
Fast Rational Function Reconstruction ∗

Sara Khodadad
School of Computing Science,

Simon Fraser University,
Burnaby, B.C. V5A 1S6, CANADA.

skhodada@cecm.sfu.ca.

Michael Monagan
Department of Mathematics,

Simon Fraser University,
Burnaby, B.C. V5A 1S6, CANADA.

mmonagan@cecm.sfu.ca.

ABSTRACT
Let F be a field and let f and g be polynomials in F [t]
satisfying deg f > deg g. Recall that on input of f and g
the extended Euclidean algorithm computes a sequence of
polynomials (si, ti, ri) satisfying sif + tig = ri. Thus for i
with gcd(ti, f) = 1, we obtain rational functions ri/ti ∈ F (t)
satisfying ri/ti ≡ g (mod f).

In this paper we modify the fast extended Euclidean al-
gorithm to compute the smallest ri/ti, that is, an ri/ti min-
imizing deg ri + deg ti. This means that in an output sen-
sitive modular algorithm when we are recovering rational
functions in F (t) from their images modulo f(t) where f(t)
is increasing in degree, we can recover them as soon as the
degree of f is large enough and we can do this fast.

We have implemented our modified fast Euclidean algo-
rithm for F = Zp, p a word sized prime, in Java. Our fast
algorithm beats the ordinary Euclidean algorithm around
degree 200. This has application to polynomial gcd compu-
tation and linear algebra over Zp(t).

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms – Algebraic algo-
rithms;

General Terms: Algorithms, Theory.

Keywords: Rational Reconstruction, Fast Euclidean Algo-
rithm, Modular Algorithms.

1. INTRODUCTION
Rational number reconstruction, originally developed by

Paul Wang in [16], (see [2] or [4] for an accessible reference),
has found many applications in computer algebra. It enables
us to design efficient modular algorithms for computing with
polynomials, vectors and matrices over Q. Such algorithms
first solve a problem modulo a sufficiently large integer m
which is usually a product of primes or a power of a prime.

∗Supported by NSERC of Canada and the MITACS NCE
of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’06, July 9–12, 2006, Genova, Italy.
Copyright 2006 ACM 1-59593-276-3/06/0007 ...$5.00.

Then they apply rational reconstruction to recover the ra-
tional numbers in the solution from their images modulo m.
The same basic strategy can also be used to recover fractions
in F (t) from their image modulo a polynomial f(t) ∈ F [t]
where F is a field. Some applications where rational recon-
struction has been used include polynomial gcd computation
over Q(α), solving linear systems over Q and Gröbner basis
computation over Q.

A key advantage of rational reconstruction is that it en-
ables us to make modular algorithms “output sensitive”,
that is, to make the the size of the modulus m needed, and
hence overall efficiency, depend on the size of the rationals
in the output and not on bounds for their size which might
be much larger. For example, consider the problem of com-
puting the monic gcd g of two polynomials f1 and f2 in
L[x] where L is a number field. In [3], Encarnacion mod-
ified Langemyr and MacCallum’s modular GCD algorithm
[6] to use rational reconstruction to make it output sensi-
tive. Because g is often much smaller in size than f1 and f2,
Encarnacion’s algorithm is often much faster in practice.

Wang’s Algorithm
Let n/d ∈ Q with d > 0 and gcd(n, d) = 1. Let m ∈ Z

with m > 0 and gcd(m, d) = 1. Suppose we have computed
u = n/d mod m and we want to recover the rational n/d.
Recall that extended Euclidean algorithm (EEA), on input
of m and u with m > u ≥ 0, computes a sequence of triples
(si, ti, ri) ∈ Z3 for i = 0, 1, . . . , l, l + 1 satisfying rl+1 = 0
and sim + tiu = ri. It does this by initializing (r0, s0, t0) =
(m, 1, 0) and (r1, s1, t1) = (u, 0, 1) and computing

(ri+1, si+1, ti+1) = (ri−1 − qiri, si−1 − qisi, ti−1 − qiti)

for i = 1, 2, . . . , l where qi is the quotient of ri−1 divided by
ri. Observe that sim + tiu = ri implies ri/ti ≡ u (mod m)
for all i with gcd(m, ti) = 1. In [16], Wang observed that if
m > 2|n|d then the rational n/d = ri/ti for some 0 ≤ i ≤
l + 1. In fact, it is the ri/ti satisfying ri−1 > |n| ≥ ri, that
is, we just need to compute up to the first remainder less
than or equal to |n|.

One way to use Wang’s observations to recover the ra-
tional number n/d in the output from its image u modulo
m is as follows. First bound the size of n and d, that is,
compute N ≥ |n| and D ≥ d. Then solve the problem
modulo a sequence of primes p1, p2, ... satisfying m > 2ND
where m = p1 × p2 × Then run the Euclidean algorithm
until ri−1 > N ≥ ri, and output ri/ti after checking that
gcd(ti, m) = 1.

