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A b s t r a c t .  The fastest known algorithms in classical algebra make use 
of signature functions. That  is, reducing computat ion with formulae to 
computing with the integers modulo p, by substi tut ing random numbers 
for variables, and mapping constants modulo p. This idea is exploited 
in specific algorithms in computer algebra systems, e.g. algorithms for 
polynomial greatest common divisors. It is also used as a heuristic to 
speed up other calculations. But none exploit it  in a systematic manner. 
The goal of this work was twofold. First,  to design an AXIOM like sys- 
tem in which these signature functions can be constructed automatically,  
hence bet ter  exploited, and secondly, to exploit them in new ways. In this 
paper we report  on the design of such a system, Gauss. 

1 Introduct ion 

In 1980 Schwarz [11] p r o p o s e d  the  fol lowing probabi l i t i s t ic  m e t h o d  for t e s t ing  i f  

a m a t r i x  of  p o l y n o m i a l s  in z l ,  z2, ..., z,, over the  in tegers  is s ingu la r  or  not .  Th i s  
m e t h o d  fo rmal ized  an  idea  t h a t  was a l r eady  be ing  used in an  ad -hoc  way  for 
speed ing  up var ious  ca lcu la t ions  in c o m p u t e r  a lgebra  sys tems ,  and  o the r  p laces  
a t  the  t ime .  

P r o c e d u r e  T E S T Z E R O  

Input:  an n by n matr ix  A o v e r  Z [ X l ,  . . . ,  Xn], a failure tolerance e, a degree 
bound d on det(A) 

Output:  false implies det (A)  ~ 0, true implies det (A)  = 0 with probabil i ty 
> l - e  

error ~- 1 
while error > e do 

choose prime p > d 
A '  ~- A modulo p 
for i = 1..n choose ai at random from Zp 
A '  ~-- A evaluated at xi = ai modulo p 
D ~ de t (A ' )  modulo p 
if D = 0 then error +--- error x dip else output  false 

output  true 
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If this procedure outputs "false" then it has proven that  the matrix A is non- 
singular. If the procedure outputs "true" then the procedure may make an error. 
The idea behind this approach is it will make errors controllably low probability 

where typically, one would arrange to have e < 10 -5~ Schwarz's contribution 
is firstly, a theorem that  says that  the error bound is met provided the prime p 
is larger than the degree the determinant, a polynomial in 7/[xl, ..., zn], which 
can be bounded easily in advance. Secondly, if the primes p are chosen to be 
at least > 2d so that  the probability of error is decreased by at least a factor 
of 2 at each step, then the complexity of the method will be satisfactory from 
a theoretical viewpoint. In practice, p will be much larger than d, so that  only 
a few iterations of the loop are required before a small probability of error is 
achieved. Another well known application of such a pvobabilislic algorithm is 
primality testing. We refer the reader to Rabin [7] and Solovay & Strassen [8] 
for two different probabilistic algorithms for primality testing. 

The idea of using modular mappings in this way is not used much in com- 
puter algebra systems. That  is a pity because for many specific problems, such 
as testing whether a linear system has a solution or not, this approach is often 
computationally the only hope for an answer. In [3], and [4] ,. Gonnet extended 
the class of expressions for which signature functions were available from ra- 
tional expressions in zl ,  x2, ..., zn over ~ to include, roughly speaking, firstly, 
unnested exponentials, logarithms, and trigonometric functions, and secondly, 
simple roots. This work led to the routine t o s t e q  in Maple which tests to see 
if an expression is zero or not. However, the ideas are not used by the rest of 
Maple. There is no facility for testing if a matrix is singular or not. In [9] we 
have looked at signatures for algebraic numbers and algebraic functions. One of 
the methods for algebraic integers, is based on the ideas in [10]. We will sketch 
another method later in this paper. 

In our experiments, we have at tempted to build such signature functions in 
a more systematic manner, so they can be exploited more generally. To do this, 
we have designed an AXIOM like system [1] which runs on top of Maple. We 
have called our system Gauss. This paper is organized as follows. In Section 2 
we present the design of Gauss. In Section 3 we show how signature functions 
are built into Gauss. In a subsequent paper, we will report in more detail on the 
actual signature functions that  we use in [9]. In Section 4 we give some novel 
applications of signature functions in Gauss. We end with some conclusions and 
comments about Gauss. 

