The Tangent-Graeffe root finding algorithm

Michael Monagan
Department of Mathematics, Simon Fraser University
This is joint work with Joris van der Hoeven.

Let $f(x) \in \mathbb{F}_{p}[x]$ for p prime.
Suppose we know $f(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)$ with $\alpha_{i} \in \mathbb{F}_{p}$.
Problem 1: Compute the roots α_{i} of $f(x)$.
Using CZ (1981) - implemented in Maple by MBM and Magma by AS.
Using TG (2015) - requires $p=\sigma 2^{k}+1$ with $\sigma \in O(d)$, e.g. $p=5 \cdot 2^{55}+1$.
Problem 2: Let $\beta_{1}, \beta_{2}, \ldots, \beta_{d} \in \mathbb{F}_{p}$.
Evaluate $f\left(\beta_{i}\right)$ for $1 \leq i \leq d$ (multi-point evalution).

Let $f(x) \in \mathbb{F}_{p}[x]$ for p prime.
Suppose we know $f(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)$ with $\alpha_{i} \in \mathbb{F}_{p}$.
Problem 1: Compute the roots α_{i} of $f(x)$.
Using CZ (1981) - implemented in Maple by MBM and Magma by AS.
Using TG (2015) - requires $p=\sigma 2^{k}+1$ with $\sigma \in O(d)$, e.g. $p=5 \cdot 2^{55}+1$.
Problem 2: Let $\beta_{1}, \beta_{2}, \ldots, \beta_{d} \in \mathbb{F}_{p}$.
Evaluate $f\left(\beta_{i}\right)$ for $1 \leq i \leq d$ (multi-point evalution).

$$
\begin{array}{c|c|c}
\text { Evaluate } & \mathrm{CZ} & \mathrm{TG} \\
\hline O(M(d) \log d) & O(M(d) \log d \log p) & O(M(d) \log p) \\
\text { Number of arithmetic operations in } \mathbb{F}_{p} .
\end{array}
$$

- CZ and TG are Las Vegas algorithms.
- TG is $O(\log d)$ times faster than CZ. Is TG really faster than CZ in practice?

Talk Outline

- What is a Las Vegas algorithm?
- The Graeffe transform
- The Tangent-Graeffe (TG) algorithm
- Improving the constant by a factor of 2
- Comparison of new C implementation with Magma's CZ implementation
- How big can the method go?
- Current work

What is a Las Vegas algorithm?

Input: 1: a problem instance X of size n from a set S
2: a sequence of k random bits where $k=f(n)$
3: a constant $0<q<1$
Output: a solution y with probability q or FAIL with probability $1-q$

If $q=0.5$, on average it will take 2 attempts to obtain a solution.

For $X=f(x) \in \mathbb{F}_{p}[x] k$ could depend on $\operatorname{deg}(f)$ and/or $\log p$.

The Graeffe Transform

Definition: Let $P(z) \in \mathbb{F}_{p}[z]$ of degree $d>0$. The Graeffe transform of P is

$$
\mathbf{G}(P)=\left.P(z) P(-z)\right|_{z=\sqrt{z}} \in \mathbb{F}_{p}[z]
$$

Lemma 1: If $P(z)=\prod_{i=1}^{d}\left(z-\alpha_{i}\right)$ then $\mathbf{G}(P)=\prod_{i=1}^{d}\left(z-\alpha_{i}^{2}\right)$.
Main idea: Let $p=\sigma 2^{k}+1$. Pick $r=2^{N}$ such that $s=(p-1) / r \in[2 d, 4 d)$.
1: Compute $\tilde{P}=\mathbf{G}^{(N)}(P)$. Then $\tilde{P}=\prod_{i=1}^{d}\left(z-\alpha_{i}^{r}\right)$.
Observe $s=(p-1) / r \Longrightarrow p-1=r s \Longrightarrow\left(\alpha_{i}^{r}\right)^{s}=1$ by Fermat's theorem.
2: Pick ω with order s in \mathbb{F}_{p}. NB: $s \in O(d)$
Compute $\left\{\omega^{i}: \tilde{P}\left(\omega^{i}\right)=0\right.$ for $\left.0 \leq i<s\right\}=\left\{\alpha_{i}^{r}: 1 \leq i \leq d\right\}$ using multi-point evaluation.
Okay so how to we get α_{i} from α_{i}^{r} ?

