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ABSTRACT
We study the design and implementation of the dense mod-
ular GCD algorithm of Brown applied to bivariate polyno-
mial GCDs over the integers and number �elds. We present
an improved design of Brown's algorithm and compare it
asymptotically with Brown's original algorithm, with GCD-
HEU, the heuristic GCD algorithm, and with the EEZGCD
algorithm. We also make an empirical comparison based
on Maple implementations of the algorithms. Our �ndings
show that a careful implementation of our improved version
of Brown's algorithm is much better than the other algo-
rithms in theory and in practice.

1. INTRODUCTION
We investigate the problem of computing greatest common
divisors of bivariate polynomials over the integers Z and a
number �eld Q(�). Our interest in bivariate GCDs resulted
from GCD problems given to us by Edgardo Cheb-Terrab (in
the context of �nding invariants of Abel ODE, see [4]) and
David Boyd (in the context of computing A-polynomials).
These are large, rather dense, bivariate GCD problems, cre-
ated by an elimination procedure, for which Brown's algo-
rithm [2] should be a good choice. In section 2 we outline his
algorithm and show that it is ineÆcient, however, when the
GCD is small. In section 3 we detail an improved version of
Brown's algorithm which is always eÆcient when the GCD
is small. In section 4 we compare asymptotically Brown's
algorithm and our improved version of it with GCDHEU,
the heuristic GCD algorithm of Char et al. [3], and the
EEZGCD algorithm of Wang [11]. We �nd that our im-
proved version is asymptotically better on two important
classes of GCD problems. In section 5 we compare Maple
implementations of the three algorithms and �nd that our
improved version of Brown's algorithm is much faster than
the GCDHEU and EEZGCD implementations. Our con-
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tention is that most bivariate GCD problems in practice are
not sparse enough to warrant the use of a sparse GCD algo-
rithm like the EEZGCD algorithm and since our modi�ed
version of Brown's algorithm is so much faster on even semi-
sparse problems, it is the algorithm of choice. In section 6 we
use our improved version of Brown's algorithm to compute
bivariate GCDs over number �elds. We �nd that in order
to obtain good performance when a number �eld has low
degree, we must map the computation into Zp. Throughout
the paper we will use the following notations:

jjajj1 denotes the height of a polynomial, that is, the mag-
nitude of the largest integer coeÆcient.

lcx;y : R[x; y]! R is the leading coeÆcient of a polynomial
using lexicographical order with x > y.

contx;y : R[x; y]! R is the content of a polynomial, namely
the GCD of the coeÆcients in R.

ppx;y : R[x; y] ! R[x; y] is the primitive-part of a polyno-
mial, namely the polynomial divided by it's content.

�x;y : R[x; y] ! N2 is the vector degree of a polynomial
using lexicographical order with x > y.

2. BROWN’S GCD ALGORITHM
Brown's description of the \dense modular GCD algorithm"
in [2] is reproduced here for Z[x;y] in suÆcient detail for
the purpose of asymptotic analysis. Brown's algorithm has
two subroutines, M and P. The main subroutine M maps
a polynomial GCD computation from Z[x;y] into one or
more GCD computations in Zp[x; y] for p 2 p0; p1; : : : and
applies the Chinese remainder theorem to the resulting so-
lutions. Brown's presentation of subroutine P is similar. It
maps a polynomial GCD computation from Zp[y][x] into one
or more GCD computations in Zp[x] by reducing the input
polynomials modulo y� � for suÆciently many � 2 Zp and
recovering y, again, by application of the Chinese remainder
theorem.

An important observation to make about Brown's algorithm
is that both subroutines have been deliberately designed so
that their termination does not require a trial division of the
inputs by the GCD, nor multiplication of the GCD and its
cofactors to verify that the results are correct. This feature
leads to good performance on some GCD problems but poor
performance on others.
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Algorithm M (Brown 1971)

Input: a; b 2 Z[x;y] n f0g
Output: g = GCD(a; b), �a = a=g, �b = b=g

1 Compute integer contents and their GCD.
ca = contx;y(a) 2 Z; a = a=ca, cb = contx;y(b) 2
Z; b = b=ca, and cg = GCD(ca; cb).

2 Compute the correction coeÆcients.
Set la = lcx;y(a) 2 Z, lb = lcx;y(b) 2 Z, and  =
GCD(la; lb).

3 Estimate the bound for twice the height of �g, ��a,
and  � �b as B = 2max(jjajj1; jjbjj1).

4 Set m = 1 the product of the moduli.
Set e = min(�x;ya;�x;yb).

Loop:

6 Choose a new prime p that does not divide la or lb.

7 Compute ap = a mod p; bp = b mod p.

8 Compute gp; �ap;�bp 2 Zp[x; y] the monic GCD of ap and
bp and their cofactors using algorithmM. If M fails (too
few evaluation points are available) goto Loop.

