
On Factorization of Multivariate Polynomials over
Algebraic Number and Function Fields ∗

Seyed Mohammad Mahdi Javadi
School of Computing Science

Simon Fraser University
Burnaby, B.C. Canada.

sjavadi@cecm.sfu.ca.

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

ABSTRACT
We present an efficient algorithm for factoring a multivari-
ate polynomial f ∈ L[x1, . . . , xv] where L is an algebraic
function field with k ≥ 0 parameters t1, . . . , tk and r ≥ 0
field extensions. Our algorithm uses Hensel lifting and ex-
tends the EEZ algorithm of Wang which was designed for
factorization over Q. We also give a multivariate p-adic lift-
ing algorithm which uses sparse interpolation. This enables
us to avoid using poor bounds on the size of the integer co-
efficients in the factorization of f when using Hensel lifting.

We have implemented our algorithm in Maple 13. We pro-
vide timings demonstrating the efficiency of our algorithm.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms – Algebraic algo-
rithms;

General Terms: Algorithms, Theory.

Keywords: factorization algorithms, Hensel lifting, sparse
interpolation, algebraic function fields.

1. INTRODUCTION
In a computer algebra system, computations with polyno-

mials over algebraic function fields such as computing GCDs
and factorization arise, for example, when one solves non-
linear polynomial equations involving parameters.

One way to factor f ∈ L[x1, . . . , xv] is to use Trager’s algo-
rithm [6]. His algorithm computes and factors the norm(f)
which is a polynomial in x1, . . . , xv over Q(t1, . . . , tk). It ex-
ploits the fact that if fi is an irreducible factor of f then
firstly hi = norm(fi) is an irreducible factor of norm(f) and
secondly fi| gcd(f, hi). One problem with this method is
that the norm(f) can be much larger than f . For example
consider the following polynomial from Kotsireas [2].

f =
19

2
c24−
√

11
√

5
√

2c5c4−2
√

5c1c2−6
√

2c3c4+
3

2
c20+

23

2
c25+

∗Supported by NSERC of Canada and the MITACS NCE
of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$5.00.

7

2
c21−
√

7
√

3
√

2c3c2 +
11

2
c22−
√

3
√

2c0c1 +
15

2
c23−

10681741

1985
.

Here L = Q(
√

2,
√

3,
√

5,
√

7,
√

11) is a number field and f ∈
L[c0, . . . , c5]. The norm of f is degree 64 in c0, c1, c2, c3, c4, c5
and has about 3 million terms and the integers in the ratio-
nal coefficients have over 200 digits so it is not easy to com-
pute norm(f) let alone factor it. But we can easily discover
that f is irreducible by evaluating the variables c0, . . . , c4 at
small integers and then using Trager’s algorithm to factor
norm(f), a polynomial of degree 64 in c5 over Q. In this pa-
per we generalize this to factor polynomials in L[x1, . . . , xv]
using Hensel lifting. We evaluate all parameters and all
variables except one at small integers thus reducing the fac-
torization in L[x1, . . . , xv] to univariate factorization in x1

over a number field. For notational purposes, we use L(α)
to indicate the number field obtained by evaluating the pa-
rameters t1, . . . , tk in L at an evaluation point α ∈ Zk.

Some algorithms (See [7, 1, 10]) have been developed for
factorization over an algebraic field L. A challenge is to solve
the leading coefficient problem for lifting non-monic polyno-
mials. Abbott in [1], suggests using a trick by Kaltofen
in [4] which recursively computes the leading coefficients
from their bivariate images using Hensel lifting. Our ap-
proach is to modify Wang’s ingenious method given in [8]
for factoring polynomials over Z. His idea is to first factor
the leading coefficient l(x2, . . . , xv) = lcx1(f) of the input
polynomial f in the main variable x1, recursively. Then
evaluate all the variables except x1 at an evaluation point
α ∈ Zv−1 and factor the univariate polynomial f(α). Now
using the integer leading coefficients of the univariate fac-
tors, one can determine which factor of l(x2, . . . , xv) belongs
to the leading coefficient of which factor of f(α). To do
this, Wang identifies unique prime divisors for each factor
of l(x2, . . . , xv) evaluated at α by computing integer GCDs
only. Unfortunately this idea does not generalize to L. We
show an example.

Example 1 Let L = Q(
√
−5) and

f = ((y +
√
−5 + 1)x+ 1)((y +

√
−5− 1)x+ 1)

= (y2 + 2
√
−5y − 6)x2 + 2(y +

√
−5)x+ 1.

We have lcx(f) = y2 + 2
√
−5y − 6 ∈ L[y], so if we evaluate

y at α ∈ Z, we will obtain an element of Z[
√
−5]. But

Z[
√
−5] is not a unique factorization domain and GCDs do

not always exist in this ring. For example, for y = 0 we have
lcx(f)(y = 0) = −6 = −2× 3 = −(1−

√
−5)× (1 +

√
−5).

Another problem is that one needs to do computations
with fractions in Hensel lifting. To solve this problem, one

199

can work modulo a power of a prime, pl. This modulus, pl,
must be at least twice the largest integer coefficient in any
factor of f . Unfortunately the known bounds on the sizes
of the integer coefficients in the factors of f are usually very
big which makes the computations really slow. In [1] it is
suggested that it is better not to do the calculations modulo
pl because of the bad bounds but instead to lift over Q.
In our algorithm we choose a prime p of a modest size and
then lift the integer coefficients to their correct values using a
new multivariate p-adic lifting algorithm which uses a sparse
interpolation method similar to Zippel’s algorithm [11].

Our paper is organized as follows. In Section 2 we present
an example showing the main flow and the key features of
our algorithm. We then identify possible problems that can
occur and how the new algorithm deals with them in Sec-
tion 3. In Section 4 we present our new algorithm. Finally,
in Section 5 we compare Maple implementations of our al-
gorithm with Trager’s algorithm for a set of polynomials.

2. AN EXAMPLE
Let F = Q(t1, . . . , tk), k ≥ 0. For i, 1 ≤ i ≤ r, let

mi(z1, . . . , zi) ∈ F [z1, . . . , zi] be monic and irreducible over
F [z1, . . . , zi−1]/ 〈m1, . . . ,mi−1〉. Let L = F [z1, . . . , zr]/
〈m1, . . . ,mr〉. L is an algebraic function field in k param-
eters t1, . . . , tk (this also includes number fields). Let f
be a non-zero square-free polynomial in L[x1, . . . , xv]. Our
problem is given f , compute f1, f2, . . . , fn such that f =
lcx1,...,xv (f) × f1 × f2 × · · · × fn where fi is a monic irre-
ducible polynomial in L[x1, . . . , xv].

