Polynomial Interpolation

Michael Monagan

Department of Mathematics, Simon Fraser University

Computers and Mathematics day, August 12, 2010

This is a joint work with Mahdi Javadi

Outline

- The black box model
- The sparse interpolation problem
- Previous work
- Our parallel algorithm
- Benchmarks and current work

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The Black-Box model.

Let K is a ring e.g. \mathbb{Z} , \mathbb{R} , GF(p). Let f be a polynomial in $K[x_1, ..., x_n]$ given to us as a black-box.

- ▶ In this model all we may do is evaluate f at points in Kⁿ.
- ▶ We call evaluations of *f* probes to the black-box.
- We want algorithms that minimize the number of probes.

Example of the black-box model $K = \mathbb{Q}$.

> A := Matrix([[x1,x2,x3],[x2,x1,x2],[x3,x2,x1]]);

$$A = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_2 \\ x_3 & x_2 & x_1 \end{bmatrix}$$

> f := det(A); $f := x_1^3 - 2x_1x_2^2 + 2x_3x_2^2 - x_3^2x_1$ > factor(f); $(x_1 - x_3)(x_1^2 + x_1x_3 - 2x_2^2)$

f := proc(x1::rational, x2::rational, x3::rational) :: rational; local A; A := Array(1..3,1..3); A[1,1] := x1; A[1,2] := x2; A[1,3] := x3; A[2,1] := x2; A[2,2] := x1; A[2,3] := x2; A[3,1] := x3; A[3,2] := x2; A[3,3] := x1; LinearAlgebra[Determinant](A); end:

The Sparse Interpolation Problem.

Let $f = \sum_{i=1}^{t} c_i M_i$ where $c_i \in K$ and M_i are monomials in $x_1, ..., x_n$. Assume we are given $d \ge \deg f$, and a term bound $T \ge t$. In the black-box model, can we

- 1 Test if f = 0?
- 2 Determine c_i and M_i ?
- 3 Determine the factors of f ?

The Sparse Interpolation Problem.

Let $f = \sum_{i=1}^{t} c_i M_i$ where $c_i \in K$ and M_i are monomials in $x_1, ..., x_n$. Assume we are given $d \ge \deg f$, and a term bound $T \ge t$. In the black-box model, can we

- 1 Test if f = 0?
- 2 Determine c_i and M_i ?
- 3 Determine the factors of f ?

Yes, interpolate f using e.g. Newton interpolation. If |K| > d we can interpolate f with $(d + 1)^n$ probes.

What if $f = 1 + x_1^d + x_2^d + ... + x_n^d$. This polynomial is sparse – it has only t = n + 1 terms.

Sparse Interpolation Problem

Can we interpolate f in polynomial time in n, d, T?

・ロト ・ 通 ト ・ 画 ト ・ 画 ・ うへぐ

Previous work.

- 1978 Schwartz' zero test.
- 1979 Zippel's probabilistic sparse interpolation.
- 1988 Ben-Or/Tiwari's deterministic sparse interpolation.
- 1999 Huang and Rao's parallel algorithm.
- 2000 Kaltofen, Lee and Lobo's racing algorithm.
- 2006 Giesbrecht, Labahn and Lee's numerical method.

Testing if f = 0.

The Schwartz Lemma (Jack Schwartz, 1979)

Let $f \in K[x_1, ..., x_n]$ and $d \ge \deg f$. Pick $\alpha_1, ..., \alpha_n$ from $S \subset K$ at random. If $f \ne 0$ then

$$\operatorname{Prob}(f(\alpha_1,...,\alpha_n)=0) \leq \frac{d}{|S|}.$$

Example: Consider a prime $p > 2^{30}$ with $S = K = \mathbb{Z}_p$. If $f(\alpha_1, ..., \alpha_n) = 0$ then

$$Prob(f = 0) \ge 1 - \frac{d}{2^{30}}.$$

Zippel's probabilistic algorithm (1979).

Suppose p is a prime, $f \in \mathbb{Z}_p[x, y, z]$ and we know $\deg_x(f), \deg_y(f), \deg_z(f) \le 15$.

Pick $\alpha \in \mathbb{Z}_p$ at random and interpolate, recursively,

$$f(x, y, \alpha) = \cdot x^9 y + \cdot x^5 y^4 + \cdot x^5 y^9$$

To interpolate z using Newton we need $\deg_z(f) = 15$ more bivariate images each of which requires $16 \times 16 = 256$ points.

Zippel's observation: If p is large and α is chosen at random, then

$$f(x, y, z) = A(z)x^{9}y + B(z)x^{5}y^{4} + C(z)x^{5}y^{9} \quad w.h.p.$$

Zippel's probabilistic algorithm (1979).

