
Introduction to Gauss 

D. Gruntz  and M. Monagan 
Inst i tute for Scientific Comput ing ,  ETH Ziirich 

gruntz©inf, ethz. ch and monagan@inf, ethz. ch 

1 M o t i v a t i o n  

The Gauss package offers Maple users a new approach to programming based on the idea of param- 
eterized types (domains) which is central to the AXIOM system. This approach to programming is 
now regarded by many as the right way to go in computer algebra systems design. In this article 1, 
we describe how Gauss is designed and show examples of usage. We end with some comments 
about how Gauss is being used in Maple. 

But first, what is wrong with the programming models in existing systems? Back in the early days 
of computer algebra systems, in the mid to late 1960's, when people were designing ALTRAN, Mac- 
syma and REDUCE, the focus of systems research was on computing with multivariate polynomials 
with integer coefficients. Why? Because the most common problems solved by computer algebra 
systems entail integer arithmetic and polynomial arithmetic with integer coefficients. But what if 
instead of integer coefficienlls, the input has complex coefficients? Or coefficients containing ,~/'6, 
log4, ,~/~+ 1, e -2'~, cos(w) ? How did these systems handle these more complicated coefficients? 
Did they work correctly? 

Many approaches to system design have been tried. We will group them under four main strategies 
from the point of view of writing programs, namely, the "automatic simplifier" approach, the 
"case-by-case" approach, the "parameterized simplifier" approach, and the "parameterized domain" 
approach. We will illustrate the different approaches by considering how one would code a routine 
to compute the determinant of an n by n matrix A using Gaussian elimination. In this discussion 
we are assuming that the input matrix entries are expressions of type F. For example, they might 
be simply rational numbers, but they could be polynomials with integer coefficients. 

1.1 T h e  A u t o m a t i c  S i m p l i f i e r  A p p r o a c h  

Maple, and the other computer algebra systems like it, including Macsyma, Mathematica, and 
REDUCE, all have a general representation for mathematical formulae called expressions. All these 
systems provide a builtin simplifier which is automatically applied to every expression created. For 
example, if you input x - x  in any of these systems, the expression x - x  is created and then simplified 
to 0 automatically. But, because simplification is expensive in general, not all simplifications are 
done automatically. For example, cos(x 2) + sin(x) 2 - 1 is not simplified to 0 in any of the systems 

t An earlier version of this article appeared in issue 9 of the Maple Technical Newsletter, 1993. 

- 3 -  



automatically. And therein lies a problem. If the automatic simplifier fails to simpli[v an expression 
to zero. a potential for error exists. Let us show where things go wrong. In this approach to coding, 
one writes code in the most obvious way and assumes that  the builtin arithmetic operators and the 
builtin simplifier will work. In Maple. our determinant  routine would look like 

Det := proc(A,n) local d,i,j,k,m; 

d := 1; 

for k to n do 

for i from k to n while A[i,k] = 0 do od; 

if i>n then RETURN( 0 ) fi; 

if i<>k then 

... # interchange row i with row k 

d :=-d 

fi; 

d := d * A[k,k]; 

for i from k+l to n do 

m := l[i,k] / l[k,k]; 

for j from k+l to n do h[i,j] := h[i,j] - m * l[k,j] od; 

od; od; 
d 

end; 

The algorithm is correct. And the system accepts the program as a valid program. Yet it can return 
incorrect answers. Why? What  do the arithmetic operations +, - ,  *, / that  appear in the code 
actually mean? The result of adding two expressions is a new expression which is simplified by the 
builtin simplifier. Now, notice the comparison of A l l , k ]  with 0. Clearly, if the simplifier fails to 
determine that  the expression A[ i , k ]  = 0, then because the algorithm later divides by this value 
(in the s tatement  m : = A [ i , k ] / h  [k ,k]  ), we will get a wrong answer. Thus the correctness of this 
code depends vitally on how good the builtin simplifier is. 

One approach to this problem is to make the builtin automat ic  simplifier very powerful. However, 
this solution poses problems. Firstly, it is inefficient. The simplifier must first analyze the input 
expression before the real work can begin. Secondly, it may be difficult or impossible to extend it 
correctly to handle new kinds of expressions. Not that  computer  algebra systems don ' t  try. Some 
have all kinds of options, flags, and rules, that  allow you to tell the simplifier how to do things 
differently. But it is an unsatisfactory solution in that  there is no protection from getting wrong 
answers. And you do get wrong answers. In fact, all of the systems will get wrong answers in the 
presence of either trigonometric functions or nested radicals. Even though there may be routines 
in the system that  can properly simplify such expressions. 

