
Fast Multipoint Evaluation On n

Arbitrary Points
by

Justine Gauthier

B.Sc., University of King’s College, 2015

MSc. Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Masters of Science

in the
Department of Mathematics

Faculty of Science

c© Justine Gauthier 2017
SIMON FRASER UNIVERSITY

Summer 2017

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.



Approval

Name: Justine Gauthier

Degree: Masters of Science (Mathematics)

Title: Fast Multipoint Evaluation On n Arbitrary Points

Examining Committee: Chair: N/A

Michael Monagan
Supervisor
Professor

Nils Bruin
Co-Supervisor
Professor

Date Defended: August 17, 2017

ii



Abstract

The Fast Fourier Transform evaluates a polynomial of degree less than n, at n powers of a
primitive nth root of unity, in O(n logn) arithmetic operations. What if we wish to evaluate
such a polynomial at n arbitrary points? Using Horner’s method, this will take as many
as O(n2) multiplications. This project will present and analyse a recursive algorithm which
evaluates a polynomial of degree less n, at n arbitrary points, using only O(n log2 n) arith-
metic operations. This improvement allows fast multipoint evaluation at arbitrary points to
be used in subquadratic algorithms. The implementation and running time of the algorithm
in C will be explored.

Keywords: Fast Polynomial Evaluation, Subquadratic Algorithms, Fast Fourier Trans-
form, Computer Algebra

iii



Table of Contents

Approval ii

Abstract iii

Table of Contents iv

List of Figures vi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Classic Evaluation - Horner’s Method . . . . . . . . . . . . . . . . . 2
1.1.2 The Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Newton Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 FastEval: The Algorithm 11
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Multiplying up the Tree . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Dividing down the Tree . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Complexity and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Multiplying Up the Tree . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Dividing Down the Tree . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Additional Comments 24
3.0.1 Addressing our Assumptions . . . . . . . . . . . . . . . . . . . . . . 24
3.0.2 Errors to Learn From . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Interpolation and Further Work . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 28

iv



Appendix A C Code 29

v



List of Figures

Figure 1 Subproduct Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2 Subproduct Tree for Evaluation points u0 = 1, u1 = 2, u2 = 3, u3 = 4. 15
Figure 3 Dividing down for Evaluation points u0 = 1, u1 = 2, u2 = 3, u3 = 4. 16
Figure 4 Time in seconds to evaluate a polynomial of degree n− 1 at n arbi-

trary points over the field Zp for 15 · 227 + 1. . . . . . . . . . . . . . 21
Figure 5 A breakdown of time in seconds to evaluate a polynomial of degree

n− 1 at n points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



List of Algorithms

1 Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 FFT multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Building up the Subproduct tree . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Dividing down the Subproduct tree . . . . . . . . . . . . . . . . . . . . . . . 14
5 FastEval: Fast multipoint evaluation . . . . . . . . . . . . . . . . . . . . . . 14
6 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



Chapter 1

Introduction

Suppose you are given a polynomial, f(x) ∈ R[x], where R is a commutative ring with
unity. You are also given n ∈ N points from the ring R. You wish to evaluate f at these
n points either as a sub-procedure of a bigger problem, or as a stand alone inquiry. If n
is small, then you may not care how the problem is approached. However, if n is, say, a
million, it is worth while to use an algorithm which does not take hours to run. Formally,
we are trying to solve the following problem:

Problem (Multipoint Evaluation). Suppose R is a commutative ring with unity. Given
n ∈ N, and u0, . . . , un−1 ∈ R, and f ∈ R[x] of degree less than n, compute

f(u0), . . . , f(un−1).

This work will present a subquadratic algorithm, FastEval, to solve the multipoint
evaluation problem under the assumption that R contains an nth root of unity, and 2−1 ∈ R.
This algorithm is presented in the paper Evaluating polynomials at many points by Borodin
and Munro in 1971 [1]. The main idea of the algorithm comes from this paper, while the
implementation in C was done in collaboration with Michael Monagan. The algorithm is
also described in [5].

Classical polynomial evaluation using Horner’s method for each ui would solve this
problem in O(n2) operations in R. It can be proven that one evaluation requires at least
O(n) multiplications. This fact may seem to imply that n evaluations would require O(n2)
operations in R, however, the mass-production of evaluations can lead to significantly fewer
arithmetic operations. The algorithm presented in this work will require at most O(n log2 n)
operations in R.

In order to give a proper overview of the work, the first chapter of this report will
explore some of the algorithms which helped to make FastEval fast. Chapter 2 will present
FastEval by first giving an overview of how the algorithm works, presenting a short example,
and then digging into the mechanics of the algorithm. Timings of FastEval compared to

1



the classical evaluation algorithm will be presented. The final chapter will discuss errors
made during the work of this report, in hopes that the reader will avoid making the same
mistakes. This chapter will also explore possible future works, as well as an interpolation
algorithm which reuses some of the work computed by FastEval. We will end with a brief
conclusion.

We now wish to make some assumptions, which will help to make our discussion more
digestible. The final chapter will address these assumptions, demonstrating that the algo-
rithm does in fact solve our general problem. The first assumption that we wish to make,
is to assume R = F is a field which supports the Fast Fourier Transform. If R = Fp, we will
assume that p is a Fourier prime. These requirements will be discussed when the Fourier
Transform is presented in the background material. For now, this assumption allows us
to multiply polynomials using the Fast Fourier Transform in O(n logn) operations in R.
Secondly, we will assume that n, the number of evaluation points, is a power of 2, and that
each evaluation point is unique. Lastly, we will assume that f ∈ R[x] is a polynomial of
degree less than n. These assumptions will assist the discussion of the complexity of the
algorithm.

1.1 Background

This chapter will review important algorithms required for evaluation. First, we will explore
the classical polynomial evaluation method using Horner’s form. Next, we will discuss
the Fast Fourier Transform, both as an evaluation technique, and as a way to perform
fast polynomial multiplication. Finally, we will look at the Newton iteration for dividing
polynomials.

1.1.1 Classic Evaluation - Horner’s Method

Consider the polynomial f(x) = a0 + a1x + · · · + an−1x
n−1, with ai ∈ R a ring. We can

rewrite the polynomial f(x) into the nested form, or Horner’s form,

f(x) = a0 + x(a1 + x(a2 + x(a3 + · · ·+ x(an−2 + x(an−1))) · · · )).

To evaluate f(x) at x = α for some α ∈ R, we would first multiply α ·an−1. Next, we would
add an−2 to αan−1, and then multiply by α again. Continuing on, we will eventually add
a0 to the result of α(a1 + α(a2 + α(a3 + · · · + α(an−2 + α(an−1))) · · · ). We can see that
evaluating f(x) at α requires n− 1 multiplications in the ring R, and n− 1 additions. This
results in O(n) operations in the ring. This method of evaluation is called Horner’s method.

If we want to evaluate f at n points using this method, we would need n · (n − 1)
multiplications, and n · (n − 1) additions. Therefore, using Horner’s method to evaluate a
polynomial of degree n− 1 at n arbitrary points requires O(n2) work.

2



Horner’s method will be used in this project to compare and measure the improvements
of the algorithm being presented. All comparisons made to classical evaluation will refer to
Horner’s method.

1.1.2 The Fast Fourier Transform

Let n = 2k ∈ N, f(x) = a0 +a1x+ · · ·+an−1x
n−1, where ai ∈ R, where R is a commutative

ring with unity. We say ω is a primitive nth root of unity if ωn = 1 and ωk 6= 1 for all
0 < k < n. The R-linear map

DFTω :

R
n −→ Rn

f 7−→
(
f(1), f(ω), . . . , f(ωn−1)

)
is called the Discrete Fourier Transform. It evaluates the polynomial f at the powers
of ω, a primitive nth root of unity. The Fast Fourier Transform, or FFT, computes the
Discrete Fourier Transform in 1

2n log2 n multiplications in R. The FFT takes advantage of
the properties of the primitive nth root of unity presented in the following Lemma.

Lemma 1.1.1. Let ω ∈ R be a primitive nth root of unity. Then

• ωj = −ωj+n/2,

• ω2 is a primitive n/2th root of unity,

• ω0 + ω1 + · · ·+ ωn−1 = 0,

• ω−1 is a primitive nth root of unity.

By evaluating f at ω0, ω1, . . . , ωn−1, we can cut down on the number of operations by
first noticing f can be written as

f(x) = [a0 + a2x
2 + · · ·+ an−2x

n−2] + x[a1 + a3x
2 + · · ·+ an−1x

n−2].

Let b(x) = a0 +a2x+ · · ·+an−2x
n/2−1, and let c(x) = a1 +a3x+ · · ·+an−1x

n/2−1. Then

f(x) = [a0 + a2x
2 + · · ·+ an−2x

n−2] + x[a1 + a3x
2 + · · ·+ an−1x

n−2]

= b(x2) + x c(x2).

Using the property that ωj = −ωj+n/2, we see that b(x2) evaluated at x = ωj is identical
to b(x2) evaluated at x = ωj+n/2, thus saving about half of the arithmetic operations in
R. This technique is repeated recursively, forming the general idea behind the Fast Fourier
Transform. We now present pseudo code for the algorithm, and examine its running time.

