
Algorithms for Factoring Square-Free Polynomials

over Finite Fields

Chelsea Richards

August 7, 2009

Given a polynomial in GF(q)[x], there are simple and well known algo-
rithms for determining its square-free part. Assuming that a(x) is a monic,
square-free polynomial of degree n, we will present four algorithms for de-
termining its complete factorization. For what follows let q = pm where p is
a prime number and GF(q) is a finite field consisting of q elements.

8.4 Berlekamp’s Factorization Algorithm

The first algorithm we consider is due to Berlekamp. In order to explain
Berlekamp’s method, we need to introduce some related concepts and nota-
tion. First let V be the ring of residue classes given by GF(q)[x]/ < a(x) >.
It is clear that V is a vector space over GF(q) which is generated by the
set {1, x, x2, . . . , xn−1} and is therefore of dimension n. Now identify the
set {[v(x)] ∈ V : [v(x)]q = [v(x)]} with W= {v(x) ∈ GF(q)[x] : v(x)q ≡
v(x) mod a(x)} and the residue class [v(x)] with v(x) mod a(x).

Theorem 8.4: The subset W is also a subspace of the vector space V.
The proof of this theorem is an easy exercise using the definition of a

subspace and the following:
Let a, b ∈ GF(q). Then

(a+ b)q = aq +
(
q
1

)
aq−1b+

(
q
2

)
aq−2b2 + . . .+

(
q
q−1

)
abq−1 + bq.

And since q divides
(
q
k

)
for any k = 1 . . . (q − 1),

(a+ b)q = aq + bq.

1

Lemma 8.1:(Fermat’s little theorem) For any r ∈ GF(q), rq = r.
Proof: Clearly 0q = 0. So, let r be a nonzero element of GF(q). Then

the set {1, r, r2, . . .} is a finite subgroup of the multiplicative group of GF(q),
which has order q− 1. By Lagrange’s theorem, the order ρ, of the subgroup
{1, r, r2, . . .} and hence of r must be such that ρ | q − 1. This implies that
rq−1 = 1 and hence rq = r, for any nonzero r ∈ GF(q). �

Lemma 8.2: Suppose a(x) is irreducible in GF(q)[x]. Then W is a subspace
of dimension one in V.

Proof: Since a(x) is irreducible we know that V is a field. Therefore
p(z) = zq − z ∈ V[x] can have at most q roots. By Lemma 8.1 (Fermat’s
little theorem), rq = r for all r ∈ GF(q), so each of the q distinct elements of
GF(q) satisfy rq−r = 0. Hence we have that all q roots of p(z) are constants
in GF(q). That is, W consists of q constant polynomials and therefore can
be identified with GF(q), and generated by the single element {1}. So W is
a subspace of dimension one in V. �

Theorem 8.5: The dimension of W is equal to the number of irreducible
factors of a(x).

Proof: Let a(x) = a1(x)a2(x) . . . ak(x) be the unique monic, irreducible
factorization of a(x). For each i from 1 to k let Vi = GF(q)[x]/ < ai(x) >.
By the Chinese remainder theorem the mapping

φ : V −→ V1 ×V2 × · · · ×Vk

defined by φ(v(x)) = (v(x) mod a1(x), v(x) mod a2(x), . . . , v(x) mod ak(x))
is a ring isomorphism. Now since vq ≡ v mod a(x) implies that vq ≡
v mod ai for each i from 1 to k, φ induces the ring homomorphism

φW : W −→W1 ×W2 × . . .×Wk

where Wi = {s ∈ Vi : sq = s}. From Lemma 8.2, since each ai(x) is
irreducible, each Vi is a field and each Wi can be identified with GF(q). Now
to see that the dimension of W is k, we need that φW is an isomorphism.
Consider (s1, s2, . . . , sk) ∈W1×W2×· · ·×Wk. Since φ is onto, there exists
a v(x) ∈V such that φ(v(x)) = (s1, s2, . . . , sk). Then we know

φ(v(x)q) = (sq1, s
q
2, . . . , s

q
k) = (s1, s2, . . . , sk) = φ(v(x)),

which, since φ is an isomorphism (and therefore one-to-one), implies that
v(x)q = v(x). That is, v(x) is in W, and hence φW is onto. That φW is

2

one-to-one follows directly from the fact that φ has this property. So φW is
an isomorphism. Since each of the Wi has dimension one this means that
W then has dimension k, which is the number of irreducible factors of a(x).
�

Now given W, we can determine the number of irreducible factors of
the polynomial. For this to be useful we need to be able to calculate W, and
then, in order to factor the polynomial we need a method for determining
the factors once we know W. First we will look at how to find the factors
assuming that W is known.

Theorem 8.6: Let a(x) be a monic, square-free polynomial in GF(q)[x]
and let v(x) be a nonconstant polynomial in W. Then

a(x) =
∏

s∈GF(q)

GCD(v(x)− s, a(x)).

Proof: In GF(q)[x]

xq − x =
∏

s∈GF(q)

(x− s).

Therefore
v(x)q − v(x) =

∏
s∈GF(q)

(v(x)− s).

Since v(x) ∈ W, a(x) divides v(x)q − v(x) and hence for all i = 1 . . . k,

ai(x) | (v(x)q − v(x)) =
∏

s∈GF(q)

(v(x)− s).

Now since GCD(v(x)−s, v(x)− t) = 1 for all s 6= t, for a given i, ai(x) must
divide v(x)− si for exactly one si ∈ GF(q). Therefore for i = 1 . . . k,

ai(x) | GCD(a(x), v(x)− si)

and so

a(x) |
k∏
i=1

GCD(a(x), v(x)− si) |
∏

s∈GF(q)

GCD(a(x), v(x)− s).

3

Clearly GCD(a(x), v(x)− s) | a(x) for each s, and since all the v(x)− s are
relatively prime for distinct s, this implies that∏

s∈GF(q)

GCD(a(x), v(x)− s) | a(x).

And hence
a(x) =

∏
s∈GF(q)

GCD(a(x), v(x)− s).�

Now we have a method for determining the factors of a(x) assuming that
we know the elements of W. Since W is a vector space, it is enough to have
a basis for W. So the next step is to find a way to calculate a basis for the
vector space W.

For any polynomial v(x) ∈ GF(q)[x], we have

v(x)q = (v0 + v1x+ . . .+ vn−1x
n−1)q

= vq0 + vq1x
q + . . .+ vn−1x

q(n−1) by Theorem 8.4

= v0 + v1x
q + . . .+ vn−1x

q(n−1) = v(xq) by Lemma 8.1.

Therefore

W = {v(x) ∈ GF(q)[x] : v(x)q − v(x) = 0 mod a(x)}
= {v(x) ∈ GF(q)[x] : v(xq)− v(x) = 0 mod a(x)}.

This description of W represents the vector space as the solution space to a
system of n equations in n unknowns. The coefficient matrix of this system
is the n×n matrix Q whose entries qi,j (for 0 ≤ i, j ≤ n−1) are determined
by

xq·j = q0,j + q1,jx+ . . .+ qn−1,jx
n−1 mod a(x).

That is, the matrix Q has columns 1 . . . n determined from the remainders
of division of x0, xq, xq·2, . . . , xq·(n−1), respectively, by a(x).

Theorem 8.7: Given W and Q as defined previously,

W = {v = (v0, . . . , vn−1) : (Q− I) · v = 0}.

