
The Tangent-Graeffe root finding algorithm

Michael Monagan

Department of Mathematics,
Simon Fraser University

This is joint work with Joris van der Hoeven.

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 1 / 13

Let f (x) ∈ Fp[x] for p prime.
Suppose we know f (x) =

∏d
i=1(x − αi) with αi ∈ Fp.

Problem 1: Compute the roots αi of f (x).
Using CZ (1981) – implemented in Maple by MBM and Magma by AS.
Using TG (2015) – requires p = σ2k + 1 with σ ∈ O(d), e.g. p = 5 · 255 + 1.

Problem 2: Let β1, β2, . . . , βd ∈ Fp.
Evaluate f (βi) for 1 ≤ i ≤ d (multi-point evalution).

Evaluate CZ TG
O(M(d) log d) O(M(d) log d log p) O(M(d) log p)

Number of arithmetic operations in Fp.

CZ and TG are Las Vegas algorithms.
TG is O(log d) times faster than CZ. Is TG really faster than CZ in practice?

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 2 / 13

Let f (x) ∈ Fp[x] for p prime.
Suppose we know f (x) =

∏d
i=1(x − αi) with αi ∈ Fp.

Problem 1: Compute the roots αi of f (x).
Using CZ (1981) – implemented in Maple by MBM and Magma by AS.
Using TG (2015) – requires p = σ2k + 1 with σ ∈ O(d), e.g. p = 5 · 255 + 1.

Problem 2: Let β1, β2, . . . , βd ∈ Fp.
Evaluate f (βi) for 1 ≤ i ≤ d (multi-point evalution).

Evaluate CZ TG
O(M(d) log d) O(M(d) log d log p) O(M(d) log p)

Number of arithmetic operations in Fp.

CZ and TG are Las Vegas algorithms.
TG is O(log d) times faster than CZ. Is TG really faster than CZ in practice?

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 2 / 13

Talk Outline

What is a Las Vegas algorithm?
The Graeffe transform
The Tangent-Graeffe (TG) algorithm
Improving the constant by a factor of 2
Comparison of new C implementation with Magma’s CZ implementation
How big can the method go?
Current work

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 3 / 13

What is a Las Vegas algorithm?

Input: 1: a problem instance X of size n from a set S
2: a sequence of k random bits where k = f (n)
3: a constant 0 < q < 1

Output: a solution y with probability q or FAIL with probability 1− q

If q = 0.5, on average it will take 2 attempts to obtain a solution.

For X = f (x) ∈ Fp[x] k could depend on deg(f) and/or log p.

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 4 / 13

The Graeffe Transform

Definition: Let P(z) ∈ Fp[z] of degree d > 0. The Graeffe transform of P is

G(P) = P(z)P(−z)|z=√z ∈ Fp[z]

Lemma 1: If P(z) =
∏d

i=1(z − αi) then G(P) =
∏d

i=1(z − α2
i).

Main idea: Let p = σ2k + 1. Pick r = 2N such that s = (p − 1)/r ∈ [2d , 4d).

1: Compute P̃ = G(N)(P). Then P̃ =
d∏

i=1

(z − αr
i).

Observe s = (p − 1)/r =⇒ p − 1 = rs =⇒ (αr
i)

s = 1 by Fermat’s theorem.

2: Pick ω with order s in Fp. NB: s ∈ O(d)

Compute {ωi : P̃(ωi) = 0 for 0 ≤ i < s} = {αr
i : 1 ≤ i ≤ d} using multi-point evaluation.

Okay so how to we get αi from αr
i ?

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 5 / 13

The Tangent Graeffe transform.

Lemma 2: Let P̃(z) = P(z + ε) mod ε2 ∈ Fp[ε, z]/(ε
2). Then

1 P̃(z) = P(z) + P ′(z)ε

2 G(P̃(z)) = P(z)P(−z)|z=√z + (P(z)P ′(−z) + P(−z)P ′(z))|z=√z ε︸ ︷︷ ︸
three polynomial multiplications

3 G(N)(P̃(z)) = A(z) + B(z)ε where A(z) = G(N)(P)

Lemma 3: If A(β) = 0 and A′(β) 6= 0 then α =
rβA′(β)

B(β)
is a root of P(z).

Compute G(N)(P(z + ε)) = A(z) + B(z)ε with 3N multiplications
Compute A(ωi),A′(ωi),B(ωi) for 0 ≤ i < s and apply Lemma 3.

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 6 / 13

What’s going on with the roots under GN ?

Recap: A(z) = GN(P) =
∏d

i=1(z − αr
i) where r = 2N .