3



Algorithm 1 Fast Fourier Transform (FFT)
Input: n = 2k for some k ∈ N, a = [a0, a1, . . . , an−1] ∈ Rn and a primitive nth root of

unity ω ∈ R.
Output: DFTω(f) =

(
f(1), f(ω), . . . , f(ωn−1)

)
∈ Rn where f =

∑n−1
j=0 aix

i.
1: if n = 1 then return: a0 ∈ R
2: b←− [a0, a2, . . . , an−2]
3: c←− [a1, a3 . . . , an−1]
4: B ←− FFT (n/2, b, ω2)
5: C ←− FFT (n/2, c, ω2)
6: y ← 1
7: for i = 0, 1, . . . , n/2− 1 do
8: T ← y · Ci
9: ai ← Bi + T

10: ai+n/2 ← Bi − T
11: y ← y · ω
12: return: [a0, . . . , an−1] ∈ Rn.

Let T (n) be the number of multiplications in R done by Algorithm 1. If n = 1, then
the input polynomial is an element of R, and is returned. Therefore, T (1) = 0. Next, the
algorithm does two recursions of size n/2. These calls require one multiplication of to find
ω2. After the recursive calls, the algorithm performs n/2 multiplications of y times ci, and
n/2 multiplications of y times ω, all of which are done in the ring R. Therefore,

T (n) = 2T (n/2) + 1 + n.

Using Maple’s rsolve command, we find that T (n) = n log2 n+ n− 1 ∈ O(n logn).
An optimization presented in a paper by Law and Monagan [4] allows us to further

cut down on the multiplications required to compute the DFTω(f). By pre-computing the
necessary powers of ω in an array, namely ωi for 0 ≤ i < n/2., we cut down on over half of
the multiplications in the loop. Without having to calculate ω2 for the recursive calls, or
updating y = y · ω at every step, we have

T (n) = 2T (n/2) + n

2 .

When solved with T (1) = 0, we have T (n) = 1
2n log2 n.

Along with the Fast Fourier Transform, we also have the Inverse Fourier Transform.
As one may expect from the name, the Inverse Fourier Transform takes as input n = 2k,
DFTω(f) =

(
f(1), f(ω), . . . , f(ωn−1)

)
∈ Rn, and ω−1. The Inverse FFT performs an

interpolation on the outputs of f evaluated at the powers of ω. What is more surprising, is

4



that the same algorithm which evaluates the polynomial, can also interpolate it. Consider
the evaluation 

1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...
...

... · · ·
...

1 ωn−1 ω2n−2 . . . ω(n−1)2


︸ ︷︷ ︸

Vω



f0

f1

f2
...

fn−1


︸ ︷︷ ︸

F

=



f(1)
f(ω)
f(ω2)

...
f(ωn−1).


︸ ︷︷ ︸

Fω

Suppose we know Fω, and want to compute F . Using a classic matrix inversion to find
(Vω)−1 and then calculating (Vω)−1 Fω = F would require O(n3) operations in the ring.
Recall that if ω is a primitive nth root of unity, then so too is ω−1.

Proposition 1.1.1. Vω · Vω−1 = nI, which implies (Vω)−1 = 1
nVω−1.

Proof. Let W be the product of Vω ·Vω−1 . Consider the elements on the diagonal of W that
derive from the jth row of Vω and the jth column of Vω−1 . We have

n−1∑
i=0

ω2ij · ω−2ij =
n−1∑
i=0

1 = n.

Thus, each element on the diagonal of W is n. Knowing that ω0 + ω1 + · · ·+ ωn−1 = 0, it
is not hard to show that all other elements will be zero. Therefore, Vω · Vω−1 = W = nI.
The implication follows.

We can now use the fact that

F = V −1
ω Fω = 1

n
(Vω−1Fω) = 1

n
DFTω−1(Fω) ∈ Rn.

This result allows us to use the Fast Fourier Transform to multiply polynomials efficiently
as follows:

Algorithm 2 FFT multiplication
Input: a = [a0, a1, . . . , an−1], b = [b0, . . . , bn−1] ∈ Rn, R a ring that supports the FFT,

n = 2k for some k ∈ N, and a primitive nth root of unity ω ∈ R.
Output: c = ab ∈ Rn

1: A← FFT (n, ω, a), B ← FFT (n, ω, b)
2: C ← [A0 ·B0, A1 ·B1, . . . , An−1 ·Bn−1]
3: C ← FFT (n,C, ω−1)
4: c = n−1 · C
5: return: [c0, c1, . . . , cn−1] ∈ Rn.

5



Algorithm 2 requires 3 FFT calls of size n, where n is the smallest power of two greater
than the sum of the degrees of the inputs. In this report, we will refer to the work required
to compute a Fast Fourier Transform of size n as FFT(n). It also requires the pointwise
multiplication of the vectors A and B, which is n multiplications in R. Finally, each element
of c must be multiplied by n−1. Therefore, the work required to multiply two polynomials
with an FFT multiplication of size n is

3FFT(n) + 2n = 3
2n log2 n+O(n).

For a polynomial multiplication whose product has degree less than n, we will refer to
the work required as M(n). It will be assumed that all polynomial multiplications are done
using the FFT, hence

FFT(n) = 1
2n log2 n, and M(n) = 3

2n log2 n+O(n).

Note that not every field has a primitive nth root of unity.

Theorem. The finite field Zp has a primitive nth root of unity if and only if n divides p−1.

Proof. The following proof is similar to a proof given in Algorithms for Computer Algebra.
[2]

Suppose ω is a primitive nth root of unity in Zp. We call the point set {1, ω, . . . , ωn−1}
the set of Fourier points. The Fourier points form a cyclic subgroup of the multiplicative
group Zp. We know from group theory that the cardinality of a multiplicative subgroup
must divide the size of the group. Since {1, ω, . . . , ωn−1} has n elements, and Zp has p− 1,
it follows that n divides p− 1.

Suppose n divides p−1. We know from field theory that the field Zp is cyclic, and there
exists ϕ(p− 1) generators. Let α ∈ Zp be a generator such that αp−1 = 1 and

Z∗p = {1, α, . . . , αp−2}

If we choose ω = α(p−1)/n, it follows that

ωn =
(
α(p−1)/n

)n
= 1

by the choice of α. Therefore, ω is an nth root of unity. Furthermore, for 0 < k < n, ωk = 1
would contradict α being a generator for Zp. Hence ω is a primitive nth root of unity.

We say a prime p is a Fourier prime if p−1 is divisible by a large power of two. Working in
a field Fp, where p is a Fourier prime, allows us to use FFT multiplication on polynomials of
many different degrees. For example our implementation was done over the field Zp, where
p = 15 · 227 + 1, the largest 31 bit Fourier prime.

6



1.1.3 Newton Iteration

Let a, b ∈ F [x], where F is a field, and

a(x) = a0 + a1x+ · · ·+ a2n−2x
2n−2, b(x) = b0 + b1x+ · · ·+ bn−1x

n−1.

Suppose we wish to divide a by b such that a = qb + r, where q ∈ F [x], and the degree of
r ∈ F [x] is either zero or less than the degree of b. To perform this division using a classical
long division algorithm may require O(n2) operations in F . Can we compute the quotient
of a divided by b in fewer than O(n2) operations? Let

a∗(x) = x2n−2a(1/x) = a0x
2n−2 + · · ·+ a2n−2, b∗(x) = xn−1b(1/x) = b0x

n−1 + · · ·+ bn−1.

We call a∗ and b∗ the reciprocal polynomials of a and b, respectively. This manipulation
results in reversing the order of the coefficients of the original polynomials. It follows that

a(x) = q(x)b(x) + r(x) ⇐⇒ a∗(x) = q∗(x)b∗(x) + xn−1+λr∗(x),

for λ ≥ 1. If we can find the quotient, q∗, we can then compute the remainder, r, via a−qb.
We want to calculate the inverse of b∗ to the smallest order necessary to be able to compute
the quotient, which has degree n− 1.

We say a power series ȳ(x) is an order n approximation of y(x) if

ȳ(x) = y(x) +O(xn) or ȳ(x) ≡ y(x) mod xn.

Therefore, it is sufficient to calculate the first n− 1 terms of the power series of 1/b∗, and
then multiply the result by a∗ to determine q∗. Let n be a power of two. Newton’s method
for power series inversion begins with an initial approximation, y0 = 1/bn−1, or the inverse
of the constant term. Next, for k from 1 to log2 n, we have

yk ≡ 2yk−1 − y2
k−1b

∗ mod x2k
.

Notice that from the previous iteration, we have yk−1b
∗(x) ≡ 1 mod x2k−1 . At each

step, the Newton iteration multiplies yk−1, which is of degree less than 2k−1 by itself, and
then multiplies the product by b∗, which is of degree less than 2k. This work is followed by
a subtraction. This requires one FFT multiplication of size 2k, followed by a second FFT
multiplication of size 2k+1. Let I(n) be the number of arithmetic operations in F required
to compute 1/b∗ to an order n approximation. Note that I(1) = 1, the work required to

7



compute the inverse. If n = 2k then

I(2k) ≤ I(2k−1) + M(2k) + M(2k+1) +O(n)

< I(2k−1) + 1
2M(2k+1) + M(2k+1) +O(n)

<
3
2M(2k+1) + 3

2M(2k+1) + · · ·+ 3
2M(2) +O(n)

< 3M(2k+1) +O(n).