Our algorithm works with the monic associate f̃ of the
input f and primitive associates of the minimal polynomials
which we now define.

Definition 1 Let D = Z[t1, . . . , tk]. A non-zero polyno-
mial in D[z1, . . . , zr, x1, . . . , xv] is said to be primitive
wrt (z1, . . . , zr, x1, . . . , xv) if the GCD of its coefficients in
D is 1. Let f be non-zero in L[x1, . . . , xv]. The denomi-
nator of f is the polynomial den(f) ∈ D of least total de-
gree in (t1, . . . , tk) and with smallest integer content such
that den(f)f is in D[z1, . . . , zr, x1, . . . , xv]. The primitive
associate prim(f) of f is the associate of den(f)f which is
primitive in D[z1, . . . , zr, x] and has positive leading coeffi-

cient in a term ordering. The monic associate f̃ of f is
defined as f̃ = prim(monic(f)). Here monic(f) is defined
by lcx1,...,xv (f)−1f .

Example 2 Let f = 3tx2+6tx/(t2 − 1)+30tz/(1− t) where
m1(z) = z2 − t. Here f ∈ L[x] where L = Q(t)[z]/

˙
z2 − t

¸
is an algebraic function field in one parameter t. We have
den(f) = t2 − 1 and f̃ = prim(f) = den(f)f/(3t) = (t2 −
1)x+2x−10z(t+1). For f = 2zx2 +2/t we have prim(f) =

tzx2 + 1, monic(f) = x2 + z/t2 and f̃ = t2x2 + z.

We demonstrate our algorithm using the following exam-
ple using t for a parameter and x and y for variables.

Example 3 Let m(z) = z2 − t3 + t and

f = (t3 − t)y2x2 + (20t3z − t2z − 20tz + z)yx2+

(−20t5+40t3−20t)x2+(−tz+21z)yx+(421t3−421t)x−21t

= (t3 − t)(xy + 20zx− z

t2 − 1
)(xy − zx

t
+

21z

t3 − t).

Here L = Q(t)[z]/
˙
z2 − t3 + t

¸
and f ∈ L[x, y]. We have

prim(f) = f and m̃ = m. The first step in our algorithm is
to eliminate any algebraic elements in γ = lcx,y(prim(f)) =

t3 − t by computing f̃ . This is done to avoid any fractions
in the parameter t in the Hensel lifting. Since γ does not
involve the algebraic element z, we have f̃ = prim(f).

Suppose we choose x as the main variable. In order to use
Hensel lifting we factor the leading coefficient

lcx(f̃) = (t3−t)y2+(20t3z−t2z−20tz+z)y−20t5+40t3−20t.

We do this by recursively using our algorithm in one less
variable. We will obtain

lcx(f̃) = γ × l1 × l2 = (t3 − t)(y − z/t)(y + 20z).

Now we clear the denominators in lis to obtain lcx(f̃) =

γ̄ × l̃1 × l̃2 = (t2 − 1)(ty− z)(y+ 20z). In order to factor f̃ ,
we evaluate it at a point α for all the parameters and vari-
ables except the main variable, x. We factor the resulting
univariate polynomial in Q[z][x]/ 〈m̃(α)〉 using Trager’s al-
gorithm and then we lift the variables and parameters one by
one using Hensel lifting. Suppose we choose the evaluation
point to be α = (t = 12, y = 5). This evaluation point must
satisfy certain conditions that we will discuss in Section 3.2.
We have

f̃(α) = (170885z − 4864860)x2 + (45z + 722436)x− 252

and m̃(α) = z2 − 1716 which is irreducible hence L(α) is a

field. Using Trager’s algorithm, we factor f̃(α) over L(α) to
get

f̃(α) = lcx(f̃(α))× u1 × u2 = (170885z − 4864860)×

(x+
1

19630325
z − 48

137275
)× (x+

105

22451
z +

21

157
).

We factor γ̄ ∈ Z[t] to obtain γ̄ = t2 − 1 = l̃3 × l̃4 = (t −
1)(t+ 1). Before doing Hensel lifting, we determine the true

leading coefficient of each factor of f̃ . To do this, we use the
denominators of u1 and u2. We know that

di = den(ui) | den(
1

lcx(f̃i(α))
)

where f̃i is a factor of f̃ . We have

d1 = den(u1) = 19630325 = (5)2(11)(13)(17)2(19),

d2 = den(u2) = 22451 = (11)(13)(157),

D1 = den(1/l̃1(α)) = 1884 = (2)3(3)(157),

D2 = den(1/l̃2(α)) = (5)2(17)2(19),

D3 = den(1/l̃3(α)) = 11,

D4 = den(1/l̃4(α)) = 13.

The evaluation point α was chosen so that Di’s have a set
of distinct prime divisors, namely {3, 17, 11, 13}. Here Di’s
are relatively prime so we have

gcd(di, Dj) > 1⇒ l̃j | l̄i

where l̄i = lcx1(f̃i). Using this we obtain l̄1 = (t2 − 1)(y +
20z) and l̄2 = (t2 − 1)(ty − z) and we have

f̃ ≡ 1

t2 − 1
× (l̄1(α)u1)× (l̄2(α)u2) mod 〈t− 12, y − 5〉 .

200

To avoid fractions in Q(t) in the Hensel lifting we multiply

f̃ :=
l̄1 × l̄2
lcx1(f̃)

× f̃ = (t2 − 1)× f̃ .

Now we use Hensel lifting to lift the parameter t and the
variable y in the other coefficients of the f̃i. To avoid any
computations with fractions in Q, we do the calculations
modulo a prime, say p = 17. After applying Hensel lift-
ing we obtain the factors f̄1 = ((t2 − 1)(y + 20z)x− z) and

f̄2 = ((t2 − 1)(ty − z)x + 4z) s.t. f̃ ≡ f̄1 × f̄2 (mod 17).
The final task is to find the integer coefficients of f̄1 and
f̄2. To do this, we use sparse interpolation. We have e1 =
f̃ − f̄1 × f̄2 mod 〈m̃〉, the first error polynomial over Z. We
want to find σ1, σ2 ∈ L[x, y] s.t.

f̃ ≡ (f̄1 + σ1 × p)(f̄2 + σ2 × p) mod p2.

Assuming that our choice of α and p has not caused any
terms in the polynomials f̄1 and f̄2 to vanish, we know that
the monomials in σ1 and σ2 are the same as those in f̄1 and
f̄2 respectively, so we have the assumed forms for σ1 and
σ2. Since f̄1 and f̄2 have correct leading coefficients we have
σ1 = Az and σ2 = Bz for unknown coefficients A and B.
To find the values for A and B we have

(σ1 × f̄2 + σ2 × f̄1) mod 〈m̃〉 − e1
p
≡ 0 mod p.

