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The Black-Box model.

Let K is a ring e.g. Z,R,GF (p).
Let f be a polynomial in K [x1, ..., xn] given to us as a black-box.

(α1, . . . , αn) ∈ K n f (α1, . . . , αn) ∈ K

I In this model all we may do is evaluate f at points in Kn.
I We call evaluations of f probes to the black-box.
I We want algorithms that minimize the number of probes.



Example of the black-box model K = Q.
> A := Matrix([[x1,x2,x3],[x2,x1,x2],[x3,x2,x1]]);

A =

 x1 x2 x3

x2 x1 x2

x3 x2 x1


> f := det(A);

f := x3
1 − 2 x1x2

2 + 2 x3x2
2 − x2

3 x1
> factor(f);

(x1 − x3)
(
x2
1 + x1 x3 − 2 x2

2
)

f := proc(x1::rational, x2::rational, x3::rational) :: rational;
local A; A := Array(1..3,1..3);
A[1,1] := x1; A[1,2] := x2; A[1,3] := x3;
A[2,1] := x2; A[2,2] := x1; A[2,3] := x2;
A[3,1] := x3; A[3,2] := x2; A[3,3] := x1;
LinearAlgebra[Determinant](A);

end:



The Sparse Interpolation Problem.
Let f =

∑t
i=1 ciMi where ci ∈ K and Mi are monomials in x1, ..., xn.

Assume we are given d ≥ deg f , and a term bound T ≥ t.
In the black-box model, can we

1 Test if f = 0 ?

2 Determine ci and Mi ?

3 Determine the factors of f ?

Yes, interpolate f using e.g. Newton interpolation.
If |K | > d we can interpolate f with (d + 1)n probes.

What if f = 1 + xd
1 + xd

2 + ...+ xd
n .

This polynomial is sparse – it has only t = n + 1 terms.

Sparse Interpolation Problem
Can we interpolate f in polynomial time in n, d ,T ?
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Previous work.

1978 Schwartz’ zero test.
1979 Zippel’s probabilistic sparse interpolation.
1988 Ben-Or/Tiwari’s deterministic sparse interpolation.
1999 Huang and Rao’s parallel algorithm.
2000 Kaltofen, Lee and Lobo’s racing algorithm.
2006 Giesbrecht, Labahn and Lee’s numerical method.



Testing if f = 0.

The Schwartz Lemma (Jack Schwartz, 1979)

Let f ∈ K [x1, ..., xn] and d ≥ deg f .
Pick α1, ..., αn from S ⊂ K at random.
If f 6= 0 then

Prob(f (α1, ..., αn) = 0) ≤ d
|S| .

Example: Consider a prime p > 230 with S = K = Zp.
If f (α1, ..., αn) = 0 then

Prob(f = 0) ≥ 1− d
230 .



Zippel’s probabilistic algorithm (1979).
Suppose p is a prime, f ∈ Zp[x , y , z ] and we know
degx (f ), degy (f ), degz (f ) ≤ 15.
Pick α ∈ Zp at random and interpolate, recursively,

f (x , y , α) = · x9y + · x5y4 + · x5y9

To interpolate z using Newton we need degz (f ) = 15 more bivariate
images each of which requires 16× 16 = 256 points.
Zippel’s observation: If p is large and α is chosen at random, then

f (x , y , z) = A(z)x9y + B(z)x5y4 + C(z)x5y9 w .h.p.

Zippel’s idea: Get the next bivariate image for f (x , y , β) by picking
β, a1, b1, a2, b2, a3, b3 at random and solving, for A,B,C ,

f (a1, b1, β) = Aa91b1 + Ba51b4
1 + Cb1

f (a2, b2, β) = Aa92b2 + Ba52b4
2 + Cb2

f (a3, b3, β) = Aa93b3 + Ba53b4
3 + Cb3

This linear system is non-singular w.h.p. =⇒ 3 probes instead of 256.

I Zippel’s algorithm is probabilistic and does O(ndt) probes.
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Ben-Or and Tiwari’s algorithm (1988).

Let f =
∑t

i=1 ciMi where ci ∈ Z and Mi = xdi1
1 xdi2

2 · · · xdin
n .

Input T ≥ t.

Step 1 For i = 0 . . . 2T − 1 compute vi = f (2i , 3i , 5i , . . . , pi
n).

Step 2 Compute the linear generator Λ(z) for the sequence
v0, v1, . . . , v2T−1 using the Berlekamp/Massey algorithm.

