
POLY : A new polynomial data structure for
Maple 17 that improves parallel speedup.

Michael Monagan

Department of Mathematics, Simon Fraser University
British Columbia, CANADA

Parallel Computer Algebra Applications
ACA 2012, Sofia, Bulgaria

June 25-28, 2012

This is joint work with Roman Pearce.

Michael Monagan POLY



Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our data structure.

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.
A multiplication and factorization benchmark in Maple 16.

Why is parallel speedup poor?
Solution and new timings.

Notes on integration into Maple kernel for Maple ≥ 17.

Conclusion

Michael Monagan POLY



Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our data structure.

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.
A multiplication and factorization benchmark in Maple 16.

Why is parallel speedup poor?
Solution and new timings.

Notes on integration into Maple kernel for Maple ≥ 17.

Conclusion

Michael Monagan POLY



Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our data structure.

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.
A multiplication and factorization benchmark in Maple 16.

Why is parallel speedup poor?
Solution and new timings.

Notes on integration into Maple kernel for Maple ≥ 17.

Conclusion

Michael Monagan POLY



Talk Outline

Polynomial data structures in Maple and Singular are slow.
Our data structure.

Johnson’s polynomial multiplication using a heap from 1973.
Our parallelization of it.
A multiplication and factorization benchmark in Maple 16.

Why is parallel speedup poor?
Solution and new timings.

Notes on integration into Maple kernel for Maple ≥ 17.

Conclusion

Michael Monagan POLY



Representations for 9 xy3z− 4 y3z2 − 6 xy2z− 8 x3 − 5.

Maple 16

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Singular 3.1.0

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Memory access is not sequential.

Monomial multiplication costs O(100) cycles.

Michael Monagan POLY



Representations for 9 xy3z− 4 y3z2 − 6 xy2z− 8 x3 − 5.

Maple 16

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Singular 3.1.0

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Memory access is not sequential.

Monomial multiplication costs O(100) cycles.

Michael Monagan POLY



Our representation 9 xy3z− 4 y3z2 − 6 xy2z− 8 x3 − 5.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Monomial encoding for graded lex order with x>y>z

Encodes x iy jzk in a single word d i j k where d = i+j+k .

Advantages

It’s more compact.

Memory access is sequential.

Fewer objects to clutter tables.

Monomial > and × cost one instruction.

Michael Monagan POLY



Our representation 9 xy3z− 4 y3z2 − 6 xy2z− 8 x3 − 5.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Monomial encoding for graded lex order with x>y>z

Encodes x iy jzk in a single word d i j k where d = i+j+k .

Advantages

It’s more compact.

Memory access is sequential.

Fewer objects to clutter tables.

Monomial > and × cost one instruction.

Michael Monagan POLY



Multiplication using a binary heap.

Let f = f1 + f2 + · · ·+ fn and g = g1 + g2 + · · ·+ gm.
Compute f × g = f1 · g + f2 · g + · · ·+ fn · g .

Johnson, 1974, does a simultaneous n-ary merge using a heap.

Heap

add

.

.

.

f1

f2

f31gf1

2gf1

1gf2

f x

x

x

x

+ ...

( + + + ... +g1 g2 g3 g )

( + + + ... +g1 g2 g3 g )

( + + + ... +g1 g2 g3 g )

( + + + ... +g1 g2 g3 gm )n

m

m

m

|Heap| ≤ n =⇒ O(nm log n) comparisons.

Can pick n ≤ m.

Algorithm outputs f × g in descending order.

Michael Monagan POLY



Multiplication using a binary heap.

Let f = f1 + f2 + · · ·+ fn and g = g1 + g2 + · · ·+ gm.
Compute f × g = f1 · g + f2 · g + · · ·+ fn · g .

Johnson, 1974, does a simultaneous n-ary merge using a heap.

Heap

add

.

.

.

f1

f2

f31gf1

2gf1

1gf2

f x

x

x

x

+ ...

( + + + ... +g1 g2 g3 g )

( + + + ... +g1 g2 g3 g )

( + + + ... +g1 g2 g3 g )

( + + + ... +g1 g2 g3 gm )n

m

m

m

|Heap| ≤ n =⇒ O(nm log n) comparisons.

