6= 0, which means the image

φ3137(S) = x2
1 + 1046(7y1 + 1)x1 + 1048.

Clearly, there are missing terms in the denominators of φ3137(S).

143

By design, our Dixon resultant algorithm returns an answer when the rational number
reconstruction process succeeds on the Rj ’s for the first prime (See Lines 40-41 of Algorithm
19). If the rational number reconstruction process does not succeed with the first prime,
then more primes are used to recover the Rj ’s. Our algorithm is designed this way because
we do not know the number of primes needed a priori since R is represented by black box
BB, and we want to use the fewest number of primes possible. Therefore, in Example 6.13, if
φ3137(S) is the first image obtained, the rational number reconstruction process will succeed
with the input prime p = 3137 and Algorithm 19 will return

S = x2
1 +

(7y1
3 + 1

3

)
x1 + 7

3

as the answer even though it is wrong. We have already discussed how to check probabilis-
tically if the returned Rj ’s are correct in Subsection 5.3.1 (Algorithm 24).

We now bound the failure probability of a prime p is bad or p causes missing terms.

Proposition 6.14. Let P be the list of primes such that |P |= N and pmin = min(P). If p
is chosen at random from P then the probability that p is bad or p causes missing terms in
the monic square-free factor Rj

≤
logpmin (#Rj‖Rj‖∞‖R‖∞)

N
.

Proof. Let c be an integer coefficient of an Rj . The number of primes p that can divide c
from the list of primes P is at most blogpmin cc. So

Pr[p divides c] ≤
logpmin c

N
.

By definition 6.11, p is bad ⇐⇒ p|LC(R) =⇒ p divides one term in LC(R). So

Pr[p is bad] = Pr[p divides LC(R)] ≤ Pr[p divides one term in LC(R)] ≤
logpmin‖R‖∞

N
.

(6.8)
Furthermore, the probability that p causes missing terms (See Definition 6.11) is at most

logpmin (#Rj‖Rj‖∞)
N

. (6.9)

Adding (6.8) and (6.9) completes our proof.

Corollary 6.15. If p is chosen at random from the list of primes P and p is not bad then

Pr[supp(φp(Rj)) 6= supp(Rj)] ≤
logpmin (#Rj‖Rj‖∞)

N
.

Proof. This follows from the above proposition.

144

6.3.3 Monic Univariate Polynomial Images of R

Recall that Subroutine 16 (Subroutine PolyInterp) interpolates monic polynomial images of
R in x1 with high probability for one monic square-free factor S. The integer coefficients of
these monic univariate polynomial images are what we use to interpolate the monic square-
free factor S. Therefore, we must avoid evaluation points and primes that are bad. We must
also avoid evaluation points and primes that could cause these monic univariate polynomial
images of R in x1 to lose their support (the univariate monomials in x1 disappear).

A bad evaluation point can be detected in the same way as a bad prime. This is detected
with high probability in Subroutine 16 by checking that the degree of the interpolated
univariate monic polynomial images of R is the same as the degree of R in x1. Line 5 of
Subroutine 16 detects the occurrence of a bad evaluation point or a bad prime.

Similarly, an evaluation point that causes the supports of the interpolated monic polyno-
mial images of R in x1 to disappear can be detected in the same way as a prime that causes
the supports of these images to vanish. If the set of degrees d = {d0, . . . , dT } as defined
in (5.2) are the same as the degrees of the support of the interpolated monic polynomial
images H in Subroutine 16, then we know we have a correct univariate monic polynomial
image of R with high probability. We detect this in Line 7 of Subroutine 16. Otherwise,
we interpolate a monic square-free factor Rj that have missing terms. We now find the
probability that Subroutine 16 returns FAIL.

Lemma 6.16. Assume the degrees [d0, . . . , dT] as defined in (5.2) are correct. Let emax =
2 + maxT−1

k=0 (deg(fk) + deg(gk)) . If prime p is chosen at random from the list of primes P
such that |P |= N and pmin = min(P) then the probability that Subroutine 16 returns FAIL

≤ emax

(
2nsDRydmax,1

p
+

logpmin (‖S‖∞‖R‖∞nsdmax,1)
N

)
.

Proof. There are two sources of failure in Subroutine 16. First, if an input evaluation point
Zj ∈ Zmp is bad for any 1 ≤ j ≤ emax or an input prime p is bad then the degree of
the interpolated monic polynomial images Bj of R in x1 denoted by deg(Bj , x1) < D̂ =
deg(R, x1) in Line 5. Thus,

Pr[prime p or evalaution pointZj is bad in Line 5 of Subroutine 16]

≤ Pr[p divides LC(R)] + Pr[LC(R)(Zj) = 0]

≤ Pr[p divides 1 term in LC(R)] + Pr[LC(R)(Zj) = 0]

≤
logpmin‖LC(R)‖∞

N
+ deg(LC(R))

p

≤
logpmin‖R‖∞

N
+

DRy

p︸ ︷︷ ︸
by (6.6)

. (6.10)

145

Now we assume that prime p and Zj are not bad. If Zj ∈ Zmp or p causes missing terms,
then supp(Hj) 6= [d0, . . . , dT] in Line 7 of Subroutine 16 where Hj is the monic square-free
part of the univariate polynomial Bj . Since T is the number of numerator polynomials fk
in S, we have that T ≤ deg(R, x1) ≤ nsdmax,1. Thus

Pr[Zj or p causes missing terms in Line 7 of Subroutine 16]

≤ Pr[Any fk(Zj) = 0 for 0 ≤ k ≤ T − 1] + Pr[p divides any fk in S for 0 ≤ k ≤ T − 1]

≤ Pr[
T−1∏
k=1

fk(Zj) = 0] + Pr[p divides one term of fk in S for 0 ≤ k ≤ T − 1]

≤ Pr[
T−1∏
k=0

fk(Zj) = 0] +
logpmin (‖S‖∞T)

N

≤
nsDRydmax,1

p︸ ︷︷ ︸
by (6.7)

+
logpmin (‖S‖∞nsdmax,1)

N
. (6.11)

Hence Pr[Subroutine 16 returns FAIL] ≤ emax((6.10) + (6.11)).

Remark 6.17. If Algorithm 19 calls Subroutine 16 then the list of primes P is replaced
with the list of smooth primes Ps. Thus, the above theorem works accordingly.

6.3.4 Unlucky Content

Definition 6.18. Let the Dixon resultant

R =
d̂∑

k=0
r̄k(y1, . . . , ym)xk1 ∈ Z[y1, y2, . . . , ym][x1]

where r̄k 6= 0 and d̂ = deg(R, x1) > 0. Let p be a prime such that φp(r̄î) 6= 0 for all i. Let the
polynomial content of R be denoted by C = gcd(r̄0, r̄1 · · · , r̄d̂). We say p causes unlucky

content if gcd
(
φp

(
r̄0
C

)
, φp

(
r̄1
C

)
, . . . , φp

(
r̄d̂
C

))
6= 1.

Example 6.19. Let prime p 6= 2 and let the Dixon resultant

R = (2y2
1 + 2y1 + 2py1)x1 + (2y2

1 + 2y1).

Notice that the polynomial content C = 2y1, but

gcd
(
φp

(
r̄0
C

)
, φp

(
r̄1
C

))
= y1 + 1 6= 1.

Thus, our Dixon resultant algorithm (Algorithm 19) will output

S = x1 + 1,

146

instead of the correct answer
S = x1 + y1 + 1

y1 + p+ 1 ,

because p has caused an unlucky content.

Unfortunately, we cannot detect in advance the occurrence of an unlucky content in our
algorithm because of the black box representation of R. But it can be detected after our
algorithm terminates. We have already discussed how to detect this in Subsection 5.3.1.

Theorem 6.20. LetR = ∑d̂
k=0 r̄k(y1, . . . , ym)xk1 such that rk 6= 0 and r̄k ∈ Z[y2, y3, . . . , ym][y1].

Let p be a prime chosen at random from the list of primes P where pmin = min(P). If
φp(LC(r̄i)) 6= 0 for all i, then the probability that p causes unlucky content

≤
2nmsDmax logpmin ((1 + 2nsDmax)‖R‖∞)

N
.

Proof. Clearly,

deg
(

gcd
(
φp

(
r̄0
C

)
, . . . , φp

(
r̄d̂
C

)))
> 0 =⇒ deg

(
gcd

(
φp

(
r̄i
C

)
, φp

(
r̄j
C

)))
> 0

for any 0 ≤ i 6= j ≤ d̂ which implies that

deg (gcd(φp(r̄i), φp(r̄j))) > 0 =⇒ deg (gcd(φp(r̄i), φp(r̄j)), yk) > 0

for at least one k, say k = 1. So prime p causes unlucky content if

deg
(

gcd
(
φp

(
r̄0
C

)
, . . . , φp

(
r̄d̂
C

)))
> 0 =⇒ deg(gcd(φp(r̄0), φp(r̄1)), y1) > 0 ⇐⇒ φp(R0,1) = 0

where R0,1 is the Sylvester resultant of r̄0, r̄1 in y1. Therefore,

Pr[deg
(

gcd
(
φp

(
r̄0
C

)
, . . . , φp

(
r̄d̂
C

)))
> 0] ≤ Pr[φp(R0,1) = 0] ≤

logpmin‖R0,1‖∞
N

.

To complete our proof, we need a bound for ‖R0,1‖∞. We obtain a bound ‖R0,1‖∞ as
follows. Let Ŝ be the Sylvester matrix whose entries are coefficients of r̄0 and r̄1 in y1. Thus,
R0,1 = det(Ŝ). The dimension of Ŝ denoted by

dim(Ŝ) ≤ deg(r̄0, y1) + deg(r̄1, y1) ≤ 2 deg(R, y1) ≤ 2nsDmax,1 ≤ 2nsDmax

by Theorem 6.5. Let tmax = maxj,k{#Ŝj,k}. Clearly,

tmax ≤
m∏
k=2

(1 + deg(R, yk)) ≤
m∏
k=2

(1 + 2nsDmax,k) ≤ (1 + 2nsDmax)m−1

147

by Theorem 6.5. Using Theorem 6.2, we get

‖Rs‖∞ = ‖det(Ŝ)‖∞ < (tmax ‖Ŝjk‖∞ (2nsDmax)
1
2)2nsDmax

< ((1 + 2nsDmax)m−1 ‖R‖∞ 2nsDmax)2nsDmax

< (‖R‖∞ (1 + 2nsDmax)m)2nsDmax

and we are done.

6.3.5 Auxiliary Univariate Rational Functions

Using a Kronecker substitution, we remind the reader that the interpolation of the multi-
variate rational function coefficients fk(y1,...,ym)

gk(y1,...,ym) of the Rj ’s is reduced to a univariate rational
function interpolation in our Dixon resultant algorithm. Let r = (r1, r2, . . . , rm−1) ∈ Zm−1

where ri > 0 and let Kr : Zp(y1, y2, . . . , ym)→ Zp(y) be the Kronecker substitution

Kr(fk/gk) = fk(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)
gk(y, yr1 , yr1r2 , . . . , yr1r2···rm−1) ∈ Zp(y)

where ri > max
(
maxT−1

k=0 (deg(fk, yi),deg(gk, yi))
)
, prime p > ∏m

j=1 ri and fk and gk are as
in (5.2). Let α be a generator for Z∗p, and let β ∈ (Zp \ {0})m serve as a basis shift, which
is chosen at random, as described in Algorithm 19 in Lines 8-13. Let

Fk(y, z, β) := fβk (y, z)
gβk (y, z)

= fk(zy + β1, zy
r1 + β2, . . . , zy

(r1r2···rm−1) + βm)
gk(zy + β1, zyr1 + β2, . . . , zy(r1r2···rm−1) + βm)

∈ Zp(y)(z).

Recall that the introduction of the basis shift β ensures that the functions Fk(αi, z, β) are
normalized in Line 4 of Subroutine 22 using the constant term produced by gβk (αi, z). If gk
has a constant term, then we use β = (0, . . . , 0) in Line 8 of Algorithm 19.

Definition 6.21. We say that α ∈ Zp \ {0} is a bad evaluation point if deg(fβk (α, z)) <
deg(fk, z) or deg(gβk (α, z)) < deg(gk, z) for any k. That is, LC(fβk (α, z)) = 0 or LC(gβk (α, z)) =
0 We say that β ∈ (Zp \ {0})m is a bad basis shift if gcd(fk, gk) = 1 but the degree
deg(gcd(fβk (α, z), gβk (α, z))) > 0 for any k.

Definition 6.22. We say a prime p is unlucky if p|LC(fβk (y, z)) in z or p|LC(gβk (y, z)) in
z for any k.

Example 6.23. Let

f1/g1 = 2891y1 + y2 + y3
y2

2 + y1 + y3
∈ Z3137(y1, y2, y3).

Clearly, gcd(f, g) = 1. The rational function f1/g1 does not have a constant term in the
numerator or denominator so we need a basis shift. Let β = (5, 2, 3) ∈ Z3137 serve as the

148

basis shift for A. Let r = (2, 3) and let

Kr(f1/g1) = f1(y, y2, y6)
g1(y, y2, y6) = y6 + y2 + 2891y

y6 + y4 + y
.

Then an auxiliary rational function F1(y, z, β) with a Kronecker substitution Kr is

F1(y, z, β) = fβ1 (y, z)
gβ1 (y, z)

= 1912 + (y6 + y2 + 2891y)z
12 + y4z2 + (y6 + 4y2 + y)z ∈ Z3137[y](z).

If α = 3 is randomly picked in Z∗3137, then the auxiliary rational function

F1(3, z, β) = fβ1 (3, z)
gβ1 (3, z)

= 1912
81z2 + 768z + 12 ∈ Z3137(z).

Thus, deg(f1(α, z)) < 1 because LC(fβ1 (3, z)) = 9411 = 3×3137 ≡ 0 (mod p) which implies
that α = 3 is a bad evaluation point.

To avoid the occurrence of bad evaluation points with high probability in Algorithm
19, we remind the reader that we interpolate Fk(αŝ+i, z, β) for some random ŝ ∈ [0, p − 2]
instead of Fk(αi, z, β) for i = 0, 1, 2, · · · . This is labelled as Aj in Line 24 of Algorithm 19.
Line 25 detects bad evaluation points, a bad basis shift and a prime p that is unlucky.

Example 6.24. Let
f1/g1 = y1 + y2 + y3

py2
2 + y1 + y3

∈ Z(y1, y2, y3).

Let p be a prime and let β = (5, 2, 3) So

F1(y, z, β) = fβ1 (y, z)
gβ1 (y, z)

= 10 +
(
y6 + y2 + y

)
z

8 + (y6 + y) z ∈ Zp[y](z).

Notice that deg(gβ1 (α, z)) < 2 for any α since p|LC(gβ1 (y, z)). Thus p is an unlucky prime.

Example 6.25. Let p be a prime and let

f1
g1

= y1
(y1 + y3)y2

∈ Zp(y1, y2, y3).

Observe that the partial degrees di = max{deg(f1, yi), deg(g1, yi)} = 1 for 1 ≤ i ≤ 3. For
the Kronecker map Kr to be invertible, we need ri > di, so let r = (2, 2). Thus,

Kr(f1/g1) = f(y, y2, y4)
g(y, y2, y4) = y

(y + y4)y2 = y

y3 + y6 .

