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ABSTRACT
Let G = (4y2 +2z)x2 +(10y2 +6z) be the greatest common
divisor (gcd) of two polynomials A, B ∈

�
[x,y, z]. Because

G is not monic in the main variable x, the sparse modular
gcd algorithm of Richard Zippel cannot be applied directly
as one is unable to scale univariate images of G in x consis-
tently. We call this the normalization problem.

We present two new sparse modular gcd algorithms which
solve this problem without requiring any factorizations. The
first, a modification of Zippel’s algorithm, treats the scaling
factors as unknowns to be solved for. This leads to a struc-
tured coupled linear system for which an efficient solution is
still possible. The second algorithm reconstructs the monic
gcd x2 +(5y2 +3z)/(2y2 +z) from monic univariate images
using a sparse, variable at a time, rational function interpo-
lation algorithm.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms – Algebraic algo-
rithms; F.2.1 [Analysis of Algorithms and Problem Com-
plexity]: Numerical algorithms and problems – Computa-
tions on Polynomials.

General Terms: Algorithms.

Keywords: Zippel’s Algorithm, Polynomial Greatest Com-
mon Divisors, Sparse Multivariate Polynomials, Modular
Algorithms, Probabilistic Algorithms.

1. INTRODUCTION
Let A, B be polynomials in

�
[x1, ..., xn]. Let G be their

greatest common divisor (gcd) and let Ā = A/G, B̄ = B/G
be their cofactors. Our problem is to compute G, Ā and B̄.
In [12] (see also [14] for a more accessible reference) Zippel
presented a Las Vegas algorithm for computing G when G is
monic in the main variable x1. Zippel’s algorithm improves
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on the running time of Brown’s algorithm (see[1]) when G
is also sparse. Zippel’s algorithm is an output sensitive algo-
rithm. Unlike Brown’s algorithm, the number of univariate
images depends on the size of G, and not on A and B.

Most computer algebra systems use either Zippel’s algo-
rithm or Wang’s EEZ-GCD algorithm (see [10]) for multi-
variate gcd computation. Zippel’s algorithm is implemented
in Macsyma, Magma, and Mathematica. A parallel imple-
mentation is described by Rayes, Wang and Weber in [8].
Previous work done to improve the asymptotic efficiency in-
cludes that of Zippel in [13], and Kaltofen and Lee in [5].

In this paper we present two new algorithms that extend
Zippel’s algorithm to the case where G is not monic in the
main variable x1. In section 2 we give a description of Zip-
pel’s algorithm and previous approaches made to extend it
to the non-monic case. In section 3 we describe our first
solution and in section 4 our second solution. We have im-
plemented both algorithms in Maple. In section 5 we make
some remarks about their efficiency and implementation.

Although our algorithms do not require any polynomial
factorizations, both require that the content of G in the
main variable x1 is 1. The content of G can be computed
efficiently by computing the gcd of one coefficient of A, the
smallest, with a random linear combination of the other co-
efficients of A and all coefficients of B in x1. This requires
one recursive gcd computation in

�
[x2, ..., xn].

2. ZIPPEL’S ALGORITHM
There are two subroutines in the algorithm. Subroutine

M, the main subroutine, computes G = gcd(A,B) where
A, B ∈

�
[x1, ..., xn]. It does this by computing gcd(A, B)

modulo a sequence of primes p1, p2, ... then reconstructs G
from these images by applying the Chinese Remainder The-
orem. The first image G1 is computed by calling subrou-
tine P with inputs A mod p1 and B mod p1. Subroutine P,
which is recursive, computes G = gcd(A,B) where A, B in

�
p[x1, ..., xn] for a prime p as follows. If n = 1 it uses the

Euclidean algorithm. If n > 1 it computes gcd(A,B) at a
sequence of random points α1, α2, ... ∈

�
p for xn then re-

constructs G ∈
�

p[x1, ..., xn] from the images using dense
interpolation, e.g., Newton interpolation. The first image
G1 is computed by calling subroutine P recursively with in-
puts A mod 〈xn − α1〉 and B mod 〈xn − α1〉.

In both subroutines, after the first image G1 is computed,
subsequent images are computed using sparse interpolations.
This involves solving a set of independent linear systems
which are constructed based on the form of G1. The algo-
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rithm assumes that G1 is of the correct form, that is, all
non-zero terms of the gcd G are present in G1. This will be
true with high probability if the primes are sufficiently large
and the evaluation points are chosen at random from

�
p.

We identify three classes of primes and evaluation points
which cause problems in the algorithm.

Definition 1. (bad prime and evaluation)
A prime p is bad if degx1

(G mod p) < degx1
(G). An evalua-

tion point (α1, ..., αn−1) ∈
� n−1

p is bad if degx1
(G mod I) <

degx1
(G) where I = 〈x2 − α1, ..., xn − αn−1〉.

For example, if A = (3yx+1)(x−y) and B = (3yx+1)(x+
y + 1) then 3 is a bad prime and y = 0 is a bad evaluation
point. These must be avoided so that the univariate images
can be scaled consistently and so that unlucky primes and
evaluations can be detected. We may avoid them by choos-
ing p and (α1, ..., αn−1) such that L(α1, ..., αn−1) 6≡ 0 mod p
where L = lcx1

A is the leading coefficient of A.

Definition 2. (unlucky prime and evaluation)
A prime p is unlucky if the cofactors are not relatively prime
modulo p, i.e., degx1

(gcd(Ā mod p, B̄ mod p)) > 0. Simi-

larly an evaluation point (α1, ..., αn−1) ∈
� n−1

p is unlucky if
degx1

(gcd(Ā mod I, B̄ mod I)) > 0 where I = 〈x2 −α1, ...,
xn − αn−1〉.