If we actually look at the system's code for computing determinants,  we would see that  none of 
the systems are using the "obvious" code above. In Maple, we find a combination of two distinct 
approaches, namely 

1.2 T h e  C a s e - b y - c a s e  A p p r o a c h  

In this approach, one must write a separate routine Fde t  to compute det(A) for each F.  The routine 
Fde¢ makes use of the constants Fzero and Fone, and subroutines Fadd, Fsub, Fmul, Fdiv,  Finv,  
Fequal ,  which add, subtract ,  multiply, divide, invert, and compare elements in F respectively, to 
do arithmetic in F.  In Maple code, Fdet  would look like 

- 4 -  



FDet := proc(h,n) local d,i,j,k,m; 

d := Fone; 

for k to n do 

for i from k to n while Fequal(A[i,k],Fzero) do od; 

if i>n then RETURN( Fzero ) fi; 

if i<>k then 

... # interchange row i with row k 

d := Fsub(Fzero,d) 

fi; 

d := Fmul(d,A[k,k]); 

for i from k+l to n do 

m := Fdiv(h[i,k],A[k,k]); 

for j from k+1 to n do h[i,j] := Fsub(h[i,jJ,Fmul(m,h[k,j])) od; 

od; od; 

d 

end ; 

This solution will be efficient because the routines have been written for a specific F. The disadvan- 
tage is that if one wants to compute in a new coefficient domain K, not only must one implement 
the basic arithmetic operations for K, but one must also re-implement all the polynomial and linear 
algebra routines over K. Since there are many different kinds of domains, this rapidly becomes 
undoable. 

1.3 T h e  P a r a m e t e r i z e d  S i m p l i f i e r  A p p r o a c h  

As mentioned previously, all the systems have a general representation for formulae called expres- 
sions, and a builtin simplifier which performs certain simplifications automatically. But they also 
have other more powerful simplification routines. For example, in Maple there is normal which 
simplifies rational functions, radsimp for simplifying radicals, and s impl i fy ,  a general purpose 
simplifier. There is also t e s t e q  which uses a probabilistic test for zero-equivalence based on the 
ideas of Schwartz [11]. See Monagan and Gonnet [10] for a description of the ideas behind this 
method. 

The idea of the parameterized simplifier approach is to code the determinant routine to use a global 
S I M P L I F Y  function which can be assigned to a specific simplifier. For correctness, this function 
must recognize zero. The code in Maple would look like 

- 5 -  



Det := proc(A,n) local d,i,j,k,m; 

d := 1; 

for k t o  n do 

for i from k to n while SIMPLIFY(All,k]) = 0 do od; 

if i>n then RETURN(O) fi; 

if i<>k then 

... # interchange row i with row k 

d := -d 

fi; 

d := d*A[k,k] ; 

for i from k+l to n do 

m := SIMPLIFY(A[i,k]/A[k,k] ) ; 

for j from k+l to n do A[i,j] := SIMPLIFY(A[i,j]-m*A[k,j]) od; 

od; od; 

d 

end : 

This is an attractive solution because there only needs to be one determinant  routine which can 
be relatively easily modified to work with different kinds of coefficients. Actually, some systems, 
Maple in particular, use a combination of strategies 2 and 3. For efficiency and algorithmic reasons, 
there are special implementations of the determinant algorithm for special fields. For example, in 
Maple there are special routines for the integers, the complex rationals (including the rationals). 
algebraic numbers, and polynomials over the integers. 

This solution of providing a global SIMPLIFY routine addresses the issue of correctness. It also 
tries to address the issue of returning a "simplified" answer. In the latest version of Maple there are 
two global functions called Normal ize r  and T e s t z e r o  which are both initially defined to use the 
Maple routine normal.  The idea is that  the T e s t z e r o  routine provides a zero equivalence test and 
the Normal ize r  routine can be used to "simplify" expressions. This provides some more flexibility. 

What  is the problem with this approach? The first problem is that  it is error prone. It still depends 
on the power of the simplifier function. If the simplifier is not able to recognize zero, wrong answers 
can be returned, with no indication that  they may be wrong. The second problem is who writes 
the simplifier? Although it may be possible, by setting the various flags, and defining the right 
simplification rules, or simple coding, to create a correct simplifier, it is error prone, and does not 
inspire confidence in the user of the correctness of his programs. Another problem is the global 
nature of this approach. The user may be unaware of what a program needs to be able to do during 
an intermediate computation,  and by changing the simplifier, break this intermediate calculation. 
So, we are led to 

1 .4  T h e  P a r a m e t e r i z e d  D o m a i n  A p p r o a c h  

The main idea used in the Gauss solution, pioneered by the AXIOM computer algebra system [7], 
(and other systems proposed in the literature [1, 3]), is that  the second strategy is basically right. 
There needs to be separate functions for each arithmetic operation (also constants e.g. 0 and 1) 
for each type F over which we want to compute. But instead of having a different determinant  
routine for each type, let's collect all the arithmetic operations for F together into a unit, called a 
domain, and pass it as an argument to the determinant routine thus 

- 6 -  



Det := proc(A,n,F) local d,i,j,k,m; 

d := F[I] ; 

for k to n do 

f o r  i f r o m  k t o  n w h i l e  F [ = ] (  A [ i , k ] ,  F [ 0 ]  ) do  o d ;  

if i>n then RETURN(F[O]) fi; 

if i<>k then 

... # interchange row i with row k 

d := F[-](d) 
fi; 

d := F [ * ] ( d , A [ k , k ] ) ;  

for i from k+l to n do 

m :=  F[/](A[i,k],A[k,k]); 

for j from k+l to n do A[i,j] := F[-J(A[i,jJ,F[*J(m,A[k,j])) od; 

od; od; 

d 

end; 

The advantage of this approach is that  this program will work for any F and can be made as 
efficient as possible. The overhead is only the cost of looking up the domain F for the routines 
used: Other linear algebra operations, and polynomial operations over F are coded similarly. This 
is the first idea. Note, in practice, one may still want to include special implementations for special 
domains for efficiency reasons. 