Suppose p is a prime, $f \in \mathbb{Z}_p[x, y, z]$ and we know $\deg_x(f), \deg_y(f), \deg_z(f) \le 15$.

Pick $\alpha \in \mathbb{Z}_p$ at random and interpolate, recursively,

$$f(x, y, \alpha) = \cdot x^9 y + \cdot x^5 y^4 + \cdot x^5 y^9$$

To interpolate z using Newton we need $\deg_z(f) = 15$ more bivariate images each of which requires $16 \times 16 = 256$ points.

Zippel's observation: If p is large and α is chosen at random, then

$$f(x, y, z) = A(z)x^{9}y + B(z)x^{5}y^{4} + C(z)x^{5}y^{9} \quad w.h.p.$$

Zippel's idea: Get the next bivariate image for $f(x, y, \beta)$ by picking β , a_1 , b_1 , a_2 , b_2 , a_3 , b_3 at random and solving, for A, B, C,

$$f(a_1, b_1, \beta) = Aa_1^9b_1 + Ba_1^5b_1^4 + Cb_1$$

$$f(a_2, b_2, \beta) = Aa_2^9b_2 + Ba_2^5b_2^4 + Cb_2$$

$$f(a_3, b_3, \beta) = Aa_3^9b_3 + Ba_3^5b_3^4 + Cb_3$$

This linear system is non-singular w.h.p. \implies 3 probes instead of 256.

Zippel's probabilistic algorithm (1979).

Suppose p is a prime, $f \in \mathbb{Z}_p[x, y, z]$ and we know $\deg_x(f), \deg_y(f), \deg_z(f) \le 15$.

Pick $\alpha \in \mathbb{Z}_p$ at random and interpolate, recursively,

$$f(x, y, \alpha) = \cdot x^9 y + \cdot x^5 y^4 + \cdot x^5 y^9$$

To interpolate z using Newton we need $\deg_z(f) = 15$ more bivariate images each of which requires $16 \times 16 = 256$ points.

Zippel's observation: If p is large and α is chosen at random, then

$$f(x, y, z) = A(z)x^{9}y + B(z)x^{5}y^{4} + C(z)x^{5}y^{9} \quad w.h.p.$$

Zippel's idea: Get the next bivariate image for $f(x, y, \beta)$ by picking β , a_1 , b_1 , a_2 , b_2 , a_3 , b_3 at random and solving, for A, B, C,

$$f(a_1, b_1, \beta) = Aa_1^9b_1 + Ba_1^5b_1^4 + Cb_1$$

$$f(a_2, b_2, \beta) = Aa_2^9b_2 + Ba_2^5b_2^4 + Cb_2$$

$$f(a_3, b_3, \beta) = Aa_3^9b_3 + Ba_3^5b_3^4 + Cb_3$$

This linear system is non-singular w.h.p. \implies 3 probes instead of 256.

Zippel's algorithm is probabilistic and does O(ndt) probes.

Ben-Or and Tiwari's algorithm (1988).

Let
$$f = \sum_{i=1}^{t} c_i M_i$$
 where $c_i \in \mathbb{Z}$ and $M_i = x_1^{d_{i1}} x_2^{d_{i2}} \cdots x_n^{d_{in}}$.

Input $T \geq t$.

Step 1 For $i = 0 \dots 2T - 1$ compute $v_i = f(2^i, 3^i, 5^i, \dots, p_n^i)$.

Step 2 Compute the linear generator $\Lambda(z)$ for the sequence $v_0, v_1, \dots, v_{2T-1}$ using the Berlekamp/Massey algorithm. Theorem: $\Lambda(z) = \prod_{i=1}^{t} (z - M_i(2, 3, 5, \dots, p_n)).$

- Step 3 Compute the integer roots of $\Lambda(z)$: m_1, \ldots, m_t .
- Step 4 Divide m_i by p_j to determine $deg_{x_i}(M_i)$ hence M_i .
- Step 5 Solve (a transposed Vandermode system) for the coefficients c_i .

The Ben-Or/Tiwari algorithm contd.

- Ben-Or/Tiwari is deterministic and does 27 probes.
- ▶ But the integers $f(2^i, 3^i, 5^i, ..., p_n^i)$ are as large as p_n^{2Td} , which can be very big. E.g. if $n = 10, d = 50, t = 100, p_n^{2Td} > 14,000$ digits!
- Worse, Kaltofen and Lobo observed that rational numbers in the Berlekamp-Massey algorithm get t = 100 times larger still !!

うして ふゆう ふほう ふほう うらつ

The Ben-Or/Tiwari algorithm contd.

