MACM 401/MATH 701/MATH 819/CMPT 881 Assignment 4, Spring 2013.

Michael Monagan

This assignment is to be handed in by Monday March 11th at the start of class.

For problems involving Maple calculations and Maple programming, you should submit a printout of a Maple worksheet of your Maple session.

Late Penalty: -20% for up to 24 hours late. Zero after that.

Question 1: P-adic Lifting (15 marks)

Reference: Section 6.3.

(a) By hand, determine the p-adic representation of the integer u = 116 for p = 5, first using the positive representation, then using the symmetric representation for \mathbb{Z}_p .

Using Maple, determine the p-adic representation for the polynomial

$$u(x) = 28 x^2 + 24 x + 58$$

with p = 3 using, first using the positive representation for \mathbb{Z}_3 , then the symmetric representation.

(b) Determine the cube-root, if it exists, of the following polynomials

$$a(x) = x^6 - 531x^5 + 94137x^4 - 5598333x^3 + 4706850x^2 - 1327500x + 125000,$$

$$b(x) = x^6 - 406x^5 + 94262x^4 - 5598208x^3 + 4706975x^2 - 1327375x + 125125$$

using reduction mod 5 and linear p-adic lifting. You will need to derivive the update formula by modifying the update formula for computing the $\sqrt{a(x)}$.

Factor the polynomials so you know what the answers are. Express the answer in the p-adic representation. To calculate the initial solution $u_0 = \sqrt[3]{a} \mod 5$ use any method. Use Maple to do all the calculations.

Question 2: Hensel lifting (15 marks)

Reference: Section 6.4 and 6.5.

(a) Given

$$a(x) = x^4 - 2x^3 - 233x^2 - 214x + 85$$

and image polynomials

$$u_0(x) = x^2 - 3x - 2$$
 and $w_0(x) = x^2 + x + 3$,

satisfying $a \equiv u_0 w_0 \pmod{7}$, lift the image polynomials using Hensel lifting to find (if there exist) u and w in $\mathbb{Z}[x]$ such that a = uw.

(b) Given

$$b(x) = 48 x^4 - 22 x^3 + 47 x^2 + 144$$

and an image polynomials

$$u_0(x) = x^2 + 4x + 2$$
 and $w_0 = x^2 + 4x + 5$

satisfying $b \equiv 6 u_0 w_0 \pmod{7}$, lift the image polynomials using Hensel lifting to find (if there exist) u and w in $\mathbb{Z}[x]$ such that b = uw.

Question 3: Determinants (20 marks)

Consider the following 3 by 3 matrix A of polynomials in $\mathbb{Z}[x]$ and its determinant d.

> P := () -> randpoly(x,degree=2,dense):

> A := Matrix(3,3,P);

$$A := \begin{bmatrix} -55 - 7x^2 + 22x & -56 - 94x^2 + 87x & 97 - 62x \\ -83 - 73x^2 - 4x & -82 - 10x^2 + 62x & 71 + 80x^2 - 44x \\ -10 - 17x^2 - 75x & 42 - 7x^2 - 40x & 75 - 50x^2 + 23x \end{bmatrix}$$

> d := LinearAlgebra[Determinant](A);

$$d := -224262 - 455486 x^{2} + 55203 x - 539985 x^{4} + 937816 x^{3} + 463520 x^{6} - 75964 x^{5}$$

(a) Let A by an n by n matrix of polynomials in $\mathbb{Z}[x]$ and let $d = \det(A)$. Develop a modular algorithm for computing $d = \det(A) \in \mathbb{Z}[x]$. Your algorithm will compute determinants of A modulo a sequence of primes and apply the CRT. For each prime p it will compute the determinant in $\mathbb{Z}_p[x]$ by evaluation and interpolation. In this way we reduce computation of a determinant of a matrix over $\mathbb{Z}[x]$ to many computations of determinants of matrices over \mathbb{Z}_p , a field, for which ordinary Gaussian elimination, which does $O(n^3)$ arithmetic operations in \mathbb{Z}_p , may be used.