However, as remarked earlier, the bounds are often much

184

too big. To make a modular algorithm output sensitive we
let m increase in size and periodically apply rational re-
construction as follows. Given the image u of the ratio-
nal n/d modulo m, Wang computes N = D = �pm/2�
and runs the Euclidean algorithm with input m > u stop-
ping when ri−1 > N ≥ ri. One then checks if |ti| ≤ D
and gcd(ti, m) = 1. If yes then we output ri/ti else ra-
tional reconstruction “fails”. Thus Wang’s algorithm suc-
ceeds in reconstructing n/d when m becomes bigger than
2 max(n2, d2).

If one uses the ordinary Euclidean algorithm, the complex-
ity of Wang’s algorithm is O(log2 m). In 2002 Pan and Wang
in [13] modified the fast Euclidean algorithm of Schönhage
[14] to solve the rational number reconstruction problem in
time O(M(k) log k) where k = log m is the length of the
modulus m and M(k) is the cost of multiplying integers of
length k. The authors did not implement their algorithm
and remarked during their presentation at ISSAC 2002 that
the algorithm might not be practical. In 2005 Lichtblau
in [7] implemented a variation on the fast Euclidean algo-
rithm for rational number reconstruction for Mathematica
and found that it is practical. In fact, Steel (see [15]) had
already implemented fast rational number reconstruction in
Magma version 2.8 in 2000.

Maximal Quotient Rational Reconstruction
There is an inefficiency in Wang’s approach because of the
choice of N = D = �pm/2�. This choice means we are using
half of the bits of m to recover the numerator and half for the
denominator. To recover n/d, we require m > 2|n|d but this
choice for N and D means the modulus m > 2max(n2, d2).
This is efficient if the numerator n and denominator d are of
the same length. But if |n| 	 d or |n|
 d, it requires m to
be up to twice as long as is necessary. This inefficiency was
noted by Monagan in [11]. In particular, for gcd problems
in L[x], Monagan has observed that the denominators in g
are often much smaller than numerators.

Monagan in [11] observed that if m 	 2|n|d then with
high probability (we make some remarks about the proba-
bility in the conclusion) there will be only one small rational
ri/ti in the Euclidean algorithm, namely n/d. In fact, if m
is just a few bits longer than 2|n|d log2 m, the smallest ratio-
nal will be n/d with high probability. Thus another way to
solve the rational reconstruction problem is to simply select
and output the smallest ri/ti. How do we do this without
explicitly multiplying ri× ti? Monagan observed that if the
size of the rational ri/ti is small compared with m, that is,
|riti|
 m then qi = �ri−1/ri� is necessarily large, indeed
qi satisfies m

3
< qiri|ti| ≤ m. Hence, it is sufficient to se-

lect the rational ri/ti corresponding to the largest quotient
qi. Moreover, since the quotients are available and they are
mostly very small integers, this selection is efficient.

In this way, it does not really matter whether n is much
longer or much shorter than d, for as soon as m is a few bits
longer than 2|n|d log2 m, we can select n/d from the ri/ti

with high probability. If m is a product of primes and one is
using the Chinese remainder theorem, one saves up to half
the number of primes. Thus in an application where the size
of the numerators might be much larger or smaller than the
size of the denominators, Monagan’s algorithm is preferred.

Monagan’s algorithm, like Wang’s algorithm, is also a sim-
ple modification of the extended Euclidean algorithm, and
thus also has complexity O(log2 m) if the ordinary extended

Euclidean algorithm is used. Just as Pan and X. Wang
modified the fast Euclidean algorithm to accelerate Wang’s
algorithm, can Monagan’s algorithm also be accelerated? In
this paper we answer this question in the affirmative. We
show how to modify the fast Euclidean algorithm to output
the smallest rational ri/ti without increasing the asymptotic
time complexity of the fast Euclidean algorithm. The key
reason this is possible is that the fast Euclidean algorithm,
which does not compute all remainders ri explicitly, can be
designed to compute all quotients qi explicitly.

Rather than modifying the fast Euclidean algorithm for
Z, we modify the fast Euclidean algorithm for Zp[t] where p
is a prime to recover the rational function for Zp(t) of least
degree. We call our algorithm FMQRFR for fast maximal
quotient rational function reconstruction. We have imple-
mented it in Java. In comparing it to an implementation
using the ordinary extended Euclidean algorithm for Zp[t]
we found that the fast Euclidean algorithm beats the ordi-
nary extended Euclidean algorithm at around degree 200.
In order to achieve such a result, one must implement fast
multiplication in Zp[t] carefully. For this we have imple-
mented an “in-place” version of Karatsuba’s algorithm (see
Maeder [9]) so that fast multiplication in Zp[t] already beats
classical multiplication at degree 50.

Our paper is organized as follows. In section 2 we de-
scribe the maximal quotient rational reconstruction algo-
rithm for F [x]. In section 3 we describe the fast extended
Euclidean algorithm (FEEA) for F [x]. Our presentation of
the FEEA follows the presentation given by von zur Ga-
then and Gerhard in [4]. We give timings for our imple-
mentation of the FEEA for F = Zp where p is a word size
prime, comparing it with the ordinary extended Euclidean
algorithm. In section 4 we show how to modify the FEEA
to compute the smallest rational function ri/ti. We also
show how to accelerate Wang’s algorithm for Zp[t] using
the FEEA to compute the rational function ri/ti satisfy-
ing deg ri−1 > (deg f)/2 ≥ deg ri. We have implemented
both algorithm and we compare their efficiency. In section
5 we make some remarks about the failure probability of our
algorithm.