Hence, the Newton iteration calculates the inverse of b∗ to O(xn) using work which is
equivalent to no more than three degree 2n polynomial multiplications, plus some linear
work. Once we have the inverse of b∗, we are left to calculate the quotient. We calculate

q∗ = a∗ · (1/b∗) mod O(xn),

using another FFT based multiplication. Finally, we reverse q∗ back to q, and calculate
r = a − bq. Multiplying b and q requires a final FFT multiplication, for a total of 5 FFT
multiplications. The work done after calculating 1/b∗ mod xn will be discussed in the
following chapter. For now we are only interested in the inversion. Next, we present an
improvement which decreases the size of the larger FFT multiplication.

The Middle Product Optimization

Let n = 2k. First observe that

yk = 2yk−1 − y2
k−1b

∗ mod x2k = yk−1 + yk−1(1− b∗yk−1) mod x2k
.

Normally, to multiply a polynomial of degree 2n − 1 by a polynomial of degree n − 1 the
FFT multiplication procedure requires an array which can hold at least 3n elements in the
field. Since the FFT requires the input size to be a power of two, we are required to use an
FFT multiplication of size 4n. Knowing that 1− ykb∗ ≡ 0 mod x2k , we are able to predict
that the product ykb∗ will have the following form

yk · b∗ = 1 + 0 · x+ · · ·+ 0 · xn−1 +m0 · xn +m1 · xn+1 + · · ·+mn−1 · x2n−1 +O(x2n)

= 1 + 0 · x+ · · ·+ 0 · xn−1 + xn
(
m0 +m1 · x+ · · ·+mn−1 · xn−1

)
︸ ︷︷ ︸

m(x)

+O(x2n)

= 1 + 0 · x+ · · ·+ 0 · xn−1 + xnm(x) + x2n ·
(
c0 + c1 · x+ · · ·+ cn−1 · xn−1

)
where mi, ci ∈ R for i = 0 . . . k and m(x) ∈ R[x].

Proposition 1.1.2. Given a(x), b(x) ∈ R[x] of degree less than n, n = 2k ∈ N, the Fast
Fourier Transform multiplication procedure of size n computes c(x) = a(x)·b(x) mod xn−1.

8



Proof. Recall the R-linear map DFTω which computes the Discrete Fourier Transform.
First, we define the convolution of two polynomials, a =

∑n−1
j=0 ajx

j and b =
∑n−1
k=0 bkx

k in
R[x] as the polynomial

c = a ∗n b =
∑

0≤`<n
c`x

` ∈ R[x]

where
c` =

∑
j+k≡` mod n

ajbk =
∑

0≤j<n
ajb`−j for 0 ≤ ` < n.

This notion of convolution is equivalent to polynomial multiplication in the ring R[x]/〈xn−
1〉. The indices on a and b should be regarded mod n. Consider the Discrete Fourier
Transform of such a convolution. We have a ∗ b = ab+ q · (xn − 1) for some q ∈ R[x]. Then

(a ∗ b)(ωj) = a(ωj)b(ωj) + q(ωj)(ωjn − 1) = a(ωj)b(ωj)

for 0 ≤ j < n. Therefore, we can say that DFTω(a ∗ b) = DFTω(a) · DFTω(b) where ·
represents pointwise multiplication of the vectors, DFTω(a) and DFTω(b).

Therefore, the FFT calculates the product c(x) = a(x) · b(x) mod xn − 1.

In other words, if the degree of the product of two polynomials exceeds n, then the
coefficients wrap back around. The coefficient on xn is added to the constant term, the
coefficient on xn+1 is added to the coefficient in front of x, and so on. While calculating
yk+1, or y to order 2n, the output of the FFT multiplication of size 4n = 2k+2 would give
an output of

yk · b∗ = 1 + 0x+ · · ·+ 0xn−1 +m0 · xn + · · ·+mn−1 · x2n−1

+ c0 · x2n + · · ·+ cn−1 · x3n−2 + 0 · x3n−1 + · · ·+ 0 · x4n

for mi, ci ∈ R. To compute 1 − ykb∗ mod x2n, we are only interested in the middle poly-
nomial, or the middle product, m(x), defined above as

m(x) = m0 ·+ · · ·+mn−1 · xn−1.

Consider using an FFT multiplication of size 2n. We get

yk · b∗ mod x2n = (1 + c0) + c1 · x+ · · ·+ cn−1 · xn−1 +m0 · xn + · · ·+mn−1 · x2n−1.

Therefore, we can extract the m(x) polynomial from the top half of the output of a size 2n
FFT multiplication.

9



Recall I(n) was defined as the cost of computing 1/b∗ to an order n approximation.
This improvement allows us to perform two FFT multiplications of equal size. Hence,

I(n) = I(2k) ≤ I(2k−1) + M(2k) + M(2k) +O(2k)

< I(2k−1) + 2M(2k) +O(2k)

< 2M(2k) + 2M(2k−1) + · · ·+ 2M(2) +O(2k) +O(2k−1) + · · ·+O(1)

< 4M(2k) +O(2k) < 2M(2k+1) +O(2k).

This improvement reduces the number of FFT multiplication calls by reducing the size
of the FFT multiplications from 2n to size n. Note that the work required to compute
4M(n) is less than the work required to compute 2M(2n). Prior to this improvement, we
required at least 3M(2k+1) +O(2k) work. The middle product optimization is accredited to
Hanrot, Quercia and Zimmermann [3].

10



Chapter 2

FastEval: The Algorithm

2.1 Overview

The fast evaluation algorithm presented in this section requires first building a binary tree
of products of polynomials, which we will refer to as the subproduct tree. The tree is
built from the leaves up, and relies only on the evaluation points, not on the polynomial
being evaluated. Therefore, this work may be computed once and re-used to evaluate other
polynomials at the same evaluation points. We will see later that this work can also be
re-used in other algorithms.

After the tree has been computed, the algorithm makes use of the Chinese Remainder
theorem by considering the input polynomial modulo the polynomials in the subproduct
tree.

2.1.1 Multiplying up the Tree

Let u0, . . . , un−1 be given points in the ring R. The first step of the algorithm is building
the subproduct tree, see Figure 1. To build the tree, we start with the polynomials x− ui
for 0 ≤ i < n as the leaves. Each node represents a monic polynomial that is constructed
as the product of its children. The polynomial Mi,j resides at height i, j nodes from the
left, and is the product of all the leaves that lay underneath it. The root of the tree
represents Mk,0 =

∏n−1
i=0 (x − ui), and each leaf represents M0,j = x − uj . Note that the

largest polynomial, Mk,0, is not computed because we do not use it in the computation. We
include it in the discussion only to complete the binary tree. However, in implementation
we only compute up to Mk−1,0 and Mk−1,1.

11



Mk,0 =
n−1∏
i=0

(x− ui)

Mk−1,0 =
n/2−1∏
i=0

(x− ui) Mk−1,1 =
n−1∏
i=n/2

(x− ui)

... ... ... ...
M1,0 = (x− u0)(x− u1) · · · · · · M1,n/2−1 = (x− un−2)(x− un−1)

M0,0 = (x− u0) M0,1 = (x− u1) M0,n−2 = (x− un−2) M0,n−1 = (x− un−1)· · ·

Figure 1: Subproduct Tree

If R is a commutative ring with unity, and u0, . . . , un−1 ∈ R are distinct, then each
polynomial Mi,j in Figure 1 is the monic square-free polynomial whose zero set is the jth
node from the left at level i. The following pseudo code gives a general method for building
the subproduct tree. If the FFT multiplication is used for polynomial multiplications, then
we obtain a subquadratic time algorithm for arbitrary points u0, . . . , un−1 ∈ R.

Algorithm 3 Building up the Subproduct tree
Input: n = 2k for some k ∈ N, u0, . . . , un−1 ∈ R.
Output: The polynomials Mi,j for 0 ≤ i ≤ k and 0 ≤ j < 2k−i.

1: for j = 0, . . . , n− 1 do M0,j ← (x− ui)

2: for i = 1, . . . , k do
3: for j = 0, . . . , 2k−i − 1 do Mi,j ←Mi−1,2j ·Mi−1,2j+1

Before discussing the correctness, termination, or running time of this step of the algo-
rithm, we wish to present the rest of the algorithm, motivating the work already presented.

2.1.2 Dividing down the Tree

Once the subproduct tree has been computed, we can begin to evaluate f with the fast
multipoint evaluation algorithm, which we call FastEval. The algorithm is a straight forward
divide-and-conquer algorithm which utilizes the Chinese Remainder Theorem over R[x].

Let R = Zp for p a Fourier prime. For 0 ≤ i < n, let mi = x − ui, and define the
canonical ring homomorphism

πi : R −→ R/〈mi〉,

πi (f) = f mod mi.

12



Recall that the composition of ring homomorphisms is again a ring homomorphism. It
follows that

χ = π0 × · · · × πn−1 : R→ R/〈m0〉 × · · · × 〈mn−1〉,

χ(f) = (f mod m0, . . . , f mod mn−1)

is also a ring homomorphism.
Consider what it means to take f mod mi. We are essentially dividing f by (x − ui)

and keeping the remainder. Notice that we chose the moduli in such a way that f evaluated
at ui is

f(ui) = q(ui) ·mi(ui) + r(ui) = q(ui) · 0 + r(ui) = r(ui).

This is equivalent to saying that f(ui) = f(x) mod (x − ui). Since f mod mi must have
degree less than the degree of mi, and each mi is linear, it follows that f mod mi ∈ R.
Therefore,

χ : R→ R/〈m0〉 × · · · × 〈mn−1〉,

χ(f) = (f(u1), . . . , f(un−1)) .