Since g1 has no constant term, we need a non-zero basis shift β. To interpolate Kr(f1/g1),
we need to densely interpolate F1(αj , z, β) for 1 ≤ j ≤ 4 = 2×#g1. Computing F1(α, z, β)

149

directly yields the univariate rational function

F1(α, z, β) = fβ1 (α, z)
gβ1 (α, z)

= αz + β1
(zα4 + zα+ β1 + β3)(zα2 + β2) .

The Sylvester resultant R = Res(fβ1 (α, z), gβ1 (α, z), z) = α2(α3β1 − β3)(αβ1 − β2) 6= 0 since
α 6= 0 and β = (β1, β2, β3) 6= (0, 0, 0). But, if β2 = αβ1 6= 0 or β3 = α3β1 6= 0 then R(β) = 0
which implies that β is a bad basis shift.

Theorem 6.26. Let Na be the number of auxiliary rational functions needed by Algorithm
19. If a smooth prime p is chosen at random from the list of primes Ps with |Ps|= Ns and
psmin = min(Ps) then the probability that Algorithm 19 returns FAIL in Line 25 is at most

3NaD
2
Ry
nsdmax,1

∏m
j=1(1 + nsDmax,j)

p− 1 +
2Na logpsmin

(‖S‖∞nsdmax,1)
Ns

.

Proof. There are three causes of FAIL in Line 25 of Algorithm 19. They are bad evaluation
points, a bad basis shift and an unlucky prime p. We remark that all three failure causes
are a direct consequence of our attempt to interpolate auxiliary rational functions Aj in
Line 24 of Algorithm 19 when it calls Subroutine Ratfun.

1. Bad evaluation point case: Let

∆(y) =
T−1∏
k=0

LC(fβk (y, z))LC(gβk (y, z))

where the univariate polynomial ∆ ∈ Zp[y]. For 0 ≤ j ≤ Na−1, the evaluation point αŝ+j−1

in Line 18 is random on [1, p), since ŝ ∈ [0, p− 2] is random. Since a basis shift β does not
affect the degree and the leading coefficients of auxiliary rational functions, we have that, if
αŝ+j−1 is a bad evaluation point then ∆(αŝ+j−1) = 0. Since T is the number of numerator
polynomials fk in S, we have that T ≤ deg(R, x1) ≤ nsdmax,1. Also, recall that

ri = 1 + max
(
T−1max
k=0

(deg(fk, yi), deg(gk, yi))
)
≤ 1 + deg(R, yi) ≤ 1 + nsDmax,i.

Thus,

deg(∆(y)) = 2T
m∏
j=1

ri ≤ 2nsdmax,1

m∏
j=1

(1 + nsDmax,j).

Therefore,

Pr[αŝ+j−1 is bad for any 0 ≤ j ≤ Na − 1] ≤ Na deg(∆)
p− 1

≤
2Nansdmax,1

∏m
j=1(1 + nsDmax,j)
p− 1 . (6.12)

150

Notice that the bound ∏m
j=1(1 + nsDmax,j) is an exponential contribution in (6.12).

Furthermore, the bound in (6.12) allows ∆(y) to have deg(∆(y)) roots. Fortunately, in
practice, we do not encounter such high degree for ∆(y) because the average number of
roots of a random ∆(y) over Zp is 1 [Schmidt, 2006, Chapter 4].

2. Bad basis shift case: We will now handle the basis shift case. Suppose θj := αŝ+j−1

is not a bad evaluation point for 1 ≤ j ≤ Na. Let w1, w2, · · ·wm be new variables and let

Gkj =
f̂kj

(w1, . . . , wm)
ĝkj

(w1, . . . , wm) =
fk(θjz + w1, . . . , zθ

(r1r2···rm−1)
j + wm)

gk(θjz + w1, . . . , zθ
(r1r2···rm−1)
j + wm)

∈ Zp(w1, w2, . . . , wm)(z).

Recall that a basis shift β ∈ (Zp \ {0})m does not affect the leading coefficients of auxiliary
functions, so LC(f̂kj

)(β) 6= 0 and LC(ĝkj
)(β) 6= 0. Let

Rkj = Res(f̂kj
, ĝkj

, z) ∈ Zp[w1, w2, . . . , wm]

be the Sylvester resultant of f̂kj
and ĝkj

taken in z and let

∆(w1, w2, . . . , wm) =
Na∏
j=1

T−1∏
k=0

Rkj .

Clearly, β is a bad shift if and only if

deg(gcd(f̂kj
(z, β), ĝkj

(z, β)) > 0 ⇐⇒ ∆(β) = 0

for any k and j. We now find a bound for deg(∆). Using Bezout’s bound, we have

deg(Rkj) ≤ deg(f̂kj
) deg(ĝkj

) ≤ deg(fk) deg(gk) ≤ D2
Ry
.

Hence,

deg(∆) ≤
T−1∑
k=0

Na∑
j=1

deg(Rkj) ≤ NaT

 m∑
j=1

deg(R, yk)

2

≤ Nansdmax,1D
2
Ry
.

Therefore,

Pr [β is bad basis shift] = Pr[∆(β) = 0] ≤
Nansdmax,1D

2
Ry

p− 1 . (6.13)

3. Unlucky Primes: Finally, we handle the case when p is unlucky. That is, prime p
causes the degree of a numerator or denominator polynomial in Aj in z to drop lower than

151

deg(fk) or deg(gk). Note that

Pr[p is unlucky in Aj] ≤ Pr[p divides any fk or gk in S]

≤ Pr[p divides one integer coefficient of fk or gk in S]

≤
2 logpsmin

(T‖S‖∞)
Ns

≤
2 logpsmin

(‖S‖∞nsdmax,1)
Ns

because there are T numerator and denominator polynomials fk and gk in S. Thus,

Pr[p is unlucky in Aj for any 1 ≤ j ≤ Na]

= Na × Pr[p is unlucky] ≤
2Na logpsmin

(‖S‖∞nsdmax,1)
Ns

. (6.14)

Adding (6.12), (6.13) and (6.14) completes our proof.

6.3.6 Discovering the supports of the polynomials fi,k and gi,k

We would like to determine the probability of failure of finding the correct support for the
polynomials fi,k and gi,k, and their support sizes (number of terms) in our Dixon resultant
algorithm. Subroutine BMStep (Subroutine 17) was designed to get the correct number of
terms when it receives an input prime p, and an input array P containing a sequence of
coefficients from the univariate auxiliary rational functions in z such that |P |= i and i is
even. This subroutine uses the Berlekamp-Massey Algorithm (BMA) to generate a feedback
polynomial λ(z) ∈ Zp[z] in Line 2 when the condition

deg(λ) < i

2 (6.15)

is satisfied, and the number of roots of λ(z) over Zp yields the number of terms in the
polynomial to be interpolated (fi,k or gi,k) with high probability.

However, it is possible that an incorrect λ(z) is produced even if the condition (6.15)
is satisfied. Thus, the wrong number of terms, and consequently the wrong fi,k or gi,k are
interpolated. To obtain a failure probability bound, we first state the following important
result proved by Kaltofen, Lee and Lobo in [Kaltofen et al., 2000].

Theorem 6.27. [Kaltofen et al., 2000, Theorem 3] Let f(y1, y2, . . . , ym) ∈ Z[y1, y2, . . . , ym]
be a polynomial with t terms. Let α = (α1, α2, . . . , αm) be chosen uniformly at random from
a finite set S̄ ⊂ Z. If we run the BMA on the sequence

[
f(αi1, αi2, . . . , αim) : i ≥ 0

]
then a zero

discrepancy is encountered after 2t points with probability of at least 1− t(t+ 1)(2t+ 1)
6|S̄|

.

A zero discrepancy means that two consecutive feedback polynomials generated by the
BMA would be the same, implying that the correct term bound has been found with high
probability. That is, if we compute λ(z) for j = 2, 4, 6, · · · points, we will see that deg(λ) =

152

1, 2, 3, . . . , t− 2, t− 1, t, t, t Thus, the above theorem assures us of obtaining the correct
feedback polynomial λ(z) (correct number of terms) with high probability whenever we run
the BMA on an input of length i containing a sequence of points such that i > 2t.

In practice, an input sequence of length 2t would yield a feedback polynomial of degree
t (t is also the number of terms in f). Therefore, our stopping condition (6.15) definitely
obeys Theorem 6.27 because we are using at least two extra points to confirm that the
correct λ(z) is found each time the BMA is called in Line 2 of Subroutine 17. As we have
said earlier, the condition (6.15) may be satisfied, but still the wrong feedback polynomial
is obtained because a zero discrepancy is encountered when i < 2t.

By design, Line 2 of Subroutine 17 will be able to detect that there is a problem by
returning FAIL if deg(λ) 6= tr where tr is the number of roots of λ. But it will not be able to
detect the case when the feedback polynomial stabilizes too early and the number of roots
obtained is equal to the degree of the feedback polynomial. That is, deg(λ) = tr 6= t. This
case will only be discovered by our Dixon result algorithm at termination when we check if
the returned answer is incorrect.

Unfortunately, we cannot use the failure bound from Theorem 6.27 because S̄ = Z∗p and
f = Kr(fi,k) ∈ Zp[y] in our Dixon resultant algorithm because a Kronecker map Kr has
been applied. We remind the reader again that #Kr(fi,k) = #fi,k. Fortunately, we have the
following useful result which was proved by Hu in his PhD thesis [Hu, 2018]. Our Dixon
resultant algorithm also checks that # roots of λ(z) is equal to the degree of λ(z) (See Line
4 of Subroutine 17).

Theorem 6.28. [Hu, 2018, Theorem 2.6] Let f be a univariate polynomial to be in-
terpolated and let t = #f, p be a prime and p � deg(f). Let α be any generator of
Z∗p. Then the number of shift ŝ which make the BMA encounter a zero discrepancy on[
f(αŝ), f(αŝ+1), . . . , f(αŝ+2t)

]
is at most t(t+1) deg(f)

2 . Therefore, if ŝ is chosen uniformly at
random from [0, p − 2], then the probability that the BMA encounters a zero discrepancy
for the first time at iteration 2t is at least 1− t(t+ 1) deg(f)

2(p− 1) .

We give the following example to illustrate the above result.

Example 6.29. Let

f = y6 + 40y5 + 45y2 + 75y + 1 ∈ Z103[y].

Suppose we use the generator α = 87. Since t = #f = 5, we need 10+2 points to determine
the correct feedback polynomial, with the extra 2 points used for confirmation. Let ŝ = 0.
We obtain

v = [59, 84, 8, 0, 64, 0, 96, 64, 94, 76, 85, 88]

by computing vj = f(αŝ+j), for 0 ≤ j ≤ 12. Running the BMA on inputWi = [v1, v2, . . . , vi],
yields the feedback polynomials λ(z) recorded in the following table.

153

of points used (i) λ(z) Number of roots of λ(z) deg(λ) < i
2 i > 2t

2 30 + z 1 NO NO
4 z2 + 84z + 95 0 NO NO
6 z2 + 84z + 95 0 YES NO
10 z5 + 43z4 + 76z3 + 93z2 + 25z + 71 5 YES NO
12 z5 + 43z4 + 76z3 + 93z2 + 25z + 71 5 YES YES

By design, our Dixon resultant algorithm will terminate at 6 points, which means we have
an incorrect feedback polynomial. Hu in his PhD thesis [Hu, 2018, Example 2.6] has an
example where the feedback polynomial λ(z) terminates too early while the number of
roots of λ is equal to deg(λ).

We are now ready to give a failure probability bound for Subroutine 17.

Theorem 6.30. Let Na be the number of auxiliary rational functions needed by Algorithm
19. If a smooth prime p is chosen at random from the list of primes Ps with |Ps|= Ns and
psmin = min(Ps) then the probability that Algorithm 19 returns FAIL in Lines 28 or 29 or
31 or 32 is at most

2N2
aDRynsdmax,1

∏m
j=1(1 + nsDmax,j)

p− 1 .

Proof. Since Na is the required number of auxiliary rational functions needed by Algorithm
19, it follows that Line 2 of Subroutine 17 will never return FAIL. However, the feedback
polynomial λ ∈ Zp[z] generated to find the number of terms in fi,k or gi,k in Line 4 of
Subroutine 17 might be wrong, so it will return FAIL, which causes Algorithm 19 to return
FAIL in either Lines 28 or 29 or 31 or 32.

Using Theorem 6.28, we have that the probability of getting the wrong #fi,k or #gi,k
∀i and ∀k using the Berlekamp-Massey Algorithm in Subroutine BMStep is at most

T−1∑
k=0

∑deg(fk)
i=0 #fi,k(#fi,k + 1) deg(Kr(fi,k))

2(p− 1) +
∑deg(gk)
i=0 #gi,k(#gi,k + 1) deg(Kr(gi,k))

2(p− 1) .

Since
T ≤ nsdmax,1,

#fi,k,#gi,k ≤ Na,

deg(fi,k),deg(gi,k),≤ deg(R) ≤ DRy ,

and
deg(Kr(fi,k)),deg(Kr(gi,k)) ≤

m∏
j=1

(1 + nsDmax,j),

154

we have that

T−1∑
k=0

∑deg(fk)
i=0 Na(Na + 1)∏m

j=1(1 + nsDmax,j)
2(p− 1) +

∑deg(gk)
i=0 Na(Na + 1)∏m

j=1(1 + nsDmax,j)
2(p− 1)

≤
∏m
j=1(1 + nsDmax,j)N2

aDRyT

p− 1 +
∏m
j=1(1 + nsDmax,j)N2

aDRyT

p− 1

≤
2∏m

j=1(1 + nsDmax,j)N2
aDRyT

p− 1 (6.16)

≤
2N2

aDRynsdmax,1
∏m
j=1(1 + nsDmax,j)

p− 1 .

6.3.7 Monomial Evaluations

We have to solve for the coefficients of the polynomials fi,k and gi,k in Algorithm 20,
whenever additional primes are required to interpolate the Rj ’s.

Algorithm 20 uses the support obtained from the first image to solve for the coefficients
of a new image of the Rj ’s. However, it is possible that an evaluation point can cause two
distinct monomials to evaluate to the same value in Zp. Lines 24 and 34 of Algorithm 20
both detect the occurrence of getting the same monomial evaluation. Thus, we need to
obtain a failure probability bound for this case.

Lemma 6.31. Let q be an additional prime chosen at random from the list of primes P to
be used by Algorithm 20 in order to get a new image of a monic square-free factor S. Let
pmin = min(P) and let N̂max = T−1max

k=0
(
deg(fk)
max
i=0
{#fi,k},

deg(gk)
max
i=0
{#gi,k}) where fi,k, gi,k, fk, gk is

as defined in (5.2). We have

Pr[Algorithm 20 returns FAIL in Line 24 or 34] ≤
2nsdmax,1N̂

2
maxD

2
Ry

q − 1 .

Proof. Let the support of fi,k (the monomials of fi,k in y1, y2, . . . , ym) be denoted by

supp(fi,k) = [Hj(y1, y2, . . . , ym) : 1 ≤ j ≤ #fi,k where deg(Hj) = i] .