2. MAXIMAL QUOTIENT RATIONAL
FUNCTION RECONSTRUCTION

Let F be a field. A rational function n/d ∈ F (x) is said
to be in canonical form if lc(d) = 1 and gcd(n, d) = 1. Let
f, g ∈ F [x] with deg f > deg g. Let ri and ti be the elements
of the ith row of the Extended Euclidean Algorithm (EEA)
with inputs f and g. Then any rational function n/d with
n = ri/lc(ti) and d = ti/lc(ti) satisfies n/d ≡ g mod f ,
provided that gcd(f, ti) = 1. Moreover, if n/d is a canonical
form solution to n/d ≡ g mod f satisfying deg n + deg d <
deg f , then there exists some row j in the EEA for inputs f
and g such that n = rj/lc(tj) and d = tj/lc(tj). Thus the
EEA with inputs f and g generates all rational functions
n/d (up to scalar multiples in F) satisfying n/d ≡ g mod f ,
gcd(f, d) = 1 and deg n+deg d < deg f . Refer to [4, Lemma
5.15] for the proof.

If degree bounds N ≥ deg n and D ≥ deg d satisfying
N +D < deg f are known, then the rational function n/d is
uniquely determined by running the EEA on inputs f and
g. But we do not always know the values of N and D in
advance. In this section we will present an efficient algo-

185

rithm that with high probability finds the correct solution
for deg f > deg n + deg d + 1. The following example illus-
trates how our algorithm works.

Example 2.1. Consider f =
Q12

i=5(x− i) and g = 10x7 +
x6+2x5+10x4+12x3+7x2+12x+8 in Z13[x]. The Extended
Euclidean Algorithm with inputs f and g yields the following
table.

i deg ri deg ti deg ri + deg ti deg qi

1 7 0 7 1
2 6 1 7 1
3 5 2 7 1
4 2 3 5 3
5 1 6 7 1
6 0 7 7 1

The data in the table suggest that we simply return a ra-
tional function ri/ti where deg ri + deg ti is minimal. As
illustrated in the table, r4/t4 has minimal total degree of 5.
Notice that r4/t4 also corresponds to the quotient q4 of max-
imal degree 3. The reason for this is easily explained by the
following lemma.

Lemma 2.2. Let F be a field and f, g ∈ F [x]. In the EEA
for f and g we have

deg ri + deg ti + deg qi = deg f

for 1 ≤ i ≤ l where l is the total number of division steps in
the EEA for inputs f and g.

Proof. We know deg ti = deg f − deg ri−1, thus

deg ri + deg ti + deg qi =

deg ri + (deg f − deg ri−1) + deg ri−1 − deg ri = deg f.

The algorithm presented at the end of this section selects
an (ri, ti) of minimal total degree as the output. Later,
when we modify the algorithm to use the fast Euclidean
algorithm, this selection cannot be done this way because
the remainders, the ri, are not explicitly computed in the
fast Euclidean algorithm. Instead, we make the selection
based on a quotient qi of maximal degree.

The following lemma states that when deg f is large enough
then there would only be one pair of (rj , tj) such that deg rj+
deg tj is minimal.

Lemma 2.3. Let F be a field, and n, d ∈ F [x] with lc(d) =
1 and gcd(n, d) = 1. Let f, g be two polynomials in F [x]
satisfying gcd(f, d) = 1 and g = n/d mod f . Let j de-
note the index of a quotient with maximal degree in the Ex-
tended Euclidean Algorithm with inputs f and g. If deg f >
2(deg n + deg d) then j is unique, n = rj and d = tj.

Proof. As discussed in the beginning of this section,
since deg f > deg n + deg d then in the Extended Euclidean
Algorithm with inputs f and g there exists an index j such
that rj/tj = n/d. According to Lemma 2.2 we have deg qj >

1/2 deg f . On the other hand, we know
Pl

i=1 deg qi = deg f−
deg rl ≤ deg f where l is the total number of division steps.
This implies that qj is the only quotient with maximal de-
gree and if gcd(rj , tj) = 1 then n = rj and d = tj .

Maximal Quotient RFR Algorithm (MQRFR)
Input: f, g ∈ Zp[x] with deg f > deg g, and T ∈ N

Output: Either n, d ∈ Zp[x] satisfying n/d ≡ g mod f ,
lc(d) = 1, gcd(n, d) = 1, and deg n + deg d + T < deg f , or
FAIL implying no solution exists

1. if g = 0 then
if deg f ≥ T then

return (0, 1)
else

return FAIL

2. (r0, r1)← (f, g)
(t0, t1)← (0, 1)
(n, d)← (r1, t1)

3. while r1 �= 0 do
if deg n + deg d > deg r1 + deg t1 then

(n, d)← (r1, t1)
q ← r0 quo r1

(r0, r1)← (r1, r0 − qr1)
(t0, t1)← (t1, t0 − qt1)

4. if deg n + deg d + T ≥ deg f or gcd(n, d) �= 1 then
return FAIL

5. return (n/lc(d), d/lc(d))

This algorithm is a simple modification of the (half) ex-
tended Euclidean algorithm. It’s complexity is known to be
quadratic in the degree of f .