You will need bounds for deg d and $||d||_{\infty}$. Use primes p = [101, 103, 107, ...] and use Maple to do Chinese remaindering. Use x = 1, 2, 3, ... for the evaluation points and use Maple for interpolation. Implement your algorithm in Maple and test it on the above example.

To reduce the coefficients of the polynomials in A modulo p = 7 in Maple use

$$>$$
 B := A mod p;

To evaluate the polynomials in B at $x = \alpha$ modulo p in Maple use

To compute the determinant of a matrix C over \mathbb{Z}_p in Maple use

(b) Suppose A is an n by n matrix over $\mathbb{Z}[x]$ and $A_{i,j} = \sum_{k=0}^{d} a_{i,j,k} x^k$ and $|a_{i,j,k}| < B^m$. That is A is an n by n matrix of polynomials of degree at most d with coefficients at most m base B digits long. Assume the primes satisfy $B and that arithmetic in <math>\mathbb{Z}_p$ costs O(1). Estimate the time complexity of your algorithm in big O notation as a function of n, m and d. Make reasonable simplifying assumptions such as n < B and d < B as necessary. Also helpful is $\ln n! < n \ln n$. State your assumptions.

Question 4: Factorization in $\mathbb{Z}[x]$ (30 marks)

Factor the following polynomials in $\mathbb{Z}[x]$.

$$p_1 = x^{10} - 6x^4 + 3x^2 + 13$$

$$p_2 = 8x^7 + 12x^6 + 22x^5 + 25x^4 + 84x^3 + 110x^2 + 54x + 9$$

$$p_3 = 9x^7 + 6x^6 - 12x^5 + 14x^4 + 15x^3 + 2x^2 - 3x + 14$$

$$p_4 = x^{11} + 2x^{10} + 3x^9 - 10x^8 - x^7 - 2x^6 + 16x^4 + 26x^3 + 4x^2 + 51x - 170$$

For each polynomial, first compute its square free factorization. Use the Maple command gcd(...) to do this. Now factor each non-linear square-free factor as follows. Use the Maple command Factor(...) mod p to factor the square-free factors over \mathbb{Z}_p modulo the primes p=13,17,19,23. From this information, determine whether each polynomial is irreducible over \mathbb{Z} or not. If not irreducible, try to discover what the irreducible factors are by considering combinations of the modular factors and Chinese remaindering (if necessary) and trial division over \mathbb{Z} .

Using Chinese remaindering here is not efficient in general. Why? Thus for the polynomial p_4 , use Hensel lifting instead. That is, using a suitable prime of your choice from 13, 17, 19, 23, Hensel lift each factor mod p, then determine the irreducible factorization of p_4 over \mathbb{Z} .

Question 5: (10 marks) (MATH 701 and MATH 819 students only)

For the Sparse Multivariate Polynomial data structure that you designed and implemented on assignment 2, implement a Maple procedure SMPdiv(A,B) that outputs the quotient Q if B|A otherwise outputs FAIL. Test your routine on the examples in Question 6 below.

Question 6: (20 marks) (CMPT 881 students only)

If you used a recursive form for the SMP polynomial data structure on your last assignment, use a distributed form this time. And if you used a distributed form on your last assignment use a recursive form this time. Implement the same 5 Maple procedures

- Maple2SMP to convert from Maple's expanded form to SMP,
- SMP2Maple to convert from SMP to Maple's expanded form,
- SMPadd to add two polynomials,
- SMPmul to multiply two SMP polynomials,
- SMPdiv to divide two SMP polynomials.

Use Maple to do coefficient and exponent arithmetic. Test your routine on the following

```
> a := randpoly([x,y,z],degree=6,terms=15);
> b := randpoly([x,y,z],degree=6,terms=15);
> A := Maple2SMP(a);
> B := Maple2SMP(b);
> C := SMPadd(A,B);
> a+b - SMP2Maple(C));
> C := SMPmul(A,B);
> expand(a*b) - SMP2Maple(C); # should output 0
> SMPdiv(A,B); # should output FAIL
> Q := SMPdiv(C,A);
> expand(b-SMP2Maple(Q)); # should output 0
```