Gaston, Maple and Mike

Michael Monagan
Center for Experimental and Constructive Mathematics Simon Fraser University
British Columbia

GNOME 2014, Zurich, July 4th, 2014

Me, Gaston and Maple

May 1982 - Dec 1982 Waterloo, Masters student Jan 1983 - Aug 1989 Waterloo, PhD student Aug 1989 - Oct 1995 Zurich, Assistent

Me, Gaston and Maple
May 1982 - Dec 1982 Waterloo, Masters student
Jan 1983 - Aug 1989 Waterloo, PhD student
Aug 1989 - Oct 1995 Zurich, Assistent

Gaston gave me this paper for my Masters essay
Shafi Goldswasser and Silvio Micali.
Probabilistic encryption \& how to play mental poker keeping secret all partial information. STOC '82, June 1982
which we implemented in Maple.

Gaston's number theory package, the first Maple package.

```
    |\\~/| Maple V Release 4 (WMI Campus Wide License)
._|\| |/I_. Copyright (c) 1981-1996 by Waterloo Maple Inc. All rights
    \ MAPLE / reserved. Maple and Maple V are registered trademarks of
    <_-_- _-_-> Waterloo Maple Inc.
    Type ? for help.
> with(numtheory);
Warning, new definition for order
[ F, M, cyclotomic, divisors, factorset, fermat, ifactor, imagunit,
    isprime, issqrfree, ithprime, jacobi, lambda, legendre, mcombine,
    mersenne, mlog, mroot, msqrt, nextprime, order, phi, prevprime,
    pprimroot, primroot, quadres, rootsunit, safeprime, sigma, tau]
```

I chose not to pursue cryptography for a PhD.

Life as a graduate student with Gaston ...

First Maple retreat, Sparrow lake, summer, 1983

What was Gaston's main contribution to Maple?

What was Gaston's main contribution to Maple?
Maple's Sum-of-Products representation and hashing of all subexpressions.

$$
9 x y^{3} z-4 y^{3} z^{2}-6 x y^{2} z-8 x^{3}-5
$$

What was Gaston's main contribution to Maple?
Maple's Sum-of-Products representation and hashing of all subexpressions.

$$
9 x y^{3} z-4 y^{3} z^{2}-6 x y^{2} z-8 x^{3}-5
$$

What is the most important operation to make efficient?

What was Gaston's main contribution to Maple?
Maple's Sum-of-Products representation and hashing of all subexpressions.

$$
9 x y^{3} z-4 y^{3} z^{2}-6 x y^{2} z-8 x^{3}-5
$$

What is the most important operation to make efficient?
Polynomial multiplication (and division).
But monomial multiplication cost >200 cycles.

Singular's representation

Our new POLY representation (default in Maple 17)

$$
9 x y^{3} z-4 y^{3} z^{2}-6 x y^{2} z-8 x^{3}-5
$$

6 advantages

Our new POLY representation (default in Maple 17)

$$
9 x y^{3} z-4 y^{3} z^{2}-6 x y^{2} z-8 x^{3}-5
$$

6 advantages
(1) It's about $4 \times$ more compact.
(2) Memory access is sequential.
(3) Kernel operations become O (\#terms), some $O(1)$.
(9) Monomial multiplication is one 64 bit integer + Monomial comparison is one 64 bit integer >
(3) The simpl table is not filled with PRODs.
(0) Division cannot cause exponent overflow in graded lex order.

What will fast multiplication using POLY do for the Maple library?

Intel Core i7 920 2.66 GHz (4 cores)
Times in seconds

multiply	Maple	Maple 16		$\begin{array}{r} \hline \text { Magma } \\ 2.16-8 \\ \hline \end{array}$	$\begin{array}{r} \text { Singular } \\ 3.1 .0 \end{array}$	Mathem atica 7
	13	1 core	4 cores			
$p_{4}:=f_{4}\left(f_{4}+1\right)$	95.97	2.14	0.643	13.25	30.64	273.01
divide						
$q_{4}:=p_{4} / f_{4}$	192.87	2.25	0.767	18.54	14.96	228.83
factor	Hensel lifting is mostly polynomial multiplication!					
$p_{4} 135751$ terms	2953.54	59.29	46.41	332.86	404.86	655.49

$$
f_{4}=(1+x+y+z+t)^{20}+1 \quad 10626 \text { terms }
$$

Parallel speedup for $f_{4} \times\left(f_{4}+1\right)$ is $2.14 / .643=3.33 \times$. Why?

What will fast multiplication using POLY do for the Maple library?