Let
J =

∏
1≤l 6=j≤#fi,k

Hl(y1, y2, . . . , ym)−Hj(y1, y2, . . . , ym).

Let m̂j = Hj(Ŷi) be the j-th monomial evaluation where Ŷi = (αŝ+i−1
1 , αŝ+i−1

2 · · · , αŝ+i−1
m)

is the evaluation point in Line 15 of Algorithm 20 for 1 ≤ i ≤ N̂max, and ŝ ∈ [0, q − 2], and

155

α = (α1, . . . , αm) ∈ (Zq \ {0})m is picked at random in Line 13. By Lemma 2.17, we have

Pr[m̂l = m̂j : 1 ≤ l 6= j ≤ #fi,k] = Pr[J(Ŷi) = 0] ≤
(#fi,k

2
)

deg(fi,k)
q − 1 .

If the monomial evaluations obtained in Line 24 of Algorithm 20 or the monomial evaluations
obtained in Line 24 of Subroutine 21 are not distinct, then

Pr[Algorithm 20 returns FAIL in Line 24 or 34]

≤
∑T−1
k=0

∑deg(fk)
i=0

(#fi,k

2
)

deg(fi,k)
q − 1 +

∑T−1
k=0

∑deg(gk)
i=0

(#gi,k

2
)

deg(gi,k)
q − 1

≤
∑T−1
k=0

∑deg(fk)
i=0 N̂2

maxDRy

2(q − 1) +
∑T−1
k=0

∑deg(gk)
i=0 N̂2

maxDRy

2(q − 1)

≤
2TN̂2

maxDRy (DRy + 1)
2(q − 1) ≤

2nsdmax,1N̂
2
maxD

2
Ry

(q − 1)

since deg(fi,k),deg(gi,k) ≤ DRy for ∀i and ∀k.

6.3.8 Univariate Rational Functions without a Kronecker Substitution

Theorem 6.32. Let q be an additional prime chosen at random from the list of primes P
to be used by Algorithm 20, in order to get a new image of a monic square-free factor S.
Let pmin = min(P) and let N̂max = T−1max

k=0
(
deg(fk)
max
i=0
{#fi,k},

deg(gk)
max
i=0
{#gi,k}) where fi,k, gi,k, fk, gk

is as defined in (5.2). The probability that Algorithm 20 returns FAIL in Line 27 is at most

3N̂maxnsdmax,1D
2
Ry

q − 1 +
2N̂max logpmin (‖S‖∞nsdmax,1)

N
.

Proof. Similar to Theorem 6.26, we have three causes of FAIL in Line 27 of Algorithm
20. The failure causes are the presence of bad evaluation points, a bad basis shift and an
unlucky prime q. We again remark that all three failure causes are a direct consequence of
our attempt to interpolate auxiliary rational functions Bj in Line 26. The reader should note
that auxiliary rational functions Bj are different from the Aj ’s interpolated in Algorithm
19 because a Kronecker substitution map is not used. Let

∆(y1, y2, . . . , ym) =
T−1∏
k=0

LC(fβk)LC(gβk) ∈ Zp[y1, y2, . . . , ym]

where
fβk (y1, y2, . . . , ym, z)
gβk (y1, y2, . . . , ym, z)

= fk(y1z + β1, . . . , ymz + βm)
gk(y1z + β1, . . . , ymz + βm)

Recall that a basis shift β does not affect the degree and the leading coefficients of auxiliary
rational functions. Thus, for 0 ≤ j ≤ N̂max−1, the point Ŷj = (αŝ+j−1

1 , αŝ+j−1
2 , · · · , αŝ+j−1

m)

156

in Line 15 is random since ŝ ∈ [0, q − 2] is random and α = (α1, α2, . . . , αm) ∈ (Zq \ {0})m

is picked at random in Line 13. Thus, if Ŷj is a bad evaluation point then ∆(Ŷj) = 0.
Therefore, the probability that Ŷj is a bad evaluation point for any 0 ≤ j ≤ N̂max − 1

≤ N̂max deg(∆)
q − 1 ≤

2N̂maxnsdmax,1DRy

q − 1

where

deg(∆, y) =
T−1∑
k=0

deg(fk) + deg(gk) = 2T deg(R) ≤ 2nsdmax,1DRy .

Using Theorem 6.26 ((6.13) and (6.14)), it follows that

Pr[basis shift β picked at random in Line 10 is bad] ≤
N̂maxnsdmax,1D

2
Ry

q − 1

and

Pr[prime q is unlucky for any Bj where 1 ≤ j ≤ N̂max] ≤
2N̂max logpmin (‖S‖∞nsdmax,1)

N
.

Therefore, the probability that Algorithm 20 returns FAIL in Line 21 is at most

N̂maxnsdmax,1D
2
Ry

q − 1 +
2N̂maxnsdmax,1DRy

q − 1 +
2Na logpmin (‖S‖∞nsdmax,1)

N

≤
3N̂maxnsdmax,1D

2
Ry

q − 1 +
2Na logpmin (‖S‖∞nsdmax,1)

N
.

Remark 6.33. The error probability for the rational number reconstruction process when
applied on the coefficients of S to reconstruct its rational coefficients using one prime by
Algorithm 19 or many subsequent primes in Algorithm 20 will not be accounted for, be-
cause Monagan’s maximal quotient reconstruction algorithm [Monagan, 2004] is used in our
implementation, and it will always succeed with a probability of one when the input prime

p or product of the primes p = ∏
q∈P q > 9h2 where h = T−1max

k=0

 max
nk1
dk1
∈fk and

nk2
dk2
∈gk

(|nkdk|)

 .
6.4 Main Results

Our main technical results are presented in this section.

Theorem 6.34. Suppose Algorithm 19 only needs one smooth prime p to interpolate the
monic square-free factor S and suppose p is selected at random from the list of Ns smooth
primes Ps where psmin = min(Ps). Let Na be the number of auxiliary rational functions

157

needed to interpolate the monic-square-free factor S. If all the degrees pre-computed in
Lines 1-5 are correct then the probability that Algorithm 19 returns FAIL is at most

13N2
aD

2
Ry
nsdmax,1

∏m
j=1(1 + nsDmax,j)

psmin − 1 +
6NaDRy logpsmin

(‖S‖∞‖R‖∞nsdmax,1)
Ns

.

Proof. Clearly, the probability that Algorithm 19 returns FAIL is at most

Pr[Algorithm 19 returns FAIL in Lines 21 or 25 or 30 or 33].

Since emax = 2 + maxT−1
k=0 {deg(fk) + deg(gk)} ≤ 4DRy , the probability that Algorithm 20

returns FAIL in Lines 21 or 25 or 30 or 33 is at most

≤
8NansD

2
Ry
dmax,1

p
+

4NaDRy logpsmin
(‖S‖∞‖R‖∞nsdmax,1)
Ns︸ ︷︷ ︸

by Lemma 6.16

+

2N2
aDRynsdmax,1

∏m
j=1(1 + nsDmax,j)

p− 1︸ ︷︷ ︸
by Theorem 6.30

+

3NaD
2
Ry
nsdmax,1

∏m
j=1(1 + nsDmax,j)

p− 1 +
2Na logpsmin

(‖S‖∞nsdmax,1)
Ns︸ ︷︷ ︸

by Lemma 6.26

.

The rest of the argument follows by simplifying the above failure probability bound and
using the fact that p ≥ psmin .

Theorem 6.35. Suppose Algorithm 19 needs more than one prime p to interpolate the
monic square-free factor S. Let q be a new prime selected at random from the list of primes
P to be used by Algorithm 20 where |P |= N and pmin = min(P). Let Na be the number of
auxiliary rational functions needed to interpolate the monic-square-free factor S. Then the
probability that Algorithm 20 returns FAIL is at most

6NaDRy logpmin(‖S‖∞‖R‖∞nsdmax,1)
N

+
13D2

Ry
N2
ansdmax,1

(pmin − 1) .

Proof. Notice that Algorithm 20 will return FAIL, if it returns FAIL in Lines 17 or 24 or
27 or 34. Since

emax = 2 + T−1max
k=0
{deg(fk) + deg(gk)} ≤ 4DRy ,

and
Na ≥ N̂max = T−1max

k=0
(
deg(fk)
max
i=0
{#fi,k},

deg(gk)
max
i=0
{#gi,k}),

158

the probability that Algorithm 20 returns FAIL in Lines 17 or 24 or 27 or 34 is at most

≤
8NansD

2
Ry
dmax,1

q
+

4NaDRy logpmin (‖S‖∞‖R‖∞nsdmax,1)
N︸ ︷︷ ︸

by Lemma 6.16

+
2nsdmax,1N

2
aD

2
Ry

(q − 1)︸ ︷︷ ︸
by Lemma 6.31

+

3Nansdmax,1D
2
Ry

q − 1 +
2Na logpmin (‖S‖∞nsdmax,1)

N︸ ︷︷ ︸
by Lemma 6.32

.

Our result follows by simplifying the above failure bounds using the fact that q ≥ pmin.

Remark 6.36. The reader should notice that the difference between the failure probability
bounds given in Theorems 6.34 and 6.35 is the quantity ∏m

j=1(1 + nsDmax,j) which arises
because a Kronecker substitution was used for the first part of our Dixon resultant algorithm.
Again, we note that the average value of this quantity is 1 [Schmidt, 2006, Chapter 4].

Lemma 6.37. The probability that Algorithm 20 returns FAIL is at most

6NaDRy logpsmin
(‖S‖∞‖R‖∞nsdmax,1)
Ns

+
13D2

Ry
N2
ansdmax,1

(psmin − 1) .

Proof. Use the fact that N ≥ Ns and pmin ≥ psmin in Theorem 6.35.

Corollary 6.38. Suppose Algorithms 19 and 20 are modified to interpolate l monic square-
free factors Rj of the Dixon resultant R. LetNa be the number of auxiliary rational functions
needed to interpolate all the monic square-free factors Rj . Suppose all the smooth primes
needed by Algorithm 19 are selected from the list of smooth primes Ps such that pmin =
min(P) and |Ps|= Ns, and the primes (not necessarily smooth) needed by Algorithm 20 are
selected at random from the list of primes P such that pmin = min(P) and pmin ≥ psmin .

A If Algorithm 19 only needs one smooth prime to interpolate all the monic square-free
factors Rj then the probability that Algorithm 19 returns FAIL is at most

13N2
aD

2
Ry
nsdmax,1

∏m
j=1(1 + nsDmax,j)

psmin − 1 +
6NaDRy logpsmin

(‖Rj‖∞‖R‖∞nsdmax,1)
Ns

.

B Suppose Algorithm 19 needs more than one prime to interpolate all the monic square-
free factors Rj . Then the probability that Algorithm 20 returns FAIL is at most

13D2
Ry
N2
ansdmax,1

(psmin − 1) +
6NaDRy logpsmin

(‖Rj‖∞‖R‖∞nsdmax,1)
Ns

.

159

Proof. Recall that the number of the rational function coefficients of S denoted by T ≤
nsdmax,1. Let Tj be the number of the rational function coefficients in Rj . So modifying Al-
gorithm 19 and 20 to handle l monic square-free factors will not affect our failure probability
bounds since l∑

j=1
Tj

 ≤
 l∑
j=1

dTj

 ≤ l∑
j=1

deg(Rj , x1) ≤ deg(R, x1) ≤ nsdmax,1.

We are now ready to give a failure probability bound for our probabilistic test algorithm
(Algorithm 24) which verifies if a monic square-free factor is correct.

Theorem 6.39. Let Na be the number of auxiliary rational functions needed to interpolate
the monic-square-free factor S. Let q be a new prime chosen to be used by Algorithm 24 (Our
probabilistic test) at random from the list of primes P such that |P |= N and pmin = min(P)
in order to determine if the output of Dixon resultant algorithm is correct. We have

Pr[Our probabilistic test fails] ≤
logpmin

(
2nsdmax,1NaDRy‖S‖∞

)
N

.

Proof. Our probabilistic test (Algorithm 24) will correctly verify that the output of our
Dixon resultant algorithm is correct or wrong if the input prime q does not divide any
integer coefficient in the monic square free factor S = xdT

1 +∑T−1
k=0

fk(y1,...,ym)
gk(y1,...,ym)x

dk
1 . Since

Na ≥
T−1max
k=0

(
deg(fk)
max
i=0
{#fi,k},

deg(gk)
max
i=0
{#gi,k}),

and fk = ∑deg(fk)
i=0 fi,k and gk = ∑deg(gk)

j=0 gj,k, we have that

max(#fk,#gk) ≤ Na (max(deg(fk),deg(gk)) ≤ NaDRy .

Thus, #S ≤ T (#fk + #gk) ≤ 2TNaDRy ≤ 2nsdmax,1NaDRy . Therefore,

Pr[q divides any integer coefficient of S] ≤
logpmin

(
2nsdmax,1NaDRy‖S‖∞

)
N

and our result follows.

Proposition 6.40. Suppose Algorithm 19 only needs one smooth prime p to interpolate S
and p is picked at random from the list of smooth primes Ps where |Ps|= Ns and psmin =
min(Ps). Let k ∈ Z+. If the smallest prime psmin in Ps satisfies

psmin > 2k+1

13N2
aD

2
Ry
nsdmax,1

m∏
j=1

(1 + nsDmax,j)

+ 1,

160

and the number of smooth primes in Ps denoted by Ns satisfies

Ns > 2k+1
(
6NaDRy logpsmin

(‖S‖∞‖R‖∞nsdmax,1)
)

then Pr[the returned answer S is correct] >
(
1− 1

2k

)2
.

Proof. We define the events involved as follows.

• Let A be the event that Algorithm 19 returns an answer S with only one smooth
prime.

• Let B be the event that the probabilistic test (Algorithm 24) correctly verifies that
the answer S is correct.

By Theorems 6.34 and 6.39, we have that

Pr[A{] ≤ 1
2k and Pr[B{|A] ≤ 1

2k

since prime q ≥ pmin ≥ psmin . Thus,

Pr[the returned answer S is correct] = Pr[A ∩B] = Pr[A]× Pr[B|A] >
(

1− 1
2k
)2
.

Proposition 6.41. Suppose additional primes are picked at random from the list of primes
P and they are needed to interpolate the monic square-free factor S by Algorithm 19. Let
k ∈ Z+. If the smallest prime psmin = min(Ps) satisfies

psmin > 2k+1

13N2
aD

2
Ry
nsdmax,1

m∏
j=1

(1 + nsDmax,j)

+ 1,

and the number of primes in the list of smooth primes Ps satisfies

Ns > 2k+1
(
6NaDRy logpsmin

(‖S‖∞‖R‖∞nsdmax,1)
)
,

then Pr[the returned answer S is correct] >
(

1− 1
2k
)3
.

Proof. We define the events involved as follows.

• Let A be the event that Algorithm 19 returns a support of S in Line 39.

• Let B be the event that Algorithm 20 uses H additional primes from the list of primes
P to produce more images of S using the support of S from Algorithm 19.