The Tangent Graeffe transform.

Lemma 2: Let $\tilde{P}(z)=P(z+\epsilon) \bmod \epsilon^{2} \in \mathbb{F}_{p}[\epsilon, z] /\left(\epsilon^{2}\right)$. Then

$$
\begin{aligned}
& 1 \tilde{P}(z)=P(z)+P^{\prime}(z) \epsilon \\
& 2 \mathbf{G}(\tilde{P}(z))=\underbrace{\left.P(z) P(-z)\right|_{z=\sqrt{z}}+\left.\left(P(z) P^{\prime}(-z)+P(-z) P^{\prime}(z)\right)\right|_{z=\sqrt{z}} \epsilon}_{\text {three polynomial multiplications }}
\end{aligned}
$$

$$
3 \mathbf{G}^{(N)}(\tilde{P}(z))=A(z)+B(z) \epsilon \text { where } A(z)=\mathbf{G}^{(N)}(P)
$$

Lemma 3: If $A(\beta)=0$ and $A^{\prime}(\beta) \neq 0$ then $\alpha=\frac{r \beta A^{\prime}(\beta)}{B(\beta)}$ is a root of $P(z)$.
Compute $\mathbf{G}^{(N)}(P(z+\epsilon))=A(z)+B(z) \epsilon$ with $3 N$ multiplications Compute $A\left(\omega^{i}\right), A^{\prime}\left(\omega^{i}\right), B\left(\omega^{i}\right)$ for $0 \leq i<s$ and apply Lemma 3.

What's going on with the roots under G^{N} ?

Recap: $A(z)=G^{N}(P)=\prod_{i=1}^{d}\left(z-\alpha_{i}^{r}\right)$ where $r=2^{N}$. How many of the roots α_{i}^{r} are single roots of $G^{N}(P)$?

Example: Let $p=41$ and $\alpha=[7,10,20,21,30,35]$ so $d=6$
What happens when we square these roots $N=1,2,3$ times?

N	$G^{(N)}(\alpha)$	s		$e^{-d / s}$
1	$[8,18,31,31,39,36]$	20	$2 d \leq s<4 d$	0.741
2	$[23,37,18,18,4,25]$	10	$d \leq s<2 d$	0.549
3	$[37,16,37,37,16,10]$	5	$d / 2 \leq s<d$	0.301

Problem: if $\alpha=[1,-1,2,-2,3,-3]$ we get $G(\alpha)=[1,1,4,4,9,9]$.

What's going on with the roots under G^{N} ?

Recap: $A(z)=G^{N}(P)=\prod_{i=1}^{d}\left(z-\alpha_{i}^{r}\right)$ where $r=2^{N}$. How many of the roots α_{i}^{r} are single roots of $G^{N}(P)$?

Example: Let $p=41$ and $\alpha=[7,10,20,21,30,35]$ so $d=6$
What happens when we square these roots $N=1,2,3$ times?

N	$G^{(N)}(\alpha)$	s		$e^{-d / s}$
1	$[8,18,31,31,39,36]$	20	$2 d \leq s<4 d$	0.741
2	$[23,37,18,18,4,25]$	10	$d \leq s<2 d$	0.549
3	$[37,16,37,37,16,10]$	5	$d / 2 \leq s<d$	0.301

Problem: if $\alpha=[1,-1,2,-2,3,-3]$ we get $G(\alpha)=[1,1,4,4,9,9]$.
Solution: Pick $\tau \in \mathbb{F}_{p}$ at random and set $P=P(z+\tau)$.

The Tangent Graeffe Algorithm

Input: $P \in \mathbb{F}_{p}[z]$ of degree d with d distinct roots in \mathbb{F}_{p} and $p=\sigma 2^{k}+1$ with $2^{k}>4 d$.
Output: the set $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ of roots of P.