Can pick n ≤ m.

Algorithm outputs f × g in descending order.

Michael Monagan POLY



Target Parallel Architecture

Intel Core i7, quad core, shared memory.

Michael Monagan POLY



Parallel Multiplication Algorithm

Local Heaps

Global
Heap

g

f

1

3

2

4

One heap per core.

Add (merge) results
in global heap.

Threads write to a finite circular buffer.

w

0

r mod N w mod N

N−1

r

Threads try to acquire global heap as buffer fills up to balance load.

Michael Monagan POLY



Parallel Multiplication Algorithm

Local Heaps

Global
Heap

g

f

1

3

2

4

One heap per core.

Add (merge) results
in global heap.

Threads write to a finite circular buffer.

w

0

r mod N w mod N

N−1

r

Threads try to acquire global heap as buffer fills up to balance load.

Michael Monagan POLY



Old multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds

Maple Maple 16 Magma Singular Mathem
multiply 13 1 core 4 cores 2.16-8 3.1.0 atica 7

p1 := f1(f1 + 1) 1.60 0.053 0.029 0.30 0.58 4.79
p3 := f3(f3 + 1) 26.76 0.422 0.167 4.09 6.96 50.36
p4 := f4(f4 + 1) 95.97 1.810 0.632 13.25 30.64 273.01

factor Hensel lifting is mostly polynomial multiplication!!

p1 12341 terms 31.10 2.58 2.46 6.15 12.28 11.82
p3 38711 terms 391.44 15.19 13.00 117.53 97.10 164.50
p4 135751 terms 2953.54 53.52 44.84 332.86 404.86 655.49

f1 = (1 + x + y + z)20 + 1 1771 terms
f3 = (1 + x + y + z)30 + 1 5456 terms
f4 = (1 + x + y + z + t)20 + 1 10626 terms

The Maple timings are for expand(f1*(f1+1)) and factor(p1).

Michael Monagan POLY



Maple Integration

To expand sums f × g Maple calls ‘expand/bigprod(f,g)‘

if #f > 2 and #g > 2 and #f ×#g > 1500.

‘expand/bigprod‘ := proc(a,b) # multiply two large sums

if type(a,polynom(integer)) and type(b,polynom(integer)) then

x := indets(a) union indets(b); k := nops(x);

A := sdmp:-Import(a, plex(op(x)), pack=k);

B := sdmp:-Import(b, plex(op(x)), pack=k);

C := sdmp:-Multiply(A,B);

return sdmp:-Export(C);

else

...

‘expand/bigdiv‘ := proc(a,b,q) # divide two large sums

...

x := indets(a) union indets(b); k := nops(x)+1;

A := sdmp:-Import(a, grlex(op(x)), pack=k);

B := sdmp:-Import(b, grlex(op(x)), pack=k);

...

Michael Monagan POLY



Almost everything is slow.

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Many operations cost O(nt). [ n = #variables, t = #terms ]
E.g. indets(f); degree(f,x); coeff(f,x,i);

Some operations add sorting cost of O(t1.25).
E.g. diff(f,x); expand(x*f); taylor(f,x,d);

Michael Monagan POLY



Make POLY the default representation in Maple.

If we can pack all monomials into one word use

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

O(1) degree(f); lcoeff(f); indets(f);
O(n) has(f,z); type(f,polynom(integer));

O(n + t) degree(f,x); expand(x*t); diff(f,x);

For f with t terms in n variables.

Michael Monagan POLY



Almost everything is fast.

command Maple 16 Maple 17 speedup notes

coeff(f , x , 20) 2.140 s 0.005 s 420x terms easy to locate

coeffs(f , x) 0.979 s 0.119 s 8x reorder exponents and radix sort

frontend(g , [f ]) 3.730 s 0.000 s → O(n) looks at variables only

degree(f , x) 0.073 s 0.003 s 24x stop early using monomial degree

diff(f , x) 0.956 s 0.031 s 30x terms remain sorted

eval(f , x = 6) 3.760 s 0.175 s 21x use Horner form recursively

expand(2 ∗ x ∗ f ) 1.190 s 0.066 s 18x terms remain sorted

indets(f ) 0.060 s 0.000 s → O(1) first word in dag

subs(x = y , f ) 1.160 s 0.076 s 15x combine exponents, sort, merge

taylor(f , x , 50) 0.668 s 0.055 s 12x get coefficients in one pass

type(f , polynom) 0.029 s 0.000 s → O(n) type check variables only

For f with n = 3 variables and t = 106 terms created by
f := expand(mul(randpoly(v,degree=100,dense),v=[x,y,z])):