But who writes the code for the different F domains? Given a domain F,  it is possible to get the 
system to build new polynomial, and matrix domains over F in the sense that  the system itself 
will create the programs needed for polynomial and matrix ari thmetic over F.  This is the second 
idea. How are these domains implemented? How are these domains created? How does it all fit 
together? Does it all work? 

The answer to the last question is unfortunately no. The problem is tha t  we don' t  know how to test 
arbi trary formulae containing radicals, elementary functions and special functions for zero. One 
might expect a system like AXIOM to be better than systems like Maple, Macsyma and REDUCE 
here. But, as we shall see, it is really not. Tha t  is because AXIOM will use an expression model for 
objects when it does not have a normal form. For example, consider the following Maple session. 

> I := m a t r i x ( [ [ 1 - s i n ( x ) , c o s ( x ) ] ,  [cos(x) ,  l+ s in (x ) ] ] )  ; 

[ 1 - s i n ( x )  c o s ( x )  ] 
Z := [ ] 

[ c o s ( x )  1 + s i n ( x )  ] 

> d e t ( Z ) ;  

2 2 

1 - s i n ( x )  - c o s ( x )  

> rank(A) ; 

Error, (in linalg[gausselim]) matrix entries must be rational polynomials 

- 7 -  



Maple does not know that the determinant  is zero and this does lead to bugs. We see that the 
matrix rank routine in Maple refuses to operate. The designers restricted that routine to a class 
of expressions which they knew could be handled correctly. Does AXIOM do any better? Dissap- 
pointingly, no. 

(3) ->l := matrix([[l-sin(x),cos(x)],[cos(x),l+sin(x)]]) 

+- sin(x) + i cos(x) + 

(3) I I 

+ cos(x) sin(x) + I+ 

(4) ->determinant(A) 

Type: Matrix Expression Integer 

2 2 

(4) - sin(x) - cos(x) + 1 

(S) ->rank(A) 

Type: E x p r e s s i o n  I n t e g e r  

(s )  2 
Type: P o s i t i v e I n t e g e r  

2 Sample Session 

Let us begin with a sample session. This sample session is intended to give an idea of how Gauss is 
used and to give an overview of some domains available in Gauss. The Gauss package is available 
after executing the command wi th (Gauss ) .  

I\'/I Maple V Rglease 3 (Ren. Stud. Sublic ETH) 

• _l\l I/]_. Copyright (c) 1981-1994 by Waterloo Maple Software and the 
\ MAPLE / University of Yaterloo. All rights reserved. Maple and Maple V 

< > are registered trademarks of Waterloo Maple Softeare. 

l Type ? for help. 

> e i t h ( G a u s s )  ; 
Gauss v e r s i o n  1 .0  

I n i t i a l l y  d e f i n e d  domains are Z and (~ t h e  i n t e g e r s  and r a t i o n a l s  
A b b r e v i a t i o n s ,  e . g .  DUP f o r  D e n s e U n i v a r i a t e P o l y n o a i a l ,  a l s o  made 

[ i n i t ]  
In Gauss, a domain is represented by a Maple table, whose entries are procedures and constants, 
which are aA:cessed by Maples subscripts. For example, given a domain D, D [ Inpu t ]  will access 
the input procedure (which converts a Maple expression into the data  representation used by D. 
Note that  all Gauss functions begin with an upper case letter. Initially, the two domains Z (the 
integers) and Q (the rationals) have been defined. Let us do some operations with them: 

> Z[Gcd] (8,12) ; 
4 

> q [ ' + ' ]  (112,113,114)  ; 
13 

12 

- 8 -  



Next we want to perform some operations in Q[x]. First we have to create the domain of computa-  
tion for objects in Q[x]. This is done by calling a domain constructor,  in this case the constructor  
D e n s e U n i v a r i a t e P o l y n o m i a l  (or DUP for short). A domain constructor  in Gauss is a Maple pro- 
cedure (with zero or more parameters),  which returns a Gauss domainl The domain constructor  
DIYP takes two parameters,  the coefficient ring and the name of the variable. The name Dense~'ni- 
variatePolynornial indicates that  the da ta  s t ructure being used is a dense one. We now generate 
the domain Q[x] and call it P. Then we input a polynomial which is returned in the internal 
representation (in this case a Maple list of coefficients), compute the degree and square it. 

> P := DUP(Q,x): 

> m := P[Input](x'4-10*x~2+1); 

m := [1, O, - 1 0 ,  O, 1] 

> P [Degree] (m) ; 

> P["'] (m,2) ; 
[1, O, -20, O, 102, O, -20, O, 1] 

> P [ O u t p u t ]  ( " )  ; 

8 6 4 2 

x - 20 x + 102 I - 20 • + I 

In Gauss, every domain has an Input and Output  operation. These two operations provide conver- 
sions from the user representation of an object to the internal da ta  s t ructure used by Gauss, and 
vice versa. The user representation of a Maple object is the Maple sum of products representation, 
which is a sparse expression tree representation. For efficiency, however, the implementation of 
dense univariate polynomials in Gauss uses the "obvious" da ta  structure,  a vector of coefficients. 
The most efficient da ta  s t ructure  available in Maple for this purpose is the Maple list (which is not 
a linked list, it is a read only vector). 