2 G a u s s  

We have designed a system which supports parameterized types and parame- 
terized abstract types. In AXIOM terminology, these are called domains and 
categories respectively. The principle motivation is to allow one to implement 
an algorithm in a generic setting. Let us motivate the reason for doing this 
and illustrate how this is done in Gauss with an example. Consider computing 
the determinant of a square Matrix over a field using the algorithm Gaussian 
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elimination. In Gauss the code would look like this: 

GaussianEliminationDeterminant := proc(A,n,F) local d,i,j,k,m; 
d := F [1 ] ;  
for k to n do 

for i from k to n while Fit=c]( All,k], 0 ) do od; 
if i>n then RETURN(O) fi; 
if i<>k then 

... # interchange row i with row k 
d := F [ ' - ' ]  (d) 

f i ;  
d := F [ ' * " l ( d , A l ' k , k ] ) ;  
for i from k+l to n do 

m := F['/'](A[i,k],A[k,k]); 
f o r  j from k+l t o  n do 

A[i,j] := F['-'](A[i,j],F['*'](m,A[k,j])) 
od 

od 
od; 
RETURN( d ) 

end;  

The key difference between this code and other coding styles is the parameter  
F ,  the field. It is a collection of all the operations for computing over the field 
called a domain. In the Maple [6] code above, we see that  we are using a Maple 
table, a hashtable ,  for representing a domain. Thus a domain in Gauss consists 
essentially of a table of Maple procedures. 

2.1 Us ing  G a u s s  

The above example gives the reader an idea of how one programs in Gauss. 
Before we give more details, we show first how one uses Gauss interactively, and 
make some initial comments about the functionality which all domains in Gauss 
provide. 

The Gauss package is available in Maple V Release 2 after executing the com- 
mand wi th (Ganss ) .  

> w i t h ( G a u s s )  ; 
Gauss version 1.0 

Initially defined domains are Z and Q the integers and rationals 

[init] 

Initially, the two domains Z, the integers 7 ,  and Q, the rationals Q, have been 
defined. Let 's do some operations with them: 

> z CGcd] (8 ,12)  ; 
4 
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Principle 1: All named operations in Gauss begin with an upper case letter and 
must be "package-called", i.e. the domain subscript must be explicitly used. 

> Q [ '+ ' ] . ( 1 /2 ,1 /3 ,1 /4 )  ; 
13 

12 
> Z[Gcd] ; 

i g c d  

P r i n c i p l e  2: Gauss uses the Maple representation for integers and rationals, 
and the builtin Maple functions where appropriate, e.g. the igcd function. Since 
Gauss is written in Maple, i.e. Gauss code is Maple code which is interpreted, 
this starting point is rather crucial for efficiency. 

Next we want to perform some operations in Q[z]. First we have to create 
the domain of computation for objects in Q[x]. This is done by calling a domain 
constructor, in this case the constructor DenseUnivariatePolynomial  (or DUP 
for short). A domain constructor in Gauss is a Maple procedure (with zero or 
more parameters), which returns a Gauss domain. The domain constructor DUP 
takes two parameters, the coefficient ring and the name of the variable. 

> D := D U P ( Z , x ) :  
> a := D [Random] ( ) ;  

a := [-37, -35, -55] 

P r i n c i p l e  3: All domains in Gauss have a Random function which creates a 
"random" example from the domain. 

> d := D[Diff](a); 
d := [-3S, -110] 

> D [Output] (d) ; 
- 1 1 0  x - 35 

P r i n c i p l e  4: All domains in Gauss support an Output function which converts 
from the domains internal data representation to the Maple form. 

> m := D[Input] (y '4 -10*x '2-y)  ; 

m := FAIL 

> m := D [ I n p u t ] ( x ' 4 - 1 0 * x ' 2 - 1 ) ;  

m := [ - 1 ,  0 ,  - 1 0 ,  0 ,  1]  

P r i n c i p l e  S: All domains in Gauss support an Input  function which tries 
to convert a Maple expression into the Gauss representation. We do require 
that D [Input]  (D[0utput] (x)) always succeeds as this is also used as a general 
mechanism for converting from one data type to another. 

> D [Type] (m) ; 

true 



85 

Principle 6: Since Gauss is implemented on top of Maple, there is no means 
for static type checking. Type checking is therefore done at run-time in a Maple 
style manner. Note, we are not advertising this particular feature as a "good" 
feature of Gauss. 

