Optimizing and and Parallelizing the Modular GCD Algorithm

Matthew Gibson Michael Monagan

Centre for Experimental and Constructive Mathematics Simon Fraser University British Columbia

> PASCO 2015, Bath, England July 10, 2015

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Compute $G = \operatorname{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Compute $G = \operatorname{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \dots, x_n]$.

Compute G modulo primes p_1, p_2, \ldots and recover G using Chinese remaindering.

伺 ト く ヨ ト く ヨ ト

Compute $G = \operatorname{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, \dots, x_n]$.

Compute G modulo primes p_1, p_2, \ldots and recover G using Chinese remaindering.

Let
$$\overline{A} = A/G$$
 and $\overline{B} = B/G$ be the cofactors
Let $A = \sum_{i=0}^{da} a_i(x_2, ..., x_n) x_1^i$.
Let $B = \sum_{i=0}^{db} b_i(x_2, ..., x_n) x_1^i$.
Let $G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$.
Let $t = \max_{i=0}^{dg} \#terms g_i$.

Interpolate $g_i(x_2, ..., x_n)$ modulo p from $2t + \delta$ univariate images in $\mathbb{Z}_p[x_1]$ using smooth prime p.

回 と く ヨ と く ヨ と

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Compute $G \mod p_1, p_2, \ldots$ and recover G using Chinese remaindering.

Let $\bar{A} = A/G$ and $\bar{B} = B/G$ be the cofactors. Let $A = \sum_{i=0}^{da} a_i(x_2, ..., x_n) x_1^i$. $CA = GCD(a_i(x_2, ..., x_n))$. Let $B = \sum_{i=0}^{db} b_i(x_2, ..., x_n) x_1^i$. $CB = GCD(b_i(x_2, ..., x_n))$. Let $G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$. CG = GCD(CA, CB). Let $t = \max_{i=0}^{dg} \#terms g_i$. $\Gamma = GCD(a_{da}, b_{db})$.

Observation: Most of the time is recursive GCDs in n-1 variables and evaluation and interpolation not GCD in $\mathbb{Z}_p[x_1]$.

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$. $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$. $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

Interpolate $g_i(x_3, ..., x_n)$ modulo p from $2s + \delta$ bivariate images in $\mathbb{Z}_p[x_1, x_2]$ using smooth prime p – increased cost but

• Usually $s \ll t$ which reduces evaluation and interpolation cost.

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$. $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually CA, CB, Γ are smaller so easier to compute.

Compute G = GCD(A, B) in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$. $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually CA, CB, Γ are smaller so easier to compute.
- Increases parallelism in interpolation.

Compute $G = \operatorname{GCD}(A, B)$ in $\mathbb{Z}[x_1, x_2, ..., x_n]$.

Let $A = \sum_{i} a_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $B = \sum_{i} b_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $G = \sum_{i} g_{i,j}(x_3, ..., x_n) x_1^i x_2^j$. Let $s = \max_{i,j} \# terms g_{i,j}$. $CA = GCD(a_i(x_3, ..., x_n)).$ $CB = GCD(b_i(x_3, ..., x_n)).$ CG = GCD(CA, CB). $\Gamma = GCD(LC(A), LC(B)).$

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually CA, CB, Γ are smaller so easier to compute.
- Increases parallelism in interpolation.
- Optimize serial bivariate Gcd computation.
- **2** For n > 2 parallelized (Cilk C) evaluation and interpolation.
- Senchmark against Maple and Magma.

Input $A, B \in \mathbb{Z}_{\rho}[y][x]$. Output G = GCD(A, B), \overline{A} and \overline{B} .

Trial division method. (Maple, Magma)

Interpolate y in G from univariate images in $\mathbb{Z}_p[x]$ incrementally until G(x, y) does not change.

Test if G|A and G|B. If yes output $G, \overline{A} = A/G, \overline{B} = B/G$.

Input $A, B \in \mathbb{Z}_{\rho}[y][x]$. Output G = GCD(A, B), \overline{A} and \overline{B} .