Proof: The equation

v(xq)− v(x) ≡ 0 mod a(x)

4

is equivalent to

0 ≡
n−1∑
j=0

vjx
q·j −

n−1∑
j=0

vjx
j mod a(x)

≡
n−1∑
j=0

vj [
n−1∑
i=0

qi,j · xi]−
n−1∑
j=0

vjx
j mod a(x)

≡
n−1∑
i=0

{
n−1∑
j=0

vj · qi,j − vi} · xi mod a(x).

And since the coefficients of the xi must all be zero, this implies

n−1∑
j=0

vj · qi,j − vi ≡ 0

for all i = 0 . . . n− 1, which is equivalent to

Q · (v0, . . . , vn−1)− (v0, . . . , vn−1) = (0, . . . , 0)

which is equivalent to
(Q− I) · v = 0.

Since W consists of all v(x) satisfying v(xq) − v(x) ≡ 0 mod a(x), which is
equivalent to (Q−I) ·v = 0, then W consists of all v satisfying the latter. �

That W is the null space of the matrix Q− I is a consequence of Theo-
rem 8.7. Thus, in order to determine a basis for W, we need only use linear
algebra to calculate a basis for the null space of Q− I. Now it remains only
to describe a method for computing the Q matrix for a complete description
of Berlekamp’s algorithm.

Generating the Q matrix involves calculating

xq mod a(x), x2q mod a(x), . . . , x(n−1)q mod a(x).

This can be done by using an iterative procedure that generates xm+1 mod a(x)
given that xm mod a(x) has been determined. If

a(x) = a0 + a1x+ . . .+ an−1x
n−1 + xn

and
xm = cm,0 + cm,1x+ . . .+ cm,n−1x

n−1 mod a(x)

5

then working modulo a(x) we have

xm+1 ≡ cm,0x+ cm,1x
2 + . . .+ cm,n−1x

n

≡ cm,0x+ cm,1x
2 + . . .+ cm,n−1(−a0 − a1x− . . .− an−1x

n−1)

≡ −cm,n−1a0 + (cm,0 − cm,n−1a1)x+ . . .+ (cm,n−2 − cm,n−1an−1)xn−1

≡ cm+1,0 + cm+1,1x+ . . .+ cm+1,n−1x
n−1

where
cm+1,0 = −cm,n−1a0

and
cm+1,i = cm,i−1 − cm,n−1ai

for i = 1 . . . n − 1. Thus, we can generate the Q matrix by storing a vector
c of elements from GF(q):

c← (c0, . . . , cn−1)

is initialized by
c← (1, 0, . . . , 0)

and is updated by

c← (−cn−1 · a0, c0 − cn−1 · a1, . . . , cn−2 − cn−1 · an−1).

Then after each (iq)th iteration, the entries of the vector are copied into
the ith column of the Q matrix. In this way, computing the Q matrix re-
quires q · n multiplications for each new column and since Q has a total of
n columns, generating the entire matrix is O(q · n2) operations in GF(q).

Algorithm 8.4: Form Q Matrix
procedure FormMatrixQ(a(x), q)

#Given a polynomial a(x) of degree n in GF(q)[x], calculate
#the Q matrix required by Berlekamp’s algorithm
n← deg(a(x)); c← (1, 0, . . . , 0); Column(0, Q) ← c;
for m from 1 to (n− 1)q do {

c ← (−cn−1 · a0, c0 − cn−1 · a1, . . . , cn−2 − cn−1 · an−1)
if q | m then

Column(m/q,Q) ← c }
return (Q)

end

6

Now we have all the components necessary for Berlekamp’s method.
The algorithm first computes the Q matrix, then calculates the null space of
Q−I to obtain a basis for the set W. Then it breaks a(x) into factors of lower
degree by computing greatest common divisors of a(x) and the difference of
basis elements of W and elements of GF(q). This process is then applied re-
peatedly to further factor the factors, until the number of factors is equal to
the dimension of W and hence a complete factorization has been determined.

Algorithm 8.5: Berlekamp’s Factoring Algorithm
procedure Berlekamp(a(x), q)

#Given a monic, square-free polynomial a(x) ∈ GF(q)[x]
#calculate irreducible factors a1(x), . . . , ak(x) such
#that a(x) = a1(x) · · · ak(x).
Q← FormMatrixQ(a(x), q)
Compute {v[1],v[2], . . . ,v[k]} a basis for the null space of (Q− I)
#Note we can ensure that v[1] = (1, 0, . . . , 0)
factors← {a(x)}
r ← 2
while SizeOf(factors) < k do {

foreach u(x) ∈ factors do {
foreach s ∈ GF(q) do {

g(x)← GCD(v[r] − s, u(x))
if g(x) 6= 1 and g(x) 6= u(x) then {

w(x)← u(x)/g(x)
factors← factors− {u(x)} ∪ {g(x), w(x)} }

if SizeOf(factors)= k then return(factors) }
r ← r + 1 }}

end

Example 8.6: Using Algorithm 8.4 we will find the irreducible factors
of the polynomial

a(x) = x6 − 3x5 + x4 − 3x3 − x2 − 3x+ 1 ∈ GF(11)[x].

The first step is to determine the Q matrix. Since x0 = 1 ≡ 1 mod a(x),
Column 1 of Q is given by [1, 0, . . . , 0]T. Then we multiply by x and mod
out by a(x) repeatedly until we have x11 mod a(x) to get Column 2. So we
compute that x11 mod a(x) = 5x5 − 5x4 − 3x3 − 3x2 + 5x + 3 and hence
Column 2 of Q is [3, 5,−3,−3,−5, 5]T. Continuing in this way, we eventually
obtain the entries of all 6 columns of Q, the last of which comes from the

7

coefficients of x55 mod a(x). At the end of this we have the matrix:

Q =



1 3 3 −2 −4 −3
0 5 −5 4 −3 −1
0 −3 −5 −1 −1 −4
0 −3 1 3 0 −3
0 −5 −1 −4 0 1
0 5 0 −2 −3 −3


Next, we need a basis for the null space of the matrix:

Q− I =



0 3 3 −2 −4 −3
0 4 −5 4 −3 −1
0 −3 5 −1 −1 −4
0 −3 1 2 0 −3
0 −5 −1 −4 −1 1
0 5 0 −2 −3 −4


This is a matter of simple linear algebra and using Maple’s Nullspace com-
mand in this case, we can see that the vectors

v[1] = (1, 0, 0, 0, 0, 0),v[2] = (0, 1, 1, 1, 1, 0),v[3] = (0, 0,−4,−2, 0, 1)

form a basis for W. In terms of polynomial representation, this gives

v[1](x) = 1, v[2](x) = x4 + x3 + x2 + x, v[3](x) = x5 − 2x3 − 4x2.

Now we know that a(x) has three irreducible factors, since the basis is formed
by three vectors. To find the factorization we need to perform a series of
GCD calculations. Starting with v[2], we take the GCD of the polynomial
a(x) with each s in GF(q) subtracted from the basis polynomial. In each
case if the GCD is non-trivial, we re-assign the quotient of a(x) divided by
that GCD to a(x) and continue. First we have

GCD(a(x), v[2] − 0) = x+ 1.

Thus a1(x) = x+ 1 is one of the factors of a(x). Now let

a(x) =
a(x)
x+ 1

= x5 − 4x4 + 5x3 + 3x2 − 4x+ 1

and then calculate GCD(a(x), v[2] − 1)= x2 + 5x+ 3. Then

a(x)
x2 + 5x+ 3

= x3 + 2x2 + 3x+ 4,

8

which gives two other factors of a(x), so we have the factorization

a(x) = (x+ 1)(x2 + 5x+ 3)(x3 + 2x2 + 3x+ 4).

