
MOCAA M
3 Workshop

Scheduling Parallel Algorithms in Computer Algebra

Marc Moreno Maza & Yuzhen Xie

1



What is this Talk About and not About?

• This talk is about:

- an automatic scheduling software tool, Cilk

- especially good for programs extracting parallelism from

divide-and-conquer algorithms

- which is particularly well-suited for symbolic computation,

- although we will use numerical examples . . .

• This talk is not about:

- automatic scheduling in general,

- programming environments for parallel symbolic computation,

- why parallelism is good and important . . .

• However, we will have a quick review . . .

2



A Crash Course on Parallel Computing

• Measures of parallel efficiency:

- for algorithms: running in logα(n) on p = nO(1) processors.

- for programs: reaching linear speed-up (since p is small in practice).

• Reasons for parallel inefficiency:

- no opportunities for concurrent execution,

- unequal size tasks,

- memory traffic which can limit the benefits of parallel execution

- parallelism overheads:

* cost of starting a thread or process,

* cost of communicating shared data,

* cost of synchronizing.

• Next we emphasize memory traffic issues . . .

3



Efficient Implementation of Matrix Multiplication

• We aim at multiplying large square matrices of order n with floating

point number coefficients. (Same story over a finite field.)

• Assumptions:

- Two levels of memory: slow and fast.

- The fast memory has size M words with M << n2 but M ≥ 4n.

- The input and output matrices reside entirely in slow memory.

- Each word is read from slow memory individually and we have full

control over which words are transferred between the two levels.

- Finally, assume that one read/write access to slow memory is much

more expensive than one operation on floating point numbers.

• Notations:

- Let m be the number of read/write access to slow memory

- Let f = 2n3 the total number of operations on floating point numbers.
4



Unblocked Matrix Multiplication

5



Unblocked Matrix Multiplication

Let’s count the number of accesses to the slow memory. For A, B and C

respectively: n2, n3, 2n2. Leading to:

m = n3 + n2 + 2n2 = n3 + 3n2

and

q =
f

m
=

2n3

n3 + 3n2
∼ 2.

6



Blocked Matrix Multiplication

7



Blocked Matrix Multiplication

8



Unblocked Matrix Multiplication

Each matrix is regarded as N -by-N blocks of size n/N × n/N .

For A, B and C we have respectively: Nn2, Nn2, 2n2 accesses.

m = Nn2 + Nn2 + 2n2 = (2N + 2)n2.

and

q =
f

m
=

2n3

(2N + 2)n2
∼

n

N
∼

√

M

3
.

Since 3 blocks must be in fast memory, so N ∼ n
√

3
M

.

9



Cilk

• Cilk has been developed since 1994 at the MIT Laboratory for Computer

Science by Prof. Charles E. Leiserson and his group.

• Besides being used for research and teaching, Cilk was the system used

to code the three world-class chess programs Tech, Socrates, and Cilkchess.

• Over the years, implementations of Cilk have run on computers ranging

from networks of Linux laptops to an 1824-nodes Intel Paragon.

• Cilk is currently maintained by Matteo Frigo <athena@fftw.org>.

http://supertech.csail.mit.edu/cilk/

http://www.cilk.com/

10



Multithreaded Programming in Cilk

• Cilk software, user manual and relevant papers and events are available at

http://supertech.csail.mit.edu/cilk/ and http://www.cilk.com/

• Example program: Fibonacci

C

int fib(int n)

{

if (n < 2) return n;

else {

int x, y;

x = fib(n− 1);

y = fib(n− 2);

return x + y;

}

}

Cilk

cilk int fib(int n) {

if (n < 2) return n;

else {

int x, y;

x = spawn fib(n− 1);

y = spawn fib(n− 2);

sync;

return x + y;

}

}

11



Multithreaded Programming in Cilk

Basic Cilk key words

cilk int fib(int n) {

if (n < 2) return n;

else {

int x, y;

x = spawn fib(n− 1);

y = spawn fib(n− 2);

sync;

return x + y;

}

}

cilk:

Identifies a function as a Cilk pro-

cedure, capable of being spawned in

parallel.

spawn:

The child procedure can be executed

in parallel with the parent.

sync:

Cannot be passed until all spawned

children have returned.

