Teaching Commutative Algebra and Algebraic Geometry using Computer Algebra Systems

Michael Monagan
Department of Mathematics, Simon Fraser University
British Columbia, CANADA

Computer Algebra in Education
ACA 2012, Sofia, Bulgaria
June 25-28, 2012

MATH 441 Commutative Algebra and Algebraic Geometry Simon Fraser University, 2006, 2008, 2010, 02012

- Who takes the course?
- Textbook and course content.
- Maple and Assessment.
- Three applications.
- Read material (paper).
- Reproduce computational results.
- Correct errors.
- Course project for graduate students.

Who takes the course?

4th undergraduate students and 1 st year graduate students.

major	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 2}$	total
mathematics	5	15	11	27	58
computing	0	0	0	1	1
math \& cmpt	0	2	2	2	6
other	0	4	0	0	4
graduate	5	6	4	1	16
total	10	27	17	31	85

Ch. 1 Geometry, Algebra and Algorithms
Ch. 2 Groebner Bases
Ch. 3 Elimination Theory
Ch. 4 The Algebra-Geometry Dictionary
Ch. 5 Quotient Rings
Ch. 6 Automatic Geometric Theorem Proving
Ch. 7 Invariant Theory of Finite Groups
Ch. 8 Projective Algebraic Geometry
Appendix C. Computer Algebra Systems

David Cox John Little Donal 0'Shea

IDEALS, VARIETIES, AND ALGORITHMS

An Introduction to Computational Algebraic Geometry and Commutative Algebra Third Edition

Springer
(1) Varieties, Graphing varieties, Ideals.
(2) Monomial orderings and the division algorithm.

The Hilbert basis theorem.
Gröbner bases and Buchberger's algorithm.
(3) Solving equations (using Gröbner bases).

Elimination theory and resultants.
(9) Hilbert's Nullstellensatz.

Radical ideals and radical membership.
Zariski topology.
Irreducible varieties, prime ideals, maximal ideals.
Ideal decomposition.
(3) Quotient rings, computing in quotient rings.
(0) Applications (of Gröbner bases).

Maple and Assessment

- One intro Maple tutorial in lab.
- Detailed examples worksheet for self study.
- Five in class demos.
- Maple worksheet handouts.

Maple and Assessment

- One intro Maple tutorial in lab.
- Detailed examples worksheet for self study.
- Five in class demos.
- Maple worksheet handouts.

	MATH 441	MATH 819
6 assignments	60%	60%
project	-	10%
24 hour final	40%	30%

- Assignment questions, final exam, and project need Maple.
- Post take home final on web at 9am. Hand in following day before 10am in person.

Application 1: Circle Packing Problems

Pack $n=6$ circles in the unit square maximizing the radius r.

Pack $n=6$ points in the unit square maximizing their separating distance m.

$$
r=\frac{m}{2(m+1)}
$$

D. Würtz, M. Monagan and R. Peikert.

The History of Packing Circles in a Square.
MapleTech, Birkhauser, 1994.

Application 1: Circle Packing Problems

Given a packing, find m.
Let $P_{i}=\left(x_{i}, y_{i}\right)$ for $1 \leq i \leq 6$.
So $P_{1}=(0,0), P_{6}=\left(x_{6}, y_{6}\right)$, etc.
Pythagoras: $\left(x_{6}-x_{1}\right)^{2}+\left(y_{6}-y_{1}\right)^{2}=m^{2}$.
Symmetry: $x_{6}=1 / 2, y_{6}=\left(y_{0}+y_{5}\right) / 2$.

Do not solve for $m, x_{1}, \ldots, x_{6}, y_{1}, \ldots, y_{6}$. Instead let

Application 1: Circle Packing Problems

Given a packing, find m.
Let $P_{i}=\left(x_{i}, y_{i}\right)$ for $1 \leq i \leq 6$.
So $P_{1}=(0,0), P_{6}=\left(x_{6}, y_{6}\right)$, etc.
Pythagoras: $\left(x_{6}-x_{1}\right)^{2}+\left(y_{6}-y_{1}\right)^{2}=m^{2}$.
Symmetry: $x_{6}=1 / 2, y_{6}=\left(y_{0}+y_{5}\right) / 2$.

