Sparse polynomial arithmetic part II: A proposal to dramatically speed up polynomials in Maple.

Michael Monagan

CECM, Simon Fraser University

MOCAA M³ workshop, May 7, 2008

Joint work with Roman Pearce, Simon Fraser University

Benchmarks

Dense Fateman problem (4 variables):

$$f = (1 + x + y + z + t)^{30}$$
 $g = f + 1$

(stan.cecm.sfu.ca) Intel Core 2, 3.0 GHz, 64-bit

multiply	divide
$p = f \cdot g$	q = p/f
54.720	68.160
131.730	126.320
108.224	-
512.184	283.445
679.070	610.620
1482.360	364.490
15986.169	13039.248
	$p = f \cdot g$ 54.720 131.730 108.224 512.184 679.070 1482.360

- ▶ f and g have 61 bit coefficients
- ▶ $h = f \cdot g$ has 128 bit coefficients

Benchmarks

Dense Fateman problem (3 variables):

$$f = (1 + x + y + z)^{30}$$
 $g = f + 1$

(mado.cecm.sfu.ca) Intel Core 2 Duo, 2.4 GHz, 64-bit

$5,456 \times 5,456 = 39,711 \text{ terms}$	multiply	divide
D = 0.00133 $1/D = 750$	$p = f \cdot g$	q = p/f
sdmp (packed)	0.780	0.970
sdmp (unpacked)	1.330	1.510
Trip v0.99 (rationals)	1.870	-
Pari 2.3.3 (w/ GMP)	3.860	2.793
Magma V2.14-7	<u> </u>	_
Singular 3-0-4	10.330	6.130
Maple 11	67.923	51.276

- ▶ f and g have 53 bit coefficients
- ▶ $h = f \cdot g$ has 112 bit coefficients

Benchmarks

Sparse 10 variables:

$$f = (x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_6 + x_6x_7 + x_7x_8 + x_8x_9 + x_9x_{10} + x_1x_{10} + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + 1)^5$$

$$g = (x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 + x_9^2 + x_{10}^2 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + 1)^5$$

(stan.cecm.sfu.ca) Intel Core 2, 3.0 GHz, 64-bit

,	,	
$26,599 \times 36,365 = 19,631,157 \text{ terms}$	multiply	divide
D = 0.0203 $1/D = 49.27$	$p = f \cdot g$	q = p/f
sdmp (packed)	40.330	41.330
sdmp (unpacked)	175.970	162.370
Trip v0.99 (rationals)	221.910	-
Pari 2.3.3 (w/ GMP)	109.270	109.692
Magma V2.14-7	313.020	5744.600
Singular 3-0-4	655.250	206.600
Maple 11	14053.371	10760.364

First integration attempt

In expand.c in the kernel

```
if( (la-5)*(lb-5)>400 && la*lb>2500 )
    return( evalsysf("expand/bigprod","",New3(EXPSEQ,a,b)) );
In divide c in the kernel
if( ID(b) == SUM \&\& (LENGTH(a) - 3) * (LENGTH(b) - 3) > 1 * 12000 )
    ta = evalsysf("expand/","bigdiv", New4(EXPSEQ, a, b, quo));
In the Maple library define
'expand/bigprod' := proc(a,b)
   sdmp:-AutoPack:-Multiply(a,b);
end:
'expand/bigdiv' := proc(a,b,q)
   sdmp:-AutoPack:-Divide(a,b,q);
end:
```

First integration attempt: Autopack

```
Divide := proc(f::polynom, g::polynom, q::name:=FAIL)
  local F, G, Q, d, s, vars, tord;
 vars := indets([f,g],'name');
  if not andmap(type, [f,g], 'polynom'('integer', vars)) then
     error "input must be polynomials with integer coefficients"
  end if:
 tord := 'grlex'(op(vars));
 d := degree(f,vars);
  if degree(g, vars) > d then return false; end if;
 d := max_pack(d);
 F := sdmp:-Import(f,tord,':-pack'=d);
  G := sdmp:-Import(g,tord,':-pack'=d);
  if q=FAIL then
    sdmp:-Divide(F,G);
  elif sdmp:-Divide(F,G,'s','Q');
    q := sdmp:-Export(Q);
   return true;
  else
   return false;
  end if
end proc;
```

First integration attempt: a factorization

```
|\^/| Maple 11 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft
\ MAPLE / All rights reserved. Maple is a trademark of
<____> Waterloo Maple Inc.
   Type ? for help.
> X := s,t,x,y,z:
> f := randpoly([X],degree=10,terms=1000):
> g := randpoly([X],degree=10,terms=1000):
> h := expand(f*g):
> d := iquo(nops(f)*nops(g),nops(h)):
> printf("#f=%d #g=%d #h=%d 1/D=%5.2f\n",
> nops(f),nops(g),nops(h),d);
#f=998 #g=991 #h=52023 1/D=19.00
> ft := time():
> factor(h): # Keith's Hensel lifting code (1984)
> time()-ft;
                                  120.260
> quit
                                          4 D > 4 P > 4 B > 4 B > B 9 9 P
```

