Sparse polynomial arithmetic part Il:
A proposal to dramatically speed up polynomials
in Maple.

Michael Monagan

CECM, Simon Fraser University

MOCAA M?3 workshop, May 7, 2008

Joint work with Roman Pearce, Simon Fraser University

Benchmarks

Dense Fateman problem (4 variables):

f=0+x+y+z+t)¥ g=Ff+1

(stan.cecm.sfu.ca) Intel Core 2, 3.0 GHz, 64-bit

46,376 x 46,376 = 635,376 terms multiply divide
D =0.000295 1/D = 3,385 p=fFf-g qg=p/f
sdmp (packed) 54.720 68.160
sdmp (unpacked) 131.730 126.320
Trip v0.99 (rationals) 108.224 -
Pari 2.3.3 (w/ GMP) 512184 | 283.445
Magma V2.14-7 679.070 610.620
Singular 3-0-4 1482.360 364.490
Maple 11 15986.169 | 13039.248

» f and g have 61 bit coefficients
» h=f-g has 128 bit coefficients

Benchmarks
Dense Fateman problem (3 variables):

f=(Q+x+y+2)* g=f+1

(mado.cecm.sfu.ca) Intel Core 2 Duo, 2.4 GHz, 64-bit

5,456 x 5,456 = 39,711 terms multiply divide
D =0.00133 1/D =750 p=f-g qg=p/f
sdmp (packed) 0.780 0.970
sdmp (unpacked) 1.330 1.510
Trip v0.99 (rationals) 1.870 -
Pari 2.3.3 (w/ GMP) 3.860 2.793
Magma V2.14-7 — —
Singular 3-0-4 10.330 6.130
Maple 11 67.923 51.276

» f and g have 53 bit coefficients
» h=1f-g has 112 bit coefficients

Benchmarks

Sparse 10 variables:

f = (x1x2 + xox3 + x3Xs + XaX5 + XsX6 + X6 X7 + X7Xg + XgXo + XoX10 + X1X10

+X1 —|—X2 +X3—|—X4—|—X5+X6—|—X7+X8—|—X9—|—X10—|—1)5

g =0+ +34 +§ + x5 + 3§ +x7 + x5 + x5 +x

+ X1+ X2 + X3 + X4 + X5 + X6 + X7 + xg + x0 + x10 + 1)°

(stan.cecm.sfu.ca) Intel Core 2, 3.0 GHz, 64-bit

26,599 x 36,365 = 19,631, 157 terms multiply divide
D = 0.0203 1/D = 49.27 p=f-g qg=np/f
sdmp (packed) 40.330 41.330
sdmp (unpacked) 175.970 162.370
Trip v0.99 (rationals) 221.910 -
Pari 2.3.3 (w/ GMP) 109.270 109.692
Magma V2.14-7 313.020 5744.600
Singular 3-0-4 655.250 206.600
Maple 11 14053.371 | 10760.364

First integration attempt

In expand.c in the kernel

if ((1a-5)*(1b-5)>400 && la*1b>2500)
return(evalsysf ("expand/bigprod","",New3(EXPSEQ,a,b)));

In divide.c in the kernel

if (ID(b)==SUM && (LENGTH(a)-3)*(LENGTH(b)-3) > 1%12000)
ta = evalsysf("expand/","bigdiv",New4 (EXPSEQ,a,b,quo));

In the Maple library define

‘expand/bigprod¢ := proc(a,b)
sdmp: -AutoPack:-Multiply(a,b);

end:

‘expand/bigdiv‘ := proc(a,b,q)

sdmp: -AutoPack:-Divide(a,b,q);
end:

