Optimizing and and Parallelizing the Modular GCD Algorithm

Matthew Gibson Michael Monagan
Centre for Experimental and Constructive Mathematics
Simon Fraser University
British Columbia

PASCO 2015, Bath, England
July 10, 2015

Problem

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Problem

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Compute G modulo primes p_{1}, p_{2}, \ldots and recover G using Chinese remaindering.

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Compute G modulo primes p_{1}, p_{2}, \ldots and recover G using Chinese remaindering.

Let $\bar{A}=A / G$ and $\bar{B}=B / G$ be the cofactors.
Let $A=\sum_{i=0}^{d a} a_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{\dot{j}}$.
Let $B=\sum_{i=0}^{d b} b_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i=0}^{d g} \#$ terms $g i$.
Interpolate $g_{i}\left(x_{2}, \ldots, x_{n}\right)$ modulo p from $2 t+\delta$ univariate images in $\mathbb{Z}_{p}\left[x_{1}\right]$ using smooth prime p.

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Compute $G \bmod p_{1}, p_{2}, \ldots$ and recover G using Chinese remaindering.

Let $\bar{A}=A / G$ and $\bar{B}=B / G$ be the cofactors.
Let $A=\sum_{i=0}^{d a} a_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i} . \quad C A=G C D\left(a_{i}\left(x_{2}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i=0}^{d b} b_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i} . \quad C B=G C D\left(b_{i}\left(x_{2}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i} . \quad C G=G C D(C A, C B)$.
Let $t=\max _{i=0}^{d g} \#$ terms $g_{i} . \quad \Gamma=\operatorname{GCD}\left(a_{d a}, b_{d b}\right)$.
Observation: Most of the time is recursive GCDs in $n-1$ variables and evaluation and interpolation not GCD in $\mathbb{Z}_{p}\left[x_{1}\right]$.

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$. Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=\max _{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=\max _{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=\max _{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually $C A, C B, \Gamma$ are smaller so easier to compute.

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots ., x_{n}\right]$.
Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=\max _{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually $C A, C B, \Gamma$ are smaller so easier to compute.
- Increases parallelism in interpolation.

Bivariate Images

Compute $G=\operatorname{GCD}(A, B)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots ., x_{n}\right]$.
Let $A=\sum_{i} a_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C A=G C D\left(a_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $B=\sum_{i} b_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C B=G C D\left(b_{i}\left(x_{3}, \ldots, x_{n}\right)\right)$.
Let $G=\sum_{i} g_{i, j}\left(x_{3}, \ldots, x_{n}\right) x_{1}^{i} x_{2}^{j} . \quad C G=G C D(C A, C B)$.
Let $s=$ max $_{i, j} \#$ terms $g_{i, j} . \quad \Gamma=G C D(L C(A), L C(B))$.
Interpolate $g_{i}\left(x_{3}, \ldots, x_{n}\right)$ modulo p from $2 s+\delta$ bivariate images in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$ using smooth prime p-increased cost but

- Usually $s \ll t$ which reduces evaluation and interpolation cost.
- Usually $C A, C B, \Gamma$ are smaller so easier to compute.
- Increases parallelism in interpolation.
(1) Optimize serial bivariate Gcd computation.
(2) For $n>2$ parallelized (Cilk C) evaluation and interpolation.
(3) Benchmark against Maple and Magma.

Bivariate Gcd computation.

Input $A, B \in \mathbb{Z}_{p}[y][x]$. Output $G=G C D(A, B), \bar{A}$ and \bar{B}.
Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in $\mathbb{Z}_{p}[x]$ incrementally until $G(x, y)$ does not change.
Test if $G \mid A$ and $G \mid B$. If yes output $G, \bar{A}=A / G, \bar{B}=B / G$.

Bivariate Gcd computation.