Note that if GCD(a(x), v[2](x)− s) had been trivial for all s ∈ Z11 then we
would have repeated the above process with v[3](x). Also if there had been
non-trivial factors and if after the GCD calculations had been completed for
all s ∈ Z11 the number of factors was still less than three, we would have
repeated the process with each of the individual factors in place of a(x). �

Theorem 8.8 : The cost of Berlekamp’s algorithm for computing the fac-
tors of a monic, square-free polynomial a(x) of degree n, which has k distinct
irreducible factors, in the domain GF(q) is O(k · q · n2 + n3).

Proof: As we saw previously, generating the Q matrix costs O(q · n2)
field operations. Determining a basis for W involves Gaussian elimination
of the n×n matrix Q− I, which costs O(n3) field multiplications. Then, in
the algorithm, each of the k factors requires q GCD calculations, each at an
approximate cost of n2 operations. Therefore, this last step involves approx-
imately k · q · n2 field operations, leading to a total cost of O(k · q · n2 + n3)
field operations. �

Having established the cost of this algorithm we can see that for large
q the method becomes infeasible. In order to modify this into a viable
procedure for large q, we need a more efficient means of generating the Q
matrix, as well as a strategy to avoid calculating the GCD’s for all s ∈ GF(q)
exhaustively.

8.5 The Big Prime Berlekamp Algorithm

The efficiency of the Q matrix generation can be improved through the
use of binary powering to compute large powers of x mod a(x). Using
this method, calculating Column 2 of the matrix, i.e. calculating xq mod-
ulo a(x), requires log(q) steps, each of which involves multiplication of two
polynomials of degree less than n and division by a(x), which is of de-
gree n. Therefore, this column is determined in log(q)·n2 operations, as-
suming classical algorithms for multiplication and division. To compute
xq mod a(x), x2q mod a(x), . . . , x(n−1)q mod a(x), we first calculate h =
xq mod a(x) using binary powering. Then xkq = h · x(k−1)q mod a(x). In
this way, each subsequent column requires O(n2) further operations, and
since there are n columns, the total cost of generating the Q matrix in this

9

way is O(log(q)·n2 + n3).

Although using binary powering is a significant improvement, if we still
require all the GCD calculations of the previous algorithm, the complexity
of the overall algorithm still involves O(k · q · n2), which is impractical for
large q. Zassenhaus came up with a first attempt to reduce the cost of the
GCD step. He did this by first determining which s ∈ GF(q) would produce
nontrivial GCD’s for a given v(x). To describe Zassenhaus’s method, for a
given v(x) define

S = {s ∈ GF(q) : GCD(v(x)− s, a(x)) 6= 1}

and
mv(x) =

∏
s∈S

(x− s).

Theorem 8.9: The polynomial mv(x) as defined above is the minimal
polynomial for v(x). That is, mv(x) is the polynomial of least degree such
that

mv(v(x)) ≡ 0 mod a(x).

Proof: Choose an arbitrary factor ai(x) of a(x). Then since

GCD(v(x)− s, a(x)) 6= 1

for all s ∈ S, it must be that

ai(x) | GCD(v(x)− s, a(x))

for some s ∈ S. Hence ai(x) | (v(x)− s) for some s ∈ S. Then since this is
true for arbitrary i,

a(x) |
∏
s∈S

(v(x)− s) = mv(v(x)).

Now to show that this is the polynomial of least degree with this property,
suppose that it is not. That is, suppose m(x) is a polynomial of smaller
degree than mv(x) and that m(v(x)) ≡ 0 mod a(x). Then there must exist
an s in S such that

m(x) = q(x) · (x− s) + r

10

where r is a nonzero constant in GF(q). Since s is in S, one of the factors
of a(x), say ai(x), divides v(x)− s. Then ai(x) also divides m(v(x)) since

m(v(x)) ≡ 0 mod a(x).

From m(x) = q(x) · (x− s) + r, we have

m(v(x)) = q(v(x)) · (v(x)− s) + r,

which implies that ai(x) | r, since ai(x) | m(v(x)) and ai(x) | (v(x)−s). But
r is a constant, so this is a contradiction and hence mv(x) is the minimal
polynomial. �

There is a standard method for computing the minimal polynomial for
a given v(x), using linear algebra. Before describing how this is done, we
look at how to factor the minimal polynomial m(x) into its linear factors,
i.e. to find the s ∈ GF(q) which give nontrivial GCD’s. To do this, we can
use Rabin’s probabilistic method for root finding. This method makes use
of the factorization

xq − x = x · (x(q−1)/2 − 1) · (x(q−1)/2 + 1)

for q odd. From Lemma 8.1 we know that xq − x is the product of all
monic, linear polynomials in GF(q). So each linear factor of m(x) that is
not x divides either x(q−1)/2−1 or x(q−1)/2 +1. If the factors are distributed
in such a way that at least one divides each, then we can split m(x) by
taking GCD(m(x), x(q−1)/2 − 1). However, it may be that the factors are
not distributed in this way and therefore the GCD is trivial. Rabin showed
that if we shift x by α, for a random α ∈ GF(q), then the probability that
GCD(m(x), (x − α)(q−1)/2 − 1) is nontrivial is at least one half. We also
want to compute this GCD for large q (i.e. q >> deg(m)) without explicitly
constructing w(x) = (x− α)(q−1)/2. To do this we use

GCD(m(x), w(x)− 1) = GCD(m(x), (w(x)− 1) mod m(x))
= GCD(m(x), (w(x) mod m(x))− 1)

and compute w(x) mod m(x) using binary powering with remainder so that
degrees never exceed 2 · r, where r is the degree of m(x).

So to execute Rabin’s method to factor m(x), which we know is a prod-
uct of linear factors, we select a constant α ∈ GF(q) at random, calculate
w(x) = (x− α)(q−1)/2 mod m(x) using binary powering, and then compute

11

GCD(m(x), w(x) − 1). An average of two random α will need to be tried
to get a nontrivial GCD. Once one has been found, we have two factors of
m(x), and to completely factor m(x) into its linear factors we just continue
applying this process to each of the factors until we find those that are irre-
ducible, i.e. of degree one in this case. The cost of splitting m(x) the first
time is O(r2 · log(q)) since we raise x − α to the (q − 1)/2 ∈ O(q) modulo
m(x) which has degree r, and then take the GCD of two polynomials with
maximum degree r, which costs O(r2). The sum of the cost of the sub-
sequent steps is approximately the same as the cost of the first so in fact
O(r2 · log(q)) is the complexity of finding all of the roots of m(x).

We can use Rabin’s method to find all the linear factors of a gen-
eral polynomial a(x) by first computing the greatest common divisor of
m(x) = xq − x mod a(x) and a(x), which gives the product of the linear
factors, and then applying the above description to m(x).