After equating every coefficient in x, y, z and t in the above
expression to zero, we get the following linear system:

{A = 0,−B + 1 = 0, B − 1 = 0,−1− 4A+B = 0, 1−B + 4 = 0,

A = 0,−A− 20 + 20B = 0, 2A+ 40− 40B = 0,−A = 0}.

Solving modulo p, we get A = 0 and B = 1 so we update

f̄1 := f̄1 + σ1 × p = ((t2 − 1)(y + 20z)x− z)

and

f̄2 := f̄2 + σ2 × p = ((t2 − 1)(ty − z)x+ 21z).

Now we have f̃ ≡ f̄1 × f̄2 mod p2. This time the new error
e2 = f̃ − f̄1 × f̄2 mod 〈m̃〉 is zero, so we have f̃ = f̄1 × f̄2.
To complete the factorization of f we have f = lcx,y(f) ×
monic(f̄1)×monic(f̄2), thus

f = (t3 − t)(xy + 20zx− z

t2 − 1
)(xy − zx

t
+

21z

t3 − t)

and we are done.

3. PROBLEMS
In the example we mentioned that the evaluation point

must satisfy certain conditions in order for the algorithm
to work properly. Another issue is the defect of the alge-
braic function field L which is the biggest denominator of
any algebraic integer in L (See [1, 9]). Here we identify all
problems.

3.1 The Defect
Unlike factorization over Q, when factoring a polynomial

f̃ over the algebraic field L, the leading coefficient of a factor
f̃i in the variables x1, . . . , xv might not divide the leading co-
efficient of f̃ , i.e. lcx1,...,xv (f̃i) - lcx1,...,xv (f̃) in Z[t1, . . . , tk].

Example 4 Let m = z2 − t3, L = Q(t)[z]/ 〈m〉 and f =

x2 − t. We have f̃ = f and

f = (x− z

t
)(x+

z

t
) =

1

t2
(tx− z)(tx+ z).

Here f̃1 = tx− z but lcx(f̃1) = t - lcx(f̃) = 1.

The denominator t in this example is a divisor of the defect
of the algebraic function field L.

Theorem 1 (See [1]) The defect is the biggest square
that divides ∆, the discriminant of the algebraic field.

When r = 1 (one field extension), ∆ = resz1(M,M ′)
where M = m̃1. For example, for m̃ = z2 − t3 we have
∆ = resz(z2 − t3, 2z) = −4t3 and hence 2t is the defect.

Theorem 2 (See [1]) Let di = degzi
(mi). The discrimi-

nant of L is

∆ =

r−1Y
i=1

N1(N2(. . . (Ni−1(discr(m̃i)
di+1...dr)) . . .))

where Ni(f) = reszi(f, m̃i) and discr(m̃i) = reszi(Mi,M
′
i)

where Mi = m̃i.

Suppose using Theorem 2 we have computed the discrim-
inant ∆ ∈ Z[t1, . . . , tk]. Let δ×De1

1 ×· · ·×D
ek
k be a square-

free factorization of ∆ where δ ∈ Z. Since we want to avoid
integer factorization, we choose D to be an integer multiple
of the defect:

D = δ ×Db
e1
2 c

1 × · · · ×Db
ek
2 c

k .

Theorem 3 (See [9]) If f̃i is a factor of f̃ and D is an
integral multiple of the defect, then

lcx1,...,xv (f̃i) | D× lcx1,...,xv (f̃)

Remark 1 To compute an integral multiple of D in our
algorithm, we compute ∆ using Theorem 2. We then do a
square-free factorization of ∆/c where c = contt1,...,tk (∆) ∈
Z is the integer content of ∆, to find the biggest square D
which divides ∆/c. We use c×D as the integral multiple of
the defect.

Remark 2 As seen in Example 3, the leading coefficient
of f̃ (lcx1,...,xv (f̃) ∈ Z[t1, . . . , tk]) may not split among the

leading coefficients of the factors. That is
Qn

i=1 lcx1,...,xv (f̃i)

may not divide Dl × lcx1,...,xv (f̃) for any l ∈ Z+.

3.2 Good and Lucky Evaluation Points
Definition 2 (Good Evaluation Points)
Let α = (t1 = α1, . . . , tk = αk, x2 = β2, . . . , xv = βv) ∈

Zk+v−1 be the evaluation point that we choose in our algo-
rithm to factor the univariate polynomial f̃(α). We impose
the following conditions on α. We say α is good if:

1. The leading coefficient of f̃ in the main variable x1

and the leading coefficient of m̃i in zi do not vanish
after evaluating at α, i.e. degx1

(f̃) = degx1
(f̃(α)) and

degzi
(m̃i) = degzi

(m̃i(α)).

2. L(α) remains a field so that we still have unique factor-

ization of f̃(α). As an example, the evaluation point
t = 1 is not a good choice for our Example 2 because
the minimal polynomial z2 − t evaluated at this point
is no longer irreducible.

201

3. The polynomial f̃ evaluated at α remains square-free
in x1, i.e. gcd(f̃(α), f̃ ′(α)) = 1 in L(α)[x1] , so that
we can apply Hensel lifting.

4. The fourth condition on the evaluation point α is to
be able to distribute factors of lcx1(f̃) to the monic
univariate factors u1, . . . , un where ui ∈ L(α)[x1] and

f̃(α) = lcx1(f̃)(α)× u1 × · · · × un.

Suppose γ× l̂e1
1 ×· · ·× l̂em

m is the factorization of lcx1(f̃)

and D is the defect. Here γ ∈ Z[t1, . . . , tk] and l̂ ∈
L[x2, . . . , xn]. Let β = D× γ = Ω× βc1

1 × β
c2
2 × · · · ×

β
ck
k where Ω ∈ Z and β ∈ Z[t1, . . . , tk]. Let d̄i =

den(1/l̂i(α)). In order to be able to uniquely distribute

the factors of D× lcx1(f̃) to the univariate factors, we
require that numbers in the set

A = {β1(α), . . . , βk(α), d̄1, . . . , d̄m}

have distinct prime divisors that do not divide Ω (See
Example 5 below).

Similarly, a prime p is said to be a good prime if condi-
tions 1 and 3 above are satisfied modulo p.

Example 5 In Example 3 we have lcx(ũ1) = 19630325,

lcx(ũ2) = 22451. We have β1 = t − 1, β2 = t + 1, l̂1 =

ty − z, l̂2 = y + 20z and Ω = 2. We can not use the eval-
uation point α = (t = 3, y = 5) because the numbers in
A = {2 = (2), 4 = (2)2, 417 = (3)(139), 9551 = (9551)} do
not have distinct prime divisors. Note that we can still dis-
tribute the last two factors of the leading coefficient using
this evaluation point.