In the remaining parts of this section on Gauss, we will assume that the 
reader is somewhat familiar with the AXIOM approach. We will present Gauss 
from AXIOM's point of view, due to lack of space. As we go, we will point out 
differences. 

First, we wish to give some reasons for why we have designed another system 
instead of using AXIOM. AXIOM suffers from being big and inflexible. If you 
want to make major changes to fundamental domains, then you will have a lot 
of work to do. Especially because you would have to recompile dependencies, 
and the compiler is very slow. If you want to experiment with this, it will be 
too painful to bear. What we really needed was a small flexible system. That is 
essentially what Gauss is. 

2.2 Domains and Categories in Gauss 

Domains (parameterized types) are created by executing Maple functions. The 
parameters to a domain can be values and other domains. We have seen how 
domains are used in the determinant example. 

Categories (parameterized abstract types) are just domains with missing 
functions. They are also parameterized by values and domains. Their purpose is 
to provide code which does not depend on the data representation, and hence 
can be shared amongst more than one domain. 

These ideas, how it is done in Gauss, and the differences with AXIOM are best 
shown by looking at carefully chosen examples. In Gauss, here is the definition 
for the category Set, the category to which all other categories belong. The 
call Se t ( )  creates a domain which belongs to the category Set. It defines what 
operations a domain which is a Set must have, and implements one of them. The 
call Set (S) extends a domain by adding these operations to the domain set. 

Set := proe() local S; 
if nares = 0 then S := newCategory() else S := arEs[l] fi; 
if hasCategory(S,Set) then RETURN(op(S)) fi; 
addCat egory (S, Set ) ; 

| 

Specifies that S, the domain being constructed, belongs to the category Set. 

defOperations( {'=','<>'}, [S,S] ~-> Boolean, S ); 

Adds the definitions for the two operations equality and inequality which have 
the signature indicated to the domain being constructed S. 

defOperation( Random, [3 ~-> S, S ); 
defOperation( Input, Expression &-> Union(S,FAIL), S ); 
defOperation( Output, S R-> Expression, S ); 
defOperation( Type, Expression k-> Boolean, S ); 
S['<>'] := subs(D = S,proc(x,y) not D['='](x,y) end); 
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Adds a default definition for the operation inequality in terms of equality. 

S[Output] := x -> x; # use Maple by default 
op(S) 

end: 

The Euclidean Domain in Gauss is 

EuclideanDomain := proc() local E; 
if nargs = 0 then E := newCategory() else E := args[l] fi; 
E := UniqueFactorizationDomain(E) ; 

Inherits (adds to E) all the operations defined and implemented from the cate- 
gory UniqueFactorizationDomain. 

addCat egory (E, EuclideanDomain) ; 
de fOperat ion(  EuclideanNorm, E k-> I n t e g e r ,  E );  
de fOperat ion(  SmallerEuclideanNorm, [E,E] &-> Boolean,  E ) ;  
defOperations( ~Rem,Quo}, ~[E,E] ~-> E, [E,E,Name] ~-> E}, E ); 
defOperation( Gcdex, {[E,E,Name,Name] &-> E, [E,E,~lame] ~-> E>, E ); 
defOperation( Poemod, [E,Integer,E] ~-> E, E ); 
E[Quo] := subs(*D ~ = E, proc(x,y,r) local t,q; 

t := D[Rem](x,y,q); if nargs = 3 then r := t fi; q 
end) ; 

E[Div] := subs('D ~ = E, proc(x,y) local q; 
if D[Rem](x,y,q) <> D[O] then FAIL else q fi 
end) ; 

E[Smal lerEucl ideanlorm]  := subs(*D ~ = E, p r o c ( x , y )  
s v a l b (  D[Eucl ideanNorl]  (x)  < D[EuclideanNorm] ( y ) )  
end) ; 

E [ P o ~ o d ]  := subs( 'D ~ = E, p r o c ( )  PowerRemainder(D,args)  end) ; 
E[Gcd] := subs(~D ~ = E, proc() EuclideanAlgorithm(D,args) end); 

The default algorithm for computing GCD's is the Euclidean Algorithm. It is 
implemented in the same manner as the GaussianElimination algorithm. 

