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Abstract

A common data structure for representing multivariate polynomials is a linked list of terms
sorted in a term ordering. When dividing polynomials using this data structure, polynomial
subtraction is typically done using merging. This results in poor performance on large sparse
polynomials.

In this paper we use an auxiliary heap of pointers to reduce the number of monomial compar-
isons in the worst case while keeping the overall storage linear. We give two variations. In the
first, the size of the heap is bounded by the number of terms in the quotient(s). In the second,
which is new, the size is bounded by the number of terms in the divisor(s).

We use dynamic arrays of terms rather than linked lists of terms to reduce storage allocations
and indirect memory references. We pack monomials in the array to reduce storage, speed up
monomial comparisons, and further reduce indirect memory references. We give a new packing
for the graded reverse lexicographical monomial ordering.

We have implemented the heap algorithms in C with an interface to Maple. For comparison
we have also implemented Yan’s “geobuckets” data structure. Our timings demonstrate that
heaps of pointers are comparable in speed with geobuckets but use significantly less storage.
This work is part of a project to design a new distributed polynomial data structure for Maple.

1. Introduction

In this paper we present and compare algorithms and data structures for polynomial
division in the ring P = F [x1, x2, ..., xn] where F is a field. We are interested in (i)
exact division of f ∈ P by a single polynomial g ∈ P, that is testing whether g|f and
if so, computing the quotient q = f/g, (ii) exact division of f ∈ P by a polynomial
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g ∈ P modulo a triangular set of polynomials in F [xi, xi+1, ..., xn], and (iii) computing
the remainder of f ∈ P divided by a set of polynomials {g1, g2, ..., gs} ∈ P. Since many
algorithms use modular methods for efficiency, that is, they compute modulo primes, we
will want to divide over characteristic p with p a small prime as well as characteristic 0.

The first case of division is needed for fraction-free algorithms such as the subresultant
PRS (see Ch. 7 of (6)) and for polynomial gcd computation. For example, Zippel’s gcd
algorithm (17) computes the gcd G of two polynomials A and B modulo a sequence of
primes at evaluation points and reconstructs G from multiple images. It uses trial division
to test whether G has been reconstructed correctly and it uses division to compute the
cofactors A/G and B/G if required. Zippel’s algorithm is used by Mathematica and
Magma (since version 2.12) for GCD computation in Q[x1, ..., xn]. A new variation on
the algorithm (7) is used in Maple 11.

The second case of division is needed to compute with polynomials over algebraic
number and function fields. The modular algorithm of Encarnacion (4) computes uni-
variate polynomial GCDs over an algebraic number field. The modular algorithm of van
Hoeij and Monagan in (10) computes polynomial GCDs over an algebraic function field.
Both do trial division of A by G modulo m(z), the minimal polynomial for the field.

The third case case of division is needed for computing normal forms of a polynomial
with respect to a Gröbner basis G = {g1, ..., gs}. Division is a fundamental tool for using
Gröbner bases. Current algorithms for computing them, such as F4 (5), take batches of
syzygies and rewrite their leading terms, in a process that is essentially a generalization
of division. We think that algorithms and data structures that work well for division
deserve consideration as to whether they could be adapted to work in this more general
context as well.

1.1. Monomial orderings and the division algorithm

We consider distributed polynomial representations that sort the terms of the poly-
nomial with respect to a monomial ordering. See (3) or (6) for background material on
monomial orderings. The orderings that we are most interested in are the pure lexi-
cographical ordering (lex), the graded lexicographical ordering (grlex), and the graded
reverse lexicographical ordering (grevlex). In the grlex ordering one first sorts terms by
total degree and then by lexicographical order. For example, the polynomial

−9x4 − 7x3yz + 6x2y3z + 8y2z2

when written with terms in descending grlex order with x > y > z is

6x2y3z − 7x3yz + 8y2z3 − 9x4.

The data structure used to represent polynomials will have a direct impact on the
efficiency of the division algorithm. The data structure used by the Axiom computer
algebra system (11) for Gröbner basis computations is the SDMP (Sparse Distributed
Multivariate Polynomial) data structure. This is a linked list of terms where each term is
a pair (c, e), where c is a (pointer to) a coefficient and e is a pointer to the exponent vector,
which is an array of machine integers. Using 〈a, b, c, ...〉 to denote an array, [a, b, c, ...] to
denote a linked list, and (c, e) to denote a pair of pointers, the polynomial above would
be represented as

[ (6, 〈2, 3, 1〉), (−7, 〈3, 1, 1〉), (8, 〈0, 2, 3〉), (−9, 〈4, 0, 0〉) ].
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We now state the division algorithm. Our purpose is to understand where the SDMP
data structure and the division algorithm are inefficient. Following the notation of Cox,
Little, and O’Shea (3), we let LT (f), LM(f), and LC(f) denote the leading term, the
leading monomial, and the leading coefficient of a polynomial f , respectively. These
depend on the term ordering and satisfy LT (f) = LC(f)LM(f).

The Division Algorithm.
Input: f, g1, g2, ..., gs ∈ F [x1, ..., xn], F a field.
Output: q1, q2, ..., qs, r ∈ F [x1, ...xn] satisfying f = q1g1 + q2g2 + ... + qsgs + r.

1: Set (q1, q2, ..., qs) := (0, 0, ..., 0).
2: Set p := f .
3: While p 6= 0 do

4: Find the first gi s.t. LM(gi)|LM(p).
5: If no such gi exists then set r := r + LT (p) and p := p− LT (p)
6: else set (qi, p) := (qi + t, p− t× gi) where t = LT (p)/LT (gi).

7: Output (q1, q2, ..., qs, r).

Remark: If one wishes to test if (g1, ..., gs)|f with 0 remainder then Step 5 should be
modified to stop execution and output false.

If the polynomials are represented as linked lists of terms sorted in descending order
in the term ordering then accessing the leading term LT (f) takes constant time, the
operation p − LT (p) (link to the remaining terms of p) is constant time and r + LT (p)
can be done in constant time by maintaining a pointer to the last term of r. The most
expensive step is the subtraction p− t×gi. This requires a “merge” – one simultaneously
walks down the linked list of terms in p and the linked list of terms in gi comparing
monomials. In the worst case the merge must walk to the end of both p and gi.

1.2. Storage management overhead and non-local memory references.

There are two sources of inefficiency in the division algorithm when the SDMP data
structure is used. The first is the many intermediate pieces of storage that need to be
allocated when we multiply t gi, for example, storage for new exponent vectors in t gi.
This cost is significant, and it is wasted if the subtraction introduces new terms that are
canceled off later. The second inefficiency is the memory references that occur during
the merge when we walk down the linked lists and, for each term, link to the exponent
vectors to compare monomials. These memory references cause a loss in efficiency when
the polynomials are too large to fit inside the computer’s cache. On a 2.4 GHz AMD
Opteron 150 with 400 MHz RAM we measured the loss of speed at a factor of 6.

These problems can be eliminated by representing polynomials as arrays with the
coefficients and exponents stored in place. For example, 6x2y3z − 7x3yz + 8y2z3 − 9x4

could be stored as
〈 6, 2, 3, 1,−7, 3, 1, 1, 8, 0, 2, 3,−9, 4, 0, 0 〉.

