MATH 340 Bonus Assignment, Fall 2008

Michael Monagan

This assignment is worth 4.5% towards improving your assignment mark or your midterm mark. It is also helpful for studying for the final exam.

This assignment is due Tuesday December 10th at 1:00pm in the MATH 340 drop off box. Late penalty: -20% for up to 24 hours late. Zero for more than 24 hours late. For problems involving Maple please submit a printout of a Maple worksheet.

Question 1: The Extended Euclidean Algorithm (20 marks)

Let F be a field and a(x) and b(x) be non-zero polynomials in F[x]. The Euclidean Algorithm computes the sequence of polynomials

$$r_0 = a, r_1 = b, r_i = r_{i-2} - r_{i-1}q_i$$
 for $i = 2, 3, ..., n + 1$

where q_i is the quotient of r_{i-2} divided r_{i-1} and $r_{n+1} = 0$. The *Extended* Euclidean Algorithm also computes polynomials

$$\lambda_0 = 1$$
, $\lambda_1 = 0$, $\lambda_i = \lambda_{i-2} - \lambda_{i-1}q_i$ for $i = 2, 3, ..., n+1$ and $\mu_0 = 0$, $\mu_1 = 1$, $\mu_i = \mu_{i-2} - \mu_{i-1}q_i$ for $i = 2, 3, ..., n+1$.

- (a) (10 marks) Prove, by induction on i, that the polynomials λ_i and μ_i satisfy $\lambda_i(x)a(x) + \mu_i(x)b(x) = r_i(x)$ for $0 \le i \le n+1$.
- (b) (10 marks) For polynomials $a = x^3 + 2x^2 + 1$ and $b = x^2 + x + 2$ in $\mathbb{Z}_3[x]$ execute the Extended Euclidean Algorithm by hand showing the r_i, q_i, s_i, t_i polynomials. Now determine the inverse of [b] in $\mathbb{Z}_3[x]/a(x)$.

Question 2: Primitive n'th roots of unity in finite fields (20 marks)

Let α be a primitive element in the finite field GF(q) with q elements. In Assignment 7 you proved that α^j is a primitive element $\Leftrightarrow \gcd(j, q-1) = 1$.

(a) (10 marks) Suppose $n \in \mathbb{N}$ and n|q-1. Prove that α^j has order $n \Leftrightarrow \gcd(j, q-1) = (q-1)/n$.

This result gives us a simple way to determine all elements in GF(q) of a given order n once we have a primitive element α . Now, if $\beta \in GF(q)$ has order n, this means $\beta^n = 1$ hence β is a root of $x^n - 1$ and hence β is an n'th root of unity. And since $\beta^j \neq 1$ for 0 < j < n, β is a primitive n'th root of unity in the finite field GF(q).

- (b) (10 marks) Recall that $x^8 1 = (x^4 1)(x^4 + 1)$ and hence the four primitive 8'th roots of unity are the roots of $x^4 + 1$. Using the result above, find the four primitive 8'th roots of unity in the following finite fields by first finding a primitive element α in the field and then computing the appropriate powers of α . Use Maple where appropriate.
 - 1. \mathbb{Z}_{17} ,
 - 2. $GF(25) = \mathbb{Z}_5[y]/(y^2+2)$ and
 - 3. $GF(81) = \mathbb{Z}_3[y]/(y^4 + y + 2)$.

Question 3: The Quaternion Group (20 marks)

The quaternion group Q_8 is the group of 2 by 2 invertible matrices over $\mathbb C$ generated by

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

- (a) (15 marks) Find the 8 elements of Q_8 by multiplying the above matrices (repeatedly) and calculate the order of all elements of Q_8 .
- (b) (5 marks) Explain why Q_8 is not isomorphic to $\mathbb{Z}_8(+)$ and why Q_8 is not isomorphic to D_4 the set of rotational symmetries of the square.

Note, you can create the two matrices in Maple by doing

and multiply matrices using

> A.B;