9 Test for a; b relatively prime.
If �x;ygp = 0 then output cg, (ca=cg)a, (cb=cg)b.

10 If �x;ygp > e then (skip this prime) goto Loop.

11 Leading coeÆcient correction in Z.
Set gp =  � gp mod p, �ap = �1ap mod p, �bp =
�1bp mod p.

12 First image?
If m = 1 then set gm = gp, �am = �ap, �bm = �bp, m = p,
e = �x;ygp and goto Loop.

13 If �x;ygp < e then all previous primes were unlucky.
Restart the algorithm keeping only the current prime.
Set gm = gp, �am = �ap, �bm = �bp, m = p, e = �x;ygp
and goto Loop.

14 Combine the new image with the old using the CRA
and express the result in the symmetric range for Zp.
Set gm = CRA( [gp; gm]; [p;m] ),
Set �am = CRA( [�ap; �am]; [p;m] ),
Set �bm = CRA( [�bp;�bm]; [p;m] ).

15 Set m = m� p, if m � B then goto Loop.

16 Test for termination.
Without explicitly computing gm � �am and gm � �bm
determine if jjgm � �amjj1 < m=2 and jjgm � �bmjj1 <
m=2. If so then we have mja � gm � �am and mjb �
gm��bm and also a�gm��am = 0 and b�gm��bm = 0
over Z hence we are done; so
set g = pp(gm)), Æ = lcx;y g 2 Z, �a = �am=Æ, �b = �bm=Æ.
Output cg � g, (ca=cg)�a, (cb=cg)�b.

17 Goto Loop { either we do not have enough primes yet
or all primes are unlucky.

Algorithm P (Brown, 1971)

Input: a; b 2 Zp[y][x] n f0g, p prime.
Output: g = GCD(a; b), �a = a=g, �b = b=g

1 Compute contents in Zp[y] and their GCD.
Set ca = contxa 2 Zp[y], a = a=ca, cb = contxb 2
Zp[y], b = b=ca, and cg = GCD(ca; cb):

2 Compute the correction coeÆcients.
Set la = lc(a) 2 Zp[y], lb = lc(a) 2 Zp[y],  =
GCD(la; lb).

3 Bound the degree in y of  � g,  � �a,  � �b.
Set B = degy  +max(degy a; degy b).

4 Set m = 1 the product of the moduli.
Set e = min(degy a; degy b) 2 Z.

Loop:

6 Choose a new evaluation point � 2 Zp such that y��
does not divide la � lb. If no such evaluation point
exists then p is too small and the algorithm fails.

7 Compute a� = a mod (y��) 2 Zp[x], and b� = b mod
(y � �) 2 Zp[x].

8 Compute g�; �a�;�b� 2 Zp[x] the monic GCD of a� and
b� and their cofactors using the Euclidean algorithm.

9 Test for a; b relatively prime.
If degx g� = 0 then output cg,(ca=cg)a,(cb=cg)b.

10 If degx g� > e then (skip this prime) goto Loop.

11 Leading coeÆcient correction in Zp[y].
Set g� = (�)�g� mod p, �a� = (�)�1�a� mod p, and
�b� = (�n)

�1�b� mod p.

12 First image?
If m = 1 then set gm = g�, �am = �a�, �bm = �b�, m = p,
e = degx g� and goto Loop.

13 If degx g� < e then all previous points were unlucky.
Restart the algorithm keeping only the current point.
Set gm = g�, �am = �a�, �bm = �b�, m = y � �, e =
degx g� and goto Loop.

14 Combine the new image with the old using the CRA.
Set gm = CRA( [g�; gm]; [y � �;m] ),
Set �am = CRA( [�a�; �am]; [y � �;m] ),
Set �bm = CRA( [�b�;�bm]; [y � �;m] ).

15 Set m = m� (y � �).
If degym � B then goto Loop.

16 Test for termination.
If degy gm+degy �am = degy +degy a and degy gm +

degy
�bm = degy  + degy b then set g = ppx(gm), Æ =

lcx g, �a = �am=Æ, �b = �bm=Æ, and output cg�g, (ca=cg)�a,
(cb=cg)�b.

17 Goto Loop { all �0s are unlucky.

In order to determine the complexity of Brown's algorithm,
the central quantities of interest will be the number of primes
p used by subroutineM and the number of evaluation points
� used by subroutine P . The reader will note that these
quantities, computed in step [3] and used in step [15] of both
subroutines, are determined by the size of the inputs a and
b and not by the size of g; �a and �b. In order to improve the
asymptotic time complexity of Brown's algorithm we �rst
identify two classes of GCD problems which are common in
practice.