Algorithm 8.6: Rabin’s Root Finding Algorithm
procedure Rabin(a(x), q)

#Given a monic, square-free polynomial a(x) ∈ GF(q)[x],
#find all of the linear factors of a(x).
m(x)← xq − x mod a(x)
m(x)← GCD(m(x), a(x))
n← deg(m(x))
if n > 1 then

g(x)← 1
while g(x) = 1 or g(x) = m(x) do {

Choose α ∈ GF(q) at random
Calculate w(x) = (x− α)(q−1)/2 using binary powering
g(x)← GCD(w(x)− 1,m(x))}

m(x)← m(x)/g(x)
factors← Rabin(m(x), q) ∪ Rabin(g(x), q)

else
factors← {m(x)}

return(factors)
end

Now we need the following method for computing the minimal poly-
nomial for a given v(x) ∈ W. For each integer t, starting at t = 1 and
increasing, we determine v(x)t mod a(x). Calculating each new power of
v(x) involves multiplying by v(x) modulo a(x) which is of degree n. After

12

each new power of v(x) is found, solve

m0 +m1v(x) + . . .+mt−1v(x)t−1 + v(x)t ≡ 0 mod a(x).

If m(x) is of degree r then we will need to compute r powers of v(x) in
total, so that the cost of this step is O(r · n2). Then at each step we are
solving an n by t system. This needs to be done carefully and incrementally,
using information from our attempt to solve the previous system for each
new t, so that the total cost of solving is equal to the cost of finding the first
nontrivial solution. This is an n by r linear system, which costs O(r2 · n)
field operations to solve. This nontrivial solution gives us m(x), the mini-
mal polynomial of degree r. In order to find all k factors of a(x) using this
method, we need that r = k at this point. Therefore, if r < k then choose
a new v(x) and repeat the above until a minimal polynomial with degree
equal to the size of the basis for W is found. Then we factor m(x), using
Rabin’s method, and of all the elements of GF(q), we need only compute
the GCD’s for the s which are roots of m(x).

Algorithm 8.7: Zassenhaus’s Minimal Polynomial Factoring Algorithm
procedure Zassenhaus(a(x), q)

#Given a monic, square-free polynomial a(x) ∈ GF(q)[x]
#calculate the irreducible factors using Zassenhaus’s
#minimal polynomial method with Rabin’s root finding
#algorithm to factor the minimal polynomial
Compute the Q matrix using binary powering
Calculate {v[1],v[2], . . . ,v[k]} a basis for the null space of Q− I
m(x)← 1
repeat

Choose a nonconstant v(x) ∈ W at random
Compute the minimal polynomial

m(x) = m0 +m1x+ . . .+mr−1x
r−1 + xr ∈ GF(q)[x]

satisfying m(v(x)) ≡ 0 mod a(x)
until degree(m(x)) = k
Factor m(x) using Algorithm 8.6
Take S to be the set of roots of m(x)
factors← {}
foreach s ∈ S do {

g(x)← GCD(v(x)− s, a(x))
factors← factors ∪ {g(x)} }

return(factors)
end

13

Example 8.7: To demonstrate the method of using the minimal poly-
nomial, we will apply it to the polynomial from Example 8.6

a(x) = x6 − 3x5 + x4 − 3x3 − x2 − 3x+ 1 ∈ GF(11)[x].

Let v(x) = v[2](x) = x4 +x3 +x2 +x, which we know is in W. To determine
the minimal polynomial, first find

v(x)2 ≡ −2x5 + 2x4 − 5x3 − x2 + 2x+ 5 mod a(x).

Then solve
a+ b · v(x) + v(x)2 ≡ 0 mod a(x)

and find that there are no nonzero solutions. So calculate

v(x)3 ≡ x5 − 5x4 + 4x3 + 2x2 − 5x+ 3 mod a(x).

Next set up and solve

a+ b · v(x) + c · v(x)2 + v(x)3 ≡ 0 mod a(x)

and find that there is a nontrivial solution given by a = 0, b = 4, c = −5.
Therefore the minimal polynomial is

mv(x) = x3 − 5x2 + 4x,

which has degree k = 3. Now we factor mv(x) by first trying v(x) = x− 5.
We calculate

GCD(mv(x) = x3 − 5x2 + 4x, (x− 5)5 − 1) = 1,

so this does not provide any information. Choosing another v(x) = x − 1,
GCD(mv(x), v(x)5−1)= x−4. So we have one of the linear factors of mv(x).
Now we need only factor x3−5x2+4x/(x−4) = x2−x. Selecting v(x) = x−2
and computing GCD(x2−x, (x−2)5−1)= x, we see that x is another factor
and therefore the third and final linear factor is (x2 − x)/x = x− 1. Hence

mv(x) = x · (x− 1) · (x− 4)

and we know that when applying the GCD calculations for Berlekamp’s
algorithm, we need only check those s ∈ S = {0, 1, 4}.
So now

g(x) = GCD(a(x), v(x)) = x+ 1

14

is one of the factors and what remains is

u(x) = a(x)/g(x) = x5 − 4x4 + 5x3 + 3x2 − 4x+ 1.

Then take
g(x) = GCD(u(x), v(x)− 1) = x2 + 5x+ 3.

So we have another factor. Now take

u(x) = u(x)/g(x) = x3 + 2x2 + 3x+ 4.

At this point, since we know that a(x) has three factors because our basis
for W has three elements, we have the complete factorization. However, we
can check that the Zassenhaus method works in this case by computing

GCD(a(x), v(x)− 4) = x3 + 2x2 + 3x+ 4.

So each of the three elements of S gives one of the factors of

a(x) = (x+ 1)(x2 + 5x+ 3)(x3 + 2x2 + 3x+ 4).�

The above method reduces the number of GCD calculations to only those
which are necessary. However, generating the minimal polynomial for v(x)
requires substantial computation. Therefore, in order for this algorithm to
be useful in practice we need that the probability that we will find a v(x) ∈
W such that the minimal polynomial of v(x) has degree k is relatively high.
Based on experimental data, we think that for a given a(x), the number of
v(x) ∈W whose minimal polynomials are of degree k is q·(q−1) · · · (q−k+1)
and therefore the probability that this is the case for a random v(x) is

(
k−1∏
i=0

(q − i))/qk.

We leave it as an exercise to show that based on this probability, assuming
that q is large, if we want that when v(x) is chosen at random from W that
its minimal polynomial has degree k at least half the time, then k must be
at most 1.17

√
q. However, if k larger in comparison to q, then the prob-

ability that a random v(x) ∈ W has a minimal polynomial of degree k is
small. That is, we will have to compute minimal polynomials for many v(x)
before finding one that will help us completely factor a(x). Hence if the
number of factors of a(x) is small in comparison to q (the number of GCD

15

computations required when the exhaustive search method is at its worst),
then the gain is significant. In the case that k is not small compared to q,
we do not know whether there is an efficient method of finding all roots of
a(x) using Zassenhaus’s minimal polynomial technique.
The proof of the following will be left as an exercise:
Theorem 8.10: Given a monic, square-free polynomial a(x) of degree n,
in GF(q)[x], the cost of obtaining the irreducible factorization of a(x) using
Zassenhaus’s minimal polynomial method, assuming that k is small in com-
parison to q, is at most O(n3 + n2 · log(q)).

The big prime Berlekamp algorithm relies on a method subsequently
developed by Cantor and Zassenhaus which determines GCD pairs which
will produce nontrivial results with a certain probability, more efficiently.
This method, a generalization of Rabin’s, is again based on the observation
that for q odd

xq − x = x · (x(q−1)/2 − 1) · (x(q−1)/2 + 1)

and the fact that this implies that for any v(x) ∈W we have

v(x) · (v(x)(q−1)/2 − 1) · (v(x)(q−1)/2 + 1) = v(x)q − v(x) ≡ 0 mod a(x).