The Input operation may fail to convert a Maple expression into the internal da ta  s t ructure  rep- 
resentation, but P [ I n p u t ]  o P [ 0 u t p u t ]  never fails. Gauss is assuming then that  there are two 
representations of objects, which usually are not the same, a "user level representation" based on 
expressions, and an internal representation. This is very similar to Jenks and Trager 's plans for a 
designing a new user level language called B b [8] which would interface an expression model (like 
Maple's) with the core AXIOM library. 

Gauss can also compute  with matrices and other objects. Let us compute the determinant  and 
inverse of the 2 by 2 generalized Hilbert matrix.  This is the  matrix of rational functions 

2-x 3-x 
1 1 

3-x 4-x 

We must first define the domain of rational functions using the constructor  g a t i o n a l F t m c l ; i o n  
then the matrix domain using the constructor  SquareMat r ix .  These domain constructors have 
abbreviations RF and SM respectively. This 

> a :=  RF(Q,x): 

> M := SM(2,R): 

- 9 -  



> A := M[Inpu t ] ( [ [1 / (2 -x ) ,  1 / ( 3 - x ) ] ,  [1 / (3-x) ,  1 / ( 4 - x ) ] ] ) ;  

A := [ [ [ [ - I ] ,  [ - 2 ,  I ] ] ,  [ [ - 1 1 ,  [ - 3 ,  i ] ] ] ,  [ [ [ - I ] ,  [ - 3 ,  t ] ] ,  [ C - : ] ,  [ - 4 ,  I ] ] ] ]  

> M[Output] (A) ; 

[ . . . . . .  

1 1 1 1 

, - . . . .  ] ,  [ . . . . . .  , . . . . . .  1 ]  

x - 2  x -  3 x -  3 x - 4  

> R[0utputl  (H[Detl (A)) ; # the determinant  

4 3 2 

x - 1 2  • + 5 3  • - 1 0 2  • + 7 2  

> M[Output1(M[Inv](A)); # the  inverse 

3 2 3 2 
[ [ -  • + 8 • - 2 1  • + 1 8 ,  • - 9 • + 2 6  • - 2 4 1 ,  

3 2 3 2 
[ x  - 9 x + 2 6  • - 2 4 ,  - • + t 0  • - 3 3  • + 3611 

Next we show some calculations with univariate power series over Q. This domain is defined with 
the constructor L a z y U n i v a r i a t e P o w e r S e r i e s  (LUPS). First we compute the series for cos(x): 

> PS := LUPS(Q,z): 
> a := PS[Input](x); 

> c := PS[Cos](a);  
2 4 6 

¢ := 1 - 1/2 • + 1/24 • + O(I ) 

Lazy univariate power series are lazy in the sense tha t  coefficients are computed on demand,  i.e. 
we can compute a series to higher order without  having to recompute any previously computed 
coefficients. This also means tha t  we will not loose any information e.g. by differentiating. 

> P S [ D i f f ]  (¢) ; 
3 5 6 

- • + I/6 • - 1/120 • + O(x ) 

> PS[Outpu¢] (" ,  10) ; 
3 5 7 9 11 

- • + 1 / 6  x - 1 / 1 2 0  • + 1 / 5 0 4 0  • - 1 / 3 6 2 8 8 0  z + O ( x  ) 

The actual da t a  s tructure used is hidden in these examples. The Maple 'p r in t / '  mechanism is 
being used by the LtrP$ domain. On output ,  it automatical ly converts the da ta  s t ructure  to a user 
readable format  - similar to AXIOM's coerce to Expression. 

As a last example we compute the Legendre polynomials from their generating function 

1 co 

x / 1 - 2 x t + t  2 = X- '  , ~ Z_ L , ~ k )  t k, 
k=0 

- 1 0 -  



This example is taken from [2], where also the idea of lazy power series is explained. A description 
of the Maple implementation can be found in [5]. 

> P := LUPS(LUPS(Q, x),  1:): 
> s := P[InpuizJ(1-2*x*e+t '2);  

2 
p := 1 -  2 x e + t  

> P['-'] (s, -1/2); 

2 2 3 3 

1 + • t + (- 1/2 + 3/2 • ) t + (- 3/2 • + 5/2 • ) t 

2 4 4 3 5 5 6 

+ (3•8 - 15/4 • + 35•8 • ) t + (15/8 • - 35/4 • + 63/8 • ) t + O(t ) 

Other domain constructors  available in Gauss are Zmod(n : posint), S a l o i s F i e l d ( p  : prime, k : 
posint), G a u s s i a n ( R  : Ring), Q u o t i e n z F i e l d ( D  : lntegralDomain), etc. 

3 Coding  a s imple  D o m a i n  

In this section, we define a simple domain which implements operations over the set Tx of all 
monomials in X = { x l , z ~ , . . . , z , } ,  

" "  
T x  = {xT' x ;  " . . x .  I E 

This domain could be used to define multivariate polynomials. The operat ions we will define are the 
multiplication, the comparison and the Gcd of two terms, and of course the procedures I n p u t  and 
Ouzpu~ to use it with Gauss.  For the representation of a term z~ t . . .  x,~" we use the list [ e l , . . . ,  e,] 
of exponents, and hence we call that  domain ExponentVecZorDomain.  It is parameterized by the 
list of the variables [xa , . . . ,  x,] .  