Balanced GCD Problems
Suppose jj�ajj1; jj�bjj1 and jjgjj1 < 10n. Suppose also that
degx �a = degx

�b = degx g = n and degy �a = degy
�b =

degy g = n. Thus in this class of GCD problems we as-
sume that the size of the coeÆcients grows proportionately
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with the degree of the polynomials in both variables. If the
polynomials g; �a and �b are also dense then their size is O(n3)
and the cost of computing �a� g or a=g using classical algo-
rithms for polynomial multiplication and division is O(n6).
Suppose instead that the polynomials g; �a and �b have O(n)
terms instead of O(n2). We will call such polynomials semi-
sparse. Their size will be O(n2) and the cost of the classical
multiplication and division algorithms reduce to O(n4). As
the polynomials become completely sparse, for example, of
the form c0 + c1x

nyn, the classical multiplication and divi-
sion algorithms reduce to O(n2), the cost of multiplying the
n digit coeÆcients.

Small GCD Problems
Suppose jj�ajj1 < 10n and jj�bjj1 < 10n and degx �a =
degy �a = n and degx

�b = degy
�b = n. Suppose jjgjj1 = O(1)

and degx g = degy g = O(1). Thus for this problem we as-
sume that for the cofactors, the size of the coeÆcients grows
proportionately with the degree in both variables but the
size of the GCD remains �xed. We are thinking of the case
when the size of the GCD is small e.g. degree 2 in x and
y but the size of the cofactors is large, e.g. degree 18 in
x and y. If �a and �b are dense then the cost of computing
�a� g using the classical algorithms for polynomial multipli-
cation and long division is O(n3). If the polynomials �a and
�b are semi-sparse, each having O(n) terms, then their size is
O(n2). The cost of multiplication and division is O(n2).

The cost of Brown's algorithm can be shown to be O(n4)
for all non-trivial GCD problems (see section 4). Although
Brown's algorithm is very good for the balanced GCD prob-
lem, it is very poor on the small GCD problem, as the O(n)
and O(n2) factor of di�erence is signi�cant. In the next sec-
tion we redesign the algorithm so that it is always fast for
small GCD problems.

3. MODIFIED BROWN’S ALGORITHM
The primary source of ineÆciency in Brown's algorithm oc-
curs when the number of modular images computed by algo-
rithms M or P is much more than necessary to reconstruct g.
In subroutine M, if �g 6= 0, the number of images required
must be enough to reconstruct �g, ��a and ��b. Brown
uses estimates for the size of these quantities based on jjajj1
and jjbjj1 in step [3]. It is well known that instead of lifting
all of g; �a;�b and stopping when a � g�a = 0 and b � g�b = 0,
one may instead lift g one image at a time stopping if gja
and gjb. By performing the trial divisions gja and gjb only
when g does not change from one image to the next, we will,
with high probability, make these trial divisions once. This
means that the algorithm will almost always use one more
prime than necessary to reconstruct (=Æ) g.

The same problem occurs in subroutine P and one could
employ the same idea to resolve it, but instead in our im-
proved version of Brown's algorithm (algorithm G below)
we propose the following. We precompute (tight) upper de-
gree bounds dgx and dgy for, respectively, degx g and degy g.
This will be done by algorithm B below by computing a sin-
gle univariate GCD in Zp[x] and Zp[y] respectively. If x is
chosen to be the main variable, we will use dgy to determine
how many evaluation points are needed, and interpolate all
the images in a single step rather than incrementally, as this
will avoid creating a lot of intermediate polynomials. Fur-

ther, we do not do the trial divisions for the interpolated
result (see statement 19 in algorithm G), as the trial divi-
sions (see statement 27) are suÆcient to verify that the �nal
result is correct.

At the same time that we compute dgx and dgy we also com-
pute degree bounds on the contents in each variable. This
enables us to determine if g = 1 (see statement 2), to reduce
the number of evaluation points needed for y when the con-
tent is not 1 (see statement 11) and to detect another source
of unlucky primes (see statement 9). Further, we use these
degree bounds dgx, dgy, and dcy to detect an unlucky prime
or evaluation point as early as is possible. Thus we present
the algorithm as a single subroutine so that it can immedi-
ately restart itself with a new prime instead of completing a
modular GCD computation only to discard it. This makes
for a less transparent presentation but it does mean that
the presence of unlucky primes or evaluation points have a
negligible a�ect on the algorithm.

