The Tangent-Graeffe root finding algorithm

Michael Monagan

Department of Mathematics, Simon Fraser University

This is joint work with Joris van der Hoeven.

Let $f(x) \in \mathbb{F}_p[x]$ for p prime. Suppose we know $f(x) = \prod_{i=1}^d (x - \alpha_i)$ with $\alpha_i \in \mathbb{F}_p$.

Problem 1: Compute the roots α_i of f(x). Using CZ (1981) – implemented in Maple by MBM and Magma by AS. Using TG (2015) – requires $p = \sigma 2^k + 1$ with $\sigma \in O(d)$, e.g. $p = 5 \cdot 2^{55} + 1$.

Problem 2: Let $\beta_1, \beta_2, \ldots, \beta_d \in \mathbb{F}_p$. Evaluate $f(\beta_i)$ for $1 \le i \le d$ (multi-point evaluation). Let $f(x) \in \mathbb{F}_p[x]$ for p prime. Suppose we know $f(x) = \prod_{i=1}^d (x - \alpha_i)$ with $\alpha_i \in \mathbb{F}_p$.

Problem 1: Compute the roots α_i of f(x). Using CZ (1981) – implemented in Maple by MBM and Magma by AS. Using TG (2015) – requires $p = \sigma 2^k + 1$ with $\sigma \in O(d)$, e.g. $p = 5 \cdot 2^{55} + 1$.

Problem 2: Let $\beta_1, \beta_2, \ldots, \beta_d \in \mathbb{F}_p$. Evaluate $f(\beta_i)$ for $1 \le i \le d$ (multi-point evaluation).

EvaluateCZTG $O(M(d) \log d)$ $O(M(d) \log d \log p)$ $O(M(d) \log p)$

Number of arithmetic operations in \mathbb{F}_p .

- CZ and TG are Las Vegas algorithms.
- TG is $O(\log d)$ times faster than CZ. Is TG really faster than CZ in practice?

- What is a Las Vegas algorithm?
- The Graeffe transform
- The Tangent-Graeffe (TG) algorithm
- Improving the constant by a factor of 2
- $\bullet\,$ Comparison of new C implementation with Magma's CZ implementation
- How big can the method go?
- Current work

What is a Las Vegas algorithm?

Input: 1: a problem instance X of size n from a set S 2: a sequence of k random bits where k = f(n)3: a constant 0 < q < 1

Output: a solution y with probability q or FAIL with probability 1 - q

If q = 0.5, on average it will take 2 attempts to obtain a solution.

For $X = f(x) \in \mathbb{F}_p[x]$ k could depend on deg(f) and/or log p.

The Graeffe Transform

Definition: Let $P(z) \in \mathbb{F}_p[z]$ of degree d > 0. The **Graeffe transform** of P is

 $\mathbf{G}(P) = P(z)P(-z)|_{z=\sqrt{z}} \in \mathbb{F}_{p}[z]$

Lemma 1: If $P(z) = \prod_{i=1}^{d} (z - \alpha_i)$ then $\mathbf{G}(P) = \prod_{i=1}^{d} (z - \alpha_i^2)$.

Main idea: Let $p = \sigma 2^k + 1$. Pick $r = 2^N$ such that $s = (p-1)/r \in [2d, 4d)$.

1: Compute
$$ilde{P} = \mathbf{G}^{(N)}(P)$$
. Then $ilde{P} = \prod_{i=1}^d (z - lpha_i^r)$.

Observe $s = (p-1)/r \Longrightarrow p-1 = rs \Longrightarrow (\alpha_i^r)^s = 1$ by Fermat's theorem.

2: Pick ω with order s in \mathbb{F}_p . NB: $s \in O(d)$ Compute $\{\omega^i : \tilde{P}(\omega^i) = 0 \text{ for } 0 \le i < s\} = \{\alpha_i^r : 1 \le i \le d\}$ using multi-point evaluation.

Okay so how to we get α_i from α_i^r ?

The Tangent Graeffe transform.

Lemma 2: Let
$$\tilde{P}(z) = P(z + \epsilon) \mod \epsilon^2 \in \mathbb{F}_p[\epsilon, z]/(\epsilon^2)$$
. Then
1 $\tilde{P}(z) = P(z) + P'(z)\epsilon$
2 $\mathbf{G}(\tilde{P}(z)) = \underbrace{P(z)P(-z)|_{z=\sqrt{z}} + (P(z)P'(-z) + P(-z)P'(z))|_{z=\sqrt{z}} \epsilon}_{\text{three polynomial multiplications}}$
3 $\mathbf{G}^{(N)}(\tilde{P}(z)) = A(z) + B(z)\epsilon$ where $A(z) = \mathbf{G}^{(N)}(P)$

Lemma 3: If $A(\beta) = 0$ and $A'(\beta) \neq 0$ then $\alpha = \frac{r\beta A'(\beta)}{B(\beta)}$ is a root of P(z).