E[Gcdex] := subs(~D ' = E, proc() PrincipalIdeal(D,args) end); 
op(~.) 

end: 

Notice that of the new operations defined in the EuclideanDomain category, 
only the Euclidean norm and remainder operations are not defined. The other 
operations are defined either in-line, or as calls to out-of-line procedures. We 
include here the code for the EuclideanAlgorithm, because this code illustrates 
the way one implements algorithms in Gauss, and it is probably the best generic 
implementation possible of the Euclidean algorithm. Note that the algorithm is 
n-ary, i.e. it computes the GCD of zero or more arguments. 

EuclideanAlgorithm := proc(E) local a , b , r , s ;  

s := ~args[2..narEs]]. minus {E[O]};, 

A property of Gauss inherited from Maple is that for Gauss domains which 
have canonical forms, equal values are represented uniquely, and hence here, 
duplicates can be removed very efficiently: 

if s = ~} then RETURN(E[O]) fi; 
sort( lop(s)], E[SmallerEuclideanNorm] ) ; 
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The idea here is to start with the smallest values, because the size of GCD's 
always get smaller in the Euclidean norm sense, and usually, they this carries 
over to the computational cost too. 

a := E[Normal](s[l]); 
for b in subsop(l=NULLjs) .hile a <> E[I] do 

b : = E [Normal] (b) ; 
.hile b <> E[O] do 
r := E[Normal] (E[Rem] (a,b)) ; 

This is the monic Euclidean algorithm. That is, the Normal function here is mak- 
ing the remainder unit normal. This is a generic attempt to control intermediate 
expression swell. 

a : =  b; 
b :=r 
od; 

od; 
a 

end: 

We continue with an outline of the category for univariate polynomials. 

UnivariatePolynomial := proc() local P,R,env,U, '?'; 

R := args[l]; 
if not hasCategory(R,Ring) then 

ERROR('Ist argument must be a ring') fi; 

This is typical error checking. In the new version of Maple, it could have been 
done in the procedure declaration as proc (R:Ring). 

if nargs = I then P := newCategory(); else P := args[2] fi; 
addCat egory (P, Univariat ePolynomial) ; 

if hasCat egory (R, Field) 
then P := EuclideanDomain(P) 
o * *  

else P := Ring(P) 
fi; 

if hasCategory(R,0rderedSet) then P := 0rderedSet(P) ; fi; 

Here we have included the usual theorems about univariate polynomials and an 
example of multiple inheritance. Multiple inheritance in Gauss means that more 
than one set of operations is added to the domain. 

def0peration( CoefficientRing. P k-> Ring, P ); 
P[CoefficientRing] := R; 
. . ,  

There are lots of operations defined for polynomials of course. One difference 
between AXIOM and Gauss is that programs in Gauss can get their hands on 
parts of domains, their parameters e.g. here the coefficient ring. 

env := ['D' = P. 'C' = R]; 

P[EuclideanNorm] := subs(env, proc(a) D[Degree] (a) end); 
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This is a Maple problem. We are in the process of building the domain P. Here 
we are inserting the Maple procedure for the EuclideanNorm operation. It needs 
to call the operation Degree from the domain P. The reason for the reference 
to D [Degree] instead of P [Degree] is because Maple does not support nested 
scopes, and the substitution is a just hack to make this work. Nested scopes will 
be supported in a future version of Maple. We mention this because apart from 
having to package call every operation, which is not really serious, this is the 
only dissatisfying feature of the readability of the code. 

#iP); 
end; 

Finally, let's look at a domain which inherits the definitions and code from 
the category UnivariatePolynomial. 

DenseUnivariatePolynomial := proc() local x,P,R,env; 

R := axgs[I]; 
P := UnivariatePolynomial(R) ; 

Inherit the definitions and code from the category 

, ~ , 

if hasProperty(R,CanonicalForm) then 
addProperty (P, CanonicalForm) ; 
if hasProperty(R,UniquelyRepresented) then 

addProperty (P, UniquelyRepres ent ed) ; 
P['='] := <evalb(x=y)>; 

fi; 
fi; 

This shows that Gauss keeps some other kind of information around called prop- 
erties. For categories, we have properties associated with the mathematical prop- 
erties of the category like "commutativity". For domains, we have properties 
associated with the data representation, like "CanonicalForm" and "Unique- 
lyRepresented". Here we are exploiting the fact that if we have a canonical form 
for the coefficients, then because we are using a dense expanded representation, 
we have a canonical form for the polynomial ring we are constructing. Secondly, 
if the coefficients are also uniquely represented in memory, then because we are 
using a Maple list, the polynomials will be uniquely represented. And why is this 
information useful? Because now we can use a faster implementation of equality, 
based on machine address - which is what this Maple code is doing. 