Algorithm B

Inputs: a; b 2 Z[x;y] n f0g.
Output: (dg; dc) satisfying dg � degxGCD(a; b) and dc �
degy GCD(contx(a); contx(b))

1 Compute  2 Z= GCD(lcx;y(a); lcx;y(b))

2 Choose a prime p that does not divide .

3 Set ap 2 Zp[x; y] = a mod p, bp 2 Zp[x; y] = b mod p.

4 Compute and the contents and their GCD.
Set ca 2 Zp[y] = contx(ap), cb 2 Zp[y] = contx(bp),
and cg = GCD(ca; cb). Set ap = ap=ca; bp = bp=cb.

5 Compute  2 Zp[y] = GCD(lcx(ap); lcx(pb)).

6 Choose � 2 Zp such that (�) 6� 0 mod p. If no such
� exists then output min(degx ap; degx bp), degy cp.

7 Compute gp�2Zp[x]=GCD(ap(x; y=�); bp(x; y=�)).

8 Output degx gp�, degy cg.

Algorithm G

Inputs: a; b 2 Z[x;y] n f0g
Output: g = GCD(a; b), �a = a=g, �b = b=g

1 Compute integer contents and their GCD.
Set ca = contx;y(a) 2 Z, a = a=ca, cb = contx;y(b) 2
Z, b = b=cb, cg = GCD(ca; cb).

2 Compute degree bounds dgx; dcy satisfying dgx �
degx g and dcy � degyGCD(contx(a); contx(b)) using
algorithm B.
If dgx = dcy = 0 then output cg, (ca=cg)a, (cb=cg)b.

Similarly compute degree bounds dgy; dcx satisfying
dgy � degy g and dcx � degxGCD(conty(a); conty(b))
using algorithm B.
If dgy = dcx = 0 then output cg, (ca=cg)a, (cb=cg)b.

3 Choose the main variable x and the minor variable y.

4 Compute the correction coeÆcient for Z.
Set  = GCD( lcx;y(a); lcx;y(b) )

5 To ensure that the degree of the GCD computed mod
p will not be less than the degree of g in both x and
y, p must not divide the integer badprimes.
Set badprimes =  GCD( lcy;x(a); lcy;x(b) )
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6 Set m = 1 the product of the moduli.

Nextprime
Choose a new prime p that does not divide badprimes.

7 Compute ap = a mod p; bp = b mod p.

8 Compute the contents in Zp[y] and their GCD.
Set cap = contx(a), ap = ap=cap, cbp = contx(b), bp =
bp=cbp, cgp = GCD(cap; cbp).

9 Detect unlucky primes.
If degy cgp > dcy then goto Nextprime.
If degy cgp < dcy then (bound and all previous primes
were unlucky) set dcy = degy cgp;m = 1 and continue.

10 Compute the correction coeÆcient in Zp[y].
Set y = GCD(lcx(ap); lcx(bp)).

11 Bound the number of evaluation points needed less 1.
Set N = min(degy a�degy cap; degy b�degy cbp; dgy�
dcy + degy y).

12 Set n = 0.

Nexteval

13 Choose a new evaluation point �n 2 Zp such that
x(�n) 6� 0 mod p. If no such evaluation point
exists then go to Nextprime.

14 Evaluate at y = �n. Set apn = ap(x; y=�n) mod
p, bpn = bp(x; y=�n) mod p.

15 Compute gpn 2 Zp[x] the monic GCD of apn and
bpn using the Euclidean algorithm.

16 Detect unlucky �n
If degx(gpn) > dgx then goto Nexteval.
If degx gpn < dgx then set m = 1, dgx = degx gpn
and goto Nextprime.

17 Leading coeÆcient correction.
Set gpn = y(�n)� gpn mod p.

18 Set n = n+ 1. If n � N then goto Nexteval.

19 Interpolate y.
gp = Interpolate([�0; : : : ; �N ]; [gp0; : : : ; gpN ]).

20 Divide out spurious content in Zp[y], and multiply by
true content. gp = cgp � ppx(gp).

21 Check for unlucky primes.
If degy gp > dgy then goto Nextprime.
If degy gp < dgy then set m = 1, dgy = degy gp and
goto Nextprime;

22 Leading coeÆcient correction in Z. gp =  � gp mod p

23 Put gp in the symmetric range mod p.

24 First image?
If m = 1 then set m = p, h = gp and goto Nextprime;

25 Combine the new image with the old using the CRA.
Set gm = CRA([gp; h]; [p;m]), m = p�m.

26 If gm 6= h then set h = gm and goto Nextprime.

27 We very probably have enough primes.
Set g = ppx;y(gm).
If gja and gjb then output cg � g, a=g, b=g.

28 Goto Loop - either we do not have enough primes yet
or all primes were unlucky.

4. ASYMPTOTIC COMPARISON
We investigate the asymptotic complexity of the four algo-
rithms, Brown's algorithm, our improved version of Brown's
algorithm, the heuristic algorithm GCDHEU of Char et al.
[3], and the EEZGCD algorithm of Wang [11]. We consider
two classes of GCD problems, the balanced GCD problems
and small GCD problems de�ned in section 2, and for each
class, dense and semi-sparse polynomials. These problems
occur frequently in practice; the small GCD problem per-
haps being the most frequent kind of GCD problem. For
both problems let g = GCD(a; b), a; b; g 2 Z[y; x] and let
�a = a=g and �b = b=g be the cofactors.