12



Exposing Parallelism in Cilk

• Cilk is a faithful extension of C, because the C elision of a Cilk program is

a correct implementation of the semantics of the program.

• Cilk is a multithreaded language for parallel programming that

generalizes the semantics of C by introducing linguistic constructs for parallel

control.

• Moreover, on one processor, a parallel Cilk program scales down to run

nearly as fast as its C elision.

13



Exposing Parallelism in Cilk

• The keyword cilk identifies a Cilk procedure, which is the parallel

version of a C function:

- Parallelism is created when the invocation of a Cilk procedure is

immediately preceded by the keyword spawn.

- Cilk’s scheduler takes the responsibility of scheduling the spawned

procedures on the processors of the parallel computer.

• A Cilk procedure cannot safely use the returned values of the children it

has spawned until it executes a sync statement:

- When all its children return, execution of the procedure resumes at the

point immediately following the sync statement.

- As an aid to programmers, Cilk inserts an implicit sync before every

return.

14



The Cilk Terminology

• In Cilk terminology, a thread is a maximal sequence of instructions that

ends with a spawn, sync, or return (either explicit or implicit) statement.

• The first thread that executes when a procedure is called is the

procedure’s initial thread, and the subsequent threads are successor threads.

• At runtime, the binary spawn relation causes procedure instances to be

structured as a rooted tree, and the dependencies among their threads

form a dag embedded in this spawn tree.

• The span is another name for the critical path.

15



Dynamic Multithreading in Cilk

16



Dynamic Multithreading in Cilk

17



Dynamic Multithreading in Cilk

18



Dynamic Multithreading in Cilk

19



Dynamic Multithreading in Cilk

20



Dynamic Multithreading in Cilk

21



Dynamic Multithreading in Cilk

22



Dynamic Multithreading in Cilk

23



Analysis of Multithreaded Algorithms

Definition 1 We define several performance measures to evaluate various

scheduler algorithms. We assume an ideal situation: no cache issues, no

interprocessor costs:

Tp is the minimum running time on p processors.

T1 is called the work.

T∞ is the minimum running time with infinitely many processors.

Observe that, on the previous slide, we have T1 = 17 and T∞ = 8.

Proposition 1 Assuming that all threads run in unit time, the longest

path in the DAG is equal to T∞. For this reason, T∞ is referred to as the

critical path length.

When threads do not run in unit time, then the vertices of the DAG need

to be weighted by their individual runtimes.
24



Analysis of Multithreaded Algorithms

Proposition 2 We have: Tp ≥ T1/p.

Indeed, in the best case, p processors can do p works per unit of time.

Proposition 3 We have: Tp ≥ T∞.

Indeed, Tp < T∞ contradicts the definitions of Tp and T∞.

Definition 2 A program’s parallel execution plan can have:

• linear speedup: T1/TP = Θ(P )

• superlinear speedup: T1/TP = ω(P ) (not possible in this model, though it is

possible in others).

• sublinear speedup: T1/TP = o(p)

25



The Greedy Scheduler

Definition 3 A scheduler’s job is to map a computation to particular processors:

• If decisions are made at runtime, the scheduler is online, otherwise, it is

offline.

• A scheduler is greedy if attempts to do as much work as possible at every

step.

In any greedy schedule, there are two types of steps:

• complete step: There are at least p threads that are ready to run. The

greedy scheduler selects any p of them and runs them.

• incomplete step: There are strictly less than p threads that are ready to

run. The greedy scheduler runs them all.

26



The Greedy Scheduler

Theorem 1 (Graham, Brent) Given p processors, a greedy scheduler executes

any computation G with work T1 and critical path length T∞ in time:

Tp ≤ T1/p + T∞.

Proof. Observe that

- There can be no more than T1/p complete steps, by definition of T1.

- There can be no more than T∞ incomplete steps. Indeed:

(i) Let G′ be the subgraph of G that remains to be executed immediately

prior to a given incomplete step.