The difference p − tgi can be computed efficiently by merging as follows. We use two
arrays: one, p, that we are copying terms out of, and another, p′, that we are forming
the difference p − t × gi inside. When the merge is complete we interchange the roles of
p and p′ for the next iteration of the division algorithm. If p′ is too small to store all of
the terms of p and −t × gi we allocate a new p′ with 50% more terms than are needed
to reduce the chance of another allocation in the future.

3



But there is a loss of efficiency – instead of copying pointers (one word) we must now
copy exponent vectors (n words). This can be alleviated by packing multiple exponents
into each word. For example, Macaulay (8) uses dynamic arrays and packed exponent
vectors. It identifies the monomials 1, z, y, x, z2, zy, y2, zx, yx, x2, ... with non-negative
integers 0, 1, 2, 3, 4, 5, ... to encode each monomial as a machine integer. The polynomial
6x2y3z − 7x3yz + 8y2z3 − 9x4 would be represented as an array of 8 words

〈 +6, 63,−7, 49,+8, 36,−9, 33 〉

This encoding gives a very compact representation with fast monomial comparisons,
but monomial multiplication and division are slow. In (1), Bachmann and Schönemann
compare different monomial packings including the Macaulay encoding. They show that
packing exponent vectors produces a modest speedup (a factor of 1.5 to 2) for Gröbner
basis computations modulo a machine prime with the SDMP data structure. They also
show that simpler packing schemes are more efficient overall than the Macaulay encoding.

1.3. The problem of too many monomial comparisons.

When using merging to subtract p − tgi, a serious inefficiency may occur when #p,
the number of terms in p, is much larger than #gi, the number of terms in a divisor gi.
Consider g = (x + 1), q = yn + ... + y2 + y and let p = gq = xyn + ... + x + yn + ... + y.
If we compute p by adding x q to q using merging, the merge does n comparisons which
is efficient. In dividing f by g the first quotient is yn and we subtract yn g = xyn + yn

from p = xyn + ... + xy + yn + ... + y. The merge does n comparisons to find yn in p.
The full division does n such merges so the total number of comparisons is O(n2), much
worse than multiplication.

One solution is to represent the polynomial p as a binary search tree. Then LT(p)
can be computed with O(log #p) monomial comparisons and the difference p − tgi can
be computed with roughly O(#gi log #p) comparisons. However binary trees suffer from
the same cache performance problems as linked lists.

A very nice solution is the “geobucket” data structure of Yan (16), which is used
by the Singular (9) computer algebra system and others. Geobuckets are described in
detail in Section 2. In the geobucket data structure a polynomial p with #p terms is
represented by an array of O(log #p) “buckets” where the i’th bucket pi is a linked list
of at most 2i terms. To subtract t × gi from p one subtracts t × gi from the i’th bucket
of p where 2i−1 < #gi ≤ 2i. Subtraction is done by merging two linked lists. The idea
is that asymptotic efficiency is not lost when we merge two linked lists with a similar
number of terms, e.g., their length differs by at most a factor of two.

In this paper we use auxiliary an “heap of pointers” instead. When dividing p by
{g1, g2, ..., gs} we maintain a heap of pairs with quotient terms and pointers back into
the divisors {g1, g2, ..., gs}. The pointers indicate which terms have yet to be multiplied
and subtracted from p.

Suppose we are dividing f by g. Let f = gq + r where q is the quotient and r the
remainder. With geobuckets, division does O(#g #q(log #g +log #q)) comparisons (16).
If we use a heap, division does O(#g #q log #q) comparisons. A second key advantage
of using a heap is that it requires only O(#q) space, and, if we need to compute the
remainder, O(#r) space to write down the remainder. By comparison, the simple merge
and geobucket algorithms may require O(#g #q + #r) space. The main disadvantage
of using a heap is that for dense polynomials the merge and geobucket algorithms are
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better; they do only O(#g #q) comparisons. A third advantage of using a heap is that
we delay all coefficient arithmetic until we need to do it. This can result in significant
speedups when we want to test if g divides f but g does not divide f .

The idea of using a heap for sparse polynomial arithmetic was first investigated by
Johnson in 1974 (12). Heaps were used in Altran (2), one of the earliest computer algebra
systems. We are not aware of any other computer algebra system that has used heaps
for polynomial arithmetic despite their good asymptotic performance. Heaps were not
considered by Stoutemyer in (15) which, as far as we are aware, is the only systematic
experiment ever done comparing different polynomial data structures on a computer
algebra system’s test suite.

Our paper is organized as follows. In Section 2 we describe how we encode and pack
monomials for different term orderings. Our packing for graded reverse lexicographical
order is new. In Section 3 we give the main algorithms that use heaps of pointers. Two
algorithms are presented. The first algorithm bounds the size of the heap by the number
of terms in the quotients {q1, q2, ...., qs}. In the second algorithm, the size of the heap is
bounded by the number of terms in the divisors {g1, g2, ..., gs}. This algorithm is new,
and it is particularly useful for polynomial GCD computations because the gcd G of two
polynomials A and B typically has fewer terms, often much fewer, than the quotients
A/G and B/G.

We have implemented the division algorithms in the C programming language. We
create polynomials in Maple and call our C code from Maple using Maple’s foreign
function interface (see Ch. 8 of (14)). For comparison we have also implemented Yan’s
geobucket data structure using dynamic arrays with packed exponent vectors. Details of
our geobucket implementation are given in Section 2.

In Section 4 we give some benchmarks comparing the simple merging algorithm with
Yan’s geobucket representation and our heap algorithms, using packed and unpacked
exponent vectors. Our conclusions may be summarized as follows; the heap algorithms
are as fast as geobuckets but use far less memory. Geobuckets do the fewest monomial
comparisons, but heaps tend to be faster on large problems because they use cache more
efficiently. Simple merging is not competitive with either heaps or geobuckets on sparse
problems. For all algorithms, packing exponents can significantly improve performance,
especially on 64-bit machines. Geobuckets and the merge algorithm tend to benefit the
most from this.

2. Dynamic Array Implementation

Consider the minimum amount of work that sparse algorithms must do. As noted by
Johnson (12), the multiplication fg must construct all #f#g products of terms because
the monomials generated may be distinct. These terms are merged to form the result.
Similarly, to divide f by g we construct the quotient q incrementally while subtracting
qg from f . We merge #f + #q(#g − 1) terms to do the division. Note, it is #g − 1 and
not #g because −q×LT (g) is constructed to cancel terms so only −q×(g−LT (g)) needs
to be merged. Let r = f − qg. The number of monomial divisions attempted is #q + #r.
To divide f by {g1, ..., gs} with quotients {q1, ..., qs} we merge #f +

∑s
i=1 #qi(#gi − 1)

terms and attempt
∑s

i=1(#qi)i + (#r)s monomial divisions if for each term we loop
through the divisors in order.
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Fig. 1. Unpacked x2y3z4 with x > y > z.

reverse lexicographic order graded reverse lexicographic order

graded lexicographic orderlexicographic order

deg

deg zyxx y z
32 4

234

29

9 4 3 2

4

z

3

y x xyz

Fig. 2. Packed x2y3z4 with x > y > z.