3. THE FAST EUCLIDEAN ALGORITHM
In 1971 Schönhage in [14] presented a fast integer GCD

algorithm with time complexity O(n log2 n log log n). An
asymptotically fast rational number reconstruction algorithm
based on Schönhage’s algorithm was presented by Pan and
Wang in [13]. Before that Allan Steel had implemented
in Magma a fast rational number reconstruction algorithm
based on the half-gcd algorithm presented in Montgomery’s
PhD thesis [12] for polynomials in F [x]. Currently, Mathe-
matica v. 5.0 and Magma v. 2.10 both have a fast GCD and
fast rational number reconstruction. Maple v. 10 is using
the GMP integer arithmetic package which has fast integer
multiplication and division but no fast integer GCD yet.

Assuming a multiplication algorithm of time complexity
O(n loga n) is available for polynomials of degree n in F [x],
in 1973 Moenck in [10] adapted Schon̈hage’s algorithm into
an O(n loga+1 n) algorithm for polynomial GCD computa-
tion in F [x]. In 1980 Brent, Gustavson, and Yun in [1] gave
two speedups for Moenck’s algorithm. They also pointed
out (but did not prove) a generalization of Moenck’s algo-
rithm. Later in 1992, Montgomery in his PhD thesis [12]
independently stated and proved a similar generalization of
Moenck’s algorithm with some of the same speedups.

In this section we describe the Fast Euclidean Algorithm
and in the next section we show how to modify it to compute
the smallest ri/ti fast. Our presentation follows that of von
zur Gathen and Gerhard in [4].

Let F be a field and r0, r1 ∈ F [x] with deg r0 ≥ deg r1.
Let

ρi+1ri+1 = ri−1 − qiri,

ρi+1si+1 = si−1 − qisi,

ρi+1ti+1 = ti−1 − qiti,

186

for 1 ≤ i ≤ l, be the results of the Extended Euclidean
Algorithm for inputs r0 and r1, where s0 = t1 = 1, s1 =
t0 = 0 and rl+1 = 0. We let ρi denote the leading coefficient
of the ith remainder. Let Ri = Qi . . . Q1R0, for 1 ≤ i ≤ l,
where

Qi =

»
0 1

1/ρi+1 −qi/ρi+1

–
, R0 =

»
1 0
0 1

–

in F [x]2×2. Then it can be easily proved by induction on i
that

Ri =

»
si ti

si+1 ti+1

–
.

This matrix is of great importance in the design of the Fast
Extended Euclidean Algorithm.

Let f = fnxn + fn−1x
n−1 + . . . + f0 ∈ F [x] and fn �= 0.

The truncated polynomial f � k is defined by

f � k = f quoxn−k = fnxk + fn−1x
k−1 + . . . + fn−k,

for k ∈ Z. The polynomial f � k is of degree k for k ≥ 0 and
its coefficients are the k + 1 highest coefficients of f . The
pairs (f, g) and (f∗, g∗) coincide up to k if

f � k = f∗ � k,

g � (k − (deg f − deg g)) = g∗ � (k − (deg f∗ − deg g∗)),

where f, g, f∗, g∗ ∈ F [x]\{0}, deg f ≥ deg g, deg f∗ ≥ deg g∗

and k ∈ Z.
Following [4], the positive integer ηf,g(k) is defined for any

k ∈ N and f, g ∈ F [x] by

ηf,g(k) = max
0≤j≤l

{j :

jX
i=1

mi ≤ k},

where mi = deg qi and l denotes the number of division
steps in the Euclidean algorithm with inputs f and g. The
following lemma implies that the first ηf,g(k) results of the
Euclidean Algorithm only depend on the top part of the
inputs, which is the basic idea leading to a fast GCD algo-
rithm.

Lemma 3.1. [4, Lemma 11.3] Let k ∈ N, h = ηr0,r1(k)
and h∗ = ηr∗

0 ,r∗
1
(k), with r0, r1, r

∗
0 , r∗1 monic polynomials in

F [x]. If (r0, r1) and (r∗0 , r∗1) coincide up to 2k and k ≥
deg r0 − deg r1, then

1. h = h∗,

2. qi = q∗i for 1 ≤ i ≤ h,

3. ρi = ρ∗
i for 2 ≤ i ≤ h,

where qi, q
∗
i ∈ F [x] and ρi, ρ

∗
i ∈ F are defined by

ri−1 = qiri + ρi+1ri+1 (1 ≤ i ≤ l), rl+1 = 0,

r∗i−1 = q∗i r∗i + ρ∗
i+1r

∗
i+1 (1 ≤ i ≤ l∗), r∗l∗+1 = 0.