(ii) During this incomplete step, all threads that can be run are actually run

(iii) Hence removing this incomplete step from G′ would reduce its the

critical-path length by one.

�

27



The Greedy Scheduler

Corollary 1 A greedy scheduler is always within a factor of 2 of optimal.

Proof. From Propositions 1 and 2, we have:

TP ≥ max(T1/P, T∞) (1)

In addition, we can trivially express:

T1/P ≤ max(T1/P, T∞) (2)

T∞ ≤ max(T1/P, T∞) (3)

Given Theorem 1, we deduce:

TP ≤ T1/P + T∞ (4)

≤ max(T1/P, T∞) + max(T1/P, T∞) (5)

≤ 2max(T1/P, T∞) (6)

which concludes the proof. �

Every step either brings to progress on the work (complete step), or on the

critical path (incomplete step). A greedy scheduler is generally good.
28



The Greedy Scheduler

Corollary 2 The greedy scheduler achieves linear speedup when T∞ = O(T1/p).

Proof.

Tp ≤ T1/p + T∞ (7)

= T1/p + O(T1/p) (8)

= Θ(T1/p) (9)

The idea is to operate in the range where T1/P dominates T∞. As long as

T1/P dominates T∞, all processors can be used efficiently.

29



Pseudocode for Matrix Addition

• To multiply two n× n matrices A and B in parallel to produce a matrix

C:

• A procedure Add to add n× n matrices (not in-place):

30



Pseudocode for Matrix Multiplication

31



Performance of Mult

• Let Ap(n) and Mp(n) be the P-processor running time of Add and

Mult on n× n matrices respectively.

• The work for Add can be expressed by the recurrence

A1(n) = 4A1(n/2) + Θ(1) = Θ(n2)

• The critical-path length for Add is

A∞(n) = A∞(n/2) + Θ(1) = Θ(lg n)

• The work for Mult is

M1(n) = 8M1(n/2) + A1(n) = 8M1(n/2) + Θ(n2) = Θ(n3)

• The critical-path length for Mult is

M∞(n) = M∞(n/2) + Θ(lg n) = Θ(lg2 n)

• The parallelism for Mult is

M1(n)/M∞(n) = Θ(n3/ lg2 n)
32



Pseudocode for Matrix Mult-Add

The Mult-Add performs C ← C + A.

33



Performance of Mult-Add

• Let MAp(n) be the P-processor running time of Mult-Add.

• The work for Mult-Add is

MA1(n) = Θ(n3)

• The critical-path is

MA∞(n) = 2MA∞(n/2) + Θ(1) = Θ(n)

• The parallelism for Mult-Add is

MA1(n)/MA∞(n) = Θ(n2)

• Besides, saving space often saves time due to hierarchical memory.

34



Pseudocode for Merge Sort

• The work of Merge-Sort on an array of n elements is

T1(n) = 2T1(n/2) + Θ(n) = Θ(n lg n)

• The running time of Merge is Θ(n).

• The critical-path length of Merge-Sort is

T∞(n) = T∞(n/2) + Θ(n) = Θ(n)

• The parallelism of Merge-Sort is

T1(n)/T∞(n) = Θ(lg n)

• The obvious bottleneck is Merge.
35



A Parallel Merge: P-Merge

36



Performance of P-Merge

• Let PMp(n) be the P-processor running time of P-Merge.

• In the worst case, the critical-path length of P-Merge is

PM∞(n) = PM∞(3n/4) + Θ(lg n) = Θ(lg2 n)

• The worst-case work of P-Merge satisfies the recurrence

PM1(n) = PM1(αn) + PM1((1− α)n) + Θ(lg n)

, where α is a constant in the range 1/4 ≤ α ≤ 3/4.

• We assume inductively that PM1(n) ≤ an− b lg n for some constants

a, b > 0.

PM1(n) ≤ aαn− b lg(αa) + a(1− α)n− b lg((1− α)n) + Θ(lg n)

= an− b(αn) + lg((1− α)n)) + Θ(lg n)

= an− b(lg α + lg n + lg(1− α) + lg n) + Θ(lg n)

= an− b lg n− (b(lg n + lg(α(1− α)))−Θ(lg n))

≤ an− b lg n
37



Performance of P-Merge

• We can pick a large enough to satisfy the base conditions and choose b

large enough so that b(lg n + lg(α(1− α)) dominates Θ(lg n), and thus

PM1(n) = Θ(n).