The Balanced GCD Problem
For the dense balanced GCD problem we have already stated
the complexity of computing g � �a using classical multipli-
cation is O(n6), computing a=g using classical division is
O(n6), and Brown's algorithm is O(n4). The results for the
GCD algorithms assume that no unlucky primes or evalu-
ations occur and we have dropped any log log factors from
the complexity estimates.

Result 1: The asymptotic complexity of Brown's algorithm
for computing g the GCD of a and b is O(n4).

Sketch of proof: Brown's algorithm uses O(n) primes since
2jjajj1 � B � 2 lc(a)jjajj1 and these quantities are both
O(10n). Each modular reduction is O(n3) because there are
O(n2) coeÆcients to reduce and each is O(n) digits long.
Each modular GCD is O(n3) because O(n) evaluation points
are made (each evaluation costs O(n2), each univariate GCD
is O(n2), and the Chinese remaindering cost for each coef-
�cient in y is O(n2)). Thus the O(n) modular reductions
in subroutine P are O(n4) and the O(n) modular GCDs in
subroutine M are also O(n4). The Chinese remaindering in
subroutine M is also O(n4) because there are O(n2) coeÆ-
cients in g to be reconstructed, each of which is O(n) digits
in length.

Result 2: The asymptotic complexity of our improved ver-
sion of Brown's algorithm is O(n4) + D(n) where D(n) is
the cost of dividing a=g and b=g.

The O(n4) term is essentially the same as Brown's algorithm
with the main di�erence being that polynomial interpolation
replaces Chinese remaindering (though they are equivalent).
Note the cost of the trial divisions D(n) is O(n6) if classical
integer and polynomial arithmetic is used but this can be
reduced to O(n4) if a modular algorithm is also used for
division in Z[x;y].

Result 3: The asymptotic complexity of algorithm GCD-
HEU is O(n6) + D(n) when it succeeds where D(n) is the
cost of dividing a=g and b=g.

Sketch of proof: In order to recover the variable y the eval-
uation point � must bound 2jjgjj1 which is O(n) digits in
length. The algorithm uses � = 2min(jjajj1; jjbjj1) which
is O(n) digits in length. In order to recover the x vari-
able the evaluation point � must bound jjg(y = �; x)jj1
which will be O(n2) digits in length. The algorithm uses
� = 2min(jja(y = �; x)jj1; jjb(y = �; x)jj1) which is
O(n2) digits in length. The integer GCD computation of
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a(x = �; y = �) and b(x = �; y = �) will therefore be of
size O(n3) digits in length. Assuming that integer GCD is
quadratic, this is O((n3)2) = O(n6) in total.

Result 4: The asymptotic complexity of algorithm EEZGCD
will depend on how the integer coeÆcients are handled and
whether the algorithm uses trial division to terminate or
waits until a� g�a = 0 over Z. The computation is normally
done modulo pl where p is a prime and pl > 2jjajj1 where
a is the lifting polynomial, though Chinese remaindering
could be used here. In this case the modulus pl used will
have to be O(n) digits long. The asymptotic complexity
of the EEZGCD algorithm will be no better than O(n6) +
D(n) + F(n) where D(n) is the cost of dividing b=g and F (n)
is the cost of factoring the leading coeÆcient of the lifting
polynomial a.

Sketch of proof: The number of arithmetic operations done
in Zpl by the Hensel lifting algorithm is O(n4) { see Miola

and Yun [9] or Bernardin [1] { hence the result O(n6).

Suppose that the polynomials g; �a and �b have O(n) terms
(they are semi-sparse) then their total size is O(n2). We
state without proof the results in Table 1.

Dense case Semi-sparse case
Size of a; b O(n3) O(n2)
Multiplication O(n6) O(n4)
Division O(n6) O(n4)
Brown O(n4) O(n4)
Improved Brown O(n4) + D(n) O(n4) + D(n)
GCDHEU O(n6) + D(n) O(n6) + D(n)
EEZGCD O(n6) + D(n) O(n5) + D(n) + F(n)

Table 1: Complexity Results for Balanced GCD

These results indicate that for balanced GCD problems, the
time complexity of the improved version of Brown's algo-
rithm is better than GCDHEU and EEZGCD but that it
might not be as good as Brown's original algorithm if the
division algorithm is more expensive than O(n4).