Do not solve for $m, x_{1}, \ldots, x_{6}, y_{1}, \ldots, y_{6}$. Instead let $I=\left\langle x_{6}-\frac{1}{2}, x_{6}^{2}+y_{6}^{2}-m^{2}, \ldots\right\rangle \subset \mathbb{Q}\left[x_{1}, \ldots, x_{6}, y_{1}, \ldots, y_{6}, m\right]$ and compute a Gröbner basis G for $I \cap \mathbb{Q}[m]=\langle g\rangle$. I get $G=\left\{\left(4 m^{2}-5\right)\left(36 m^{2}-13\right)\right\}$.
Figure out that $4 m^{2}-5=0$ is a degenerate case.

Application 1: Circle Packing Problems

Case $n=10$

What can go wrong?

Application 1: Circle Packing Problems

Case $n=10$

What can go wrong?
Input equations incorrectly.

Application 1: Circle Packing Problems

Case $n=10$

What can go wrong?
Input equations incorrectly.
Errors in the figures.

Application 1: Circle Packing Problems

Case $n=10$

$m=0.41953$
J. Schaer

$m=0.42013$
R. Milano

$m=0.42118$
G. Valette

$m=0.42129$
WMP

What can go wrong?

Input equations incorrectly.
Errors in the figures.
Setup may have degenerate solutions.

Application 1: Circle Packing Problems

Case $n=10$

$m=0.42013$

$m=0.42118$
$m=0.41953$
R. Milano
G. Valette
$m=0.42129$

WMP

What can go wrong?

Input equations incorrectly.
Errors in the figures.
Setup may have degenerate solutions.
Too many quadratic equations \Longrightarrow long time.

Application 2: Graph Coloring and Hilbert's Nullstellensatz.

Which of these graphs can be colored with three colors?

Figure: Wheel graphs W_{3} and W_{4}.

Application 2: Graph Coloring and Hilbert's Nullstellensatz.

To color a graph on n vertices with $k=3$ colors, set

$$
S:=\left\{x_{1}^{k}=1, x_{2}^{k}=1, \ldots, x_{n}^{k}=1\right\} .
$$

For each edge $(u, v) \in G$ set $S:=S \cup\left\{\frac{x_{u}^{k}-x_{v}^{k}}{x_{u}-x_{v}}=0\right\}$.

Application 2: Graph Coloring and Hilbert's Nullstellensatz.

To color a graph on n vertices with $k=3$ colors, set

$$
S:=\left\{x_{1}^{k}=1, x_{2}^{k}=1, \ldots, x_{n}^{k}=1\right\} .
$$

For each edge $(u, v) \in G$ set $S:=S \cup\left\{\frac{x_{u}^{k}-x_{v}^{k}}{x_{u}-x_{v}}=0\right\}$.

Theorem

G is k-colorable $\Longleftrightarrow S$ has solutions over \mathbb{C}.

Application 2: Graph Coloring and Hilbert's Nullstellensatz.

To color a graph on n vertices with $k=3$ colors, set

$$
S:=\left\{x_{1}^{k}=1, x_{2}^{k}=1, \ldots, x_{n}^{k}=1\right\} .
$$

For each edge $(u, v) \in G$ set $S:=S \cup\left\{\frac{x_{u}^{k}-x_{v}^{k}}{x_{u}-x_{v}}=0\right\}$.

Theorem

G is k-colorable $\Longleftrightarrow S$ has solutions over \mathbb{C}.

Nice! So let $I=\left\langle x_{1}^{k}-1, \ldots,\right\rangle$.
Compute a reduced Gröbner basis B for I.
Et voila! $B=\{1\} \Longleftrightarrow G$ is not k-colorable.

Application 2: Graph Coloring and Hilbert's Nullstellensatz.

But

Theorem
Graph k-colorability is NP-complete for $k \geq 3$.

Application 2: Graph Coloring and Hilbert's Nullstellensatz.

But

Theorem

Graph k-colorability is NP-complete for $k \geq 3$.
J.A. de Loera, J. Lee, P.N. Malkin and S. Margulies. Hilbert's Nullstellensatz and an algorithm for proving combinatorial infeasibility. In Proc. ISSAC 2008, ACM Press, 197-206, 2008.

Application 2: Graph Coloring and Hilbert's Nullstellensatz.

Let $V=\mathbb{V}\left(x_{1}^{k}-1, \ldots, \ldots\right)$ and $I=\left\langle x_{1}^{k}-1, \ldots,\right\rangle$.
Theorem
G is NOT k-colorable $\Longleftrightarrow V=\phi \stackrel{\text { HNS }}{\Longleftrightarrow} 1 \in I$.

Application 2: Graph Coloring and Hilbert's Nullstellensatz.