Theorem: Λ(z) =
t∏

i=1
(z −Mi (2, 3, 5, . . . , pn)).

Step 3 Compute the integer roots of Λ(z): m1, . . . ,mt .

Step 4 Divide mi by pj to determine degxj (Mi ) hence Mi .

Step 5 Solve (a transposed Vandermode system) for the coefficients ci .



The Ben-Or/Tiwari algorithm contd.

I Ben-Or/Tiwari is deterministic and does 2T probes.
I But the integers f (2i , 3i , 5i , ..., pi

n) are as large as p2Td
n , which can

be very big. E.g. if n = 10, d = 50, t = 100, p2Td
n > 14, 000 digits!

I Worse, Kaltofen and Lobo observed that rational numbers in the
Berlekamp-Massey algorithm get t = 100 times larger still !!

Solution: Run Ben-Or/Tiwari modulo a prime p satisfying

p > max
i

Mi (2, 3, 5, ..., pn) < pd
n .

Still n = 10, d = 50 =⇒ p > 1074.
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Huang and Rao’s algorithm for K = GF (q) (1999).

Idea: Replace the primes 2, 3, 5, . . . in Ben-Or/Tiwari by irreducible
polynomials y − a1, y − a2, . . . for aj ∈ GF (q).

How do we evaluate the back box at polyomials
f
(
(y − a1)i , (y − a2)i , . . . , (y − an)i), for i = 0, 1, . . . , 2T − 1 ?

Solution: interpolate f ((y − a1)i , (y − a2)i , . . . , (y − an)i ) ∈ GF (q)[y ]
from di + 1 values for y in GF (q).

I Requires q > 8d2t2.
I Does O(dt2) probes.
I Needs to factor Λ(x , y) ∈ GF (q)[x , y ].
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Kaltofen, Lee and Lobo’s algorithm for GF(q).

In 2000 Kaltofen, Lee and Lobo presented a hybrid of Zippel’s algorithm
and the Ben-Or/Tiwari algorithm.

Their algorithm modifies Zippel’s algorithm. Consider

f (x , y , z) = 7z2x7y3 + (3z5 + 5)xy4 + 7z11x

I For univariate interpolation, they race Newton’s interpolation with
univariate Ben-Or/Tiwari using same evaluation points.

I This reduces the number of probes from O(ndt) to O(nt).
I But this sequentializes the algorithm!



Comparison Chart
For applications where we can choose the prime p:

Alg. # Probes Deterministic? Parallel? Prime

Ben-Or/Tiwari 1988 O(t) Las Vegas Yes p > pd
n

Huang/Rao 1990 O(dt2) Las Vegas Yes p > 8d2t2

Zippel 1979 O(ndt) Monte-Carlo Some p � nt

Kaltofen et. al. 2000 O(nt) Monte-Carlo Less p � nt

Javadi/Monagan 2010 O(nt) Monte-Carlo Yes! p � (n + d)t2



Three problems:
I Medium: n = 10, d = 20, t = 102.
I Big: n = 15, d = 40, t = 104.
I Very Big: n = 20, d = 100, t = 106.

Alg. Prime Medium Big Very Big

Ben-Or/Tiwari p > pd
n 296 2223 2615

Huang/Rao p > 8d2t2 225 241 256

Zippel p � nt 210 217 224

Kaltofen et. al. p � nt 210 217 224

Javadi/Monagan p � (n + d)t2 218 232 247



Our New Algorithm: The Idea
1. Choose non-zero α1, . . . , αn at random from Zp .

2. Evaluate f (αi
1, . . . , α

i
j, . . . , α

i
n) for i = 0 . . . 2T − 1 and compute Λ0(z) ∈ Zp [z].

3. Find the roots of Λ0(z) : r1, . . . , rt using Rabin’s algorithm.
We have {r1, . . . , rt} = {m1, . . . ,mt} where mi = Mi (α1, . . . , αn).

4. To determine the monomials Mi (x1, ..., xn) = xdi1
1 · · · x

din
n :

For each xj do the following in parallel:

4.1 Choose βj 6= αj at random from Zp .
4.2 Evaluate f (αi

1, . . . , β
i
j , . . . , α

i
n) for i = 0 . . . 2t − 1 and compute Λj (z).

Let r̄1, . . . , r̄t denote the roots of Λj (z) and m̄i = Mi (α1, . . . , βj , . . . , αn).
We have {r̄1, . . . , r̄t} = {m̄1, . . . , m̄t}. Observe:

m̄i
mi

= (
βj

αj
)dĳ ⇒ m̄i = (

βj

αj
)dĳ mi ⇒ Λj ((

βj

αj
)dĳ mi ) = 0.