1. If $d=0$ then return ϕ.
2. Let $s \in[2 d, 4 d)$ such that $s \mid(p-1)$ and set $r:=(p-1) / s=2^{N}$.
3. Pick $\tau \in \mathbb{F}_{p}$ at random and compute $\left.P^{*}:=P(z+\tau) \in \mathbb{F}_{p}[z] \ldots \ldots(d)\right)$.
4. Compute $\tilde{P}:=P^{*}(z)+P^{*}(z)^{\prime} \epsilon$. // $=P^{*}(z+\epsilon) \bmod \epsilon^{2}$.
5. For $i=1, \ldots, N$ set $\tilde{P}:=\mathbf{G}(\tilde{P})(z) \bmod \epsilon^{2}$ $3 N M(d)$.
6. Let ω have order s in \mathbb{F}_{p}. Let $\tilde{P}(z)=A(z)+B(z) \epsilon$.

7. If $P(\tau)=0$ then set $S:=\{\tau\}$ else set $S:=\phi$.
8. For $\beta \in\left\{1, \omega, \ldots, \omega^{(s-1)}\right\}$

$$
\text { if } A(\beta)=0 \text { and } A^{\prime}(\beta) \neq 0 \text { set } S:=S \cup\left\{r \beta A^{\prime}(\beta) / B(\beta)+\tau\right\} .
$$

9. Compute $Q:=\prod_{\alpha \in S}(z-\alpha)$ and set $R=P / Q$ $O(M(d) \log d)$
10. Recursively determine the set of roots S^{\prime} of R and return $S \cup S^{\prime}$.

For $s \in[2 d, 4 d)$, on average, we get at least $e^{-1 / 2}=61 \%$ of the roots.
Total cost $O(N M(d)+M(d) \log d+M(s))=O(M(d) \log (p / s)+M(d) \log d)$.

Improving the constant in $\mathbf{G}(P)$ and $\mathbf{G}^{(N)}(P)$

$$
\mathbf{G}(P)=\left.P(z) P(-z)\right|_{z=\sqrt{z}} \text { and } d=\operatorname{deg} P
$$

Theorem

We can compute $\mathbf{G}(P)$ in $F(2 d)+F(d)=1 / 2 M(d)$. Note: $M(d)=3 F(2 d)+O(d)$.
We can compute $\mathbf{G}^{(N)}(P)$ in $(2 N+1) F(d)=(1 / 3 N+1 / 6) M(d)$.
This compares with $2 / 3 M(d)$ and $2 / 3 N M(d)$ in [GHL 2015].
In the FFT, if $\omega^{n}=1$ and $n=2^{k}$ then $\omega^{n / 2+i}=-\omega^{i}$ so

$$
\begin{aligned}
\operatorname{FFT}(P(z)) & =\left[P(1), P(\omega), P\left(\omega^{2}\right), \ldots, P(-1), P(-\omega), P\left(-\omega^{2}\right), \ldots\right] \\
\operatorname{FFT}(P(-z)) & =\left[P(-1), P(-\omega), P\left(-\omega^{2}\right), \ldots, P(1), P(\omega), f\left(\omega^{2}\right), \ldots\right]
\end{aligned}
$$

Also $\operatorname{FFT}(H:=P(z) P(-z))$ is

$$
\left[H(1), H(\omega), H\left(\omega^{2}\right), \ldots, H(1), H(\omega), H\left(\omega^{2}\right), \ldots\right]
$$

We can compute the inverse FFT with an FFT of size d. Cost of $\mathbf{G}(P): F(2 d)+0+F^{-1}(d)<1.5 F(2 d)<1 / 2 M(d)$.

Tangent-Graeffe v. Cantor-Zassenhaus

We implemented TG in C using the FFT for $\mathbf{G}(P)$ and for arithmetic in $\mathbb{F}_{p}[z]$.

Table: Sequential timings in CPU seconds for $p=3 \cdot 29 \cdot 2^{56}+1$ and using $s \in[2 d, 4 d)$. Intel Xeon E5 2660 CPU, 8 cores, 2.2 GHz base, 3.0 GHz turbo, 64 gigabytes RAM