Trial division method. (Maple, Magma)

Interpolate y in G from univariate images in $\mathbb{Z}_p[x]$ incrementally until G(x, y) does not change.

Test if G|A and G|B. If yes output $G, \overline{A} = A/G, \overline{B} = B/G$.

Cofactor recovery method. (Brown 1971)

Interpolate y in $G, \overline{A}, \overline{B}$ from univariate images $g_i = G(\alpha_i, x), \overline{a}_i = A(\alpha_i, x)/g_i, \overline{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$. After k images we have

 $A - G\bar{A} \equiv 0 \pmod{M} \text{ and } B - G\bar{B} \equiv 0 \pmod{M}$ where $M = (y - \alpha_1)(y - \alpha_2) \cdots (y - \alpha_k)$. Stop when $k > \max(\deg_y A, \deg_y B, \deg_y G\bar{A}, \deg_y G\bar{B})$.

< 注 → < 注 → □ 注

Cofactor recovery method for $\mathbb{Z}_p[y][x]$

Interpolate y in $G, \overline{A}, \overline{B}$ from univariate images $g_i = G(\alpha_i, x), \overline{a}_i = A(\alpha_i, x)/g_i, \overline{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$ in batches until one of $G, \overline{A}, \overline{B}$ stabilizes.

Case *G* **stabilizes**: obtain remaining images using univariate \div $g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$ thus replacing the Euclidean algorithm with an evaluation.

Cofactor recovery method for $\mathbb{Z}_p[y][x]$

Interpolate y in $G, \overline{A}, \overline{B}$ from univariate images $g_i = G(\alpha_i, x), \overline{a}_i = A(\alpha_i, x)/g_i, \overline{b}_i = B(\alpha_i, x)/g_i$ in $\mathbb{Z}_p[x]$ in batches until one of $G, \overline{A}, \overline{B}$ stabilizes.

Case *G* **stabilizes**: obtain remaining images using univariate \div $g_i = G(\alpha_i, x), \bar{a}_i = A(\alpha_i, x)/g_i, \bar{b}_i = B(\alpha_i, x)/g_i$ thus replacing the Euclidean algorithm with an evaluation.

Case \overline{A} **stabilizes**: obtain remaining images using univariate \div $\overline{a}_i = \overline{A}(\alpha_i, x), g_i = A(\alpha_i, x)/\overline{a}_i, \overline{b}_i = B(\alpha_i, x)/g_i$ thus replacing the Euclidean algorithm with an evaluation.

Figure : Image Division Optimizations

For dense A, B in $\mathbb{Z}_p[x_n][x_1 \dots x_{n-1}]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size j ($j = 2, 4, 8, 16, \dots$). The idea:

For dense A, B in $\mathbb{Z}_p[x_n][x_1 \dots x_{n-1}]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size j ($j = 2, 4, 8, 16, \dots$). The idea:

• $f \in \mathbb{Z}_p[x_n]$

For dense A, B in $\mathbb{Z}_p[x_n][x_1 \dots x_{n-1}]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size j ($j = 2, 4, 8, 16, \dots$). The idea:

- $f \in \mathbb{Z}_p[x_n]$
- $j = 2^k$, small, such that $j \mid p 1$

For dense A, B in $\mathbb{Z}_p[x_n][x_1 \dots x_{n-1}]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size j ($j = 2, 4, 8, 16, \dots$). The idea:

• $f \in \mathbb{Z}_p[x_n]$

•
$$j = 2^k$$
, small, such that $j \mid p - 1$

•
$$f^* \equiv f \mod (x^j - \alpha_0^j)$$

For dense A, B in $\mathbb{Z}_p[x_n][x_1 \dots x_{n-1}]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size j ($j = 2, 4, 8, 16, \dots$). The idea:

- $f \in \mathbb{Z}_p[x_n]$
- $j = 2^k$, small, such that $j \mid p 1$

•
$$f^* \equiv f \mod (x^j - \alpha_0^j)$$

• Evaluate f* using the FFT

For dense A, B in $\mathbb{Z}_p[x_n][x_1 \dots x_{n-1}]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size j ($j = 2, 4, 8, 16, \dots$). The idea:

