MATH 497, MATH 895, CMPT 894. Assignment 5, Summer 2007

Instructor: Michael Monagan

Please hand in the assignment by 2:30pm on Thursday August 9th. Late Penalty -20% off for each day late.

Question 1: Minimal Polynomials

Let α be algebraic over \mathbb{C} . Let $m(z) \in \mathbb{Q}[z]$ be a non-zero monic polynomial of minimal degree such that $m(\alpha) = 0$. Prove that m(z) is irreducible over \mathbb{Q} and unique.

Using resultants, find the minimal polynomial $m_{\alpha}(z) \in \mathbb{Q}[z]$ for

- (a) $\alpha = 1 + \sqrt{2}$,
- (c) $\alpha = 1 + \sqrt{2} + \sqrt[4]{2}$, and
- (b) $\alpha = \sqrt{2} + \sqrt{3} + \sqrt{5}$.

Question 2: Cyclotomic Polynomials

For n = 1, 2, 3, ..., 12, factor the polynomial $x^n - 1$ over \mathbb{Q} using the factor command and identify the cyclotomic polynomials $\Phi_n(x)$ for n = 1, 2, 3, ..., 12. Determine an algorithm for computing $\Phi_n(x)$ that does not do any polynomial factorization. Using your algorithm, find the first n such that the largest coefficient of $\Phi_n(x)$ is 3 in magnitude.

Note: if α is an *n*'th root of unity, but NOT a primitive *n*'th root of unity, that is, $\alpha^m = 1$ for some m < n and m|n, then $gcd(\Phi_n(x), x^m - 1) = 1$ so $\Phi_n(x)$ divides $(x^n - 1)/(x^m - 1)$.

Question 3: Solving Linear Systems over Number Fields

I've put three linear systems on the web under

http://www.cecm.sfu.ca/~mmonagan/teaching/TopicsInCA07/

They are the files sys49.txt, sys100.txt and sys196.txt. The systems have dimension n = 49, 100, and 196 respectively. They are over the cyloctomic fields of order k = 5, 3, and 24 respectively. Each file contains Maple code that creates a matrix A, a vector b, and defines the minimal polynomial $M = \Phi_k(e)$. The entries in the matrix A and vector b are in $\mathbb{Q}[e]$. Note, they have fractions and are not reduced modulo M(e).

You can read the files into Maple using the **read** command. You can solve the linear systems in Maple by doing

```
> with(LinearAlgebra):
> e := RootOf(M,e);
> x := LinearSolve(A,b);
> x[1]; # look at the first component of the solution
```

Maple does not use a clever algorithm. It took almost one minute to solve the 49 by 49 system on my computer. Implement two algorithms for solving Ax = b for $x \in \mathbb{Q}[e]$ and use your algorithms to solve the given three linear systems.

The first algorithm should be ordinary Gaussian elimination with back substitution. I've coded Gaussian elimination over \mathbb{Q} in the notes. You will need to multiply, subtract and compute inverses in the field $\mathbb{Q}[e]/M(e)$. The second algorithm is to be a modular algorithm.

A Modular Algorithm (Graduate Students Only)

You will solve Ax = b modulo a sequence of primes $p_1, p_2, ..., and apply Chinese remaindering$ $to obtain the solution modulo <math>m = p_1 \times p_2 \times ...$ then recover the rationals in x using rational number reconstruction modulo m. For this use the Maple library routines **chrem** and **iratrecon**. See the notes.

For each prime p, solve the linear system $Ax = b \mod p$ as follows. The idea is to solve $Ax = b \mod p$ at the roots of $M(e) \mod p$. Pick the primes p such that M(e) splits into distinct linear factors modulo p. For this, the following lemma will be helpful.

Lemma. If $M(e) = \Phi_k(e)$, the cyclotomic polynomial of order k, then M(e) splits into $d = \phi(k)$ distinct linear factors modulo p if and only if $p \equiv 1 \mod k$. Example. For p = 11, k = 5,

$$M(e) = e^{4} + e^{3} + e^{2} + e + 1 = (e+7)(e+6)(e+8)(e+2) \mod 11.$$

Use the Maple library routine Roots to compute the roots of M(e) modulo p. See the notes. For each root β of M(e) mod p solve $A(\beta)x = b(\beta)$ modulo p using the Linsolve(...) mod p command. See notes. Now interpolate $x(e) \in \mathbb{Z}_p[e]$ from $x(\beta_j), \beta_j$ using the Interp(...) mod p command.

A detailed description of this algorithm may be found in the paper Solving Linear Systems over Cyclotomic Fields by Chen and Monagan on the course website.