We might expect that the nontrivial common factors of v(x)q − v(x) and
a(x) would be spread amongst v(x), (v(x)(q−1)/2 − 1) and (v(x)(q−1)/2 + 1)
in such a way that almost half are factors of the second and almost half
are factors of the third, since each of these has degree about half that of
v(x)q − v(x). In fact we have the following:

Theorem 8.11: The probability of GCD(v(x)(q−1)/2 − 1, a(x)) being non-
trivial for v(x) ∈ W is

1− (
q − 1

2q
)k − (

q + 1
2q

)k.

In particular the probability is at least 4/9.
Proof: Let

(s1, . . . , sk) = (v(x) mod a1(x), . . . , v(x) mod ak(x)),

where the ai(x) are the irreducible factors of a(x). Since each ai(x) is irre-
ducible, each Vi = GF(q)[x]/ < ai(x) > is a field and hence si ∈Wi = {s ∈
Vi : sq = s} must be constant, i.e. si ∈ GF(q). Let

w(x) = GCD(v(x)(q−1)/2 − 1, a(x)).

16

Suppose ai(x) is a factor of w(x). Then

ai(x) | (v(x)(q−1)/2 − 1)

which implies
v(x)(q−1)/2 − 1 ≡ 0 mod ai(x).

Hence
v(x)(q−1)/2 ≡ 1 mod ai(x)

and so s(q−1)/2
i = 1. That is, si is a quadratic residue of GF(q). Therefore

if all si for i = 1 . . . k are quadratic residues, then all ai(x) divide w(x) and
hence w(x) = a(x) and is trivial. Similarly if none of the si are quadratic
residues, then none of the ai(x) divide w(x) and hence w(x) = 1 and is
also trivial. In any other case, at least one and less than k of the factors
divide the GCD, and hence the GCD is nontrivial. For each Wi, (q − 1)/2
of the q elements are quadratic residues and the remaining (q + 1)/2 are
non-quadratic residues. So the probability that an element is a quadratic
residue is (q − 1)/2q and is a non-quadratic residue is (q + 1)/2q. When all
elements of Wi are equally likely for each component of (s1, . . . , sk), then
the probability that all the si are quadratic residues is (q−1

2q)k and that all
are non-quadratic residues is (q+1

2q)k. Therefore the probability that neither
of these occurs, that is the probability that w(x) is nontrivial, is

1− (
q − 1

2q
)k − (

q + 1
2q

)k.

From the binomial expansion we get that this is equivalent to

1− (
1
2q

)k{(q − 1)k + (q + 1)k}

= 1− (
1
2q

)k{2qk + 2
(
k
2

)
· qk−2 + 2

(
k
4

)
· qk−4 + . . .+ 2}

= 1− 1
2k−1

{1 +
(
k
2

)
· q−2 +

(
k
4

)
· q−4 + . . .+ q−k}

≥ 1− 1
2
{1 +

1
9
} =

4
9

where the last inequality holds because k ≥ 2 and q ≥ 3. �

Note that in the statement of Theorem 8.11 we could replace GCD(v(x)(q−1)/2−
1, a(x)) by GCD(v(x)(q−1)/2 + 1, a(x)) and the proof would be equally valid.

17

To see that no better bound can be found, we give an example for which
the probability is exactly 4

9 . Suppose

a(x) = x2 − 1 = (x− 1)(x+ 1) ∈ GF(3)[x].

So we have k = 2 and q = 3. Using the Berlekamp method we can also
determine that v[1] = 1, v[2] = x is a basis for W. That means that the nine
elements of W are {0, 1,−1, x,−x, x+1, x−1,−x+1,−x−1}. For v(x) = 1,
we get that GCD(v(x)(q−1)/2− 1 = v− 1 = 1− 1 = 0, a(x)) = a(x), which is
trivial. Then if v(x) is one of −1, 0, x+ 1 or −x+ 1, we get a trivial GCD of
one. The other four of the total of nine possibilities for v(x) give non-trivial
results.

GCD(x− 1, x2 − 1) = x− 1, GCD(−x− 1, x2 − 1) = x+ 1

GCD((x− 1)− 1, x2 − 1) = x+ 1, GCD((−x− 1)− 1, x2 − 1) = x− 1.

For q even, that is q = 2m for some positive integer m, the above method
does not apply since (q−1)/2 is not an integer. However, we can factor xq−x
into two factors, each of which has degree approximately q/2. To see how
we first need to define the trace polynomial over GF(2m) by

Tr(x) = x+ x2 + x4 + . . .+ x2m−1
.

Lemma 8.3: The trace polynomial Tr(x) defined on GF(2m) satisfies:
(a) For any v and w in GF(2m), Tr(v + w) = Tr(v) + Tr(w);
(b) For any v in GF(2m), Tr(v) ∈ GF(2);
(c) x2m − x = Tr(x) · (Tr(x) + 1).

Proof:
(a)

Tr(v + w) = v + w + (v + w)2 + (v + w)4 + . . .+ (v + w)2
m−1

= v + w + v2 + w + 2 + v4 + w4 + . . . v2m−1
+ w2m−1

= v + v2 + v4 + . . .+ v2m−1
+ w + w2 + w4 + . . .+ w2m−1

= Tr(v) + Tr(w)

(b)

(Tr(v))2 = (v + v2 + . . . v2m−1
)2

= v2 + v4 + . . . v2m

= v2 + v4 + . . .+ v2m−1
+ v

= Tr(v)

18

So Tr(v) is a solution to x2 − x = 0. We know that in GF(2m), the only
solutions to this equation are in the set of constants {0, 1} = GF(2). This
implies that for any v ∈ GF(2m), Tr(v) is equal to one of the constants in
GF(2).
(c) Let α ∈ GF(2m). From (b) we have that Tr(α) = 0 or 1. Therefore α is
a root of the polynomial Tr(x) · (Tr(x) + 1) for all α. So

x2m − x =
∏

α∈GF(2m)

(x− α) divides Tr(x) · (Tr(x) + 1).

Since Tr(x) and Tr(x) + 1 are both polynomials of degree 2m−1, their prod-
uct is of degree 2m, and so we have that x2m−x divides another polynomial
of the same degree, since both are monic, this implies they must be equal.
That is

Tr(x) · (Tr(x) + 1) = x2m − x.

Now for the case where q is even, we might expect that common factors of
xq − x and a(x) would be split evenly between Tr(x) and Tr(x) + 1 since
each is about half the size of xq − x, and in fact:

Theorem 8.12: The probability of GCD(Tr(v(x)), a(x)), for a random
v(x) ∈W , being nontrivial is

1− (
1
2

)k−1.

In particular, the probability is at least 1/2.
Proof: Let

(s1, . . . , sk) = (v(x) mod a1(x), . . . , v(x) mod ak(x)),

where the ai(x) are the irreducible factors of a(x). From Lemma 3(a),
Tr(v(x) mod ai(x)) = Tr(v(x)) mod ai(x). So

(Tr(v(x)) mod a1(x), . . . , T r(v(x)) mod ak(x)) = (Tr(s1), . . . , T r(sk)).

Now from Lemma 3(b), each Tr(si) is either 0 or 1.

And Tr(si) = 0⇔ Tr(v(x) mod ai(x)) = 0
⇔ Tr(v(x)) mod ai(x) = 0
⇔ ai(x) | Tr(v(x)).