• The worst case critical-path length of the Merge-Sort now satisfies

T∞(n) = T∞(n/2) + Θ(lg2 n) = Θ(lg3 n)

• The parallelism is now Θ(n lg n)/Θ(lg3 n) = Θ(n lg2 n).

38



Installing Cilk

tar xvfz cilk-5.4.6.tar.gz

./configure

make

make install

make distclean

This will install

• libraries in /usr/local/lib

• header files in /usr/local/include

• compiler in /usr/local/bin
39



Compiling and Running Cilk Programs

Basic compilation command line:

cilkc -O2 fib.cilk -o fib

Basic running command line:

fib --nproc 2 30

Collecting profiling information (processor activity, thread migration,

memory allocation) and computing the span:

cilkc -cilk-profile -cilk-span -O2 fib.cilk -o fib

fib --nproc 4 --stats 1 30

This should yield:

Result: 832040

RUNTIME SYSTEM STATISTICS:

Wall-clock running time on 4 processors: 2.5932

Total work = 10.341069 s

Total work (accumulated) = 7.746886 s

Span = 779.588000 us Parallelism = 9937.154003
40



Observing Speed-up

./strassen --nproc 1 -n 256

Cilk Example: strassen

running on 1 processor

Running time = 0.044962 s

./strassen --nproc 2 -n 256

Cilk Example: strassen

running on 2 processors

Running time = 0.025789 s

41



Computing Critical Path and Work

cilkc -cilk-profile -cilk-span -O2 -I . getoptions.o strassen.cilk -o strassen-profile

./strassen-profile --nproc 2 -stats 1 -n 256

Running time = 0.029277 s

Work = 0.047263 s

Critical path = 0.005524 s

/strassen-profile --nproc 1 -stats 1 -n 256

Running time = 0.046969 s

Work = 0.046550 s

Critical path = 0.005556 s

42



Storage Allocation

• Like the C language on which it is based, Cilk provides two types of

memory: stack and blue heap.

• Stack memory is allocated by the run-time system for procedure-local

variables and arrays:

• Stack memory is automatically deallocated

- when the Cilk procedure or,

- when a C function

that allocated the memory returns.

• Heap memory is allocated by the usual malloc() library function and

deallocated with free().

43



Storage Allocation

• Cilk supports C’s rule for pointers:

– a pointer to stack space can be passed from parent to child, but not

from child to parent.

– Pointers can be passed upward only if they reference data stored on

the heap (allocated with malloc).

• Functions cannot return references to local variables.

• When procedures are run in parallel by Cilk, the running threads

operate on their view of the call stack.

44



Cilk’s Cactus Stack
• A cactus stack is used to implement C’s rule for sharing of function-local

variables.

• A stack frame can only see data stored in the current and in the previous

stack frames.

void A(void)

{ B();

C(); }

void B(void)

{ D();

E(); }

void C(void)

{ F(); }

void D(void) {}

void E(void) {}

void F(void) {}

Views of stack:

45



Shared Memory

• Sharing occurs

- when a global variable is accessed by procedures operating in parallel,

- from the passing of pointers to spawned procedures, allowing more

than one procedure to access the object addressed by the pointer.

• The updating of shared objects in parallel is called race condition. This

can cause nondeterministic anomalies!

• The easiest way to deal with the anomalies of shared access is simply to

avoid writing code in which one thread modifies a value that might be read

or written in parallel by another thread.

• Cilk provides different mechanisms to detect or avoid race conditions.

46



Race Condition

• This is the most prominent obstacle for parallel programming

• An example in Cilk:

cilk int foo(void)

{

int x = 0;

spawn bar(&x);

spawn bar(&x);

sync;

return x;

}

cilk void bar(int *p)

{

*p += 1;

}

If this were a serial code, we would expect that foo returns 2.