Compute $\mathbf{G}^{(N)}(P(z+\epsilon)) = A(z) + B(z)\epsilon$ with 3N multiplications Compute $A(\omega^i), A'(\omega^i), B(\omega^i)$ for $0 \le i < s$ and apply Lemma 3.

What's going on with the roots under G^N ?

Recap: $A(z) = G^{N}(P) = \prod_{i=1}^{d} (z - \alpha_{i}^{r})$ where $r = 2^{N}$. How many of the roots α_{i}^{r} are single roots of $G^{N}(P)$?

Example: Let p = 41 and $\alpha = [7, 10, 20, 21, 30, 35]$ so d = 6What happens when we square these roots N = 1, 2, 3 times?

Problem: if $\alpha = [1, -1, 2, -2, 3, -3]$ we get $G(\alpha) = [1, 1, 4, 4, 9, 9]$.

What's going on with the roots under G^N ?

Recap: $A(z) = G^{N}(P) = \prod_{i=1}^{d} (z - \alpha_{i}^{r})$ where $r = 2^{N}$. How many of the roots α_{i}^{r} are single roots of $G^{N}(P)$?

Example: Let p = 41 and $\alpha = [7, 10, 20, 21, 30, 35]$ so d = 6What happens when we square these roots N = 1, 2, 3 times?

Problem: if $\alpha = [1, -1, 2, -2, 3, -3]$ we get $G(\alpha) = [1, 1, 4, 4, 9, 9]$. **Solution:** Pick $\tau \in \mathbb{F}_p$ at random and set $P = P(z + \tau)$.

The Tangent Graeffe Algorithm

Input: $P \in \mathbb{F}_p[z]$ of degree d with d distinct roots in \mathbb{F}_p and $p = \sigma 2^k + 1$ with $2^k > 4d$. **Output:** the set $\{\alpha_1, \ldots, \alpha_d\}$ of roots of P.

1. If d = 0 then return ϕ . 2. Let $s \in [2d, 4d)$ such that s | (p-1) and set $r := (p-1)/s = 2^N$. 3. Pick $\tau \in \mathbb{F}_p$ at random and compute $P^* := P(z + \tau) \in \mathbb{F}_p[z]$ O(M(d)). 4. Compute $\tilde{P} := P^*(z) + P^*(z)'\epsilon$. $// = P^*(z + \epsilon) \mod \epsilon^2$. 5. For $i = 1, \ldots, N$ set $\tilde{P} := \mathbf{G}(\tilde{P})(z) \mod \epsilon^2 \ldots 3NM(d)$. 6. Let ω have order s in \mathbb{F}_p . Let $\tilde{P}(z) = A(z) + B(z)\epsilon$. 7. If $P(\tau) = 0$ then set $S := \{\tau\}$ else set $S := \phi$. 8. For $\beta \in \{1, \omega, \dots, \omega^{(s-1)}\}$ if $A(\beta) = 0$ and $A'(\beta) \neq 0$ set $S := S \cup \{r\beta A'(\beta)/B(\beta) + \tau\}$. 9. Compute $Q := \prod_{\alpha \in S} (z - \alpha)$ and set R = P/Q $O(M(d) \log d)$. 10. Recursively determine the set of roots S' of R and return $S \cup S'$.

For $s \in [2d, 4d)$, on average, we get at least $e^{-1/2} = 61\%$ of the roots. Total cost $O(NM(d) + M(d) \log d + M(s)) = O(M(d) \log(p/s) + M(d) \log d)$.

Improving the constant in $\mathbf{G}(P)$ and $\mathbf{G}^{(N)}(P)$

$$\mathbf{G}(P) = P(z)P(-z)|_{z=\sqrt{z}}$$
 and $d = \deg P$

Theorem

We can compute $\mathbf{G}(P)$ in $F(2d) + F(d) = \frac{1}{2}M(d)$. Note: M(d) = 3F(2d) + O(d). We can compute $\mathbf{G}^{(N)}(P)$ in $(2N+1)F(d) = (\frac{1}{3}N + \frac{1}{6})M(d)$.

This compares with 2/3M(d) and 2/3NM(d) in [GHL 2015].

In the FFT, if $\omega^n = 1$ and $n = 2^k$ then $\omega^{n/2+i} = -\omega^i$ so

 $FFT(P(z)) = [P(1), P(\omega), P(\omega^2), \dots, P(-1), P(-\omega), P(-\omega^2), \dots]$ $FFT(P(-z)) = [P(-1), P(-\omega), P(-\omega^2), \dots, P(1), P(\omega), f(\omega^2), \dots]$

Also FFT(H := P(z)P(-z)) is

 $[H(1), H(\omega), H(\omega^2), \ldots, H(1), H(\omega), H(\omega^2), \ldots]$

We can compute the inverse FFT with an FFT of size *d*. Cost of $\mathbf{G}(P)$: $F(2d) + 0 + F^{-1}(d) < 1.5F(2d) < \frac{1}{2}M(d)$.

