## Gaston, Maple and Mike

#### Michael Monagan

Center for Experimental and Constructive Mathematics Simon Fraser University British Columbia

> GNOME 2014, Zurich, July 4th, 2014

#### Me, Gaston and Maple

```
May 1982 — Dec 1982 Waterloo, Masters student
Jan 1983 — Aug 1989 Waterloo, PhD student
Aug 1989 — Oct 1995 Zurich, Assistent
```

Me, Gaston and Maple

```
May 1982 — Dec 1982 Waterloo, Masters student
Jan 1983 — Aug 1989 Waterloo, PhD student
Aug 1989 — Oct 1995 Zurich, Assistent
```

Gaston gave me this paper for my Masters essay

Shafi Goldswasser and Silvio Micali.

Probabilistic encryption & how to play mental poker keeping secret all partial information. STOC '82, June 1982

which we implemented in Maple.

Gaston's number theory package, the first Maple package.

> with(numtheory); Warning, new definition for order

[ F, M, cyclotomic, divisors, factorset, fermat, ifactor, imagunit,

isprime, issqrfree, ithprime, jacobi, lambda, legendre, mcombine,

mersenne, mlog, mroot, msqrt, nextprime, order, phi, prevprime,

pprimroot, primroot, quadres, rootsunit, safeprime, sigma, tau]

I chose not to pursue cryptography for a PhD.

・ 同 ト ・ ヨ ト ・ ヨ ト …



First Maple retreat, Sparrow lake, summer, 1983

□→ < □→</p>

Michael Monagan GNOME 2014, Zurich

æ

Э

@▶ < ≣

Maple's Sum-of-Products representation and hashing of all subexpressions.



$$9xy^3z - 4y^3z^2 - 6xy^2z - 8x^3 - 5$$

Maple's Sum-of-Products representation and hashing of all subexpressions.



What is the most important operation to make efficient?

Maple's Sum-of-Products representation and hashing of all subexpressions.



What is the most important operation to make efficient? Polynomial multiplication (and division). But monomial multiplication  $\cos t > 200$  cycles.

### Singular's representation



 $9xy^3z - 4y^3z^2 - 6xy^2z - 8x^3 - 5$ 

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

э

Our new POLY representation (default in Maple 17)



$$9\,xy^3z - 4\,y^3z^2 - 6\,xy^2z - 8\,x^3 - 5.$$

6 advantages

Michael Monagan GNOME 2014, Zurich

Our new POLY representation (default in Maple 17)



$$9\,xy^3z - 4\,y^3z^2 - 6\,xy^2z - 8\,x^3 - 5.$$

6 advantages

- **1** It's about  $4 \times$  more compact.
- Ø Memory access is sequential.
- Some O(# terms), some O(1).
- Monomial multiplication is one 64 bit integer + Monomial comparison is one 64 bit integer >
- The simpl table is not filled with PRODs.
- O Division cannot cause exponent overflow in graded lex order.

What will fast multiplication using POLY do for the Maple library?

Intel Core i7 920 2.66 GHz (4 cores)

Times in seconds

・ 同 ト ・ ヨ ト ・ ヨ ト

|                                    | Maple                                               | Maple 16 |         | Magma  | Singular | Mathem  |
|------------------------------------|-----------------------------------------------------|----------|---------|--------|----------|---------|
| multiply                           | 13                                                  | 1 core   | 4 cores | 2.16-8 | 3.1.0    | atica 7 |
| $p_4 := f_4(f_4 + 1)$              | 95.97                                               | 2.14     | 0.643   | 13.25  | 30.64    | 273.01  |
| divide                             |                                                     |          |         |        |          |         |
| $q_4 := p_4/f_4$                   | 192.87                                              | 2.25     | 0.767   | 18.54  | 14.96    | 228.83  |
| factor                             | Hensel lifting is mostly polynomial multiplication! |          |         |        |          |         |
| <i>p</i> <sub>4</sub> 135751 terms | 2953.54                                             | 59.29    | 46.41   | 332.86 | 404.86   | 655.49  |

 $f_4 = (1 + x + y + z + t)^{20} + 1$  10626 terms

**Parallel speedup** for  $f_4 \times (f_4 + 1)$  is 2.14 / .643 = **3.33**×. Why?

What will fast multiplication using POLY do for the Maple library?

Intel Core i7 920 2.66 GHz (4 cores)

Times in seconds

|                                    | Maple                                               | Maple 16 |         | Magma  | Singular | Mathem  |
|------------------------------------|-----------------------------------------------------|----------|---------|--------|----------|---------|
| multiply                           | 13                                                  | 1 core   | 4 cores | 2.16-8 | 3.1.0    | atica 7 |
| $p_4 := f_4(f_4 + 1)$              | 95.97                                               | 2.14     | 0.643   | 13.25  | 30.64    | 273.01  |
| divide                             |                                                     |          |         |        |          |         |
| $q_4 := p_4/f_4$                   | 192.87                                              | 2.25     | 0.767   | 18.54  | 14.96    | 228.83  |
| factor                             | Hensel lifting is mostly polynomial multiplication! |          |         |        |          |         |
| <i>p</i> <sub>4</sub> 135751 terms | 2953.54                                             | 59.29    | 46.41   | 332.86 | 404.86   | 655.49  |

 $f_4 = (1 + x + y + z + t)^{20} + 1$  10626 terms

**Parallel speedup** for  $f_4 \times (f_4 + 1)$  is 2.14 / .643 = **3.33**×. Why? Conversion overhead between POLY and SUM of PRODs! After brainstorming with Roman, I asked Laurent if we could make POLY the default in Maple. Maple 17 uses POLY if all monomials in a polynomial with integer coefficients fit in 64 bits - otherwise we use SUM-of-PRODs. Conversions between POLY and SUM-of-PRODs are automatic and invisible to the Maple user.