The Small GCD Problem
We consider two cases. In the dense case �a and �b are dense
of degree n in both variables with n digit coeÆcients. In
the semi-sparse case �a and �b have O(n) non-zero terms and
are of degree n in both variables with n digit coeÆcients.
In both cases the GCD g has degree O(1) in both variables
and coeÆcients of size O(1) digits.

Dense case Semi-sparse case
Size of a; b O(n3) O(n2)
Multiplication O(n3) O(n2)
Division O(n3) O(n2)
Brown O(n4) O(n4)
Improved Brown O(n3) O(n2)
GCDHEU O(n6) O(n6)
EEZGCD O(n4) O(n4)

Table 2: Complexity Results for Small GCD

This is the case where our improved version of Brown's algo-
rithm is clearly the best overall and, importantly, it has the

same complexity as classical polynomial division and mul-
tiplication. It will in both cases, with high probability, use
O(1) primes and O(1) evaluation points. The cost is domi-
nated by the O(n3) modular reduction cost in the dense case
since there are O(n2) coeÆcients to reduce, each of which
is O(n) digits long. In the semi-sparse case the modular
reduction is O(n2) since there are O(n) coeÆcients each of
which is O(n) digits long. The evaluation and univariate
GCD cost is also O(n2).

5. IMPLEMENTATION
We have implemented our improved version of Brown's al-
gorithm for Z[x;y] in Maple V Release 5. In the following
we will refer to it as the DIVBRO algorithm. We make
an empirical comparison of it with the implementation of
the GCDHEU and EEZGCD algorithms in Maple for both
the balanced GCD problem and small GCD problems. We
�rst provide some details of the DIVBRO, GCDHEU and
EEZGCD implementations in Maple.

The DIVBRO Implementation
We represent polynomials in Zp[x; y] as Maple lists ofmodp1
polynomials. The modp1 data structure is described in
[10]. It is a dense representation where a polynomial a =Pn

i=0 aiy
i 2 Zp[y] is represented by an array of machine in-

tegers [a0; a1; : : : ; an]. Thus the data structure for Zp[y][x]
is a recursive dense structure.

A good implementation of any GCD algorithm will consider
which of the variables to choose as the main variable. Tak-
ing into account only the information about the degree of
the input polynomials in the variables, a reasonable choice
would be the following. Choose x to be the main variable if

degx a� degx b � degy a� degy b

and y otherwise, minimizing the expected cost of the individ-
ual univariate GCD computations. In our case, we have pre-
computed degree bounds dgx on degx g and dgy on degy g.
We use all four quantities to more accurately estimate the
evaluation, univariate GCD, and interpolation costs of the
algorithm with x chosen as the main variable to be

(dgy + 1)(degy a degx a+ degy b degx b);

(dgy + 1)(degx a� dgx + 1)(degx b� dgx + 1);

and (dgy + 1)dgx(dgy + 1);

respectively. We choose x to be the main variable if the
sum of those three quantities is less than the corresponding
calculation with the roles of x and y interchanged, and y to
be the main variable otherwise.

The GCDHEU Implementation
The implementation of the heuristic GCD algorithm in
Maple has been improved several times since it was de-
tailed by Char et al. in [3]. There, Char et al. eval-
uate y = � where � is computed to be the quantity
2min(jjajj1; jjbjj1). This is followed by removing the in-
teger content from a(x;�) and b(x;�) and computing re-
cursively the GCD of pp(a(x;�)) and pp(b(x;�)). Next
the algorithm evaluates at x = � where � is chosen to
be 2min(jjpp(a(x;�))jj1; jjpp(b(x; �))jj1). Since it is likely
that � >> 2jjg(x; y)jj1 and � >> 2jjpp(g(x;�))jj1, the
heuristic should, and from experience does, succeed.
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An idea, �rst suggested by James Davenport, is to �rst try
to show that a and b are relatively prime by using a much
smaller evaluation point. The evaluation point must be suf-
�ciently greater than any integer root of g(x; y) to avoid the
possibility of returning a proper factor of g.

Another idea is to assume that most likely one of g; �a or �b will
have height less than min(

p
jjajj1;

p
jjbjj1) and to lift the

GCD and the cofactors. This means that evaluation points
of roughly half the previous size are used at each recursive
application of the algorithm.

The version of GCDHEU in Maple V Release 5 applies Dav-
enport's idea once. If this fails, evaluation points based on
the minimum of the square root of the heights of a and b are
used. Maple attempts to reconstruct both the GCD and the
cofactors. If this fails, the implementation tries two slightly
larger evaluation points and gives up if both of those at-
tempts are unsuccessful. The implementation also predicts
the size of the integers that will be created before evaluation.
If they would be larger than 8000 decimal digits, the imple-
mentation gives up. Thus the implementation of GCDHEU
in Maple should do relatively well on the balanced GCD
problems because it will be using a very good estimate for
the height of the GCD g, but it should do relatively poorly
on the small GCD problems because the estimate for the
height of the GCD g will be much too large in this case.

