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Talk Outline

MATH 441 Commutative Algebra and Algebraic Geometry
Simon Fraser University, 2006, 2008, 2010, 02012

Who takes the course?

Textbook and course content.

Maple and Assessment.

Three applications.

Read material (paper).
Reproduce computational results.
Correct errors.

Course project for graduate students.
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Who takes the course?

4th undergraduate students and
1st year graduate students.

major 2006 2008 2010 2012 total

mathematics 5 15 11 27 58
computing 0 0 0 1 1
math & cmpt 0 2 2 2 6
other 0 4 0 0 4
graduate 5 6 4 1 16

total 10 27 17 31 85
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Textbook

Ch. 1 Geometry, Algebra and Algorithms
Ch. 2 Groebner Bases
Ch. 3 Elimination Theory
Ch. 4 The Algebra-Geometry Dictionary
Ch. 5 Quotient Rings
Ch. 6 Automatic Geometric Theorem Proving
Ch. 7 Invariant Theory of Finite Groups
Ch. 8 Projective Algebraic Geometry

Appendix C. Computer Algebra Systems
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Content

1 Varieties, Graphing varieties, Ideals.

2 Monomial orderings and the division algorithm.
The Hilbert basis theorem.
Gröbner bases and Buchberger’s algorithm.

3 Solving equations (using Gröbner bases).
Elimination theory and resultants.

4 Hilbert’s Nullstellensatz.
Radical ideals and radical membership.
Zariski topology.
Irreducible varieties, prime ideals, maximal ideals.
Ideal decomposition.

5 Quotient rings, computing in quotient rings.

6 Applications (of Gröbner bases).
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Maple and Assessment

One intro Maple tutorial in lab.

Detailed examples worksheet for self study.

Five in class demos.

Maple worksheet handouts.

MATH 441 MATH 819
6 assignments 60% 60%

project – 10%
24 hour final 40% 30%

Assignment questions, final exam, and project need Maple.

Post take home final on web at 9am.
Hand in following day before 10am in person.
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Application 1: Circle Packing Problems

Pack n = 6 circles in the unit
square maximizing the radius r .

Pack n = 6 points in the unit
square maximizing their
separating distance m.

r =
m

2(m + 1)

D. Würtz, M. Monagan and R. Peikert.
The History of Packing Circles in a Square.

MapleTech, Birkhauser, 1994.
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Application 1: Circle Packing Problems

Given a packing, find m.

Let Pi = (xi , yi ) for 1 ≤ i ≤ 6.

So P1 = (0, 0), P6 = (x6, y6), etc .

Pythagoras: (x6 − x1)2 + (y6 − y1)2 = m2.

Symmetry: x6 = 1/2, y6 = (y0 + y5)/2.

Do not solve for m, x1, ..., x6, y1, ..., y6. Instead let

I = 〈x6 − 1
2
, x2

6 + y 2
6 −m2, . . .〉 ⊂ Q[x1, . . . , x6, y1, . . . , y6,m]

and compute a Gröbner basis G for I ∩Q[m] = 〈g〉.
I get G = {(4m2 − 5) (36m2 − 13)}.
Figure out that 4m2 − 5 = 0 is a degenerate case.

Michael Monagan Teaching Commutative Algebra and Algebraic Geometry



Application 1: Circle Packing Problems

Given a packing, find m.

Let Pi = (xi , yi ) for 1 ≤ i ≤ 6.

So P1 = (0, 0), P6 = (x6, y6), etc .

Pythagoras: (x6 − x1)2 + (y6 − y1)2 = m2.

Symmetry: x6 = 1/2, y6 = (y0 + y5)/2.

Do not solve for m, x1, ..., x6, y1, ..., y6. Instead let
I = 〈x6 − 1

2
, x2

6 + y 2
6 −m2, . . .〉 ⊂ Q[x1, . . . , x6, y1, . . . , y6,m]
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Application 1: Circle Packing Problems

Case n = 10

m = 0.41953 m = 0.42013 m = 0.42118 m = 0.42129
J. Schaer R. Milano G. Valette WMP

What can go wrong?

Input equations incorrectly.
Errors in the figures.
Setup may have degenerate solutions.
Too many quadratic equations =⇒ long time.
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Application 2: Graph Coloring and Hilbert’s Nullstellensatz.

Which of these graphs can be colored with three colors?
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Figure: Wheel graphs W3 and W4.
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Application 2: Graph Coloring and Hilbert’s Nullstellensatz.

To color a graph on n vertices with k = 3 colors, set

S := {xk
1 = 1, xk

2 = 1, . . . , xk
n = 1}.

For each edge (u, v) ∈ G set S := S ∪
{

xk
u − xk

v

xu − xv
= 0

}
.

Theorem

G is k-colorable ⇐⇒ S has solutions over C.

Nice! So let I = 〈xk
1 − 1, . . . , 〉.

Compute a reduced Gröbner basis B for I .
Et voila! B = {1} ⇐⇒ G is not k-colorable.
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Application 2: Graph Coloring and Hilbert’s Nullstellensatz.

But

Theorem

Graph k-colorability is NP-complete for k ≥ 3.