• $f \in \mathbb{Z}_p[x_n]$

•
$$j = 2^k$$
, small, such that $j \mid p - 1$

•
$$f^* \equiv f \mod (x^j - \alpha_0^j)$$

• Evaluate f* using the FFT

Cilk is a C/C++ extension for parallelism in computation. **Cilk** uses a fixed number of worker threads and a work-stealing algorithm, and two basic keywords: cilk_spawn and cilk_sync. We implement with Cilk Plus by Intel. **Dense Polynomial Structure** Recursive dense representation using arrays. Multivariate polynomials form a tree. *A*, *B* in $\mathbb{Z}_p[x_1, x_2, x_3]$, monic, dense in total degree d = 200

Dense Polynomial Structure Recursive dense representation using arrays. Multivariate polynomials form a tree. *A*, *B* in $\mathbb{Z}_p[x_1, x_2, x_3]$, monic, dense in total degree d = 200

The number of terms in each input polynomial is 1.37 million, filling 10.5 MB of memory.

Example: Call MGCD(A, B) in $\mathbb{Z}_p[x_1, x_2, x_3]$

• Allocate space for interpolants $G^*, \overline{A}^*, \overline{B}^*$ in $\mathbb{Z}_p[x_1, x_2, x_3]$

- Allocate space for interpolants $G^*, \overline{A}^*, \overline{B}^*$ in $\mathbb{Z}_p[x_1, x_2, x_3]$
- **2** For $\lceil bnd/j \rceil$ batches: in parallel

- Allocate space for interpolants $G^*, \overline{A}^*, \overline{B}^*$ in $\mathbb{Z}_p[x_1, x_2, x_3]$
- **2** For $\lceil bnd/j \rceil$ batches: in parallel
 - Evaluate *j* images of the inputs into new space in $\mathbb{Z}_p[x_1, x_2]$

- Allocate space for interpolants $G^*, \overline{A}^*, \overline{B}^*$ in $\mathbb{Z}_p[x_1, x_2, x_3]$
- **2** For $\lceil bnd/j \rceil$ batches: in parallel
 - Evaluate *j* images of the inputs into new space in $\mathbb{Z}_p[x_1, x_2]$
 - **2** Make *j* recursive calls to MGCD in parallel to get $G_i, \overline{A}_i, \overline{B}_i$

- Allocate space for interpolants $G^*, \overline{A}^*, \overline{B}^*$ in $\mathbb{Z}_p[x_1, x_2, x_3]$
- **2** For $\lceil bnd/j \rceil$ batches: in parallel
 - Evaluate j images of the inputs into new space in $\mathbb{Z}_p[x_1, x_2]$
 - **2** Make *j* recursive calls to MGCD in parallel to get G_i, A_i, B_i
 - **③** Distribute image GCD and cofactor coefficients into $G^*, \overline{A}^*, \overline{B}^*$

- Allocate space for interpolants $G^*, \overline{A}^*, \overline{B}^*$ in $\mathbb{Z}_p[x_1, x_2, x_3]$
- **2** For $\lceil bnd/j \rceil$ batches: in parallel
 - Evaluate j images of the inputs into new space in $\mathbb{Z}_{p}[x_{1}, x_{2}]$
 - **2** Make *j* recursive calls to MGCD in parallel to get $G_i, \overline{A}_i, \overline{B}_i$
 - **③** Distribute image GCD and cofactor coefficients into $G^*, \overline{A}^*, \overline{B}^*$
- **③** interpolate $G^*, \overline{A}^*, \overline{B}^*$ in the univariate leaves in parallel

