Contents

**1**- G. Almkvist and A. Meurman,
*Values of Bernoulli polynomials and Hurwitz's zeta function at rational points*, C.R. Math. Acad. Sci. Canada,**13**(1991), 104--108.**[1]**

**2**- D.W. Boyd, J. Cook and P. Morton,
*On sequences of 's defined by binary patterns*, Diss. Math.,**283**, 60pp.**[1] [2]** **3**- S. Chowla, B. Dwork and R. Evans,
*On mod determination of*, J. of Number Theory,**24**(1986), 188--196.**[1] [2]** **4**- K.S. Davis and W.A. Webb,
*Lucas' Theorem for prime powers*, Europ. J. Combinatorics,**11**(1990), 229--233.**[1]** **5**- L.E. Dickson,
*Divisibility of Factorials and Multinomial Coefficients*, Chapter XI in `History of the Theory of Numbers', Vol.I, (Chelsea, New York, 1919).**[1] [2]** **6**- R.D. Fray,
*Congruence Properties of Ordinary and*, Duke Math. J.,**q**-Binomial Coefficients**34**(1967), 467--480.**[1]** **7**- I. Gessel,
*Some Congruences for the Apéry numbers*, J. of Number Theory,**14**(1982), 362--368.**[1]** **8**- A. Granville,
*Zaphod Beeblebrox's brain and the fifty--ninth row of Pascal's Triangle*, Amer. Math. Monthly,**99**(1992), 318--381.**[1] [2] [3]** **9**- R.K. Guy, Reviews in Number Theory, (Amer. Math. Soc.,
Rhode Island, 1984).
**[1]** **10**- R.H. Hudson and K.S. Williams,
*Binomial Coefficients and Jacobi Sums*, Trans. Amer. Math. Soc.,**281**(1984), 431--505.**[1]** **11**- J.P. Jones, D. Sato, H. Wada and D. Wiens,
*Diophantine representation of the set of prime numbers*, Amer. Math. Monthly,**83**(1976), 449--464.**[1]** **12**- D. E. Knuth and H. S. Wilf,
*The power of a prime that divides a generalized binomial coefficient*, J. reine angew. Math.,**396**(1989), 212-219.**[1]** **13**- E. Lehmer,
*On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson*, Annals of Math.,**39**(1938), 350--360.

**14**- W.J. Leveque, Reviews in Number Theory, (Amer. Math. Soc.,
Rhode Island, 1974).
**[1]** **15**- C. T. Long,
*Pascal's triangle modulo***p**, Fib. Quart.,**19**(1981), 458-463.**[1]** **16**- B. Mandelbrot,
*The Fractal Geometry of Nature*, (Freeman, San Francisco, 1982).**[1]** **17**- H.B. Mann and D.S. Shanks,
*A neccessary and sufficient condition for primality, and its source*, J. of Comb. Theory Ser. A,**13**(1972), 131--134.**[1]** **18**- F. Morley,
*Note on the congruence , where*, Annals of Math.,**2n+1**is a prime**9**(1895), 168--170.**[1]** **19**- D. Singmaster,
*Divisibility of binomial and multinomial coefficients by primes and prime powers*, in `A collection of manuscripts related to the Fibonacci sequence', (Fib. Assoc., Santa Clara, 1980), 98--113.**[1] [2]** **20**- K.B. Stolarsky,
*Power and Exponential sums of digit sums related to binomial coefficient parity*, SIAM J. Appl. Math.,**32**(1977), 717--730.**[1] [2]** **21**- L.C. Washington,
*Introduction to Cyclotomic Fields*, (Springer--Verlag, New York, 1982).**[1] [2] [3]** **22**- S. Wolfram,
*Geometry of Binomial Coefficients*, American Math. Monthly,**91**(1984), 566-571.**[1]**