ExponentVeccorDomain := p r o c ( X : l i s t ( n a z e ) )  local D, env; 

First we generate a new domain by calling the constructor  newDomain and define its name. In 
Gauss this is essentially an empty  Maple table. 

D := neeDomain() ; 
D[DomainName] := ExponentVectorDomain; 

We then add the signatures for the procedures we want to offer. In the signatures, the type  D 
stands for the domain which is constructed by this domain constructor  and E x p r e s s i o n  s tands  for 
a Maple expression. Since multiplying two terms is the same as adding their exponent vectors, we 
call the multiplication operation ' + '  in our domain. 

defOperation( '+', [D,D] 6-> D, D ); 
defOpera~ion( '< ' ,  [D,D] ~-> Boolean, D ); 
defOpera¢ion( Gcd, [D,D] R-> D, D ); 
defOpera~ion( Variables, List(Name), D ) ; 
defOperation( Input, Expression 6-> D, D ); 

defOperation( OuCput, D 6-> Expression, D ); 

- 1 1 -  



Finally we must implement the defined operations. Since some operations must use local parameters 
of the domain constructor and since Maple does not support nested lexical scopes, we must simulate 
this behavior by substitution. For that we define the substitution pattern env. The implementation 
is straight forward. The order '< '  is a pure lexicographical one. 

env := ['DD'=D]; 
D[ '+c] := (x,y) -> zip((u,v) -> u+v, x, y); 
D[Gcd] := (x,y) -> zip(rain, x, y); 
D['<'] := proc(x,y) local i; 

for i to nops(x)-I while x[i]=y[i] do od; 
evalb(x [i] <y [i] ) 

end ; 
D[Variables] := X: 
D[Input] := subs(env, proc(t) local x; 

[seq(degree (t, x), x=DD [Variables] )] 
e n d )  ; 

D[Output] := subs(env, proc( t )  
convert(zip((x,y) -> x'y, DD[Variables], t), '*') 

end) ; 
op(D) 

e n d  : 

This domain can now be used in Gauss as any other domain. For example, a domain D of terms 
in X = [u, v, w] is generated by the assignment 

V := ExponentVectorDoraain( [u,v,w] ) : 

4 Categories and Domains  

Let us go back to the determinant example in the first section. For which domains does the 
procedure Det work? What happens when we pass the integers as domain of computation? Of 
course, then the algorithm would fail, because the integers don't  have a divide method. So, what 
we really need for computing the determinant is a field. To specify that  a domain satisfies the 
axioms of an algebraic structure such as integral domain or field, every domain belongs to one or 
several categories. 

A category defines an abstract data type T. It specifies a set of operations which must be provided by 
a particular implementation of T. This set includes operations to create and to manipulate objects 
and to obtain information from them. The category definition also specifies a set of properties 
which must be met by the defined operations, e.g. the commutativity of the addition in an Abelian 
group, etc. Furthermore, a category may supply default implementations of some operations, if 
they are expressible by other operations available in the same category. The only thing which is not 
specified by a category is the representation of the objects. In the terminology of object oriented 
programming a category is called an (abstract) class and the operations are called methods. 

The instances (or implementations) of a category are the domains. A domain D represents a 
(concrete) class of objects, i.e. it specifies the representation of the objects and implements the 
operations defined in the category. It may also supply further domain specific operations. Examples 
of domains we have already met are the integers and univariate polynomials over the rationals, which 
are both instances of the category Ring. 

-12 -  



Set 

Finzte SemiGroup PartiallvOrderedSet 

.~ono..,~,d .,.... OrderedSet 

'-ooo  / 
Finite ~ ~ v e R i n g  OrdercdRing 

FinimCommutativcRing l n t e g r ~ D o ~  

UniqueFactorizationDomain OrderedDomain 

I 
EuclideanDomain 

I 
Field 

FiniteFieid OrderedField 

Figure 1: Categories in Gauss 

Domains may be parameterized by other domains and objects. For example, a univariate polyno- 
mial domain is parameterized by its coefficient ring (a domain which must be a ring) and hence 
provides polynomial arithmetic and other polynomial operations for all possible coefficient rings. 
Every univariate polynomial domain is an instance of a category of univariate polynomials and 
offers the operations defined in that category. 

A category may also inherit the definitions (and default implementations) of another category. 
For example, the category of univariate polynomials is also a ring and hence inherits all operation 
definitions and default implementations of the Ring category, as e.g. raising a polynomial to an 
integral power, which is per default implemented using binary powering. Gauss knows both multiple 
inheritance and conditional inheritance. For example, depending on the category type of the 
coefficient ring, a univariate polynomial domain may be an integral domain, a unique factorization 
domain or an Euclidean domain. 

[n Figure 1 you see the hierarchical world of the basic algebraic categories available in Gauss. The 
root of that hierarchy is the category Set ,  the class of algebraic sets. This is also the basic class to 
which every domain should belong and it supports the following basic operations: 

-13 -  



= ,  <> 

Input 
Output 
Random 
Type 

boolean equality of domain elements 
for converting Maple expressions inlo the domain data representation 
for converting from the domain representalion to an o,ltput form 
for generating a pseudo-random value from the domain 
for testing if a, value is a valid domain element 

With this model it is possible to implement generic algorithms. That is. the algorithms may be 
written in their most general setting and they operate over all domains which belong to the category 
which is required. Another important point is that the algorithms work completely independent of 
the underlying data representation. 