Refer to [4] for a detailed proof of this lemma. To improve
the efficiency of the EEA a divide-and-conquer algorithm,
called Fast Extended Euclidean Algorithm, is designed based
on the above lemma. Von zur Gathen and Gerhard in [4, Ch.
11] present Schönhage’s Fast Extended Euclidean Algorithm
for polynomials in F [x], however, the algorithm presented in
the book needs some minor corrections. At our request the
authors sent us a corrected version of their algorithm which
is described below. Though, we have removed some outputs
unnecessary for our purposes.

Fast Extended Euclidean Algorithm (FEEA)
Input: r0 and r1 two monic polynomials in F [x] with n0 =
deg r0 > n1 = deg r1 ≥ 0 and k ∈ N with n0/2 ≤ k ≤ n0

Output: h = ηr0,r1(k) ∈ N, ρh+1 ∈ F , Rh =

»
sh th

sh+1 th+1

–

1. if r1 = 0 or k < n0 − n1 then

return 0, 1,

»
1 0
0 1

–

else if n0 < cutoff then
return EEA(r0, r1, k)

2. k1 ← �k/2�
r∗0 ← r0 � 2k1, r

∗
1 ← r1 � (2k1 − (n0 − n1))

j − 1, ρ∗
j , R∗

j−1 ←FEEA(r∗0 , r∗1 , k1)

3. compute ρj , Rj−1, rj−1, rj and nj = deg rj

(precise computing instructions follow)

4. if rj = 0 or k < n0 − nj then
return j − 1, ρj , Rj−1

5. qj ← rj−1 quo rj

ρj+1 ← lc(rj−1 − qjrj)
rj+1 ← (rj−1 − qjrj)/ρj+1

nj+1 ← deg rj+1

Rj ←
»

0 1
1/ρj+1 −qj/ρj+1

–
Rj−1

6. k2 ← k − (n0 − nj)
r∗j ← rj � 2k2, r∗j+1 ← rj+1 � (2k2 − (nj − nj+1))
h− j, ρ∗

h+1, S∗ ←FEEA(r∗j , r∗j+1, k2)

7. compute ρh+1, S, rh and rh+1

8. return h, ρh+1, SRj

As illustrated above, besides the two monic polynomials
r0 and r1, the algorithm gets a third input k ∈ N. This in-
put is used as an upper bound for the sum of the degrees of
quotients computed in each recursive call to the algorithm.
That is, if h = ηr0,r1(k) denotes the index of the last com-
puted quotient, then we will have

hX
i=1

deg qi ≤ k <

h+1X
i=1

deg qi.

The FEEA divides the problem into two subproblems of
almost the same size, i.e., the sum of the degrees of the
quotients computed in each recursive call is at most k/2.
Note that in this algorithm all elements of the EEA, i.e.,
the qi’s, si’s and ti’s, are computed except the remainders,
the ri’s. However, having sh and th as the entries of the
second row of the output matrix Rh one can easily compute
a single remainder rh by writing rh = shr0 + thr1. It is not
hard to see that rh = gcd(r0, r1), if we set k = deg r0.

According to Lemma 3.1, ρ∗
j is not necessarily equal to ρj ,

and thus Rj−1 and R∗
j−1 are not equal either. Therefore we

use the following relations»
rj−1

r̃j

–
= R∗

j−1

»
r0

r1

–
, Rj−1 =

»
1 0
0 1/lc(r̃j)

–
R∗

j−1,

ρj = ρ∗
j lc(r̃j), rj = r̃j/lc(r̃j),

in step 3 to compute ρj , Rj−1, rj−1 and rj . Similar compu-
tations are performed in step 7 to compute ρh+1, S, rh and

187

rh+1. The algorithm has a time complexity of O(M(k) log k),
where M(k) denotes the number of field operation required
to multiply two univariate polynomials of degree k. Refer
to [5, p. 27] for a detailed cost analysis and a detailed proof
of correctness of the algorithm.

We have implemented the FEEA for polynomials in F [x] =
Zp[x] in Java. We used Karatsuba’s algorithm for univariate
polynomial multiplication in our implementation which is of
time complexity O(nlog2 3) for polynomials of degree n. The
algorithm is not effective in practice for polynomials of low
degree. We use the classical multiplication method for poly-
nomials of degree less than 50 and switch to Karatsuba’s
when the input polynomials have a degree greater than 50.
The following table includes timings (in milliseconds) for
our implementation of the Classical and Karatsuba multi-
plication algorithms over Zp[x], where p is a 15 bit prime
and both input polynomials have degree n. As illustrated
below, the timings of Karatsuba’s algorithm increase by a
factor close to 3 as the degree doubles which confirms that
our implementation is of time complexity O(nlog2 3).

n Karatsuba(ms) Classical(ms)
128 0.34 0.38
256 0.98 1.40
512 2.93 5.40

1024 8.93 21.62
2048 26.48 84.43
4096 79.78 345.67
8192 245.04 1375.42

It turns out that in practice the EEA performs better
than the FEEA as well for polynomials of low degree. Our
implementation of the FEEA beats the EEA when deg r0 =
200. Thus we have used 200 as the value of the cutoff in step
1 of the FEEA. The following figure illustrates the timings
(in ms) of the FEEA on two random polynomials of degree
10000 for different cutoff degrees.