For example, if Ā = 7x + 6y and B̄ = 12x + y then p = 5 is
an unlucky prime and y = 0 is an unlucky evaluation point.
These must be avoided if G is to be correctly reconstructed.
Unlike bad primes and bad evaluation points, they cannot
be ruled out in advance. Instead they identify themselves as
we encounter a univariate image in x1 of higher degree than
previous univariate images.

Definition 3. (missing terms)
A prime p is said to introduce missing terms if any integer
coefficient of G vanishes modulo p. Similarly, an evaluation
xn = α is said to introduce missing terms if any coefficient
in

�
p[xn] of G vanishes at xn = α.

For example, if G = x2 + 5y3x + 35 ∈
�

[x,y], the primes 5
and 7 and the evaluation y = 0 cause terms in G to vanish.
Zippel’s algorithm cannot reconstruct G if it uses them.

Example 1. (the normalization problem)
Consider computing the non-monic bivariate gcd G = (y+
50)x3 + 100y ∈

�
[x,y] from input polynomials A = (x− y +

1) G and B = (x + y + 1) G. Here G has leading coefficient
y +50 in the main variable x. Suppose we compute our first
bivariate image modulo p1 = 13 and obtain G1 = (y+11)x3+
9y (mod 13). We proceed to compute a second image using
sparse interpolation working modulo 17. We assume G has
the form Gf = (y+α)x3 +βy for some α, β ∈

�
17. We have

at most one unknown per coefficient in x so we evaluate
at one random point, y = 5, and compute the univariate
gcd x3 + 6 (mod 17). This image is unique up to a scaling
factor m. We evaluate Gf at y = 5 and equate to obtain:
(5+α)x3 +5β = m(x3 +6). The normalization problem is to
determine m. In our example, if we knew L(y) = y+50, the
leading coefficient of G, then m should be L(5) = 4 (mod 17)
and we would have (5 + α)x3 + 5β = 4x3 + 7. Solving for α
and β in

�
17, we would obtain G2 = (y + 16)x3 + 15y the

second bivariate image.

Let L = lcx1
(G) be the leading coefficient of G. One solu-

tion to the normalization problem is to multiply the monic

univariate images by the image of a known multiple of L.
The solution used in the Macsyma implementation of Zip-
pel’s algorithm is to use γ = gcd(lcx1

(A),lcx1
(B)). Now L

divides γ hence γ = ∆ × L for some ∆ in
�

[x2, ..., xn]. If
∆ = 1, then this approach works very well. However, if ∆
is a non-trivial polynomial then Zippel’s algorithm would
reconstruct ∆×G which might have many more terms than
G and it would need to remove ∆ from ∆×G which would
require another gcd computation. A non-trivial example
where this will happen is when computing gcd(A,A′), the
first gcd computation in a multivariate square-free factor-
ization algorithm.

An ingenious solution is presented by Wang in [9]. Wang
determines L by factoring one of the leading coefficients of
the input polynomials, A say, then heuristically determining
which factors belong to G and which belong to Ā. If A and
B are sparse, the factorization is usually not hard. Kaltofen
in [4] shows how to reduce the factorization to a bivariate
factorization and how to make Wang’s heuristic work for
coefficient rings other than

�
. We now present our solutions.

Neither requires any factorizations.

3. ALGORITHM LINZIP
In Zippel’s algorithm, if any coefficient of G with respect

to the main variable x1 is a monomial in x2, ..., xn, then the
normalization is straightforward. Consider the gcd problem
from example 1. Notice that the O(x0) term in our first
gcd image G1 = (y + 11)x3 + 9y has a single term coeffi-
cient, 9y. Since we know the exact form, we can scale our
univariate gcd images based on this term. Our assumed
form becomes Gf = (αy + β)x3 + (1)y for some α, β ∈

�
17.

Now we have two unknowns in our O(x3) term so we need
two evaluation points, neither of which may be 0. We choose
y = 5, 7, to get the univariate gcds x3 + 6 (mod 17) and
x3 + 9 (mod 17), respectively. Now we scale the first uni-
variate gcd by 5

6
(mod 17), and the second by 7

9
(mod 17)

before equating, giving (5α + β)x3 + 5 = 15x3 + 5 and
(7α + β)x3 + 7 = 14x3 + 7. Solving for α and β in

�
17,

gives us the bivariate image, (8y+9)x3 +y, which is a scalar
multiple of the gcd modulo 17. Thus if (at any level in the
recursion) an image has a coefficient in x1 which is a single
term, the normalization problem is easily solved.

The normalization problem essentially reduces to scaling
of the univariate gcd images so that the solution of the lin-
ear system produces a correct scalar multiple of the gcd.
The approach followed now for the general case is quite sim-
ple in concept. It is to treat the scaling factors of the com-
puted univariate gcds as unknowns as well. This results in
larger linear systems that may require additional univari-
ate gcd images. We call this the multiple scaling case (as
opposed to the single scaling case).

Scaling of both the univariate gcds and the coefficients
of the assumed form of the multivariate gcd results in a
system that is under-determined by exactly 1 unknown (the
computation is only determined up to a scaling factor). We
fix the scaling factor of the first image to 1. The following
example illustrates this approach.