# Representation is a Maple list of coefficients 
PE0] := [R[0]]; 
P[1] : =  [R[1]]; 

end: 
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3 Signature Functions in Gauss 

The signature functions that we use, in general, map values into finite rings, 
namely the integers mod n where n is not necessarily prime, and Zp[z]/(m(x)) 
where re(z) is not necessarily irreducible, and p is a prime integer. These finite 
rings are chosen so that there are a low percentage of un-invertible elements. To 
simplify the presentation of this section however, we assume finite fields. 
Our first idea is that domains for which we can define signature functions should 
support the operation 

ModularMapping: (N, N) --* UNION( (F:FiniteField, D ---* F), FAIL ) 

where N is the set of natural numbers, D is the domain for which this operation 
is being defined. Thus ModularMapping outputs a pair, a finite field F, and a 
mapping from D to F. Since for probabilistic algorithms, we will need more than 
one such mapping, ModularMapping takes an index as the first argument and 
hence can be used to generate a sequence of mappings. The second argument is a 
lower bound for the cardinality of the finite field. If D is itself a finite field, then 
the only non-trivial mapping available is the identity mapping. For this reason, 
ModularMapping is allowed to fail. 

The operation ModularMapping has been explicitly coded for the Integer 
domain and the FiniteField category. In all other cases, it is automatically con- 
structed by the system when a domain is constructed. The constructions for 
polynomials and quotient fields are simple. We include the code for polynomials 
here. Note, we have removed the magic substitutions (which are used for sim- 
ulating nested scopes) from the Maple code to make it easier to read. I.e. the 
reader should assume that Maple has nested scopes. 

PolynomialItomomorphism := proc(n,p) local R , F , f , a l p h a , D , x ;  
R := P[CoefficientRing] ; 
F :- R[ModularHomomorphism] (n,p) ; 
if F = FAIL then RETURN(FAIL) fi; 
f := FIll; F := F[2]; 
beta := F[Random](); 
D := DUP(F,x); 
proc(x) local b; 

b := map(f,P[ListCoeffs] (x)) ; 
b := D[Polynom] (b) ; 
D [Eval] (b,beta) ; 

end, F 
end : 

In [9] we have looked at several possible constructions for algebraic number 
fields. Here we sketch a general method for algebraic extensions. Given the alge- 
braic extension IK[x]/(a), we first obtain a modular mapping f into a finite field 
IFq for the ground field IK such that the leading coefficient of a does not vanish 
under f .  Then we map the defining polynomial a into ]Fq[z] yielding a'. Since 
lFq is a finite field, we factor a' and choose to work with the smallest factor b 
and hence construct the finite field lFq[z]/(b) in which to compute signatures. 
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We want to show how we can implement Schwarz's algorithm using this Mod- 
ularMapping function. Before we can do this, we need some way to determine 
a degree bound for the degree of the determinant. One way to do this is to 
implement a special routine. But this would mean coding a new version of the 
determinant routine. Another way of computing a bound is to simply count the 
number of multiplications m done in the coefficient field and note that 2 m is 
a bound on the degree. This is not very good bound but it can be easily im- 
plemented. A better method is given in the next section. Assuming we have a 
degree bound D we can sketch the implementation. 

# Input: an m by n matrix A over R, a degree bound D, 
# a n d  a n  e r r o r  tolerance E 
# Output: rank(A) with probability > I-E of being correct 
ProbabilisticMatrixRank := proc(M,A,D,E) 
local R,m,n, i,F,N, f.B,rank, error; 

R := M[CoefficientRing]; m := M[Ro.s](A); n := M[Cols](A); 
error := i; 
rank := O; 

for i while error > E do 
F := R[ModularHomomorphism] (i,D) ; 
iS F = FAIL t h e n  RETURN(FAIL) fi; 
f := F[I]; F := F[2]; 
N := Matrix(m,n,F); # Create an m by n matrix domain over F 
B :=  ~l[Input] (S[Output] (N[Map] (f,A))); 
rank := max(rank,N[Rank] (B)) ; 
error := error * D/F[Size]; 

od; 
rank 

end; 

Other applications of ModularMapping include testing if a polynomial divides 
another, computing the degree of the GCD of two univariate polynomials, hence 
testing whether two polynomials are relatively prime or not. A good application 
of the latter is in determining whether a univariate polynomial is square free or 
not, i.e. whether GCD(a, a') -= 1. The coding of these applications is straight- 
forward. 