We now have a method for evaluating a polynomial at n points. However, dividing a
polynomial of degree n− 1 by n linear polynomials is still O(n2), as each division requires
roughly n multiplications in the ring. We can save work by performing larger divisions,
rather than n linear divisions. This is where our precomputed subproduct tree becomes
useful. Instead of dividing f by the leaves of the tree, we will recurse down the tree. First,
let

r0 = f mod
n/2−1∏
i=0

(x− ui) = Mk−1,0 and r1 = f mod
n−1∏
i=n/2

(x− ui) = Mk−1,1.

Next, call the algorithm on inputs r0, n/2 and the subtree rooted atMk−1,0 and again on
inputs r1, n/2 and the subtree rooted at Mk−1,1. Since the subproduct tree is a binary tree
of height log2 n, we will reduce the number of polynomial divisions required to compute an
evaluation to O(logn). The exact number of operations required will be explored in more
detail in the following sections.

13



Algorithm 4 Dividing down the Subproduct tree
Input: n = 2k for some k ∈ N, f ∈ R[x] of degree less than n, and the subproducts Mi,j

Output: f(u0), . . . , f(un−1) ∈ R.
1: if n = 1 then return f ∈ R
2: r0 ← f mod Mk−1,0

3: r1 ← f mod Mk−1,1

4: call the algorithm with input r0, n/2 and the subtree rooted at Mk−1,0 to compute
r0(u0), . . . , r0(un/2−1)

5: call the algorithm with input r1, n/2 and the subtree rooted at Mk−1,1 to compute
r1(un/2), . . . , r1(un−1)

6: return r0(u0), . . . , r0(un/2−1), r1(un/2), . . . , r1(un−1)

Finally, we combine the two procedures, building up and dividing down, to create the
final algorithm:

Algorithm 5 FastEval: Fast multipoint evaluation
Input: n = 2k for some k ∈ N, f ∈ R[x] of degree n− 1, u0, . . . , un−1 ∈ R.
Output: f(u0), . . . , f(un−1) ∈ R.

1: call Algorithm 3 with inputs n, u0, . . . , un−1

2: call Algorithm 4 with inputs f, n, and the subproducts Mi,j

2.2 Proof of Correctness

The subproduct tree is built from the leaves up to the root. Letmi = x−ui for all 0 ≤ i < n.
Now, let

Mi,j = mj·2i+1 · · ·mj·2i+(2i−1) =
∏

0≤`<2i

mj·2i+`.

It follows that each Mi,j is a subproduct with 2i factors of Mk,0 =
∏

0≤`<nm`, and satisfies
for each i, j the recursive equations

M0,j = mj , and Mi+1,j = Mi,2j ·Mi,2j+1.

Proof of correctness of the pre-computation follows directly from this.
The correctness of Algorithm 4 was discussed in the overview, but will be proven by

induction on k = log2 n. If k = 0, then f is constant, and Algorithm 4 will return f at
step 1. Assume k ≥ 1, and take steps 3 and 4 to be correct by the inductive hypothesis.
Let q0 be the quotient of f divided by Mk−1,0, and q1 the quotient of f divided by Mk−1,1.

14



Evaluating f at ui gives:

f(ui) =

q0(ui) ·Mk−1,0(ui) + r0(ui) = r0(ui) if 0 ≤ i < n/2

q1(ui) ·Mk−1,1(ui) + r1(ui) = r1(ui) if n/2 ≤ i < n

Correctness follows immediately.

2.3 Example

Let f(x) = 4x3 + 3x2 + 2x + 1 ∈ Z97 and suppose we wish to evaluate f at the following
n = 4 points:

u0 = 1, u1 = 2, u2 = 3, u3 = 4.

The corresponding subproduct tree is shown in Figure 2 below.

M2,0 = (x− 1)(x− 2)(x− 3)(x− 4)

M1,0 = (x− 1)(x− 2) M1,1 = (x− 3)(x− 4)

M0,0 = (x− 1) M0,1 = (x− 2) M0,2 = (x− 3) M0,3 = (x− 4)

Figure 2: Subproduct Tree for Evaluation points u0 = 1, u1 = 2, u2 = 3, u3 = 4.

Construction of the tree is clear from Figure 2. Each node is the product of its chil-
dren. Note that the root, M2,0 = (x − 1)(x − 2)(x − 3)(x − 4), would not be computed in
implementation.

Once the tree has been constructed, we begin Algorithm 4, which is illustrated by Figure
3. First, we start by dividing f by M1,0 to find the remainder r0 = 39x+ 68, and then by
M1,1 to find the remainder r1 = 74x + 17. We then call the algorithm recursively using
inputs r0, n/2 and again on r1, n/2.

Next, the algorithm computes the remainders of r0 and r1 divided by the children of
the nodes used in the last step. Specifically, it calculates

r0 = 39x+ 68 mod (x− 1) = 10, r1 = 39x+ 68 mod (x− 2) = 49

r0 = 74x+ 17 mod (x− 3) = 45, r1 = 74x+ 17 mod (x− 4) = 22

The algorithm will attempt another recursion. Since the moduli are degree one, we
know the results will all be constant terms in the ring, satisfying the base of recursion for
n = 1. The algorithm returns these results, and the evaluation is complete.

15



M2,0 = (x− 1)(x− 2)(x− 3)(x− 4)

f = r0,M1,0 = (x− 1)(x− 2) f = r1,M1,1 = (x− 3)(x− 4)

M0,0 = (x− 1) M0,1 = (x− 2) M0,2 = (x− 3) M0,3 = (x− 4)

r0 = 39x+ 68 r1 = 74x+ 17

r0 = 10 r1 = 49 r0 = 45 r1 = 22

Figure 3: Dividing down for Evaluation points u0 = 1, u1 = 2, u2 = 3, u3 = 4.

We have successfully mapped f to its evaluations:

χ : Z97[x] −→ Z97/ (〈x− 1〉 × 〈x− 2〉 × 〈x− 3〉 × 〈x− 4〉) ,

χ
(
4x3 + 3x2 + 2x+ 1

)
= (10, 49, 45, 22).

2.4 Complexity and Implementation

FastEval is a significant improvement to naive polynomial evaluation. Creating an evalua-
tion algorithm to run in subquadratic time allows it to be used as a subroutine in modular
algorithms. The importance of having all subroutines within the algorithm be subquadratic
can not be over emphasised. In this section, we will analyse the number of operations re-
quired to run FastEval, and discuss the challenges of implementing the code in subquadratic
time. Errors which arose during the process will be discussed in the following chapter, in
hopes of preventing others from making the same mistakes. Finally, some data will be
presented as proof of the subquadratic complexity, highlighting the actual improvement in
timing from a quadratic algorithm to an algorithm that runs in O(n log2 n).

2.4.1 Multiplying Up the Tree

The pre-computation stage begins at the bottom of the tree. At themth step, the algorithm
must multiply n/2m = 2k−m pairs of polynomials, each of degree 2m−1. We are able to cut
down on the size of our FFT multiplications in this step by using Proposition 1.1.2, and
knowing that each product will be a monic polynomial of degree 2m. Normally, to compute
a product of degree 2m, we would need an FFT of size 2m+1, in order to fit all 2m + 1
coefficients. We can multiply using an FFT of size 2m because we know that the coefficient
on x2m will be a one, and it will end up in front of x0. Therefore, we can subtract the
one from the constant to reveal the solution. It follows that the mth step requires 2k−m

FFT multiplications of size 2m. Recall that we let M(n) represent the number of arithmetic
operations in R required to run the FFT multiplication whose product has degree less than
n. Since calls to the FFT multiplication algorithm require more than linear work, we use

16



the fact that M(n) > 2M(n/2), to see

M (2m) = M
(

n

2k−m
)
<

1
2k−mM (n) =⇒ 2k−mM

(
n

2k−m
)
< M (n) ,

for 0 ≤ m < k. Therefore, the total work required to compute the subproduct tree is

n

2 M(2) + n

4 M(4) + · · ·+ 4M
(
n

4

)
+ 2M

(
n

2

)
≤M(n) + M(n) + · · ·+ M(n) + M(n)

= (log2(n)− 1) M(n) ∈ O(n log2 n)

The pre-computation step takes less than log2 n polynomial multiplications of size n. The
case where the FFT is not supported in the ring will be discussed later.

2.4.2 Dividing Down the Tree

The most expensive part of the entire evaluation algorithm is taking f mod Mi,j for each
node Mi,j in the subproduct tree. The algorithm runs recursively, first calling a subroutine
to divide f by Mi,j and Mi,j+1. The algorithm then calls itself twice on the subtrees rooted
at Mi,j and Mi,j+1. Let T (n) be the number of operations in R required to completely run
the algorithm through the tree. Let D(n) be the number of operations in R required by the
fast division algorithm to divide a polynomial of degree n−1 by a polynomial of degree n/2.
It follows that T (n) = 2T (n/2) + 2D(n). When n = 1, we have a zero degree polynomial
and the algorithm returns the input value. Therefore, T (1) = 0. To solve this relation, we
must first examine the division routine.

As discussed in the background material, the division algorithm used in this work utilizes
two fast algorithms to compute the remainder in subquadratic time. Taking as inputs two
polynomials a, b ∈ R[x], the procedure calls the Newton inversion routine to compute the
inverse of the quotient. Previously, we examined the number of operations in R required
to compute the inverse of the reciprocal polynomial b∗ ∈ R[x]. We concluded that the
algorithm required 2M(2n) +O(n), or roughly two FFT multiplications of size 2n. We have
M(n) = 3

2n log2 n+O(n), implying that the inversion requires 6n log2(2n) operations in R,
plus some linear work. Can we again improve on this work?