The elements of a domain are ordinary Maple objects and do not refer to their domain, in contrast 
to Axiom, where every object belongs to a domain. As a consequence, the domain must always 
be specified when calling generic functions. The Type method available in every domain allows for 
testing whether an object belongs to that domain. As a consequence, several domains may operate 
on the same objects. For example, the object 7 may belong both to the domain Z as well as to 
Z n ,  and no type coercions are necessary. The same model has been used in [6]. 

5 Coding in Gauss 

Coding in gauss is quite straightforward, as indicated by the determinant example in the intro- 
duction, though a little cumbersome due to having to use a package call (in prefix notation) for 
every operation as you have seen in the examples. But since Maple hashing is very fast, this means 
that code access is fast too. The basic idea for writing code in Gauss for computing with elements 
of a domain is to pass the domain as an argument to the procedure, which is essentially passing 
a collection of routines for manipulating elements of the domain. E.g., let us write a routine to 
evaluate a univariate polyndmial a(x) at x = b. Our routine would look like this 

Evaluate  := p r o c ( P , a , b )  l o c a l  R , k , d , r ;  
i f  not  h a s C a t e g o r y ( P , U n i v a r i a t e P o l y n o a i a l )  then  EPJtOR('...  ')  f i ;  
tt := P [ C o e f f i c i e n t R i n ~  ; 

We pass the domain P as the first argument and check that  it is a univariate polynomial domain. 
Since we need to do coefficient operations we assign the coefficient ring to the variable 1t. Next, we 
check the argument types of a and b as follows 

i f  not  P [Type] (a )  then  ERROR('2nd argtment must be o f  t y p e  P')  f i ;  
i f  not  R[Type] (b)  then  Elt~OR('3rd argument a u s t  be o f  ~ype R') f i ;  

Now we can do the polynomial evaluation using Horner's rule in the normal way. We need to 
use the Degree and Coeff  functions from the univariate polynomial domain P, and the arithmetic 
operations ' +' and ' * ' from the coefficient domain R. 

d :=  P [ D e g r e e ]  ( a )  ; 

r :=  P [ C o e f f ]  ( a , d )  ; 

f o r  k from d-1 by -1 to  0 do r := R [ ' + ' ] ( R [ ' * ' ] ( r , b ) , P [ C o e f f ] ( a , k ) )  od; 
r 

end: 

-14-  



I,ot us test that. procedure wi th a polynomia l  wi th mat r ix  coefficients, which Maple cannot do 
diroct lv :  

> s := SM(2,Z): 
> P := DUP(S,x): 
> p := P [ I n p u t ] ( [ [ 1 , 0 ] , [ 0 , 1 ] ] * x ' 2  + [ [ -6 ,0 ] , [0 , -6 ] ]*x  + [ [ 5 , 0 ] , [ 0 , S ] ] ) :  
> q := S[Inpu~]([[2,3],[l,4]]): 
> Evaluate(P, p, q); 

[[0, 0], [0, 0]] 

which is what we expected, since x ~ -  6 x + 5 is the characteristic polynomial of ( 2  3 )  
" 1 4 " 

6 Coding Categories and Domains 

In this section we define a category (a category constructor is again a Maple procedure) which 
defines the operations on Tx, the set of exponent vectors (el, e2 , . . . ,  en) and hence we name the 
category ExponentVector .  The main operations we have to specify are the addition of two exponent 
vectors, the degree function and the comparison of two terms. This category is parameterized by 
a list X of names of the variables. 

The category of the exponent vectors forms an ordered Abelian monoid. From that category the 
operations +, 0, <, <=, <>, >, >=, Max, Min, =, <> Input ,  Output,  Random and Type are inherited. 
For the operations <=, <>, >, >=, Max and Min default implementations in terms of = and < are 
available. The category definition in Gauss has the following form. First an ordered abelian 
Monoid is generated. Then the new category name is inserted in the list of categories, and the 
signatures of additional operations (and constants) are defined. 

ExponentVector  := p r o c ( X : l i s t ( n a m e ) )  l o c a l  D , n , r , e n v ;  
V := OrderedAbeliardqonoid() ; 
addCategory(  D, ExponentVector  ); 
defOperation( Div, [D,D] k-> Union(D,FAIL), D ); 
defOperation( '<>=', [D,D] ~-> Union(-l,O,l), D ); 
defOpera t ion (  To t a lDe g r e e ,  D 6-> I n t e g e r ,  D ); 
defOperation( God, [D,D] 6-> D, D ); 
defOperation( Lcm, [D,D] 6-> D, D ); 
defOperat ion(  Variables,  List(Name), D ) ; 
de/Operation( Dim, Integer, D ); 

The operation <>= is used to define the ordering on terms which can either be lexicographical or 
total degree or any other ordering. The constant Va r i ab l e s  keeps the names of the indeterminates 
and the constant Dim keeps the number of variables. The specification of the category is now 
complete. The only two operations which can be defined without knowing the representation are 
the two constants V a r i a b l e s  and Dim. 