- Ben-Or/Tiwari is deterministic and does 2T probes.
- ▶ But the integers $f(2^i, 3^i, 5^i, ..., p_n^i)$ are as large as p_n^{2Td} , which can be very big. E.g. if $n = 10, d = 50, t = 100, p_n^{2Td} > 14,000$ digits!
- Worse, Kaltofen and Lobo observed that rational numbers in the Berlekamp-Massey algorithm get t = 100 times larger still !!

Solution: Run Ben-Or/Tiwari modulo a prime p satisfying

$$p > \max_{i} M_{i}(2, 3, 5, ..., p_{n}) < p_{n}^{d}$$

うして ふゆう ふほう ふほう うらつ

Still $n = 10, d = 50 \Longrightarrow p > 10^{74}$.

Huang and Rao's algorithm for K = GF(q) (1999).

Idea: Replace the primes 2, 3, 5, ... in Ben-Or/Tiwari by irreducible polynomials $y - a_1, y - a_2, ...$ for $a_j \in GF(q)$.

How do we evaluate the back box at polyomials $f((y-a_1)^i, (y-a_2)^i, \dots, (y-a_n)^i)$, for $i = 0, 1, \dots, 2T - 1$?

うして ふゆう ふほう ふほう うらつ

Huang and Rao's algorithm for K = GF(q) (1999).

Idea: Replace the primes 2, 3, 5, ... in Ben-Or/Tiwari by irreducible polynomials $y - a_1, y - a_2, ...$ for $a_j \in GF(q)$.

How do we evaluate the back box at polyomials $f((y-a_1)^i, (y-a_2)^i, \dots, (y-a_n)^i)$, for $i = 0, 1, \dots, 2T - 1$?

Solution: interpolate $f((y - a_1)^i, (y - a_2)^i, \dots, (y - a_n)^i) \in GF(q)[y]$ from di + 1 values for y in GF(q).

うして ふゆう ふほう ふほう うらつ

- Requires $q > 8d^2t^2$.
- Does O(dt²) probes.
- Needs to factor $\Lambda(x, y) \in GF(q)[x, y]$.

Kaltofen, Lee and Lobo's algorithm for GF(q).

In 2000 Kaltofen, Lee and Lobo presented a hybrid of Zippel's algorithm and the Ben-Or/Tiwari algorithm.

Their algorithm modifies Zippel's algorithm. Consider

$$f(x, y, z) = 7z^2x^7y^3 + (3z^5 + 5)xy^4 + 7z^{11}x$$

For univariate interpolation, they race Newton's interpolation with univariate Ben-Or/Tiwari using same evaluation points.

ション ふゆ アメリア メリア しょうめん

- This reduces the number of probes from O(ndt) to O(nt).
- But this sequentializes the algorithm!

Comparison Chart

For applications where we can choose the prime *p*:

Alg.	# Probes	Deterministic?	Parallel?	Prime	
Ben-Or/Tiwari 1988	O(t)	Las Vegas	Yes	$p > p_n^d$	
Huang/Rao 1990	$O(dt^2)$	Las Vegas	Yes	$p > 8d^2t^2$	
Zippel 1979	Zippel 1979 $O(ndt)$		Some	$p\gg nt$	
Kaltofen et. al. 2000	Kaltofen et. al. 2000 $O(nt)$		Less	p ≫ nt	
Javadi/Monagan 2010	Javadi/Monagan 2010 $O(nt)$		Yes!	$p \gg (n+d)t^2$	

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Three problems:

- Medium: $n = 10, d = 20, t = 10^2$.
- Big: $n = 15, d = 40, t = 10^4$.
- Very Big: $n = 20, d = 100, t = 10^6$.

Alg.	Prime	Medium	Big	Very Big
Ben-Or/Tiwari	$p > p_n^d$	2 ⁹⁶	2 ²²³	2 ⁶¹⁵
Huang/Rao	$p > 8d^2t^2$	2 ²⁵	2 ⁴¹	2 ⁵⁶
Zippel	$p \gg nt$	2 ¹⁰	2 ¹⁷	2 ²⁴
Kaltofen et. al.	$p \gg nt$	2 ¹⁰	2 ¹⁷	2 ²⁴
Javadi/Monagan	$p \gg (n+d)t^2$	2 ¹⁸	2 ³²	2 ⁴⁷

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Our New Algorithm: The Idea

- 1. Choose non-zero $\alpha_1, \ldots, \alpha_n$ at random from \mathbb{Z}_p .
- 2. Evaluate $f(\alpha_1^i, \ldots, \alpha_n^i)$ for $i = 0 \ldots 2T 1$ and compute $\Lambda_0(z) \in \mathbb{Z}_p[z]$.