Example: Call MGCD(A, B) in $\mathbb{Z}_{p}[x_1, x_2, x_3]$

- Allocate space for interpolants $G^*, \overline{A}^*, \overline{B}^*$ in $\mathbb{Z}_p[x_1, x_2, x_3]$
- **2** For $\lceil bnd/j \rceil$ batches: in parallel
 - Evaluate *j* images of the inputs into new space in $\mathbb{Z}_p[x_1, x_2]$
 - **2** Make *j* recursive calls to MGCD in parallel to get $G_i, \overline{A}_i, \overline{B}_i$
 - 3 Distribute image GCD and cofactor coefficients into $G^*, \overline{A}^*, \overline{B}^*$
- **③** interpolate $G^*, \overline{A}^*, \overline{B}^*$ in the univariate leaves in parallel

The algorithm is recursive and needs a lot of pieces of memory. Many calls to malloc can be a bad idea. We allocate large blocks of memory and use it as a stack. Memory for each bivariate Gcd is all preallocated.

Benchmarks $A, B \in \mathbb{Z}_p[x_1, x_2, x_3]$, deg $A = \deg B = 200$.

deg(G)	$deg(\overline{A})$	-opt,fft	-fft	1	8	16	20	Conv
10	190	15.81	8.79	4.79	0.84	0.54	0.48	0.37
40	160	14.59	9.42	5.79	0.92	0.55	0.49	0.27
70	130	13.25	9.74	6.47	0.99	0.56	0.49	0.21
100	100	11.80	9.87	6.72	1.00	0.57	0.50	0.18
130	70	10.25	8.19	5.29	0.80	0.46	0.40	0.18
160	40	8.56	7.14	4.16	0.66	0.39	0.34	0.20
190	10	6.80	6.58	3.44	0.58	0.37	0.33	0.25

jude 2 x E5-2680 v2 CPUs, 10 cores, 2.8 GHz (3.6 GHz turbo). Maximum theoretical speed-up on 20 cores: 15.56 Benchmarks $A, B \in \mathbb{Z}_p[x_1, x_2, x_3]$, deg $A = \deg B = 200$.

Table : Real times in seconds, $p = 2^{62} - 57$, inputs have 1373701 terms

Deg		Maple		MagmaR		MGCD, #CPUs				POLY
G	Ā	$A \times B$	GCD	$A \times B$	GCD	1	4	8	16	Conv
10	190	2.22	70.98	77.22	33.34	6.35	1.83	1.06	0.71	0.47
40	160	25.65	267.16	920.48	159.71	7.75	2.13	1.18	0.75	0.35
70	130	25.62	439.80	1624.6	462.09	8.72	2.35	1.27	0.75	0.28
100	100	25.43	453.27	1526.2	900.65	9.11	2.43	1.32	0.79	0.24
130	70	25.69	436.11	1559.2	14254.	7.11	1.92	1.04	0.62	0.23
160	40	25.44	282.04	934.45	7084.3	5.63	1.52	0.83	0.51	0.26
190	10	2.23	77.28	90.30	2229.8	4.69	1.29	0.74	0.47	0.32

gaby two E5-2660 CPUs, 8 cores at 2.2 GHz (3.0 GHz turbo). Maximum theoretical speed-up on 16 cores: 11.73

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

・ロット (雪) () () (

æ

Э

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

• Most of the time is evaluation: O((#A + #B)t).

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: O((#A + #B)t).
- Have parallelized evaluation in batches of points.

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: O((#A + #B)t).
- Have parallelized evaluation in batches of points.
- Have parallelized on *i* sparse interpolation of $g_i(x_2, \ldots, x_n)$.

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: O((#A + #B)t).
- Have parallelized evaluation in batches of points.
- Have parallelized on *i* sparse interpolation of $g_i(x_2, \ldots, x_n)$.
- Need to switch to bivariate images.

Let
$$G = \sum_{i=0}^{dg} g_i(x_2, ..., x_n) x_1^i$$
.
Let $t = \max_i \# g_i$.

- Most of the time is evaluation: O((#A + #B)t).
- Have parallelized evaluation in batches of points.
- Have parallelized on *i* sparse interpolation of $g_i(x_2, \ldots, x_n)$.
- Need to switch to bivariate images.