Input $A, B \in \mathbb{Z}_{p}[y][x]$. Output $G=G C D(A, B), \bar{A}$ and \bar{B}.
Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in $\mathbb{Z}_{p}[x]$ incrementally until $G(x, y)$ does not change.
Test if $G \mid A$ and $G \mid B$. If yes output $G, \bar{A}=A / G, \bar{B}=B / G$.
Cofactor recovery method. (Brown 1971)
Interpolate y in G, \bar{A}, \bar{B} from univariate images
$g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ in $\mathbb{Z}_{p}[x]$.
After k images we have

$$
A-G \bar{A} \equiv 0 \quad(\bmod M) \text { and } B-G \bar{B} \equiv 0 \quad(\bmod M)
$$

where $M=\left(y-\alpha_{1}\right)\left(y-\alpha_{2}\right) \cdots\left(y-\alpha_{k}\right)$.
Stop when $k>\max \left(\operatorname{deg}_{y} A, \operatorname{deg}_{y} B, \operatorname{deg}_{y} G \bar{A}, \operatorname{deg}_{y} G \bar{B}\right)$.

Bivariate Gcd optimization.

Cofactor recovery method for $\mathbb{Z}_{p}[y][x]$
Interpolate y in G, \bar{A}, \bar{B} from univariate images $g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ in $\mathbb{Z}_{p}[x]$ in batches until one of G, \bar{A}, \bar{B} stabilizes.

Case G stabilizes: obtain remaining images using univariate \div $g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ thus replacing the Euclidean algorithm with an evaluation.

Bivariate Gcd optimization.

Cofactor recovery method for $\mathbb{Z}_{p}[y][x]$
Interpolate y in G, \bar{A}, \bar{B} from univariate images $g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ in $\mathbb{Z}_{p}[x]$ in batches until one of G, \bar{A}, \bar{B} stabilizes.

Case G stabilizes: obtain remaining images using univariate \div $g_{i}=G\left(\alpha_{i}, x\right), \bar{a}_{i}=A\left(\alpha_{i}, x\right) / g_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ thus replacing the Euclidean algorithm with an evaluation.

Case \bar{A} stabilizes: obtain remaining images using univariate \div $\bar{a}_{i}=\bar{A}\left(\alpha_{i}, x\right), g_{i}=A\left(\alpha_{i}, x\right) / \bar{a}_{i}, \bar{b}_{i}=B\left(\alpha_{i}, x\right) / g_{i}$ thus replacing the Euclidean algorithm with an evaluation.

Figure: Image Division Optimizations

——Brown's Algorithm —— Classical Division Method - Maple $16 \quad--$ Early G and \bar{B} stabilization

Using FFT with small roots of unity

For dense A, B in $\mathbb{Z}_{p}\left[x_{n}\right]\left[x_{1} \ldots x_{n-1}\right]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size $j(j=2,4,8,16, \ldots)$. The idea:

Using FFT with small roots of unity

For dense A, B in $\mathbb{Z}_{p}\left[x_{n}\right]\left[x_{1} \ldots x_{n-1}\right]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size $j(j=2,4,8,16, \ldots)$. The idea:

- $f \in \mathbb{Z}_{p}\left[x_{n}\right]$

Using FFT with small roots of unity

For dense A, B in $\mathbb{Z}_{p}\left[x_{n}\right]\left[x_{1} \ldots x_{n-1}\right]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size $j(j=2,4,8,16, \ldots)$. The idea:

- $f \in \mathbb{Z}_{p}\left[x_{n}\right]$
- $j=2^{k}$, small, such that $j \mid p-1$

Using FFT with small roots of unity

For dense A, B in $\mathbb{Z}_{p}\left[x_{n}\right]\left[x_{1} \ldots x_{n-1}\right]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size $j(j=2,4,8,16, \ldots)$. The idea:

- $f \in \mathbb{Z}_{p}\left[x_{n}\right]$
- $j=2^{k}$, small, such that $j \mid p-1$
- $f^{*} \equiv f \bmod \left(x^{j}-\alpha_{0}^{j}\right)$

Using FFT with small roots of unity

For dense A, B in $\mathbb{Z}_{p}\left[x_{n}\right]\left[x_{1} \ldots x_{n-1}\right]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size $j(j=2,4,8,16, \ldots)$. The idea:

- $f \in \mathbb{Z}_{p}\left[x_{n}\right]$
- $j=2^{k}$, small, such that $j \mid p-1$
- $f^{*} \equiv f \bmod \left(x^{j}-\alpha_{0}^{j}\right)$
- Evaluate f^{*} using the FFT