Recall that at each step of the iteration, we must compute

yk = 2yk−1 − y2
k−1b

∗ mod x2k = yk−1 + yk−1(1− b∗yk−1) mod x2k
.

We have already improved on the multiplication of b∗yk by reducing the size of the FFT
needed to compute the product. We make another improvement by noting that we are
calculating the forward Discrete Fourier Transform of yk for two multiplications, b∗yk and
yk(1− b∗yk), both of the same size. Thus, instead of using 6 calls to the FFT procedure to

17



do the two multiplications, we can save the work done to transform yk, resulting in only 5
calls to the FFT. We also save work by computing the powers of ω and ω−1 once. Recall
that I(n) is defined as the number of arithmetic operations in R required to compute 1/b∗

to an order n approximation. We have reduced this number to

I(n) < I(n/2) + 5FFT(2n) +O(n)

< 10FFT(2n) +O(n)

≈ 31
3M(n).

Therefore, the Newton inversion is a recursive algorithm whose work is no more than 10
calls of size 2n to the Fast Fourier Transform to compute b∗ to order xn. In Algorithm 4, at
the ith level of recursion, we are dividing a polynomial of degree 2k−i − 1 by a polynomial
from the subproduct tree of degree 2k−1−i. Let a ∈ R[x] be the polynomial being divided
by b ∈ R[x]. For n = 2k, a is degree n − 1, and the divisor, b, is degree n/2. To compute
the inverse of b∗ truncated to O(xn/2), we need 10 Fast Fourier Transforms of size n. Since
the FFT is quasilinear, this is less than 5 calls to the FFT of size 2n.

Once the inverse is computed, the quotient is calculated by multiplying a∗ by 1/b∗ using
an FFT multiplication routine of size n. We now have the reciprocal of the quotient, q∗,
and can find q from q∗ by reversing the coefficients. Finally, the remainder is computed by
noticing that r = a−bq. This requires a final FFT multiplication of size n, and a subtraction.
As discussed previously, each FFT multiplication requires two forward transforms and one
backwards transform. Then we have,

D(n) ≤ 10FFT(n) + 2M(n) +O(n)

< 5FFT(2n) + M(2n) +O(n)

≤ 8FFT(2n) = 8n log2 2n+O(n).

We can now examine the time complexity of dividing down the tree. We have

T (n) = 2T (n/2) + 2D(n) ≤ 2T (n/2) + 16FFT(2n)

2T (n/2) ≤ 4T (n/4) + 2 · 16FFT(n) ≤ 4T (n/4) + 16FFT(2n)

4T (n/4) ≤ 8T (n/8) + 4 · 16FFT(n/2) ≤ 8T (n/8) + 16FFT(2n)
...

Notice that on the mth recursion, we are dividing by the polynomials at depth m on the
tree. At this level, there are 2m separate subtrees that the algorithm is running on, all of

18



which are size n/2m. To complete all the work required at the mth step takes

2mT (n/2m) ≤ 2m+1T (n/2m+1) + 16 · 2mFFT(n/2m−1).

However, 2mFFT(n/2m) < FFT(n), so we notice that the mth step requires no more than
2m+1T (n/2m+1) + 16 · FFT(2n) work for all 2m calls.

Therefore, Algorithm 4 takes a total of

T (n) = log2 n(16FFT(2n)) +O(n logn) = 16n log2
2 2n+O(n logn) ∈ O(n log2 n)

operations in R.
Recall computing the subproduct tree requires less than log2(n)M(n) operations in the

ring R. In total, including precomputations and evaluation, the FastEval requires less than

log2 nM(n) + log2 n16FFT(2n) +O(n logn)

≤3
2n log2

2(n) + 16n log2
2 2n+O(n logn)

=3
2n log2

2(n) + 16n(log2
2 n+ 2 log2 n+ 1) +O(n logn)

≤35
2 n log2

2 n+O(n logn)

<17n log2
2 n+O(n logn) ∈ O(n log2 n)

operations in R to evaluate a polynomial of degree n− 1 at n arbitrary points.

2.4.3 Implementation

We implemented the algorithms above in C for 31 bit primes over the field Zp, where
p = 15 · 227 + 1. Being clever in our implementation allowed us to save space, leading to a
faster, more efficient algorithm.

One way we were able to save space was to notice that the subproduct tree contained
only monic polynomials. Since the Mi,j are monic on x, we do not need to store the leading
term coefficient, 1. The bottom level contains n linear polynomials, and we only need to
store the n constants. The next level contains n/2 degree 2 polynomials, each containing
only two elements that need to be stored, for a total of n elements. Similarly, the two nodes
just below the root are both degree n/2, and each contain n/2 elements to be stored. Hence,
the whole tree fits in an array of size log2 n by n. Had we stored the monic coefficients,
the leaves would have required double the space. This would have lead to an array of size
log2 n by 2n.

This improvement was also useful in the computation of the subproduct tree polyno-
mials. Recall Proposition 1.1.2 says that given a, b ∈ R[x] of degree less than n, the FFT
multiplication algorithm generates c = ab ∈ R[x]/(xn − 1). While building the subproduct

19



tree, we use FFT multiplications of size n to calculate polynomials of degree n. If

ab = c = c0 + c1x+ · · ·+ cmx
m

for 0 < n < m, then the FFT of size n maps the coefficient c` to (x` mod xn). We know
there will be a cn which is mapped to xn mod xn = x0. We are left with an answer of
degree n− 1, whose constant is too large by one. We subtract this extra constant, and we
expect to have to add xn. However, since we are not going to store this value anyway, we
can save ourselves the time. In the appendix, this FFT procedure has been included as
"FFTmultshort". We also save space by recognizing that we do not need to save the root.

The middle product optimization was carefully implemented. The algorithm has a spe-
cial FFT procedure which is called to compute ykb∗ using the middle product optimization.
Notice that we computed

yk · b∗ mod x2n = (1 + c0) + c1 · x+ · · ·+ cn−1 · xn−1 +m0 · xn + · · ·+mn−1 · x2n−1︸ ︷︷ ︸
xnm(x)

,

but what we are actually interested in computing is (1 − b∗yk). In theory, we need to
calculate yk · b∗ as above, extract m ∈ R[x], and set ykb∗ = xnm. It then remains to
calculate 1 − b∗yk. The procedure "newtonrec", which is included in the appendix, simply
negates the coefficients of m, and discards the rest. This eliminates the work of extracting
m and saves space by not requiring it to be copied.

The algorithm requires a temporary array of size 12n for computations. This array
is used throughout the entire algorithm, including the precomputation. By only allocating
space once, we avoid allocating heap space in recursive calls and do not have to worry about
freeing space.

2.4.4 Data Results

We randomly generated polynomials of degree n − 1 for n = 2k, where k = 5, . . . , 21 over
the field Zp, where p = 15 ·227 +1. For each value of n, the polynomial was evaluated at the
points U = [1, 2, . . . , n], first using FastEval, and then using the classic algorithm n times.
A higher degree of accuracy was necessary for input values less than 210.

20



Comparing Algorithms
n New Algorithm Old Algorithm Old/New New/(n log2

2 n)
25 0.000083 0.000035 0.422 1.038×10−7

26 0.000219 0.000157 0.717 9.505×10−8

27 0.000611 0.000446 0.730 9.742×10−8

28 0.001209 0.000950 0.786 7.379×10−8

29 0.00284 0.00394 1.393 6.847×10−8

210 0.00774 0.01612 2.083 7.559×10−8

211 0.0249 0.0658 2.643 1.005×10−7

212 0.067 0.269 4.015 1.136×10−7

213 0.175 1.091 6.234 1.264×10−7

214 0.444 4.429 9.975 1.383×10−7

215 1.083 18.103 16.715 1.469×10−7

216 2.618 73.437 28.051 1.560×10−7

217 6.204 296.793 47.839 1.638×10−7

218 14.137 1200.574 84.9242 1.664×10−7

219 32.358 4874.245 150.635 1.710×10−7

220 73.654 19750.093 268.147 1.756×10−7

221 169.008 80266.321 474.926 1.827×10−7

Figure 4: Time in seconds to evaluate a polynomial of degree n − 1 at n arbitrary points
over the field Zp for 15 · 227 + 1.

Figure 4 displays values of n from 25 up to 221, or from 32 to 2097152. The first two
columns present the time in seconds that it took to run each algorithm on a randomly
generated polynomial of degree n − 1, at the points 1, . . . , n − 1. The third column shows
how many times slower the old algorithm ran compared to FastEval. The final column
reaffirms our complexity discussion by comparing the first column to n log2

2 n. The time
it took to run FastEval divided by n log2

2 n seems to approach a constant, approximately
1.8× 10−7.

We can see that the time it takes for the old algorithm to run increases four times for
every time the number n doubles. On the other hand, the timings for FastEval increase
just under three times from 211 to 212. The rate of change in timings levels out at just
under 2.3 at the higher values of n. At 512 evaluation points, the two algorithms ran at
practically the same speed. Running FastEval on a polynomial of degree 220 − 1 took less
than 74 seconds, while the old algorithm took a staggering 19750 seconds, or approximately
five and a half hours. On a polynomial of degree 221 − 1, FastEval took just under three
minutes, while Horner’s method took over 22 hours!