19

From this we see that if Tr(si) = 0 then ai(x) | Tr(v(x)), for all i =
1 . . . k, and hence a(x) | Tr(v(x)) so GCD(Tr(v(x)), a(x))= a(x) is trivial.
Similarly, if Tr(si) = 1 for all i then none of the ai(x) divides Tr(v(x)) and
the GCD(Tr(v(x)), a(x))= 1 is again trivial. The probability of either of
these occurrences is (1

2)k and in any other case the GCD is nontrivial, so
the overall probability of a nontrivial GCD is

1− 2 · (1
2

)k = 1− (
1
2

)k−1,

which is at least 1/2 for any positive integer value of k. �

So the big prime Berlekamp factoring algorithm works by first calculat-
ing the Q matrix using binary powering, then finding a basis {v[1], . . . ,v[k]}
for the null space of Q− I, as before. Then we choose a random v(x) ∈W
by generating random constants ci ∈ GF(q) and let

v(x) = c1 · v[1](x) + c2 · v[2](x) + . . . ck · v[k](x).

Then calculate
w(x) = GCD(v(x)(q−1)/2 − 1, a(x))

if q is odd and w(x) = GCD(Tr(v(x)), a(x)) if q is even. We know that
w(x) will be nontrivial a minimum of about half of the time, so if it is trivial
we just pick a new v(x). Once we have a nontrivial w(x) then decompose
a(x) into w(x) and a(x)/w(x) and continue using this method to decompose
those factors of a(x) until we have determined the k irreducible factors.

Algorithm 8.8: Big Prime Berlekamp Factoring Algorithm.
procedure BigPrimeBerlekamp(a(x), pm)

#Given a monic, square-free polynomial a(x) ∈ GF(pm)[x]
#calculate irreducible factors a1(x), . . . , ak(x) such
#that a(x) = a1(x) · · · ak(x) using the big prime
#variation of Berlekamp’s algorithm.
Calculate the matrix Q using binary powering
Compute {v[1],v[2], . . . ,v[k]} a basis for the null space of Q− I
#Note: we can ensure that v[1] = (1, 0, . . . , 0).
factors← {a(x)}
while SizeOf(factors) < k do {

foreach u(x) ∈ factors do {
Choose {c1, . . . , ck} at random from (GF(pm))
v(x)← c1v

[1](x) + c2v
[2](x) + . . .+ ckv

[k](x)

20

if p = 2 then
v(x)← v(x) + v(x)2 + . . .+ v(x)2

m−1

else v(x)← v(x)(p
m−1)/2 − 1 mod u(x)

g(x)← GCD(v(x), u(x))
if g(x) 6= 1 and g(x) 6= u(x) then {

w(x)← u(x)/g(x)
factors← factors− {u(x)} ∪ {g(x), w(x)}
if SizeOf(factors)= k then return(factors) }}}

end

Example 8.8: To demonstrate this algorithm for q odd, we will again
use the same example as in Examples 8.6 and 8.7:

a(x) = x6 − 3x5 + x4 − 3x3 − x2 − 3x+ 1 ∈ GF(11)[x].

We have already determined the Q matrix and the basis {v[1],v[2],v[3]}.
Consider the random element in W given by

v(x) = 2v[1](x)− v[2](x)− 5v[3](x) = −5x5 − x4 − 2x3 − 3x2 − x+ 2.

Then calculate GCD(a(x), v(x)5−1)= 1. Since this GCD is trivial we choose
a new random linear combination

v(x) = 1v[1](x) + 4v[2](x)− 2v[3](x) = −2x5 + 4x4 − 3x3 + x2 + 4x+ 1.

Then this time the

g(x) = GCD(a(x), v(x)5 − 1) = x3 + 2x2 + 3x+ 4.

So we have a found a factor of a(x) and after dividing out by this factor

w(x) = a(x)/(x3 + 2x2 + 3x+ 4) = x3 − 5x2 − 3x+ 3,

we have decomposed the degree six polynomial into two degree three factors.
At this point we know that there are three irreducible factors, since the basis
has three elements, but we don’t know which of w(x) or g(x) needs to be
factored further, so we continue by trying to factor each of the two with
different random v(x) ∈W. Trying

v(x) = 2v[1](x) + 3v[2](x) + 4v[3](x) = 4x5 + 3x4 − 5x3 − 2x2 + 3x+ 2

and GCD(g(x), v(x)5 − 1) = 1 so we have no new information. Then try
v(x) = 3v[1] + 2v[2] − 2v[3]. From this we get that GCD(w(x), v(x)5 − 1) =

21

x+ 1. Now take u(x)/(x+ 1) = x2 + 5x+ 3 and we have that the irreducible
factorization of a(x) into three factors is

a(x) = (x+ 1) · (x2 + 5x+ 3) · (x3 + 2x2 + 3x+ 4).�

Example 8.9: We will present a small example to demonstrate the algo-
rithm for an even value of q. Take GF(4) to be the field Z2[x]/ < x2+x+1 >
and α to be a root of x2 + x + 1. Then the field consists of the elements
{0, 1, α, 1 + α}. Let

a(x) = x3 + αx+ (α+ 1) ∈ GF(4)[x].

To factor this polynomial using Algorithm 8.7 we first need to compute the
Q matrix. To do this we use binary powering to compute x4 mod a(x) and
x8 mod a(x) and we get that

Q =

1 0 0
0 α+ 1 α
0 α α+ 1

 .

Then computing the null space of Q−I we find that v[1](x) = 1 and v[2](x) =
x+ x2 form a basis for Q. Now choose c1 and c2 at random from GF(4) to
form

v(x) = c1v
[1](x) + c2v

[2](x) = (1 +α) · 1 + (α) · (x2 + x) = 1 +α+αx+αx2.

Since q = 4 = 22 in this casem = 2 and Tr(v(x)) = v(x)+v(x)2. Calculating
GCD(a(x), T r(v(x)))= 1, we get a trivial GCD, and so we need to choose a
new v(x) at random. This time try

v(x) = 1 · 1 + (α+ 1) · (x+ x2) = 1 + (α+ 1)x+ (α+ 1)x2.

In this case we get that GCD(a(x), T r(v(x)))= x + 1 and we have found
one of the factors. To find the other, we simply divide a(x)/(x + 1) =
x2 + x+ α+ 1, and we have the irreducible factorization:

a(x) = (x+ 1) · (x2 + x+ α+ 1).�

Theorem 8.13: The big prime Berlekamp algorithm for factoring a poly-
nomial a(x) of degree n, in the domain GF(q), with k irreducible factors is
O(n2 · log(q) · log(k) + n3).

22

Proof: We have seen that determining the Q matrix using binary pow-
ering costs O(n2 · log(q) + n3) operations and that determining a basis for
W is equivalent to finding the solution space of an n × n matrix which re-
quires another O(n3) operations. The cost of computing each random v(x)
is linear. Then we start by factoring a(x) into two lower degree factors, each
a product of approximately half of the irreducible factors of a(x). Then
we do the same to each of the two new factors, repeatedly until we have k
irreducible factors. At each step, if q is odd, we calculate (v(x)(q−1)/2 − 1)
modulo some polynomials (the factors we have determined up to this point)
of degree less than or equal to n. At most one of the factors is of degree
O(n) at each step so the cost of each step is O(n2 · log(q)). If q is even,
then we compute v(x) + v(x)2 + . . .+ v(x)2

m−1
and take that modulo some

factor with degree at most n. This is again O(n2·log(q)) since we are raising
v(x) to 2m−1 = q/2 ∈ O(q). Then, for any q, we take the greatest common
divisor of the updated v(x) and the same polynomial factor we previously
divided out by, which is an additional O(n2) operations. Since at each step
each factor is divided approximately in half, there, on average, a total of
O(log(k)) steps. So we have the total cost is
O(n2 · log(q) + n3) + O(n3) + O((n2 · log(q) + n2) · log(k))

∈ O(n2 · log(q) · log(k) + n3).�

8.6 Distinct Degree Factorization

The final method is distinct degree factorization. Given that we have a
monic, square-free polynomial a(x) ∈ GF(q)[x], the first step of this method
is to obtain a partial factorization

a(x) =
∏

ai(x)

where each ai(x) is the product of all the irreducible factors of a(x) which
have degree i. The second step takes each of the ai(x) and factors it into
irreducible components. To describe the technique used for the first step we
first need:

Theorem 8.14: The polynomial pr(x) = xq
r − x is the product of all

monic, irreducible polynomials f in GF(q)[x] such that the degree of f di-
vides r.