- 3. Find the roots of $\Lambda_0(z)$: r_1, \ldots, r_t using Rabin's algorithm. We have $\{r_1, \ldots, r_t\} = \{m_1, \ldots, m_t\}$ where $m_i = M_i(\alpha_1, \ldots, \alpha_n)$.
- 4. To determine the monomials $M_i(x_1,...,x_n) = x_1^{d_{i1}} \cdots x_n^{d_{in}}$:

Our New Algorithm: The Idea

- 1. Choose non-zero $\alpha_1, \ldots, \alpha_n$ at random from \mathbb{Z}_p .
- 2. Evaluate $f(\alpha_1^i, \ldots, \alpha_n^i)$ for $i = 0 \ldots 2T 1$ and compute $\Lambda_0(z) \in \mathbb{Z}_p[z]$.
- 3. Find the roots of $\Lambda_0(z)$: r_1, \ldots, r_t using Rabin's algorithm. We have $\{r_1, \ldots, r_t\} = \{m_1, \ldots, m_t\}$ where $m_i = M_i(\alpha_1, \ldots, \alpha_n)$.
- 4. To determine the monomials $M_i(x_1, ..., x_n) = x_1^{d_{i1}} \cdots x_n^{d_{in}}$: For each x_i do the following in parallel:
 - 4.1 Choose $\beta_j \neq \alpha_j$ at random from \mathbb{Z}_p . 4.2 Evaluate $f(\alpha_1^i, \ldots, \beta_j^i, \ldots, \alpha_n^i)$ for $i = 0 \ldots 2t - 1$ and compute $\Lambda_j(z)$. Let $\overline{r}_1, \ldots, \overline{r}_t$ denote the roots of $\Lambda_j(z)$ and $\overline{m}_i = M_i(\alpha_1, \ldots, \beta_j, \ldots, \alpha_n)$. We have $\{\overline{r}_1, \ldots, \overline{r}_t\} = \{\overline{m}_1, \ldots, \overline{m}_t\}$. Observe:

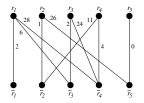
$$\frac{\bar{m}_i}{m_i} = (\frac{\beta_j}{\alpha_j})^{d_{ij}} \Rightarrow \bar{m}_i = (\frac{\beta_j}{\alpha_j})^{d_{ij}} m_i \Rightarrow \Lambda_j((\frac{\beta_j}{\alpha_j})^{d_{ij}} m_i) = 0.$$

4.3 For
$$i = 1 \dots t$$
 do
4.3.1 For $s = 0 \dots d$ do if $\Lambda_j((\frac{\beta_j}{\alpha_j})^s r_i) = 0$ then $d_{ij} = s$ w.h.p.

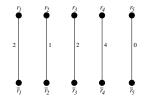
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our New Algorithm (contd.)

We construct the following bipartite graph. r_i is connected to \bar{r}_j with the weight e iff $\bar{r}_j = r_i (\frac{\beta_j}{\alpha_i})^e$.



This graph has a unique perfect matching



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

which tells us the degree of all monomials in x_i .

Require: A polynomial $f \in \mathbb{Z}_p[x_1, ..., x_n]$ input as a black box. **Require:** A degree bound $d \ge \deg(f)$ and a term bound $T \ge t$.

- 1: Choose $\alpha_1, \ldots, \alpha_n$ from $\mathbb{Z}_p \setminus \{0\}$ at random.
- 2: Choose β_1, \ldots, β_n from $\mathbb{Z}_p \setminus \{0\}$ at random s.t. $\operatorname{order}(\beta_k / \alpha_k) > d$.
- 3: for k from 0 to n in parallel do
- 4: k=0: Compute $\Lambda_0(x)$ from $f(\alpha_1^i, \ldots, \alpha_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.
- 5: k>0: Compute $\Lambda_{k+1}(x)$ from $f(\alpha_1^i, \ldots, \beta_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.

- 7: Set $t = \max_{i=1}^{n+1} \deg \Lambda_i(z)$. If $\deg(\Lambda_i) < t$ return FAIL.
- 8: Compute $\{r_1, \ldots, r_t\}$ the set of distinct roots of $\Lambda_1(z)$.
- 9: for k from 1 to n in parallel do
- 10: Construct the bi-partite graph G_k as just described.
- 11: If G_k does not have a unique perfect matching return FAIL
- 12: **else** we have determined $\deg_{x_{\nu}}(M_i)$ for $1 \le i \le t$.
- 13: end for
- 14: Solve for the unknown coefficients c_i and let $g = \sum_{i=1}^{t} c_i M_i$.
- 15: Check if g = f: choose a_1, \ldots, a_n from \mathbb{Z}_p at random.
- 16: If $g(a_1, \ldots, a_n) = f(a_1, \ldots, a_n)$ return g else return FAIL.