#### So we coded POLY for each kernel routine. Faster at everything except op, map, etc.

| command                     | Maple 16 | Maple 17 | speedup            | notes                         |
|-----------------------------|----------|----------|--------------------|-------------------------------|
| coeff(f, x, 20)             | 2.140 s  | 0.005 s  | 420x               | terms easy to locate          |
| coeffs(f, x)                | 0.979 s  | 0.119 s  | 8x                 | reorder exponents and radix   |
| degree(f, x)                | 0.073 s  | 0.003 s  | 24x                | stop early using monomial de  |
| diff(f, x)                  | 0.956 s  | 0.031 s  | 30x                | terms remain sorted           |
| eval(f, x = 6)              | 3.760 s  | 0.175 s  | 21x                | use Horner form recursively   |
| expand(2 * x * f)           | 1.190 s  | 0.066 s  | 18x                | terms remain sorted           |
| indets(f)                   | 0.060 s  | 0.000 s  | ightarrow O(1)     | first word in dag             |
| op(f)                       | 0.634 s  | 2.420 s  | 0.26x              | has to construct old structur |
| for t in f do               | 0.646 s  | 2.460 s  | 0.26x              | has to construct old structur |
| taylor(f, x, 50)            | 0.668 s  | 0.055 s  | 12x                | get coefficients in one pass  |
| <pre>type(f, polynom)</pre> | 0.029 s  | 0.000 s  | $\rightarrow O(n)$ | type check variables only     |
| <i>f</i> ;                  | 0.162 s  | 0.000 s  | $\rightarrow O(n)$ | evaluate the variables        |

For f with n = 3 variables and  $t = 10^6$  terms created by

f := expand(mul(randpoly(v,degree=100,dense),v=[x,y,z])):

|                             | Map     | ole 16     | Maple 17   |           |  |
|-----------------------------|---------|------------|------------|-----------|--|
| multiply                    | 1 core  | 4 cores    | 1 core     | 4 cores   |  |
| $p_4 := f_4(f_4 + 1)$       | 2.140   | 0.643      | 1.770      | 0.416     |  |
| factor                      |         |            |            |           |  |
| p <sub>4</sub> 135751 terms | 59.27   | 46.41      | 24.35      | 12.65     |  |
| ntel Core i5 750 2 6        | 6 GHz 4 | cores. Rea | al times i | n seconds |  |

 $f_4 = (1 + x + y + z + t)^{20} + 1$  10626 terms

**Parallel speedup** for  $f_4 \times (f_4 + 1)$  is  $1.77/0.416 = 4.2 \times$ . How ?

♬▶ ◀ ☱ ▶ ◀

Joris van der Hoven: Do you use the extra bits for the total degree? My answer: No, because ...

I changed my mind. Roman Pearce recoded everything for Maple 18.

|    | per variable |        | total degree |        | $V_n = \det n \times n$ Vandermonde |          |       |       |
|----|--------------|--------|--------------|--------|-------------------------------------|----------|-------|-------|
| n  | #bits        | maxdeg | #bits        | maxdeg | deg                                 | Maple 16 | 17    | 18    |
| 7  | 8            | 255    | 8            | 255    | 21                                  | 0.012s   | 0.005 | 0.004 |
| 8  | 7            | 127    | 8            | 255    | 28                                  | 0.093s   | 0.027 | 0.026 |
| 9  | 6            | 63     | 10           | 1023   | 36                                  | 1.35 s   | 0.218 | 0.150 |
| 10 | 5            | 31     | 14           | 16383  | 45                                  | 15.95s   | 25.44 | 1.57  |
| 11 | 5            | 31     | 9            | 511    | 55                                  | -        | _     | 18.87 |
| 12 | 4            | 15     | 16           | 65535  | 66                                  |          |       | 236.4 |
| 13 | 4            | 15     | 12           | 4095   | 78                                  |          |       | -     |
| 14 | 4            | 15     | 8            | 255    | 91                                  |          |       |       |
| 15 | 4            | 15     | 4            | 15     | 105                                 |          |       |       |
| 16 | 3            | 7      | 16           | 65535  | 120                                 |          |       |       |



Maple retreat, Sparrow lake, circa 1992

Thank you Gaston for Waterloo, Zurich and Maple. Mike.

## Notes on integration of POLY for Maple 17

Given a polynomial  $f(x_1, x_2, ..., x_n)$ , we store f using POLY if

- (1) f is expanded and has integer coefficients,
- (2) d > 1 and t > 1 where  $d = \deg f$  and t = #terms,
- (3) we can pack all monomials of f into one 64 bit word, i.e. if  $d < 2^b$  where  $b = \lfloor \frac{64}{n+1} \rfloor$

Otherwise we use the sum-of-products representation.

- The representation is invisible to the Maple user. Conversions are automatic.
- POLY polynomials will be displayed in sorted order.
- Packing is fixed by n = #variables.
- Maple 18 uses remaining bits for total degree.

# Parallel multiplication using a binary heap.



Threads write to a finite circular buffer.



Threads try to acquire global heap as buffer fills up to balance load.