Timing Results
All timings were made on an SGI machine at the CECM
at Simon Fraser running Maple V Release 5.0. All times
reported are CPU seconds as given by the time command in
Maple. From the asymptotic results in the previous session,
the cost of the two trial divisions in our modi�ed version of
Brown's algorithm is expected to dominate the cost of the
algorithm for the dense balanced GCD problems. For this
reason we have reported this time separately in the column
D(n) and have not included in the DIVBRO time. Thus
the reader can see how the GCD algorithms compare with
polynomial division.

The Balanced GCD Problem
This �rst set of timings is for dense polynomials. The test
polynomials were created as follows.

> c := rand(10^n):
> cA := randpoly([x,y],coeffs=c,dense,degree=n):
> cB := randpoly([x,y],coeffs=c,dense,degree=n):
> G := randpoly([x,y],coeffs=c,dense,degree=n):
> A := expand(cA*G): B := expand(cB*G):

The dense option to the randpoly command means all terms
of total degree � n are present. The timing results in Table
3 show that the bottleneck of the new implementation of
Brown's algorithm is indeed the two trial divisions.

The second set of timings is for semi-dense polynomials
where �a;�b; g have n + 3 terms instead of O(n2) terms. The
test polynomials were created as follows.

> c := rand(10^n):
> cA := c()*x^n + c()*y^n + c() +

randpoly([x,y],coeffs=c,terms=n,degree=n-1):

n D(n) DIVBRO GCDHEU EEZGCD
5 .010 .030 .036 0.119
10 .058 .081 1.324 1.99
15 .167 .194 12.85 89.58
20 1.94 .394 74.88 1016.5
25 5.05 .726
30 12.81 1.50
35 40.20 2.21
40 165.6 3.10
45 767.5 4.67

Table 3: Dense Balanced GCD

> cB := c()*x^n + c()*y^n + c() +
randpoly([x,y],coeffs=c,terms=n,degree=n-1):

> G := c()*x^n + c()*y^n + c() +
randpoly([x,y],coeffs=c,terms=n,degree=n-1):

> A := expand(cA*G): B := expand(cB*G):

The timings in Table 4 con�rm that our implementation
of Brown's algorithm and the division algorithm are both
O(n4). Note that the polynomials have to be very sparse
before the EEZGCD implementation beats DIVBRO.

n D(n) DIVBRO GCDHEU EEZGCD
10 .008 .060 1.055 .181
20 .034 .259 69.144 1.188
30 .175 .761 704.33 21.517
40 1.16 1.780
50 0.63 4.095
60 1.96 7.601
70 5.81 13.181
80 11.9 21.730
90 24.3 33.976
100 41.9 52.561

Table 4: Semi-Sparse Balanced GCD

The Small GCD Problem
We consider two cases, �rstly dense cofactors. The test poly-
nomials were created as follows.

> c := rand(10^(N)):
> cA := randpoly([x,y],coeffs=c,dense,degree=N):
> cB := randpoly([x,y],coeffs=c,dense,degree=N):

> c := rand(10^2):
> G := randpoly([x,y],coeffs=c,dense,degree=2);
> A := expand(cA*G): B := expand(cB*G):

The GCD G has coeÆcients with two decimal digits thus
one prime is suÆcient to obtain G but two are used in the
new algorithm. The timings shown in Table 5 show how
badly GCDHEU performs.

In the second case the cofactors are semi-sparse.

> c := rand(10^n):

> cA := c()*x^n + c()*y^n + c() +
randpoly([x,y],coeffs=c,terms=n,degree=n-1):

> cB := c()*x^n + c()*y^n + c() +
randpoly([x,y],coeffs=c,terms=n,degree=n-1):

> c := rand(10^2):
> G := randpoly([x,y],coeffs=c,dense,degree=2);

> A := expand(cA*G): B := expand(cB*G):
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n D(n) DIVBRO GCDHEU EEZGCD
10 .010 .016 .091 .093
20 .036 .025 2.29 .222
30 .090 .046 18.9 .707
40 .154 .071 88.8 5.34
50 .286 .266 331.8 10.0
60 2.46 .157 925.4 21.6
70 1.68 .218 40.1
80 3.35 .294 214
90 20.5 .399 238
100 35.7 .527 557

Table 5: Dense Small GCD

n D(n) DIVBRO GCDHEU EEZGCD
10 .002 .013 .068 .068
20 .006 .016 1.88 .075
30 .012 .024 13.5 .155
40 .017 .033 77.1 .387
50 .026 .045 236.4 .747
80 .046 .078 3.36
120 .104 .147 5.50
160 .172 .254 29.7
200 .925 .481 60.9

Table 6: Semi-sparse Small GCD

This is the best case for the new code in comparison with
GCDHEU where the evaluation points are too large. The
timings in Table 6 show again how badly GCDHEU performs
but also, even though this is the best case for the EEZGCD
algorithm, DIVBRO is still much better.