Let $V=\mathbb{V}\left(x_{1}^{k}-1, \ldots, \ldots\right)$ and $I=\left\langle x_{1}^{k}-1, \ldots,\right\rangle$.

Theorem

G is NOT k-colorable $\Longleftrightarrow V=\phi \stackrel{\text { HNS }}{\Longleftrightarrow} 1 \in I$.

But if $I=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle \subset \mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ then

$$
1 \in I \Longrightarrow 1=h_{1} f_{1}+h_{2} f_{2}+\ldots h_{m} f_{m}
$$

for some $h_{1}, h_{2}, \ldots, h_{m}$ in $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Idea 1: Try to find h_{i} with degree $d=1,2,3, \ldots$
Idea 2: The larger d the harder the combinatorial problem.
Idea 3: Replace \mathbb{Q} with \mathbb{F}_{2}.
Get the students to experiment.

Application 3: Automatic Geometric Theorem Proving.

Theorem

Let $A B C D$ be a parallelogram and $N=\overline{A C} \cap \overline{B D}$. Then N is the midpoint of $\overline{A C}$ and $\overline{B D}$.

Can we automate the proof?

Application 3: Automatic Geometric Theorem Proving.

Step 1: Fix co-ordinates.

3 parameters u_{1}, u_{2}, u_{3}.
4 unknowns $x_{1}, y_{1}, x_{2}, y_{2}$.
Solutions are in $\mathbb{R}\left(u_{1}, u_{2}, u_{3}\right)$.

Step 2: Need 4 equations.

Application 3: Automatic Geometric Theorem Proving.

Step 1: Fix co-ordinates.

3 parameters u_{1}, u_{2}, u_{3}.
4 unknowns $x_{1}, y_{1}, x_{2}, y_{2}$.
Solutions are in $\mathbb{R}\left(u_{1}, u_{2}, u_{3}\right)$.

Step 2: Need 4 equations. $A B D C$ is a parallelogram \Longrightarrow the slope of $\overline{A C}=\overline{B D}$

$$
\Longrightarrow \frac{u_{3}}{u_{2}}=\frac{y_{1}}{x_{1}-u_{1}} \Longrightarrow\left(x_{1}-u_{1}\right) u_{3}=u_{2} y_{1} .
$$

Similarly the slope of $\overline{A B}=\overline{C D} \Longrightarrow y_{1}=u_{3}$.

Application 3: Automatic Geometric Theorem Proving.

Let N be the intersection of $\overline{A D}$ and $\overline{B C}$. Hence A, N, D are co-linear \Longrightarrow

$$
\operatorname{det}\left(\left[\begin{array}{ll}
x_{2} & x_{1} \\
y_{2} & y_{1}
\end{array}\right]\right)=0 \Longrightarrow x_{2} y_{1}-y_{2} x_{1}=0 .
$$

Similarly B, N, C are co-linear $\Longrightarrow\left(u_{1}-u_{2}\right) y_{2}=u_{3}\left(u_{1}-x_{2}\right)$.

Application 3: Automatic Geometric Theorem Proving.

Equations

$$
\begin{aligned}
& h_{1}=\left(x_{1}-u_{1}\right) u_{3}-u_{2} y_{1} \\
& h_{2}=y_{1}-u_{3} \\
& h_{3}=x_{2} y_{1}-y_{2} x_{1} \\
& h_{4}=\left(u_{1}-u_{2}\right) y_{2}-u_{3}\left(u_{1}-x_{2}\right)
\end{aligned}
$$

Step 2 (cont.): To prove N is the midpoint of $\overline{A D}$ and $\overline{B C}$ show $\|N-A\|^{2}=\|D-N\|^{2}$

$$
\Longrightarrow x_{2}^{2}+y_{2}^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} .
$$

Similarly
$\|N-B\|^{2}=\|C-N\|^{2} \Longrightarrow\left(x_{2}-u_{1}\right)^{2}+y_{2}^{2}=\left(u_{2}-x_{2}\right)^{2}+u_{3}^{2}$.

Application 3: Automatic Geometric Theorem Proving.