Parallel experiments in Cilk C

Using FFT with small roots of unity

For dense A, B in $\mathbb{Z}_{p}\left[x_{n}\right]\left[x_{1} \ldots x_{n-1}\right]$ we evaluate and interpolate A and B in blocks of size j using a FFT of size $j(j=2,4,8,16, \ldots)$. The idea:

- $f \in \mathbb{Z}_{p}\left[x_{n}\right]$
- $j=2^{k}$, small, such that $j \mid p-1$
- $f^{*} \equiv f \bmod \left(x^{j}-\alpha_{0}^{j}\right)$
- Evaluate f^{*} using the FFT

Cilk is a C/C++ extension for parallelism in computation. Cilk uses a fixed number of worker threads and a work-stealing algorithm, and two basic keywords: cilk_spawn and cilk_sync. We implement with Cilk Plus by Intel.

Parallel experiments in Cilk C

Dense Polynomial Structure Recursive dense representation using arrays. Multivariate polynomials form a tree.
A, B in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$, monic, dense in total degree $d=200$

$A, B \in \mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$

$$
\mathbb{Z}_{p}\left[x_{2}, x_{3}\right]
$$

$$
\mathbb{Z}_{p}\left[x_{3}\right]
$$

Parallel experiments in Cilk C

Dense Polynomial Structure Recursive dense representation using arrays. Multivariate polynomials form a tree.
A, B in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$, monic, dense in total degree $d=200$

$$
A, B \in \mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]
$$

$$
\mathbb{Z}_{p}\left[x_{2}, x_{3}\right] \quad d+1=201
$$

$$
\mathbb{Z}_{p}\left[x_{3}\right] \quad \frac{d^{2}+3 d+2}{2}=20503
$$

The number of terms in each input polynomial is 1.37 million, filling 10.5 MB of memory.

Parallel experiments in Cilk C

Parallel Implementation

Example: Call $\operatorname{MGCD}(A, B)$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$

Parallel experiments in Cilk C

Parallel Implementation

Example: Call $\operatorname{mGCD}(A, B)$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(1) Allocate space for interpolants $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$

Parallel experiments in Cilk C

Parallel Implementation

Example: Call $\operatorname{mGCD}(A, B)$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(1) Allocate space for interpolants $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(2) For $\lceil b n d / j\rceil$ batches: in parallel

Parallel Implementation

Example: Call $\operatorname{mGCD}(A, B)$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(1) Allocate space for interpolants $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(2) For $\lceil b n d / j\rceil$ batches: in parallel
(1) Evaluate j images of the inputs into new space in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$

Parallel experiments in Cilk C

Parallel Implementation

Example: Call $\operatorname{mGCD}(A, B)$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(1) Allocate space for interpolants $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(2) For $\lceil b n d / j\rceil$ batches: in parallel
(1) Evaluate j images of the inputs into new space in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$
(2) Make j recursive calls to MGCD in parallel to get $G_{i}, \bar{A}_{i}, \bar{B}_{i}$

Parallel experiments in Cilk C

Parallel Implementation

Example: Call $\operatorname{mGCD}(A, B)$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(1) Allocate space for interpolants $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(2) For $\lceil b n d / j\rceil$ batches: in parallel
(1) Evaluate j images of the inputs into new space in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$
(2) Make j recursive calls to MGCD in parallel to get $G_{i}, \bar{A}_{i}, \bar{B}_{i}$
(3) Distribute image GCD and cofactor coefficients into $G^{*}, \bar{A}^{*}, \bar{B}^{*}$

Parallel experiments in Cilk C

Parallel Implementation

Example: Call $\operatorname{mGCD}(A, B)$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(1) Allocate space for interpolants $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(2) For $\lceil b n d / j\rceil$ batches: in parallel
(1) Evaluate j images of the inputs into new space in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$
(2) Make j recursive calls to MGCD in parallel to get $G_{i}, \bar{A}_{i}, \bar{B}_{i}$
© Distribute image GCD and cofactor coefficients into $G^{*}, \bar{A}^{*}, \bar{B}^{*}$
(3) interpolate $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in the univariate leaves in parallel