Require: A polynomial $f \in \mathbb{Z}_p[x_1, ..., x_n]$ input as a black box. **Require:** A degree bound $d \ge \deg(f)$ and a term bound $T \ge t$.

- 1: Choose $\alpha_1, \ldots, \alpha_n$ from $\mathbb{Z}_p \setminus \{0\}$ at random.
- 2: Choose β_1, \ldots, β_n from $\mathbb{Z}_p \setminus \{0\}$ at random s.t. $\operatorname{order}(\beta_k / \alpha_k) > d$.
- 3: for k from 0 to n in parallel do
- 4: k=0: Compute $\Lambda_0(x)$ from $f(\alpha_1^i, \ldots, \alpha_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.
- 5: k>0: Compute $\Lambda_{k+1}(x)$ from $f(\alpha_1^i, \ldots, \beta_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.

- 7: Set $t = \max_{i=1}^{n+1} \deg \Lambda_i(z)$. If $\deg(\Lambda_i) < t$ return FAIL.
- 8: Compute $\{r_1, \ldots, r_t\}$ the set of distinct roots of $\Lambda_1(z)$.
- 9: for k from 1 to n in parallel do
- 10: Construct the bi-partite graph G_k as just described.
- 11: If G_k does not have a unique perfect matching return FAIL
- 12: **else** we have determined $\deg_{x_k}(M_i)$ for $1 \le i \le t$.
- 13: end for
- 14: Solve for the unknown coefficients c_i and let $g = \sum_{i=1}^{t} c_i M_i$.
- 15: Check if g = f: choose a_1, \ldots, a_n from \mathbb{Z}_p at random.
- 16: If $g(a_1, \ldots, a_n) = f(a_1, \ldots, a_n)$ return g else return FAIL.

Require: A polynomial $f \in \mathbb{Z}_p[x_1, ..., x_n]$ input as a black box. **Require:** A degree bound $d \ge \deg(f)$ and a term bound $T \ge t$.

- 1: Choose $\alpha_1, \ldots, \alpha_n$ from $\mathbb{Z}_p \setminus \{0\}$ at random.
- 2: Choose β_1, \ldots, β_n from $\mathbb{Z}_p \setminus \{0\}$ at random s.t. $\operatorname{order}(\beta_k / \alpha_k) > d$.
- 3: for k from 0 to n in parallel do
- 4: k=0: Compute $\Lambda_0(x)$ from $f(\alpha_1^i, \ldots, \alpha_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.
- 5: k>0: Compute $\Lambda_{k+1}(x)$ from $f(\alpha_1^i, \ldots, \beta_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.

- 7: Set $t = \max_{i=1}^{n+1} \deg \Lambda_i(z)$. If $\deg(\Lambda_i) < t$ return FAIL.
- 8: Compute $\{r_1, \ldots, r_t\}$ the set of distinct roots of $\Lambda_1(z)$.
- 9: for k from 1 to n in parallel do
- 10: Construct the bi-partite graph G_k as just described.
- 11: If G_k does not have a unique perfect matching return FAIL
- 12: **else** we have determined $\deg_{x_k}(M_i)$ for $1 \le i \le t$.
- 13: end for
- 14: Solve for the unknown coefficients c_i and let $g = \sum_{i=1}^{t} c_i M_i$.
- 15: Check if g = f: choose a_1, \ldots, a_n from \mathbb{Z}_p at random.
- 16: If $g(a_1, \ldots, a_n) = f(a_1, \ldots, a_n)$ return g else return FAIL.

Require: A polynomial $f \in \mathbb{Z}_p[x_1, ..., x_n]$ input as a black box. **Require:** A degree bound $d \ge \deg(f)$ and a term bound $T \ge t$.

- 1: Choose $\alpha_1, \ldots, \alpha_n$ from $\mathbb{Z}_p \setminus \{0\}$ at random.
- 2: Choose β_1, \ldots, β_n from $\mathbb{Z}_p \setminus \{0\}$ at random s.t. $\operatorname{order}(\beta_k / \alpha_k) > d$.
- 3: for k from 0 to n in parallel do
- 4: k=0: Compute $\Lambda_0(x)$ from $f(\alpha_1^i, \ldots, \alpha_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.
- 5: k>0: Compute $\Lambda_{k+1}(x)$ from $f(\alpha_1^i, \ldots, \beta_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.