Example 2. Consider the computation of the bivariate
gcd (3y2 − 90)x3 + 12y + 100. We obtain g ≡ x3y2 +
9x3 + 4y + 3 (mod 13), and assumed form of the gcd gf =
αx3y2 + βx3 + γy + σ. Instead of computing two univariate
gcd images for the new prime p2 = 17, we compute three,
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choosing y = 1, 2, 3 and obtain the gcds x3 +12, x3 +8, and
x3 respectively. We form the modified system as follows:

αx3 + βx3 + γ + σ = m1 (x3 + 12) = x3 + 12,

4αx3 + βx3 + 2γ + σ = m2 (x3 + 8),

9αx3 + βx3 + 3γ + σ = m3 (x3),

where m2, m3 are the new scaling factors, and we have set
the first scaling factor m1 to 1. Solving this system yields
α = 7, β = 11, γ = 11, σ = 1, with scaling factors m2 =
5, m3 = 6, so our new gcd image is given by g ≡ 7x3y2 +
11x3 + 11y + 1 (mod 17) which is consistent with our gcd.

We explain why we fix the multiplier m1 to be 1 instead
of fixing a coefficient in the assumed form of the gcd to be
1. In example 2, suppose we set α = 1. Suppose we then
use the evaluation y = 0 which is not bad. Notice that α
should be 0 if y = 0. Attempting to set β = 1 will have the
same problem for the prime p = 5 which is not bad. Fixing
a multiplier to be 1 cannot cause an inconsistency because
the algorithm avoids bad primes and bad evaluation points.

One might wonder about the efficiency of the multiple
scaling case since we are constructing a system that ties to-
gether all unknowns through the multipliers. In the single
scaling case, each degree in x1 has an independent subsys-
tem. The trick is to realize that the resulting system is
highly structured, and the structure can be exploited to put
the solution expense of the multiple scaling case on the same
order as the solution expense of the single scaling case.

Example 3. Consider the linear system that must be solv-
ed to compute the gcd for a problem with the assumed form
gf = (a2y

2 + a1y + a0)x
2 + (b2y

3 + b1y + b0)x + (c1y
2 + c0).

We require 3 images to have sufficiently many equations to
solve for all unknowns. The resulting linear system has 9
equations in the 10 unknowns. It has the structure shown
in figure 1 below. The equations are ordered by decreasing
degree in x then by image number. The unknowns are in the
same order as in the image followed by the scaling factors.
The c’s denote (possibly) non-zero entries. All entries not
shown are zero.

��������
�

c c c 1
c c c 1
c c c 1

c c c c
c c c c
c c c c

c c c
c c c
c c c

� �������
�

������������
�

a2

a1
a0

b2

b1
b0

c1
c0

1
m2

m3

� �����������
�

=

������������
�

0
0
0
0
0
0
0
0
0
0
0

� �����������
�

Figure 1: Structure for the multiple scaling case.

The solution can be easily computed by solution of a num-
ber of smaller subsystems corresponding to the rectangu-
lar blocks of non-zero entries augmented with the multiplier
columns. Once the subsystems are upper triangular, remain-
ing rows, only involving the multipliers, can be used to com-
pute the multiplier values, which can then be back-substituted
into the subsystems to obtain the image coefficients.

This approach solves the normalization problem but it
also introduces another difficulty which is illustrated by the
following example.

Example 4. Consider the computation of the bivariate
gcd (y + 2)x3 + 12y2 + 24y. By a call to algorithm P we
obtain our first image, g1 = x3y+2x3+12y2+11y (mod 13),
and assumed form of the gcd , gf = αx3y+βx3 +γy2 +σy.

We require at least three univariate gcd images for the
new prime p2 = 17. Choosing y = 1, 2, 3 we obtain the
gcds x3 + 12, x3 + 7, and x3 + 2 respectively, and form the
modified system as follows:

αx3 + βx3 + γ + σ = x3 + 12,

2αx3 + βx3 + 4γ + 2σ = m2(x
3 + 7),

3αx3 + βx3 + 9γ + 3σ = m3(x
3 + 2),

In attempting to solve this system, we find that it is under-
determined, so we add a new evaluation point, y = 4, ob-
taining a gcd of x3 + 14, and the new equation

4αx3 + βx3 + 16γ + 4σ = m4(x
3 + 14).

The new system of equations is still under-determined. In
fact, the system remains under-determined if we continue to
choose new evaluation points for y. This is the case for any
chosen prime and set of evaluations, so the algorithm fails
to find the gcd for this problem.

What is not necessarily obvious from example 4 is the
cause of the failure, which is the presence of a content in the
gcd with respect to the main variable x, namely y + 2. In
example 4 the content in y is absorbed into the multipliers,
so we are unable to obtain a solution for the coefficients in
our candidate form as only the relative ratio between terms
can be computed. Unfortunately, even if g, the gcd of a and
b has no content, certain choices of primes and evaluation
points can cause an unlucky content to appear in the gcd.

Definition 4. (Unlucky Content).
Given g ∈

�
[x1, ...,xn] with contx1

(g) = 1, a prime p is
said to introduce an unlucky content if contx1

(g mod p) 6=
1. Similarly for g ∈

�
p[x1, ..., xn] with contx1

(g) = 1, an
evaluation xi = αi is said to introduce an unlucky content
if contx1

(g mod 〈xi − αi〉) 6= 1.

Consider, for example, g = x(y +1)+y +14. If we choose
p = 13 then g mod p has a content of y + 1, while for any
other prime no content is present. Since unlucky contents
are rare, we design the algorithm so this problem is not
detected in advance, but rather through its effect, so that
its detection does not become a bottleneck of the algorithm.

We now present the LINZIP M algorithm, which com-
putes the gcd in

�
[x1, ..., xn] from a number of images in

�
p[x1, ..., xn], and the LINZIP P algorithm, which com-

putes the gcd in
�

p[x1, ..., xn] from a number of images in
�

p[x1, ..., xn−1].

Algorithm 1 (LINZIP M).

Input: a, b ∈
�

[x1, ..., xn] with gcd(contx1
a, contx1

b) = 1
and degree bounds dx on the gcd in x1, ..., xn.