First integration attempt: a factorization

```
# polynomial multiplications: 996
# trial divisions which failed: 61
# divisions which succeeded: 117

> read "sdmp.mpl";
> 'expand/bigprod' := proc(a,b) sdmp:-AutoPack:-Multiply(a,b); end:
> 'expand/bigdiv' := proc(a,b,q) sdmp:-AutoPack:-Divide(a,b,q) end:
...
> st := time(): factor(h): time()-st;
```

26.998

First integration attempt: gcdex

```
>X := u,v,x,y,z;
>f := collect(x^5+randpoly([X],degree=4,terms=10),x);
>g := collect(x^4+randpoly([X],degree=3,terms=10),x);
>et := time(): gcdex(f,g,x); et := time()-et;
>ft := time(): gcdex(f,g,x,'s','t'); ft := time()-ft;
```

```
Old timings: et := 9.120 ft := 18.342
New timings: et := 0.263 ft := 1.190
```

First integration attempt: Overhead

```
read "sdmp.mpl":
infolevel[sdmp] := 4;
interface(quiet=true);
X := [seq(x[i],i=1..10)];
for i from 2 to 10 do
    V := X[1..i];
    f := randpoly(    V, degree=20-i, terms=1000 ):
    g := randpoly(    V, degree=20-i, terms=1000 ):
    h := sdmp:-AutoPack:-Multiply(f,g);
    disp := evalf(nops(f)^2/nops(h));
    printf("#vars=%d #f=%d #h=%d D=%4.1f\n",i,nops(f),nops(h),disp);
od:
```

First integration attempt: Overhead

```
#vars=4 #f=991 #h=10626 D=92.4
time: 0.020s alg: 0.020s io: 0.000s real: 0.026s
time: 0.010s export: 0.000s simp: 0.010s real: 0.012s
#vars=5 #f=988 #h=50876 D=19.2
time: 0.060s alg: 0.060s io: 0.000s real: 0.067s
time: 0.070s export: 0.010s simp: 0.060s real: 0.076s
#vars=6 #f=993 #h=169470 D= 5.8
time: 0.090s alg: 0.080s io: 0.010s real: 0.094s
time: 0.330s export: 0.030s simp: 0.300s real: 0.335s
#vars=7 #f=994 #h=334231 D= 3.0
time: 0.120s alg: 0.110s io: 0.010s real: 0.119s
time: 0.760s export: 0.080s simp: 0.680s real: 0.761s
#vars=8 #f=999 #h=440124 D= 2.3
time: 0.140s alg: 0.110s io: 0.030s real: 0.132s
time: 1.080s export: 0.120s simp: 0.960s real: 1.087s
```

Maple's sum of products representation.

- small integer coefficients are immediate
- monomials are hashed, terms sorted by address

Maple's sum of products representation: Why is it so slow?

 $oldsymbol{1}$: Because operations on PRODs takes 100s of cycles.

Example: consider multiplying $xy^2 \times (3x^2yz + 2xy - 3)$.

I count sixteen C function calls to multiply and simpl.

Maple's sum of products representation: Why is it so slow?

2: Because large polynomials fill memory with PRODS.

This causes cache problems in expression walking e.g. in indets, degree, garbage collection, simpl table access, etc.

Maple's sum of products representation: Why is it so slow?

3: Maple sorts the terms in a SUM by address (good) using shellsort which is $O(n^{1.25})$ (okay) but it jumps through memory (bad).

```
if(1>50) {
    /* sort terms using shellsort */
    /* increment sequence is 3^k+1 */
    for( h=80; h<1; h=3*h+2 );
    for(h/=3: h>1: h/=3)
        for( i=h+1; i<1; i+=2 )
            for( j=i-h; j>0 && I(s[j])>I(s[j+h]); j-=h ) {
                r = A(s[j]);
                s[j] = s[j+h];
                s[j+h] = A2(r);
                r = A(s[j+1]);
                s[j+1] = s[j+h+1];
                s[j+h+1] = A2(r);
```

Our data structure

Packing for $x^i y^j z^k$ in graded lex order x > y > z:

- ▶ monomial > and × are one machine instruction.
- graded lex is good for polynomial division.

Packed array for: $9xy^3z - 4y^3z^2 - 6xy^2z - 8x^3 - 5$

POLY 5			d = total degree								
хух											
packing		dxyz		dxyz		dxyz		dxyz		dxyz	
•	_	5131	9	5032	-4	4121	-6	3300	-8	0000	-5

Our data structure: general case

$$Axy^3z - By^3z^2 - Cxy^2z - 8x^3 - 5$$

Our proposal: immediate monomials in grlex order

Key: Packing is fixed by #variables.