D[Variables] := X; 
D[Dim] := nops(X); 

All other operations depend on the internal representation of the exponent vectors which is specified 
in the domains of that type and hence are not available at that point. But instead of delaying the 
implementation of the specified operations into the domains, we specify two additional operations 
L i s t2Yec t  and Vec t2Lis t ,  which allow the transformations between the internal representation of 
a term x~ ~ x 2~2.. .x~" (which is to be specified in the domain) and the list [el, e2, .. ., en] of the n 

- 1 5 -  



integer exponenls. Wit h )he help of ),his two operations, defa, ult reel hods for all the other operations 
(inherited from the Ord,rrdAbelianMor~oid or defined in this cale~orv~ can be supplied. 

defOperation( List2Veet,  L i s t ( I n t e g e r )  ~-> D, D ); 
defOperation( Vect2LisZ, D ~-> List(Integer), D ); 

Below we show some default implementations based on these two new operations. 

env := ['DD' = D]; 
D['+'] := subs(env, proc(x,y); 

DD[List2Vect](zip((u,v) -> u+v, DD[Vect2List](x), DD[Vect2List](y))) 

end ) ; 
D['='] := subs(env, (x,y) -> evalb(DD[Vect2List](x)=DD[Vect2List](y))); 

D['<'] := subs(env, (x,y) -> evalb(DD['<>='](x,y)=-1)); 
D[TotalDegree] := subs(env, proc(x) convert(DD[Vect2List](x), '+' ) end); 

D[Input] := subs(env, proc(t) local x; 
DD [List2Vect] ( [seq(degree(t, x), x=DD [Variables] )3 ) 

end ) ; 
D[Output] := subs(env, proc(t); 

convert (zip( (u, v) -> u'v, DD [Variables], DD [Vect2List] (t)), ' *' ) 

end ) ; 
op(D) 

end : 

An Ezponentl~%ctor domain must only provide the methods List2Vect, Vect2List, <>=, the con- 
stant 0 (declared in the Monoid category) and the operation Type (declared in the Set category). 
For all other operations default methods are implemented in the category. These default methods 
may be overwritten if a more efficient implementation is available. Notice, that  apart  from the 
comparison method <>=, all other methods which must be implemented in a domain are related to 
the internal representation of the objects. 

We show now the implegaentation of a minimal exponent vector domain which we call 
MyFExponewtVeczor. For the internal representation we use a G&tel coding, i.e. the term z]* z~ 2 . . -  z,~" 
is enfioded by the integer p]' p~2 . . . p , ?  (whereby the pi's are prime numbers). For the ordering of 
the terms we use the order induced by the natural  order of the integers. 

MyExponentVector := proc(X) loca l  D,P; 
D := ExponentVector(X) ; 
D [ D o l a i n N a m e ]  := M y E x p o n e n t V e c t o r ;  

With the call to the category constructor ExponenZVecZor, this domain is asserted to be of type 
Exponent Vector and the name of the domain is defined by an assignment. Then the representation 

specific implementations follow. 

P := [ s eq ( i t hp r ime ( i ) ,  i = l . . n o p s ( l ) ) ] :  
env := ['DD'fD, ' P P ' = P ] :  
D[List2Vect] := subs(env, proc(1) ; 

c o n v e r l : ( z i p ( ( x , y )  - >  x ' y ,  PP,  1),  ' * ' )  
end) : 

- 1 6 -  



D[Vect2List] := subs(env, proc(v) local n , l , p , q , l , j :  
n := v; 1 := NULL; 
for i to D[Dim] do p : =  PP[i]; 

for j from 0 while irem(n,p,'q') = 0 do n := q od: 
1 :=i, j 

od : [i] 

end) : 
D[O] := 1; 
D['<>='] := (x,y) -> if x=y then 0 else sign(x-y) fi; 
D[Type] := x -> type(x,posint); 

Up to now, all defined operations are implemented, but for the chosen representation it is useful to 
overwrite some of the methods, because much faster implementations are available. 

D['+'] := (x,y) -> x,y: # integer multiplication 

D[Div] := proc(x,y) local q; 
if irem(x,y,q) <> 0 then FAIL else q fi 

e n d  : 

D[Gcd] := igcd: 
D[Lcm] := ilcm: 
D['='] := (x,y) -> evalb(x=y): 

op(D) 
end : 

In the following Gauss session we use our new exponent vector domain. We then generate two 

terms, compare them and compute their Gcd. 

> P := NyExponentVector([x,y,z]): 

> ml := P[Input](x*y'3*z'3); 
ml : =  6750 

> a 2  :=  P [ I n p u t ] ( x ' 2 * z ) ;  

m2 :=  2 0  

> P[Ou%put] (P[Gcd] (rot,m2)) ; 
• z 

Further information about the design of Gauss can be found in [9]. Further examples of programing, 
including multivariate polynomials domains and routines for computing Grobner bases in Gauss, 
are given in [4]. 

7 Status Report  

How efficient is Gauss? 