Michael Monagan POLY



New multiplication and factorization benchmark.

Intel Core i5 750 2.66 GHz (4 cores) Times in seconds

Maple 16 Maple 17 Magma Singular
multiply 1 core 4 cores 1 core 4 cores 2.16-8 3.1.0

p1 := f1(f1 + 1) 0.053 0.029 0.047 0.017 0.30 0.58
p3 := f3(f3 + 1) 0.422 0.167 0.443 0.132 4.09 6.96
p4 := f4(f4 + 1) 1.810 0.632 1.870 0.506 13.25 30.64

factor Hensel lifting is mostly polynomial multiplication.

p1 12341 terms 2.58 2.46 1.20 0.94 6.15 12.28
p3 38711 terms 15.19 13.00 9.57 6.16 117.53 97.10
p4 135751 terms 53.52 44.84 31.83 16.48 332.86 404.86

f1 = (1 + x + y + z)20 + 1 1771 terms
f3 = (1 + x + y + z)30 + 1 5456 terms
f4 = (1 + x + y + z + t)20 + 1 10626 terms

More benchmarks and details available in preprint.

Michael Monagan POLY



Profile for factor(p1);

Profile for factor(p1); Real time from 2.63s to 1.11s real.

Maple 16 New Maple
function #calls time time% time time%

coeftayl 216 0.999s 36.96 0.270s 22.39
expand 1934 0.561s 20.75 0.375s 31.09
factor/diophant 236 0.475s 17.57 0.371s 30.76
divide 419 0.267s 9.88 0.055s 4.56
factor 1 0.206s 7.62 0.017s 1.41
factor/hensel 1 0.140s 5.18 0.075s 6.22
factor/unifactor 2 0.055s 2.03 0.043s 3.57

total: 2809 2.703s 100.00% 1.206s 100.00%

The coeftayl(f,x=a,k); command is defined by
coeff(taylor(f,x=a,k+1),x,k); and is computed via
eval(diff(f,x$k),x=a) / k! which is 4x faster.

Michael Monagan POLY



Notes on the new integration for Maple 17.

Let f ∈ R[x1, x2, ..., xn] with degxi
f > 0. We store f using POLY if

(i) f has integer coefficients

(ii) d > 1 and t > 1 where d = deg f and t = #terms.

(iii) we can pack all monomials of f into one 64 bit word, i.e. if d < 2b

where b = b 64
n+1c

Otherwise we use the old sum-of-products representation.

Packing is fixed by n = #variables.

If n = 8, (iii) =⇒ we use b = b64/9c = 7 bits per exponent field
hence POLY restricts d < 128.

The representation is invisible to the Maple user.
Conversions are automatic.

POLY polynomials will be displayed in sorted order.

Michael Monagan POLY



Notes on the new integration for Maple 17.

Let f ∈ R[x1, x2, ..., xn] with degxi
f > 0. We store f using POLY if

(i) f has integer coefficients

(ii) d > 1 and t > 1 where d = deg f and t = #terms.

(iii) we can pack all monomials of f into one 64 bit word, i.e. if d < 2b

where b = b 64
n+1c

Otherwise we use the old sum-of-products representation.

Packing is fixed by n = #variables.

If n = 8, (iii) =⇒ we use b = b64/9c = 7 bits per exponent field
hence POLY restricts d < 128.

The representation is invisible to the Maple user.
Conversions are automatic.

POLY polynomials will be displayed in sorted order.

Michael Monagan POLY



Conclusion

We will not get good parallel speedup using these

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Thank you for attending my talk.

Michael Monagan POLY