Remark 3 Condition 4 will not be satisfied, no matter what
α is, if any two irreducible factors of lcx1(f̃) have the same

norm, i.e. ∃i, j : norm(l̂i) = norm(l̂j) where l̂i and l̂j are

irreducible factors of lcx1(f̃). In this case, the denominators

d̄i = den(1/l̂i(α)) and d̄j = den(1/l̂j(α)) will be images of

the same polynomial norm(l̂i) = norm(l̂j) (See [6]). In this
case we need to do something else. The simplest solution is
to shift the variables x2, x3, . . . in the input polynomial by
computing

f̃ := f̃(x1, x1 + c2x2, x1 + c3x3, . . . , x1 + cvxv)

for some ci ∈ Z. Now lcx1(f̃) ∈ Z[t1, . . . , tk], i.e. the leading

coefficient of f̃ in x1 will not involve any of the variables
x2, x3, . . . , xv. The following is an example.

Example 6 Let m̃ = z2−t and f̃ = ((y+z)x+t)((y−z)x+

t). We have lcx(f̃) = l̂1× l̂2 = (y−z)(y+z) and norm(l̂1) =

norm(l̂2) = y2 − t. If we choose α = (y = 1, t = 6) we will

have d̄1 = den(1/l̂1(α)) = 5 and d̄2 = den(1/l̂2(α)) = 5
and the set A = {5, 5} will not have a set of distinct prime
divisors. If we shift the variable y to x + 3y, we will get
f̃ := f̃(x, x+ 3y) = (x2 + (3y + z)x+ t)(x2 + (3y − z)x+ t)

and lcx(f̃) = 1.

Definition 3 (Lucky Evaluation Point) A good evalua-
tion point α ∈ Zv+k−1 is said to be lucky if it satisfies the
following conditions, otherwise it is unlucky.

(i) The number of irreducible factors of f̃(α) over L(α) is

the same as the number of irreducible factors of f̃ .

(ii) If l̂i | lcx1(f̃j) where f̃j is an irreducible factor of f̃

then gcd(den(1/l̂i(α)), lcx1(ũj)) 6= 1.

(iii) If βi | lcx1(f̃j) then gcd(βi(α), lcx1(ũj)) 6= 1

(iv) α does not annihilate any terms of any factor f̃i of f̃
(See Example 7 below).

Similarly, a good prime p is said to be lucky if it does not
annihilate any terms of any factor f̃i of f̃ . If the evaluation
point α or prime p is unlucky, the algorithm must detect this
and restart using a new good evaluation point.

Example 7 Let f̃ = f̃1 × f̃2 where f̃1 = x2 − (t − 15)zx −
tz + 1 and f̃2 = x3 − 17tzx+ 1 where z =

√
t− 1. Here the

evaluation point t = 15 is good but it is unlucky because it
annihilates the term (t − 15)zx in f̃1. Similarly, the prime

p = 17 is unlucky because the term 17tzx in f̃2 vanishes
modulo p. Also, t = 0 is unlucky because f̃2(t = 0) factors.

Remark 4 Since we will use sparse interpolation to lift the
integer coefficients of the factors computed using Hensel lift-
ing, the evaluation point α and the prime p must not an-
nihilate any terms in any factors of f̃ . Unfortunately we
will not be able to identify unlucky evaluation points and
primes in advance. Instead, if α is unlucky or p is unlucky
and the form of any of the correcting polynomials σ1, σ2, . . .
is wrong, the system of linear equations in the sparse in-
terpolation would be inconsistent with high probability. To
decrease the probability of choosing an evaluation point (or

a prime) that annihilates terms in factors of f̃ , one should
choose α (and p) at random from a large set of evaluation
points (or primes), e.g. p = 231 − 1 and α ∈ Zp at random.

Remark 5 If α is unlucky and there are extraneous factors
in the factorization of f̃(α) then Hensel lifting will fail with
high probability. Hensel lifting may succeed modulo p with
low probability if the prime p in Hensel lifting is also unlucky
and results in extraneous factors in f̃ mod p corresponding
to those of f̃(α).

Example 8 Suppose f̃ = x2 + 17(t − 1)zx − t2 and z =√
t+ 1. The evaluation point α = (t = 1) is good but unlucky

because f̃ is irreducible but f̃(α) = (x − 1)(x + 1). If we
also chose p = 17, Hensel lifting will succeed and return
(x− t)(x+ t).

If Hensel lifting does not fail when α is unlucky, then we
will not be able to lift the integer coefficients of factors of f̃
and the algorithm will restart by choosing a new evaluation
point.

3.3 Degree Bound for the Parameters
In order to use Hensel lifting, we need to have bounds on

the degrees of the parameters and variables in the factors of
f̃ . Unlike factorization over the rationals, degti

(f̃i) is not

necessarily bounded by degti
(f̃).

Example 9 Let m = z2 − 1
t3

and f̃ = x2 − t. We have

f̃ = f̃1f̃2 = (x+ t2z)(x− t2z).

Here degt f̃1 = degt f̃2 = 2 > degt f̃ = 1.

202

In [1], Abbott gives a possible bound Ti on the degree of
each factor in ti based on Trager’s algorithm which is usu-
ally much bigger than the actual degrees of the factors. In
our algorithm when we lift the parameter ti in the factor-
ization of f̃ , as soon as the factors have been lifted to the
correct degree, the error would be zero with high probability
and the algorithm succeeds. However if the evaluation point
is unlucky, our algorithm will have to lift the parameter ti
to the degree Ti before realizing it. This happens with low
probability. Instead of using the bad bound Ti, we start
the algorithm with a heuristic bound T for the degree of
the parameters. Now Hensel lifting fails if either the eval-
uation point is unlucky or the heuristic bound T is not big
enough. In this case, we will double the heuristic bound,
i.e. T := 2 × T , and restart the algorithm by choosing a
new evaluation point. In this way, we will eventually get a
good evaluation point and a big enough bound T and Hensel
lifting will eventually succeed.

In our implementation we choose the initial bound T based
on the following conjecture from Abbott [1]:

degti
(f̃i) ≤ degti

(f̃) +

rX
j=1

degti
(m̃j).

3.4 Numerical Bound
Most algorithms that use Hensel lifting (See [10, 1]) either

work over Q or work modulo a power of a prime which must
be larger than twice the size of the largest integer coefficients
in the factors of f̃ . Abbott in [1] presents a bound for this
but his bound is very poor. The following is an example
from [1].