4 Applications 

We give several other applications of signatures in this section. 

4.1 S igna tu re  domains  and  forms of  expressions 

The Signature domain computes with signatures for rational functions in a 
set of variables over a constant field in which we can compute signatures. The 
Signature  domain simply replaces input expressions by signatures; the ensuing 
computation computes over the finite ring defined by the signature function. 
This eliminates intermediate expression swell and provides us with probabilistic 
zero equivalence but restricts us to the field operations + , - ,  x, a n d / .  
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When given as a parameter to a domain constructor, such as DenseUnivariatePolynomial 
or SquaxeMatr ix ,  we get a computation in which part  of the computat ion is be- 
ing done with signatures, and another part  is being done with variables. This 
allows one to look at the structure or form of the result. This is best understood 
by looking at an example. 

> S := SiEnature(a,b,c): 
> R := RationalFunction(S. [x,y,z]) : 

We are computing with rational expressions in 6 symbols. But the symbols a, b, c 
will be mapped to a finite field on input, so the actual computation will be done 
with z, y, z only. 

> M := SM(3,R): # Create a 3 by 3 matrix domain over R 
> A := [[a,b,c],[a*x,a*y,a*z].[a*x'2.a*y'2,a*z'2]]: 
> M[Output] (M[Inv] (M[Input] (A))) ; 

2 2 2 2 
* y z  + * y  z * z  + * y  * z + * y  

EE , , 3 ,  
Y,i Y,i Zi 

2 2 2 2 

[ , , .], 

2 2 2 2 
* x y  + * x  y * y  + * x  * y + * x  

[ , , .]] 

2 2 2 2 2 
Y,1 := ( y  + *  x )  z + ( *  y + *  x )  z + *  x y + *  x y 

The *'s appearing in the output  are signatures which are neither 0 nor 1. Thus 
the output  tells us what the inverse of the matr ix looks like as a function of 
z, y, z by telling us which coefficients are 0 and also which are 1. Note, one could 
also output  the coefficients which are small integers, e.g. - 1  might also be of 
interest. 

4.2 C o m p u t a t i o n  S e q u e n c e s  a n d  A u t o m a t i c  C o d e  G e n e r a t i o n  

The Computat ionSequence domain creates a "computation sequence" i.e. a se- 
quence of all the field operations done during a calculation, but  without doing 
the operations symbolically. This gives us a third possibility for automatic code 
generation. For example, consider the problem of generating efficient numerical 
code for inverting a given matrix A where the entries of A are a function of 
z l ,  z 2 , . . . ,  xn. There are three possible approaches: 

1. The numeric approach: Here the values of the parameters are bound before 
the matr ix is constructed. The resulting matr ix  is purely numerical, and a 
numerical solver is used. 
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2. The symbolic approach. Here, the parameters are bound after the inverse is 
computed symbolically. The problem with this approach, is that the symbolic 
inverse may have no compact representation. 

3. The computation sequence approach. Here, the sequence of operations that 
would be performed in the numeric approach is created in advance. Signa- 
tures are used to determine intermediate zeroes so that non-zero pivots are 
selected. 

We illustrate the idea with an example. 

> S := C o m p u t a t i o n S e q u e n e e ( a , b , c ) :  
> H := S M ( S , S ) :  
> A ~:= [ [ a , b , c ] , [ a , b , a ] , [ a , c , b ] ] :  
> B := M[Input] (l): 
> M [Det ]  (B) ; 
t l  = 1/a 
t2 = a-c 
t3 = c-b 
t4 = b-c 
t5 = -a 

t6 = tS*tS 
t7 = t6*t2 

We have output the computation sequence as a sequence of assignment state- 
ments on the fly, that is, as each arithmetic operation is executed. The t variables 
are temporary variables. The last variable t7 is the determinant. 