Output: g = gcd(a, b) ∈
�

[x1, ..., xn].

1 Compute the scaling factor:
γ = gcd(lcx1,...,xn

(a), lcx1,...,xn
(b)) ∈

�
.

2 Choose a random prime p such that γp = γ mod p 6= 0,
and set ap = a mod p, bp = b mod p, then compute
from these a modular gcd image gp ∈

�
p[x1, ..., xn]

with a call to LINZIP P. If the algorithm returns Fail,
repeat, otherwise set dx1

= degx1
(gp) and continue.
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3 Assume that gp has no missing terms, and that the
prime is not unlucky. We call the assumed form gf .
There are two cases here:

3.1 If there exists a coefficient of x1 in gf that is
a monomial, then we can use single scaling and
normalize by setting the integer coefficient of that
monomial to 1. Count the largest number of terms
in any coefficient of x1 in gf , calling this nx.

3.2 If there is no such coefficient, then multiple scal-
ing must be used. Compute the minimum number
of images needed to determine gf with multiple
scaling, calling this nx.

4 Set gm =
γp

lcx1,...,xn
(gp)

× gp mod p and m = p.

5 Repeat

5.1 Choose a new random prime p such that γp = γ
mod p 6= 0, and set ap = a mod p, bp = b mod p.

5.2 Set S = ∅, ni = 0.

5.3 Repeat

5.3.1 Choose α2, ..., αn ∈
�

p \ {0} at random such
that degx1

(ap mod I) = degx1
(a), degx1

(bp

mod I) = degx1
(b) where I = 〈x2 − α2, ...,

xn − αn〉. Set a1 = ap mod I, b1 = bp mod I.

5.3.2 Compute g1 = gcd(a1, b1).

5.3.3 If degx1
(g1) < dx1

our original image and
form gf and degree bounds were unlucky, so
set dx1

= degx1
(g1) and goto 2.

5.3.4 If degx1
(g1) > dx1

our current image g1 is
unlucky, so goto 5.3.1, unless the number of
failures > min(2, ni), in which case assume p
is unlucky and goto 5.1.

5.3.5 For single scaling, check that the scaling term
in the image g1 is present. If not, the as-
sumed form must be wrong, so goto 2.

5.3.6 Add the equations obtained from equating co-
efficients of g1 and the evaluation of gf mod I
to S, and set ni = ni + 1.

Until ni ≥ nx.

5.4 We may now have a sufficient number of equa-
tions in S to solve for all unknowns in gf mod p
so attempt this now, calling the result gp.

5.5 If the system is inconsistent our original image is
incorrect (missing terms or unlucky), so goto 2.

5.6 If the system is under-determined, then record the
degrees of freedom, and if this has occurred twice
before with the same degrees of freedom then as-
sume that an unlucky content problem was intro-
duced by the current prime p so goto 5.1. Other-
wise we need more images so goto 5.3.1.

5.7 The system is consistent and determined. Scale
the new image. Set gp =

γp

lcx1,...,xn
(gp)

×gp mod p.

Apply the Chinese remainder theorem to update
gm by combining the coefficients of gp ∈

�
p[x1, ...,

xn] with gm ∈
�

m[x1, ..., xn], updating m = m×p.

Until gm has stopped changing for one iteration.

7 Remove integer content from gm placing the result in

gc. Test if gc | a and gc | b. If yes, return gc. Otherwise
we need more primes, so goto 5.1.

Algorithm 2 (LINZIP P).

Input: a, b ∈
�

p[x1, ..., xn], a prime p, and degree bounds
dx on the gcd in x1, ..., xn.

Output: g = gcd(a, b) ∈
�

p[x1, ..., xn] or Fail.

0 If the gcd of the inputs has content in xn return Fail.

1 Compute the scaling factor:
γ = gcd(lcx1,...,xn−1

(a), lcx1,...,xn−1
(b)) ∈

�
p[xn].

2 Choose v ∈
�

p\ {0} at random such that γ mod 〈xn −
v〉 6= 0. Set av = a mod 〈xn −v〉, bv = b mod 〈xn −v〉,
then compute gv = gcd(av, bv) ∈

�
p[x1, ..., xn−1] with

a recursive call to LINZIP P (n > 2) or via the Eu-
clidean algorithm (n = 2). If for n > 2 the algorithm
returns Fail or for n = 2 we have degx1

(gv) > dx1

then return Fail, otherwise set dx1
= degx1

(gv) and
continue.

3 Assume that gv has no missing terms, and that the
evaluation is not unlucky. We call the assumed form
gf . There are two cases here:

3.1 If there exists a coefficient of x1 in gf that is
a monomial, then we can use single scaling and
normalize by setting the integer coefficient of that
monomial to 1. Count the largest number of terms
in any coefficient of x1 in gf , calling this nx.

3.2 If there is no such coefficient, then multiple scal-
ing must be used. Compute the minimum number
of images needed to determine gf with multiple
scaling, calling this nx.

4 Set gseq = γ(v)
lcx1,...,xn−1

(gv)
× gv mod p and vseq = v.

5 Repeat

5.1 Choose a new random v ∈
�

p \ {0} such that
γ mod 〈xn − v〉 6= 0 and set av = a mod 〈xn − v〉,
bv = b mod 〈xn − v〉.

5.2 Set S = ∅, ni = 0.

5.3 Repeat

5.3.1 Choose α2, ..., αn−1 ∈
�

p \ {0} at random
such that degx1

(av mod I) = degx1
(a) and

degx1
(bv mod I) = degx1

(b) where I = 〈x2 −
α2, ..., xn−1−αn−1〉. Set a1 = av mod I, b1 =
bv mod I.