Parallel experiments in Cilk C

Parallel Implementation

Example: Call $\operatorname{mGCD}(A, B)$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(1) Allocate space for interpolants $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right]$
(2) For $\lceil b n d / j\rceil$ batches: in parallel
(1) Evaluate j images of the inputs into new space in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$
(2) Make j recursive calls to MGCD in parallel to get $G_{i}, \bar{A}_{i}, \bar{B}_{i}$
© Distribute image GCD and cofactor coefficients into $G^{*}, \bar{A}^{*}, \bar{B}^{*}$
(3) interpolate $G^{*}, \bar{A}^{*}, \bar{B}^{*}$ in the univariate leaves in parallel

The algorithm is recursive and needs a lot of pieces of memory. Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Benchmarks $A, B \in \mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right], \operatorname{deg} A=\operatorname{deg} B=200$.

Table: Real times in seconds, $p=2^{62}-57$, inputs have 1373701 terms

$\operatorname{deg}(G)$	$\operatorname{deg}(\bar{A})$	- opt,fft	-fft	1	8	16	20	Conv
10	190	15.81	8.79	4.79	0.84	0.54	0.48	0.37
40	160	14.59	9.42	5.79	0.92	0.55	0.49	0.27
70	130	13.25	9.74	6.47	0.99	0.56	0.49	0.21
100	100	11.80	9.87	6.72	1.00	0.57	0.50	0.18
130	70	10.25	8.19	5.29	0.80	0.46	0.40	0.18
160	40	8.56	7.14	4.16	0.66	0.39	0.34	0.20
190	10	6.80	6.58	3.44	0.58	0.37	0.33	0.25

jude $2 \times$ E5-2680 v2 CPUs, 10 cores, 2.8 GHz (3.6 GHz turbo). Maximum theoretical speed-up on 20 cores: 15.56

Benchmarks $A, B \in \mathbb{Z}_{p}\left[x_{1}, x_{2}, x_{3}\right], \operatorname{deg} A=\operatorname{deg} B=200$.

Table: Real times in seconds, $p=2^{62}-57$, inputs have 1373701 terms

Deg		Maple		MagmaR				MGCD, \#CPUs				POLY
G	\bar{A}	$A \times B$	GCD	$A \times B$	GCD	1	4	8	16	Conv		
10	190	2.22	70.98	77.22	33.34	6.35	1.83	1.06	0.71	0.47		
40	160	25.65	267.16	920.48	159.71	7.75	2.13	1.18	0.75	0.35		
70	130	25.62	439.80	1624.6	462.09	8.72	2.35	1.27	0.75	0.28		
100	100	25.43	453.27	1526.2	900.65	9.11	2.43	1.32	0.79	0.24		
130	70	25.69	436.11	1559.2	14254.	7.11	1.92	1.04	0.62	0.23		
160	40	25.44	282.04	934.45	7084.3	5.63	1.52	0.83	0.51	0.26		
190	10	2.23	77.28	90.30	2229.8	4.69	1.29	0.74	0.47	0.32		

gaby two E5-2660 CPUs, 8 cores at 2.2 GHz (3.0 GHz turbo).
Maximum theoretical speed-up on 16 cores: 11.73

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.
- Have parallelized evaluation in batches of points.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.
- Have parallelized evaluation in batches of points.
- Have parallelized on i sparse interpolation of $g_{i}\left(x_{2}, \ldots, x_{n}\right)$.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.
- Have parallelized evaluation in batches of points.
- Have parallelized on i sparse interpolation of $g_{i}\left(x_{2}, \ldots, x_{n}\right)$.
- Need to switch to bivariate images.

Current work

Let $G=\sum_{i=0}^{d g} g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{i}$.
Let $t=\max _{i} \# g_{i}$.

- Most of the time is evaluation: $O((\# A+\# B) t)$.
- Have parallelized evaluation in batches of points.
- Have parallelized on i sparse interpolation of $g_{i}\left(x_{2}, \ldots, x_{n}\right)$.
- Need to switch to bivariate images.