In assembly:

read x

add

write x

47



Race Condition

In parallel execution:

bar 1:

read x (1)

add

write x (2)

bar 2:

read x (3)

add

write x (4)

If it is executed in the order of (1) (2) (3) (4), then foo returns 2;

If it is executed in the order of (1) (3) (2) (4), then foo would return 1.

A race condition!

48



Locking

• Cilk provides mutual exclusion locks that allow you to create atomic

regions of code. A lock has type Cilk lockvar.

• The two operations on locks are:

- Cilk lock to test a lock and block if not already acquired, and

- Cilk unlock to release a lock.

Both functions take a single argument which is an object of type

Cilk lockvar.

• The lock object must be initialized using Cilk lock init() before it is

used.

• The region of code between a Cilk lock statement and the

corresponding Cilk unlock statement is called a critical section.

• A critical section of code accessing shared data is protected, so that

other threads which read from or write to the chunk of data are excluded

from running.
49



Detecting Race Condition

• Nondeterminator: a tool in Cilk to help check for race conditions. Cilk’s

Nondeterminator debugging tool provably guarantees to detect and localize

data-race bugs.

• Further detail refers to “Nondeterminator-3: A Provably Good Data-Race

Detector That Runs in Parallel”, Masters’ Thesis by Tushara C. Karunaratna.

50



Using an inlet

cilk int fib(int n) {

if (n < 2) return n;

else {

int x, y;

x = spawn fib(n− 1);

y = spawn fib(n− 2);

sync;

return (x + y);

}

}

cilk int fib(int n) {

int x = 0;

inlet void summer (int result)

{

x += result;

return;

}

if (n < 2) return n;

else {

summer(spawn fib(n− 1));

summer(spawn fib(n− 2));

sync;

return (x);

}

}

51



Using an inlet

• An inlet is essentially a C function internal to a Cilk procedure.

• In the normal syntax of Cilk, the spawning of a procedure must occur as

a separate statement and not in an expression, unless the spawn is

performed as an argument to an inlet call. In this case:

- the procedure is spawned, and when it returns, the inlet is invoked.

- In the meantime, control of the parent procedure proceeds to the

statement following the inlet call.

- No lock is required around the accesses to x by summer, because Cilk

provides atomicity implicitly.

- An inlet is precluded from containing spawn and sync statements, and

thus it operates atomically as a single thread.

52



Using an abort

• Sometimes, a procedure spawns off parallel work which is later discovered

to be unnecessary.

• This speculative work can be aborted in Cilk using the abort primitive

inside an inlet.

• The abort statement, when executed inside an inlet, causes all of the

already-spawned children of the procedure to terminate.

53



Cilk’s Thread Scheduler

• Cilk’s randomized work-stealing scheduler load-balances the

computation at run-time.

• A mathematical proof guarantees near-perfect linear speed-up on

applications with sufficient parallelism, as long as the architecture has

sufficient memory bandwidth.

• A Cilk program running on 1 processor typically exhibits a negligible

slowdown compared with its C elision.

• A spawn/return in Cilk is over 450 times faster than a Pthread

create/exit and less than 3 times slower than an ordinary C function

call on a modern Intel processor.

54



Cilk’s Work-stealing Scheduler: the Ready Deque

• Each processor maintains a data structure called a ready deque.

• A ready deque is a double ended queue.

• Every level of the ready deque contains a procedure instance that is

ready to execute.
55



Cilk’s Operations on the Deque

• Adding a procedure instance to the bottom of the deque represents a

procedure call being spawned.

• A procedure instance being deleted from the bottom of the deque

represents the processor beginning/resuming execution on that

procedure.

• Deletion from the top of the deque corresponds to that procedure

instance being stolen.

• Cilk begins executing the user program by initializing all ready deques

to be empty, placing the root thread into the level-0 list of Processor

0’s deque and then starting a scheduling loop on each processor.

56



Cilk’s Work-stealing Scheduler

This picture illustrates some stage in the middle of a Cilk program

execution on 4 processors. We number them from left to right as Processor

1, 2, 3 and 4. Each processor has a ready deque with a number of

procedure instances being ready to be executed.

