
MATH 895, Assignment 5, Summer 2013

Instructor: Michael Monagan

Please hand in the assignment by 9:30am on Thursday July 25th by 10:00am.
Late Penalty -20% off for up to 24 hours late. Zero after that.
Please submit a printout of a Maple worksheet containing Maple code and output.

Download and read the paper “Sparse Polynomial Arithmetic” by Stephen Johnson. Notice
that Johnson’s paper assumes univariate polynomials only. One can map a multivariate
polynomial f(x, y, z) into a univariate polynomial g(x) by means of the Kronecker substitu-
tion: g := subs(y = xj, z = xk, f) for sufficiently large j, k in such a way that one can recover
f(x, y, z) from g(x). We won’t pursue this.

Let A,B ∈ Q[x, y, z, ...] and let C = A × B and let Q be the quotient of C divided B.
Represent a polynomial as a Maple list of terms sorted in descending graded lexicographical
order. Represent each term in the form [c, e] where c ∈ Q is a coefficient and e, the exponent
vector, is encoded as an integer as follows: the monomial xiyjzk with exponent vector [i, j, k]
would be represented as the integer e = (i + j + k)B3 + iB2 + jB + k where B = 2L bounds
the total degree d of any monomial that appears in the multiplication/division algorithm.

Implement the following Maple procedures where X is a list of variables.

A := SDMP2Maple(a,X,B);

a := Maple2SDMP(A,X,B);

E.g. A := SDMP2Maple(a,[x,y,z],B) converts a Maple polynomial a(x, y, z) into the SDMP
data structure and Maple2SDMP(A,[x,y,z]) converts it back. Note, to convert an integer
E to base B in Maple use convert(E,base,B); Now implement the following:

1 Johnson’s heap multiplication algorithm: f × g =
∑#f

i=1 fi × g and

2 Johnson’s quotient heap division algorithm: f −
∑#q

i=1 qi × g.

For the heap operations you may use Maple’s heap package.
See ?heap.

1



Execute your algorithms on the following sparse problem

> X := [u,v,w,x,y,z];

> a := randpoly(X,degree=10,terms=2500):

> b := randpoly(X,degree=5,terms=10):

> c := expand(a*b):

> nops(a), nops(b), nops(c);

2479, 10, 19172

> d := degree(a)+degree(b);

15

> B := 16:

> A := Maple2SDMP(a,X,B):

> B := Maple2SDMP(b,X,B); # show your data structure for this one

> C := Maple2SDMP(c,X,B):

> H := MULTIPLY(A,B): evalb(H=C);

> H := MULTIPLY(B,A): evalb(H=C);

> Q := DIVIDE(C,A); evalb(Q=B); # show output for Q

> Q := DIVIDE(C,B): evalb(Q=A);

Compute and print (i) N = the number of monomial comparisons each algorithm makes, (ii)
M = the number of coefficient multiplications + divisions each algorithm makes and (iii)
the quantity S = N/M which measures the monomial comparisons relative to the coefficient
arithmetic cost. Now, what is the theoretical number of monomial comparisons that the two
algorithms should make for these inputs?

To count the number of comparisons done in the heap insertions and extractions, use a global
variable like this:

> less := proc(a,b) global N; N := N+1; evalb( a[2]<b[2] ) end;

> H := heap[new](less);

2