4.3 A Probabi l i s t ic  M e t h o d  for C o m p u t i n g  t h e  Degree  o f  a 
Po lynomia l  

We give an algorithm that given a polynomial represented by a computation 
sequence, such as the result of the above determinant calculation, determines 
probabilistically the degree of each variable. The method was also used in the 
DAGWOOD system [5]. This is quite an important utility because it means that 
we can now remove the need to compute degree bounds from many calculations. 
For example, this can be used to improve the performance of the sparse polyno- 
mial interpolation by determining the actual degrees of the polynomials rather 
than using a bound. 

The idea is to create a computation sequence f for the algorithm, then to 
compute the degree d of it by trying to interpolate the polynomial. After having 
evaluated f at i points, and interpolated those i points, we evaluate the interpo- 
lated polynomial at a next point xi+l yielding Yi+I and compare with f(xi+l).  
If the values agree, then we output i as the "probable" degree of the polynomial. 
If not, we iterate. 

To do this efficiently, one needs an incremental version of a polynomial in- 
terpolation algorithm that interpolates the polynomial for each successive point 
in a linear number of operations in F. We have adapted algorithm 5.2 "Newton 
Interpolation Algorithm" from [2] for this purpose. 
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Procedure Probabilistic Polynomial Degree Bound 
Input: f a computation sequence for a polynomial in n variables over 
F a finite ring, and k the index of the variable for which the degree is 
sought 

Output: the degree of the kth variable of f 

for i = 1..n do choose ai at random from F 
choose z0 at random from F 

YO ~ f ( a l , . . . , a k - l , x o ,  ak+l , . . .an)  
for i = 1. .~ do 

g ~- interpolate x l , . . . ,  xi and Yl, . . . ,  Yi over F incrementally 
choose t at random from F such that t is not in xl, . . . ,  x /  
Yi+l *-- f ( a l , . . . , a k - l , t ,  ak+l , . . . , an)  
if g ( a l , . . . ,  ak-1, t, ak+l , . . . ,  an) : Yi+l then output i 
Xi.{. 1 + -  

N o t e  this assumes that the cardinality of F is greater than the degree, and that 
the computation sequence f is polynomial in xk, otherwise, the algorithm will not 
terminate. Also, if the computation sequence includes divisions, the algorithm 
may fail due to an unlucky division by zero. A practical implementation must 
allow for these cases. 

5 Conclusion 

We have designed a system that supports parameterized domains, a la AX- 
IOM, in which signature functions are automatically created for many integral 
domains. This makes it possible to use probabilistic methods to do various cal- 
culations much faster than is otherwise possible. We have shown some examples 
of how signature functions can be used to solve various kinds of problems, in 
addition to the standard applications. 

We expect that the reader will have questions about Gauss so the remainder 
of this conclusion gives some general information about Gauss. The main advan- 
tage of Gauss in Maple is that it allows us to implement generic algorithms, in 
an AXIOM-like manner. The primary advantages are that it is very simple, very 
flexible, and very small. We have found that programmers have had no difficulty 
in writing code. 

Is Gauss efficient? Yes and no. Gauss code is written in Maple, thus inter- 
preted. The overhead of Gauss, in comparison with Maple code, consists of a 
Maple table subscript and procedure call for every operation. The subscript is 
cheap, the procedure calling mechanism in Maple is relatively expensive. But in 
many cases, we can directly make use of builtin Maple functions. We find that 
Gauss runs typically not much slower than the Maple interpreter. For polynomial 
arithmetic over Z, Q, 7p, Gauss is much slower than Maple because +, - ,  • and 
division are builtin. What we have done to get back the efficiency, is to make 
Maple polynomial domains in Gauss which use the Maple representation for 
polynomials, and hence also Maple's builtin operations. On the other hand, in 
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some cases, Gauss has turned out to be much faster than Maple because no time 
is wasted analyzing what kind of expression was input. 

Is Gauss code aesthetically pleasing to read and easy to write? An obvious 
disadvantage of Gauss is that  one must explicitly "package call" each operation. 
There is no compiler, so no type analysis to avoid having to do this. However, 
it has been our experience that  this is of little or no hindrance to programming 
in Gauss. The drawback is in interactive usage. The other main deficiency is 
that  since Maple does not support nested scopes, this has to be simulated which 
makes the code look somewhat ugly. We intend to resolve this deficiency by 
adding nested seoping to Maple. 
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