5
deg
9

weighted lexicographic order

2
zyx

9

graded lexicographic order

x y z
2 3 4

deg z
4

x
2

y
3

z
4

weighted reverse lexicographic order

weight xyz
234w

32
yxweight

w

x+y

graded reverse lexicographic order

lexicographic order

43

Sorting the result imposes an additional cost in monomial comparisons if a function
is called to compare terms with respect to an order. The nm terms of a product can be
naively sorted using O(nm log(nm)) comparisons, but if the polynomials are sorted we
can exploit that fact to do only O(nm log(min(n, m))) comparisons. In either case the
logarithmic factor is significant – it means that monomial comparisons dominate sparse
polynomial computations when the cost of coefficient arithmetic is low.

2.1. Packed Monomial Representations

Following an initial experiment we decided to base our monomial representations on
Bachmann and Schönemann’s scheme (1), which is used in Singular. The defining feature
of this scheme is that a monomial stores two components: a (possibly weighted) total
degree and a vector of exponents. An inline function compares the degree and the ex-
ponent vector in lexicographic order, and two global variables invert these comparisons
separately. To compare in reverse lexicographic order we reverse the variables and invert
all the comparisons. Figure 1 shows the unpacked representations of x2y3z4 with respect
to four common orders with x > y > z. Shading is used to indicate where the results of
comparisons are inverted.

To pack monomials we use bitwise or and shift operations on machine words so that
byte order is automatically taken into account. Our diagrams use big-endian format. We
reserve the most significant bit of each exponent as a guard bit for monomial division.
This operation subtracts machine words and uses a bit-mask to detect if an exponent
is negative. The mask also stores the length of the monomials which is needed by every
routine. Weighted orders use the entire first word for the weighted degree since this can
be large. We restrict the weights to non-negative integers so that the weighted degree is
also a non-negative integer.

For graded orders we use the same number of bits for the total degree as for each
exponent so that all monomials up to the maximum degree are encoded efficiently. Note
that it is especially easy to determine an optimal packing for these orders using bounds
on the total degree. If the polynomials are already sorted with respect to the order then
we can examine their leading terms and repack the input in linear time.
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Fig. 3. Matrix representations of graded reverse lexicographic (grevlex) order.

A =

 1 1 1 1
0 0 0 −1
0 0 −1 0
0 −1 0 0

 B =

 1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0


Fig. 4. Packed representations of x1y2z3t4u5v6w7 in grevlex order with 4 exponents per word.
The exponents for w, v, u, and x are redundant. In the second representation, all monomial
comparisons can be decided on the basis of the first seven exponents, after looking at two words.
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Figure 2 shows the packed representations of x2y3z4 for five monomial orders with
two exponents per machine word. Notice how monomial comparisons are reduced to
lexicographic and reverse lexicographic comparisons of machine words. The encodings
should all be straightforward except for graded reverse lexicographic order. In that case
recall that the total degree only requires as many bits as a single packed exponent. The
first word of the monomial, which must be compared lexicographically unlike the rest,
would contain relatively little information if it only stored the total degree.

Our first idea was to pack more information into the first word to decide monomial
comparisons. Observe that the matrices A and B in Figure 3 both describe graded reverse
lexicographic order in four variables. Let V be an exponent vector. Then AV is encoded
in the first |V | words of the unpacked representation. The matrix B is obtained from A
by adding the previous rows of A to each row of A, eliminating all negative entries. Thus
BV contains only non-negative integers that are compared lexicographically. We pack as
much of BV as possible into the first word of the monomial.

However, this does not actually fix the problem since now the second word of the
monomial contains information that can be derived from the first. Refer to the top of
Figure 4, where w = 7, v = 6 and u = 5 are known from 28 − 21, 21 − 15, and 15 − 10.
Thus the second word now provides only one exponent with new information, but we
can easily fix this by moving all but the last exponent of the second word to the end of
the monomial, as in the bottom of Figure 4. Then for n variables the first n exponents
encode all of the information necessary to decide monomial comparisons in grevlex order.

One might wonder why we do not simply encode the vector BV . The reason is that for
monomial division one must unpack and decode quotients to check that they are valid.
An example is shown below. In fact, we tried this representation initially and found that
while it was quite compact for grevlex order, weighted orders were inefficient and reverse
lexicographic order could not be implemented. Eventually we decided to store all of the
exponents explicitly, and Bachmann and Schönemann’s scheme was the obvious choice.

Example 1. Consider x2 and y3 in graded reverse lexicographic order with x > y > z.
The exponent vectors are U = [ 3, 0, 0 ] and V = [ 0, 2, 0 ] respectively, and the matrix B
is shown below. The difference BU−BV is non-negative even though U−V = [ 3,−2, 0 ].

B =

[
1 1 1
1 1 0
1 0 0

]
BU =

[
3
3
3

]
BV =

[
2
2
0

]
BU −BV =

[
1
1
3

]

7



2.2. Iterated Merging with Dynamic Arrays

The classical approach to polynomial arithmetic is an iterated merge. To multiply two
polynomials f and g we compute

∑#f
i=1 fig by adding each fig to the previous partial

sum using a merge. Similarly, to divide f by g we compute terms of the quotient q while
subtracting each qig from an intermediate polynomial, which is initially f .

Our first goal was to implement these algorithms while avoiding memory allocation.
We use two global arrays or “merge buffers” p and p′ which grow dynamically, and all
merging takes place from p into p′. If p′ does not have sufficient storage to hold the
objects being merged then it is enlarged. To amortize this cost we allocate a new p′ with
50% more storage than required. To further amortize the cost of memory allocation we
reuse p and p′ in the next call to an algorithm rather than free them each time.

Fig. 5. Division using two dynamic arrays. The fourth term of p produced the quotient term y,
and we are beginning to merge the rest of p (two terms) with −y times the rest of g (two terms).
The buffer p′ is large enough to store the result. Otherwise we would enlarge it to six terms.

2
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2−3
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x y25x435x22 3 y11
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buffer p

remainder r
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We describe our implementation of the division algorithm. To divide f by g, we copy
f into p and increment along the terms of p until we reach the end or we find a term pi

that is divisible by LT (g). We copy the previous terms of p to the remainder and if a
reducible term was found, say pi = qjLT (g), we merge the rest of p with −qj(g−LT (g))
into p′, as shown in Figure 5. The terms of −qj(g − LT (g)) are constructed during the
merge. Finally we interchange p and p′ by swapping pointers so that p′ becomes p for
the next iteration of the algorithm and the storage for p is recycled.

The complexity of this approach was analyzed by Johnson (12). He observed that for
a multiplication fg where f has n terms, g has m terms, and fg has nm terms, adding
each fig to the partial sum can require up to im − 1 monomial comparisons, making
the total number of comparisons

∑n
i=2 im − n + 1 ∈ O(n2m). A similar result holds for

division when the quotient has n terms, the divisor has m terms, and the dividend has
nm terms. Thus iterated merging can be very bad when the quotient is large.