- 7: Set $t = \max_{i=1}^{n+1} \deg \Lambda_i(z)$. If $\deg(\Lambda_i) < t$ return FAIL.
- 8: Compute $\{r_1, \ldots, r_t\}$ the set of distinct roots of $\Lambda_1(z)$.
- 9: for k from 1 to n in parallel do
- 10: Construct the bi-partite graph G_k as just described.
- 11: If G_k does not have a unique perfect matching return FAIL
- 12: **else** we have determined $\deg_{x_{i}}(M_{i})$ for $1 \le i \le t$.
- 13: end for
- 14: Solve for the unknown coefficients c_i and let $g = \sum_{i=1}^{t} c_i M_i$.
- 15: Check if g = f: choose a_1, \ldots, a_n from \mathbb{Z}_p at random.
- 16: If $g(a_1, \ldots, a_n) = f(a_1, \ldots, a_n)$ return g else return FAIL.

Require: A polynomial $f \in \mathbb{Z}_p[x_1, ..., x_n]$ input as a black box. **Require:** A degree bound $d \ge \deg(f)$ and a term bound $T \ge t$.

- 1: Choose $\alpha_1, \ldots, \alpha_n$ from $\mathbb{Z}_p \setminus \{0\}$ at random.
- 2: Choose β_1, \ldots, β_n from $\mathbb{Z}_p \setminus \{0\}$ at random s.t. $\operatorname{order}(\beta_k / \alpha_k) > d$.
- 3: for k from 0 to n in parallel do
- 4: k=0: Compute $\Lambda_0(x)$ from $f(\alpha_1^i, \ldots, \alpha_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.
- 5: k>0: Compute $\Lambda_{k+1}(x)$ from $f(\alpha_1^i, \ldots, \beta_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.

- 7: Set $t = \max_{i=1}^{n+1} \deg \Lambda_i(z)$. If $\deg(\Lambda_i) < t$ return FAIL.
- 8: Compute $\{r_1, \ldots, r_t\}$ the set of distinct roots of $\Lambda_1(z)$.
- 9: for k from 1 to n in parallel do
- 10: Construct the bi-partite graph G_k as just described.
- 11: If G_k does not have a unique perfect matching return FAIL
- 12: **else** we have determined $\deg_{x_{\nu}}(M_i)$ for $1 \le i \le t$.
- 13: end for
- 14: Solve for the unknown coefficients c_i and let $g = \sum_{i=1}^{t} c_i M_i$.
- 15: Check if g = f: choose a_1, \ldots, a_n from \mathbb{Z}_p at random.
- 16: If $g(a_1, \ldots, a_n) = f(a_1, \ldots, a_n)$ return g else return FAIL.

Require: A polynomial $f \in \mathbb{Z}_p[x_1, ..., x_n]$ input as a black box. **Require:** A degree bound $d \ge \deg(f)$ and a term bound $T \ge t$.

- 1: Choose $\alpha_1, \ldots, \alpha_n$ from $\mathbb{Z}_p \setminus \{0\}$ at random.
- 2: Choose β_1, \ldots, β_n from $\mathbb{Z}_p \setminus \{0\}$ at random s.t. order $(\beta_k / \alpha_k) > d$.
- 3: for k from 0 to n in parallel do
- 4: k=0: Compute $\Lambda_0(x)$ from $f(\alpha_1^i, \ldots, \alpha_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.
- 5: k>0: Compute $\Lambda_{k+1}(x)$ from $f(\alpha_1^i, \ldots, \beta_k^i, \ldots, \alpha_n^i)$ for $0 \le i \le 2T 1$.

- 7: Set $t = \max_{i=1}^{n+1} \deg \Lambda_i(z)$. If $\deg(\Lambda_i) < t$ return FAIL.
- 8: Compute $\{r_1, \ldots, r_t\}$ the set of distinct roots of $\Lambda_1(z)$.
- 9: for k from 1 to n in parallel do
- 10: Construct the bi-partite graph G_k as just described.
- 11: If G_k does not have a unique perfect matching return FAIL
- 12: **else** we have determined $\deg_{x_{\nu}}(M_i)$ for $1 \le i \le t$.
- 13: end for
- 14: Solve for the unknown coefficients c_i and let $g = \sum_{i=1}^{t} c_i M_i$.
- 15: Check if g = f: choose a_1, \ldots, a_n from \mathbb{Z}_p at random.
- 16: If $g(a_1, \ldots, a_n) = f(a_1, \ldots, a_n)$ return g else return FAIL.

Algorithm failure probability

Theorem 1: For random non-zero $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}_p$, the probability that two or more monomials M_i evaluate to the same value is $\leq \binom{t}{2} \frac{d}{p-1}$.

Theorem 2: If deg(Λ_0) = deg(Λ_j) = t, then the probability that we will not be able to uniquely compute the degrees in x_j is at most $\frac{d^2t^2}{4\phi(p-1)}$.