First integration attempt: Autopack

Divide := proc(f::polynom, g::polynom, q::name:=FAIL)
local F, G, Q, d, s, vars, tord;
vars := indets([f,gl,’name’);
if not andmap(type, [f,g], ’polynom’(’integer’, vars)) then
error "input must be polynomials with integer coefficients"
end if;
tord := ’grlex’(op(vars));
d := degree(f,vars);
if degree(g,vars) > d then return false; end if;

d := max_pack(d);
F := sdmp:-Import(f,tord,’:-pack’=d);
G := sdmp:-Import(g,tord,’:-pack’=d);

if g=FAIL then
sdmp:-Divide(F,G);

elif sdmp:-Divide(F,G,’s’,’Q’);
q := sdmp:-Export(Q);
return true;

else
return false;

end if

end proc;

First integration attempt: a factorization

IN~/1 Maple 11 (X86 64 LINUX)
INI |/1. Copyright (c) Maplesoft
\ MAPLE / All rights reserved. Maple is a trademark of
<o ____ > Waterloo Maple Inc.
I Type ? for help.
= 8,t,Xx,y,2:

:= randpoly ([X],degree=10,terms=1000) :
randpoly([X] ,degree=10,terms=1000) :
1= expand(f*g):

:= iquo (nops (£)*nops(g) ,nops(h)):
prlntf("#f %d #g=)d #h=)d 1/D=5.2f\n",
nops (f) ,nops(g) ,nops (h) ,d) ;

V V. V V V V VvV
Q B 0] H X
Il

#£=998 #g=991 #h=52023 1/D=19.00

> ft := time():

> factor(h): # Keith’s Hensel lifting code (1984)

> time()-ft;
120.260
> quit

First integration attempt: a factorization

polynomial multiplications: 996
trial divisions which failed: 61
divisions which succeeded: 117

> read "sdmp.mpl";
> ‘expand/bigprod‘ := proc(a,b) sdmp:-AutoPack:-Multiply(a,b); end:
> ‘expand/bigdiv¢ := proc(a,b,q) sdmp:-AutoPack:-Divide(a,b,q) end:

> st := time(): factor(h): time()-st;

26.998

First integration attempt: gcdex

>X = u,v,X,y,2;

>f := collect(x"5+randpoly([X],degree=4,terms=10),x);
>g := collect(x"4+randpoly([X],degree=3,terms=10),x);
>et := time(): gcdex(f,g,x); et := time()-et;

>ft := time(): gcdex(f,g,x,’s’,’t’); ft := time()-ft;

Old timings: et := 9.120 ft := 18.342
New timings: et := 0.263 ft := 1.190

First integration attempt: Overhead

read "sdmp.mpl":
infolevel[sdmp] := 4;
interface(quiet=true) ;
X := [seq(x[i],i=1..10)];
for i from 2 to 10 do
Vo= X[1..i];
f := randpoly(V, degree=20-i, terms=1000):
g := randpoly(V, degree=20-i, terms=1000):
h := sdmp:-AutoPack:-Multiply(f,g);
disp := evalf(nops(f)~2/nops(h));
printf ("#vars=yd #f=/d #h=)d D=Y4.1f\n",i,nops(f),nops(h),disp);
od:

First integration attempt: Overhead

#vars=4 #f£=991 #h=10626 D=92.4
020s alg: 0.020s io: 0.000s real: 0.026s

time:
time:

#vars=

time:
time:

#vars=

time:
time:

#vars=

time:
time:

#vars=

time:
time:

0.
0.

5

0.
0.

6

0.
0.

7

0.
0.

8

0.
.080s export: 0.120s simp: 0.960s

1

010s export: 0.000s simp: 0.010s

#£=988 #h=50876 D=19.2
060s alg: 0.060s io: 0.000s
070s export: 0.010s simp: 0.060s

#£=993 #h=169470 D= 5.8
090s alg: 0.080s io: 0.010s
330s export: 0.030s simp: 0.300s

#£=994 #h=334231 D= 3.0
120s alg: 0.110s io: 0.010s
760s export: 0.080s simp: 0.680s

#£=999 #h=440124 D= 2.3
140s alg: 0.110s io: 0.030s

real: 0.012s

real: 0.067s
real: 0.076s

real: 0.094s
real: 0.335s

real: 0.119s
real: 0.761s

real: 0.132s
real: 1.087s

Maple's sum of products representation.