Example 10 Let m̃ = z2 − 4t − 1 and f̃ = x2 + x − t =
(x+ 1+z

2
)(x+ 1−z

2
). The bound given by Abbott for factoring

f̃ is greater than 5000000.

The poor bound leads to an unnecessarily large modulus
which slows Hensel lifting down. Instead, we work modulo a
machine prime p and then lift the integer coefficients using
our sparse p-adic lifting algorithm if necessary. We still need
a bound for the case where α is unlucky and Hensel lifting
has not detected this due to the unlucky choice of the prime
p (See Example 8). For this, we choose a heuristic bound B.
Any good estimate for B will work. Now if the sparse p-adic
lifting fails, either α is unlucky or p is unlucky or the bound
B is not big enough. In this case, we square the bound,
i.e. B := B2, and restart the algorithm by using a new
evaluation point α and new prime p. In this way, we will
eventually get a lucky evaluation point and a lucky prime
and a bound big enough to lift the integer coefficients.

4. THE ALGORITHM
Algorithm efactor
Input: f ∈ L[x1, x2, . . . , xv] where L is the algebraic function

field.
Output: Factorization of f : f = l× fe1

1 × · · · × f
en
n where fi is

a monic irreducible polynomial and l = lcx1,...,xv (f).
1: If f ∈ L, return f .
2: Let c = contx1 (f) ∈ L[x2, . . . , xn] be the content of f . If

c 6= 1 then factor c and f/c separately using Algorithm efactor
and return the combined result.

3: Do a square-free factorization of f . Call algorithm 1 on each
square-free factor and return the result.

Algorithm 1: Main algorithm
Input: Square-free f ∈ L[x1, x2, . . . , xv] where contx1 (f) = 1.
Output: Factorization of f : f = l× f1 × f2 × · · · × fn where fi

is monic and l = lcx1,...,xv (f).

1: Compute f̃ (See Definition 1).
2: Compute D, an integral multiple of the defect of the algebraic

field L (See Theorem 2).
3: if v = 1 (univariate case) then

4: Call algorithm 3 on f̃ and D and return the result.
5: end if
6: Choose a heuristic bound B for the largest integer coefficient

in the factors of f̃ .

7: Let T = maxk
i=1 (degti

(f̃) +
Pr

j=1 degti
m̃j)

(Heuristic bound on the degree of f̃ in any parameter: Ab-
bott’s conjecture)

8: Factor lcx1 (f̃) ∈ L[x2, . . . , xv] by calling algorithm efactor.

Let lcx1 (f̃) = γ × le1
1 × l

e2
2 × · · · × l

em
m where li is monic.

9: Compute l̃i. Find γ̄, D̄ ∈ Z[t1, . . . , tk] s.t. D̄ × lcx1 (f̃) =

γ̄×
Qm

i=1 lcx2,...,xv (l̃i). Update f̃ := D̄× f̃ . (Note D̄ | Dc for

some c ∈ Z+).
10: Main Loop: Choose a new good evaluation point

α = (t1 = α1, t2 = α2, . . . , tk = αk, x2 = β2, . . . , xv = βv)
that satisfies the requirements of Definition 2 in Section 3.2.

11: Let Di = den(l̃i(α)−1). If ∃i, j : i 6= j,Di = Dj then shift

the variables x2, . . . , xv in f̃ , call Algorithm 1 recursively on

the shifted f̃ , and undo the shift in the factors and return.
(See Example 6).

12: Using Trager’s algorithm factor f̃(α) to obtain f̃(α) = Ω′ ×
u1 × · · · × un where Ω′ = lcx1 (f̃)(α) ∈ Q[z1, . . . , zr]. If n = 1

then return l ×monic(f̃) (f̃ is irreducible)

13: Using algorithm 5 on inputs {u1, . . . , un}, lcx1 (f̃) = γ̄× l̃e1
1 ×

l̃e2
2 × · · · × l̃

em
m , the evaluation point α, D and {D1, . . . , Dm}

compute the true leading coefficients of each univariate factor

{l̄1, l̄2, . . . , l̄n}. If this fails, go to step 10. Note that f̃ may
be updated in order to distribute the integer content of D ×
lcx1 (f̃).

14: Compute δ, l̂ ∈ Z[t1, . . . , tk] s.t. δ × lcx1,...,xv (f̃) = l̂ ×Qn
i=1 lcx2,...,xv (l̄i). (δ | Dc for some c ∈ Z+ and l̂ is a factor

of lcx1,...,xv (f̃) that is not in l1, . . . , ln).

15: Set f̃ := δf̃ . At this point we have

f̃(α) = l̂(α)× (l̄1(α)u1)× · · · × (l̄n(α)un).

16: Choose a new good prime p satisfying lcx1 (f̃(α)) mod p 6= 0,

lczi (m̃i(α)) mod p 6= 0 and f̃(α) is square-free modulo p.

17: Using algebraic Hensel lifting on inputs f̃ , l̂, the set of univari-
ate images {u1, . . . , un}, the set of corresponding true lead-
ing coefficients {l̄1, l̄2, . . . , l̄n}, the prime p, the bound T and
the evaluation point α, lift the variables x2, x3, . . . , xv and

the parameters t1, . . . , tk to obtain f̃ = l̂ × f̄1 × f̄2 × · · · ×
f̄n mod 〈m̃1, . . . , m̃r, p〉.

18: If Hensel lifting fails then Set T := 2×T and go to Step 10.

19: Call algorithm 2 on inputs f̃ , f̄1, f̄2, . . . , f̄n, l̂, the prime p,
the bound B and {l1, l2, . . . , ln}. If this fails, set B := B2

and go to step 10 otherwise let f ′1, f
′
2, . . . , f

′
n be the output

s.t. f̃ = l̂ × f ′1 × · · · × f ′n over L.
20: return lcx1,...,xv (f)×monic(f ′1)× · · · ×monic(f ′n)

Algorithm 2: Sparse p-adic lifting
Input: f̃ , f̃1, . . . , f̃n ∈ L[x1, . . . , xv], l̂ ∈ Z[t1, . . . , tk] and p s.t.

f̃ − l̂ × f̃1 × f̃2 × · · · × f̃n = 0 mod 〈m̃1, . . . , m̃r, p〉. The
numerical bound B and {l1, . . . , ln} the set of the leading
coefficients of the factors.

Output: Either FAIL, if the evaluation point is unlucky or poly-

nomials h1, h2, . . . , hn s.t. f̃ = l̂ × h1 × · · · × hn over L.

1: Let hi be f̃i with its leading coefficient replaced by li.