うして ふゆう ふほう ふほう うらつ

Algorithm failure probability

Theorem 1: For random non-zero $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}_p$, the probability that two or more monomials M_i evaluate to the same value is $\leq \binom{t}{2} \frac{d}{p-1}$.

Theorem 2: If deg(Λ_0) = deg(Λ_j) = t, then the probability that we will not be able to uniquely compute the degrees in x_j is at most $\frac{d^2t^2}{4\phi(p-1)}$.

Proof of Theorem 1: Consider

$$A = \prod_{1 \leq i < j \leq t} \left(M_i(x_1, \ldots, x_n) - M_j(x_1, \ldots, x_n) \right).$$

Observe that $A(\alpha_1, \ldots, \alpha_n) = 0$ iff two monomial evaluations collide. Applying the Schwartz lemma, since deg $(M_i) \le d$ we have

$$\operatorname{Prob}(A(\alpha_1,\ldots,\alpha_n)=0)\leq \frac{\deg A}{|S|}\leq \frac{\binom{t}{2}d}{p-1}$$

Optimizations

Theorem 3 : The algorithm makes 2(n + 1)T probes, does $O((n + 1)t^2 + \log(p)t^2 + ndt^2)$ other work, and succeeds with probability at least $1 - \frac{(n+1)d^2t^2}{2\phi(p-1)}$.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Optimizations

Theorem 3 : The algorithm makes 2(n + 1)T probes, does $O((n + 1)t^2 + \log(p)t^2 + ndt^2)$ other work, and succeeds with probability at least $1 - \frac{(n+1)d^2t^2}{2\phi(p-1)}$.

- Pick *p* s.t. p = 2q + 1 with *q* prime to maximize $\phi(p 1)$.
- To compute the degrees of the monomials in the last variable x_n, we do not need to do any more probes to the black box. We have

$$m_i = \alpha_1^{d_{i1}} \times \cdots \times \alpha_{n-1}^{d_{i(n-1)}} \times \alpha_n^{d_{in}}.$$

うして ふゆう ふほう ふほう うらつ

When determining the degree of M_i in x_j, stop when the first s gives a root – it's the right degree w.h.p.

Optimizations

Theorem 3 : The algorithm makes 2(n + 1)T probes, does $O((n + 1)t^2 + \log(p)t^2 + ndt^2)$ other work, and succeeds with probability at least $1 - \frac{(n+1)d^2t^2}{2\phi(p-1)}$.

- Pick p s.t. p = 2q + 1 with q prime to maximize $\phi(p 1)$.
- To compute the degrees of the monomials in the last variable x_n, we do not need to do any more probes to the black box. We have

$$m_i = \alpha_1^{d_{i1}} \times \cdots \times \alpha_{n-1}^{d_{i(n-1)}} \times \alpha_n^{d_{in}}.$$

When determining the degree of M_i in x_j, stop when the first s gives a root – it's the right degree w.h.p.

Theorem 3 : The algorithm makes 2nT probes, does $O(nt^2 + \log(p)t^2 + dt^2)$ other work, and succeeds with probability at least $1 - \frac{(n+d^2)t^2}{p-1}$.

Benchmarks

Random polynomials in n = 12 variables with approximately $t = 2^{i}$ terms of total degree 30 using T = t and d = 30.

i	t	New Algorithm		Zip	ProtoBox	
		Time (4 cores)	Probes	Time Probes		Probes
4	15	0.00 (0.00)	360	0.20	10230	470
5	32	0.02 (0.01)	768	0.54	18879	962
6	63	0.04 (0.02)	1512	1.79	36735	1856
7	127	0.15 (0.05)	3048	6.10	69595	3647
8	255	0.54 (0.17)	6120	22.17	134664	7055
9	507	2.01 (0.60)	12168	83.44	259594	13440
10	1019	7.87 (2.33)	24456	316.23	498945	26077
11	2041	31.0 (9.16)	48984	1195.13	952351	DNF
12	4074	122.3 (35.9)	97776	4575.83	1841795	DNF
13	8139	484.6 (141.)	195336	>10000	-	DNF

Timings are in CPU seconds on an Intel Corei7. The parallel implementation was done in Cilk.

Current work

i	t	1 core			4 cores			
		time	roots	solve	probes	time 1	time 2	speedup
8	255	0.54	0.05	0.00	0.41	0.18	0.17	(3x)
9	507	2.02	0.18	0.02	1.48	0.67	0.60	(3.02x)
10	1019	7.94	0.65	0.08	5.76	2.58	2.33	(3.08x)
11	2041	31.3	2.47	0.32	22.7	9.94	9.16	(3.15x)
12	4074	122.3	9.24	1.26	90.0	38.9	35.9	(3.14x)
13	8139	484.6	34.7	5.02	357.3	152.5	141.5	(3.17x)

Amdahl's law: Speedup
$$\leq \frac{Tot}{\frac{Tot-Seq}{\#cores} + Seq}$$
.