Oxy3z — 4y%2° — 6xy°z — 8x3 -5

(PROD7[x [1 [y [3][z][1]

'pRODS[y [3 [z [2|

PROD7[x [1 [y [2]z[1]

PROD3| x [3 |
A

sumt1] ¢ [o[o [a[d[6[o[-8]5]1]

» small integer coefficients are immediate

» monomials are hashed, terms sorted by address

Maple's sum of products representation: Why is it so slow?

1: Because operations on PRODs takes 100s of cycles.
Example: consider multiplying xy? x (3x2yz + 2xy — 3).

=xy’[PROD [x[2]y[1]z]1]

:’PROD‘X‘2‘)/‘].‘Z‘].‘X‘l‘y‘z‘
—[PROD [x[2[y[3
:’PROD‘X‘?)‘)/‘?)‘Z‘

| count sixteen C function calls to multiply and simpl.

Maple's sum of products representation: Why is it so slow?

2: Because large polynomials fill memory with PRODS.

This causes cache problems in expression walking e.g. in
indets, degree, garbage collection, simpl table access, etc.

Maple's sum of products representation: Why is it so slow?

3: Maple sorts the terms in a SUM by address (good)
using shellsort which is O(n'?®) (okay) but it jumps through
memory (bad).

if(1>50) {
/* sort terms using shellsort */
/* increment sequence is 37k+1l %/
for(h=80; h<l; h=3%h+2) ;
for(h/=3; h>1; h/=3)
for(i=h+1; i<l; i+=2)
for(j=i-h; j>0 && I(s[j1)>I(s[j+h1); j—=h) {
r = A(s[jD);
s[jl = s[j+h];
s[j+h] = A2(x);
r = A(s[j+11);
s[j+1] = s[j+h+1];
s[j+h+1] = A2(x);

Our data structure

Packing for x'y/z* in graded lex order x > y > z:

In one machine word : | i+ +k|i|j] k]|

» monomial > and x are one machine instruction.

» graded lex is good for polynomial division.

Packed array for: 9xy3z — 4y37% — 6xy?z — 8x3 — 5

POLY 5 d = total degree

XYy z

packing dxyz dxyz dxyz dxyz dxyz
o——{5131] 9 |5032| -4 |4121] -6 |3300] -8 |0000| -5 |

Our data structure: general case

Axy3z — By3z? — Cxy?z — 8x3 — 5

POLY 5
Xy z
packing d = total degree
?
dx yz dx yz dx yz dx yz dx yz
51[31] » [50[32] ¢ [41]21] « [33][00][-8[00][00]-5]

Y
| GMP data A | GMP data B | GMP data C \

Our proposal: immediate monomials in grlex order

Oxy3z — 4y32z% — 6xy?z — 8x3 — 5

'seas | x| v z]

sum | ' | 5131 [9 [5032 | -4 4121 [-6 | 3300 [-8 [0000 |5 |

‘Key: Packing is fixed by #variables.‘

So assuming grlex(x, y, z), to pack x'y/z¥ (3 variables), in 64
bits, we get need to store 4 integers, (i +j + k, i,/, k).
Hence 16 bits per integer = 0 < i+ j + k < 2% = 65536.

Our proposal: assumptions

» Polynomials which are created (e.g. by parsing) in the
SUM of PRODs representation are simplified (in simpl)
then “immediatized” in O(Nm) time before hashing.

» We only pack expanded polynomials in names (functions?)
whose monomials ALL pack into one machine word.

» To compute foo(f, g) if f is packed and g is not packed,
then we convert f to SUM of PRODs and compute.

» If f and g are packed and indets(f) # indets(g) and we
can repack then make copy, repack if can, compute, simpl
the result.