It is interesting to note that O(n2m) comparisons may be required even if the product
or dividend does not have O(nm) terms, if terms introduced by the first n/2 summands
are canceled by the last n/2 summands. We call this an intermediate blowup in the
number of terms. One unfortunate feature of algorithms that add each fig or qig to a
partial sum is that they allocate storage for all of these terms even when the end result
is zero, as it will be for exact division. In Section 3 we will see that the heap algorithms
avoid this problem by merging all of the partial products simultaneously.

For sparse polynomials an iterated merge uses about 2s + t terms of storage where s
is the size of the largest intermediate sum and t is the size of the objects being merged.
If we always enlarge the buffers by an extra 50% then we can expect to use storage for
about 3s terms on average. Quotient(s) and the remainder consume additional storage if
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they are needed. In our implementation they are generated as linked lists of large arrays
where the first array in each list is pre-allocated global storage. This data is copied into
new arrays to return the result(s).

Divide and Conquer Merging – Geobuckets

A well-known alternative to iterated merging is divide-and-conquer merging, which is
often used for polynomial multiplication. Let f have n terms and let g have m terms. If
we compute

∑n
i=1 fig by summing the first n/2 and the last n/2 summands recursively

and adding their sums, then at most C(n) ≤ 2C(n/2)+nm−1 ∈ O(nm log n) monomial
comparisons are required. The method is efficient because it tries to merge polynomials
of approximately the same size.

But how much memory is required? If each recursive call allocates memory for its own
result then we can solve the same recurrence to find that O(nm log n) memory is needed.
This is an order of magnitude larger than any possible result. Instead we could reuse a
set of geometrically increasing buckets with {2m, 4m, . . . , nm/2} terms for polynomials
that we are waiting to merge, plus two arrays with nm and nm/2 terms for polynomials
that we are currently merging. This simple “geobucket” algorithm is described below.

Geobucket Multiplication.
Input: f = f1 + · · ·+ fn, g = g1 + · · ·+ gm.
Output: fg.

1: Allocate buckets with {2m, 4m, . . . , 2dlog2(n)e−1m} terms.
2: Allocate dynamic arrays p and p′.
3: For i := 1 while i ≤ n do

4: Compute fig and store it in p.
5: If i < n merge p and fi+1g into p′ and swap p and p′.
6: Set i := i + 2.
7: For j := 1 while bucket[j] 6= 0 do

8: Merge p and bucket[j] into p′ and swap p and p′.
9: Set bucket[j] := 0 and j := j + 1.

10: If i ≤ n set bucket[j] := p and p := 0.
11: For j := 1 to 2dlog2(n)e−1 do

12: If bucket[j] 6= 0 merge p and bucket[j] into p′ and swap p and p′.
13: Output p.

Thus f1g and f2g are merged and their sum is stored in bucket 1, then f3g and f4g
are merged and their sum is merged with f1g + f2g and stored in bucket 2, then f5g and
f6g are merged and their sum is stored in bucket 1, and so on, continuing in the manner
of a depth-first search.

If n = 2k it is easy to see that O(nm) storage is used. The buckets contain (n − 2)m
terms, the array that stores the result will need nm terms, but the other array can have
nm/2 terms. The total amount of storage required is 2.5nm terms – only 50% more than
for an iterated merge. If we always grow the arrays by an extra 50% then we can expect
to allocate storage for about 3.25nm terms in total.

Geobuckets were proposed by Yan (16) with three significant improvements. First,
Yan’s buckets have a small base and ratio that are independent of any problem to ensure
good performance when objects of varying sizes are added to the geobucket. In the
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algorithm above the base is 2m and the ratio is 2, so objects with fewer than m terms
could be added more efficiently with a smaller bucket. Second, Yan always tries to store
p + bucket[j] in bucket[j] if possible to avoid creating bucket[j + 1]. This decreases the
amount of memory and increases the likelihood of combining terms on dense problems,
resulting in fewer monomial comparisons. Finally, Yan describes a reasonably efficient
scheme for coalescing the leading terms of the buckets to compute the leading term
of the polynomial. This allows us to run the division algorithm with the intermediate
polynomial p stored as a geobucket. We state Yan’s algorithm below for completeness.

Geobucket Leading Term.
Input: polynomial f stored in bucket[1 . . . k].
Output: LT (f) or FAIL when f = 0, set bucket[1 . . . k] := f − LT (f).

1: Set j := 0, the bucket containing the leading term.
2: For i := 1 while i ≤ k do

3: If bucket[i] 6= 0 and (j = 0 or LM(bucket[i]) > LM(bucket[j])) set j := i
4: else if bucket[i] 6= 0 and LM(bucket[i]) = LM(bucket[j])

5: Set LC(bucket[j]) := LC(bucket[j]) + LC(bucket[i]).
6: Remove LT (bucket[i]) from bucket[i].

7: Set i := i + 1.
8: If j = 0 then f = 0 so output FAIL.
9: If LC(bucket[j]) = 0 remove this term from bucket[j] and goto step 1.
10: Set t := LT (bucket[j]).
11: Remove LT (bucket[j]) from bucket[j].
12: Output t.

We implemented Yan’s geobuckets using a single dynamic array so that its storage
could be reused in subsequent calls. We chose a ratio of two because that is optimal for
merging and our smallest bucket (the base) has four terms. We found that geobuckets
performed very well, often using fewer monomial comparisons than expected.

For a sparse multiplication producing nm terms geobuckets do O(nm log n) compar-
isons and store about 3.6nm terms. This number can be derived as follows. The arrays
(merge buffers) require nm and nm/2 terms, but we will allocate an extra 50% for each.
The buckets have nm terms, but the base (two) is independent of m so we expect each
bucket to be 75% full. The total is 4nm/3 + (3/2)(nm + nm/2) = (43/12)nm terms.

We can make a similar estimate for exact division when the dividend has nm terms,
however the complexity is O(nm log(nm)) because of how leading terms are computed.
The dividend is placed into the largest bucket, which we expect to be 75% full, so the
storage for buckets is 2(4nm/3) = 8nm/3. Nothing is merged with the largest bucket
since

∑#q
i=1 qig fits entirely in the smaller buckets, so the largest merge that we expect to

do is to construct
∑#q/2

i=1 qig which has nm/2 terms. This requires arrays with nm/2 and
nm/4 terms, plus the extra 50% that we allocate, bringing the total number of terms to
8nm/3 + (3/2)(3nm/4) = (91/24)nm.

The actual amount of memory that geobuckets need for exact division tends to vary.
It can be lower if the leading term computations frequently cancel terms in the buckets,
reducing the size of the polynomials that are merged. For random sparse divisions we
found that approximately 3.6nm terms were used – about the same as for multiplication.
The dynamic arrays were often the same size, about 3nm/5 terms each.

10



3. Heap Algorithms for Polynomial Arithmetic

The heap algorithms are based on the following idea: rather than merge polynomials
one by one into an intermediate object, we do a simultaneous n-ary merge using a heap.
Consider the multiplication fg where we merge fig for 1 ≤ i ≤ #f . If we maintain a
heap of #f pointers into g, sorted by the monomial of figj , we can repeatedly extract the
largest figj from the heap, merge it onto the end of the result, and insert its successor
figj+1 into the heap if j < #g. We illustrate this process in Figure 6 below.