These timings reflect the complexities we expected the algorithm to run for both small
and large values of n. The time it took for the evaluation with n = 220 was 2.27 times the

21



time it took for n = 219. Doubling the inputs again, we see that n = 221 took 2.29 times
as long as n = 220. Using our time complexity analysis, we predicted that the larger input
would take 2.21 times the amount of time to run. The discrepancies in prediction versus
practice are small.

It should be noted that the fast algorithms are very useful for large inputs, but are not
always the fastest choice for small inputs. For this reason, if n < 256, the old quadratic
algorithms are being run. This results in similar timings for n small, since most of the work
for this example is being done using the same procedures in both cases. In fact, 256 is our
break even point, where the fast algorithm actually does begin to perform faster than the
classical algorithm.

In addition to comparing the new and old algorithm, it is worth commenting on the
difference between the two major components of FastEval. The following figure shows clearly
that Multiplying Up (Algorithm 3), is significantly faster than Dividing Down (Algorithm
4). Although both run in O(n log2 n), the latter has a much larger coefficient. This is not
surprising, as each division requires multiple multiplications.

The first column in the following figure displays the time it took to run Algorithm 3
with inputs n and 1, . . . , n− 1. The second column shows the time it to to run Algorithm
4 on a randomly generated polynomial of degree n − 1 with the precomputation done in
Algorithm 3. The third column presents the change in time from the first algorithm to the
second.

22



A breakdown of FastEval timings
n Multiplying Up Dividing Down Dividing/Multiplying
25 0.000020 0.000061 3.050000
26 0.000032 0.000101 3.156250
27 0.000068 0.000215 3.161764
28 0.000157 0.000535 3.407643
29 0.000512 0.001662 3.246094
210 0.001498 0.005343 3.566756
211 0.004061 0.019539 4.811377
212 0.010454 0.057278 5.479051
213 0.026055 0.152480 5.852236
214 0.062933 0.385680 6.128422
215 0.149907 0.952550 6.354272
216 0.353182 2.288893 6.480774
217 0.815458 5.389606 6.609299
218 1.869353 12.555766 6.716637
219 4.222501 28.78418 6.816855
220 9.507624 65.141750 6.851527
221 21.330361 147.357927 6.908365

Figure 5: A breakdown of time in seconds to evaluate a polynomial of degree n − 1 at n
points

The data in Figure 5 fails to reinforce our theoretical timings, even though both routines
take approximately 2.3 times longer to run when the inputs are doubled. The relative
difference between the times in the left column and the times in the right column seems
to approach 7. The time to divide down the tree with n = 221 is approximately 6.9
times the number of seconds required to build the subproduct tree. However, our analysis
predicted the timings to differ by around 10.6 times. One reason for the difference between
our theoretical findings and our actual running times lays in the implementation of the
algorithm.

As was previously mentioned, some fast algorithms actually perform slower on small
inputs than their quadratic alternative. For this reason, when n is small, we force the code
to run quadratic polynomial multiplication and division algorithms. These algorithms both
require approximately the same amount of work, and our analysis does not account for this.
We assumed that each division would require the work of multiple multiplications.

Figure 5 is presented with greater accuracy than Figure 4. This was done to highlight
the speed at which the subproduct tree is built.

23



Chapter 3

Additional Comments

3.0.1 Addressing our Assumptions

In the beginning of this work, we made a few assumptions. These assumptions allowed us
to more easily discuss the algorithm and all its components. It is now time to remove these
assumptions and discuss the consequences of their disappearance. Our first, and perhaps
largest assumption, was to assume our commutative ring with unity was in fact a field.
Suppose we are interested in evaluating a polynomial f(x) = a0 +a1x+ · · ·+an−1x

n−1, ai ∈
R, where R is a commutative ring with unity. Perhaps R has elements which do not have
multiplicative inverses. Another possible situation is that R is in fact a field, but it is a
finite field R = Zp, where 2k does not divide p − 1. Let’s suppose R is some commutative
ring with unity which does not support the FFT. This means that either R has no primitive
nth root of unity, or 2−1 6∈ R. One option in this case is to compute the evaluations in
a sufficient number of Fourier prime fields, and then use the Chinese Remainder Theorem
to determine the true answer in Z. This way, all the work is done over a field. This is
particularly nice, as it allows the division algorithm to work as before. If the ring R does
not guarantee each element has a multiplicative inverse, we cannot use Newton Iteration,
because our initial guess, the inverse of the constant term, may not exist.

If we are working over a ring which does not support the FFT, another option available
is to use a different subquadratic multiplication algorithm. One, which is explored in detail
in [5], is Karatsuba’s multiplication algorithm. This algorithm multiplies polynomials of
degree less than n = 2k over a ring with at most O(n1.59) ring operations. While this is a
significant increase from O(n log2 n) for large n, it is better than O(n2).

Next, we assumed that we were given n = 2k unique evaluation points. Since our
evaluation map is a homomorphism, insisting on unique evaluation points does not create
a loss of information. This is to be expected as evaluating a polynomial at the same points
multiple times is redundant.

Suppose n is not a power of two. In general, we have two choices. We may either add
"phantom points" to round up to the next power of two, or we may adjust the code so to

24



have an "almost" binary tree. The second option leads to problems with the FFT, as it
requires n = 2k. Choosing to add extra points so that the input number is 2dlog2 ne makes
the analysis of the algorithm similar, but the run time will be slower. However, we may be
able to save work by noticing that the subtree whose leaves are all phantom points can be
disregarded. For example, if half the points are phantom points, we need only to consider
the subtree rooted at Mk−1,0.

Lastly, we assumed that f ∈ R[x] was a polynomial of degree n − 1. The algorithm is
presented as a pair, an evaluation algorithm and an interpolation algorithm. The latter will
be discussed in the following section. Therefore, it seems natural to talk about evaluating
the polynomial at the number of points needed to interpolate it. However, the reader may
choose to use the algorithm for different reasons, and may have a polynomial of degree less
than n−1. Let deg(f) be the degree of f(x) with respect to x. If n/2−1 < deg(f) < n−1,
then the FFT multiplications still require the same amount of space. This means that the
algorithm will still take O(n log2 n) operations in the ring. However, if the degree of f is
less than half of n, and we wish to evaluate f at n points, it would be more time efficient
to run the algorithm twice on n/2, than to run it on size n.

3.0.2 Errors to Learn From

As with any project, many mistakes were made, discovered, and corrected along the way.
One mistake of note was underestimating the importance of having all subroutines being
subquadratic. Because the division algorithm uses a Newton iteration, it is only able to
perform divisions when the polynomial dividing has an invertible constant term. Since
we are working over a field, all non-zero elements are invertible. Therefore, the division
algorithm originally had a check for when the divisor b had a zero constant. When this
occurred, the algorithm called a quadratic division algorithm to avoid dividing by zero.

Originally, we tested the algorithm on the evaluation points 0, p−1, p−2, . . . , p− n+ 1 ∈ Zp,
for p = 15 ·227 +1. This meant that the very first division divided f by x(x−1) · · · (x−n/2).
This is a large division, which took O(n2) time. At each level of the algorithm, the quadratic
routine would be called once, resulting in at least n2 log2 n arithmetic operations. The data
we obtained showed the new algorithm was much faster than Horner’s method, but the
times for large n were increasing by more than a factor of 3 as n doubled. Running the
algorithm on n = 220 took approximately 6 minutes, which was nearly 3.5 times slower than
n = 219. Although this was an improvement, it was not as fast as O(n log2 n).

Luckily, this problem was easily fixed. Evaluating a polynomial f(x) = a0 + a1x+ · · ·+
an−1x

n−1 at x = 0 is trivially f(0) = a0. If it is necessary to evaluate f at zero, it can be
done by inspection. Therefore, we can require that the input evaluation points are non-zero.
By adding in this requirement, and removing the check for zero constants, the algorithm
improved to be subquadratic.

25



3.1 Interpolation and Further Work

Evaluating a polynomial f ∈ R[x] of degree n−1 at n points is especially useful if one wishes
to perform operations in the ring R instead of R[x], and then interpolate the results back
to R[x]. In this section, we will present an overview of an interpolation algorithm which
uses work already done in FastEval. Note that interpolation requires f to be evaluated at
n distinct points.

Problem (Interpolation). Suppose R is a commutative ring with unity. Given n = 2k for
some k ∈ N, and u0, . . . , un−1 ∈ R such that ui−uj is a unit for i 6= j, and v0, . . . , vn−1 ∈ R,
compute f ∈ R[x] of degree less than n with

χ(f) = (f(u0), . . . , f(un−1)) = (v0, . . . , vn−1).

Given distinct u0, . . . , un−1 and the arbitrary v0, . . . , vn−1 in a field F , Lagrange inter-
polation says that the unique polynomial f ∈ F [x] which solves the interpolation problem
takes the form

f =
∑

0≤i<n
visim/(x− ui),

where m = (x− u0) · · · (x− un−1), and

si =
∏
j 6=i

1
ui − uj

.

Although this technique requires a field, the condition that ui − uj must be a unit allows
us to work over a ring.

First, we compute the si. To invert and multiply each pair of ui − uj would be costly.
Instead, we will take a smarter approach. Note that the formal derivative of m is m′ =∑

0≤j<nm/(x−uj), and m/(x−ui) vanishes at all points uj with i 6= j. Therefore, we have

m′(ui) = m

x− ui
|x=ui = 1

si
.