How many of the roots αr
i are single roots of GN(P) ?

Example: Let p = 41 and α = [7, 10, 20, 21, 30, 35] so d = 6
What happens when we square these roots N = 1, 2, 3 times?

N G (N)(α) s e−d/s

1 [8, 18, 31, 31, 39, 36] 20 2d ≤ s < 4d 0.741
2 [23, 37, 18, 18, 4, 25] 10 d ≤ s < 2d 0.549
3 [37, 16, 37, 37, 16, 10] 5 d/2 ≤ s < d 0.301

Problem: if α = [1,−1, 2,−2, 3,−3] we get G (α) = [1, 1, 4, 4, 9, 9].

Solution: Pick τ ∈ Fp at random and set P = P(z + τ).

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 7 / 13

What’s going on with the roots under GN ?

Recap: A(z) = GN(P) =
∏d

i=1(z − αr
i) where r = 2N .

How many of the roots αr
i are single roots of GN(P) ?

Example: Let p = 41 and α = [7, 10, 20, 21, 30, 35] so d = 6
What happens when we square these roots N = 1, 2, 3 times?

N G (N)(α) s e−d/s

1 [8, 18, 31, 31, 39, 36] 20 2d ≤ s < 4d 0.741
2 [23, 37, 18, 18, 4, 25] 10 d ≤ s < 2d 0.549
3 [37, 16, 37, 37, 16, 10] 5 d/2 ≤ s < d 0.301

Problem: if α = [1,−1, 2,−2, 3,−3] we get G (α) = [1, 1, 4, 4, 9, 9].

Solution: Pick τ ∈ Fp at random and set P = P(z + τ).

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 7 / 13

The Tangent Graeffe Algorithm
Input: P ∈ Fp[z] of degree d with d distinct roots in Fp and p = σ2k + 1 with 2k > 4d .
Output: the set {α1, . . . , αd} of roots of P.

1. If d = 0 then return φ.
2. Let s ∈ [2d , 4d) such that s|(p − 1) and set r := (p − 1)/s = 2N .
3. Pick τ ∈ Fp at random and compute P∗ := P(z + τ) ∈ Fp[z] .O(M(d)).

4. Compute P̃ := P∗(z) + P∗(z)′ε. // = P∗(z + ε) mod ε2.
5. For i = 1, . . . ,N set P̃ := G(P̃)(z) mod ε2 . 3NM(d).

6. Let ω have order s in Fp. Let P̃(z) = A(z) + B(z)ε.
Evaluate A(ωi),A′(ωi) and B(ωi) for 0 ≤ i < s using Bluestein . 3O(M(s)).

7. If P(τ) = 0 then set S := {τ} else set S := φ.
8. For β ∈ {1, ω, . . . , ω(s−1)}

if A(β) = 0 and A′(β) 6= 0 set S := S ∪ {rβA′(β)/B(β) + τ}.
9. Compute Q :=

∏
α∈S(z − α) and set R = P/Q .O(M(d) log d).

10. Recursively determine the set of roots S ′ of R and return S ∪ S ′.

For s ∈ [2d , 4d), on average, we get at least e−1/2 = 61% of the roots.
Total cost O(NM(d) +M(d) log d +M(s)) = O(M(d) log(p/s) +M(d) log d).

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 8 / 13

Improving the constant in G(P) and G(N)(P)

G(P) = P(z)P(−z)|z=√z and d = degP

Theorem
We can compute G(P) in F (2d) + F (d) = 1/2M(d). Note: M(d) = 3F (2d) + O(d).
We can compute G(N)(P) in (2N + 1)F (d) = (1/3N + 1/6)M(d).

This compares with 2/3M(d) and 2/3NM(d) in [GHL 2015].

In the FFT, if ωn = 1 and n = 2k then ωn/2+i = −ωi so

FFT (P(z)) = [P(1),P(ω),P(ω2), . . .,P(−1),P(−ω),P(−ω2), . . .]

FFT (P(−z)) = [P(−1),P(−ω),P(−ω2), . . .,P(1),P(ω), f (ω2), . . .]

Also FFT (H := P(z)P(−z)) is

[H(1),H(ω),H(ω2), . . . ,H(1),H(ω),H(ω2), . . .]

We can compute the inverse FFT with an FFT of size d .
Cost of G(P) : F (2d) + 0+ F−1(d) < 1.5F (2d) < 1/2M(d).

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 9 / 13

Tangent-Graeffe v. Cantor-Zassenhaus

We implemented TG in C using the FFT for G(P) and for arithmetic in Fp[z].