Our Java implementation of the EEA accepts 3 inputs
and returns the same outputs as the FEEA. We are using
the “monic” Euclidean algorithm. The following table in-
cludes our timings for the EEA and the FEEA on random
polynomials of degree n. It shows that we see a significant
speedup by n = 1000.

n EEA(ms) FEEA(ms) r1 r2

1000 373.80 295.63 0.00052 1.26
2000 1427.18 942.83 0.00050 1.51
4000 5602.18 2972.08 0.00049 1.88
8000 22295.47 9588.76 0.00048 2.33
16000 88766.90 31278.50 0.00049 2.84
32000 354085.71 99273.77 0.00048 3.54

r1 = FEEA/(nlog2 3 log n), r2 =EEA/FEEA

4. MQRFR USING FEEA
To make the MQRFR algorithm more efficient we use the

FEEA instead of the EEA. As pointed out before, the FEEA
does not compute the intermediate remainders, but it does
compute all the quotients. Also si and ti are available as the
entries of the first row of Ri. Thus according to lemma 2.2
instead of selecting ri and ti such that deg ri +deg ti is min-
imal, we can return qi the quotient with maximal degree
along with corresponding values of si and ti. The remainder
ri is then obtained from si and ti using two long multiplica-
tions (ri = sif + tig). The following algorithm presents the
FEEA modified to return the quotient of maximal degree.

Modified FEEA (MFEEA)
Input: r0 and r1 two monic polynomials in F [x] with n0 =
deg r0 > n1 = deg r1 ≥ 0 and k ∈ N with n0/2 ≤ k ≤ n0

Output: h = ηr0,r1(k) ∈ N, ρh+1 ∈ F , Rh =

»
sh th

sh+1 th+1

–
,

qmax, smax, tmax

1. if r1 = 0 or k < n0 − n1 then

return 0, 1,

»
1 0
0 1

–
, 1, 1, 0

else if n0 < cutoff then
return EEA(r0, r1, k)

2. k1 ← �k/2�
r∗0 ← r0 � 2k1, r

∗
1 ← r1 � (2k1 − (n0 − n1))

j−1, ρ∗
j , R∗

j−1, qmax, smax, tmax ←MFEEA(r∗0 , r∗1 , k1)

3. compute ρj , Rj−1, rj−1, rj and nj = deg rj

4. if rj = 0 or k < n0 − nj then
return j − 1, ρj , Rj−1, qmax, smax, tmax

5. qj ← rj−1 quo rj

ρj+1 ← lc(rj−1 − qjrj)
rj+1 ← (rj−1 − qjrj)/ρj+1

nj+1 ← deg rj+1

Rj ←
»

0 1
1/ρj+1 −qj/ρj+1

–
Rj−1

if deg qj > deg qmax then
qmax, smax, tmax ← qj , Rj [1, 1], Rj [1, 2]

6. k2 ← k − (n0 − nj)
r∗j ← rj � 2k2, r∗j+1 ← rj+1 � (2k2 − (nj − nj+1))
h−j, ρ∗

h+1, S∗, q∗max, s∗max, t∗max ←MFEEA(r∗j , r∗j+1, k2)
if deg q∗max > deg qmax then

qmax ← q∗maxˆ
smax tmax

˜← ˆ
s∗max t∗max

˜
Rj

7. compute ρh+1, S, rh and rh+1

8. return h, ρh+1, SRj , qmax, smax, tmax

As illustrated above the only modification we have made
to the FEEA is to return three more outputs, i.e., qmax, smax,

188

tmax. Thus assuming the FEEA works correctly, we require
to prove that qmax is the quotient with maximal degree and
smax and tmax have the same index as qmax in the Euclidean
Algorithm with inputs r0 and r1.

We see by induction on k that the results of the recursive
call in step 2 are correct, that is, qmax represents the quotient
with maximal degree in {q1, . . . , qj−1} and smax and tmax are
in the same row with qmax. In step 4 the correct result is
returned, since no other quotient has been computed. We
have

Rj =

»
sj tj

sj+1 tj+1

–
,

thus in step 5 if deg qj > deg qmax then smax and tmax are
easily update by the entries of the first row of Rj . Again
by induction, in step 6 q∗max represents the quotient with
maximal degree in {qj+1, . . . , qh}. But s∗max and t∗max are
not on the same row as q∗max in the Euclidean algorithm for
r0 and r1. Let l represent the index of q∗max in the EEA
for r0 and r1. In step 6, if deg q∗max > deg qmax then we
require to update smax and tmax by sl and tl, respectively.
According to the definition of Rl we have»

sl tl

sl+1 tl+1

–
= Rl = QlQl−1 . . . Qj+1Rj

=

»
s∗max t∗max

m1 m2

–
Rj ,

where m1, m2 ∈ F [x], henceˆ
sl tl

˜
=

ˆ
s∗max t∗max

˜
Rj .

