
Optimizing and and Parallelizing the Modular GCD
Algorithm

Matthew Gibson Michael Monagan

Centre for Experimental and Constructive Mathematics
Simon Fraser University

British Columbia

PASCO 2015, Bath, England
July 10, 2015

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Problem

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Compute G modulo primes p1, p2, . . . and recover G using Chinese
remaindering.

Let Ā = A/G and B̄ = B/G be the cofactors.
Let A =

∑da
i=0 ai (x2, ..., xn)x i1.

Let B =
∑db

i=0 bi (x2, ..., xn)x i1.

Let G =
∑dg

i=0 gi (x2, ..., xn)x i1.

Let t = maxdgi=0 #terms gi .

Interpolate gi (x2, ..., xn) modulo p from 2t + δ univariate images in
Zp[x1] using smooth prime p.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Problem

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Compute G modulo primes p1, p2, . . . and recover G using Chinese
remaindering.

Let Ā = A/G and B̄ = B/G be the cofactors.
Let A =

∑da
i=0 ai (x2, ..., xn)x i1.

Let B =
∑db

i=0 bi (x2, ..., xn)x i1.

Let G =
∑dg

i=0 gi (x2, ..., xn)x i1.

Let t = maxdgi=0 #terms gi .

Interpolate gi (x2, ..., xn) modulo p from 2t + δ univariate images in
Zp[x1] using smooth prime p.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Problem

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Compute G modulo primes p1, p2, . . . and recover G using Chinese
remaindering.

Let Ā = A/G and B̄ = B/G be the cofactors.
Let A =

∑da
i=0 ai (x2, ..., xn)x i1.

Let B =
∑db

i=0 bi (x2, ..., xn)x i1.

Let G =
∑dg

i=0 gi (x2, ..., xn)x i1.

Let t = maxdgi=0 #terms gi .

Interpolate gi (x2, ..., xn) modulo p from 2t + δ univariate images in
Zp[x1] using smooth prime p.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Problem

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Compute G mod p1, p2, . . . and recover G using Chinese
remaindering.

Let Ā = A/G and B̄ = B/G be the cofactors.
Let A =

∑da
i=0 ai (x2, ..., xn)x i1. CA = GCD(ai (x2, ..., xn)).

Let B =
∑db

i=0 bi (x2, ..., xn)x i1. CB = GCD(bi (x2, ..., xn)).

Let G =
∑dg

i=0 gi (x2, ..., xn)x i1. CG = GCD(CA,CB).

Let t = maxdgi=0 #terms gi . Γ = GCD(ada, bdb).

Observation: Most of the time is recursive GCDs in n − 1
variables and evaluation and interpolation not GCD in Zp[x1].

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Images

Compute G = GCD(A,B) in Z[x1, x2,, xn].

Let A =
∑

i ai ,j(x3, ..., xn)x i1x
j
2. CA = GCD(ai (x3, ..., xn)).

Let B =
∑

i bi ,j(x3, ..., xn)x i1x
j
2. CB = GCD(bi (x3, ..., xn)).

Let G =
∑

i gi ,j(x3, ..., xn)x i1x
j
2. CG = GCD(CA,CB).

Let s = maxi ,j #terms gi ,j . Γ = GCD(LC (A), LC (B)).

Interpolate gi (x3, ..., xn) modulo p from 2s + δ bivariate images in
Zp[x1, x2] using smooth prime p – increased cost but

Usually s � t which reduces evaluation and interpolation cost.

Usually CA,CB, Γ are smaller so easier to compute.

Increases parallelism in interpolation.

1 Optimize serial bivariate Gcd computation.

2 For n > 2 parallelized (Cilk C) evaluation and interpolation.

3 Benchmark against Maple and Magma.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Gcd computation.

Input A,B ∈ Zp[y][x]. Output G = GCD(A,B), Ā and B̄.

Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in Zp[x] incrementally
until G (x , y) does not change.
Test if G |A and G |B. If yes output G , Ā = A/G , B̄ = B/G .

Cofactor recovery method. (Brown 1971)

Interpolate y in G , Ā, B̄ from univariate images
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi in Zp[x].
After k images we have

A− GĀ ≡ 0 (mod M) and B − GB̄ ≡ 0 (mod M)

where M = (y − α1)(y − α2) · · · (y − αk).
Stop when k > max(degy A, degy B, degy GĀ, degy GB̄).

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Gcd computation.

Input A,B ∈ Zp[y][x]. Output G = GCD(A,B), Ā and B̄.

Trial division method. (Maple, Magma)
Interpolate y in G from univariate images in Zp[x] incrementally
until G (x , y) does not change.
Test if G |A and G |B. If yes output G , Ā = A/G , B̄ = B/G .