161

• Let C be the event that the probabilistic test (Algorithm 24) correctly verifies that
the answer produced by Algorithm 20 is correct. So,

Pr[S is correct] = Pr[C∩B∩A] = Pr[C|B∩A]×Pr[B∩A] = Pr[C|B∩A]×Pr[B|A]×Pr[A].

Using Theorems 6.34 and 6.39, and Lemma 6.37, we get

Pr[B{|A] ≤
(2

2k+1

)H
≤
(1

2k
)H
≤ 1

2k

Pr[A{] ≤ 1
2k , and

Pr[C { |B ∩A] ≤ 1
2k .

Thus, we have that Pr[S is correct] >
(

1− 1
2k
)3
.

Example 6.42 (Heron 2d system). The following quantities, namely,

• Nmax = 5, H = 2, Tmax = 3,m = 3, n = 3, s = 3, dmax,1 = 1, and Dmax = 2.

are real data for the Heron2d parametric polynomial system (Example 1.42).

Using the bounds from Theorem 6.5 (since we do not know what R is), we determined that

• ‖R‖∞ = 7.29× 1011 and ‖S‖∞ = 4.676419456× 1062.

Taking psmin > 261 and solving for k as in Proposition 6.40, we get k = 29 and Ns =
2.226511046× 1013. Since the number of auxiliary rational functions Na used in our exper-
iment to solve this system is 16, using Theorems 6.34 and 6.39, it follows that

Pr[Algorithm 19 returns FAIL] ≤ 1.862645149× 10−9,

and
Pr[Our probabilistic test fails] ≤ 1.347399558× 10−13.

We remark that one 62 bit smooth prime was enough to interpolate the only monic square-
free factor of this system (See Table 5.4). Thus, we do not need to determine a failure
probability bound for Algorithm 20 which involves using additional primes.

We present another parametric polynomial system which our Dixon resultant algorithm
used more than a prime to interpolate its only monic square-free factor.

Example 6.43 (Geddes2 system in Appendix section A.3). The following quantities, namely,

• Nmax = 32, H = 6, Tmax = 24,m = 1, n = 4, s = 24, dmax,1 = 2, and Dmax = 2

are real data for the Geddes2 parametric polynomial system. Using the bounds obtained in
Theorem 6.5, we calculate the heights bound for R and S to obtain

162

• ‖R‖∞= 8.017623607× 10291 and ‖S‖∞= 1.075796791× 10542.

Additionally, the number of auxiliary rational functions Na used in our experiment to solve
this system is 54. Taking pmin > 261 and solving for k as in Proposition 6.40 yields k = 17
and Ns = 5.870683423× 1011. Using Theorems 6.34, 6.35 and 6.39, we get

Pr[Algorithm 19 returns FAIL] ≤ 7.629394531× 10−6,

Pr[Algorithm 20 returns FAIL] ≤ 3.955982350× 10−6,

and

Pr[Our probabilistic test fails] ≤ 4.939799663× 10−11.

The greatest probability of failure is highlighted in red which is Algorithm 19. We note that
the bounds that we have obtained are huge but the actual failure probability is much less.
In our implementation, two 62 bit primes were enough to solve this system (See Table 5.4).

6.5 Complexity Analysis

In this section, we estimate the cost of a black box probe for our Dixon resultant R and the
total number of black box probes required by our Dixon resultant algorithm. We remark that
no input primes caused our experiments to fail because the primes used in our experiments
are 62 bit primes and the support of the first image Ŝ of S obtained using the first prime
is always correct, i.e., supp(Ŝ) = supp(S).

6.5.1 The cost of a black box probe

Theorem 6.44. Let M be a s × s Dixon matrix such that #Mij ≤ Tmax. Suppose the
integer coefficients of Mij are l base B digits long. That is, ‖Mij‖∞≤ Bl. Let prime p
chosen at random from the list of primes P satisfy B < p < 2B. Let

D̂max = max(dmax,1,
mmax
k=1

Dmax,k).

A black box probe costs

O(s2lTmax︸ ︷︷ ︸
Modular reduction

+ s2nmTmaxD̂max︸ ︷︷ ︸
Matrix Evaluation

+ s3︸︷︷︸
Gaussian elimination

)

arithmetic operations in Zp.

Proof. Let the entries of the Dixon matrixM denoted byMij = ∑Tmax
k=1 akMijk

(x1, y1, . . . , ym)
whereMijk

(x1, y1, . . . , ym) are monomials in variables x1, y1, . . . , ym. The cost of performing
the modular reduction Mij mod p is O(lTmax). Thus the total cost of reducing M mod p

163

is O(s2lTmax). Let α ∈ Zm+1
p be an evaluation point. The maximum partial degree of

the entries of M is at most max(deg(∆Xe , x1),maxmk=1 deg(∆Xe , yk)) ≤ nD̂max. The num-
ber of multiplications done to compute a monomial evaluation Mijk

(α) is mnD̂max. For
1 ≤ k ≤ Tmax, all monomial evaluations Mijk

(α) are computed using O(nmTmaxD̂max)
multiplications and Tmax multiplications for the product akMijk

(α). Hence the cost of eval-
uating Dixon matrix M is O(s2nmD̂maxTmax). The cost of the determinant computation
which is done by Gaussian elimination over Zp is O(s3) arithmetic operations in Zp. Thus
a black box probe costs O(s2Tmaxl + s2TmaxmnD̂max + s3).

6.5.2 The number of black box probes required by our algorithm

Theorem 6.45. Let emax = 2 + maxT−1
k=0 {deg(fk) + deg(gk)} be the number of points

needed to perform univariate rational interpolation and let dx1 = deg(R, x1). Let N̂max =
maxT−1

k=0 (maxdeg(fk)
i=0 {#fi,k},maxdeg(gk)

i=0 {#gi,k}) where fi,k, gi,k, fk, gk from S are as defined in
(5.2), (5.3). Let H be the number of primes needed by Algorithm NewPrime to reconstruct
the coefficients of S using rational number reconstruction. The number of black box probes
required by our algorithm is O(Hdx1emaxN̂max).

Proof. We need dx1 +1 probes to the black box BB to interpolate a monic univariate image
of R in x1. In order to interpolate an auxiliary rational function Aj in Line 24 of Algorithm
19, we need to use emax coefficients from the monic polynomial images H in x1 obtained in
Line 20 of Algorithm 19.

The size of the supports #fi,k and #gi,k are unknown, and they will be discovered by the
BMA (Line 1 of Subroutine BMStep) via some feedback polynomial λ(z). In particular, for
each i,#fi,k is obtained when deg(λ1, z) < #fi,k

2 for some feedback polynomial λ1 ∈ Zp[z]
with a probability of at least

1− #fi,k(#fi,k + 1) deg(Kr(fi,k))
2(p− 1) .

However, by design, the size of the supports #fdeg(fk),k and #gdeg(fk),k are discovered
first using O(2 max{#fdeg(fk),k, gdeg(gk),k}) coefficients from the computed auxiliary rational
functions. These coefficients from the Aj ’s may be enough to discover #fi,k and #gi,k. But
in most cases, they are not enough, so more auxiliary rational functions must be computed.

In the worst case, the maximum total number of auxiliary rational functions that need
to be interpolated for the first prime is O(4N̂max). Furthermore, using the support obtained
from the first prime, O(HN̂max) new auxiliary functions are needed if additional primes are
required to solve for the unknown coefficients of the fi,k’s and gi,k’s. Therefore, the total
number of black box probes required by our Dixon resultant algorithm is O(Hdx1emaxN̂max).

164

6.5.3 Theoretical Comparison

Let R be the Dixon resultant. Let d be the maximum partial degree of R and let t = #R.
The following table (Table 6.1) compares our Dixon resultant algorithm with Zippel’s sparse
interpolation algorithm and the Ben-Or/Tiwari algorithm for interpolating R in terms of the
number of black box probes required and the sizes of the primes needed for these algorithms.

Table 6.1: Comparing sparse algorithms in terms of # of probes and the size of their primes
Number of black box probes size of prime

Our new Dixon resultant algorithm O(Hd2N̂max) p > (d+ 1)m

Zippel’s algorithm O(mdt+Ht) p > 2md2t2

Ben-Or/Tiwari algorithm O(Ht) p > p
(m+1)d
m

165

Chapter 7

Solving Ax = b

7.1 Summary of Contributions

Our main contribution in this chapter is a new black box algorithm for solving parametric
linear systems which uses the new sparse rational function interpolation method developed
in Chapter 4. We have implemented our algorithm in Maple + C and we compare our
new algorithm with 4 other algorithms for solving parametric linear systems. The failure
probability and complexity analysis for our new algorithm is presented. The results in this
chapter have been published in the Proceedings of CASC ’23 [Jinadu and Monagan, 2023].

7.2 Introduction

LetAx = b be a parametric linear system where the coefficient matrixA ∈ Z[y1, y2, . . . , ym]n×n

is of full rank n and the right hand side column vector b ∈ Z[y1, y2, . . . , ym]n. Suppose that
the number of terms in the entries of A and b denoted by #Aij ,#bi ≤ t and the total
degrees deg(Aij),deg(bi) ≤ d. We present a new black box algorithm that uses our new
sparse rational function interpolation method from Chapter 4 to interpolate the solution
vector of rational functions

x =
[
x1 x2 · · · xn

]T
=
[
f1
g1

f2
g2
· · · fn

gn

]T
such that for fk, gk ∈ Z[y1, y2, . . . , ym], gk 6= 0, gk|det(A) and gcd(fk, gk) = 1 for 1 ≤ k ≤ n.

7.3 The Algorithm

Let p be a prime and let BB :
(
Zmp , p

)
→ Znp with m ≥ 1 and n ≥ 1 be a black box for the

augmented matrix B = [A|b] denoting a parametric linear system Ax = b. That is, it takes
a list of integers α ∈ Zmp and a prime p as inputs and solves for

x(α) = A−1(α)b(α) ∈ Znp

166

using Gaussian elimination over Zp.
Let the polynomials fk and gk of the entries xk = fk

gk
of the solution vector x be viewed

as

fk =
deg(f)∑
i=0

fi,k(y1, y2, . . . , ym) and gk =
deg(g)∑
j=0

gj,k(y1, y2, . . . , ym) (7.1)

such that polynomials fi,k and gj,k are homogeneous polynomials and deg(fi,k) = i and
deg(gj,k) = j.

Given a black box BB for a parametric linear system Ax = b, we divide the steps to
interpolate the unique vector x by our new black box algorithm (Algorithm 26) into seven
main steps. The first step in our algorithm is to obtain the degrees needed to interpolate
x. These include the total degrees deg(fk), deg(gk) for 1 ≤ k ≤ n, which are needed to
densely interpolate the univariate auxiliary rational functions, the maximum partial degrees
maxnk=1 (max(deg(fk, yi), deg(gk, yi))) for 1 ≤ i ≤ m, which are needed to apply Kronecker
substitution and the total degrees of the polynomials fi,k and gi,k which helps avoid doing
unnecessary work when the effect of the basis shift is removed in Subroutine 18 (See Lines
1-5 of Algorithm 26).

With high probability, we describe how to discover these degrees as follows. Let p be a
large prime. First, pick α, β ∈ (Zp \ {0})m at random, and use enough distinct points for z
selected at random from Zp to interpolate the univariate rational function

hk(z) = Nk(z)
Dk(z)

= fk(α1z + β1, . . . , αmz + βm)
gk(α1z + β1, . . . , αmz + βm) ∈ Zp(z),

via probes to the black box so that deg(fk) = deg(Nk) and deg(gk) = deg(Dk) with high
probability. Next, pick γ ∈ (Zp \ {0})m−1, θ ∈ Zp \ {0} at random and probe the black box
to interpolate the univariate rational function

Hi(z) := Hfi

Hgi

= fk(γ1, . . . , γi−1, θz, γi+1, · · · , γm)
gk(γ1, . . . , γi−1, θz, γi+1, · · · , γm) ∈ Zp(z),

using enough distinct random points for z from Zp. With high probability deg(Hfi
, z) =

deg(fk, yi) and deg(Hgi , z) = deg(gk, yi) for 1 ≤ i ≤ m.
Finally, suppose we have obtained deg(fk), deg(gk) correctly for 1 ≤ k ≤ n. Then pick

α ∈ (Zp \ {0})m at random and use enough random distinct points for z selected from
Zp \ {0} to interpolate the univariate rational function

Wk(z) = Nk

Dk
=
∑dfk
j=0 N̄i,k(z)∑dgk
i=0 D̄i,k(z)

= fk(α1z, . . . , αmz)
gk(α1z, . . . , αmz)

∈ Zp(z)

where dfk
= deg(Nk) and dgk

= deg(Dk). Now, if deg(fk) = dfk
and deg(gk) = dgk

then deg(fi,k) = deg(N̄i,k) and deg(gi,k) = deg(D̄i,k) with high probability. But, if there

167

is no constant term in fk or gk, then deg(fk) 6= dfk
and deg(gk) 6= dgk

because ek =
deg(gcd(Nk, Dk)) > 0. Since we do not know what ek is, it follows that if ek = deg(fk) −
dfk

= deg(gk) − dgk
with high probability then deg(fi,k) = deg(N̄j,k) + ek and deg(gi,k) =

deg(D̄i,k) + ek with high probability.
After obtaining all the degree bounds, the second step in our algorithm is to probe the

black box BB with input evaluation points α ∈ Zmp to obtain images x(α) = A−1(α)b(α) ∈
Znp (See Lines 17-19).

The third step is to perform dense interpolation of auxiliary univariate rational functions
labelled as Aj(z) using the images x(α) = A−1(α)b(α) ∈ Znp (See Lines 23-27). By design,
the fourth step is to determine the number of terms in the leading term polynomials fdeg(fk),k

and gdeg(fk),k and interpolate them via calls to Subroutine BMStep in Lines 29-30.
Next, #fi,k and #gi,k as defined in (7.1) are determined by calls to Subroutine Re-

moveShift in Lines 33-34 where the effect of the basis shift β 6= 0 is removed and the
coefficients of the auxiliary rational functions Aj(z) are adjusted in order to interpolate fi,k
and gi,k. Note that for each i,#fi,k (or #gi,k) is obtained when deg(λ, z) < #fi,k

2 for some
feedback polynomial λ ∈ Zp[z] generated by the Berlekamp-Massey algorithm in Line 1 of
Subroutine BMStep.

Once fi,k, gi,k modulo a prime have been interpolated, the sixth step in our algorithm is
to apply rational number reconstruction (RNR) on the assembled vectorX = [fk

gk
mod p, 1 ≤

k ≤ n] to get x in Line 41. If RNR process fails, then more primes and images of x are needed
to interpolate the vector x using Chinese remaindering and rational number reconstruction.

The final step is to call Algorithm 27, an algorithm similar to Algorithm 26, except that
#fi,k and gi,k are now known, and Algorithm 27 uses more primes to get the solution x

using Chinese remaindering and rational number reconstruction.

7.4 Analysis

7.4.1 Failure Probability Analysis

For the rest of this section, let

1. d = maxni,j=1(deg(bj), deg(Aij), deg(fi),deg(gi)),

2. t = maxni,j=1(#Aij ,#bj ,#fi,#gi)

3. ‖Aij‖∞, ‖bj‖∞≤ h.