Our proposal: 64 bit verses 32 bit machines

64 bit 32 bit
##variables | #bits | max deg | #bits | max deg
1 32 16
2 21 10 1023
3 16 65535 8 255
4 12 2047 6 63
5 10 1023 5 31
6 9 511 4 15
7 8 255 4 15
8 7 127 3 7
9 6 63 3 7
10 5 31 2 3
11 5 31 2 3
15 4 15 2 3
21 3 7 1 1
31 2 3 1 1
63 1 1 - -

Our proposal: general comments

If f and g are polynomials in the same variables

>

>

we can add and subtract f and g using a merge

we can multiply f by g without overflow if

deg(f) + deg(g) < 2°.

we can divide f by g without overflow if deg(f) < 2°
(needs grlex order)

we can simpl the output polynomial result in O(n) (a
variable could drop out — this can be tested for in O(n)
time by bit-wise or of monomials)

we can hash the result in O(n)

If f has m variables and n terms, the storage is reduced
from 2n+ 1+ 2nm+ 2m to 2n + 1 for a gain of a factor
of up to m.

Our proposal: the big gains

1. No overhead means we'll get the full factor of 100 gain in
speed on large problems and a big gain on small and
medium sized problems.

2. Because we eliminate PRODs, and since our
multiplication and division algorithms run "inplace” we
can multiply much larger polynomials.

3. Polynomials will appear to the user sorted, in descending
order. Assuming we choose alphabetical order

input
>1+3x% — x;

output
3x2 —x +1

> expand((x + y)?);
>x3+x+y3+1;

> 1 — x + xyz — 2x?;
>—x—-2y+z4+w=0;
>1— Xxox; +Xf;

x3 +3x%y +3xy? + 1
C+yi+x+1
xyz —2x* —x+1

w—x—2y+z=0

X12 —x1% +1

Our proposal: the small gains

There are other substantial gains in time and space that we
get by using the new structure.

Let £ be a polynomial, N = nops(f), and m =
nops(indets(f)).

Time from O(Nm) to O(1).
1 lcoeff(f);
2 indets(f); (possibly O(m))
3 sign(f);
4 degree(f); (total degree of f)
5 expand(f); (f is already expanded)

Our proposal: more small gains

From O(Nm) to O(m).
6 > f; (evaluation of f at user level)
7 has(f,x);
8 type(f,polynom);
9 frontend(normal,f);

From O(Nm) to O(N + m).
10 degree(f,x);

11 coeff(f,x,1);

12 type(f,polynom(integer));

Key: N = nops(f), m = nops(indets(f)).

Our proposal: more small gains

13 expand(x*f); from O(Nm? + sort(N)) to O(N)

15 2f; from O(N) to O(N).

16 diff(f,x); from O(Nm? + sort(N)) to O(N + sort(N))
17 eliminating monomials will shrink the SIMPL table

18 and reduce cache penalty for SIMPL table access

19 and result in faster garbage collection

Key: N = nops(f), m = nops(indets(f)).

Our proposal: difficulties

> £ 1= 1+x72+y72%x;

> sort(f, [x,y],plex);

> sort(f, [x,y],tdeg);

xy +x +1

What will we do for backwards compatibility?

Our proposal: solutions

» Propose default is grlex ordering.
Defines the hash(f) for f with immediate monomials.

» For sort(f,[x,y,z],plex) we will sort in-place as follows. For
x'yi 2K we will do

it k]iljkl=[i]jlk]lit+j+k]

This guarantees that f is packed does not depend on the
monomial ordering. If it did, we couldn’t hash f consistently.

» We need to “tag” the ordering. Suggest store pointer to

plex(x, y, z) instead of pointer to sequence (x,y, z) in the
SUM dag.

Conclusion

The proposal is to introduce immediate monomials.
» Maple will be much faster than Magma and Singular.
» Maple will be MUCH faster than Mathematica.

» Maple will be able to manipulate much bigger
polynomials.

» This will speed up Maple on the library test suite by
better than 10%?

» Polynomials will be sorted.