So to update smax and tmax we simply multiply the vectorˆ
s∗max, t

∗
max

˜
by matrix Rj . Therefore, at the end of step 6,

qmax holds the quotient with maximal degree in {q1, . . . , qh}
and smax and tmax have the same index as qmax in the EEA
for r0 and r1. This implies that the final results in step 8 are
correct. Note that the EEA should be modified as well to
return the maximal quotient and the corresponding values
of s and t in step 1. We now show how to call MFEEA to
compute the desired rational function.

Fast Maximal Quotient RFR Algorithm(FMQRFR)
Input: f, g ∈ Zp[x] with g �= 0, deg f > deg g ≥ 0, and
T ∈ N

Output: Either n, d ∈ Zp[x] satisfying n/d ≡ g mod f ,
lc(d) = 1, gcd(n, d) = 1, and deg n + deg d + T < deg f , or
FAIL implying no solution exists

1. r0 ← f/lc(f)
r1 ← g/lc(g)

2. h, ρh+1, Rh, q, s̃, t̃← MFEEA(r0, r1, deg r0)
if deg q ≤ T then return FAIL

3. r̃ ← s̃r0 + t̃r1

if gcd(r̃, t̃) �= 1 then return FAIL

4. n← lc(g)/lc(t̃) · r̃
d← 1/lc(t̃) · t̃
return (n, d)

As pointed out earlier r is obtained from s and t using r =
sf + tg, but s̃ and t̃ that are returned as the corresponding
values of q, the quotient with maximal degree, are off by a

constant factor. From the definitions of s and t we find that
s = s̃/lc(f) and t = t̃/lc(g) and hence

r

t
=

s̃

lc(f)
f +

t̃

lc(g)
g

t̃

lc(g)

=
lc(g)(s̃r0 + t̃r1)

t̃
= lc(g) · r̃

t̃
.

If we let m = deg f , then step 2 takes O(M(m) log m)
operations in Zp. To compute r̃ in step 3, we perform two
multiplications on polynomials of size at most m and one
addition. The total cost for computing r̃ is thus 2M(m) +
O(2m) operations in Zp. Checking the coprimality of r̃ and
t̃, using the FEEA, takes O(M(m) log m) operations in Zp.
Steps 1 and 4 both cost O(m) operations in Zp. Thus the
asymptotic cost of the algorithm is O(M(m) log m).

The following algorithm is an extension of Wang’s algo-
rithm for F [x] and uses the FEEA instead of the EEA.

Fast Wang’s Rational Function Reconstruction Al-
gorithm
Input: f, g ∈ F [x] with F a field, g �= 0 and M = deg f >
deg g ≥ 0
Output: Either n, d ∈ F [x] satisfying n/d ≡ g mod f ,
lc(d) = 1, gcd(n, d) = 1 and deg n + deg d < M , or FAIL
implying no such n/d exists

1. N ← �M/2�
D ←M −N − 1
r0 ← f/lc(f), t0 ← 0
r1 ← g/lc(g), t1 ← 1

2. h, ρh+1, Rh ← FEEA(r0, r1, deg r0 −N − 1)

3. n← rh+1 = sh+1r0 + th+1r1

d← th+1

if gcd(n, d) �= 1 then return FAIL

4. n← lc(g)/lc(d) · n
d← 1/lc(d) · d
return (n, d)

If the FEEA is also used for computing gcd(n, d) in step
3, then the time complexity of Wang’s algorithm would
be O(M(M) log M) as well. Algorithm FMQRFR normally
must compute all the quotients to determine the largest but
Wang’s algorithm stops half way, and hence, is expected to
take half the time (we will confirm this in the next table of
timings). On the other hand Wang’s algorithm outputs n/d
if

deg f ≥ 2max(deg n, deg d).

But the Maximal Quotient algorithm only requires

deg f > deg n + deg d + T,

which requires only one more point than the minimum nec-
essary when T is chosen to be 1, i.e., we require the degree
of the maximal quotient to at least 2. The following table
compares the running time of both algorithms. Columns
2 and 3 illustrate the timings when the EEA is used and
columns 4 and 5 show the timings when the FEEA is used.
We have chosen n/d and f such that deg n = deg d and
deg n + deg d + 2 = deg f . Note, this choice, deg n = deg d,
is the worst case for the maximal quotient algorithm. The
coefficients of f, n and d are chosen at random from Zp. The

189

data shows that Wang’s algorithm (both versions) is almost
2 times faster than the maximal quotient algorithm (both
versions) as predicted. All timings are in milliseconds.

deg f MQRFR Wang FMQRFR Fast Wang
64 2.42 1.24 2.73 1.04

128 7.81 5.04 8.36 4.65
256 29.13 14.88 24.63 14.71
512 118.12 59.87 118.90 44.47

1024 479.20 236.81 430.23 182.26
2048 1825.78 950.20 1352.52 749.38
4096 7264.75 3809.14 4442.87 2374.47

5. OPEN PROBLEMS
Let p be a prime and let n/d be a rational function in

Zp(t). Suppose we pick m distinct points αi from Zp at ran-
dom and suppose we have computed g ∈ Zp[t] satisfying
g ≡ n/d mod f where f = (t−α1)× ...× (t−αm). Now sup-
pose we are attempting to reconstruct n/d but m = deg f ≤
deg n + deg d, that is, we have insufficient points αi to re-
construct n/d.