4. Ps = {ps1 , ps2 , . . . , pNs} be the list of smooth primes to be used in Algorithm 26 such
that psmin = minNs

i=1{pi}, |Ps|= Ns and Ns is a large positive integer.

5. P = {p1, p2, . . . , pN} be the list of primes (not necessarily smooth) to be used in
Algorithm 27 such that pmin = minNi=1{pi}, |P |= N and N is a large positive integer
with N ≥ Ns and pmin ≥ ps,min.

168

Algorithm 26: ParamLinSolve
Input: The black box BB :

(
Zm

p , p
)
→ Zn

p for the augmented system [A|b] with m ≥ 1.
Output: The vector x ∈ Z(y1, . . . , ym)n such that Ax = b or FAIL.

1 Compute total degrees (deg(fk),deg(gk)) for 1 ≤ k ≤ n.
2 ek ← deg(fk) + deg(gk) + 2 for 1 ≤ k ≤ n.
3 emax ← maxn

k=1 {ek} .
4 Compute (Efk

, Egk
) where Efk

and Egk
denote the lists of the total degrees of the

polynomials fik and gik in fk and gk respectively as defined in (7.1).
5 Dyi ← max (maxn

k=1(deg(fk, yi), deg(gk, yi))) for 1 ≤ i ≤ m.
6 Initialize ri = Dyi + 1 for 1 ≤ i ≤ m and let r = (r1, r2, . . . , rm−1).
7 Pick a random smooth prime p >

∏m
j=1 ri and a random basis shift β 6= 0 ∈ Zm

p .
// p is the prime to be used by the black box.

8 Let Kr : Zp(y1, y2, . . . , ym)→ Zp(y) be the Kronecker substitution Kr(fk/gk).
9 Pick a random shift ŝ ∈ [0, p− 2] and any generator α for Z∗p.

10 Let z be the homogenizing variable.
11 Pick θ ∈ Zemax

p at random with θi 6= θj for i 6= j.

12 M ←
∏emax

i=1 (z − θi) ∈ Zp[z]; . O(e2
max)

13 k ← 1.
14 for i = 1, 2, · · · while k ≤ n do
15 Ŷi ← (αŝ+i−1, α(ŝ+i−1)r1 , . . . , α(ŝ+i−1)(r1r2···rm−1)). // Apply the Kronecker substitution

Kr here
16 for j = 1, 2, . . . , emax do
17 Zj ← θj · Ŷi + β ∈ Zm

p ;
18 vj ← BB (Zj , p) // Here vj = A−1(Zj)b(Zj) ∈ Zn

p

19 if vj = FAIL then return FAIL end // rank(A(Zj)) < n.
20 end
21 if i /∈ {2, 4, 8, 16, 32, · · ·} then next end
22 for j = 1, 2, . . . , i do
23 Interpolate U ∈ Zp[z] using points (θi, vkj : 1 ≤ j ≤ ek);. O(e2

k)
24 Aj(z)← MQRFR(M,U, p); . O(e2

k)
25 Let Aj(z) = Nj(z)

N̂j(z) ∈ Zp(z) // This is the auxiliary function in z.
26 if deg(Nj) 6= deg(fk) or deg(N̂j) 6= deg(gk) return FAIL end
27 Normalize Aj(z) such that N̂j(z) = 1 +

∑deg(N̂)
i=1 aiz

i.

28 end
29 Fk ← BMStep([coeff(Nj , z

deg(fk)) : 1 ≤ j ≤ i], α, ŝ, r);O(i2 + #F 2
k log p)

30 Gk ← BMStep([coeff(N̂j , z
deg(gk)) : 1 ≤ j ≤ i], α, ŝ, r);O(i2 + #G2

k log p)
31 // Here Fk = fdeg(fk),k mod p and Gk = gdeg(gk),k mod p
32 if Fk 6= FAIL and Gk 6= FAIL then
33 fk ← RemoveShift(Fk, β, Efk

, ŝ, α, [Ŷ1, . . . , Ŷi], [N1, . . . , Ni], r)
34 gk ← RemoveShift(Gk, β, Egk

, ŝ, α, [Ŷ1, . . . , Ŷi], [N̂1, . . . , N̂i], r)
35 if fk 6= FAIL and gk 6= FAIL then
36 k ← k + 1 // we have interpolated xk mod p
37 end
38 end
39 end
40 X ← [fk

gk
, 1 ≤ k ≤ n] // Here X = x mod p

41 Apply rational number reconstruction on the coefficients of X mod p to get x
42 if x 6= FAIL then clear the fractions of x and return x end
43 return MorePrimes(BB, X, ((deg(fk), deg(gk)) : 1 ≤ k ≤ n), p)

169

Algorithm 27: MorePrimes
Input: The Black box BB :

(
Zm

q , q
)
→ Zn

q for [A|b] with m ≥ 1, a vector X̄ = x mod p,
where p is the smooth prime used by Algorithm 26 and the list of degrees
[(deg(fk), deg(gk)) : 1 ≤ k ≤ n] .

Output: The vector x ∈ Z(y1, . . . , ym)n such that Ax = b or FAIL.
1 Let ek = deg(fk) + deg(gk) + 2 for 1 ≤ k ≤ n and let emax = maxn

k=1(ek).
2 Let B1 = [fdeg(fk)−1,k, . . . , f0,k] and B2 = [gdeg(gk)−1,k, . . . , g0,k] where fi,k, gi,k are as

defined in (7.1)
3 Let Nmax = maxn

k=1

{
maxdeg(fk)

i=0 {#fi,k},maxdeg(gk)
i=0 {#gi,k}}

}
and set P = p.

4 do
5 Get a new prime q - P. // The black box BB uses a new prime q 6= p.
6 Pick α, β ∈ (Zq \ {0})m, θ ∈ Zemax

q and shift ŝ ∈ [0, q − 2] at random.
7 for i = 1, 2, . . . , Nmax do
8 Ŷi ← (αŝ+i−1

1 , αŝ+i−1
2 · · · , αŝ+i−1

m).
9 for j = 1, 2, . . . , emax do

10 Zj ← Ŷi · θj + β ∈ Zm
p

11 vj ← BB (Zj , q) // Here vj = A−1(Zj)b(Zj) ∈ Zn
p

12 if vj = FAIL then return FAIL end // rank(A(Zj)) < n).
13 end
14 end
15 for k = 1, 2, . . . , n do
16 (n̂, M̂)← (#fdeg(fk),k, supp(fdeg(fk),k)) // supp means support.
17 (n̄, M̄)← (#gdeg(gk),k, supp(gdeg(gk),k))
18 (m̂, m̄)← ([M̂i(α) : 1 ≤ i ≤ n̂], [M̄i(α) : 1 ≤ i ≤ n̄]); O(m(n̂+ n̄))
19 if the monomial evaluations m̂i = m̂j or m̄i = m̄j then return FAIL end.
20 M ←

∏ek

i=1(z − θi) ∈ Zq[z]; . O(e2
k)

21 for j = 1, 2, . . . , Nmax do
22 Interpolate u ∈ Zp[z] using points (θi, vkj : 1 ≤ j ≤ ek); O(e2

k)
23 Bj ← MQRFR(M,u, p)//Bj = Nj(z)/N̂j(z) ∈ Zq(z). .O(e2

k)
24 Normalize Bj(z) s.t. N̂j(z) = 1 +

∑deg(N̂)
i=1 biz

i.

25 if deg(Nj) 6= deg(fk) or deg(N̂j) 6= deg(gk) then return FAIL end.
26 end
27 Let ai = LC(Nj , z) and let bi = LC(N̂j , z) for 1 ≤ i ≤ Nmax.

28 Fk ←VandermondeSolver(m̂, [a1, . . . , an̂], ŝ, M̂); . O(n̂2)
29 Gk ←VandermondeSolver(m̄, [b1, . . . , bn̄], ŝ, M̄); . O(n̄2)
30 Fk ← GetTerms(Fk, α, β, ŝ, B1, Ŷ1, . . . , ŶNmax], [N1, . . . , NNmax], q)
31 Gk ← GetTerms(Gk, α, β, ŝ, B2, [Ŷ1, . . . , ŶNmax], [N̂1, . . . , N̂Nmax], q)
32 if Fk = FAIL or Gk = FAIL then return FAIL end
33 end
34 X̂ ← [Fk

Gk
, 1 ≤ k ≤ n] // Here X̂ = x mod q

35 Solve {F̂ ≡ X mod P and F̂ ≡ X̂ mod q} using Chinese remaindering and set
P = P × q.

36 Apply rational number reconstruction on coefficients of F̂ mod P to get x
37 if x 6= FAIL then return F else (X, p)← (F̂ , q) end
38 end

170

We now estimate the height of the entries xk of the solution vector x.

Theorem 7.1. We have
‖xk‖∞ ≤ enmdn

n
2 tnhn

where e is the Euler number and e ≈ 2.718.

Proof. Let Rk = det(Ak) where Ak denotes the matrix obtained by replacing the k-th
column of the coefficient matrixA by the right hand side column vector b and letR = det(A).
By Cramer’s rule, the solutions of Ax = b are given by

xk = Rk
R
.

Let hk = gcd(Rk, R). Observe that

Rk/hk
R/hk

= fk
gk

= xk

where gcd(fk, gk) = 1. Therefore fk|Rk and gk|R. By Lemma 6.3, it follows that

‖gk‖∞ ≤ e
∑m

i=1 deg(R,yi)‖R‖∞≤ e
∑m

i=1 nd‖R‖∞≤ enmd‖R‖∞ (7.2)

and similarly,
‖fk‖∞ ≤ enmd‖Rk‖∞ (7.3)

because deg(R, yi) ≤ deg(R) ≤ n×maxni=1{deg(Aij)} ≤ nd. Therefore

‖xk‖∞ ≤ max (‖fk‖∞, ‖gk‖∞) ≤ enmd max (‖Rk‖∞, ‖R‖∞) ≤ enmdn
n
2 tnhn

by Theorem 6.2.

We remark that the above bound for the height of xk is a worst case bound. Usually,
‖fk‖∞≤ ‖Rk‖∞ and ‖gk‖∞≤ ‖R‖∞.

7.4.2 Unlucky Primes and Evaluation Points

Let A be our input n× n coefficient matrix where Ai,j ∈ Z[y1, y2, . . . , ym].

Definition 7.2. A prime p is said to be unlucky if p|det(A).

Definition 7.3. Suppose p is not an unlucky prime. Let α ∈ Zmp be an evaluation point.
We say that α is unlucky if det(A)(α) = 0.

Lemma 7.4. Let p be a prime chosen at random from the list of primes P such that
pmin = min(P) and |P |= N. Then

Pr[p is unlucky] ≤
logpmin

(
n

n
2 tnhn

)
N

.

171

Proof. Let R = det(A) and let c be an integer coefficient of R. The number of primes p
from P that can divide c is at most blogpmin cc. So

Pr[p divides c] ≤
logpmin c

N
.

By definition, prime p is unlucky ⇐⇒ p|R =⇒ p divides one term in R. So

Pr[p is unlucky] = Pr[p divides R] ≤ Pr[p divides one term in R] ≤
logpmin‖R‖∞

N
.

Using Theorem 6.2, it follows that Pr[p is unlucky] ≤
logpmin

(
n

n
2 tnhn

)
N

.

Lemma 7.5. Let p be a prime chosen at random from the list of primes P . Let α ∈ Zmp be
an evaluation point. If p is not an unlucky prime then

Pr[α is unlucky] ≤ nd

p
.

Proof. Using Lemma 2.17, we have

Pr[α is unlucky] = Pr[det(A)(α) = 0] ≤ deg(det(A))
p

≤ nd

p
.

7.4.3 Bad Evaluation Points, Primes and Basis Shifts

Definition 7.6. We say that α ∈ Zp \ {0} is a bad evaluation point if deg(fβk (α, z)) <
deg(fk, z) or deg(gβk (α, z)) < deg(gk, z) for any k.

Definition 7.7. We say that β ∈ (Zp \ {0})m is a bad basis shift if gcd(fk, gk) = 1 but
deg(gcd(fβk (α, z), gβk (α, z))) > 0 for any k.

Definition 7.8. We say a prime p is bad if p|LC(fβk (y, z)) in z or p|LC(gβk (y, z)) in z for
any k.

To avoid the occurrence of bad evaluation points with high probability in Algorithm 26,
we had to interpolate Fk(αŝ+i, z, β) for some random point ŝ ∈ [0, p−2] instead of Fk(αi, z, β)
for i = 0, 1, 2, This is labelled as Aj in Line 25. Line 26 detects the occurrence of bad
evaluation points, a bad basis shift or a bad prime.

7.4.4 Main Results

Theorem 7.9. Let Na be greater than the required number of auxiliary rational functions
needed to interpolate the vector x and suppose all the degree bounds obtained in Lines

172

1-5 of Algorithm 26 are correct. Suppose Algorithm 26 only needs one smooth prime to
interpolate x and let e be the Euler number where e ≈ 2.718. If a smooth prime p is chosen
at random from the list of smooth primes Ps such that psmin = min(Ps) then the probability
that Algorithm 26 returns FAIL is at most

6Nan
2d
(
logpsmin

(th
√
n)
)

+ 2Nan
2md logpsmin

(e)
Ns

+ 2n(1 + d)m
(
Na + t2 + t2d

)
+ 5n2Nad

2

p− 1 .

Proof. Recall that emax = maxnk=1{deg(fk) + deg(gk) + 2} ≤ 4d. Notice that

Pr[vj = FAIL in Line 19] = Pr[prime p or evaluation point Zj in Line 17 is unlucky].

By Lemma 7.4 and 7.5, we have that Pr[Algorithm 26 returns FAIL in Line 19] ≤

emaxnNa

nd
p

+
logpsmin

(
n

n
2 tnhn

)
Ns

 ≤ 4n2dNa

(
d

p
+

logpsmin
(th
√
n)

Ns

)
(7.4)

There are three causes of FAIL in Line 26 of Algorithm 26. Again, all three failure
causes (bad evaluation point, bad basis shift and bad prime) are a direct consequence of
our attempt to interpolate auxiliary rational functions Aj in Line 25. We will handle the
bad evaluation point case first. Let

∆(y) =
n∏
k=1

LC(fβk (y, z))LC(gβk (y, z)) ∈ Zp[y].

Notice that the evaluation point αŝ+j−1 in Line 15 is random on [0, p) since ŝ ∈ [0, p − 2]
is random. Since a basis shift β does not affect the degree and the leading coefficients of
auxiliary rational functions, we have that if αŝ+j−1 is a bad then ∆(αŝ+j−1) = 0. Thus

Pr[αŝ+j−1 is a bad for 0 ≤ j ≤ Na − 1] ≤ Na deg(∆)
p− 1 ≤ 2Nan(1 + d)m

p− 1 .

Now suppose θj := αŝ+j−1 is not bad for 1 ≤ j ≤ Na. Let w1, w2, · · ·wm be new variables
and let

Gkj =
f̂kj

ĝkj

=
fk(θjz + w1, . . . , zθ

(r1r2···rm−1)
j + wm)

gk(θjz + w1, . . . , zθ
(r1r2···rm−1)
j + wm)

∈ Zp(w1, w2, . . . , wm)(z).

