Applications of Computer Algebra – ACA 2022 Gebze-Istanbul, Turkey, | August 15-19, 2021 Session on *"Session Title"*

On computing isomorphisms between algebraic number fields

Michael Monagan¹

[mmonagan@sfu.ca]

¹ Department of Mathematics, Simon Fraser University, Vancouver, Canada

Let $K = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_k)$ be an algebraic number field. For example $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Then K is a vector space over \mathbb{Q} . Let $d = \dim(K : \mathbb{Q})$. Without loss of generality we assume $\mathbb{Q}(\alpha_1, \dots, \alpha_i)$ is a proper subfield of $\mathbb{Q}(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$ for $1 \le 1 < k$.

Let c_1, c_2, \ldots, c_k be integers and let $\gamma = \sum_{i=1}^k c_i \alpha_i$. For almost all c_i we have $K \simeq \mathbb{Q}(\gamma)$. In this work we want to compute the field isomorphism $\varphi : K \to \mathbb{Q}(\gamma)$ as fast as possible.

Our motivation is the modular GCD algorithm of van Hoeij and Monagan from [3]. For two polynomials $A, B \in K[x]$ their algorithm computes G = gcd(A, B) modulo a sequence of primes p_1, p_2, \ldots , then applies the Chinese remainder theorem to compute G modulo m where m is the product of primes, and then uses Wang's rational number reconstruction from [4] to recover the rational coefficients of G from their images modulo m. The speed of their algorithm depends on the speed of arithmetic in K modulo a prime p.

How do we represent the elements of K and $K \mod p$ and how do we do arithmetic in K and in $K \mod p$? The approach taken by the computer algebra systems Pari and Maple is to construct K as a sequence of quotients (see below) and use a recursive polynomial data structure to represent the elements of K.

Set $K_0 = \mathbb{Q}$. For i = 1 to k do Let $m_i(z_i)$ be the minimal polynomial for α_i over K_{i-1} and let $d_i = \deg(m_i, z_i)$. Set $K_i = K_{i-1}[z_i]/\langle m_i \rangle$.

We have $K \simeq K_k$ and $d = \prod_{i=1}^k d_i$. Also K is isomorphic to the quotient ring $R = \mathbb{Q}[z_1, \ldots, z_k]/I$ where I is the ideal $\langle m(z_1), \ldots, m(z_k) \rangle$.

One way to do arithmetic in R would be to represent elements of R as sparse multivariate polynomials in $\mathbb{Q}[z_1, z_2, \ldots, z_k]$ and use Gröbner bases. We have $\{m_1, m_2, \ldots, m_k\}$ is a Gröbner basis for I in lexicographical order with $z_1 < z_2 < \cdots < z_k$. However, this is expensive as a multiplication in R will do many multivariate polynomial operations.

Pari represents multivariate polynomials recursively, that is, Pari thinks of a polynomial in $\mathbb{Q}[z_1, z_2, \ldots, z_k]$ as a polynomial in $\mathbb{Q}[z_1][z_2]\cdots[z_k]$ and it uses a dense recursive polynomial data structure so that it needs univariate polynomial arithmetic only. Inspired by Pari's representation, van Hoeij and Monagan [3] also used a dense recursive representation for polynomials for their Maple implementation of the modular GCD algorithm in K[x]. For example, the polynomial $7x^2 + 5z_2^2 + 3z_1^2$ in $\mathbb{Q}[z_1][z_2][x]$ is stored as the Maple list of lists of lists of integers [[[0, 0, 3], 0, [5]], 0, [[7]]].

We have observed that when k > 1 and m_1 has low degree, which is often the case practice, it is faster (typically 5 to 10 times faster) to multiply in $\mathbb{Q}(\gamma) \mod p$ than to multiply in Kmod p. One reason for this is that to multiply in $K_3 \mod p$ we do many multiplications in $K_2 \mod p$, each of which does many multiplications in K_1 , each of which requires memory to be allocated for the intermediate product and several function calls. This overhead is minimized when k = 1. In our talk we will present timing data to measure the overhead in Pari, Maple and Magma. Thus our hypothesis: to compute $gcd(A, B) \mod p$, for deg(A, x)and deg(B, x) sufficiently large, it should be faster if we first compute $\varphi \mod p$ and map the GCD computation from $K \mod p$ into $\mathbb{Q}(\gamma) \mod p$.

How do we compute the isomorphism $\varphi: K \to \mathbb{Q}(\gamma)$? In our talk we present three methods (sketched below) to compute φ . The first method uses Gröbner bases, the second uses Linear Algebra, and the third uses iterated resultants. We have implemented the second method in C modulo a prime p. Our C implementation uses a dense recursive representation for elements of $K \mod p$ and supports primes up to 63 bits. We present timings for computing GCDs in $K[x] \mod p$ comparing Pari, Magma, and Maple with our C code.

Method 1: Gröbner Bases.

Let $\gamma = \sum_{i=1}^{k} c_i z_i$ and let m(z) be the minimal polynomial for γ over \mathbb{Q} . Let $F = [m_1(z_1), \dots, m_k(z_k), z - \gamma]$

and let G be the reduced Gröbner basis for F in lexicographical order with $z < z_1 < \cdots < z_k$. For almost all c_i we have $G \cap \mathbb{Q}[z] = \{m(z)\}$ and the remaining elements of G give us $\varphi(z_i)$. We give an example to illustrate.