Cofactor recovery method. (Brown 1971)

Interpolate y in G , Ā, B̄ from univariate images
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi in Zp[x].
After k images we have

A− GĀ ≡ 0 (mod M) and B − GB̄ ≡ 0 (mod M)

where M = (y − α1)(y − α2) · · · (y − αk).
Stop when k > max(degy A, degy B, degy GĀ, degy GB̄).

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Gcd optimization.

Cofactor recovery method for Zp[y][x]

Interpolate y in G , Ā, B̄ from univariate images
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi in Zp[x]
in batches until one of G , Ā, B̄ stabilizes.

Case G stabilizes: obtain remaining images using univariate ÷
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi
thus replacing the Euclidean algorithm with an evaluation.

Case Ā stabilizes: obtain remaining images using univariate ÷
āi = Ā(αi , x), gi = A(αi , x)/āi , b̄i = B(αi , x)/gi
thus replacing the Euclidean algorithm with an evaluation.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Bivariate Gcd optimization.

Cofactor recovery method for Zp[y][x]

Interpolate y in G , Ā, B̄ from univariate images
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi in Zp[x]
in batches until one of G , Ā, B̄ stabilizes.

Case G stabilizes: obtain remaining images using univariate ÷
gi = G (αi , x), āi = A(αi , x)/gi , b̄i = B(αi , x)/gi
thus replacing the Euclidean algorithm with an evaluation.

Case Ā stabilizes: obtain remaining images using univariate ÷
āi = Ā(αi , x), gi = A(αi , x)/āi , b̄i = B(αi , x)/gi
thus replacing the Euclidean algorithm with an evaluation.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Figure : Image Division Optimizations

0 100 200 300 400 500 600
0

2

4

6

8

deg(G)

T
im

e
(s

ec
)

Brown’s Algorithm Classical Division Method

Maple 16 Early G and B̄ stabilization

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Using FFT with small roots of unity
For dense A,B in Zp[xn][x1 . . . xn−1] we evaluate and interpolate A
and B in blocks of size j using a FFT of size j (j = 2, 4, 8, 16, . . .).
The idea:

f ∈ Zp[xn]

j = 2k , small, such that j | p − 1

f ∗ ≡ f mod (x j − αj
0)

Evaluate f ∗ using the FFT

Cilk is a C/C++ extension for parallelism in computation. Cilk uses
a fixed number of worker threads and a work-stealing algorithm,
and two basic keywords: cilk spawn and cilk sync.
We implement with Cilk Plus by Intel.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Using FFT with small roots of unity
For dense A,B in Zp[xn][x1 . . . xn−1] we evaluate and interpolate A
and B in blocks of size j using a FFT of size j (j = 2, 4, 8, 16, . . .).
The idea:

f ∈ Zp[xn]

j = 2k , small, such that j | p − 1

f ∗ ≡ f mod (x j − αj
0)

Evaluate f ∗ using the FFT

Cilk is a C/C++ extension for parallelism in computation. Cilk uses
a fixed number of worker threads and a work-stealing algorithm,
and two basic keywords: cilk spawn and cilk sync.
We implement with Cilk Plus by Intel.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Using FFT with small roots of unity
For dense A,B in Zp[xn][x1 . . . xn−1] we evaluate and interpolate A
and B in blocks of size j using a FFT of size j (j = 2, 4, 8, 16, . . .).
The idea:

f ∈ Zp[xn]

j = 2k , small, such that j | p − 1

f ∗ ≡ f mod (x j − αj
0)

Evaluate f ∗ using the FFT

Cilk is a C/C++ extension for parallelism in computation. Cilk uses
a fixed number of worker threads and a work-stealing algorithm,
and two basic keywords: cilk spawn and cilk sync.
We implement with Cilk Plus by Intel.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Using FFT with small roots of unity
For dense A,B in Zp[xn][x1 . . . xn−1] we evaluate and interpolate A
and B in blocks of size j using a FFT of size j (j = 2, 4, 8, 16, . . .).
The idea:

f ∈ Zp[xn]

j = 2k , small, such that j | p − 1

f ∗ ≡ f mod (x j − αj
0)

Evaluate f ∗ using the FFT

Cilk is a C/C++ extension for parallelism in computation. Cilk uses
a fixed number of worker threads and a work-stealing algorithm,
and two basic keywords: cilk spawn and cilk sync.
We implement with Cilk Plus by Intel.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Using FFT with small roots of unity
For dense A,B in Zp[xn][x1 . . . xn−1] we evaluate and interpolate A
and B in blocks of size j using a FFT of size j (j = 2, 4, 8, 16, . . .).
The idea:

f ∈ Zp[xn]

j = 2k , small, such that j | p − 1

f ∗ ≡ f mod (x j − αj
0)

