MACM 401, MATH 701, MATH 819 Assignment 2, Spring 2007.

Michael Monagan

This assignment is to be handed in by Thursday February 8th. For problems involving Maple calculations and Maple programming, you should submit a printout of a Maple worksheet of your Maple session. Late Penalty: -20% for each day late.

Question 1 (20 marks): The Euclidean Algorithm

Reference section 2.5

(a) Program the *extended* Euclidean algorithm for $\mathbb{Q}[x]$ in Maple. Use the Maple command quo(a, b, x) to compute the quotient of a divided b. Your program should take as input two non-zero polynomials $a, b \in \mathbb{Q}[x]$. It should output s, t, g where g is the *monic* gcd of a and b and sa + tb = g holds. Execute your program on the following inputs.

a := randpoly(x,dense,degree=5); b := randpoly(x,dense,degree=4);

Check that the outputs are correct, i.e., g is monic and sa + tb = g holds. Also check it against the output from Maple's g := gcdex(a,b,x,'s','t'); command.

(b) Consider

$$a(x) = x^3 - 1, b(x) = x^2 + 1, c(x) = x^2$$

Apply the algorithm in the proof of theorem 2.6 to solve the polynomial diophantine equation $\sigma a + \tau b = c$ for $\sigma, \tau \in \mathbb{Q}[x]$ satisfying deg $\sigma < \deg b - \deg g$ where g is the monic gcd of a and b. Use Maple's gcdex command to solve sa + tb = g for $s, t \in \mathbb{Q}[x]$ or your algorithm from part (a) above.

Question 2 (10 marks): Multivariate Polynomials

Consider the following polynomial in $\mathbb{Z}[x, y]$.

$$2xy^{3} + 3x^{3}y + 5x^{2}y^{2} + 7xy + 8yx^{2} + 9x$$

Write the polynomial in the following canonical forms.

- (a) recursive form with x the main variable, terms in descending degree.
- (b) recursive form with y the main variable, terms in descending degree.
- (c) distributed form with terms sorted in descending lexicographical order with x > y.
- (d) distributed form with terms sorted in descending graded lexicographical order with x > y.

Question 3 (20 marks): Contents and Pseudo-Division

Reference section 2.7

(a) Calculate the content and primitive part of the following polynomial $a \in \mathbb{Z}[x, y]$, first as a polynomial in $\mathbb{Z}[y][x]$ and then as a polynomial in $\mathbb{Z}[x][y]$, i.e., first with x the main variable then with y the main variable. Use the Maple command gcd to calculate the GCD of the coefficients. The coeff and collect commands may also be useful.

> a := expand((x⁴-3*x³*y-x²-y)*(8*x-4*y+12)*(2*y²-2));

(b) Calculate the pseudo-remainder p and the pseudo-quotient q of the polynomials a(x) divided by b(x) where $a, b \in \mathbb{Z}[y][x]$. Do this by dividing ma by b using the division algorithm. You may use Maple to assist you with the polynomial arithmetic.

```
> a := 2*x^3-(y+1)*x^2-x+y;
> b := (y+2)*x^2-2*x+y;
```

(c) Given the following polynomials $a, b \in \mathbb{Z}[x, y]$, calculate the GCD(a, b) using the primitive PRS algorithm with x the main variable.

```
> a := expand( (x<sup>4</sup>-3*x<sup>3</sup>*y-x<sup>2</sup>-y)*(2*x-y+3)*(8*y<sup>2</sup>-8) );
> b := expand( (x<sup>3</sup>*y<sup>2</sup>+x<sup>3</sup>+x<sup>2</sup>+3*x+y)*(2*x-y+3)*(12*y<sup>3</sup>-12) );
```

You may use the Maple command prem, gcd and divide for the intermediate calculations. You should obtain

 $GCD(a,b) = \pm 8 xy \mp 4 y^2 \mp 8 x \pm 16 y \mp 12.$

Question 4: (10 marks)

Let *E* be a Euclidean domain with valuation function *v*. Let *u* be a unit in *E* and let *a*, *b* be non zero non units in *E*. Prove that v(ua) = v(a) and v(ab) > v(a).

Question 5: Data Structures for Multivariate Polynomials (30 marks)

Design and implement SMP, a Sparse Multivariate Polynomial data structure for $\mathbb{Z}[x_1, \ldots, x_n]$. Use an ordered, expanded form, either recursive or distributed. Use any data structure of your choice to represent the polynomials, e.g. an array, linked list, or hash table. Implement 4 Maple procedures

- Maple2SMP to convert from Maple's expanded form to SMP
- SMP2Maple to convert from SMP to Maple's expanded form
- SMPadd to add two polynomials
- SMPmul to multiply two SMP polynomials

Use Maple to do coefficient and exponent arithmetic. Test your code on

```
> a := randpoly([x,y,z],degree=6,terms=15);
> b := randpoly([x,y,z],degree=6,terms=15);
> A := Maple2SMP(a);
> B := Maple2SMP(b);
> C := SMPadd(A,B);
> a+b - SMP2Maple(C));
> C := SMPmul(A,B);
> expand(a*b - SMP2Maple(C));
```

MATH 800 students should also implement

• SMPdiv - to divide two polynomials A by B and output FAIL if B does not divide A and output the quotient A/B if B|A.

Test your program on

- > SMPdiv(A,B);
- > SMPdiv(B,A);
- > SMPdiv(C,A);
- > SMPdiv(C,B);