Proof: To prove Theorem 8.14, we will first show that xq
r −x is square-

free. Then we will prove that a monic, irreducible polynomial of degree d

23

divides pr(x) if and only if d | r. Let q̃ = qr. Then by Fermat’s little theorem
(Lemma 8.1) we have that

pr(x) = xq̃ − x =
∏

a∈GF(q̃)

(x− a).

Now suppose there exists some g ∈ GF(q)[x] such that g2 | pr(x), then
g | pr(x). This implies that (x − a) | g for some a ∈ GF(q̃) and therefore
(x − a)2 | g2 | pr(x) but this is contradiction since xq

r − x is square-free in
GF(qr)[x], so xq

r − x is square-free in GF(q)[x].
Now it remains to show that a monic, irreducible polynomial f of degree d
divides pr(x) if and only if d divides r.
First suppose that f ∈ GF(q)[x] is a monic, irreducible polynomial of degree
d such that f | pr(x). Then since

pr(x) =
∏

a∈GF(q̃)

(x− a),

it must be that
f =

∏
â∈A

(x− â)

where A is some subset of GF(q̃). Now we choose some root â ∈ A of f and
consider the subfield G = GF(q)(â) of GF(q̃). Then GF(q̃) = GF(qr) is an
extension field of G, which has qd elements since G ∼= GF(q)[x]/ < f > and
f had degree d. This implies that the number of elements of GF(q̃), which
is qr, must be equal to (qd)e for some integer e. Therefore r = de for some
integer e, or equivalently d | r.
Next suppose that d | r and f ∈ GF(q)[x] is a monic, irreducible polynomial
of degree d. Since f has degree d,

F = GF(q)[x]/ < f >∼= GF(qd)

is a finite field of degree qd. Let a ∈ F, then by Fermat’s little theorem
(Lemma 8.1) aq

d
= a. Also since d | r we know that r = d · e for some

integer e. This means that

aq
r

= ((aq
d
)q

d · · ·)qd
= a.

Consider, in particular, a = [x] the representative element of x in F. Then we
know that [x]q

r
= [x], which implies [xq

r−x] = [0]. Hence xq
r−x ≡ 0 mod f .

And therefore f | pr(x) = xq
r − x. �

24

Theorem 8.14 provides an obvious method for the partial factorization
step of the distinct degree method. The algorithm determines ai(x) by tak-
ing increasing integer values of i starting with i = 1 and replacing a(x) by
a(x)/ai(x) after each computation of GCD(a(x), xq

i −x) = ai(x). It is then
only necessary to find the greatest common divisor up to i = degree(a(x)/2)
since at that point, the remaining polynomial must either be trivial or ir-
reducible, since it has no irreducible factors of any smaller degree. The
GCD calculations are done by first reducing xq

i − x modulo a(x) for each
i. A natural way to reduce xq

i
modulo a(x) is by taking the q-th power of

xq
i−1

mod a(x), that is

(xq
i − x) mod a(x) ≡ (xq

i−1
mod a(x))q − x mod a(x).

Algorithm 8.9: Distinct Degree Factorization (Part 1: Partial Factoriza-
tion)

procedure PartialFactorDD(a(x), q)
#Given a square-free polynomial a(x) in GF(q)[x],
#we calculate the partial distinct degree factorization
#a1(x) · · · ad(x) of a(x)
i← 1; w(x)← x; a0(x)← 1
while i ≤ degree(a(x))/2 do

w(x)← w(x)q mod a(x)
ai(x)← GCD(a(x), w(x)− x)
if ai(x) 6= 1 then

a(x)← a(x)/ai(x)
w(x)← w(x) mod a(x)

i = i+ 1
return(a0(x) · · · ai−1(x)a(x))

end

Example 8.10: Let a(x) = x27 − 1 ∈ GF(7)[x]. Then

a1(x) = GCD(a(x), x7 − 1) = x3 − 1

which tells us that a(x) has three linear factors. Then replace a(x) by

a(x)/a1(x) = x24 + x21 + x18 + x15 + x12 + x9 + x6 + x3 + 1.

Next we find that the polynomial has no quadratic factors, since

GCD(a(x), x49 − x) = 1,

25

and two cubic factors, since

GCD(a(x), x243 − x) = x6 + x3 + 1.

Let
a(x) = a(x)/a3(x) = x18 + x9 + 1.

From here we find that GCD(a(x), x2401 − x) = 1, GCD(a(x), x16807 −
x) = 1, GCD(a(x), x117649 − x) = 1, GCD(a(x), x823543 − x) = 1 and
GCD(a(x), x5764801 − x) = 1, so there are no irreducible factors of degree
4,5,6,7, or 8. And finally

a9(x) = GCD(a(x), x40353607 − x) = x18 + x9 + 1

which means that the remaining part of a(x) is the product of two irreducible
factors of degree nine and we have completed the partial factorization of
a(x).

Theorem 8.15: The complexity of the partial factorization step of the
distinct degree algorithm for factoring a polynomial of degree n into factors
ai(x) where each ai(x) is the product of all irreducible factors of a(x) which
have degree i, over GF(q), is at most O(n3 · log(q)).

Proof: Each time through the loop, to get xq
i

for the new i, we raise
the value, (xq

i−1
), to the power of q modulo a(x). Since a(x) has degree n

the first time through the loop and at most n after that, the cost of this
operation is O(n2 · log(q)) and the cost of both the GCD calculation and
the division of a(x) by ai(x) is O(n2). If a(x) is irreducible or the product
of two factors, each of which has degree n/2, then it will require n/2 times
through the loop to gain any information. This is the maximum since in
any other case the degree of a(x) will be reduced before i reaches n/2. This
means that the total cost is at most

O(n2 · log(q) + n2)
n

2
∈ O(n3 · log(q)).

Note that if the degree of the largest factor is l, then the cost is O(n2 · log(q) ·
l). �

For q large, there is a better method, as pointed out by Lenstra. Given
the Q matrix, as defined previously, it can easily be shown that

v ·Q ≡ vq mod a(x)

26

for any polynomial v(x) ∈ GF(q)/ < a(x) >, where v and vq are the coeffi-
cient vectors of the representatives of v(x) and v(x)q, respectively, of smallest
degree in the residue ring V. Using this we can reduce the computation of
raising xq

i−1
to the q modulo a(x) to that of multiplying the vector v by the

matrix Q. This matrix multiplication costs O(n2) operations rather than
the O(n2 · log(q)) of the other method. Now, since using this modification
reduces all the steps within the loop to a cost of O(n2), the complexity of
the modified algorithm is dominated by the cost of generating the Q matrix,
which we know to be O(n2 · log(q) + n3). Comparing this to the complexity
O(n3 · log(q)) of the original algorithm, we see that the modification is an
improvement in cases when q is very large relative to n.