Evaluate f ∗ using the FFT

Cilk is a C/C++ extension for parallelism in computation. Cilk uses
a fixed number of worker threads and a work-stealing algorithm,
and two basic keywords: cilk spawn and cilk sync.
We implement with Cilk Plus by Intel.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Using FFT with small roots of unity
For dense A,B in Zp[xn][x1 . . . xn−1] we evaluate and interpolate A
and B in blocks of size j using a FFT of size j (j = 2, 4, 8, 16, . . .).
The idea:

f ∈ Zp[xn]

j = 2k , small, such that j | p − 1

f ∗ ≡ f mod (x j − αj
0)

Evaluate f ∗ using the FFT

Cilk is a C/C++ extension for parallelism in computation. Cilk uses
a fixed number of worker threads and a work-stealing algorithm,
and two basic keywords: cilk spawn and cilk sync.
We implement with Cilk Plus by Intel.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Dense Polynomial Structure Recursive dense representation
using arrays. Multivariate polynomials form a tree.
A,B in Zp[x1, x2, x3], monic, dense in total degree d = 200

· · ·

· · ·

A,B ∈ Zp[x1, x2, x3]

Zp[x2, x3]

d + 1 = 201

Zp[x3]

d2+3d+2
2 = 20503

The number of terms in each input polynomial is 1.37 million,
filling 10.5 MB of memory.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Dense Polynomial Structure Recursive dense representation
using arrays. Multivariate polynomials form a tree.
A,B in Zp[x1, x2, x3], monic, dense in total degree d = 200

· · ·

· · ·

A,B ∈ Zp[x1, x2, x3]

Zp[x2, x3] d + 1 = 201

Zp[x3] d2+3d+2
2 = 20503

The number of terms in each input polynomial is 1.37 million,
filling 10.5 MB of memory.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Parallel Implementation
Example: Call mgcd(A,B) in Zp[x1, x2, x3]

1 Allocate space for interpolants G ∗, Ā∗, B̄∗ in Zp[x1, x2, x3]
2 For dbnd/je batches:

1 Evaluate j images of the inputs into new space in Zp[x1, x2]
2 Make j recursive calls to mgcd to get Gi , Āi , B̄i

3 Distribute image GCD and cofactor coefficients into G∗, Ā∗, B̄∗

3 interpolate G ∗, Ā∗, B̄∗ in the univariate leaves

The algorithm is recursive and needs a lot of pieces of memory.
Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Parallel Implementation
Example: Call mgcd(A,B) in Zp[x1, x2, x3]

1 Allocate space for interpolants G ∗, Ā∗, B̄∗ in Zp[x1, x2, x3]

2 For dbnd/je batches:
1 Evaluate j images of the inputs into new space in Zp[x1, x2]
2 Make j recursive calls to mgcd to get Gi , Āi , B̄i

3 Distribute image GCD and cofactor coefficients into G∗, Ā∗, B̄∗

3 interpolate G ∗, Ā∗, B̄∗ in the univariate leaves

The algorithm is recursive and needs a lot of pieces of memory.
Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Parallel Implementation
Example: Call mgcd(A,B) in Zp[x1, x2, x3]

1 Allocate space for interpolants G ∗, Ā∗, B̄∗ in Zp[x1, x2, x3]
2 For dbnd/je batches: in parallel

1 Evaluate j images of the inputs into new space in Zp[x1, x2]
2 Make j recursive calls to mgcd in parallel to get Gi , Āi , B̄i

3 Distribute image GCD and cofactor coefficients into G∗, Ā∗, B̄∗

3 interpolate G ∗, Ā∗, B̄∗ in the univariate leaves

The algorithm is recursive and needs a lot of pieces of memory.
Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Parallel Implementation
Example: Call mgcd(A,B) in Zp[x1, x2, x3]

1 Allocate space for interpolants G ∗, Ā∗, B̄∗ in Zp[x1, x2, x3]
2 For dbnd/je batches: in parallel

1 Evaluate j images of the inputs into new space in Zp[x1, x2]

2 Make j recursive calls to mgcd in parallel to get Gi , Āi , B̄i

3 Distribute image GCD and cofactor coefficients into G∗, Ā∗, B̄∗

3 interpolate G ∗, Ā∗, B̄∗ in the univariate leaves

The algorithm is recursive and needs a lot of pieces of memory.
Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Parallel Implementation
Example: Call mgcd(A,B) in Zp[x1, x2, x3]

1 Allocate space for interpolants G ∗, Ā∗, B̄∗ in Zp[x1, x2, x3]
2 For dbnd/je batches: in parallel

1 Evaluate j images of the inputs into new space in Zp[x1, x2]
2 Make j recursive calls to mgcd in parallel to get Gi , Āi , B̄i

3 Distribute image GCD and cofactor coefficients into G∗, Ā∗, B̄∗

3 interpolate G ∗, Ā∗, B̄∗ in the univariate leaves

The algorithm is recursive and needs a lot of pieces of memory.
Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Parallel Implementation
Example: Call mgcd(A,B) in Zp[x1, x2, x3]