Suppose we apply maximal quotient rational function re-
construction (algorithm MQRFR in section 2) to inputs f
and g with T = 1, that is, we require that the degree of a
maximal quotient q is at least 2 before accepting the output.
Let x be the probability that algorithm MQRFR succeeds,
that is, it outputs some n̄/d̄ �= n/d with deg q > 1. We make
the following conjecture

Conjecture 5.1.

Prob(x) = Prob(deg q > 1) m− 1

p
.

For m = 2 we can prove equality. For if m = 2, deg g < 2
and deg q > 1 can only happen if the linear coefficient of the
input g is 0 which occurs with probability 1/p. The difficulty
in proving the conjecture for m > 2 is that not all monic
polynomials of degree m are possible for f . Otherwise we
would argue as follows.

Let Pd be the set of polynomials in Zp[t] of degree d.
Suppose f is selected at random from Pm and g is selected
at random from Pk with m > k ≥ 0. Let N be the number
of division steps in the Euclidean algorithm with inputs f
and g. In [8], Ma and von zur Gathen show that the expected
number of division steps E[N] = k + 1 − k/p. This is the
maximum possible number of steps k + 1 less k/p.

Let y = Prob(N = k + 1). Then

E[N] ≤ y(k + 1) + (1− y)k.

Substituting for E[N] we have

k + 1− k/p ≤ y(k + 1) + (1− k)k

from which we obtain y ≥ 1− k/p. Returning to our appli-
cation where deg f = m and deg g < m we find that

Prob(deg q = 1) = Prob(deg g = m− 1 and N = m)

≥ p− 1

p
(1− m− 1

p
).

Thus

Prob(x) = 1− Prob(deg q = 1)

≤ 1−
»

p− 1

p
(1− m− 1

p
)

–
=

m

p
− m− 1

p2
<

m

p
.

Acknowledgment
We gratefully thank Petr Lisonek and the anonymous refer-
ees for their input.

6. REFERENCES
[1] Richard P. Brent, Fred G. Gustavson, and David

Y. Y. Yun. Fast solution of Toeplitz systems of
equations and computation of Padé approximants.
Journal of Algorithms, 1:259–295, 1980.

[2] G. E. Collins and M. J. Encarnacion. Efficient
Rational Number Reconstruction. J. Symbolic
Computation, 20:287–297, 1995.

[3] Mark J. Encarnacion. Computing GCDs of
Polynomials over Algebraic Number Fields. J.
Symbolic Computation, 20(3):299–313, 1995.

[4] Joachim von zur Gathen and Jürgen Gerhard. Modern
Computer Algebra. Cambridge University Press,
second edition, 2003.

[5] Sara Khodadad. Fast Rational Function
Reconstruction. Master’s thesis, Simon Fraser
University (SFU), Burnaby, BC, Canada, 2005.

[6] L. Langemyr and S. McCallum. The computation of
polynomial gcd’s over an algebraic number field. J.
Symbolic Computation, 8:429–448, 1989.

[7] Daniel Lichtblau. Half-gcd and Fast Rational
Recovery. In Proceedings of ISSAC ’05, pages 231–236.
ACM Press: New York, NY, 2005.

[8] Keju Ma and Joachim von zur Gathen. Analysis of
Euclidean Algorithms for Polynomials over Finite
Fields. J. Symbolic Computation, 9:429–455, 1990.

[9] Roman Maeder. Storage Allocation for the Karatsuba
Integer Multipliation Algorithm. In DISCO ’93:
Proceedings of the International Symposium on Design
and Implementation of Symbolic Computation
Systems, pages 59–65. Springer-Verlag, 1993.

[10] R. T. Moenck. Fast computation of gcds. In STOC
’73: Proceedings of the fifth annual ACM Symposium
on Theory of Computing, pages 142–151. ACM Press:
New York, NY, 1973.

[11] Michael Monagan. Maximal quotient rational
reconstruction: An almost optimal algorithm for
rational reconstruction. Proceedings of ISSAC ’04,
pages 243–249. ACM Press: New York, NY, 2004.

[12] Peter Lawrence Montgomery. An FFT extension of
the elliptic curve method of factorization. PhD thesis,
Los Angeles, CA, USA, 1992.

[13] Victor Y. Pan and Xinmao Wang. Acceleration of
Euclidean Algorithm and Extensions. Proceedings of
ISSAC ’02, pages 207–213. ACM Press: New York,
NY, 2002.

[14] A. Schönhage. Schnelle Berechnung von
Kettenbruchentwicklungen. Acta Informatica,
1:139–144, 1971.

[15] Allan Steel. Private communication.

[16] Paul S. Wang. A p-adic Algorithm for Univariate
Partial Fractions. In Proceedings of the fourth ACM
Symposium on Symbolic and Algebraic Computation,
pages 212–217. ACM Press: New York, NY, 1981.

190