Recall that LC(f̂kj
)(β) 6= 0 and LC(ĝkj

)(β) 6= 0. LetRkj = res(f̂kj
, ĝkj

, z) ∈ Zp[w1, w2, . . . , wm]

be the Sylvester resultant and let ∆(w1, w2, . . . , wm) =
Na∏
j=1

n∏
k=1

Rkj . Clearly, β picked at ran-

dom in Line 7 is a bad basis shift ⇐⇒ deg(gcd(f̂kj
(z, β), ĝkj

(z, β)) > 0 ⇐⇒ ∆(β) = 0 for

173

any k and j. Using Bezout’s bound [Hu and Monagan, 2016, Lemma 4], we have

deg(Rkj) ≤ deg(fk) deg(gk) ≤ d2.

Thus
Pr[β is a bad basis shift] = Pr[∆(β) = 0] ≤ deg(∆)

p− 1 ≤ nd2Na

p− 1 .

Finally, we deal with the bad prime case. The probability that p is bad is at most

Pr[p divides one term of LC(fk) or LC(gk) for 1 ≤ k ≤ n] ≤
n logpsmin

(‖fk‖∞‖gk‖∞)
Ns

.

Using (7.2) and (7.3), we have Pr[prime p is bad for any 1 ≤ j ≤ Na]

≤
Nan logpsmin

(enmdnn
2 tnhn)2

Ns
≤

2Nan
2
(
logpsmin

(th
√
n) +md logpsmin

e
)

Ns
.

Thus Pr[Algorithm 26 returns FAIL in Line 26] is at most

2Nan
2
(
logpsmin

(th
√
n) +md logpsmin

e
)

Ns
+ 2Nan(1 + d)m

p− 1 + nd2Na

p− 1 . (7.5)

Since Na is greater than the required number of auxiliary rational function needed by
Algorithm 26 to interpolate x, then Line 2 of Subroutine 17 will never return FAIL. However
the feedback polynomial λ ∈ Zp[z] generated to find the number of terms in fi,k or gi,k in
Line 4 of Subroutine 17 might be wrong so it will return FAIL which causes Algorithm
26 to return FAIL in either Lines 29 or 30 or 33 or 34. By Theorem 6.28, we have that
Pr[getting the wrong #fi,k or #gi,k] is at most

∑n
k=1

(∑deg(fk)
i=0 #fi,k(#fi,k + 1) deg(Kr(fi,k)) +∑deg(gk)

i=0 #gi,k(#gi,k + 1) deg(Kr(gi,k)
)

2(p− 1) .

We have

Pr[Algorithm 19 returns FAIL in Lines 29 or 30 or 33 or 34] ≤ 2nt2(1 + d)m+1

p− 1 . (7.6)

since #fi,k,#gi,k ≤ t, deg(fk),deg(gk) ≤ d and deg(Kr(fi,k)), deg(Kr(gi,k)) ≤ (1+d)m. Our
result follows by adding (7.4), (7.5) and (7.6).

Theorem 7.10. Let Na be greater than the required number of auxiliary rational functions
needed to interpolate x. Let q be a new prime selected at random from the list of primes P to
reconstruct the coefficients of x using rational number reconstruction such that |P |= N and
pmin = min(P). Let e ≈ 2.718 be the Euler number. Then Pr[Algorithm 27 returns FAIL]

174

is at most

6Nan
2d
(
logpmin(th

√
n)
)

+ 2Nan
2md logpmin (e)

N
+ 7n2d2Na + 4nd2t2

q − 1 .

Proof. Using (7.4), the probability that Algorithm 27 returns FAIL in Line 12 is at most

4n2dNa

(
d

q
+

logpmin(th
√
n)

N

)
. (7.7)

If the monomial evaluations obtained in Line 19 of Algorithm 27 or the monomial evaluations
obtained in Line 24 of Subroutine 21 are not distinct then

Pr[Algorithm 27 returns FAIL in Line 19 or 30 or 31]

≤
n∑
k=1

(∑deg(fk)
i=0

(#fi,k

2
)

deg(fi,k) +∑deg(gk)
i=0

(#gi,k

2
)

deg(gi,k))
q − 1 ≤ 4nd2t2

q − 1 . (7.8)

Notice that the functions Bj obtained in Line 23 are of the form

fβk (y1, y2, . . . , ym, z)
gβk (y1, y2, . . . , ym, z)

= fk(y1z + β1, . . . , ymz + βm)
gk(y1z + β1, . . . , ymz + βm) ,

and are different from the Aj obtained in Algorithm 26 because a Kronecker map is not
used. Let

∆ =
n∏
k=1

LC(fβk)LC(gβk) ∈ Zp[y1, y2, . . . , ym].

Since deg(∆) ≤ 2nd and Na ≥ N̂max, we have that

Pr[Ŷj picked in Line 8 of Algorithm 27 is bad : 0 ≤ j ≤ N̂max − 1] ≤ 2ndNa

q − 1 .

Hence Pr[Algorithm 27 returns FAIL in Line 25] ≤

2Nan
2
(
logpmin(th

√
n) +md logpmin e

)
N

+ 2ndNa

q − 1 + nd2Na

q − 1 . (7.9)

Our result follows by adding (7.7), (7.8) and (7.9).

7.4.5 Complexity Analysis

Theorem 7.11. Let B = [A|b] be a n × (n + 1) augmented matrix such that #Bij ≤ t

and deg(Bij) ≤ d. Suppose the integer coefficients of Bij are l base C digits long. That is,
‖Bij‖∞≤ C l. Let prime p chosen at random from P and C < p < 2C. A black box probe
costs O(n2tl + n2mdt+ n3) arithmetic operations in Zp.

175

Proof. This follows from Theorem 6.44.

Theorem 7.12. Let N̂max = nmax
k=1

(
deg(fk)
max
i=0
{#fi,k},

deg(gk)
max
i=0
{#gi,k}) where fi,k, gi,k, fk, gk are as

defined in (7.1) and let emax = 2+maxnk=1{deg(fk)+deg(gk)}. LetH = maxk(‖fk‖∞, ‖gk‖∞)).
Then the number of black box probes required by our algorithm to interpolate the solution
vector x is O(emaxN̂max logH).

Proof. This follows from Theorem 6.45.

7.5 Implementation and Benchmarks

7.5.1 Implementation

We have implemented our new algorithm in Maple with some parts coded in C to improve its
overall efficiency. The parts coded in C include evaluating an augmented matrix at integer
points modulo prime p, solving the evaluated augmented matrix with integer entries over Zp
using Gaussian elimination, finding and factoring the feedback polynomial produced by the
Berlekamp-Massey algorithm, solving a t× t shifted Vandermonde system and performing
dense rational function interpolation using the MQRFR algorithm modulo a prime. Each
probe to the black box is computed using C code, and it supports primes up to 63 bits
in length. We have benchmarked our code on a 24 core Intel Gold 6342 processor (maple

server) with 256 gigabytes of RAM using only 1 core running at 2.8GHz (base) and 3.5GHz
(turbo).

7.5.2 Benchmarks

To test the performance of our algorithm, we create the following artificial problem where
det(A) � #gk and # det(Ak) � #fk. Let D ∈ Z[y1, y2, . . . , ym]n×n with rank(D) = n.

Let the coefficient matrix A be a diagonal matrix such that its diagonal entries are non-zero
polynomials g1, . . . , gn and let the vector

b =
[
f1 f2 · · · fn

]T
.

Clearly, the vector
x =

[
f1
g1

f2
g2
· · · fn

gn

]T
solves Ax = b. But, suppose we create a new parametric linear system

Wx∗ = c

by premultiplying Ax = b by D so that

Wx∗ = (DA)x∗ = Db = c.

176

Then both parametric systems Ax = b and Wx∗ = c are equivalent. That is,

x∗ = W−1c = adj(DA)c
det(DA) = adj(A)adj(D)Db

det(D) det(A) = adj(A)b
det(A) = A−1b = x

where adj denotes the adjoint matrix. Our main idea for creating this test problem is to
ensure that gcd(det(W i),det(W)) is large, so that our new method avoids the gcd compu-
tations and computing large determinants.

In Table 7.1, we compare our new algorithm (row ParamLinSolve) with a Maple im-
plementation of the Bareiss/Edmonds fraction free one step Gaussian elimination method
with Lipson’s fraction formula for back substitution (row Bareiss), a Maple implementa-
tion of the Gentleman & Johnson minor expansion method (row Gentleman) and using
Maple’s commands ReducedRowEchelonForm (row ReducedRow) and LinearSolve (row
LinearSolve) for solving the systems Wx∗ = c that were created artificially. The artificial
systems Wx∗ = c for Table 7.1 were created using the following Maple code:

CreateSystem := proc(n,m,T,dT,t,d) local A, D,W,c,b,Y,i;

Y := [seq(y||i,i=1..m)];

D := Matrix(n,n, () -> randpoly(Y,terms=T, degree=dT));

b := Vector[column](n, () -> randpoly(Y, terms = t, degree= d));

i := [seq(randpoly(Y, terms = t, degree= d),i=1..n)];

A := DiagonalMatrix(i);

W,c := D.A, D.b; return W,c,A,D;

end:

The three input systems solved in Table 7.3 are real systems (Example 1.12 and two
other real systems) which were the motivation for this work. Note that the timings reported
for the real systems in Table 7.3 are in the columns and not in rows as in Table 7.1. The
breakdown of the timings for all individual algorithms involved for computing the system
named bigsys are reported in 7.2. Column max in Table 7.3 contains the number of terms
in the largest polynomial to be interpolated in the rational functions of the unique solution
of a parametric linear system.

The artificial input systems Wx∗ = c were created by generating matrices D,A and col-
umn vector b randomly, with all of their entries in Z[y1, . . . , ym] where m = 10,deg(Dij) ≤
dT = 5,#Di,j = T ≤ 2 and deg(Aij), deg(bj) ≤ d = 10,#Ai,j ,#bj = t ≤ 5 and
rank(A) = rank(D) = n for 3 ≤ n ≤ 10. Using the Gentleman & Johnson algorithm,
we obtain # det(A),# det(D),# det(W) (rows 2-4) and the total CPU time used to com-
pute each of them are reported in rows 10-13. We remark that we did not compute the
gcd(det(Ak), det(A)) when the Gentleman & Johnson algorithm was used. As the reader
can see from Table 7.1, our algorithm performed better than other algorithms for n ≥ 5.

177

Table 7.1: CPU Timings for solving Wx∗ = c with #fi,#gi ≤ 5 for 3 ≤ n ≤ 10.

n 3 4 5 6 7 8 9 10
det(A) 125 625 3,125 15,500 59,851 310,796 1,923,985 9,381,213
det(D) 40 336 3,120 38,784 518,009 8,477,343 156,424,985 NA
det(W) 5,000 209,960 9,741,747 NA NA NA NA NA

ParamLinSolve 0.079s 0.176s 0.154s 0.211s 0.220s 0.239s 0.259s 0.317s
LinearSolve 0.129s 1.26s 304.20s 124200s ! ! ! !
ReducedRow 0.01s 0.083 11.05s 3403.2s ! ! ! !

Bareiss 2.02s ! ! ! ! ! ! !
Gentleman 0.040s 3.19s 239.40s ! ! ! ! !
time-det(A) 0s 0s 0.003s 0.08s 0.898s 0.703s 17.03s 25.32s
time -det(D) 0s 0s 0.007s 1.21s 1.39s 601.8s 2893.8s !
time-det(W) 0s 0.310s 20.44s ! ! ! ! !

! = out of memory and NA means Not Attempted

Table 7.2: Breakdown of CPU timings for all individual algorithms for computing bigsys

Time(ms) Percentage
Matrix Evaluation 151.48s 1.9 %

Gaussian Elimination 110.71s 1.4 %
Univariate Rational Function Interpolation 706.07s 9 %

Finding λ ∈ Zp[z] using the Berlekamp-Massey Algorithm 208.25s 2.6 %
Roots of λ over Zp 4856.96s 62 %

Solving Vandermonde systems 434.46s 5.6 %
Multiplication and Addition of Evaluation points 257.40s 3.3 %

Computing Discrete logarithms 586.64s 7.6 %
Miscellaneous 464.67s 9.4 %
Overall Time 7776s 100 %

Table 7.3: CPU Timings for solving three real parametric linear systems

system names n m max ParamLinSolve Gentleman LinearSolve ReducedRow Bareiss # det(A)
Bspline 21 5 26 0.220s 2623.8s 0.021s 0.026s 0.500s 1033
Bigsys 44 48 58240 7776s ! 17.85s 1.66s ! 6037416
Caglar 12 56 23072 1685.57s NA 1232.40s 15480.35s NA 15744
Sys66a 66 34 145744 665507.32s (184.86) hours ! ! ! ! NA
Sys66b 66 31 107468 255819.27s (71.06) hours ! ! ! ! NA

! = out of memory and NA=Not Attempted

178

In our experiments, the cost of evaluating augmented matrices over Zp is often the
most expensive part. But as the reader can see in Table 7.2, computing the roots of the
feedback polynomial for the bigsys system is the dominating cost. This is because the
number of terms in many of the polynomials fi, gi to be interpolated is large. In particular,
it has four polynomials where max(#fi,#gi) > 50, 000 and our root finding algorithm for
computing the roots of λ(z) costs O(t2 log p) where t = deg(λ) is the number of terms of
the polynomials fi and gi being interpolated. Faster root finding algorithms such as the
Tangent Graeffe algorithm by Grenet, vander Hoeven and Lecerf [Grenet et al., 2015] and
vander Hoeven and Monagan [van der Hoeven and Monagan, 2020] which uses O(t log p)
arithmetic operations in Zp could be used to speed up our new algorithm.

179

Chapter 8

Conclusion

In this thesis, we have developed a new sparse multivariate rational function interpolation
algorithm which uses a new set of evaluation points and employs a Kronecker substitution
to effectively reduce the size of our working primes. This new approach transforms the
problem of interpolating a multivariate rational function using Cuyt and Lee’s method and
the Ben-Or/Tiwari algorithm into a univariate rational function interpolation problem.

We have designed a new Dixon resultant algorithm that computes the monic square-free
factors of the Dixon resultant R of a parametric polynomial system using our new sparse
rational function interpolation method. We have shown that there is a huge reduction in
the number of terms, the number of black box probes required, and the number of primes
needed when the monic square-free factors Rj of the Dixon resultant R are interpolated
instead of interpolating the Dixon resultant R on problems in practice.

We have implemented our Dixon resultant algorithm in Maple and implemented several
subroutines in C including the evaluation of the Dixon matrix modulo a prime, computing
the determinant of integer matrices modulo a prime, solving a t × t shifted Vandermonde
system and performing dense rational function interpolation using the MQRFR algorithm
modulo a prime. We have tested our new Dixon resultant code on many real parametric
polynomial systems that emerged from practical problems.

Our benchmarks showed that our new Dixon resultant algorithm is much faster than
other algorithms (Zippel’s sparse interpolation, Gentleman & Johnson and Dixon-EDF
method) for computing R in expanded form whenever the Dixon resultant is large while
it has relatively small square-free factors or a large polynomial content. However, our new
code is not always the fastest.