Fig. 6. Multiplication of f = 2x4 +3x3 +4x and g = x5 +5x3 +7 using a heap. We are extracting
f1g2 = 10x7 and writing it into the result. The next term f1g3 = 14x4 is inserted into the heap,
and we extract f2g2 and f3g1 to obtain 15x6 + 4x6 = 19x6, the fourth term of the result.
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The monomial of figj is computed and stored in the heap when the term is inserted.
It is used to determine the maximum element of the heap. This storage is reused for
figj+1 so only O(#f) storage is required, in addition to storage for the result.

To divide f by g we merge the dividend f with −qig for each term qi of the quotient.
The heap maintains a pointer into f and adds a pointer into each −qig as each qi is
constructed. The algorithm extracts the largest term from the heap and continues to
extract terms with an equal monomial, adding their coefficients to produce the next
term of f −

∑i
j=1 qjg. If this term is not zero we divide it by LT (g) to obtain either a

new term of the quotient qi+1, or the next term of the remainder. When a quotient term
is found we insert the second term of −qi+1g into the heap, increasing the size of the
heap by one, along with the successors of the other terms that were extracted. There is
no intermediate blowup in the number of terms that are stored – the maximum number
of terms in the heap is #q + 1. We call this a “quotient heap” division.

The heap algorithms above were analyzed by Johnson (12) and used in Altran, one of
the first computer algebra systems. For a binary heap of size n, inserting and extracting
each term does O(log n) monomial comparisons. A multiplication that passes nm terms
through a heap of size n does O(nm log n) comparisons – the same as divide-and-conquer.
Exact division f ÷ g with #f = nm, #g = m, and the quotient #q = n, passes 2nm−n
terms through a heap of size n + 1, which is also O(nm log n) comparisons.

One problem with the heap algorithms is that they do O(nm log n) comparisons even
when the polynomials are dense, whereas the simple merge and the divide-and-conquer
algorithms do only O(nm) comparisons. In Section 3.2 we show how to modify the heap
to make the heap algorithms efficient in the dense case as well.

Our main contribution is to modify the heap division algorithm to increment along
the quotient(s) instead of the divisor(s). The resulting “divisor heap” algorithm does
O(nm log m) comparisons and uses O(m) storage, where m is the size of the divisor(s).
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Our incentive comes from the gcd problem, where we compute G = gcd(A,B) and divide
A/G and B/G to recover the cofactors. The divisor G is typically small and the quotients
(cofactors) are often big. The algorithm is also useful for computing over small towers of
algebraic extensions, when the number of reductions exceeds the size of the extensions.

The modification is easy to do. The algorithm merges f with −giq for 2 ≤ i ≤ #g
using a heap of size #g, however we may merge giqj−1 before qj is computed, in which
case we can not insert the next term giqj into the heap because we can not compute its
monomial. However, since LT (g)qj > giqj for all i > 1, we can safely wait for qj to be
computed to insert the terms giqj with i > 1 into the heap.

We exploit the fact that the term giqj is greater than the term gi+kqj for k > 0, so
if #q = j − 1 we encounter the strictly descending sequence g2qj > g3qj > g4qj > ... in
order. For each divisor g we store an index s of the largest gsqj that is missing from the
heap because qj is unknown. When a new term of the quotient is computed (#q = j) we
compute all of the missing terms {g2qj , . . . gsqj} and insert them into the heap. Here we
give the algorithm for one divisior.

Divisor Heap Division.
Input: f, g ∈ F [x1, ..., xn], F a field, g 6= 0.
Output: q, r ∈ F [x1, ...xn] with f = qg + r.

1: If f = 0 then output (0, f).
2: Initialize (q, r, s) := (0, 0,#g).
3: Create an empty heap H of size #g and insert (−1)f1 into H.
4: While the heap H is not empty do

6: Set t := 0.
7: Repeat

8: Extract x := Hmax from the heap and set t := t− x.
9: Case x = (−1)fi and i < #f : Insert (−1)fi+1 into H.
10: Case x = giqj and j < #q : Insert giqj+1 into H.
11: Case x = giqj and j = #q : Set s := s + 1 (s = i).

12: Until H is empty or LM(t) 6= LM(Hmax).
13: If t 6= 0 and LT (g)|t then

14: Copy t/LT (g) onto the end of q.
15: For i = 2, 3, ..., s compute gi × (t/LT (g)) and insert it into H. Set s := 1.

16: Else if t 6= 0 copy t onto the end of r.
17: Output (q, r).

Theorem 2. The divisor heap algorithm divides f by g producing the quotient q and
remainder r using O((#f + #q#g)log#g) monomial comparisons and using storage for
O(#g + #q + #r) terms.

Proof. We show that at Step 4, |H| + s − 1 = #g if some (−1)fi ∈ H or |H| + s = #g
otherwise. The first time Step 4 is executed, |H| = 1, s = #g, and (−1)f1 is in the heap,
so the loop invariant holds. Steps 7-11 extract a term from H and either replace it or
increment s, unless it was the last term of f . Step 15 inserts s− 1 terms into H and sets
s := 1, maintaining the invariant.

Then |H| ≤ #g since s ≥ 1. Therefore the storage required is at most #g terms in the
heap plus the terms of q and r. It should be clear that the algorithm adds terms of f ,
subtracts terms of each giq, and uses LT (g) to cancel terms if possible, otherwise moving
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them to r, so that f = qg + r. Since we pass #f + #q(#g − 1) terms through a heap of
size |H| ≤ #g, the number of monomial comparisons is O((#f + #q#g) log #g). 2

3.1. Heap Optimizations

We present two optimizations that are necessary to reproduce our results. The first is
to implement the heap carefully. A surprising number of people are only aware of a bad
algorithm for shrinking a heap, so we present a classical algorithm that is roughly twice
as fast on average. As LaMarca and Ladner (13) observe, about 90% of the time is spent
shrinking the heap so the resulting speedup is almost a factor of two.

We store the heap in a global dynamic array H, with the convention that H[0] is the
largest element and the children of H[i] are H[2i + 1] and H[2i + 2]. To insert a new
element x into the heap we use the following algorithm where n is the size of the heap.

inline void heap_insert(heap_elem *H, int *n, heap_elem x)

{ int i, j;

for (i=(*n)++, j=(i-1)/2; i > 0 && x > H[j]; H[i]=H[j], i=j, j=(j-1)/2);

H[i] = x;

}

Note that we do not assign H[n] = x and swap elements. Instead, we propose to put x
into H[n] but check if it would be larger than its parent. If that is the case, we copy the
parent into empty slot and continue up the heap. Reading and writing is thus minimized.
To shrink the heap we use the same idea.

inline heap_elem heap_extract_max(heap_elem *H, int *n)

{ int i, j, s = --(*n);

heap_elem x = H[0];

/* H[0] now empty - promote largest child */

for (i=0, j=1; j < s; i=j, j=2*j+1) {

j = (H[j] > H[j+1) ? j : j+1;

H[i] = H[j];

}

/* H[i] now empty - insert last element into H[i] */

for (j=(i-1)/2; i > 0 && H[s] > H[j]; H[i]=H[j], i=j, j=(j-1)/2);

H[i] = H[s];

return x;

}

The extraction algorithm promotes the largest child into the empty space at a cost
of one comparison per level of the heap H. Then it inserts the last element of the heap
into the empty slot, which is a slot for a leaf. However since the last element was already
a leaf, we do not expect it to travel very far up the heap. The number of comparisons
required is log2(n) + O(1) on average.