2: Let e = f̃ − l̂ × h1 × · · · × hn mod 〈m̃1, . . . , m̃r〉. (Note that

degx1
(e) < degx1

(f̃))

203

3: Let P = p.

4: Suppose f̃i =
PTi

j=1 aijMij with aij ∈ Zp and Mij monomi-

als.
5: Let σi =

PTi
j=1 AijMij where Aij is an unknown coefficient.

6: while e 6= 0 and P < 2B do
7: e′ = e/P (exact division)

8: Let pz = e′ − l̂ ×
Pn

i=1 σi

Qn
j=1 hj

hi
mod 〈m̃1, . . . , m̃r〉.

9: Solve for Aijs by collecting and equating coefficients of pz

in x1, . . . , xv , t1, . . . , tk and z1, . . . , zr to zero modulo P .
10: If the system of linear equations is inconsistent then return

FAIL. (Annihilated term in the form due to the choice of
the modulus)

11: Update hi := hi + σi × P for 1 ≤ i ≤ n.
12: Set P := P 2

13: Set e = f̃ − l̂ × h1 × · · · × hn mod 〈m̃1, . . . , m̃r〉.
14: end while
15: If e = 0 then return h1, h2, . . . , hn else return FAIL.

Algorithm 3: Univariate factorization
Input: Square-free f ∈ L[x1] and D the defect of L.
Output: Unique factorization of f = lcx1 (f)× f1× f2×· · ·× fn

over L s.t. fi is monic in x1.

1: Compute f̃ (See Definition 1) and Let l̄ = lcx1 (f̃).
2: Choose a heuristic bound B on the integer coefficients of the

factors of f̃ .

3: Let T = maxk
i=1 (degti

(f̃) +
Pr

j=1 degti
m̃j)

(Heuristic bound on the degree of f̃ in any parameter: Ab-
bott’s conjecture).

4: Factor γ = D × l̄ ∈ Z[t1, . . . , tk] over Z to obtain γ = Ω ×
βc1
1 × · · · × β

ck′
k′ .

5: Main Loop: Choose a new good evaluation point α = (t1 =
α1, . . . , tk = αk) that satisfies the requirements of definition
2.

6: Using Trager’s algorithm, factor h = f̃(α) = l̄(α) × h1 ×
h2 × · · · × hn over the algebraic number field. Note that
lcx1 (hi) = 1.

7: Compute h̃i and let d̄i = lcx1 (hi) ∈ Z. Find the biggest eij

s.t. β
eij

i | d̄j . Let li = β
e1i
1 × · · · × βek′i

k′ . Distribute Ω ∈ Z
to li’s and if needed, update f̃ and h̃i. At this point we have

li = lcx1 (f̃i).

8: Compute δ, l̂ ∈ Z[t1, . . . , tk] s.t. δ × l̄ = l̂ ×
Qn

i=1 li. (δ | Dc

for some c ∈ Z and l̂ is a factor of lcx1 (f̃) that is not in
l1, . . . , ln)

9: Let f̂ = δf̃ (f̂(α) = l̂(α)× h̃1 × h̃2 × · · · × h̃n).

10: Choose a new good prime p satisfying lcx1 (f̃(α)) mod p 6= 0,

lczi (m̃i(α)) mod p 6= 0 and f̃(α) is square-free modulo p.

11: Lift the parameters {t1, . . . , tk} in f̂(α)− l̂× h̃1 × h̃2 × · · · ×
h̃n ≡ 0 mod p using Hensel lifting with li ∈ Z[t1, . . . , tk] as

the true leading coefficient of h̃i and T as the degree bound. If
this fails, set T := 2×T and go to step 5 (unlucky evaluation
point).

12: Call algorithm 2 on inputs f̂ , h̃1, h̃2, . . . , h̃n, l̂, the prime p,
{l1, . . . , ln} and B. If this fails, set B := B2 and go to step 5

(main loop) otherwise let f ′1, f
′
2, . . . , f

′
n be the output s.t. f̂ =

l̂ × f ′1 × · · · × f ′n over L.
13: return lcx1 (f)×monic(f ′1)× · · · ×monic(f ′n).

Algorithm 4: Distinct prime divisors
Input: A set {a1, a2, . . . , an} where ai ∈ Z.
Output: Either FAIL or a set of divisors {d1, d2, . . . , dn} s.t.

di 6= 1 and di | ai and ∀j 6= i : gcd(di, dj) = 1.
1: for i from 1 to n do
2: Let di = ai.
3: for j from 1 to i− 1 do
4: Let g = gcd(di, dj).
5: Set di := di/g and dj := dj/g.
6: Let g1 = gcd(g, di) and g2 = gcd(g, dj). (Either g1 = 1

or g2 = 1)

7: while g1 6= 1 do
8: Let g1 = gcd(di, g1).
9: Set di := di/g1.

10: end while
11: while g2 6= 1 do
12: Let g2 = gcd(dj , g2).
13: Set dj := dj/g2.
14: end while
15: if di = 1 or dj = 1 then
16: return FAIL.
17: end if
18: end for
19: end for
20: return {d1, . . . , dn}.

Algorithm 5: Distributing leading coeffi-
cients
Input: f̃ and U = {u1, u2, . . . , un}, the set of monic univari-

ate factors where ui ∈ L(α)[x1]. l = γ × le1
1 × l

e2
2 × · · · ×

lem
m the non-monic factorization of l = lcx1 (f̃) where γ ∈

Z[t1, . . . , tk]. The evaluation point α and D the defect of the
algebraic field. {D1, . . . , Dm} where Di = den(li(α)−1).

Output: Either FAIL, if the leading coefficient is unlucky or

{l̂1, l̂2, . . . , l̂n} where l̂i ∈ L[x2, . . . , xv] is the true leading

coefficient of ui in x1 together with possibly updated f̃ .

1: Let β = D× γ = Ω× βc1
1 × β

c2
2 × · · · × β

ck′
k′ where Ω ∈ Z.

2: Let di = den(ui) and µi = βi(α).
3: Let {p1, . . . , pm, q1, . . . , qk′} be the output of algorithm 4 on

input {D1, . . . , Dm, µ1, . . . , µk′}. If this fails, return FAIL.
4: For all 1 ≤ i ≤ m, let gi = gcd(Ω, pi) and Set pi := pi/gi. If

pi = 1 then return FAIL.
5: For all 1 ≤ i ≤ k′, let g′i = gcd(Ω, qi) and Set qi := qi/g

′
i. If

qi = 1 then return FAIL.
6: for each dj do
7: for i from 1 to m do
8: Let g1 = gcd(dj , pi).
9: Set e′ji = 0.

10: while g1 6= 1 do
11: Set e′ji := e′ji + 1.