We have comprehensively identified all the causes of failure in our new Dixon resultant
algorithm. Additionally, we have presented a thorough analysis of failure probabilities, and
we have also presented the complexity of our new algorithm in terms of the number of black
box probes involved.

Furthermore, we have applied our new sparse rational function interpolation method
to solve the problem of interpolating the rational function entries of the unique solution

180

vector of a parametric linear system. A new black box algorithm has been developed and
implemented in Maple and C. We have compared the performance of our new black box al-
gorithm for solving parametric linear systems to other known algorithms/implementations.
A detailed failure probability and complexity analysis was also presented.

181

Bibliography

Albert Dixon. On a form of the eliminant of two quantics. Proceedings of the London
Mathematical Society, 2(1):468–478, 1908.

Albert Dixon. The eliminant of three quantics in two independent variables. Proceedings
of London Mathematical Society, 6(4969):209–236, 1909.

Aleksandr Gelfond. Transcendental and Algebraic numbers. Courier Dover Publications,
2015.

Annie Cuyt and Wen-shin Lee. Sparse interpolation of multivariate rational functions.
Theoretical Computer Science, 412(16):1445–1456, 2011.

Arthur Cayley. Note sur la méthode d’élimination de Bezout. J. Reine Angew. Math., 53:
366–367, 1857.

Arthur Cayley. On the theory of elimination. Cambridge and Dublin Mathematical Journal,
III:210–270, 1865.

Arthur D Chtcherba and Deepak Kapur. On the efficiency and optimality of Dixon-based
resultant methods. In Proceedings of ISSAC ’2002, pages 29–36. ACM, 2002.

Ayoola Jinadu and Michael Monagan. An Interpolation Algorithm for computing Dixon
Resultants. In Proceedings of CASC ’2022, LNCS 13366:185–205. Springer, 2022a.

Ayoola Jinadu and Michael Monagan. A new interpolation algorithm for computing Dixon
resultants. In Comms. in Computer Algebra 3:88-91, pages 88–91. ACM, 2022b.

Ayoola Jinadu and Michael Monagan. Solving Parametric Linear Systems using Sparse
Rational Function Interpolation. In Proceedings of CASC ’2023, LNCS 14139:233–254.
Springer Nature Switzerland, 2023.

Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal
of Symbolic Computation, 41:475–511, 2006.

Bruno Grenet, Joris van Der Hoeven, and Gregoire Lecerf. Randomized root finding over
finite FFT-fields using tangent Graeffe transforms. In Proceedings of ISSAC 2015, pages
197–204. ACM, 2015.

Daniel Roche. What can (and can’t) we do with sparse polynomials? In Proceedings of
ISSAC, pages 25–30. ACM, 2018.

182

Daniel Shanks. Class number, a theory of factorization, and genera. In Proc. Symp. Math.
Soc., volume 20, pages 415–440, 1971.

David Cox, John Little, and Donal O’Shea. Using Algebraic Geometry. Graduate Texts in
Mathematics. Springer New York, 2005.

David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. Fourth
Edition, Springer Cham, 2015.

Deepak Kapur and Lakshman Yagati. Elimination methods: An introduction. In Proceedings
of Symbolic and Numerical Computation for Artificial Intelligence, pages 45–89. Academic
Press, 1992.

Deepak Kapur and Tushar Saxena. Comparison of various multivariate resultant formula-
tions. In Proceedings of ISSAC 1995, pages 187–194. ACM, 1995.

Deepak Kapur and Tushar Saxena. Extraneous factors in the Dixon resultant formulation.
In Proceedings of ISSAC 1997, pages 141–148. ACM, 1997.

Deepak Kapur, Tushar Saxena, and Lu Yang. Algebraic and geometric reasoning using
Dixon resultants. In Proceedings of ISSAC 1994, pages 99–107. ACM, 1994.

Duane Storti. Algebraic Skeleton Transform: A symbolic computation challenge. Sub-
mitted to Faculty Papers and Data, Mechanical Engineering, ResearchWorks Archive.
http://hdl.handle.net/1773/48587, 2022.

Erich Kaltofen. Fifteen years after DSC and WLSS2 what parallel computations i do today:
invited lecture at PASCO 2010. In PASCO, volume 10, pages 10–17. ACM, 2010.

Erich Kaltofen and Barry M Trager. Computing with polynomials given by black boxes for
their evaluations: greatest common divisors, factorization, separation of numerators and
denominators. Journal of Symbolic Computation, 9(3):301–320, 1990.

Erich Kaltofen and Zhengfeng Yang. On exact and approximate interpolation of sparse
rational functions. In Proceedings of ISSAC 2007, pages 203–210. ACM, 2007.

Erich Kaltofen, Wen-shin Lee, and Austin A Lobo. Early termination in Ben-Or/Tiwari
sparse interpolation and a hybrid of zippel’s algorithm. In Proceedings of ISSAC 2000,
pages 192–201. ACM, 2000.

Erwin Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination.
Math. of Computation, 22(103):565–578, 1968.

Francis Macaulay. Some formulae in elimination. Proceedings of the London Mathematical
Society, 35(1):3–27, 1902.

Francis Macaulay. The Algebraic Theory of Modular Systems, volume 19. Cambridge Tracts
in Mathematics and Mathematical Physics, 1916.

Hirokazu Murao and Tesuro Fujise. Modular algorithm for sparse multivariate polynomial
interpolation and its parallel implementation. Journal of Symbolic Computation, 21(4):
377–396, 1996.

183

Jack Edmonds. Systems of distinct representatives and Linear algebra. J. Res. Nat. Bur.
Standards Sect. B, 71(4):241–245, 1967.

Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.

Jennifer de Kleine, Michael Monagan, and Allan Wittkopf. Algorithms for the non-monic
case of the sparse modular GCD algorithm. In Proceedings of the ISSAC 2005, pages
124–131. ACM, 2005.

Jiaxiong Hu. Computing polynomial greatest common divisors using sparse interpolation.
PhD Thesis, Simon Fraser University, 2018.

Jiaxiong Hu and Michael Monagan. A fast parallel sparse polynomial GCD algorithm. In
Proceedings of ISSAC 2016, pages 271–278. ACM, 2016.

Jiaxiong Hu and Michael Monagan. A fast parallel sparse polynomial GCD algorithm.
Journal of Symbolic Computation, 105:28–63, 2021.

Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge uni-
versity press, 2013.

John D Lipson. Symbolic methods for the computer solution of linear equations with
applications to flowgraphs. Proceedings of SISMC, pages 233–303, 1969.

Joris van der Hoeven and Michael Monagan. Implementing the tangent Graeffe root finding
method. In Proceedings of ICMS 2020, pages 482–492. Springer, 2020.

Keith O Geddes, Stephen R Czapor, and George Labahn. Algorithms for computer algebra.
Kluwer, 1992.

M Moreno Maza. On triangular decompositions of algebraic varieties. Technical report,
TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-2000 Conference, Bath,
England, 2000.

Manfred Minimair. Randomized detection of extraneous factors. In Proceedings of ISSAC
2014, pages 335–342. ACM, 2014.

Manfred Minimair. Computing the Dixon Resultant with the Maple Package DR. In
Applications of Computer Algebra: Kalamata, Greece, July 20–23 2015, pages 273–287.
Springer, 2017.

Mark Giesbrecht and Daniel S Roche. Interpolation of shifted-lacunary polynomials. Com-
putational Complexity 19(3): 333–354, 2010.

Mark Giesbrecht, George Labahn, and Wen-shin Lee. Symbolic-numeric sparse interpolation
of multivariate polynomials. In Proceedings of ISSAC 2006, pages 116–123, 2006.

Mark Giesbrecht, George Labahn, and Wen-shin Lee. Symbolic–numeric sparse interpo-
lation of multivariate polynomials. Journal of Symbolic Computation, 44(8):943–959,
2009.

184

Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of the twentieth annual ACM symposium on
theory of computing, pages 301–309, 1988.

Michael Kalkbrener. Three contributions to elimination theory. PhD Thesis, Research
Institute for Symbolic Computation, 1991.

Michael Monagan. Maximal quotient rational reconstruction: an almost optimal algorithm
for rational reconstruction. In Proceedings of ISSAC 2004, pages 243–249. ACM, 2004.

Michael Monagan. Private Communication. 2023a.

Michael Monagan. Implementation of the Gentleman & Johnson minor expansion algorithm
and the Dixon-EDF algorithm in Maple, 2023b.

Michael Monagan and Roman Pearce. The design of Maple’s sum-of-products and POLY
data structures for representing mathematical objects. ACM Communications in Com-
puter Algebra, 48(3/4):166–186, 2015.

Nadia Ben Atti, Gema M Diaz-Toca, and Henri Lombardi. The Berlekamp-Massey algo-
rithm revisited. AAECC, 17:75–82, 2006.

Niels Möller and Torbjorn Granlund. Improved division by invariant integers. IEEE Trans-
actions on Computers, 60(2):165–175, 2010.

Paul S Wang. A p-adic algorithm for univariate partial fractions. In Proceedings of the
fourth ACM symposium on Symbolic and algebraic computation, pages 212–217, 1981.

Paul Vrbik and Michael Monagan. Lazy and Forgetful Polynomial Arithmetic and Appli-
cations. 2009.

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of EU-
ROSAM 79, pages 216–226. Springer, 1979.

Richard Zippel. Interpolating polynomials from their values. Journal of Symbolic Compu-
tation, 9(3):375–403, 1990.

Robert Lewis. The Kapur-Saxena-Yang Variant of the Dixon Resultant, 1996. URL https:
//www.math.unm.edu/~vageli/SEMINAR/KSYResult.pdf.

Robert Lewis. Comparison of the greatest common divisor (GCD) in several systems, 2004.
URL https://home.bway.net/lewis/fermat/gcdcomp.

Robert Lewis. Dixon-EDF: the premier method for solution of parametric polynomial
systems. In ACA 2015, pages 237–256. Springer, 2017.

Robert Lewis. Private Communication. 2018a.

Robert Lewis. Resultants, Implicit parameterizations, and Intersections of surfaces. In
Proceedings of ICMS 2018, pages 310–318. Springer, 2018b.

Robert Lewis. New heuristics and extensions of the Dixon resultant for solving polynomial
systems. Talk at: Applications of Computer Algebra, Montreal, Canada, pages 16–20,
2019.

185

https://www.math.unm.edu/~vageli/SEMINAR/KSYResult.pdf
https://www.math.unm.edu/~vageli/SEMINAR/KSYResult.pdf
https://home.bway.net/lewis/fermat/gcdcomp

Robert Lewis. Image Analysis: Identification of Objects via Polynomial Systems. Mathe-
matics in Computer Science, 14(3):551–558, 2020.

Sara Khodadad and Michael Monagan. Fast rational function reconstruction. In Proceedings
of ISSAC 2006, pages 184–190. ACM, 2006.

Shafi Goldwasser and Guy Rothblum. On best-possible obfuscation. In Theory of Cryptog-
raphy: 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands,
February 21-24, 2007. Proceedings 4, pages 194–213. Springer, 2007.

Snehal Bhayani, Zuzana Kukelova, and Janne Heikkila. A sparse resultant based method
for efficient minimal solvers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1770–1779, 2020.

Stephen Pohlig and Hellman Martin. An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. 24:106–110, 1978.

W. Gentleman and S. Johnson. The evaluation of determinants by expansion by minors
and the general problem of substitution. Mathematics of Computation 28(126):543–548,
1974.

Wen-tsun Wu. A zero structure theorem for polynomial equations solving and its applica-
tions. 1:2–12, MM Research Preprints, 1997.

William S Brown. On Euclid’s algorithm and the computation of polynomial greatest
common divisors. Journal of the ACM, 18(4):478–504, 1971.

Wolfgang Schmidt. Equations over finite fields: an elementary approach, volume 536.
Springer, 2006.

186

Appendix A

Input Parametric Systems for the
data reported in Table 1.3

A.1 Robot arms system
F = {f̂1, f̂2, f̂3, f̂4} ⊂ Q[y1, y2, . . . , y7][x1, x2, x3, x4] using lexicographical order with x2 >
x3 > x4 > x1 where

f̂1 = x2
1x

2
2x

2
3x

2
4y1 + x2

1x
2
2x

2
3y1 + 2x2

1x
2
2x

2
3y4 + x2

1x
2
2x

2
4y1 − 2x2

1x
2
2x

2
4y4 + x2

1x
2
3x

2
4y1

+ x2
2x

2
3x

2
4y1 − 2x2

2x
2
3x

2
4y3 + x2

1x
2
2y1 + x2

1x
2
3y1 + 2x2

1x
2
3y3 + 2x2

1x
2
3y4 + x2

1x
2
4y1 + 2x2

1x
2
4y3

− 2x2
1x

2
4y4 + x2

2x
2
3y1 − 2x2

2x
2
3y3 + 2x2

2x
2
3y4 + x2

2x
2
4y1 − 2x2

2x
2
4y3 − 2x2

2x
2
4y4 + x2

3x
2
4y1

+ x2
1y1 + 2x2

1y3 + x2
2y1 − 2x2

2y3 + x2
3y1 + 2x2

3y4 + x2
4y1 − 2x2

4y4 + y1 + 2x2
1x

2
3x

2
4y3

f̂2 = 2x2
1x

2
2x

2
3x4y4 − 2x2

1x
2
2x3x

2
4y4 + 2x2

1x2x
2
3x

2
4y3 − 2x1x

2
2x

2
3x

2
4y3 − 2x2

1x
2
2x3y4 + 2x2

1x
2
2x4y4

+ 2x2
1x2x

2
3y3 + 2x2

1x2x
2
4y3 + 2x2

1x
2
3x4y4 − 2x2

1x3x
2
4y4 − 2x1x

2
2x

2
3y3 − 2x1x

2
2x

2
4y3

+ 2x2
2x

2
3x4y4 − 2x2

2x3x
2
4y4 + 2x2x

2
3x

2
4y3 + 2x2

1x2y3

− 2x1x
2
3y3 − 2x1x

2
4y3 − 2x2

2x3y4 + 2x2
2x4y4 + 2x2x

2
3y3 + 2x2x

2
4y3 + 2x2

3x4y4 − 2x3x
2
4y4

− 2x1y3 + 2x2y3 − 2x3y4 + 2x4y4 − 2x2
1x3y4 + 2x2

1x4y4 − 2x1x
2
2y3 − 2x1x

2
3x

2
4y3

f̂3 = −x2
1x

2
3y

2
2y3 − x2

1x
2
3y

2
2y4 − x2

1x
2
3y

2
2y5 − x2

1x
2
3y

2
2y6 − x2

1x
2
3y3 − x2

1x
2
3y4 + x2

1x
2
3y5

− 4x2
1x3y2y5 − x2

1y
2
2y3 + x2

1y
2
2y4 + x2

1y
2
2y5 − x2

1y
2
2y6 + x2

3y
2
2y3 − x2

3y
2
2y4 − x2

3y
2
2y5

− x2
1y3 + x2

1y4 − x2
1y5 − x2

1y6 + x2
3y3 − x2

3y4 + x2
3y5 − x2

3y6 − 4x3y2y5 + y2
2y3 + y2

2y4

− y2
2y6 + y3 + y4 − y5 − y6 − x2

1x
2
3y6 − x2

3y
2
2y6 + y2

2y5 + y2
2y5

f̂4 = −x2
1x

2
3y

2
2y7 − 2x2

1x
2
3y2y5 + 2x2

1x3y
2
2y4 + 2x2

1x3y
2
2y5 + 2x1x

2
3y

2
2y3 − x2

1x
2
3y7 − x2

1y
2
2y7

− x2
3y

2
2y7 + 2x2

1x3y4 − 2x2
1x3y5 + 2x2

1y2y5 + 2x1x
2
3y3 + 2x1y

2
2y3 − 2x2

3y2y5

+ 2x3y
2
2y4 + 2x3y

2
2y5 − x2

1y7 − x2
3y7 − y2

2y7 + 2x1y3 + 2x3y4 − 2x3y5 + 2y2y5 − y7.