Therefore, we can compute all si by evaluating m′ at the n evaluation points u0, . . . , un−1.
Luckily, we know we can do this in O(n log2 n) operations in R, plus the n inversions.

Once we have computed the si, we are already done - we have created a polynomial
which solves the interpolation problem. However, the algorithm does not end here. In
order to output a polynomial of the form f(x) = a0 + a1x+ · · ·+ an−1x

n−1, for ai ∈ R, we
must compute the products and then take the sum of f =

∑
0≤i<n visim/(x − ui). To do

this, we will use our subproduct tree as follows:

26



Algorithm 6 Interpolation
Input: n = 2k for some k ∈ N, ci = vi · · ·i for i = 0, . . . , n − 1 where si is computed as

above, f(ui) = vi for u0, . . . , un−1 ∈ R, and the subproducts Mi,j

Output: f =
∑

0≤i<n cim/(x− ui) ∈ R[x], where m = (x− u0) · · · (x− un−1).
1: if n = 1 then return: c0

2: call the algorithm with input r0 =
∑

0≤i<n/2 ci
Mk−1,0
x−ui

3: call the algorithm with input r1 =
∑
n/2≤i<n ci

Mk−1,1
x−ui

4: compute Mk−1,1r0 +Mk−1,0r1

5: return f

The reader is invited to refer to Modern Computer Algebra [5] for a discussion on cor-
rectness and run time. It is interesting to note that this algorithm, if the FFT is used,
will also require no more than O(n log2 n) operations in R. Implementing the interpolation
algorithm is the natural next step of this project. This algorithm was coded in Maple, but
time did not allow for C code to be completed. Another interesting algorithm which is
presented in Modern Computer Algebra is a Fast Chinese remaindering algorithm for R[x].
This too utilizes a subproduct tree!

3.2 Conclusion

This project was successful in implementing a subquadratic algorithm for evaluating a poly-
nomial of degree less than n, at n arbitrary points. Figure 4 shows the good improvement
from the old classic algorithm. The break even point, the size required for FastEval to per-
form faster than Horner’s method, was around 256. This is a nice result for an algorithm
requiring O(n log2 n) operations.

27



Bibliography

[1] A. Borodin and I. Munro. Evaluating polynomials at many points. Information Pro-
cessing Letters, 1(2):66 – 68, 1971.

[2] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Springer
US, 2007.

[3] Guillaume Hanrot, Michel Quercia, and Paul Zimmermann. The middle product algo-
rithm i. Appl. Algebra Eng., Commun. Comput., 14(6):415–438, March 2004.

[4] Marshall Law and Michael Monagan. A parallel implementation for polynomial multipli-
cation modulo a prime. In Proceedings of the 2015 International Workshop on Parallel
Symbolic Computation, PASCO ’15, pages 78–86, New York, NY, USA, 2015. ACM.

[5] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2013.

28



Appendix A

C Code

For the following algorithms, we assume 0 < p < 232.

#de f i n e LONG long long i n t

Add32s - Compute a+ b ∈ Zp :

i n t add32s ( i n t a , i n t b , i n t p ) ;

Sub32s - Compute a− b ∈ Zp:

i n t sub32s ( i n t a , i n t b , i n t p ) ;

Neg32s - Compute −a ∈ Zp:

i n t neg32s ( i n t a , i n t p ) ;

SeriesMult - Series multiplication C = A · f mod xn ∈ Zp:

void s e r i e smu l t ( i n t n , i n t ∗A, i n t ∗ f , i n t ∗C, i n t p){ //A∗ f = C to O(x^n)
i n t i , k ;
LONG t , M;
M = ((LONG) p) << 32 ;
f o r ( k = n−1 ; k>= 0 ; k−−){

i =0; t=0;
whi l e ( i<k ){

t −= (LONG) A[ i ]∗ f [ k−i ] ; i++;
t −= (LONG) A[ i ]∗ f [ k−i ] ; i++;
t += ( t>>63) & M;

}
i f ( i==k){

t−= (LONG) A[ i ]∗ f [ k−i ] ;
t+=(t>>63) & M;

}
t = −t ;
t+=(t>>63) & M;

29



C[ k ] = t % p ;
}
return ;

}

FFT1 - Forward FFT transform of size n:
void FFT1( i n t ∗A, i n t n , i n t ∗W, in t p){

i n t i , n2 , t , s , a , s2 , temp , temp2 ;
n2 = n/2 ;
f o r ( s=2; s <= n ; s=2∗s ){
i f ( s==2){

f o r ( i =0; i < n ; i+=s ){
temp = A[ i ] ; temp2 = A[ i +1] ;
A[ i ] = add32s ( temp , temp2 , p ) ;
A[ i +1] = sub32s ( temp , temp2 , p ) ;

}
}

e l s e {
s2 = s /2 ; i n t d i f f = n−s ;
f o r ( i n t stemp=0; stemp < n ; stemp = s+stemp ){

f o r ( i =0; i <s2 ; i++){
t = mul32s (W[ i+d i f f ] , A[ stemp+s2+i ] , p ) ;
temp = A[ i+stemp ] ;
A[ i+stemp ] = add32s ( temp , t , p ) ;
A[ s2+i+stemp]= sub32s ( temp , t , p ) ;

}
}

}
}
return ;

}

FFT2 - Backward FFT transform of size n:
void FFT2( i n t ∗A, i n t n , i n t ∗W, in t p){

i n t i , n2 , t , s , a , s2 , temp , temp2 ;
n2 = n/2 ;
f o r ( s=n ; s >1; s=s /2 ){
i f ( s==2){

f o r ( i =0; i < n ; i+=s ){
temp = A[ i ] ; temp2 = A[ i +1] ;
A[ i ] = add32s ( temp , temp2 , p ) ;
A[ i +1] = sub32s ( temp , temp2 , p ) ;

}
}
e l s e {

s2 = s /2 ; i n t d i f f = n−s ;
f o r ( i n t stemp=0; stemp < n ; stemp = s+stemp ){

30



f o r ( i =0; i <s2 ; i++){
t= sub32s (A[ i+stemp ] , A[ s2+i+stemp ] , p ) ;
temp = A[ i+stemp ] ; temp2 = A[ s2+i+stemp ] ;
A[ i+stemp ] = add32s ( temp , temp2 , p ) ;
A[ s2+i+stemp ] = mul32s ( t ,W[ i+d i f f ] , p ) ;
}

}
}

}
return ;

}

Algorithm 2 - FFT multiplication C = A ·B, where degree of C < n:
void FFTmult( i n t ∗A, i n t ∗B, i n t ∗C, i n t n , i n t da , i n t db , i n t ∗ T, i n t p){

//C = A∗B, or A = A∗B, or B = A∗B
//T must be s i v e 2n , and C must be s i z e n

i n t i , ninv , w, winv ;
i f (n<256){ polmul32s (A,B,C, da , db , p ) ; r e turn ; }
ninv = modinv32s (n , p ) ;
w = powmod(31 , mul32s ( ( p−1) , ninv , p ) , p ) ;
winv = modinv32s (w, p ) ;
i n t ∗W, ∗TA, ∗TB;
W = C; TA = T; TB = T+n ;
f o r ( i = 0 ; i <= da ; i++){ TA[ i ] = A[ i ] ; }
f o r ( i = 0 ; i <= db ; i++){ TB[ i ] = B[ i ] ; }
f o r ( i = da+1 ; i < n ; i++){ TA[ i ] = 0 ; }
f o r ( i = db+1 ; i < n ; i++){ TB[ i ] = 0 ; }
buildW( W, w, n , p ) ;
FFT2(TA, n , W, p ) ;
FFT2(TB, n , W, p ) ;
f o r ( i = 0 ; i < n ; i++){ TA[ i ] = mul32s (TA[ i ] ,TB[ i ] , p ) ; }
buildW(W, winv , n , p ) ;
FFT1(TA, n ,W, p ) ;
f o r ( i=0 ; i< n ; i++){ C[ i ] = mul32s (TA[ i ] , ninv , p ) ; }

}

FFTMultShort - FFT multiplication C = A ·B, where degree of C ≥ n:
void FFTmultshort ( i n t ∗A, i n t ∗B, i n t ∗C, i n t n ,

i n t da , i n t db , i n t ∗ T, i n t p){
//C = A∗B, or A = A∗B, or B = A∗B
//T must be s i v e 2n , and C must be s i z e n
i n t i , ninv , w, winv ;
i f (n<256){ polmul32s (A,B,C, da , db , p ) ; r e turn ; }
ninv = modinv32s (n , p ) ;
w = powmod(31 , mul32s ( ( p−1) , ninv , p ) , p ) ;
winv = modinv32s (w, p ) ;
i n t ∗W, ∗TA, ∗TB;

31



W = C;TA = T;TB = T+n ;
f o r ( i = 0 ; i <= da ; i++){ TA[ i ] = A[ i ] ; }
f o r ( i = 0 ; i <= db ; i++){ TB[ i ] = B[ i ] ; }
f o r ( i = da+1 ; i < n ; i++){ TA[ i ] = 0 ; }
f o r ( i = db+1 ; i < n ; i++){ TB[ i ] = 0 ; }
buildW( W, w, n , p ) ;
FFT2(TA, n , W, p ) ;
FFT2(TB, n , W, p ) ;
f o r ( i = 0 ; i < n ; i++){ TA[ i ] = mul32s (TA[ i ] ,TB[ i ] , p ) ; }
buildW(W, winv , n , p ) ;
f o r ( i=0 ; i < n ; i++)TA[ i ] = sub32s (TA[ i ] , 1 , p ) ;
FFT1(TA, n ,W, p ) ;
f o r ( i=0 ; i< n ; i++){ C[ i ] = mul32s (TA[ i ] , ninv , p ) ; } ;