Compare this with the more commonly known algorithm for shrinking a heap, which
moves the last element to the top and, at a cost of two comparisons per level (to find the
maximum child and compare with it), sifts it down the heap. Since the last element was
already a leaf it is likely to go all the way back down to the bottom, requiring 2 log2(n)
comparisons on average.

Our second optimization improves performance when multiple terms are extracted
from the heap. It is also necessary to obtain O(nm) comparisons from a chained heap
in the totally dense case. We insert and extract batches of terms instead of extracting a

13



term and immediately inserting its successor. This requires a queue to store the extracted
terms, however we can partition the heap to store this queue in place, as in heapsort. We
insert the successors of all the extracted terms at the end of each iteration. As noted by
LaMarca (13), this strategy also produces favorable caching effects.

3.2. Chaining terms with equal monomials

Our next improvement chains heap elements with equal monomials to reduce the
number of comparisons. Johnson (12) also experimented with this idea, however our
scheme is simpler and we will show that multiplication and division of dense polynomials
does O(nm) comparisons.

We chain elements only as they are inserted into the heap, using an additional pointer
in the product structure that points to fi and gj . In our implementation the pointers to
fi and gj are not stored in the heap, but in a secondary structure that is accessed only
when terms are inserted or extracted. Heap elements store a pointer to this structure
and a pointer to the monomial product used for comparisons. The overhead of chaining
elements in this way is negligible. The algorithms must be modified to check for chains
and extract all the elements of a chain without doing any comparisons.

One final optimization is needed for multiplication. When multiplying fg, we must
start with f1g1 in the heap and insert each fig1 only after fi−1g1 has been extracted
from the heap. Then we have the following two results.

Lemma 3. Let f and g be dense univariate polynomials with n and m terms, respectively.
A heap multiplication fg with chaining does nm− n−m + 1 comparisons.

Proof. We prove a loop invariant: at the beginning of each iteration the heap contains
exactly one element or chain. This is true initially since the only element is f1g1. Each
iteration removes the chain without doing a comparison, producing an empty heap. When
we insert the successor terms into the heap all of the monomials are equal because the
problem is dense, so all of the terms are chained together at the top of the heap. There
are nm terms and n + m − 1 unique monomials. The first term with each monomial is
inserted for free while the rest use one comparison each to chain. The total number of
comparisons is thus nm− n−m + 1. 2

Lemma 4. Let q and g be dense univariate polynomials with n and m terms and let
f = qg. Then a quotient heap division f ÷ g with chaining does nm− n comparisons.

Proof. We use the same loop invariant: the heap contains exactly one element or chain,
which is initially f1. Each iteration extracts the terms of this chain, adding their coeffi-
cients without a comparison, producing an empty heap. If the term is not zero, a new
term of the quotient qi is computed and the monomial of qig1 equal to the monomial of
the extracted terms. When we insert its successor qig2 and the successors of all the other
terms their monomials are all equal because the problem is dense, and all of the terms
are chained together at the top of the heap. If each of the n + m − 1 monomials of f is
inserted first without any comparisons, the remaining n(m− 1) terms of −q(g − LT (g))
will be chained using one comparison each. 2

Remark: The divisor heap algorithm can also be modified to do nm comparisons in the
dense univariate case. Each term qj of the quotient should insert only g2qj if it is not in
the heap, and each gi+1qj should be inserted only after giqj is extracted from the heap.
We have not yet implemented this modification.
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Table 1. Multiplication fg and the number of comparisons divided by (#f)(#g).

S #(fg) #f, #g unchained heap chained heap geobuckets direct merge

1 199 100 6.138 .980 1.114 1.475

1999 1000 9.329 .998 1.027 1.497

10 1025 100 8.339 5.970 2.905 7.239
10747 1000 11.717 8.478 3.065 8.025

100 5728 100 8.671 8.282 4.690 32.893
97051 1000 11.879 11.334 5.798 69.191

1000 9364 100 8.805 8.748 5.274 48.073

566984 1000 11.925 11.852 7.511 324.135

Table 2. Division (fg)/g and the number of comparisons divided by #(fg) + #f(#g − 1).

S #(fg) #f #g quotient heap divisor heap geobuckets direct merge

1 199 100 100 .980 2.627 .980 .980

1099 100 1000 .989 7.622 .989 .989

1099 1000 100 .989 1.155 .989 .999
1999 1000 1000 .998 4.170 .998 .998

10 1025 100 100 5.692 6.480 2.647 4.300

5856 100 1000 6.493 8.244 2.738 4.872

5949 1000 100 6.503 7.825 2.748 4.934
11162 1000 1000 8.646 9.124 2.916 5.473

100 5725 100 100 7.106 7.580 3.945 14.502
44725 100 1000 7.884 10.594 3.954 19.381

45358 1000 100 7.696 7.938 4.405 18.231
96443 1000 1000 10.898 11.438 5.471 42.262

1000 9403 100 100 7.116 7.522 3.992 17.307
90884 100 1000 7.682 10.608 4.253 23.978
91141 1000 100 7.658 7.747 4.596 22.736

571388 1000 1000 10.563 11.056 6.574 142.095

4. Benchmarks

4.1. The number of monomial comparisons

Our first benchmark (see Table 1 and Table 2) is due to Johnson (12). We multiply
and divide sparse univariate polynomials and report the number of comparisons divided
by the total number of terms that are merged. Recall that for a sparse multiplication fg
this is (#f)(#g) and for a sparse division f = qg this is #f + #q(#g− 1). A “structure
parameter” S is used to randomly generate polynomials f = a0+a1x

e1+a2x
e2+· · ·+akxek

with the difference between the exponents satisfying 1 ≤ ei+1 − ei ≤ S.
For each problem we generate f and g with n and m terms respectively, multiply

p = fg and divide p/g. For multiplication we test both chained and unchained heaps,
and for division we test the “quotient heap” and the “divisor heap” algorithms.

We make a couple of remarks concerning tables 1 and 2. First it should be clear that
our implementation of the divisor heap algorithm is not fully optimized. As discussed
at the end of Section 3 we should delay inserting products giqj into the heap until after
the previous product gi−1qj is extracted from the heap. This is needed to obtain O(nm)
comparisons in the dense case. Second, it is interesting to see that geobuckets do roughly
half the number of comparisons as the heap algorithms in the sparse case, and this ratio
improves as the problems become more dense. We tried some improvements to the heap
algorithms such as chaining elements while shrinking the heap, however these changes
tended to decrease the real world performance of the algorithms.
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Table 3. Sparse multiplications and divisions in 7 variables over Z32003. Graded lexicographic
order was used with {1, 2, 4, 8} exponents packed into each 64-bit word. #fi = 50, deg(fi) = 10,
#(f1f2) = 2492, #(f3f4) = 2491, #(f1f2f3) = 121903, #(f1f2f3f4) = 4523085.