57



Cilk’s Work-stealing Scheduler

Processor 1 spawns a new procedure instance.

58



Cilk’s Work-stealing Scheduler

Processor 1 pushes this procedure instance to the bottom of its ready

deque.

59



Cilk’s Work-stealing Scheduler

Both Processor 1 and Processor 4 are spawning.

60



Cilk’s Work-stealing Scheduler

Each of Processor 1 and Processor 4 pushes its new procedure instance to

the bottom of its deque.

61



Cilk’s Work-stealing Scheduler

Processor 2 finishes executing a procedure instance and returns.

62



Cilk’s Work-stealing Scheduler

Processor 2 deletes this procedure instance from the bottom of its deque.

63



Cilk’s Work-stealing Scheduler

Processor 2 finishes executing another procedure instance and returns.

64



Cilk’s Work-stealing Scheduler

Processor 2 deletes this procedure instance from the bottom of its deque.

65



Cilk’s Work-stealing Scheduler

Processor 2’s ready deque is empty. No job to do now!

66



Cilk’s Work-stealing Scheduler

Processor 2 will steal one procedure instance from the other processors at

random.

67



Cilk’s Work-stealing Scheduler

Processor 2 steals one procedure instance from the top of the deque of

Processor 3.

68



Cilk’s Work-stealing Scheduler

Processor 2 spawns a new procedure instance.

69



Cilk’s Work-stealing Scheduler

Processor 2 pushes this procedure instance to the bottom of its deque.

70



The Work-stealing Algorithm

When a processor p begins work stealing (then it is called a thief), it

operates as follows:

(1) Processor p chooses a victim processor uniformly at random from the

set of all processors. Let the victim processor be v.

(2) If processor v’s deque is empty, processor p repeats Step (1).

(3) Otherwise if processor v’s deque is not empty, processor p steals the top

procedure instance from v’s deque. This is the reason the deque data

structure must support pops from the top. Processor p then begins to

work on this stolen procedure instance.

71



Performance of Work-stealing

Theorem 2 On P processors, Cilk’s work-stealing scheduler achieves

an expected running time of

TP = T1/P + O(T∞)

Proof sketch. Three underlying hypotheses:

(H1) each Cilk thread executes in unit time,

(H2) for almost all “parallel steps” there are (at least) P of threads to run.

(H3) a processor is either working or stealing.

• The number of complete parallel steps (steps at which stealing is not needed

since all processors have work on their deque) is at most T1/P ;

• the number of incomplete parallel steps is at most T∞; at each incomplete

step, a thief may reduce by 1 the running time with a probability of 1/P ;

thus he expected number of (successful) steals is O(PT∞).

Since there are P processors, the expected time is

(T1 + O(PT∞))/P = T1/P + O(T∞).
72



Critical Path Overhead

• The critical-path overhead is the smallest constant c∞ such that

Tp ≤ T1/P + c∞T∞.

• The average parallelism is P = T1/T∞, which corresponds to the

maximum possible speed-up that the application can obtain.

• The assumption of parallel slackness is that

P/P >> c∞,

that is, P is much smaller than the average parallelism .

• Under the assumption it follows that T1/P >> c∞T∞, thus

c∞ has little effect on performance when sufficiently slackness exists.

73



Work and Space Overheads

• Let Ts be the running time of the C elision of a Cilk program.

• Then, we denote by c1 the work overhead

c1 = T1/Ts

• Recall the expected running time: TP ≤ T1/P + c∞T∞. Thus we get

TP ≤ c1Ts/P + c∞T∞ ≃ c1Ts/P.

• We can now restate the work first principle precisely:

Minimize c1 , even at the expense of a larger c∞.

Theorem 3 The space Sp of a parallel execution on P processors required

by Cilk’s work-stealing satisfies:

Sp ≤ P · S1 , (10)

where S1 is the minimal serial space requirement.
74



Implementation of Work-stealing

• In Cilk’s implementation, both victim and thief operate directly through

shared memory on the victim’s ready deque.