Table: Sequential timings in CPU seconds for p = 3 · 29 · 256 + 1 and using s ∈ [2d , 4d). Intel Xeon E5 2660
CPU, 8 cores, 2.2 GHz base, 3.0 GHz turbo, 64 gigabytes RAM

Our sequential TG implementation in C Magma CZ timings
d total first %roots G(N) step6 step9 V2.25-3 V2.25-5

212 − 1 0.11s 0.07s 69.8% 0.04s 0.02s 0.01s 23.22s 8.43
213 − 1 0.22s 0.14s 69.8% 0.09s 0.03s 0.01s 56.58s 18.94
214 − 1 0.48s 0.31s 68.8% 0.18s 0.07s 0.02s 140.76s 44.07
215 − 1 1.00s 0.64s 69.2% 0.38s 0.16s 0.04s 372.22s 103.5
216 − 1 2.11s 1.36s 68.9% 0.78s 0.35s 0.10s 1494.0s 234.2
217 − 1 4.40s 2.85s 69.2% 1.62s 0.74s 0.23s 6108.8s 534.5
218 − 1 9.16s 5.91s 69.2% 3.33s 1.53s 0.51s NA 1219.
219 − 1 19.2s 12.4s 69.2% 6.86s 3.25s 1.13s NA 2809.
220 − 1 39.7s 25.7s 69.2% 14.1s 6.77s 2.46s NA 6428.

Conclusion: TG is a lot (100 times) faster than CZ.
Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 10 / 13

How big can the method go?

Can we factor P(z) = z109
+ . . . in Fp[z] for p = 5 · 255 + 1 ?

Note: we need 8 gigabytes for the input and 8 gigabytes for the output.

Succeeded in June 2020: time = 3,715 secs, space = 121 GB
Used an Intel E5 2680 CPU with 10 cores and 128 GB RAM.
Parallel implemenation in Cilk C.

To evaluate A(ωi),A′(ωi),B(ωi) for 0 ≤ i < s = 5 · 230

Space: 3s + 3n = 504GB with n = 2k > 2s for M(s) using Bluestein.
Use s ∈ [2d , 4d) instead of s ∈ [4d , 8d).
For s = 5 · 229, a DFT(5 · 229) can be done using 5F (229) + 229F (5) + O(s).
Space: 3s + 1.2s = 84GB.

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 11 / 13

How big can the method go?

Can we factor P(z) = z109
+ . . . in Fp[z] for p = 5 · 255 + 1 ?

Note: we need 8 gigabytes for the input and 8 gigabytes for the output.

Succeeded in June 2020: time = 3,715 secs, space = 121 GB
Used an Intel E5 2680 CPU with 10 cores and 128 GB RAM.
Parallel implemenation in Cilk C.

To evaluate A(ωi),A′(ωi),B(ωi) for 0 ≤ i < s = 5 · 230

Space: 3s + 3n = 504GB with n = 2k > 2s for M(s) using Bluestein.
Use s ∈ [2d , 4d) instead of s ∈ [4d , 8d).
For s = 5 · 229, a DFT(5 · 229) can be done using 5F (229) + 229F (5) + O(s).
Space: 3s + 1.2s = 84GB.

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 11 / 13

Current work.

We are trying to determine the constants in the complexities assuming the FFT model in order to
determine how much faster CZ is than TG.

Tangent-Graeffe cost for s ∈ [λd , 2λd).

G(N)(P) Q :=
∏
α∈S

(z − α)

< 1
3e

1/λM(d)log2
p
λd + . . . < 1

4M(d)log2 d + . . .

Cantor-Zassenhaus cost

h := (z + α)(p−1)/2 mod P(z) g := gcd(h(z)− 1,P(z))
< 7

6M(d)log2
p
2d log2 d + . . . < 5

12M(d)log2
2 d + . . .

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 12 / 13

References

David G. Cantor and Hans Zassenhaus.
A new algorithm for factoring polynomials over finite fields.
Math. Comp. 36(154): 587–592, 1981.

Bruno Grenet, Joris van der Hoeven and Gregoire Lecerf.
Randomized Root Finding over Finite FFT-fields using Tangent Graeffe Transforms.
In Proceedings of ISSAC 2015, pp. 197–204, ACM, 2015.

Joris van der Hoven and Michael Monagan.
Implementing the tangent Graeffe root finding algorithm.
In Proceedings of ICMS 2020, LNCS 12097, 482–492, Springer, 2020.
Preprint available on the HAL achive.

Michael Monagan Number Theory and Algebraic Geometry Seminar, November 19th, 2020 13 / 13