Intel Core i7 9202.66 GHz (4 cores)
Times in seconds

	Maple	Maple 16			Magma	Singular							
multiply	13	1 core	4 cores	$2.16-8$	3.1 .0	atica 7							
$p_{4}:=f_{4}\left(f_{4}+1\right)$	95.97	2.14	0.643	13.25	30.64	273.01							
divide													
$q_{4}:=p_{4} / f_{4}$	192.87	2.25	0.767	18.54	14.96	228.83							
factor	Hensel lifting is mostly polynomial multiplication!												
$p_{4} 135751$ terms	2953.54	59.29								46.41	332.86	404.86	655.49

$$
f_{4}=(1+x+y+z+t)^{20}+1 \quad 10626 \text { terms }
$$

Parallel speedup for $f_{4} \times\left(f_{4}+1\right)$ is $2.14 / .643=3.33 \times$. Why? Conversion overhead between POLY and SUM of PRODs!

After brainstorming with Roman, I asked Laurent if we could make POLY the default in Maple. Maple 17 uses POLY if all monomials in a polynomial with integer coefficients fit in 64 bits - otherwise we use SUM-of-PRODs. Conversions between POLY and SUM-of-PRODs are automatic and invisible to the Maple user.

So we coded POLY for each kernel routine.
Faster at everything except op, map, etc.

command	Maple 16	Maple 17	speedup	notes
$\operatorname{coeff}(f, x, 20)$	2.140 s	0.005 s	420 x	terms easy to locate
$\operatorname{coeffs}(f, x)$	0.979 s	0.119 s	8 x	reorder exponents and radix
degree (f, x)	0.073 s	0.003 s	24 x	stop early using monomial d
$\operatorname{diff}(f, x)$	0.956 s	0.031 s	30 x	terms remain sorted
eval $(f, x=6)$	3.760 s	0.175 s	21 x	use Horner form recursively
expand $(2 * x * f)$	1.190 s	0.066 s	18 x	terms remain sorted
indets (f)	0.060 s	0.000 s	$\rightarrow O(1)$	first word in dag
op (f)	0.634 s	2.420 s	0.26 x	has to construct old structur
for t in f do	0.646 s	2.460 s	0.26 x	has to construct old structur
taylor $(f, x, 50)$	0.668 s	0.055 s	12 x	get coefficients in one pass
type $(f$, polynom $)$	0.029 s	0.000 s	$\rightarrow O(n)$	type check variables only
$f ;$	0.162 s	0.000 s	$\rightarrow O(n)$	evaluate the variables

For f with $n=3$ variables and $t=10^{6}$ terms created by
$\mathrm{f}:=\operatorname{expand}(m u l(r a n d p o l y(v$, degree $=100$, dense $), v=[x, y, z])$):

Maple 16 Maple 17 multiply 1 core 4 cores 1 core 4 cores $p_{4}:=f_{4}\left(f_{4}+1\right)$ 2.140 0.643 1.770 0.416 factor $p_{4} 135751$ terms 59.27 46.41 24.35 12.65

$$
f_{4}=(1+x+y+z+t)^{20}+1 \quad 10626 \text { terms }
$$

Parallel speedup for $f_{4} \times\left(f_{4}+1\right)$ is $1.77 / 0.416=4.2 \times$. How ?

Joris van der Hoven: Do you use the extra bits for the total degree? My answer: No, because ...
I changed my mind. Roman Pearce recoded everything for Maple 18.

	per variable		total degree			$V_{n}=$ det $n \times n$ Vandermonde		
n	\#bits	maxdeg	\#bits	maxdeg	deg	Maple 16	17	18
7	8	255	8	255	21	0.012 s	0.005	0.004
8	7	127	8	255	28	0.093 s	0.027	0.026
9	6	63	10	1023	36	1.35 s	0.218	0.150
10	5	31	14	16383	45	15.95 s	25.44	1.57
11	5	31	9	511	55	-	-	18.87
12	4	15	16	65535	66			236.4
13	4	15	12	4095	78			-
14	4	15	8	255	91			
15	4	15	4	15	105			
16	3	7	16	65535	120			

Maple retreat, Sparrow lake, circa 1992
Thank you Gaston for Waterloo, Zurich and Maple. Mike.

Notes on integration of POLY for Maple 17

Given a polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we store f using POLY if
(1) f is expanded and has integer coefficients,
(2) $d>1$ and $t>1$ where $d=\operatorname{deg} f$ and $t=$ \#terms,
(3) we can pack all monomials of f into one 64 bit word, i.e. if $d<2^{b}$ where $b=\left\lfloor\frac{64}{n+1}\right\rfloor$
Otherwise we use the sum-of-products representation.

- The representation is invisible to the Maple user. Conversions are automatic.
- POLY polynomials will be displayed in sorted order.
- Packing is fixed by $n=\#$ variables.
- Maple 18 uses remaining bits for total degree.

Parallel multiplication using a binary heap.

Target architecture

Local Heaps

One thread per core.

Threads write to a finite circular buffer.

Threads try to acquire global heap as buffer fills up to balance load.