12: Set dj = dj/g1.
13: Set g1 = gcd(dj , g1).
14: end while
15: end for
16: for i from 1 to k′ do
17: Let g2 = gcd(dj , qi).
18: Set c′ji = 0.

19: while g2 6= 1 do
20: Set c′ji := c′ji + 1.

21: Set dj = dj/g2.
22: Set g2 = gcd(dj , g2).
23: end while
24: end for
25: end for
26: for i from 1 to m do
27: if

Pn
j=1 e

′
ji 6= ei then return FAIL.

28: end for
29: Let l̂i = β

ci1
1 β

ci2
2 . . . β

cik′
k′ l

ei1
1 l

ei2
2 . . . l

eim
m . Distribute Ω ∈ Z

to l̂is and if needed update f̃ .

30: return {l̂1, l̂2, . . . , l̂n}.

Remark 6 In our implementation of algorithm 1, we first
choose an evaluation point and compute a univariate factor-
ization then factor lcx1(f̃). This is because if f̃ is irreducible,
then we do not bother factoring the leading coefficient which
might be a big polynomial.

Description of Algorithm 2
In algorithm 2, we have

f̃ − l̂ × f̃1 × f̃2 × · · · × f̃n ≡ 0 mod 〈p, m̃1, . . . , m̃r〉 .

204

Note, if m̃i is not monic, the reduction modulo {m̃1, . . . , m̃r}
does not introduce fractions in the parameters because of l̂.
Let e1 = l̂ × f̃ − f̃1 × · · · × f̃n mod 〈m̃1, . . . , m̃r〉. We know
that p | e1. If e1 = 0 then we are done. We want to find
polynomials σ1, . . . , σn s.t.

f̃ − l̂ × (f̃1 + σ1p)(f̃2 + σ2p) . . . (f̃n + σnp) ≡ 0 mod p2.

Expanding the above expression and reducing modulo the
set of minimal polynomials results in g ≡ 0 mod p where

g = l̂ × (σ1f̃2f̃3 . . . f̃n + · · ·+ σnf̃1f̃2 . . . f̃n−1)− e

p
.

We assume that the terms in σi are the same as the terms
in f̃i with the integer coefficient replaced by an unknown.
We compute the polynomial g and equate each coefficient in
z1, . . . , zr, t1, . . . , tk, x1, . . . , xv to zero. This gives us a linear
system which has a unique solution because we already know
the exact leading coefficient in the main variable of each
factor f̃i and uniqueness is guaranteed by Hensel’s lemma.
After solving this system we will obtain the correction poly-
nomials σ1, . . . , σn. We update each factor f̃i := f̃i + σip.
Now we have

f̃ − l̂ × f̃1 × f̃2 × · · · × f̃n ≡ 0 mod p2.

We repeat this non-linear lifting algorithm until p2k

> 2|B|
where B is the heuristic bound chosen in Algorithm 1 for
the integer coefficients in the factors of f̃ . Thus if there are
no extraneous factors and no annihilated terms caused by
the choice of primes and evaluation points, the algorithm
will not depend on a bound on the size of the coefficients in
the factor of f̃ which could be big.

Remark 7 In Step 8 of algorithm 3 and Step 14 of algo-
rithm 1, we compute l̂ ∈ Z[t1, . . . , tk] which is the factor of

the leading coefficient of f̃ in all the variables which does
not show up in the leading coefficient of any factors of f̃ .

Example 11 Let m = z2 − 1
t

and f = x2 − 1
t
. We have

m̃ = tz2 − 1 and f̃ = tx2 − 1. The factorization of f̃ is

f̃ = t(x− z)(x+ z).

Here l1 = l2 = 1 and l̂ = t. We have l̂ | lcx(f̃) but l̂ - li.

Remark 8 The bottleneck of Hensel lifting algorithm is
solving the Diophantine equations. One can solve these Dio-
phantine equations using sparse interpolation with a similar
technique as in algorithm 2. Here is an example.

Example 12 Let m̌ = z2 − (t− 1)3 and

f̃ =
`
t3 − t− t2 + 1

´
x2 − x (2 t+ 1) z − t4 + t2.

Suppose we choose the evaluation point to be t = 4. We
compute the univariate factors using Trager’s algorithm and
after computing and attaching the leading coefficients of the
factors we have

f̂ = (t− 1)2f̃ ,

f̃1 =
`
t3 − t− t2 + 1

´
x+ 16 z,

f̃2 =
`
t2 − 2 t+ 1

´
x− 5 z,

where f̂− f̃1f̃2 ≡ 0 mod (t−4). Now we start Hensel lifting.

The first error polynomial is e1 = f̂ − f̃1f̃2. We have

e1
t− 4

=
`
3 t2z − 6 tz + 3 z

´
x−t5−2 t4−8 t3+46 t2−55 t+20.

Now we need to find two polynomials σ1 and σ2 s.t.

σ2f̃1 + σ1f̃2 −
e1
t− 4

≡ 0 mod (t− 4). (1)

Similar to algorithm 2, we can assume that σ1 and σ2 have
the same monomials as f̃1 and f̃2 respectively and since we
know that the leading coefficient of f̃1 and f̃2 are correct, the
forms for σ1 and σ2 are σ1 = Az and σ2 = Bz. Using these
forms and Equation 1 we construct and solve a linear system
to obtain A = 8, B = −1. We update f̃1 := f̃1 + σ1 × (t− 4)

and f̃2 := f̃2 + σ2 × (t− 4) to get

f̃1 = (t3 − t2 − t+ 1)x+ 16z + 8(t− 4)z,

f̃2 = (t2 − 2t+ 1)x− (t− 4)z − 5z.

This time the new error polynomial is e2 = f̂ − f̃1f̃2 and we
have

e2
(t− 4)2

=
`
t2z − 2 tz + z

´
x− t4 + 2 t3 − 2 t+ 1

and

σ2f̃1 + σ1f̃2 −
e2

(t− 4)2
≡ 0 mod (t− 4)2. (2)

The new assumed forms are

σ1 = Az +Bz(t− 4),

σ2 = Czt+Dz.

Again we construct a system of linear equations using Equa-
tion 2 and after solving this system we have A = 1, B =
0, C = 0, D = 0. We update f̃1 and f̃2 and to obtain

f̃1 =
`
t3 − t2 − t+ 1

´
x+ zt2,

f̃2 =
`
t2 − 2 t+ 1

´
x− zt− z.

The new error polynomial e3 = f̂ − f̃1f̃2 is zero so f̃ =
lcx(f̃)×monic(f̃1)×monic(f̃2) and we are done.