Gauss code is written in Maple, thus interpreted. The overhead of Gauss, in comparison with 
Maple code, consists of a Maple (hash) table subscript and procedure call for every operation. The 
subscript is cheap, the procedure calling mechanism in Maple is relatively expensive. But in many 
cases, we can directly make use of builtin Maple functions. We find that  Gauss runs typically not 
much slower than the Maple interpreter. For polynomial arithmetic, however, Gauss is much slower 
than Maple because the functions expand and d i v i d e  are builtin. What  we have done to get back 
the efficiency, is to make Maple polynomial domains in Gauss which use the Maple representation 

- 1 7 -  



for polynomials, and hence also Maple's builtin operations. In some cases, (;auss has turned out to 
be much fa.,~ter than Maple because no time is wa,,~ted analyzing what kind of expression was input. 

In all interpreted language like Maple, there is always room for improvement bv adding builtin 
data  structures and compiled functions which execute at machine speed to speed up critical parts 
of the system. The lack of a dense array data structure, and builtin functions for the arithmetic 
operations + , - ,  x, and / contribute to an overall loss in efficiency. 

What  is it like to program in Gauss? 

Students and colleagues have had surprisingly little difficulty. The inconvenience of having to 
package call each operation has not been a problem. Note, one does not need to package call 
every operation since Maple operations, e.g. integer operations in subscripts and loops, are done 
by Maple. In many ways, always package calling operations is just simpler. One observation that  
we have made is that  this way of coding is less prone to error than Maple coding. Also annoying is 
not having iexical scoping in Maple, and having to simulate it using substitutions. Lexical scoping 
is scheduled to be added to Maple. 

What  is it like to "use" Gauss? 

It 's not nice at all. But then we don ' t  really intend that  Gauss be used at the interactive level in 
Maple. Rather we see it as a tool for implementing library functions. The user will always work 
in the Maple representation of objects. To improve the interface we have developed a Maple style 
evaluator 

e v a l g a u s s [  O ]( E ) 

which evaluates a Maple user level expre~sion E in the domain D. The da ta  in the Maple expression 
E are converted into the domain D, the operations are executed there, and the result is converted 
back into a Maple user expression. For example 

> P := DOP(DOP(Q,t), • ): $ bivazia1:e polyaomiala q[x] [¢] 
> m : =  x ' 4 - 1 0 * x ' 2 + l ;  

4 2 

m : =  x - 1 0  x + 1 

> e v a l g a u s s [ P ]  C R e s u l C a a t C l - t * D i f f ( l ) , u )  ) ; 

4 2 

1 4 7 4 , 5 6  ¢ - 3 8 4 0  1:; + 1 

This facility is limited. All operations that  appear in the expression are understood to be computed 
in P,  i.e. in Q[x][t]. One must be careful when using this facility. If the above bivariate polynomials 
were defined in the other order i.e. Q[t][x], then the resultant and derivative would be computed 
in t instead of x. 

Where do we see Gauss being used? 

Not at the top level, but rather as a tool to implement algorithms in the Maple library. The 
principle reason for using Gauss there is to avoid code duplication when working over different 

- 1 8 -  



rings and fields. For example, we are using Gauss to implement multivariate factorization over 
(;F(q). A goal that we have is to have all routines in Maple's rood directory compute over GF(q) in 
(;auss where the finite field is defined by an arbitrary number of field extensions. Maple expressions 
are automatically converted into the appropriate domain in Gauss where the computation takes 
place, and converted back. 

A c k n o w l e d g e m e n t  

Throughout the article the reader familiar with AXIOM (see [7]) will have noticed that many of 
the ideas and much of the terminology has been taken from AXIOM. We acknowldege the use of 
many of the ideas from AXIOM [7] in Gauss. We also wish to thank Jiirg Bolliger and Laurent 
Bernardin for helping develop the Gauss package. 

References  

[1] Abdali S.K., Cherry G.W. and Soiffer N., An Object Oriented Approach to Algebra System 
Design, Proc. of ISSAC '86, pp. 24-30, ACM Press, 1986. 

[2] Burge W.H. and Watt S.M., Infinite Structures in Scratchpad II, Proc. 1987 European Con- 
ference on Computer Algebra, Leipzig, GDR, Springer-Verlag LNCS 378, pp. 138-148, 1987. 

[3] Foderaro J., Newspeak, Ph.D. Thesis, University of California at Berkeley, 1983. 

[4] Gruntz D., GrSbner Bases in Gauss, Maple Technical Newsletter, Issue 9, pp. 36-46, Birkh£user, 
1993. 

[5] Gruntz D., Infinite Structures in Maple, To appear in Maple Technical Newsletter, (1) 2, 
Birkh~user, 1994. 

[6] Gruntz, D. and Weck, W. A Generic Computer Algebra Library in Oberon, Proc. of 
AISMC'94, Springer-Verlag LNCS, to appear. 

[7] Jenks R. and Sutor R., axiom - The Scientific Computation System, Springer-Verlag, 1992. 

[8] Jenks R. and Trager B., How to Make AXIOM Into a Scratchpad, Proc. o f lSSAC '94, pp. 32- 
40, ACM Press, 1994. 

[9] Monagan M., Gauss: a Parameterized Domain of Computation System with Support for Sig- 
nature Functions. Proc. of DISCO '93, Springer-Verlag LNCS, 722, 81-94, 1993. 

[10] Monagan M.B. and Gonnet G.H., Signature Functions for Algebraic Numbers, Proc. of lSSAC 
'94, pp. 291-296, ACM Press, 1994. 

[11] Schwartz J.T. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 
27, 701-717, 1980. 

-19- 




