
MATH 895, Assignment 4, Summer 2009

Instructor: Michael Monagan

Please hand in the assignment by 9:30am on July 13th before class starts.
Late Penalty -20% off for up to 24 hours late, zero after than.
For Maple problems, please submit a printout of a Maple worksheet containing your Maple
code and Maple output.
Use any tools from the Maple library, e.g. content(...), Content(...) mod p, divide(...),
Divide(...) mod p, eval(...) mod p, Interp(...) mod p, Linsolve(A,b) mod p, chrem(...), etc.

Brown’s dense modular GCD algorithm for Z[x1, x2, ...xn]

REFERENCE: Section 7.4 of the Geddes text.

Let g = gcd(a, b), ā = a/g and b̄ = b/g. For the modular GCD algorithm in Z[x] (one
variable) we said a prime p is bad if p|lc(g) and a prime p is unlucky if deg(gcd(ā mod
p, b̄ mod p))) > 0. We apply Lemma 7.3 (see text) to identify the unlucky primes.

(a) (5 marks)

For a, b,∈ Z[x1, x2, ..., xn] we need to generalize these definitions for bad prime and
unlucky prime and also define bad evaluation points and unlucky evaluation points for
evaluating xn. We do this using a monomial ordering e.g. lexicographical order. Let’s
use an example in Z[x, y, z]. Let a = āg and b = b̄g where

g = (5xz + yz − 1), ā = (3x+ 7y(z2 − 1) + 1), b̄ = (3x+ 7y(z3 − 1) + 1).

Here g = gcd(a, b). Let LC, LT , LM denote the leading coefficient, leading term and
leading monomial respectively in lexicographical order with x > y > z. So in our
example, LT (a) = (5xz)(3x) = 15x2z, hence LC(a) = 15 and LM(a) = x2z.

Let p be a prime and α be an evaluation point for z. We say p is bad prime if p divides
LC(g) and p is an unlucky prime if deg(gcd(φp(ā), φpb̄)) > 0. Similarly we say z = α
is a bad evaluation point if LCx,y(g)(α) = 0 and z = α is an unlucky evaluation point
if deg(gcd(ā(x, y, z = α), b̄(x, y, z = α))) > 0.

Identify all bad primes, all unlucky primes, all bad evaluation points for z, and all
unlucky evaluation points for z in the example.

1

(b) (5 marks)

Prove the following modified Lemma 7.3 for Z[x1, ..., xn].

Let a, b be non-zero polynomials in Z[x1, ..., xn] with gcd(a, b) = g. Let p be a prime and
h = gcd(φp(a), φp(b)) ∈ Zp[x1, ..., xn]. If p does not divide LC(a) (in lexicographical
order with x1 > x2 > ... > xn) then

(i) LM(h) ≥ LM(g) and

(ii) if LM(h) = LM(g) then φp(g)|h and h|φp(g).

(c) (40 marks)

Implement the modular GCD algorithm of section 7.4 in Maple. Implement two sub-
routines, subroutine MGCD that computes the GCD modulo a sequence of primes
(use 4 digit primes), and subroutine PGCD that computes the GCD at a sequence of
evaluation points (use 0, 1, 2, ... for the evaluation points). Note, subroutine PGCD is
recursive. Test your algorithm on the following example polynomials in Z[x, y, z]. Use
x as the main variable. First evaluate out z then y.

> c := x^3+y^3+z^3+1; d := x^3-y^3-z^3+1;

> g := x^4-123454321*y*z^2*x^2+1;

> MGCD(c,d,[x,y,z]);

> MGCD(expand(g*c),expand(g*d),[x,y,z]);

> MGCD(expand(g^2*c),expand(g^2*d),[x,y,z]);

> g := z*y*x^3+1; c := (z-1)*x+y+1; d := (z^2-1)*x+y+1;

> MGCD(expand(g*c),expand(g*d),[x,y,z]);

> g := x^4+z^2*y^2*x^2+1; c := x^4+z*y*x^2+1; d := x^4+1;

> MGCD(expand(g*c),expand(g*d),[x,y,z]);

> g := x^4+z^2*y^2*x^2+1; c := z*x^4+z*x^2+y; d := z*x^4+z^2*x^2+y;

> MGCD(expand(g*c),expand(g*d),[x,y,z]);

Please make your MGCD procedure print out the sequence of primes it uses using
printf(" p=%d\n",p); .

Please make your PGCD procedure print out the sequence of evaluation points α that
it uses for each variable u using printf(" %a=%d\n",u,alpha);

2

Sparse Multivariate Polynomial Interpolation

(a) (10 marks)

Prove the Schwartz-Zippel Lemma by induction on n the number of variables.

Let K be a field and f be a non-zero polynomial in K[x1, x2, ..., xn] of total
degree d ≥ 0 and let S be any non-empty finite subset of K. If α1, α2, ..., αn

are chosen at random from S then

Prob(f(α1, α2, ..., αn) = 0) ≤ d

|S|
.

(b) (optional, 20 marks)

Modify subroutine PGCD to use Zippel’s sparse interpolation.
REFERENCE: Section 7.5 of the Geddes text.
For simplicity, assume that the gcd g is monic in x1. Run both your sparse algorithm
and dense algorithm on the following input. Count the number of univariate gcd
computations in Zp[z] that each algorithm does.

> g := 2*x^8 + (u^8*v - 3*v^8*y + y^8*u)*x^4 + (w^8*z - 3*z^8*w + 1);

> c := 4*x^8 + 5*w^4*x^4 + 2*y^4*z^4 + 3*u^4*v^4 + 1;

> d := 6*x^8 - 5*y^4*x^4 - 4*u^4*v^4 - 3*w^4*z^4 - 2;

> a := expand(g*c):

> b := expand(g*d):

> PGCD(a,b,[x,u,v,w,y,z],p);

Note, to get random numbers from Zp first create a random number generator for [0, p)
using r := rand(p); then use alpha := r(); to get a random number.

(c) (20 marks) Using Ben-Or/Tiwari sparse interpolation, interpolate

f(x, y, z) = 101x3y4 + 103xy3z + 997x6z2

over Z using Maple. To solve a linear system Ax = b in Maple in characteristic 0 use
the x := LinearAlgebra:-LinearSolve(A,b); command.

REFERENCE (a copy is available on the course web page):

Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. Proc. STOC ’88, ACM press, 301-309, 1988.

3