}

NegMiddleProduct - Compute C = y · f using the middle product optimization:
void negmiddleproduct ( i n t n , i n t m, i n t ∗y , i n t ∗ f , i n t ∗C, i n t p){

//y∗ f i n t o C us ing middle product opt imiza t i on
i n t i , k ; LONG t , M;
M = ((LONG) p) << 32 ;
f o r ( k=m; k<n ; k++){

i =0; t=M;
whi l e ( i<k ){

t−= (LONG) y [ i ]∗ f [ k−i ] ; i++;
t−= (LONG) y [ i ]∗ f [ k−i ] ; i++;
t += ( t>>63) & M;

}
i f ( i==k){ t−= (LONG) y [ i ]∗ f [ k−i ] ; t+=(t>>63) & M;}
C[ k−m] = t % p ;

}
return ;

}

Newtonrec - Compute y = 1/ftoO(xn) using Newton inversion:
void newtonrec ( i n t n , i n t ∗ f , i n t ∗y , i n t ∗T, i n t p){

// T must be 4n
i n t i ,m, ninv , w, winv ;
i f ( n==1 ){ y [ 0 ] = modinv32s ( f [ 0 ] , p ) ; r e turn ; }
m = n/2 ;
newtonrec ( m, f , y , T, p ) ;
f o r ( i=m; i<n ; i++){ y [ i ]=0;}
// negat ive middle product
i f (n<256){ negmiddleproduct (n ,m, y , f ,T, p ) ; polmul32s (y ,T,T,m−1,m, p ) ; }
e l s e {

ninv = modinv32s (n , p ) ;
w = powmod(31 , mul32s ( ( p−1) , ninv , p ) , p ) ;
winv = modinv32s (w, p ) ;

32



i n t ∗W, ∗Winv , ∗TA, ∗TB;
W = T; Winv = T+n ; TA = T+2∗n ;TB = T+3∗n ;
f o r ( i = 0 ; i < n ; i++){ TA[ i ] = y [ i ] ; TB[ i ] = f [ i ] ; }
buildW( W, w, n , p ) ;
FFT2(TA, n , W, p ) ;
FFT2(TB, n , W, p ) ;
f o r ( i = 0 ; i < n ; i++){ TB[ i ] = mul32s (TA[ i ] ,TB[ i ] , p ) ; }
buildW(Winv , winv , n , p ) ;
FFT1(TB, n ,Winv , p ) ;
f o r ( i = 0 ; i < m ; i++){ TB[ i ] = neg32s (mul32s (TB[ i+m] , ninv , p ) , p ) ; }
f o r ( i = m; i < n ; i++){ TB[ i ] = 0 ;}
FFT2(TB, n , W, p ) ;
f o r ( i = 0 ; i < n ; i++){ TB[ i ] = mul32s (TA[ i ] ,TB[ i ] , p ) ; }
FFT1(TB, n ,Winv , p ) ;
f o r ( i = 0 ; i < n ; i++){ T[ i ] = mul32s (TB[ i ] , ninv , p ) ; }

}
f o r ( i =0; i < n−m; i++) {y [m+i ]=T[ i ] ; }
re turn ;

}

Division - Compute A/B, and store the remainder in q:

i n t d i v i s i o n ( i n t n , i n t ∗A, i n t ∗B, i n t ∗q , i n t da , i n t ∗T, i n t p) {
// Computes A/B and s t o r e s the remainder and quot i ent in q
// Returns the degree o f r
//A deg n−1, B deg n/2 , T must be o f s i z e 8n

i n t i , dq , dr ,m, np , db ;
db = n/2 ;
i f ( db<2048 ) {

f o r ( i =0; i<=da ; i++){T[ i ] = A[ i ] ; }
dr = po ld iv32s ( T, B, da , db , p ) ;

f o r ( i=0 ; i <=dr ; i++){
q [ i ] = T[ i ] ;

r e turn ( dr ) ;
}

i n t ∗TA, ∗TB, ∗C; //Temporary ar rays to s t o r e the r eve r s ed po lys
m = 2∗n ;
dq = sub32s (da , db , p ) ; np = db ; dr = db−1;
C = T; TB = T+2∗n ; TA = T+4∗n ;
f o r ( i =0; i < 8∗n ; i++){ T[ i ] = 0 ;}

f o r ( i=0 ; i<=db ; i++){TB[ i ] = B[ db−i ] ; }
newtonrec ( np , TB, C, TA, p ) ; // i n v e r t s B to O(x^np) and puts i t in C
f o r ( i=0 ; i<np ; i++){ TA[ i ] = A[ da−i ] ; }
FFTmult(TA,C,TB, n , np−1,np−1,T+6∗n , p ) ; /TA∗T ( revA∗ invB ) in to TB
f o r ( i=0 ; i<=dq ; i++){q [ dq−i ] = TB[ i ] ; }
f o r ( i=0 ; i<=dq ; i++){TA[ i ] = q [ i ] ; }
f o r ( i=0 ; i<=db ; i++){TB[ i ] = B[ i ] ; }
FFTmult(TA, TB, C, n , dq , db ,T+6∗n , p ) ; // Bq

33



f o r ( i = 0 ; i <=da ; i++) TA[ i ] = q [ i ] ;
dr = polsub32s (A, C, TA, da , da , p ) ; //A−Bq = r
f o r ( i=0 ; i <=da ; i++){ q [ i ] = TA[ i ] ; }
re turn ( dr ) ;

}

Algorithm 3 - Compute the subproduct tree:
void subprod ( i n t n , i n t ∗∗ M, in t ∗U, i n t ∗T, i n t p){ //Algorithm 3

in t i , j ,m, l , lg , c , k ;
f o r ( i = 0 ; i < n ; i++){ M[ 0 ] [ i ]=neg32s (U[ i ] , p ) ; }
i n t ∗ temp1 = T + n ; i n t ∗ temp2 = T + 3∗n ;
i n t ∗ temp3 = T + 4∗n ;
j = 1 ; //Degree o f poly in row k
l g = log_2 (n ) ;
f o r ( k=0 ; k < ( lg −1) ; k++){ // Row

l = n/(2∗ j ) ; c=0; // Number o f po lynomia l s in row k
f o r (m=0 ; m < l ; m++) {

temp1 [ j ] = 1 ; temp2 [ j ] = 1 ;
f o r ( i = 0 ; i < j ; i++){

temp1 [ i ] = M[ k ] [ i +2∗m∗ j ] ;
temp2 [ i ] = M[ k ] [ i+j+2∗m∗ j ] ;

}
FFTmultshort ( temp1 , temp2 , temp3 , 2∗ j , j , j ,T, p ) ;
f o r ( i =0; i < 2∗ j ; i++){ M[ k+1] [ i+c ] = temp3 [ i ] ; }
c+=2∗ j ;

}
j = 2∗ j ;

}
re turn ;

}

Algorithm 4 - Divide down the subproduct tree:
void downtree ( i n t n , i n t k , i n t ∗∗ f , i n t ∗T, i n t ∗T2 , i n t s t , i n t df ,
i n t ∗∗M, in t p){
//Algorithm 4

in t i , dr1 , dr2 , j ;
i f (n==1 ){ return ; } //Base o f r e cu r s i on
i f ( df == 0){

f o r ( i=0 ; i < n ; i++){ f [ 0 ] [ s t+i ] = f [ k ] [ s t ] ; }
re turn ;

}
f o r ( i = 0 ; i <2∗n ; i++){T[ i ] = 0 ;}
T[ n /2 ] = 1 ; // Retr i eve polynomia l s from the precomputed t r e e
f o r ( i=s t ; i< n/2 + s t ; i++){

T[ i−s t ] = M[ k−1] [ i ] ;
}
f o r ( i=0 ; i <8∗n ; i++){T2 [ i ] = 0 ;}

34



dr1 = d i v i s i o n (n , f [ k]+ st , T, f [ k−1]+ s t , df , T2 , p ) ;
f o r ( i = s t ; i < n/2 + s t ; i++){T[ i−s t ] = M[ k−1] [ n/2+ i ] ; }
T[ n /2 ] = 1 ;
dr2 = d i v i s i o n (n , f [ k]+ st , T, f [ k−1]+( s t+n/2) , df , T2 , p ) ;
downtree ( n/2 , k−1, f , T, T2 , s t , n/2−1, M, p ) ;
downtree ( n/2 , k−1, f , T, T2 , (n/2)+( s t ) , n/2−1, M, p ) ;

}

35


	Approval
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Background
	Classic Evaluation - Horner's Method
	The Fast Fourier Transform
	Newton Iteration


	FastEval: The Algorithm
	Overview
	Multiplying up the Tree
	Dividing down the Tree

	Proof of Correctness
	Example
	Complexity and Implementation
	Multiplying Up the Tree
	Dividing Down the Tree
	Implementation
	Data Results


	Additional Comments
	Addressing our Assumptions
	Errors to Learn From

	Interpolation and Further Work
	Conclusion

	Bibliography
	Appendix C Code