	Our sequential TG implementation in C				Magma CZ timings			
d	total	first $\%$ roots	$\mathbf{G}^{(N)}$	step6	step9	V2.25-3	V2.25-5	
$2^{12}-1$	0.11 s	0.07 s	69.8%	0.04 s	0.02 s	0.01 s	23.22 s	8.43
$2^{13}-1$	0.22 s	0.14 s	69.8%	0.09 s	0.03 s	0.01 s	56.58 s	18.94
$2^{14}-1$	0.48 s	0.31 s	68.8%	0.18 s	0.07 s	0.02 s	140.76 s	44.07
$2^{15}-1$	1.00 s	0.64 s	69.2%	0.38 s	0.16 s	0.04 s	372.22 s	103.5
$2^{16}-1$	2.11 s	1.36 s	68.9%	0.78 s	0.35 s	0.10 s	1494.0 s	234.2
$2^{17}-1$	4.40 s	2.85 s	69.2%	1.62 s	0.74 s	0.23 s	6108.8 s	534.5
$2^{18}-1$	9.16 s	5.91 s	69.2%	3.33 s	1.53 s	0.51 s	NA	1219.
$2^{19}-1$	19.2 s	12.4 s	69.2%	6.86 s	3.25 s	1.13 s	NA	2809.
$2^{20}-1$	39.7 s	25.7 s	69.2%	14.1 s	6.77 s	2.46 s	NA	6428.

Conclusion: TG is a lot (100 times) faster than CZ.

How big can the method go?

Can we factor $P(z)=z^{10^{9}}+\ldots$ in $\mathbb{F}_{p}[z]$ for $p=5 \cdot 2^{55}+1$?
Note: we need 8 gigabytes for the input and 8 gigabytes for the output.

How big can the method go?

Can we factor $P(z)=z^{10^{9}}+\ldots$ in $\mathbb{F}_{p}[z]$ for $p=5 \cdot 2^{55}+1$?
Note: we need 8 gigabytes for the input and 8 gigabytes for the output.
Succeeded in June 2020: time $=3,715$ secs, space $=121$ GB Used an Intel E5 2680 CPU with 10 cores and 128 GB RAM.
Parallel implemenation in Cilk C.
To evaluate $A\left(\omega^{i}\right), A^{\prime}\left(\omega^{i}\right), B\left(\omega^{i}\right)$ for $0 \leq i<s=5 \cdot 2^{30}$
Space: $3 s+3 n=504 G B$ with $n=2^{k}>2 s$ for $M(s)$ using Bluestein.
Use $s \in[2 d, 4 d)$ instead of $s \in[4 d, 8 d)$.
For $s=5 \cdot 2^{29}$, a DFT $\left(5 \cdot 2^{29}\right)$ can be done using $5 F\left(2^{29}\right)+2^{29} F(5)+O(s)$.
Space: $3 s+1.2 s=84 G B$.

Current work.

We are trying to determine the constants in the complexities assuming the FFT model in order to determine how much faster CZ is than TG.

Tangent-Graeffe cost for $s \in[\lambda d, 2 \lambda d)$.

$$
\begin{array}{l|l}
\mathbf{G}^{(N)}(P) & Q:=\prod_{\alpha \in S}(z-\alpha) \\
\hline<\frac{1}{3} e^{1 / \lambda} M(d) \log _{2} \frac{p}{\lambda d}+\ldots & <\frac{1}{4} M(d) \log _{2} d+\ldots
\end{array}
$$

Cantor-Zassenhaus cost

$$
\begin{array}{l|l}
h:=(z+\alpha)^{(p-1) / 2} \bmod P(z) & g:=\operatorname{gcd}(h(z)-1, P(z)) \\
\hline<\frac{7}{6} M(d) \log _{2} \frac{p}{2 d} \log _{2} d+\ldots & <\frac{5}{12} M(d) \log _{2}^{2} d+\ldots
\end{array}
$$

References

David G. Cantor and Hans Zassenhaus.
A new algorithm for factoring polynomials over finite fields.
Math. Comp. 36(154): 587-592, 1981.
Bruno Grenet, Joris van der Hoeven and Gregoire Lecerf.
Randomized Root Finding over Finite FFT-fields using Tangent Graeffe Transforms.
In Proceedings of ISSAC 2015, pp. 197-204, ACM, 2015.
國 Joris van der Hoven and Michael Monagan.
Implementing the tangent Graeffe root finding algorithm.
In Proceedings of ICMS 2020, LNCS 12097, 482-492, Springer, 2020.
Preprint available on the HAL achive.