For i = 13 this gives 3.21 for 4 cores and 6.31 for 12 cores.

Current work

i	t	1 core			4 cores			
		time	roots	solve	probes	time 1	time 2	speedup
8	255	0.54	0.05	0.00	0.41	0.18	0.17	(3x)
9	507	2.02	0.18	0.02	1.48	0.67	0.60	(3.02x)
10	1019	7.94	0.65	0.08	5.76	2.58	2.33	(3.08x)
11	2041	31.3	2.47	0.32	22.7	9.94	9.16	(3.15×)
12	4074	122.3	9.24	1.26	90.0	38.9	35.9	(3.14x)
13	8139	484.6	34.7	5.02	357.3	152.5	141.5	(3.17×)

Amdahl's law: Speedup
$$\leq \frac{Tot}{\frac{Tot-Seq}{\#cores} + Seq}$$

For i = 13 this gives 3.21 for 4 cores and 6.31 for 12 cores.

We are currently implementing fast arithmetic in $\mathbb{Z}_p[x]$ for 31 and 63 bit primes to speed up the $O(t^2 \log(p))$ root finding step which is the sequential bottleneck, and also to handle large values of t.

For i = 13 this would give 3.89 for 4 cores and 9.95 for 12 cores.

Giesbrecht, Labahn and Lee's numerical method.

A modification of Ben-Or/Tiwari for polynomials with numerical coefficients. Idea: evaluate at powers of primitive elements in \mathbb{C} of relatively prime order.

Pick w_1, \ldots, w_n of order q_1, \ldots, q_n s.t. $q_j > d$, $gcd(q_j, q_k) = 1$.

Evaluate $f(w_1^i, ..., w_n^i)$, for i = 0, 1, ..., 2T - 1 and compute the roots $m_1, ..., m_t$ of $\Lambda(x)$ numerically. We have

$$m_i = M_i(w_1, \ldots, w_n) = w_1^{d_{i1}} \times w_2^{d_{i2}} \times \cdots \times w_n^{d_{in}} = w_n^{\frac{p-1}{q_1}d_{i1}+\cdots+\frac{p-1}{q_n}d_{in}}$$

where w has order $q_1 \cdot q_2 \cdots q_n$. Now take logarithms to the base w:

$$\Rightarrow \log_{w} m_{i} = \frac{p-1}{q_{1}} d_{i1} + \cdots + \frac{p-1}{q_{j}} d_{ij} + \cdots + \frac{p-1}{q_{n}} d_{in}$$

ション ふゆ アメリア メリア しょうめん

Round $\log_w(m_i)$ and solve this modulo q_j to get $d_{i,j}$.

Giesbrecht, Labahn and Lee's numerical method.

A modification of Ben-Or/Tiwari for polynomials with numerical coefficients. Idea: evaluate at powers of primitive elements in \mathbb{C} of relatively prime order.

Pick w_1, \ldots, w_n of order q_1, \ldots, q_n s.t. $q_j > d$, $gcd(q_j, q_k) = 1$.

Evaluate $f(w_1^i, ..., w_n^i)$, for i = 0, 1, ..., 2T - 1 and compute the roots $m_1, ..., m_t$ of $\Lambda(x)$ numerically. We have

$$m_i = M_i(w_1, \ldots, w_n) = w_1^{d_{i1}} \times w_2^{d_{i2}} \times \cdots \times w_n^{d_{in}} = w_n^{\frac{p-1}{q_1}d_{i1}+\cdots+\frac{p-1}{q_n}d_{in}}$$

where w has order $q_1 \cdot q_2 \cdots q_n$. Now take logarithms to the base w:

$$\Rightarrow \log_{w} m_{i} = \frac{p-1}{q_{1}} d_{i1} + \cdots + \frac{p-1}{q_{j}} d_{ij} + \cdots + \frac{p-1}{q_{n}} d_{in}$$

Round $\log_w(m_i)$ and solve this modulo q_j to get $d_{i,j}$.

For applications where we can pick p, this can work in \mathbb{Z}_p as follows:

- Pick $p = q_1 \cdot q_2 \cdots q_n + 1$ s.t. $q_i > d$ and $gcd(q_i, q_j) = 1$ until p is prime.
- ► The discrete log is efficient if we choose p − 1 with no large prime factors.
- O(T) probes but requires $p > (d+1)^n$ which may be big.

Thank you.