- This mechanism reduces work overhead (w.r.t. signaling interrupts)

- The crucial issue is how

– to resolve the race condition that arises when a thief tries to steal

the same frame that its victim is attempting to pop.

– without enforcing the victim to use a lock before popping.

• Hypotheses: Only variable-reads and variable-writes are atomic.

• Shared variables:

- Three atomic shared variables T, H, and E are attached to each deque.

- To arbitrate among different thieves attempting to steal from the same

victim, a hardware lock L is used:

– This overhead can be amortized against the critical path.
75



Implementation of Work-stealing

Remarks

• Cilk adopted Dijkstra’s protocol for mutual exclusion, which assumes

only the reads and writes are atomic.

• The key idea is that actions by the worker on the tail of the queue

contribute to work overhead, while actions by thieves on the head of

the queue contribute to critical-path overhead.

• In accordance with the work-first principle, they attempt to move costs

from the worker to the thief.

• We present below a simplified protocol, “TH” protocol, that uses only

two shared variables T and H designating the tail and the head of the

deque respectively.

• See the Cilk papers for the complete “THE” protocol.

76



The TH Protocol
1: push() {

2: T++;

3: }

4: pop() {

5: T--;

6: if (H > T) {

7: T++;

8: lock(L);

9: T--;

10: if (H > T) {

11: T++;

12: unlock(L);

13: return FAILURE;

14: }

15: unlock(L);

16: }

17: return SUCCESS;

18:}

(a)

1: steal() {

2: lock(L);

3: H++;

4: if (H > T) {

5: H--;

6: unlock(L);

7: return FAILURE;

8: }

9: unlock(L);

10: return SUCCESS;

11: }

(b)

Figure 1: (a) Pseudocode of the actions performed by the worker/victim in the TH protocol.

(b) Pseudocode of the actions performed by the thief in the TH protocol.

77



The TH Protocol

• The pseudocode assumes that the deque is implemented as an array of

frames (= procedure instances together with their “environments”).

• The index T (= tail = bottom) points to the first unused element in the

array, and H (= head) points to the first frame on the deque.

• Indices grow from the head towards the tail, and most of the time, T ≥ H.

• The worker pushes and pops frames by altering T, while the thief only

increments H and does not alter T.

• The lock L ensures that only one thief can steal from the deque at a time.

• The push operation is always safe, because it does not involve any

interaction between a thief and its victim.

• For the pop operation, there are three cases, shown in Figure 2 in the next

slide.

78



The TH Protocol

Figure 2: The three cases of the ready deque in the TH protocol. A shaded block indicates

the presence of a frame at a certain position in the deque. The head and the tail are marked

by T and H.

79



The TH Protocol

(a) Both the thief and the victim attempt to obtain different frames from the

deque concurrently. In this case both are successful, and they do not

interfere.

(b) The deque contains only one frame. Either victim and thief will get the

frame if the other is not making an attempt to obtain it. If both victim and

thief try to get the frame, the protocol guarantees that at least one of them

discovers that T > H.

– If the thief discovers that T > H, it restores H to its original value and

retreats.

– If the victim discovers T > H, it will restart the protocol after acquiring

the lock L, which guarantees that it will get the frame without

interference from any thief unless a thief has already stolen the frame.

(c) The deque is empty. A thief always fails to steal, and the victim also fails to

pop the frame. The control passes to the Cilk runtime system.

80



The TH Protocol

• To summarize, the TH protocol contributes little to the work overhead.

• Pushing only involves updating T.

• Successfully popping a frame involves only 6 operations — 2 memory loads,

1 memory store, 1 decrement, 1 comparison, and 1 (predictable) conditional

branch.

• In the case where both thief and victim simultaneously try to grab the same

frame, the cost incurred by the lock can be considered as part of the

critical-path overhead and does not influence the work overhead.

81



Matrix Multiplication!

Three implementations of classical matrix multiplication:

• Cilk example programs. http://supertech.csail.mit.edu/cilkImp.html

• matmul.cilk: uses two synchronization points but does not require

intermediate allocation.

• rectmul.cilk: tries to avoid the second synchronization point but

may require intermediate allocation; relies on a 2-recursive calls scheme

instead of 8. Block size is 16. Use register hints in base computation.