4.3 For i = 1 . . . t do
4.3.1 For s = 0 . . . d do if Λj ((

βj
αj

)s ri ) = 0 then dĳ = s w.h.p.
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Our New Algorithm (contd.)
We construct the following bipartite graph. ri is connected to r̄j with the weight e iff
r̄j = ri (

βj
αj

)e .

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

4 0

21

2

28 26
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11

6

This graph has a unique perfect matching

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

2 21 4 0

which tells us the degree of all monomials in xj .



Our New Algorithm.
Require: A polynomial f ∈ Zp[x1, . . . , xn] input as a black box.
Require: A degree bound d ≥ deg(f ) and a term bound T ≥ t.

1: Choose α1, . . . , αn from Zp\{0} at random.
2: Choose β1, . . . , βn from Zp\{0} at random s.t. order(βk/αk ) > d .
3: for k from 0 to n in parallel do
4: k=0: Compute Λ0(x) from f (αi

1, . . . , αk
i , . . . αi

n) for 0 ≤ i ≤ 2T − 1.
5: k>0: Compute Λk+1(x) from f (αi

1, . . . , βk
i , . . . , αi

n) for 0 ≤ i ≤ 2T − 1.
6: end for
7: Set t = maxn+1

i=1 degΛi (z). If deg(Λi ) < t return FAIL.
8: Compute {r1, . . . , rt} the set of distinct roots of Λ1(z).
9: for k from 1 to n in parallel do
10: Construct the bi-partite graph Gk as just described.
11: If Gk does not have a unique perfect matching return FAIL
12: else we have determined degxk

(Mi ) for 1 ≤ i ≤ t.
13: end for
14: Solve for the unknown coefficients ci and let g =

∑t
i=1 ciMi .

15: Check if g = f : choose a1, . . . , an from Zp at random.
16: If g(a1, . . . , an) = f (a1, . . . , an) return g else return FAIL.
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Algorithm failure probability
Theorem 1: For random non-zero α1, . . . , αn ∈ Zp , the probability that two or

more monomials Mi evaluate to the same value is ≤
(

t
2

)
d

p − 1 .

Theorem 2: If deg(Λ0) = deg(Λj ) = t, then the probability that we will not be

able to uniquely compute the degrees in xj is at most d2t2

4φ(p − 1)
.

Proof of Theorem 1: Consider

A =
∏

1≤i<j≤t

(Mi (x1, . . . , xn)−Mj (x1, . . . , xn)) .

Observe that A(α1, . . . , αn) = 0 iff two monomial evaluations collide.
Applying the Schwartz lemma, since deg(Mi ) ≤ d we have

Prob(A(α1, . . . , αn) = 0) ≤ degA
|S| ≤

(t
2

)
d

p − 1 .
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able to uniquely compute the degrees in xj is at most d2t2

4φ(p − 1)
.

Proof of Theorem 1: Consider

A =
∏

1≤i<j≤t

(Mi (x1, . . . , xn)−Mj (x1, . . . , xn)) .

Observe that A(α1, . . . , αn) = 0 iff two monomial evaluations collide.
Applying the Schwartz lemma, since deg(Mi ) ≤ d we have

Prob(A(α1, . . . , αn) = 0) ≤ degA
|S| ≤

(t
2

)
d

p − 1 .



Optimizations
Theorem 3 : The algorithm makes 2(n + 1)T probes,
does O((n + 1)t2 + log(p)t2 + ndt2) other work, and
succeeds with probability at least 1− (n+1)d2t2

2φ(p−1) .

I Pick p s.t. p = 2q + 1 with q prime to maximize φ(p − 1).
I To compute the degrees of the monomials in the last variable xn, we

do not need to do any more probes to the black box. We have

mi = αdi1
1 × · · · × α

di(n−1)

n−1 × αdin
n .

I When determining the degree of Mi in xj , stop when the first s
gives a root – it’s the right degree w.h.p.