So assuming grlex(x, y, z), to pack $x^i y^j z^k$ (3 variables), in 64 bits, we get need to store 4 integers, (i + j + k, i, j, k). Hence 16 bits per integer $\implies 0 \le i + j + k < 2^{16} = 65536$.

Our proposal: assumptions

- ▶ Polynomials which are created (e.g. by parsing) in the SUM of PRODs representation are simplified (in simpl) then "immediatized" in O(Nm) time before hashing.
- ► We only pack expanded polynomials in names (functions?) whose monomials ALL pack into one machine word.
- ▶ To compute foo(f, g) if f is packed and g is not packed, then we convert f to SUM of PRODs and compute.
- ▶ If f and g are packed and indets $(f) \neq \text{indets}(g)$ and we can repack then make copy, repack if can, compute, simple the result.

Our proposal: 64 bit verses 32 bit machines

		32 bit		
#variables	#bits	max deg	#bits	max deg
1	32		16	
2	21		10	1023
3	16	65535	8	255
4	12	2047	6	63
5	10	1023	5	31
6	9	511	4	15
7	8	255	4	15
8	7	127	3	7
9	6	63	3	7
10	5	31	2	3
11	5	31	2	3
15	4	15	2	3
21	3	7	1	1
31	2	3	1	1
63	1	1	-	-

Our proposal: general comments

If f and g are polynomials in the same variables

- we can add and subtract f and g using a merge
- we can multiply f by g without overflow if $\deg(f) + \deg(g) < 2^b$.
- we can divide f by g without overflow if $\deg(f) < 2^b$ (needs grlex order)
- we can simpl the output polynomial result in O(n) (a variable could drop out this can be tested for in O(n) time by bit-wise or of monomials)
- we can hash the result in O(n)
- ▶ If f has m variables and n terms, the storage is reduced from 2n + 1 + 2nm + 2m to 2n + 1 for a gain of a factor of up to m.

Our proposal: the big gains

- No overhead means we'll get the full factor of 100 gain in speed on large problems and a big gain on small and medium sized problems.
- 2. Because we eliminate PRODs, and since our multiplication and division algorithms run "inplace" we can multiply much larger polynomials.
- 3. Polynomials will appear to the user sorted, in descending order. Assuming we choose alphabetical order

input	output
$> 1 + 3x^2 - x$;	$3x^2 - x + 1$
$> \operatorname{expand}((x+y)^2);$	$x^3 + 3x^2y + 3xy^2 + 1$
$> x^3 + x + y^3 + 1;$	$x^3 + y^3 + x + 1$
$> 1 - x + xyz - 2x^2;$	$xyz - 2x^2 - x + 1$
> -x - 2y + z + w = 0;	w-x-2y+z=0
$> 1 - x_2 x_1 + x_1^2;$	$x_1^2 - x_1x_2 + 1$

Our proposal: the small gains

There are other substantial gains in time and space that we get by using the new structure.

```
Let f be a polynomial, N = nops(f), and m =
nops(indets(f)).
Time from O(Nm) to O(1).
  1 lcoeff(f);
  2 indets(f); (possibly O(m))
  3 sign(f);
  4 degree(f); (total degree of f)
  5 expand(f); (f is already expanded)
```

Our proposal: more small gains

```
From O(Nm) to O(m).
  6 > f; (evaluation of f at user level)
  7 has(f,x);
  8 type(f,polynom);
  9 frontend(normal, f);
From O(Nm) to O(N+m).
10 degree(f,x);
11 coeff(f,x,1);
12 type(f,polynom(integer));
Key: N = \text{nops}(f), m = \text{nops}(\text{indets}(f)).
```

Our proposal: more small gains

```
13 expand(x*f); from O(Nm² + sort(N)) to O(N)
15 2f; from O(N) to O(N).
16 diff(f,x); from O(Nm² + sort(N)) to O(N + sort(N))
17 eliminating monomials will shrink the SIMPL table
18 and reduce cache penalty for SIMPL table access
19 and result in faster garbage collection
Key: N = nops(f), m = nops(indets(f)).
```

Our proposal: difficulties

What will we do for backwards compatibility?

Our proposal: solutions

- Propose default is grlex ordering.
 Defines the hash(f) for f with immediate monomials.
- For sort(f,[x,y,z],plex) we will sort in-place as follows. For xⁱy^jz^k we will do

$$\boxed{i+j+k \mid i \mid j \mid k} \Longrightarrow \boxed{i \mid j \mid k \mid i+j+k}.$$

This guarantees that f is packed does not depend on the monomial ordering. If it did, we couldn't hash f consistently.

▶ We need to "tag" the ordering. Suggest store pointer to plex(x, y, z) instead of pointer to sequence (x, y, z) in the SUM dag.

Conclusion

The proposal is to introduce immediate monomials.

- ▶ Maple will be much faster than Magma and Singular.
- Maple will be MUCH faster than Mathematica.
- Maple will be able to manipulate much bigger polynomials.
- ► This will speed up Maple on the library test suite by better than 10%?
- ▶ Polynomials will be sorted.