5.3.2 Compute g1 = gcd(a1, b1).

5.3.3 If degx1
(g1) < dx1

then our original image
and form gf and degree bounds were unlucky,
so set dx1

= degx1
(g1) and goto 2.

5.3.4 If degx1
(g1) > dx1

then our current image g1

is unlucky, so goto 5.3.1, unless the number
of failures > min(1, ni), in which case assume
xn = v is unlucky and goto 5.1.

5.3.5 For single scaling, check that the scaling term
in the image g1 is present. If not, the as-
sumed form must be wrong, so goto 2.

5.3.6 Add the equations obtained from equating co-
efficients of g1 and the evaluation of gf mod I
to S, and set ni = ni + 1.

127



Until ni ≥ nx.

5.4 We should now have a sufficient number of equa-
tions in S to solve for all unknowns in gf mod p
so attempt this now, calling the result gv.

5.5 If the system is inconsistent our original image is
incorrect (missing terms or unlucky), so goto 2.

5.6 If the system is under-determined, then record the
degrees of freedom, and if this has occurred twice
before with the same degrees of freedom then as-
sume the content problem was introduced by the
evaluation of xn so goto 5.1. Otherwise we need
more images so goto 5.3.1.

5.7 The system is consistent and determined. Scale

the new image gv. Set gseq=gseq,
γ(v)

lcx1,...,xn−1
(gv)

× gv, vseq = vseq , v.

Until we have dxn
+ degxn

(γ) + 1 images.

6 Reconstruct our candidate gcd gc using Newton inter-
polation (dense) on gseq,vseq, then remove any content
in xn.

7 Probabilistic division test: Choose α2, ..., αn ∈
�

p at
random such that for I = 〈x2 − α2, ..., xn − αn〉 and
g1 = gc mod I we have degx1

(g1) = degx1
(gc). Then

compute a1 = a mod I, b1 = b mod I and test if g1 | a1

and g1 | b1. If yes return gc, otherwise goto 2.

We make some remarks before discussing the correctness
and termination of the algorithm.

1. The degree bound of the gcd in the main variable x1

is used to detect unlucky primes and evaluations, but only
those that involve x1. We update this degree bound when-
ever we compute a gcd of lower degree in x1. The degree
bounds of the gcd in the non-main variables x2, ..., xn are
used to compute the number of images needed for the in-
terpolation in step 6 of LINZIP P. They are not updated
by the algorithm. The degree bound for a variable can be
obtained by evaluating the inputs mod a random prime and
set of evaluations for all but that variable, then as long as
the prime and evaluations are not bad, the degree of the
univariate gcd is a bound on the degree of the multivariate
gcd for that variable.

2. The number of required images for the multiple scaling
case computed in step 3.2 can be the same as the number
of required images for the single scaling case computed in
step 3.1, and no more than 50% higher. The worst case is
quite infrequent. It will only occur when there are only two
coefficients with respect to the main variable, each having
exactly the same number of terms. The extra expense of
this step can usually be reduced by an intelligent choice of
the main variable x1. The exact formula for the number of
images needed for a problem with coefficients having term
counts of n1, ..., ns and a maximum term count of nmax is
given by max(nmax, d( � s

i=1 ni − 1)/(s − 1)e). The com-
plexity of LINZIP is otherwise the same as that of Zippel’s
original algorithm. For a detailed asymptotic analysis of the
LINZIP algorithm, the interested reader may consult [11].

3. The check in step 0 of LINZIP P is used to detect an
unlucky content in the initial gcd introduced higher up in
the recursion by either a prime or evaluation. We note that

this approach only requires computation of univariate con-
tents to detect the problem as any content in the gcd will
eventually show up as a univariate content as we evaluate
xn, xn−1, ....

4. The check in step 5.6 of either algorithm is intended to
check for an unlucky content introduced by the evaluation
(LINZIP P) or prime (LINZIP M ) chosen in step 5.1 of both
algorithms. Since it is possible that a new random image
from step 5.3.1 does not constrain the form of the gcd (even
without the content problem) we check for multiple failures
before rejecting the current iteration of loop 5.

5. The LINZIP P algorithm performs one probabilistic uni-
variate division test in step 7 instead of testing if gc | a and
gc | b. This check is substantially less expensive than a mul-
tivariate trial division, though there is still a chance that the
test fails to detect an incorrect answer, so the termination
division test in LINZIP M must be retained.

6. Random evaluation points are chosen from
�

p\{0} rather
than

�
p because zero evaluations are likely to cause missing

terms in the assumed form, and possibly scaling problems
when normalizing images.

To verify the correctness of this algorithm, in addition to
the standard issues with modular algorithms we need also
verify that the images are scaled consistently to allow the
image reconstruction to proceed. We need to consider 4
main problems, namely bad primes or evaluations, unlucky
contents, unlucky primes or evaluations, and missing terms
in an initial image.

Bad primes and bad evaluations: The treatment of bad
primes and bad evaluations is straightforward. It is handled
for the first prime or evaluation by the check that γ does
not evaluate to 0 in step 2 of the algorithms, handled for
subsequent primes or evaluations by the check that γ does
not evaluate to 0 in step 5.1 of the algorithms, and handled
for the univariate images in step 5.3.1 of the algorithms.

Unlucky content: The unlucky content problem for the
first prime or first evaluation is treated in step 0 of LINZIP P
by the single variable content check. As in point 3 above we
emphasize that this check will always detect the problem at
some level of the recursion, specifically the level containing
the last variable contained in the unlucky content (as all the
other variables in the content have been evaluated, so the
content becomes univariate). There is no efficient way to
detect where such an unlucky content was introduced. It
may have been introduced by the prime chosen in LINZIP
M or any evaluation in prior calls (for xj with j > n) to
LINZIP P in the recursion. Thus LINZIP P fails all the
way back up to LINZIP M which restarts with a new prime.
This strategy is efficient, as only evaluations (modular and
variable) and other single variable content checks have been
performed before such a failure is detected.