(f1f2)× (f3f4)

expon/wd size of result chained heap geobuckets direct merge

1 310.57 MB 2.630 s (0.38 MB) 7.720 s (994 MB) 332.230 s (371 MB)

2 172.54 MB 1.860 s (0.31 MB) 4.230 s (552 MB) 185.780 s (206 MB)
4 103.52 MB 1.450 s (0.27 MB) 2.550 s (331 MB) 111.960 s (124 MB)
8 69.01 MB 1.240 s (0.25 MB) 1.760 s (221 MB) 75.560 s (83 MB)

f1 × (f2f3f4)

expon/wd size of result chained heap geobuckets direct merge

1 310.57 MB 1.700 s (0.07 MB) 4.770 s (1143 MB) 8.070 s (483 MB)
2 172.54 MB 1.240 s (0.06 MB) 2.660 s (635 MB) 4.500 s (216 MB)

4 103.52 MB 0.980 s (0.06 MB) 1.690 s (381 MB) 2.800 s (161 MB)
8 69.01 MB 0.880 s (0.06 MB) 1.230 s (254 MB) 1.910 s (107 MB)

(f1f2f3f4)/(f1f2f3)

x quotient heap divisor heap geobuckets direct merge

1 2.000 s (0.13 MB) 8.820 s (18.6 MB) 5.190 s (1793 MB) 7.530 s (944 MB)

2 1.450 s (0.13 MB) 6.570 s (14.9 MB) 2.960 s (996 MB) 4.250 s (524 MB)

4 1.250 s (0.10 MB) 5.270 s (13.0 MB) 1.950 s (598 MB) 2.610 s (315 MB)
8 1.060 s (0.10 MB) 4.530 s (12.1 MB) 1.500 s (398 MB) 1.770 s (210 MB)

(f1f2f3f4)/(f1f2)

x quotient heap divisor heap geobuckets direct merge

1 3.270 s (0.72 MB) 3.380 s (0.30 MB) 8.020 s (1461 MB) 330.730 s (932 MB)
2 2.290 s (0.65 MB) 2.430 s (0.31 MB) 4.460 s (812 MB) 183.060 s (518 MB)
4 1.840 s (0.62 MB) 1.930 s (0.27 MB) 2.760 s (487 MB) 110.290 s (311 MB)
8 1.520 s (0.60 MB) 1.620 s (0.25 MB) 2.040 s (321 MB) 74.540 s (207 MB)

(f1f2f3f4)/f1

x quotient heap divisor heap geobuckets direct merge

1 8.010 s (28.46 MB) 1.990 s (0.07 MB) 8.320 s (1371 MB) –

2 5.900 s (25.69 MB) 1.480 s (0.06 MB) 4.640 s (762 MB) –
4 4.750 s (24.29 MB) 1.240 s (0.06 MB) 2.890 s (457 MB) –
8 3.970 s (23.60 MB) 1.080 s (0.06 MB) 2.210 s (305 MB) 3526.750 s (207 MB)

4.2. 7 variable cofactor problem

Our next benchmark (see Table 3) simulates a GCD problem. A large sparse poly-
nomial is divided by one of its factors (the GCD) to compute the cofactor. To generate
this example we constructed four polynomials {f1, f2, f3, f4} and divided their product
p = f1f2f3f4 by f1, f1f2, and f1f2f3 over Z32003 using graded lexicographic order. We
include the multiplications (f1f2)(f3f4) and f1(f2f3f4) as well. The polynomials all have
#fi = 50 and deg(fi) = 10. The computations were done on an AMD Opteron 254 2.8
GHz with 8GB of 400MHz RAM and 1 MB of L2 cache.

We report the times and memory overhead with 1, 2, 4, and 8 exponents per 64 bit
machine word. For multiplications we subtract the size of the product from the memory
totals for the geobucket and merge algorithms, and for divisions we do not include any
memory used by the quotient. For the heap algorithms we report the size of the heap and
its products. Thus the memory numbers are overhead costs for the various algorithms,
not the total memory used. For multiplication we also report the size of the product. For
divisions the size of the largest quotient (f2f3f4) is at most 8.3 MB.

The heap algorithms perform very well on large examples, despite their higher cost
in monomial comparisons. We attribute this to the fact that the algorithms’ working

16



Table 4. Sparse multiplications and divisions in 4 variables over Z32003. Each fi has degree 30
in each variable. Lexicographic order was used with {1, 2, 4} exponents packed per 32-bit word.
#f1 = 96, #f2 = 93, #f3 = 93, #(f1f2) = 8922, #(f2f3) = 8639, #(f1f2f3) = 795357.

f1 × (f2f3)

expon/wd size of result chained heap geobuckets direct merge

1 15.17 MB 0.200 s (0.03 MB) 0.210 s (55.74 MB) 0.650 s (23.21 MB)

2 9.10 MB 0.150 s (0.03 MB) 0.140 s (33.44 MB) 0.470 s (13.92 MB)
4 6.07 MB 0.120 s (0.03 MB) 0.110 s (22.30 MB) 0.360 s (9.28 MB)

(f1f2f3)/(f1f2)

x quotient heap divisor heap geobuckets direct merge

1 0.260 s (0.06 MB) 0.460 s (0.55 MB) 0.280 s (70.91 MB) 0.600 s (38.38 MB)

2 0.210 s (0.05 MB) 0.370 s (0.48 MB) 0.220 s (37.38 MB) 0.440 s (27.46 MB)
4 0.170 s (0.05 MB) 0.300 s (0.45 MB) 0.180 s (22.36 MB) 0.350 s (18.30 MB)

(f1f2f3)/f1

x quotient heap divisor heap geobuckets direct merge

1 0.430 s (0.53 MB) 0.280 s (0.03 MB) 0.390 s (55.90 MB) 44.000 s (45.52 MB)
2 0.350 s (0.47 MB) 0.230 s (0.03 MB) 0.300 s (33.54 MB) 28.790 s (27.30 MB)

4 0.280 s (0.43 MB) 0.190 s (0.03 MB) 0.260 s (22.36 MB) 22.150 s (18.20 MB)

memory (the heap of pointers and the monomial products) typically fits in the L2 cache,
whereas the RAM of this computer is significantly slower (7x) than the processor.

Also note the effect of packing exponents. The performance of merging and geobuckets
is practically linear in the size of the terms, which is 9, 5, 3, or 2 words with a coefficient.
The heap algorithms do not benefit as much, but the improvement is certainly noticeable.
Going from 64-bit (1 exponent per word) to 16-bit (4 exponents per word) exponents
places only modest restrictions on the total degree and improves performance by 40%.

4.3. The effect of fast RAM and a large L2 cache

In our previous benchmark the performance of geobuckets was constrained by the
speed of the RAM and the size of the L2 cache in the computer. We know from experience
that geobuckets can outperform the heap algorithms under different conditions, because
they typically do fewer monomial comparisons.