$h_{1}=\left(x_{1}-u_{1}\right) u_{3}-u_{2} y_{1}$
$h_{2}=y_{1}-u_{3}$
$h_{3}=x_{2} y_{1}-y_{2} x_{1}$
$h_{4}=\left(u_{1}-u_{2}\right) y_{2}-u_{3}\left(u_{1}-x_{2}\right)$
$g_{1}=x_{2}^{2}+y_{2}^{2}-\left(x_{1}-x_{2}\right)^{2}-\left(y_{1}-y_{2}\right)^{2}$
$g_{2}=\left(x_{2}-u_{1}\right)^{2}+y_{2}^{2}-\left(u_{2}-x_{2}\right)^{2}-u_{3}^{2}$
Step 3. Computation to prove theorem.
Let $I=\left\langle h_{1}, h_{2}, h_{3}, h_{4}\right\rangle \in \mathbb{R}\left(u_{1}, u_{2}, u_{3}\right)\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$.

Application 3: Automatic Geometric Theorem Proving.

```
\(h_{1}=\left(x_{1}-u_{1}\right) u_{3}-u_{2} y_{1}\)
\(h_{2}=y_{1}-u_{3}\)
\(h_{3}=x_{2} y_{1}-y_{2} x_{1}\)
\(h_{4}=\left(u_{1}-u_{2}\right) y_{2}-u_{3}\left(u_{1}-x_{2}\right)\)
\(g_{1}=x_{2}^{2}+y_{2}^{2}-\left(x_{1}-x_{2}\right)^{2}-\left(y_{1}-y_{2}\right)^{2}\)
\(g_{2}=\left(x_{2}-u_{1}\right)^{2}+y_{2}^{2}-\left(u_{2}-x_{2}\right)^{2}-u_{3}^{2}\)
```

Step 3. Computation to prove theorem.
Let $I=\left\langle h_{1}, h_{2}, h_{3}, h_{4}\right\rangle \in \mathbb{R}\left(u_{1}, u_{2}, u_{3}\right)\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$.
Then $g_{1} \in \mathbb{V}\left(h_{1}, h_{2}, h_{3}, h_{4}\right) \Longleftrightarrow g_{1} \in \sqrt{I}$
$\Longleftrightarrow 1 \in\left\langle h_{1}, h_{2}, h_{3}, h_{4}, 1-g_{1} z\right\rangle \subset \mathbb{R}\left(u_{1}, u_{2}, u_{3}\right)\left[x_{1}, y_{1}, x_{2}, y_{2}, z\right]$.
Similarly verify $g_{2} \in \sqrt{I}$.
What can go wrong?

Application 3: What can go wrong?

Errors: any claim is true if $I=\left\langle h_{1}, h_{2}, \ldots\right\rangle=\langle 1\rangle$ \Longrightarrow check that the Gröbner basis for $/$ is not $\{1\}$!!

Application 3: What can go wrong?

Errors: any claim is true if $I=\left\langle h_{1}, h_{2}, \ldots\right\rangle=\langle 1\rangle$. \Longrightarrow check that the Gröbner basis for $/$ is not $\{1\}$!!

Show that working in $\mathbb{R}\left[u_{1}, u_{1}, u_{3}, x_{1}, y_{1}, x_{2}, y_{2}\right]$ leads to the degenerate cases $u_{1}=0$ where the theorem does not hold.

Application 3: What can go wrong?

Errors: any claim is true if $I=\left\langle h_{1}, h_{2}, \ldots\right\rangle=\langle 1\rangle$. \Longrightarrow check that the Gröbner basis for I is not $\{1\}$!!

Show that working in $\mathbb{R}\left[u_{1}, u_{1}, u_{3}, x_{1}, y_{1}, x_{2}, y_{2}\right]$ leads to the degenerate cases $u_{1}=0$ where the theorem does not hold.

N is the midpoint of $\overline{A D}$

$$
\Longrightarrow N=\frac{(A+D)}{2} \text { so }
$$

$$
x_{2}=\frac{x_{1}}{2}, \quad y_{2}=\frac{y_{1}}{2}!!
$$

Graduate student project

(1) Implement Buchberger's algorithm.
(2) Study and implement the FGLM basis conversion.

J.C. Faugere, P. Gianni, D. Lazard, T. Mora.

Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comp., 16, 329-344, 1993.
(3) Show that FGLM works using Trinks' system.

$$
\begin{gathered}
\{45 p+35 s-165 b=36, \quad 35 p+40 z+25 t-27 s=0 \\
15 w+25 p s+30 z-18 t-165 b^{2}=0, \quad-9 w+15 p t+20 z s=0 \\
\left.w p+2 z t=11 b^{3}, \quad 99 w-11 s b+3 b^{2}=0\right\}
\end{gathered}
$$

Thank you for coming.

On-line course materials

www.cecm.sfu.ca/~mmonagan/teaching/MATH441