From the first step of distinct degree factorization we have a method for
separating a(x) into factors ai(x), each of which is a product of irreducibles
of degree i. To complete the factorization of a(x), we need a way to factor the
ai(x) which are not already irreducible into irreducible polynomials, each of
degree i. To do this we can again use the method of Cantor and Zassenhaus,
with the trace polynomial Tr(x) as defined in the section on the big prime
Berlekamp algorithm for q even. Suppose q is odd and ai(x) is reducible,
that is that its degree is at least 2i. We can generalize one direction of the
proof of Theorem 8.14 to show that for any polynomial v(x), any irreducible
polynomial of degree d, where d | i, divides v(x)q

i − v(x). From this we see
that v(x)q

i − v(x) is a multiple of all irreducible polynomials of degree i, in
particular, every irreducible factor of ai(x) divides v(x)q

i − v(x). Therefore,
since we can factor v(x)q

i − v(x) as v(x) · (v(x)(q−1)/2− 1) · (v(x)(q−1)/2 + 1),
we can factor ai(x) as

GCD(ai(x), v(x)) ·GCD(ai(x), v(x)(q−1)/2− 1) ·GCD(ai(x), v(x)(q−1)/2 + 1).

As with the big prime Berlekamp algorithm, if we choose v(x) with degree
at most 2 · i−1, then GCD(ai(x), v(x)(q−1)/2−1) is nontrivial, and hence we
get a nontrivial factor of ai(x), approximately half the time. Now suppose
q is even, that is q = 2m and again the degree of ai(x) is at least 2i. From
Lemma 3, we have that over GF(2m·i), where Tr(x) = x+x2 + . . .+x2mi−1

,

xq
i − x = x2mi − x = Tr(x) · (Tr(x) + 1).

So, if v(x) is any polynomial of degree at most 2 · i− 1, then we have

ai(x) = GCD(ai(x), T r(v(x))) ·GCD(ai(x), T r(v(x)) + 1).

And by calculating GCD(ai(x), T r(x)) for a random v(x) with this property,
we get a nontrivial factor of ai(x) with probability at least 1/2.

27

Using the above, we get the following:

Algorithm 8.10: Distinct Degree Factorization (Part II: Splitting Fac-
tors.)

procedure SplitDD(ai(x), i, pm)
Given a polynomial ai(x) ∈ GF(pm)[x] which is
made up of irreducible factors of degree i, we split ai(x)
into its complete factorization via Cantor-Zassenhaus method
if deg(ai(x), x)≤ i then return({ai(x)})
factors← {a(x)}
repeat {

Choose v(x) ∈ GF(q)[x] of degree 2i− 1 at random
if p = 2 then

v(x)← v(x) + v(x)2 + . . . v(x)2
mi−1

else
v(x)← v(x)(q

i−1)/2 − 1
g(x)← GCD(ai(x), v(x))
if g(x) 6= 1 and g(x) 6= ai(x) then {

factors← SplitDD(g(x), i, pm) ∪ SplitDD(ai(x)/g(x), i, pm)}}
return(factors)

end

Applying Algorithm 8.10 to each reducible ai(x) determined by Algo-
rithm 8.9 gives a complete algorithm for factoring a polynomial a(x) into
its irreducible components.

Example 8.11: We will demonstrate this method by completing the fac-
torization of the polynomial from Example 8.10. So we have

a(x) = a1(x) · a3(x) · a9(x) = (x3 − 1) · (x6 + x3 + 1) · (x18 + x9 + 1).

First we choose a random v(x) of degree at most 1. Try v(x) = x+ 3, then
compute

GCD(x3 − 1, (x+ 3)3 − 1) = x− 1.

So x− 1 is one of the linear factors, leaving (x3 − 1)/(x− 1) = x2 + x+ 1.
Now take v(x) = x+ 1 and

GCD(x2 + x+ 1, (x+ 1)3 − 1) = 1

28

which is trivial so we need to choose a new v(x), say v(x) = x+ 2. Then

GCD(x2 + x+ 1, (x+ 2)3 − 1) = x− 2

so the remaining two linear factors of a1(x), and therefore of a(x), are x− 2
and (x2 + x+ 1)/(x− 2) = x+ 3. That is

a1(x) = (x− 1)(x− 2)(x+ 3).

Next we know that a3(x) has degree 6 and therefore a(x) has two irreducible
cubic factors. To split a3(x) into those two factors, first try v(x) = x − 3
and calculate

GCD(x6 + x3 + 1, (x− 3)(7
3−1)/2 − 1) = 1

so we need to choose another v(x). If v(x) = x− 2 then

GCD(x6 + x3 + 1, (x− 2)(7
3−1)/2 − 1) = x3 − 2

and so we have that the cubic factors are x3−2 and a3(x)/(x3−2) = x3 +3.
Similarly we can also determine that a9(x) = (x9 − 2)(x9 + 3) and hence
that

a(x) = (x− 1)(x− 2)(x+ 3)(x3 − 2)(x3 + 3)(x9 − 2)(x9 + 3)

is the complete factorization of a(x) = x27 − 1 over GF(7). �

Theorem 8.16: The complexity of the splitting algorithm for factoring
a polynomial ai(x), which is the product of k > 1 monic, irreducible factors,
each of degree i, over a field GF(q) is O(i3 · k2 · log(q)).

Proof: The cost of producing a random polynomial v(x) is linear. For
both q odd and q even, updating the v(x) polynomial in the following
step involves raising v(x) to the power of qi, modulo ai(x), and so costs
O((i · k)2 · log(qi) = i3k2log(q)), since ai(x) has degree i · k. Then the GCD
calculation requires O((i · k)2) operations since i · k is the degree of ai(x)
and v(x) is taken modulo ai(x). This is repeated with two different v(x)
on average to get nontrivial GCD, and once we have a nontrivial factor,
ai(x) is split. Then, as with the big prime Berlekamp algorithm, we need
to continue to apply the algorithm to each factor after the split, repeatedly
until we have found all k irreducible factors. Since at each level, the poly-
nomial is split approximately in half, the second time we need to split two
degree (i · k)/2 polynomials. So the cost of this step is O(2 · (ik2)2log(q)),

29

which is half the cost of the first step. Similarly at the next step, we split
four factors, each with a quarter of the original degree, so this step costs a
quarter of the first. So the complexity is dominated by the cost of the first
step, as the sum of the costs of all subsequent steps is approximately equal
to the cost of the first step alone. That is, the total cost is O(i3 ·k2 ·log(q)). �

Suppose a(x) is a monic, square-free polynomial of degree n. To better
understand the cost of the algorithm when we combine the two parts to get
a complete factorization into irreducible components we consider four cases
and give their complexities, without proof, in a table:

a(x) composed of Complexity
Partial Factorization Splitting

n/2 quadratic factors O(n2log(q)) O(n2log(q))√
n factors of degree

√
n O(n5/2log(q)) O(n5/2log(q))

2 factors of degree n/2 O(n3log(q)) O(n3log(q))
one irreducible factor O(n3log(q)) -

References

[1] K.O. Geddes, S.R. Czapor and G. Labahn, Algorithms for Computer
Algebra, Kluwer Academic Publishers, Norwell, MA, USA, 1992.

[2] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cam-
bridge Unviersity Press, Cambridge, 2003.

[3] Michael Rabin. Probabilistic Algorithms in Finite Fields. SIAM J.
Computing 9(2) 273–280, 1980.

30