Our third benchmark (see Table 4) is a smaller problem similar to the previous one.
We created three random polynomials {f1, f2, f3} and divided their product by f1 and
f2f3. This test was run on a 2.4 GHz Intel E6600 Core 2 Duo with 2 GB of 666 MHz
RAM and 4 MB of L2 cache using 32-bit words. The RAM is now only 3.6 times slower
than the CPU and the number of words in the L2 cache is increased by a factor of eight.

The benchmark shows that geobuckets are competitive with the heap algorithms when
main memory is fast and a large L2 cache is present. The times above include the cost
of allocating memory, and in practice when the geobucket is already allocated it may be
faster than a quotient heap, even for sparse problems. Recall that the performance of
geobuckets improves on dense problems.

Although geobuckets have a worst case complexity of O(nm log(nm)), in practice they
perform as well as a quotient heap. Neither algorithm can compete with a divisor heap
when the quotient is large, because its complexity is O(nm log m).

4.4. Algebraic extensions

Our final benchmark (see Table 5) is a large division with algebraic extensions. We con-
structed four random polynomials {f1, f2, f3, f4} in Z32003[x, y, z, α, β, s, t] with deg(fi) =
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Table 5. Sparse multiplications and divisions with algebraic extensions. Lexicographic order
was used with 7 exponents per 64-bit word. We include the time for the division, the number of
monomial comparisons (right), and the total memory allocated. #f1 = 106, #f2 = 96, #f3 =
105, #f4 = 98, #(f1f2) = 8934, #(f3f4) = 8982, #(f1f2f3) = 256685, #(f1f2f3f4) = 1663235.

quotient heap divisor heap geobuckets

p = (f1f2)(f3f4) 11.080 s 9.713× 108 11.100 s 9.267× 108 8.510 s 4.218× 108

reduce product 0.700 s 458.75 MB 0.300 s 166.73 MB 0.610 s 646.54 MB

p = f4(f1f2f3) 1.690 s 1.966× 108 1.680 s 1.546× 108 2.130 s 8.184× 107

reduce product 0.670 s 446.07 MB 0.300 s 163.12 MB 0.560 s 642.30 MB

p/(f1f2f3) 3.060 s 2.862× 108 11.910 s 6.949× 108 3.360 s 1.218× 108

reduce quotient 0.000 s 208.02 MB 0.000 s 64.34 MB 0.000 s 479.98 MB

p/(f1f2) 51.430 s 4.097× 109 35.040 s 2.860× 109 35.520 s 1.732× 109

reduce quotient 0.010 s 733.72 MB 0.010 s 81.45 MB 0.010 s 1205.19 MB

p/f1 49.790 s 2.005× 109 5.980 s 4.616× 108 13.140 s 9.100× 108

reduce quotient 0.190 s 752.61 MB 0.080 s 113.25 MB 0.180 s 1038.96 MB

10 and LT (fi) = x10. We used lexicographic order with x > y > z > α > β > s > t with
the extensions α2 − 3 = 0 and β2 + st − 1 = 0. Thus we are effectively computing with
polynomials in {x, y, z} with coefficients in Z32003[α, β, s, t]/〈α2 − 3, β2 + st− 1〉.

We report the times to multiply (f1f2)(f3f4) and f4(f1f2f3) and reduce the product
mod {α2 − 3, β2 + st− 1}. Then we divide the product by f1, (f1f2), and (f1f2f3) mod
{α2 − 3, β2 + st − 1} and reduce the quotients mod {α2 − 3, β2 + st − 1}. The divisors
in each case are already reduced mod {α2 − 3, β2 + st− 1}.

We performed the test on a 3 GHz Intel Xeon 5160 with 16 GB of 666 MHz RAM and
4 MB of L2 cache using 64-bit words. Memory numbers are reported differently because
the heap algorithms must store the quotients of {α2 − 3, β2 + st − 1} which are large,
whereas geobuckets discard them. Thus we report the total memory allocated by each
routine, including reallocations to enlarge the geobuckets and speculative allocations of
quotients by the heap algorithms. The heap algorithms allocate quotient(s) using an
initial block of 512 terms, doubling this number each time a new block is needed, up to
a maximum of 224 terms.

Since the value of packing exponents has already been demonstrated, we packed all
seven exponents into one 64-bit word for this test. The results with less packing are
consistent with our previous benchmarks.

The divisor heap algorithm clearly shows merit on this example while the quotient heap
algorithm does poorly. The reason is simple, {α2 − 3, β2 + st− 1} are small divisors with
very large quotients, i.e.: they are frequently used to reduce terms during the division.
This is typically the case for towers of algebraic extensions, so we expect the divisor heap
algorithm to be a valuable tool for computing in these domains.

The divisor heap algorithm can also reduce extremely large polynomials of very high
degree with respect to a small set of extensions. It scales linearly with the size of the poly-
nomial being reduced and the number of reduction steps required. Its space requirements
are also linear in the size of the divisor(s) and their quotient(s).

Geobuckets also perform very well on the benchmark above. Their overall memory
requirements are low because they do not need to store all the quotients, and the number
of monomial comparisons they do is always competitive. However, performance is not
dictated entirely by monomial comparisons. Consider the fourth benchmark p/(f1f2),
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where geobuckets do half the number of monomial comparisons as a divisor heap only to
finish in the same amount of time.

The performance of geobuckets suffers because the amount of memory that they need
to access randomly is large, and this decreases the effectiveness of the cache. Imagine
what happens when β2 + st− 1 is used to reduce one million terms in a row. Geobuckets
will merge multiples of this polynomial into the smallest bucket 106 times, interspersed
with 500,000 merges with the second bucket, 250,000 merges with the third, and so on.
When a large bucket is merged it will evict all of the terms from the smaller buckets
out of the cache, producing cache misses the next time those bucket are accessed. If the
problem is sufficiently large or the L2 cache is small, this will happen frequently.

By contrast, the divisor heap algorithm will do two simultaneous passes over the
quotient of β2 + st− 1 while randomly accessing a heap with at least 3 elements, a block
of at least 2 monomial products, and the terms of the divisor. This is a tiny amount of
memory, so almost all of the cache is free to speculatively load terms from the quotient
to reduce cache misses. This processor also has an 8-way associative cache, so we expect
almost no cache misses from collisions in the cache evicting terms prematurely.

5. Conclusions and Future Work

We have shown how a heap of pointers can be very efficient for sparse polynomial
division and multiplication. This performance is primarily due to the very low memory
requirements of the algorithms and their cache-friendly design. We have also presented
a new algorithm that scales linearly with the size of the quotient(s) by using a heap
the size of the divisor(s). This algorithm should have many applications for polynomial
computations in the presence of algebraic extensions.

In the future we plan to combine the quotient and divisor heap algorithms to produce
an algorithm which is O(nm log(min(n, m))), which we believe is optimal. We also plan
to implement versions of the heap algorithms that use GMP for large integer arithmetic,
and we are experimentally trying to parallelize the heap algorithms as well.
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