1 Allocate space for interpolants G ∗, Ā∗, B̄∗ in Zp[x1, x2, x3]
2 For dbnd/je batches: in parallel

1 Evaluate j images of the inputs into new space in Zp[x1, x2]
2 Make j recursive calls to mgcd in parallel to get Gi , Āi , B̄i

3 Distribute image GCD and cofactor coefficients into G∗, Ā∗, B̄∗

3 interpolate G ∗, Ā∗, B̄∗ in the univariate leaves in parallel

The algorithm is recursive and needs a lot of pieces of memory.
Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Parallel Implementation
Example: Call mgcd(A,B) in Zp[x1, x2, x3]

1 Allocate space for interpolants G ∗, Ā∗, B̄∗ in Zp[x1, x2, x3]
2 For dbnd/je batches: in parallel

1 Evaluate j images of the inputs into new space in Zp[x1, x2]
2 Make j recursive calls to mgcd in parallel to get Gi , Āi , B̄i

3 Distribute image GCD and cofactor coefficients into G∗, Ā∗, B̄∗

3 interpolate G ∗, Ā∗, B̄∗ in the univariate leaves in parallel

The algorithm is recursive and needs a lot of pieces of memory.
Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Parallel experiments in Cilk C

Parallel Implementation
Example: Call mgcd(A,B) in Zp[x1, x2, x3]

1 Allocate space for interpolants G ∗, Ā∗, B̄∗ in Zp[x1, x2, x3]
2 For dbnd/je batches: in parallel

1 Evaluate j images of the inputs into new space in Zp[x1, x2]
2 Make j recursive calls to mgcd in parallel to get Gi , Āi , B̄i

3 Distribute image GCD and cofactor coefficients into G∗, Ā∗, B̄∗

3 interpolate G ∗, Ā∗, B̄∗ in the univariate leaves in parallel

The algorithm is recursive and needs a lot of pieces of memory.
Many calls to malloc can be a bad idea.
We allocate large blocks of memory and use it as a stack.
Memory for each bivariate Gcd is all preallocated.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Benchmarks A,B ∈ Zp[x1, x2, x3], degA = degB = 200.

Table : Real times in seconds, p = 262 − 57, inputs have 1373701 terms

deg(G) deg(Ā) −opt,fft −fft 1 8 16 20 Conv
10 190 15.81 8.79 4.79 0.84 0.54 0.48 0.37
40 160 14.59 9.42 5.79 0.92 0.55 0.49 0.27
70 130 13.25 9.74 6.47 0.99 0.56 0.49 0.21

100 100 11.80 9.87 6.72 1.00 0.57 0.50 0.18
130 70 10.25 8.19 5.29 0.80 0.46 0.40 0.18
160 40 8.56 7.14 4.16 0.66 0.39 0.34 0.20
190 10 6.80 6.58 3.44 0.58 0.37 0.33 0.25

jude 2 x E5-2680 v2 CPUs, 10 cores, 2.8 GHz (3.6 GHz turbo).
Maximum theoretical speed-up on 20 cores: 15.56

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Benchmarks A,B ∈ Zp[x1, x2, x3], degA = degB = 200.

Table : Real times in seconds, p = 262 − 57, inputs have 1373701 terms

Deg Maple MagmaR MGCD, #CPUs POLY

G Ā A× B GCD A× B GCD 1 4 8 16 Conv

10 190 2.22 70.98 77.22 33.34 6.35 1.83 1.06 0.71 0.47
40 160 25.65 267.16 920.48 159.71 7.75 2.13 1.18 0.75 0.35
70 130 25.62 439.80 1624.6 462.09 8.72 2.35 1.27 0.75 0.28

100 100 25.43 453.27 1526.2 900.65 9.11 2.43 1.32 0.79 0.24
130 70 25.69 436.11 1559.2 14254. 7.11 1.92 1.04 0.62 0.23
160 40 25.44 282.04 934.45 7084.3 5.63 1.52 0.83 0.51 0.26
190 10 2.23 77.28 90.30 2229.8 4.69 1.29 0.74 0.47 0.32

gaby two E5-2660 CPUs, 8 cores at 2.2 GHz (3.0 GHz turbo).
Maximum theoretical speed-up on 16 cores: 11.73

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

Current work

Let G =
∑dg

i=0 gi (x2, . . . , xn)x i1.
Let t = maxi #gi .

Most of the time is evaluation: O((#A + #B)t).

Have parallelized evaluation in batches of points.

Have parallelized on i sparse interpolation of gi (x2, . . . , xn).

Need to switch to bivariate images.

Matthew Gibson, Michael Monagan PASCO 2015, Bath, England