The introduction of an unlucky content by the prime or
evaluation chosen in step 5.1 of either algorithm will be han-
dled in the combination of steps 5.4 and 5.6. The result is
a system with additional degrees of freedom, so this always
results in an under-determined system. The check in step
5.6 handles this, as eventually we will obtain a solution for
all variables but the free ones resulting from the unlucky
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content, so the degrees of freedom will stabilize, and we will
go back to step 5.1 choosing a new prime or evaluation.

Unlucky primes and unlucky evaluations: The treat-
ment of unlucky primes and evaluations is less straight-
forward. First we consider an unlucky evaluation in step
2 of LINZIP P for xn for which the factor added to the
gcd depends upon x1. If the degree bound dx1

is tight,
then this will be detected at a lower level of the recursion
by step 2 of LINZIP P when n = 2. If the degree bound
dx1

is not tight, then the gcd computed in that step may
be unlucky, but we proceed with the computation. Once we
reach loop 5, we begin to choose new evaluation points for
xn. With high probability we will choose a new point that
is not unlucky in step 5.1, the problem will be detected in
step 5.3.3. In the worst case, all evaluations in step 5.1 may
also be unlucky, introducing the same factor to the gcd,
and we will proceed to step 6, and reconstruct an incorrect
result. Note that if the factor is in fact different, then the
equations accumulated in step 5.3.5 will most likely be in-
consistent, and this problem will most likely be detected in
steps 5.4 and 5.5. Step 7 will again perform checks much
like those in step 5.3.3, and will detect this problem with
high probability, but if it does not, an invalid result may be
returned from LINZIP P. If we continue to choose unlucky
evaluations we will eventually return an incorrect image to
LINZIP M.

This problem (as well as the unlucky prime case for step
2 of LINZIP M ) is handled by the structure of LINZIP M.
Since the steps are essentially the same, the same reasoning
follows, and we need the computation to be unlucky through
all iterations of loop 5. Since the form of the gcd is incor-
rect, it is unlikely that gm will stabilize, and we will continue
to loop. If gm does stabilize, the invalid image will not divide
a and b, so step 7 will put us back into the loop. Now within
that loop, which cannot terminate until we have found the
gcd, step 5.3.4 will eventually detect this problem, as we
must eventually find a prime that is not unlucky.

Now consider the case where the unlucky evaluation or
prime is chosen in step 2 of either algorithm, and the factor
added to the gcd is independent of x1, that is, it is a content
with respect to x1. This is handled by the same process as
the unlucky content problem, specifically it is handled on
the way down by step 0 of LINZIP P.

Now if an unlucky prime or evaluation occurs in step 5.1
of either algorithm, it must either raise the degree in x1, in
which case it will be detected in step 5.3.4, or it results in an
unlucky content. If this content is purely a contribution of
the cofactors, then this will not cause a problem for the al-
gorithm, as it reconstructs the new gcd image without that
content present (as a result of the assumed form). Hence,
the only type of unlucky evaluation that can occur in step
5.3.1 must raise the degree of the gcd in x1, and thus is
handled by step 5.3.4.

Missing terms: If the initial image of g (in either algo-
rithm) has missing terms, the resulting system will likely be
inconsistent which will be detected by step 5.5 with high
probability. If it is not detected in any iteration of loop 5,
then an incorrect image will be reconstructed in step 6 of
LINZIP P. The additional check in step 7 of LINZIP P will
detect this problem with the new images with high probabil-
ity, but if this also fails, then we return an incorrect image
from LINZIP P. Again assuming a sequence of failures to

detect this problem, we arrive at LINZIP M. Now we will
compute new images in LINZIP M until gc divides both a
and b, so the problem must eventually be detected.

Note that the missing term case is the most likely failure
case of both algorithms, that is, more likely than unlucky
primes, unlucky evaluations, and unlucky contents. The
probability of choosing a prime or evaluation that causes
a term to vanish is O(t/p), where t is the number of terms
in the polynomial, and p is the prime. Thus the primes need
to be much larger than the number of terms.

4. ALGORITHM RATZIP
An alternative way of handling the non-monic case is to

use sparse rational function interpolation. The idea is as
follows. Suppose we are computing the gcd of two polyno-
mials in

�
[x,w, y, z] with x as the main variable. We will

compute the monic gcd in
�

(w,y, z)[x] in the form:

xn +

n−1�

i=0

ai(w, y, z)

bi(w, y, z)
xi,

where ai, bi ∈
�

[w,y, z], by interpolating the rational func-
tion coefficients using a sparse interpolation. For example,
if our gcd is (y + 14)yx3 + 12y2x + y + 14, we compute the
monic gcd

x3 +
12y

y + 14
x +

1

y
.

We then recover the non-monic gcd by multiplying through
by the least common multiple of the denominators. In our
example, we multiply through by lcm(y +14, y) = (y +14)y
to get our non-monic gcd (y + 14)yx3 + 12y2x + y + 14.