Tangent-Graeffe v. Cantor-Zassenhaus

We implemented TG in C using the FFT for $\mathbf{G}(P)$ and for arithmetic in $\mathbb{F}_{p}[z]$.

Table: Sequential timings in CPU seconds for $p = 3 \cdot 29 \cdot 2^{56} + 1$ and using $s \in [2d, 4d)$. Intel Xeon E5 2660 CPU, 8 cores, 2.2 GHz base, 3.0 GHz turbo, 64 gigabytes RAM

	Our sequential TG implementation in C					Magma CZ timings	
d	total	first %roots	$\mathbf{G}^{(N)}$	step6	step9	V2.25-3	V2.25-5
$2^{12} - 1$	0.11s	0.07s 69.8%	0.04s	0.02s	0.01s	23.22s	8.43
$2^{13} - 1$	0.22s	0.14s 69.8%	0.09s	0.03s	0.01s	56.58s	18.94
$2^{14} - 1$	0.48s	0.31s 68.8%	0.18s	0.07s	0.02s	140.76s	44.07
$2^{15} - 1$	1.00s	0.64s 69.2%	0.38s	0.16s	0.04s	372.22s	103.5
$2^{16} - 1$	2.11s	1.36s 68.9%	0.78s	0.35s	0.10s	1494.0s	234.2
$2^{17} - 1$	4.40s	2.85s 69.2%	1.62s	0.74s	0.23s	6108.8s	534.5
$2^{18} - 1$	9.16s	5.91s 69.2%	3.33s	1.53s	0.51s	NA	1219.
$2^{19} - 1$	19.2s	12.4s 69.2%	6.86s	3.25s	1.13s	NA	2809.
$2^{20} - 1$	39.7s	25.7s 69.2%	14.1s	6.77s	2.46s	NA	6428.

Conclusion: TG is a lot (100 times) faster than CZ.

Michael Monagan

Can we factor $P(z) = z^{10^9} + ...$ in $\mathbb{F}_p[z]$ for $p = 5 \cdot 2^{55} + 1$? Note: we need 8 gigabytes for the input and 8 gigabytes for the output. Can we factor $P(z) = z^{10^9} + ...$ in $\mathbb{F}_p[z]$ for $p = 5 \cdot 2^{55} + 1$? Note: we need 8 gigabytes for the input and 8 gigabytes for the output.

Succeeded in June 2020: time = 3,715 secs, space = 121 GB Used an Intel E5 2680 CPU with 10 cores and 128 GB RAM. Parallel implementation in Cilk C.

To evaluate $A(\omega^i)$, $A'(\omega^i)$, $B(\omega^i)$ for $0 \le i < s = 5 \cdot 2^{30}$ Space: 3s + 3n = 504GB with $n = 2^k > 2s$ for M(s) using Bluestein. Use $s \in [2d, 4d)$ instead of $s \in [4d, 8d)$. For $s = 5 \cdot 2^{29}$, a DFT($5 \cdot 2^{29}$) can be done using $5F(2^{29}) + 2^{29}F(5) + O(s)$. Space: 3s + 1.2s = 84GB.

Current work.

We are trying to determine the constants in the complexities assuming the FFT model in order to determine how much faster CZ is than TG.

Tangent-Graeffe cost for $s \in [\lambda d, 2\lambda d)$.

$$\begin{array}{c|c}
\mathbf{G}^{(N)}(P) & Q := \prod_{\alpha \in S} (z - \alpha) \\
\hline
< \frac{1}{3}e^{1/\lambda}M(d)\log_2\frac{p}{\lambda d} + \dots & < \frac{1}{4}M(d)\log_2d + \dots
\end{array}$$

Cantor-Zassenhaus cost

$$\frac{h := (z + \alpha)^{(p-1)/2} \mod P(z) \mid g := \gcd(h(z) - 1, P(z))}{< \frac{7}{6}M(d)\log_2\frac{p}{2d}\log_2 d + \dots} < \frac{5}{12}M(d)\log_2^2 d + \dots}$$

David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields. Math. Comp. **36**(154): 587–592, 1981.

Bruno Grenet, Joris van der Hoeven and Gregoire Lecerf. Randomized Root Finding over Finite FFT-fields using Tangent Graeffe Transforms. In Proceedings of ISSAC 2015, pp. 197–204, ACM, 2015.

Joris van der Hoven and Michael Monagan. Implementing the tangent Graeffe root finding algorithm. In <u>Proceedings of ICMS 2020</u>, LNCS **12097**, 482–492, Springer, 2020. Preprint available on the HAL achive.