Example 1. For $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ we have $m_1(z_1) = z_1^2 - 2$ and $m_2(z_2) = z_2^2 - 3$ and a basis for K over \mathbb{Q} is $[1, z_1, z_2, z_1 z_2]$. For $c_1 = c_2 = 1$ we have $\gamma = z_1 + z_2$ and $F = [z_1^2 - 2, z_2^2 - 3, z - z_1 - z_2]$. We obtain the Gröbner basis

$$G = [z^4 - 10z^2 + 1, z_1 + \frac{9}{2}z - \frac{1}{2}z^3, z_2 - \frac{11}{2}z + \frac{1}{2}z^3].$$

Thus $m(z) = z^4 - 10z^2 + 1$, $\varphi(z_1) = -\frac{9}{2}z + \frac{1}{2}z^3$ and $\varphi(z_2) = \frac{11}{2}z - \frac{1}{2}z^3$. We have $\varphi(1) = 1$ and we compute $\varphi(z_1z_2) = \varphi(z_1)\varphi(z_2)$.

Notice that F is also a Gröbner basis for the ideal generated by F in lexicographical order with $z_1 < z_2 < \cdots < z_k < z$ because the leading monomials of the polynomials in F are $z_1^{d_1}, z_2^{d_2}, \ldots, z_k^{d_k}$ and z which are all relatively prime! Therefore, we may compute G from Fusing FGLM, the Gröbner basis conversion algorithm of Faugere, Gianni, Lazard and Mora [2]. The FGLM algorithm does $O(kd^3)$ arithmetic operations in \mathbb{Q} .

Method 2: Linear Algebra.

The number field $K = \mathbb{Q}(\alpha_1, \ldots, \alpha_k)$ is a vector space over \mathbb{Q} . Let $d = \dim(K : \mathbb{Q})$ and let $m(z) = z^d + \sum_{i=0}^{d-1} x_i z^i$ be the minimal polynomial for γ over \mathbb{Q} for x_i unknown. Equating $m(\gamma) = 0$ we obtain a linear system $\sum_{i=0}^{d-1} x_i \gamma^i = -\gamma^d$. In matrix form we have Ax = b where $A = [1 | \gamma | \gamma^2 | \ldots | \gamma^{d-1}]$ and $b = -\gamma^d$. We construct A then invert A and obtain x from $x = A^{-1}b$. The matrix A^{-1} is the mapping $\varphi : K \to \mathbb{Q}(\gamma)$ thus A gives us φ^{-1} . Method 2 does $O(d^3)$ arithmetic operations in \mathbb{Q} .

Method 3: Iterated Resultants.

Let $\gamma = \sum_{i=1}^{k} c_i z_i$. Starting with the polynomial $z - \gamma$ we use the subresultant algorithm (see [4]) to first use m_k to eliminate z_k then to use m_{k-1} to eliminate z_{k-1} , etc., until we have eliminated all z_i and we obtain the minimal polynomial m(z). In a second stage we successively obtain $\varphi(z_1), \varphi(z_2), ..., \varphi(z_k)$ using the penultimate polynomials in the subresultant remainder sequences which are linear for almost all c_i .

Example 1 (continued). First we apply the subresultant algorithm to $z - z_1 - z_2$ and $z_2^2 - 2$ to eliminate z_2 . We obtain 3 polynomials $z_2^2 - 2$, $z - z_1 - z_2$ (which is linear in z_2) and $-2zz_1 + z^2 + 1$. Next we apply the subresultant algorithm to $-2zz_1 + z^2 + 1$ and $z_1^2 - 3$ to eliminate z_1 . We obtain 3 polynomials $z_1^2 - 3$, $-2zz_1 + z^2 + 1$ (which is linear in z_1) and $z^4 - 10z^2 + 1$ (the minimal polynomial for γ).

Now we compute $\varphi(z_1)$ by solving $-2zz_1 + z^2 + 1 = 0$ for $z_1 \mod m(z)$. We must invert $-2z \operatorname{in} \mathbb{Q}[z]/\langle m(z) \rangle$ using he Euclidean algorithm. We then solve $z - \varphi(z_1) - z_2 = 0$ for z_2 to determine $\varphi(z_2)$. Finally we compute $\varphi(z_1z_2) = \varphi(z_1)\varphi(z_2)$.

Method 3 also does $O(d^3)$ arithmetic operations in \mathbb{Q} . But unlike methods 1 and 2 which solve linear systems of size $d \times d$, it only does polynomial arithmetic. We are currently investigating whether we can accelerate method 3.

Keywords

Grobner Bases, Algebraic number fields, Polynomial GCD, Field isomorphisms, Resultants

References

[1] B. BUCHBERGER, G.E. COLLINS, R. LOOS, R. ALBRECHT. *Computer Algebra*. Springer, 1983.

[2] J.C. FAUGERE, P. GIANNI, D. LAZARD, T. MORA. Efficient Computation of Zerodimensional Gröbner Bases by Change of Ordering. J. Symb. Comp. 16(4), 329–344 (1993).
[3] M. VAN HOEIJ, M. MONAGAN., A Modular GCD Algorithm over Number Fields Presented with Multiple Field Extensions. In Proceedings of ISSAC '02, 109–116. ACM, 2002.
[4] P. WANG. A p-adic algorithm for univariate partial fractions. In Proceedings of SYMSAC '81, 212–217, ACM, 1981.