Theorem 3 : The algorithm makes 2nT probes,
does O(nt2 + log(p)t2 + dt2) other work, and
succeeds with probability at least 1− (n+d2)t2

p−1 .
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Benchmarks
Random polynomials in n = 12 variables with approximately t = 2i terms of
total degree 30 using T = t and d = 30.

i t New Algorithm Zippel ProtoBox
Time (4 cores) Probes Time Probes Probes

4 15 0.00 (0.00) 360 0.20 10230 470
5 32 0.02 (0.01) 768 0.54 18879 962
6 63 0.04 (0.02) 1512 1.79 36735 1856
7 127 0.15 (0.05) 3048 6.10 69595 3647
8 255 0.54 (0.17) 6120 22.17 134664 7055
9 507 2.01 (0.60) 12168 83.44 259594 13440
10 1019 7.87 (2.33) 24456 316.23 498945 26077
11 2041 31.0 (9.16) 48984 1195.13 952351 DNF
12 4074 122.3 (35.9) 97776 4575.83 1841795 DNF
13 8139 484.6 (141.) 195336 >10000 - DNF

Timings are in CPU seconds on an Intel Corei7.
The parallel implementation was done in Cilk.



Current work

i t 1 core 4 cores
time roots solve probes time 1 time 2 speedup

8 255 0.54 0.05 0.00 0.41 0.18 0.17 (3x)
9 507 2.02 0.18 0.02 1.48 0.67 0.60 (3.02x)
10 1019 7.94 0.65 0.08 5.76 2.58 2.33 (3.08x)
11 2041 31.3 2.47 0.32 22.7 9.94 9.16 (3.15x)
12 4074 122.3 9.24 1.26 90.0 38.9 35.9 (3.14x)
13 8139 484.6 34.7 5.02 357.3 152.5 141.5 (3.17x)

Amdahl’s law: Speedup ≤ Tot
Tot−Seq
#cores + Seq

.

For i = 13 this gives 3.21 for 4 cores and 6.31 for 12 cores.

We are currently implementing fast arithmetic in Zp[x ] for 31 and 63 bit
primes to speed up the O(t2 log(p)) root finding step which is the
sequential bottleneck, and also to handle large values of t.

For i = 13 this would give 3.89 for 4 cores and 9.95 for 12 cores.
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Giesbrecht, Labahn and Lee’s numerical method.
A modification of Ben-Or/Tiwari for polynomials with numerical coefficients.
Idea: evaluate at powers of primitive elements in C of relatively prime order.

Pick w1, . . . ,wn of order q1, . . . , qn s.t. qj > d , gcd(qj , qk ) = 1.

Evaluate f (w i
1, . . . ,w i

n), for i = 0, 1, ..., 2T − 1 and compute the roots
m1, ...,mt of Λ(x) numerically. We have

mi = Mi (w1, . . . ,wn) = wdi1
1 × wdi2

2 × · · · × wdin
n = w

p−1
q1

di1+···+ p−1
qn

din

where w has order q1 · q2 · · · qn. Now take logarithms to the base w :

⇒ logw mi = p−1
q1

di1 + · · ·+ p−1
qj

dĳ + · · ·+ p−1
qn

din

Round logw (mi ) and solve this modulo qj to get di,j .

For applications where we can pick p, this can work in Zp as follows:

I Pick p = q1 · q2 · · · qn + 1 s.t. qi > d and gcd(qi , qj ) = 1 until p is prime.
I The discrete log is efficient if we choose p− 1 with no large prime factors.
I O(T ) probes but requires p > (d + 1)n which may be big.



Giesbrecht, Labahn and Lee’s numerical method.
A modification of Ben-Or/Tiwari for polynomials with numerical coefficients.
Idea: evaluate at powers of primitive elements in C of relatively prime order.

Pick w1, . . . ,wn of order q1, . . . , qn s.t. qj > d , gcd(qj , qk ) = 1.

Evaluate f (w i
1, . . . ,w i

n), for i = 0, 1, ..., 2T − 1 and compute the roots
m1, ...,mt of Λ(x) numerically. We have

mi = Mi (w1, . . . ,wn) = wdi1
1 × wdi2

2 × · · · × wdin
n = w

p−1
q1

di1+···+ p−1
qn

din

where w has order q1 · q2 · · · qn. Now take logarithms to the base w :

⇒ logw mi = p−1
q1

di1 + · · ·+ p−1
qj

dĳ + · · ·+ p−1
qn

din

Round logw (mi ) and solve this modulo qj to get di,j .

For applications where we can pick p, this can work in Zp as follows:

I Pick p = q1 · q2 · · · qn + 1 s.t. qi > d and gcd(qi , qj ) = 1 until p is prime.
I The discrete log is efficient if we choose p− 1 with no large prime factors.
I O(T ) probes but requires p > (d + 1)n which may be big.



Thank you.