To illustrate how sparse rational function reconstruction
works in general, suppose one of the rational function co-

efficients is C = ∗w3+∗zy2

∗z2+∗y2+wy3 , here ∗ indicates an inte-

ger. Suppose we have reconstructed C at w = 5 to get

C1 = ∗+∗zy2

∗z2+∗y2+y3 . Notice we have normalized the lead-

ing coefficient of the denominator to be 1, essentially di-
viding through by w. We then assume the form to be

Cf = α(w)+β(w)zy2

δ(w)z2+γ(w)y2+y3 , where α(w), β(w), δ(w), γ(w) are

rational functions in w. We have 4 unknowns so we need
4 equations to solve for the next image, C2. We do this for
as many w values as we need, then perform rational func-

tion interpolation in w to obtain
∗w2+ ∗

w
zy2

∗

w
z2+ ∗

w
y2+y3 . Clearing the

fractions in w gets us what we want, namely ∗w3+∗zy2

∗z2+∗y2+wy3 .

Example 5. Consider the computation of the above gcd
G = (y + 14)yx3 + 12y2x + y + 14 from input polynomials
A = (yx + 1) G and B = (yx + 2) G. Using p1 = 11 we
compute our first monic gcd image in

�
11(y)[x] using dense

rational function interpolation. Given a degree bound in y,
dy = 2, we need N = 2dy + 1 = 5 evaluation points to

interpolate a rational function of the form ay2+by+c

dy2+ey+f
in y.

If we do this by constructing a linear system, the rational
function interpolation will cost O(N 3). Instead we use the
Euclidean Algorithm. We first apply the Chinese Remainder
Theorem to reconstruct polynomial coefficients in y followed
by rational function reconstruction (see [2]). This reduces
the cost to O(N2). We choose y = 1, 4, 9, 3, 6, to get the
gcd images in

�
11[x], x3 + 3x + 1, x3 + 10x + 3, x3 +

9x + 5, x3 + 6x + 4 and x3 + 8x + 2, respectively. We
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interpolate in y to get x3 + (6y4 + 9y3 + 9y2 + 10y + 2)x +
10y4 + y3 + 5y2 + 3y + 4 and then apply rational function
reconstruction to the coefficients of x to get our first monic
gcd image G1 = x3+ y

y+3
x+ 1

y
∈

�
11(y)[x], and our assumed

form Gf = x3 + αy

y+β
x + δ

y
.

Working modulo p2 = 13 we compute a second monic
gcd image in

�
13(y)[x] using sparse rational function in-

terpolation. We have at most two unknowns per coefficient
in our main variable x so we need two evaluation points. We
evaluate at y = 1, 6, and compute the univariate gcd images
in

�
13[x], x3 + 6x + 1 and x3 + x + 11, respectively. We

evaluate Gf at our chosen y values and equate by coefficient
to get the following system.

6 = α
1 + β

, 1 = δ
1

1 = 6 α
6 + β

, 11 = δ
6

�
⇒ α = 12, β = 1, δ = 1

Substituting back into Gf we get our second monic image in
�

13(y)[x], G2 = x3 + 12 y

y +1
x + 1

y
.

We then apply the Chinese Remainder Theorem to the
integer coefficients of the rational functions of G1 and G2

to reconstruct our monic gcd in
�

(y)[x], x3 + 12 y

y +14
x + 1

y
.

Clearing fractions gives us our non-monic gcd in
�

[x,y].

Algorithm RATZIP M computes the gcd in
�

[x1, ..., xn]
from a number of images in

�
p(x2, ..., xn)[x1]. After apply-

ing the Chinese remainder theorem it must clear the frac-
tions in

�
(x2, ..., xn)[x1] which requires further multivari-

ate gcds which is the disadvantage of this algorithm in
comparison with LINZIP. Algorithm RATZIP P computes
the gcd in

�
p(x2, ..., xn)[x1] from a number of images in

�
p(x2, ..., xn−1)[x1]. As for the LINZIP M algorithm any

content of the gcd with respect to x1 must be removed be-
fore the initial call to the RATZIP M algorithm. Unlike in
the LINZIP algorithms, we do not use single scaling. It is
plausible that it may be applied here but it is not straight-
forward and we have yet to work out the details. For lack
of space, only subroutine RATZIP P is presented. Since it
is similar to LINZIP P, the differences are highlighted.

Algorithm 3 (RATZIP P).

Input: a, b ∈
�

p[x1, ..., xn], a prime p, and degree bounds
dx on the gcd in x1, ..., xn.

Output: g = gcd(a, b) ∈
�

p(x2, ..., xn)[x1] or Fail.

0 If the gcd of the inputs has content in xn return Fail.

1 Compute the scaling factor:
γ = gcd(lcx1,...,xn−1

(a), lcx1,...,xn−1
(b)) ∈

�
p[xn].

If γ = 1 then set RR = False else set RR = True.

2 Choose v ∈
�

p\ {0} at random such that γ mod 〈xn −
v〉 6= 0. Set av = a mod 〈xn −v〉, bv = b mod 〈xn −v〉,

then compute gv = gcd(av, bv) ∈
�

p(x2, ..., xn−1)[x1]

with a recursive call to RATZIP P (n > 2) or via

the Euclidean algorithm (n = 2). If for n > 2 the algo-
rithm returns Fail or for n = 2 we have degx1

(gv) >
dx1

then return Fail, otherwise set dx1
= degx1

(gv)
and continue.

3 Assume gv has no missing terms, and that the evalua-
tion is not unlucky. We call the assumed form gf .

For each coefficient of x1 in gf , count the number
of terms in the numerator nt and the number of
terms in the denominator dt. Take the maximum
sum nt + dt over all coefficients and set nx =
nt + dt − 1. The −1 is because we normalize the
leading coefficients of the denominators to be 1.

4 Set gm = gv, m = xn − v, and Ni = 1.

5 Repeat

5.1 Choose a new random v ∈
�

p \ {0} such that
γ mod 〈xn − v〉 6= 0 and set av = a mod 〈xn − v〉,
bv = b mod 〈xn − v〉.