We do not use this method in our new algorithm for lift-
ing parameters and variables. This is because it was always
slower than solving the Diophantine equations using the tra-
ditional method. The reasons were:

1. The systems of linear equations in each step can be
very big if the factors are dense.

Example 13 Suppose f̃1, f̃2 and f̃1× f̃2 have N1, N2

and N terms respectively. Then the system of linear
equation has N equations and as many as N1 − 1 +
N2 − 1 unknowns.

2. As Hensel lifting progresses, usually, the error term
gets smaller so solving the Diophantine equation is
usually easier at the next step. But using sparse in-
terpolation, as the Hensel lifting algorithm proceeds,
each factor f̃i usually gets bigger because we add new
terms, so the system of linear equations gets bigger
which means Hensel lifting will be slower.

We do not have the second problem above for sparse in-
terpolation in algorithm 2, when we lift integer coefficients,
mainly because the forms of the σ polynomials do not change
due to the fact that only integer coefficients of factors of f̃
are being updated.

205

5. BENCHMARKS
We have compared Maple 13 implementations of our new

algorithm (efactor) with Maple’s implementation of Trager’s
algorithm modified to use SparseModGcd (See [3]) for com-
puting GCDs over L. This modified Maple implementation
of Trager’s algorithm is more efficient (See [5]).

The eight benchmark problems are available at http://

www.cecm.sfu.ca/~sjavadi/EFACT/benchmark.txt.
The timings are given in Table 1. All timings are in CPU

seconds and were obtained on Maple 13 on a 64 bit AMD
Opteron CPU @ 2.4 GHz, running Linux. In the table, n is
the number of variables, r is the number of field extensions,
k is the number of parameters, d is the total degree of f , #f
is the number of terms in f and #f̃ is the number of terms in
f̃ . In all the problems, f factors into two irreducible factors
f1 and f2.

Problems 1 and 2 have large leading coefficients in the
main variable x. Problems 3–5 illustrate how Trager’s algo-
rithm is sensitive to the degree of the input and the number
of variables. Problem 7 has many variables and parameters.
Problem 8 has large integer coefficients. For problem 6, we
multiplied the polynomial f from Section 1 by one of its con-
jugates. Table 1 illustrates that Trager’s algorithm did not
finish in 50,000 seconds. In fact Maple had not computed
the norm of the input polynomial after 50, 000 seconds.

For each problem we used p = 3037000453, a 31.5 bit
prime, for Hensel lifting. For problems 3,4,5 and 7, p is big
enough so that there is no need to lift the integer coefficients
using sparse p-adic lifting algorithm. For problems 1,2 and
6, the number of lifting steps is one, i.e., p2 > 2||f̃i||∞.
For the problem 8, the number of lifting steps is three, i.e.
p8 > 2||f̃i||∞.

The last column in Table 1 is the time for computing

gcd(f1f2, f1(f2 + 1))

using our SparseModGcd algorithm in [3]. One can see that
our factorization algorithm is often as fast as the GCD algo-
rithm on a problem of comparable size, except for problem
6. In problem 6, almost all (99%) of the time was factor-
ing the univariate polynomial over Q(

√
2,
√

3,
√

5,
√

7,
√

11)
using Trager’s algorithm.

(n, r, k, d,#f,#f̃) Trager efactor GCD

1 (2,2,1,17,191,6408) 5500 259.91 47.47

2 (2,2,1,22,228,12008) 37800 296.74 56.90

3 (2,2,2,10,34,34) 120 0.22 0.16

4 (2,2,2,12,34,34) 571 0.31 0.19

5 (3,2,2,10,69,69) 5953 0.27 0.29

6 (6,5,0,4,46,46) > 50000 88.43 1.93

7 (5,2,1,10,15489,17052) > 50000 58.41 57.75

8 (1,1,2,102,426,928) 16427 72.10 7.71

Table 1: Timings (in CPU seconds)

The percentages of timings for different parts of our new
algorithm for these problems are presented in Table 2. In
this table, the second column is the percentage of time spent
on univariate factorization over L(α) using Trager’s algo-
rithm. The numbers in the third column correspond to the
time spent on lifting variables and integer coefficients re-

Univariate Lifting Sqr-free

1 0.30% (4.99%,90.1%) 4.01%

2 0.80% (7.82%,84.42%) 6.45%

3 51.61% (17.05%,0%) 19.35%

4 57.23% (22.03%,0%) 12.50%

5 42.86% (35.53%,0%) 19.41%

6 99.47% (0.31%,0.52%) 0.14%

7 0.80% (28,289%,0%) 67.41%

8 2.06 % (91.68%,5.47%) 0.70 %

Table 2: Timing (percentile) for different parts of
efactor

spectively. And finally, numbers in the last column are the
percentages of time spent on doing square-free factorizations
of the inputs. One can see that the bottleneck of our new
algorithm for the first two problems is the sparse p-adic lift-
ing algorithm. This is because of the large number of terms
in f̃ .

6. REFERENCES
[1] J. A. Abbott. On the factorization of polynomials over

algebraic fields. PhD thesis, School of Math. Sci.,
Univ. of Bath, England, 1989.

[2] Jürgen Gerhard and Ilias S. Kotsireas. Private
communication.

[3] S. M. Mahdi Javadi and M. B. Monagan. A sparse
modular gcd algorithm for polynomials over algebraic
function fields. In Proceedings of ISSAC ’07, pages
187–194. ACM, 2007.

[4] Erich Kaltofen. Sparse hensel lifting. In EUROCAL
’85: European Conf. on Computer Algebra-Vol. 2,
pages 4–17. Springer-Verlag, 1985.

[5] Michael Monagan. Computing polynomial greatest
common divisors over algebraic number and function
fields. http://www.cecm.sfu.ca/~pborwein/MITACS/
highlights/sparseGcd.pdf.

[6] Barry M. Trager. Algebraic factoring and rational
function integration. In Proceedings of SYMSAC ’76,
pages 219–226. ACM, 1976.

[7] Paul S. Wang. Factoring multivariate polynomials over
algebraic number fields. Mathematics of Computation,
30(134):324–336, 1976.

[8] Paul S. Wang. An improved multivariate polynomial
factorization algorithm. Math. Comp.,
32(144):1215–1231, 1978.

[9] P. J. Weinberger and L. P. Rothschild. Factoring
polynomials over algebraic number fields. ACM Trans.
Math. Softw., 2(4):335–350, 1976.

[10] Lihong Zhi. Algebraic factorization and gcd
computation. Mathematics Mechanization and
Applications, pages 325–342, 2000.

[11] Richard Zippel. Probabilistic algorithms for sparse
polynomials. In Proceedings of EUROSAM ’79, pages
216–226. Springer-Verlag, 1979.

206

