
MITACS, NSERC
Computational Algebra Group
Centre for Experimental and Constructive Mathematics
Department of Mathematics
Simon Fraser University

Complexity

Suppose thatA = (ai,j) is an× n integer matrix and|ai,j| < Bm.

A bound forS is n!Bmn, therefore, under reasonable assumptions, length of the
determinant ofA isO(mn) baseB digits, so we’ll needO(mn) machine primes.
We have:

•Cost of reducing then2 entries inA modulo one prime isO(mn2).

•Cost of computing the characteristic polynomial modulo each primep via the
Hessenberg method isO(n3).

•Cost of a classical method for the Chinese remainder algorithm isO(n(mn)2).

Total complexity:O(mnmn2 + mnn3 + n(mn)2) = O(m2n3 + mn4).

In contrast, the Berkowitz algorithm, the algorithm that Maple uses, has com-
plexity O(n4(mn)2), which reduces tõO(n5m) if the FFT is used.

Timings

The following is set of timings (in seconds) for a 364 by 364 sparse matrix
arising from a combinatorial construction. Rows 1-8 below are for the modular
algorithm using different implementations of arithmetic forZp. The accelerated
floating point versions using 25-bit primes generally give the best times.

Versions Xeon Opteron AXP2800 Pentium M Pentium 4
2.8 GHz 2.0 GHz 2.08 GHz 2.00 GHz 2.80 GHz

64int 100.7 107.4 —.- —.- —.-
32int 66.3 73.0 76.8 35.6 57.4
new 32int 49.7 54.7 56.3 25.5 39.6
fmod 29.5 32.1 33.0 35.8 81.1
trunc 67.8 73.7 69.6 88.5 110.6
modtr 56.3 62.5 59.5 81.0 82.6
new fmod 11.0 11.6 14.5 15.2 28.8
fLA 17.6 19.9 21.9 26.2 27.3
Berkowitz 2053.6 2262.6 —.- —.- —.-

Explanations of the different versions:

64int The 64-bit integer version is implemented using thelong long int datatype in C, or
equivalently theinteger[8] datatype in Maple. All modular arithmetic first executes the corre-
sponding 64-bit integer machine instruction, then reduces the result modp because we work
in Zp. We allow both positive and negative integers of magnitude less thanp.

32int The 32-bit integer version is similar, but implemented using thelong int datatype in C,
or equivalently theinteger[4] datatype in Maple.

new 32int This is an improved32int, with various hand/compiler optimizations.

fmod This 64-bit float version is implemented using thedoubledatatype in C, or equivalently
thefloat[8] datatype in Maple. 64-bit float operations are used to simulate integer operations.
Operations such as additions, subtractions, multiplications are followed by a call tofmod()to
reduce the results modp, since we are working inZp. We allow both positive and negative
floating point representations of integers with magnitude less thanp.

trunc This 64-bit float version is similar to above, but usestrunc() instead offmod(). To
computeb← a mod p, we first computec← a−p× trunc(a/p), thenb← c if c 6= ±p, b← 0
otherwise. The trunc function rounds towards zero to the nearest integer.

modtr A modified trunc version, where we do not do the extra check for equality to±p at
the end. So to computeb ← a mod p, we actually computeb ← a − p × trunc(a/p), which
results in−p ≤ b ≤ p.

new fmod An improvedfmod version, where we have reduced the number of timesfmod()
is called. In other words, we reduce the results modp only when the number of accumulated
arithmetic operations on an entry exceeds a certain threshold. In order to allow this, we are
restricted to use 25-bit primes. We call this the operation count acceleration.

fLA An improvedtrunc version using operation count acceleration. It is the default used in
Maple’s LA:Modular routines.

Introduction

We present a modular algorithm for computing the charac-
teristic polynomial of an integer matrix. The computation
modulo each prime is done using the Hessenberg algorithm.
It is implemented in C and the rest of the algorithm is im-
plemented in Maple. We compare three implementations for
arithmetic overZp : 32-bit integers, 64-bit integers, and also
double precision floats. The best results use floats!

Modular Algorithm

Input: Matrix A ∈ Zn×n

Output: Characteristic polynomialc(x) = det(xI−A) ∈ Z[x]

1.Compute a boundS larger than the largest coefficient ofc(x).

2.Chooset machine primesp1, p2, . . . , pt such that
∏t

i=1 pi > 2S.

3. for i = 1 to t do

(a)Ai← A mod pi.

(b)Computeci(x) — the characteristic polynomial ofAi overZpi
via the

Hessenberg algorithm.

4.Apply the Chinese remainder theorem:
Solvec(x) ≡ ci(x) (mod pi) for c(x).

Hessenberg Algorithm

Recall that a square matrixM = (mi,j) is in upper Hessenberg form if
mi,j = 0 for all i ≥ j + 2, in other words, the entries below the first
subdiagonal are zero.

m1,1 m1,2 m1,3 · · · m1,n−2 m1,n−1 m1,n

m2,1 m2,2 m2,3 · · · m2,n−2 m2,n−1 m2,n

0 m3,2 m3,3 · · · m3,n−2 m3,n−1 m3,n

0 0 m4,3 · · · m4,n−2 m4,n−1 m4,n
...
0 0 0 ... mn−1,n−2 mn−1,n−1 mn−1,n

0 0 0 · · · 0 mn,n−1 mn,n

The Hessenberg algorithm consists of the following two parts:

1.Reduce the matrixM ∈ Zn×n
p into the upper Hessenberg form using a

series of row and column operations inZp, while preserving the char-
acteristic polynomial (known as similarity transformations.) Below,Ri

denotes thei’th row of M andCj thej’th column ofM.

for j = 1 to n− 2 do
search for a nonzero entrymi,j wherej + 2 ≤ i ≤ n
if foundthen

do Ri↔ Rj+1 andCi↔ Cj+1 if mj+1,j = 0
for k = j + 2 to n do

(reduce usingmj+1,j as pivot)
u← mk,j mj+1,j

−1

Rk ← Rk − uRj+1

Cj+1← Cj+1 + uCk

else
first j columns ofM is already in upper Hessenberg form

2.The characteristic polynomialc(x) = pn+1(x) ∈ Zp[x] of the upper
Hessenberg form can be efficiently computed from the following re-
currence forpk(x) using computations inZp[x] :

pk(x) =

1 k = 1

(x−mk,k)pk(x)−
k−1∑
i=1

(
i∏

j=1

mj+1,j) mi,k pi(x) 1 < k ≤ n + 1

Simon Lo Michael Monagan Allan Wittkopf

Computing Characteristic Polynomials overZ