5.2 Set S = ∅, ni = 0.

5.3 Repeat

5.3.1 Choose α2, ..., αn−1 ∈
�

p \ {0} at random
such that degx1

(av mod I) = degx1
(a) and

degx1
(bv mod I) = degx1

(b) where I = 〈x2 −
α2, ..., xn−1−αn−1〉. Set a1 = av mod I, b1 =
bv mod I.

5.3.2 Compute g1 = gcd(a1, b1).

5.3.3 If degx1
(g1) < dx1

then our original image
and form gf and degree bounds were unlucky,
so set dx1

= degx1
(g1) and goto 2.

5.3.4 If degx1
(g1) > dx1

then our current image g1

is unlucky, so goto 5.3.1, unless the number
of failures > min(1, ni), in which case assume
xn = v is unlucky and goto 5.1.

5.3.5 Add the equations obtained from equating co-
efficients of g1 and the evaluation of gf mod I
to S, and set ni = ni + 1.

Until ni ≥ nx.

5.4 We should now have a sufficient number of equa-
tions in S to solve for all unknowns in gf mod p
so attempt this now, calling the result gv.

5.5 If the system is inconsistent our original image is
incorrect (missing terms or unlucky), so goto 2.

5.6 If the system is under-determined, then record the
degrees of freedom, and if this has occurred twice
before with the same degrees of freedom then as-
sume the content problem was introduced by the
evaluation of xn so goto 5.1. Otherwise we need
more images so goto 5.3.1.

5.7 The system is consistent and determined, so we
have a new image gv.

Solve f ≡ gm mod m(xn) and f ≡ gv mod
(xn − v) using the Chinese remainder algo-
rithm for f ∈

�
p[xn](x2, ..., xn−1)[x1] mod

m(xn)×(xn−v). Set gm = f, m = m(xn)×
(xn − v), and Ni = Ni + 1.

Until Ni ≥ dxn
+ 1 and (RR = False or Ni ≥ 3).

6 Reconstruct
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6.1 If RR = True then apply rational func-
tion reconstruction in xn and assign the
result to gc. If it fails then we need
more points, goto 5.1. For n > 2,
clear the rational function denominators
of gc ∈

�
p(xn)(x2, ..., xn−1)[x1] to obtain

gc ∈
�

p(x2, ..., xn)[x1].

6.2 If RR = False then set gc = gm.

7 Probabilistic division test: Choose α2, ..., αn ∈
�

p at
random such that for I = 〈x2 − α2, ..., xn − αn〉 and
g1 = gc mod I we have degx1

(g1) = degx1
(gc). Then

compute a1 = a mod I, b1 = b mod I and test if g1 | a1

and g1 | b1. If yes return gc, otherwise goto 2.

Our implementation of the RATZIP algorithm includes
the following enhancement. To reconstruct the rational func-
tions in some variable y with degree bound dy, we need
2dy +1 evaluation points. In fact, we may need fewer points
than this, depending on the form of the rational functions
being reconstructed. In our implementation we use the Max-
imal Quotient Rational Reconstruction algorithm [7], which
uses at most one more evaluation point than the minimum
number of points required for the reconstruction to succeed.
For example, to reconstruct the rational functions in y of
G = x3 + y

y+3
x + 1

y
, we would need 4 points, not 5.

5. IMPLEMENTATION
We have implemented algorithm LINZIP in Maple and

have compared it with Maple’s default algorithm, an imple-
mentation of the EEZ-GCD algorithm of Wang [10]. The
linear algebra over

�
p and univariate polynomial computa-

tions over
�

p and the integer arithmetic are all coded in C.
The rest is coded in Maple. Algorithm LINZIP is generally
faster when the evaluation points used by the EEZ-GCD al-
gorithm cannot be 0. It is also much less sensitive to unlucky
primes and evaluations than the EEZ-GCD algorithm. Oth-
erwise it is generally slower, sometimes more than a factor
of 3 slower.

We have also implemented algorithm LINZIP and RATZIP
in Maple using the “recden” [3] data structure. This data
structure supports multiple field extensions over � and

�
p,

and hence, will allow us to extend our implementations to
work over finite fields and algebraic number fields. The data
structure is currently being implemented in the kernel of
Maple for improved efficiency. On our data, the two algo-
rithms perform within a factor of 2 of each other. Algorithm
LINZIP is generally faster than RATZIP.

A disadvantage of Zippel’s algorithm is the large number
of univariate images that must be computed for the sparse
interpolations which means a large number of evaluations of
the inputs. On our test data we find that the percentage of
time spent on evaluations was on average 68% and 75% for
LINZIP and RATZIP, respectively. The multivariate trial
division in LINZIP M (step 7) and RATZIP M took 19%
and 11% of the time, respectively.

To improve the efficiency of LINZIP and RATZIP, we are
implementing the following idea. Instead of evaluating out
all but one variable x1 in LINZIP P and RATZIP P, con-
sider evaluating out all but 2 variables x1, x2 and comput-
ing the bivariate images using a dense gcd algorithm. Thus

think of G as a polynomial in x1 and x2 (main variables)
with coefficients in

�
[x3, ..., xn]. If the cost of computing

a bivariate image is less than the cost of evaluation mod
I = 〈x3 − α3, ..., xn − αn〉, overall efficiency is not compro-
mised. If G mod I is dense in x1 and x2 then we expect
a significant reduction in the maximum of the number of
terms of the coefficients in x1 and x2, hence, a reduction in
the maximum size of the linear systems and a reduction in
the number of images needed for the sparse interpolations.
We also increase the likelihood of not needing to apply the
multiple scaling or rational reconstruction methods. Fur-
thermore, we simplify the multivariate gcd computation for
the content of G and, in RATZIP M, the final lcm compu-
tation.
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