J.A. de Loera, J. Lee, P.N. Malkin and S. Margulies.
Hilbert’s Nullstellensatz and an algorithm for proving
combinatorial infeasibility.
In Proc. ISSAC 2008, ACM Press, 197–206, 2008.
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Application 2: Graph Coloring and Hilbert’s Nullstellensatz.

Let V = V(xk
1 − 1, . . . , . . .) and I = 〈xk

1 − 1, . . . , 〉.

Theorem

G is NOT k−colorable ⇐⇒ V = φ
HNS⇐⇒ 1 ∈ I .

But if I = 〈f1, f2, . . . , fm〉 ⊂ Q[x1, x2, . . . , xn] then

1 ∈ I =⇒ 1 = h1f1 + h2f2 + . . . hmfm

for some h1, h2, . . . , hm in Q[x1, x2, . . . , xn].

Idea 1: Try to find hi with degree d = 1, 2, 3, . . ..
Idea 2: The larger d the harder the combinatorial problem.
Idea 3: Replace Q with F2.
Get the students to experiment.
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Application 3: Automatic Geometric Theorem Proving.
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Theorem

Let ABCD be a parallelogram and N = AC ∩ BD.
Then N is the midpoint of AC and BD.

Can we automate the proof?
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Application 3: Automatic Geometric Theorem Proving.

s
A=(0,0)

s
B = (u1, 0)

sC = (u2, u3) sD = (x1, y1)

sN = (x2, y2)
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Step 1: Fix co-ordinates.
3 parameters u1, u2, u3.
4 unknowns x1, y1, x2, y2.
Solutions are in R(u1, u2, u3).

Step 2: Need 4 equations.

ABDC is a parallelogram =⇒ the slope of AC = BD

=⇒ u3

u2
=

y1

x1 − u1
=⇒ (x1 − u1)u3 = u2y1.

Similarly the slope of AB = CD =⇒ y1 = u3.
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Application 3: Automatic Geometric Theorem Proving.
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Let N be the intersection of AD and BC .
Hence A,N ,D are co-linear =⇒

det(

[
x2 x1

y2 y1

]
) = 0 =⇒ x2y1 − y2x1 = 0.

Similarly B ,N ,C are co-linear =⇒ (u1− u2)y2 = u3(u1− x2).
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Application 3: Automatic Geometric Theorem Proving.

s
A=(0,0)

s
B = (u1, 0)

sC = (u2, u3) sD = (x1, y1)

sN = (x2, y2)

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�\

\
\
\
\
\
\
\

Equations
h1 = (x1 − u1)u3 − u2y1

h2 = y1 − u3

h3 = x2y1 − y2x1

h4 = (u1 − u2)y2 − u3(u1 − x2)

Step 2 (cont.): To prove N is the midpoint of AD and BC
show ||N − A||2 = ||D − N ||2

=⇒ x2
2 + y 2

2 = (x1 − x2)2 + (y1 − y2)2.

Similarly
||N−B ||2 = ||C −N ||2 =⇒ (x2−u1)2 + y 2

2 = (u2− x2)2 +u2
3 .
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Application 3: Automatic Geometric Theorem Proving.

h1 = (x1 − u1)u3 − u2y1

h2 = y1 − u3

h3 = x2y1 − y2x1

h4 = (u1 − u2)y2 − u3(u1 − x2)
g1 = x2

2 + y2
2 − (x1 − x2)2 − (y1 − y2)2

g2 = (x2 − u1)2 + y2
2 − (u2 − x2)2 − u2

3

Step 3. Computation to prove theorem.
Let I = 〈h1, h2, h3, h4〉 ∈ R(u1, u2, u3)[x1, y1, x2, y2].

Then g1 ∈ V(h1, h2, h3, h4) ⇐⇒ g1 ∈
√

I
⇐⇒ 1 ∈ 〈h1, h2, h3, h4, 1− g1z〉 ⊂ R(u1, u2, u3)[x1, y1, x2, y2, z ].

Similarly verify g2 ∈
√

I .

What can go wrong?
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Application 3: What can go wrong?

Errors: any claim is true if I = 〈h1, h2, . . .〉 = 〈1〉 .
=⇒ check that the Gröbner basis for I is not {1} !!

Show that working in R[u1, u1, u3, x1, y1, x2, y2] leads to the
degenerate cases u1 = 0 where the theorem does not hold.

s
A=(0,0)

s
B = (u1, 0)

sC = (u2, u3) sD = (x1, y1)

sN = (x2, y2)
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N is the midpoint of AD

=⇒ N = (A+D)
2

so

x2 = x1

2
, y2 = y1

2
!!
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Graduate student project

1 Implement Buchberger’s algorithm.
2 Study and implement the FGLM basis conversion.

J.C. Faugere, P. Gianni, D. Lazard, T. Mora.
Efficient computation of zero-dimensional Gröbner bases by
change of ordering. J. Symb. Comp., 16, 329–344, 1993.

3 Show that FGLM works using Trinks’ system.

{45p + 35s − 165b = 36, 35p + 40z + 25t − 27s = 0,

15w +25ps +30z−18t−165b2 = 0, −9w +15pt +20zs = 0,

wp + 2zt = 11b3, 99w − 11sb + 3b2 = 0}
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Thank you for coming.

On-line course materials

www.cecm.sfu.ca/~mmonagan/teaching/MATH441
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