A.2 Circle system
F = {f̂1, f̂2, f̂3, f̂4, · · · f̂9} ⊂ Q[y1, y2, y3, y4][x1, x2, x3, x4, . . . , x9] using lexicographical order
with x2 > x3 > x4 > · · · > x9 > x1 where

187

f̂1 = x2
7 − 2x7y1 + x2

8 − 2x8x9 + x2
9 + y2

1 − y2
4

f̂2 = x2
7y

4
2 + x2

8y
4
2 − y4

2y
2
4 − 4x1x7y

3
2 − 4x8y

4
2 + 4x2

1y
2
2 + 2x2

7y
2
2 + 2x2

8y
2
2 + 4y4

2 − 2y2
2y

2
4

− 4x1x7y2 − 4x8y
2
2 + x2

7 + x2
8 − y2

4

f̂3 = x1x7y
4
2 − 2x2

1y
3
2 − 2x8y

3
2 + 2x2

1y2 + 4y3
2 − x1x7 − 2x8y2

f̂4 = −x3y
2
2y

2
4 + x2

7y
2
2 − x7y1y

2
2 + x2

8y
2
2 − x8x9y

2
2 − 2x1x7y2 + 2x1y1y2 − x3y

2
4 − 2x8y

2
2

+ 2x9y
2
2 + x2

7 − x7y1 + x2
8 − x8x9

f̂5 = −x2
1x

2
3y

4
2 − x2

2y
4
2y

2
4 + 2x2

1x
2
3y

2
2 + x2

1y
4
2 − 2x2

2y
2
2y

2
4 − x2

1x
2
3 − 2x2

1y
2
2 − x2

2y
2
4 − 4x2

3y
2
2

+ x2
1 + 4y2

2

f̂6 = x1x7y
4
2 + x4x7y

4
2 + x5x8y

4
2 − 2x2

1y
3
2 − 2x1x4y

3
2 − 2x5y

4
2 + 2x4x7y

2
2 + 2x5x8y

2
2

− 2x8y
3
2 + 2x2

1y2 − 2x1x4y2 − 2x5y
2
2 + 4y3

2 − x1x7 + x4x7 + x5x8 − 2x8y2

f̂7 = x4x7 − x4y1 + x5x8 − x5x9 − x6x8 + x6x9 − x7y3 + y1y3

f̂8 = x2
1y

4
2 + x1x4y

4
2 + 2x1x7y

3
2 + x8y

4
2 − 6x2

1y
2
2−

2x5y
3
2 − 2y4

2 + 2x1x7y2 + x2
1 − x1x4 − 2x5y2 + 6y2

2 − x8

f̂9 = −x2y
2
2y

2
4 + x1x7y

2
2 − x1y1y

2
2 + 2x4x7y

2
2 − x4y1y

2
2 + 2x5x8y

2
2 − x5x9y

2
2 − x6x8y

2
2

− x7y
2
2y3 − 2x1x4y2 + 2x1y2y3 − x2y

2
4 − 2x5y

2
2 + 2x6y

2
2 − x1x7 + x1y1 + 2x4x7

− x4y1 + 2x5x8 − x5x9 − x6x8 − x7y3 − 2x8y2 + 2x9y2

A.3 Geddes2 system
F = {f̂1, f̂2, f̂3, f̂4} ⊂ Q[y1][x1, . . . , x4] using lexicographical order with x2 > x3 > x4 > x1
where

f̂1 =2 (x1 − 1)2 + 2x2
3 − 2x3x2 + 2x2 + y2

1 (x2 − 1)2 − 2x1x2 + 2y1x4 (1− x2) (x2 − x3)
+2x1x3x2x4 (x4 − y1) + x2

1x
2
4 (1− 2x3) + 2x1x

2
4 (x3 − x2) + 2x1x4y1 (x3 − 1)

+ 2x1x3x2 (y1 + 1) +
(
x2

1 − 2x1
)
x2

3x
2
4 + 2x2

1x
2
3 + 4x1 (1− x1)x3 + x2

4 (x3 − x2)2

f̂2 =x4 (2x3 + 1) (x2 − x3) + y1 (x3 + 2) (1− x2) + x1 (x1 − 2)x4 + x1 (1− 2x1)x3x4+
x1y1 (−x3x2 + x2 + x3 − 1) + x1 (x1 + 1)x2

3x4

f̂3 =− x2
1 (x3 − 1)2 + 2x3 (x3 − x2)− 2x2 + 2

f̂4 =x2
1 − 4x2

2 + 4x3 + 3y2
1 (x2 − 1)2 − 3x2

4 (x3 − x2)2 + 3x2
1x

2
4 (x3 − 1)2 + x2

1x3 (x3 − 2)
+ 6x1x4y1 (x3x2 + x2 + x3 − 1)

188

A.4 Heron3d system
F = {f̂1, f̂2, · · · , f̂6} ⊂ Q[y1, y2, . . . , y6][x1, x2, . . . , x6] using lexicographical order with x2 >
x3 > x4 > x5 > x6 > x1 where

f̂1 = x2
2 + x2

3 − y2
3

f̂2 = (x2 − y1)2 + x2
3 − y2

2

f̂3 = x2
4 + x2

5 + x2
6 − y2

6

f̂4 = (x4 − y1)2 + x2
5 + x2

6 − y2
4

f̂5 = (x4 − x2)2 + (x5 − x3)2 + x2
6 − y2

5

f̂6 = −x3x6y1 + 6x1,

A.5 Heron4d system
F = {f̂1, f̂2, · · · , f̂9} ⊂ Q[y1, y2, . . . , y10][x1, x2, . . . , x10] using lexicographical order with
x2 > x3 > · · · > x9 > x10 > x1 where

f̂1 = x2
2 + x2

3 − y2
3

f̂2 = (x2 − y1)2 + x2
3 − y2

2

f̂3 = x2
4 + x2

5 + x2
6 − y2

6

f̂4 = (x4 − y1)2 + x2
5 + x2

6 − y2
4

f̂5 = (x4 − x2)2 + (x5 − x3)2 + x2
6 − y2

5

f̂6 = x2
7 + x2

8 + x2
9 + x2

10 − y2
7

f̂7 = (x7 − y1)2 + x2
8 + x2

9 + x2
10 − y2

8

f̂8 = (x7 − x2)2 + (x8 − x3)2 + x2
9 + x2

10 − y2
9

f̂9 = (x7 − x4)2 + (x8 − x5)2 + (x9 − x6)2 + x2
10 − y2

10

f̂10 = −x3x6x10y1 + 24x1

189

A.6 Heron5d system
F = {f̂1, f̂2, · · · , f̂9} ⊂ Q[y1, y2, . . . , y15][x1, x2, . . . , x15] using lexicographical order with
x2 > x3 > x4 > x5 > x6 > · · · > x15 > x1 where

f̂1 = x2
5 + x2

9 − y2
3

f̂2 = −2x5y1 + y2
1 − y2

2 + y2
3

f̂3 = x2
6 + x2

10 + x2
13 − y2

6

f̂4 = −2x6y1 + y2
1 − y2

4 + y2
6

f̂5 = −2x5x6 − 2x9x10 + y2
3 − y2

5 + y2
6

f̂6 = x2
3 + x2

7 + x2
11 + x2

14 − y2
7

f̂7 = −2x7y1 + y2
1 + y2

7 − y2
8

f̂8 = −2x5x7 − 2x9x11 + y2
3 + y2

7 − y2
9

f̂9 = −2x6x7 − 2x10x11 − 2x13x14 + y2
6 + y2

7 − y2
10

f̂10 = x2
2 + x2

4 + x2
8 + x2

12 + x2
15 − y2

11

f̂11 = −2x8y1 + y2
1 + y2

11 − y2
12

f̂12 = −2x5x8 − 2x9x12 + y2
3 + y2

11 − y2
13

f̂13 = −2x6x8 − 2x10x12 − 2x13x15 + y2
6 + y2

11 − y2
14

f̂14 = −x2x3x9x13y1 + 120x1

f̂15 = −2x3x4 − 2x7x8 − 2x11x12 − 2x14x15 + y2
7 + y2

11 − y2
15

190

Appendix B

Subresultants

Definition B.1. Let F be a field and let

f(x) = a0 + a1x+ a2x
2 + · · · adf

xdf

g(x) = b0 + b1x+ b2x
2 + · · · bdgx

dg

where the coefficients ai, bj ∈ F [y1, y2, . . . , ym], for 0 ≤ i ≤ df = deg(f) and 0 ≤ j ≤ dg =
deg(g). For 0 ≤ k ≤ min{df , dg}, the k-th subresultant of f and g as denoted by σk is
defined as the determinant σk ∈ F of the (dg + df − 2k)× (dg + df − 2k) matrix

Sk =



adf
bdg

adf−1 adf
bdg−1 bdg

...
adf−dg+k+1 adf

bk+1 bdg

...
...

... . . .
ak+1 adg bdg−df +k+1 bdg

...
...

...
...

...
...

a2k−dg+1 ak b2k−df +1 bk


where S0 is the Sylvester matrix of f and g.

The matrix Sk is the matrix obtained from the Sylvester matrix by deleting the last 2k
rows and the last k columns with coefficients of f and the last k columns with coefficients
of g. We also note that the matrix Sk is a submatrix of Si if k ≥ i.

Theorem B.2. [von zur Gathen and Gerhard, 2013, Theorem 6.53, Theorem 6.54 and
Exercise 6.49]

Let r∗i , q∗i , s∗i denote the results of the Extended Euclidean Algorithm and let ri, qi, si
denote the results of the monic Extended Euclidean Algorithm. Let αi = LC(ri) and ni =
deg(r∗i) for 0 ≤ i ≤ l, σk is the k-th sub-resultant and Sk the sub-matrix of the Sylvester
matrix S(f, g) whose determinant is σk for 0 ≤ k ≤ n1.

1 Let Ki and λi be the constant coefficients of si = α−1
i s∗i and ti = α−1

i t∗i respectively for
2 ≤ i ≤ l. We have:

191

(i) Ki = det(Yi)
σni

, λi = det(Zi)
σni

where Yi, Zi are matrices that result from Sni by
replacing a certain column by a unit vector.

(ii) α2 = σn2

γ2
and αi =

(−1)i−1σniσni−1

γiαi−1
where γ2 = det(Y2) and

γi = det(Yi−1) det(Zi)− det(Zi−1) det(Yi)

for 3 ≤ i ≤ l.

(iii) αi = (−1)
(i+1)(i+2)

2 σni

i∏
j=2

γ
(−1)i+j−1

j for 2 ≤ i ≤ l.

2 Let F be a field and let f, g ∈ F [x, y] have degrees at most d in y and deg(f, x) =
n ≥ deg(g, x) = m and 2 ≤ i ≤ l. The results r∗i , q∗i , s∗i of the Extended Euclidean
Algorithm for f and g in F (y)[x] have numerators and denominators (in the lowest
terms) of degree in y at most (n+m)d. The numerator and denominator of the leading
coefficient αi has degree in y of at most i(n+m)d.

192

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Black Box Model
	Motivation and Contributions
	Solving parametric polynomial systems using Dixon resultants
	Solving Ax=b using sparse rational function interpolation

	Some Elimination Techniques
	Sylvester Resultant
	Macaulay Resultant
	Gröbner Bases

	Thesis Outline
	Published Work
	Demo of Software

	Dixon Resultants
	Summary of Contributions
	Generalized Formulation
	Computing the Dixon Polynomial
	Constructing a Dixon Matrix
	Dixon Resultant
	Extracting a maximal rank sub-matrix M from a Dixon Matrix D
	The Failure Probability of Algorithm ??

	Sparse Interpolation Tools
	Summary of Contributions
	Sparse Polynomial Interpolation
	Zippel's sparse interpolation
	Ben-Or/Tiwari Interpolation
	Using discrete logarithms in the Ben-Or/Tiwari algorithm

	Rational Function Interpolation
	The Extended Euclidean Algorithm
	The Monic Extended Euclidean Algorithm
	Univariate Rational Function Reconstruction

	Sparse Multivariate Rational Function Interpolation
	Cuyt and Lee's algorithm

	Modified Interpolation using a Kronecker Substitution
	Summary of Contributions
	Introduction
	Using a Kronecker substitution on the parameters
	Pre-computing the partial degrees of A=f/g in each variable
	Kronecker substitution
	Randomizing the evaluation point sequence

	An illustrative example of our new sparse rational function interpolation method
	Pre-computing the total degrees of f and g in A=f/g
	Pre-computing the total degrees of the homogeneous polynomials f_i of f and g_i of g in A=f/g

	New sparse multivariate rational function interpolation algorithm
	The Failure Probability Analysis of Algorithm ??

	The Dixon Resultant Algorithm
	Summary of Contributions
	Introduction
	Degree bounds

	Algorithm DixonRes
	Probabilistic Test
	Identifying the Extraneous factors

	Implementation Notes and Benchmarks
	Speeding up evaluation of the Dixon matrix
	Pre-computing deg(f_i,k) and deg(g_i,k)
	Timings
	Optimization

	 Failure Probability and Complexity Analysis
	Summary of Contributions
	Introduction
	Two Useful Results
	Important Notations and Bounds

	Problems
	Evaluation Points
	Primes
	Monic Univariate Polynomial Images of R
	Unlucky Content
	Auxiliary Univariate Rational Functions
	Discovering the supports of the polynomials f_i,k and g_i,k
	Monomial Evaluations
	Univariate Rational Functions without a Kronecker Substitution

	Main Results
	Complexity Analysis
	The cost of a black box probe
	The number of black box probes required by our algorithm
	Theoretical Comparison

	Solving Ax=b
	Summary of Contributions
	Introduction
	The Algorithm
	Analysis
	Failure Probability Analysis
	Unlucky Primes and Evaluation Points
	Bad Evaluation Points, Primes and Basis Shifts
	Main Results
	Complexity Analysis

	Implementation and Benchmarks
	Implementation
	Benchmarks

	Conclusion
	Bibliography
	 Input Parametric Systems for the data reported in Table 1.3
	Robot arms system
	Circle system
	Geddes2 system
	Heron3d system
	Heron4d system
	Heron5d system

	Subresultants