• spacemul.cilk: tries to avoid the second synchronization point but

may require intermediate allocation; relies on a classical 8-recursive

calls approach. Block size is 16. Use register hints in base computation.

• Which one is better? Why?

82



Matrix Multiplication on 2 Processors

matmul/dim 128 256 512 1024

Running time 0.021 0.116 0.957 6.755

Work 0.028 0.207 1.699 11.650

Critical path 0.003 0.010 0.037 0.138

MFLOPS 197.518 288.506 280.378 317.905

rectmul/dim 128 256 512 1024

Running time 0.019 0.151 1.143 8.739

Work 0.027 0.218 1.721 12.785

Critical path 0.0004 0.001 0.0008 0.001

MFLOPS 214.318 221.679 234.528 245.591

spacemul/dim 128 256 512 1024

Running time 0.017 0.091 0.650 4.693

Work 0.019 0.132 0.992 6.789

Critical path 0.0007 0.001 0.001 0.002

MFLOPS 236.776 364.659 412.516 457.286

83



Matrix Multiplication on 4 Processors

matmul/dim 128 256 512 1024 2048 4096

Running time 0.009 0.035 0.243 1.917 23.526 248.450

Work 0.017 0.129 0.971 7.637 93.431 987.196

Critical path 0.002 0.007 0.028 0.124 0.435 1.857

MFLOPS 453.732 951.008 1100.154 1119.920 730.241 553.183

rectmul/dim 128 256 512 1024 2048 4096

Running time 0.003 0.014 0.108 0.606 4.456 36.590

Work 0.003 0.025 0.280 2.138 15.556 129.474

Critical path 0.00002 0.00003 0.002 0.0007 0.070 0.050

MFLOPS 1166.690 2286.555 2474.950 3537.611 3853.949 3755.658

spacemul/dim 128 256 512 1024 2048 4096

Running time 0.008 0.020 0.097 0.500 3.555 25.783

Work 0.009 0.052 0.258 1.761 12.929 94.108

Critical path 0.001 0.004 0.0129 0.001 0.056 0.013

MFLOPS 501.190 1639.924 2761.371 4288.247 4830.626 5329.944

84



Matrix Multiplication (8192× 8192)

matmul/nproc 4 8 16 32 64

Running time 1886.856 953.561 494.844 249.944 130.712

Work 7493.744 7575.331 7863.391 7950.240 8322.858

Critical path 6.558 8.087 8.909 14.322 22.115

MFLOPS 582.721 1153.058 2221.935 4399.031 8411.650

rectmul/nproc 4 8 16 32 64

Running time 268.757 137.131 72.831 38.172 22.727

Work 942.324 963.211 1022.434 1072.025 1249.097

Critical path 0.042 0.692 0.863 0.906 0.792

MFLOPS 4090.849 8017.454 15095.658 28801.972 48375.711

spacemul/nproc 4 8 16 32 64

Running time 221.009 96.696 63.574 31.731 19.226

Work 805.811 704.145 928.907 926.700 1124.154

Critical path 0.009 0.142 0.532 0.359 0.620

MFLOPS 4974.651 11370.052 17293.722 34648.866 57185.041

85



References

• Matteo Frigo, Multithreaded Programming in Cilk, invited talk at PASCO’2007.

http://www.informatik.uni-trier.de/ ley/db/conf/issac/pasco2007.html

• Charles E. Leiserson. Theory of Parallel Systems, course scribe notes, 2003.

http://courses.csail.mit.edu/6.895/fall03/

• Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation

of the Cilk-5 Multithreaded Language. Proceedings of the ACM SIGPLAN ’98

Conference on Programming Language Design and Implementation, Pages:

212-223. June, 1998.

• Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded

Runtime System. Journal of Parallel and Distributed Computing, 55-69, August

25, 1996.

• Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded

Computations by Work Stealing. Journal of the ACM, Vol. 46, No. 5, pp.

720-748. September 1999.

• Cilk example programs. http://supertech.csail.mit.edu/cilkImp.html
86