Computing Contents
Some GCD algorithms begin by computing and dividing out
the contents in the main variable. This means that two or
more recursive GCD computations in one fewer variables
over Z are made. For example, the Maple implementation
of the EEZGCD algorithm does this. For some problems the
cost of these content calculations is signi�cant. In particular
if g = 1 but the contents are not 1, these content calcula-
tions are wasted. Brown's dense modular GCD algorithm
computes the contents one prime at a time at the same time
as the primitive part of the GCD is being computed. The
timings in Table 7 show that this content computation done
by the EEZGCD algorithm can be very signi�cant. More
importantly, it means that the complexity of the EEZGCD
algorithm is not always good even when g = 1. The GCD-
HEU timings are good because of the small evaluation points
being used. But even so, the integers get large enough to
cause the GCDHEU to fail on the higher degree problems.

> m := iquo(n,3); c := rand(10^m); G := 1;
> A := randpoly(x,coeffs=c,dense,degree=m)*

randpoly(y,coeffs=c,dense,degree=m)*
(c()*x^m + c()*y^m + c() +

randpoly([x,y],coeffs=c,terms=m,degree=m-1));
> B := randpoly(x,coeffs=c,dense,degree=m)*

randpoly(y,coeffs=c,dense,degree=m)*
(c()*x^M + c()*y^M + c() +

randpoly([x,y],coeffs=c,terms=M,degree=M-1));

n DIVBRO GCDHEU EEZGCD
10 .006 .003 0.024
20 .005 .012 0.052
30 .021 .039 0.157
40 .021 .086 0.268
50 .030 .164 1.130
60 .050 .170 5.396
70 .067 .546 1.093
80 .099 � .437 5.516
90 .122 � 1.074 20.04
100 .144 � .797 71.53

Table 7: Content GCD (* indicates failure)

6. GCDs IN Q (�)[X; Y ]
In this section we investigate the computation of GCDs over
a number �eld Q(�) using our improved version of Brown's
algorithm. We again restrict our attention to bivariate poly-
nomials. Let m(�) 2 Z[�] be the minimal polynomial for
the number �eld Q(�) and let k = deg�m. The computa-
tion of univariate GCDs over number �elds using the modu-
lar method has been investigated by Langemyr and McCal-
lum [8] and Encarnacion [5]. Encarnacion uses the modular
mapping to map elements in Z[�]=m(�) to Zp[�]=m(�) for
primes p = p0; p1; : : : , computes the modular GCDs over
these �nite rings and employs the Chinese remainder al-
gorithm and rational reconstruction to recover the rational
coeÆcients of the monic GCD in Q[�][x]. If multiplication
and division in the �nite ring Z[�]=m(�) cost O(k2), then
the cost of one univariate GCD of degree n over this ring is
O(n2k2). The same basic approach can be extended to bi-
variate polynomials. For the dense balanced GCD problem,
the cost of one modular GCD will be O(n3k2).

In many practical problems involving number �elds, the
number �eld will be of low degree often involving one or
two square-roots or cube-roots. In such cases it is not diÆ-
cult to �nd primes such that m(�) � �k

j=1(� � �j) mod p,
that is, m(�) splits into linear factors. For example, consider
Q(
p
2;
p
3). Here m(�) = �4 � 10�2 + 1 and one prime in

four will result inm(�) splitting into linear factors. One can
then replace the GCD computation over Zp[�]=m(�) which
costs O(k2n3) with k GCD computations over Zp which cost
O(kn3) in total. Of course this is only possible when k is
small. The gain, in our example, would, theoretically, be
a factor of 4, but one is also replacing low degree polyno-
mial computations in Z[�]=m(�) with computations in Zp.
This is similar to replacing small multi-precision integer op-
erations which involve storage management with machine
arithmetic. The following experiment shows that in addi-
tion to an expected factor of 16 slowdown in going from Zp

to R = Zp[�]=(�
4�10�2+1), a further slowdown of a factor

of 22 occurs in Maple. Here t1 is the time for a large GCD
over Zp and t2 is the time for a large GCD over R.

> p := 46327:
> A := Randpoly(300,x) mod p:
> B := Randpoly(300,x) mod p:
> t1 := time( Gcd(A,B) mod p ):
> rof := RootOf(x^4-10*x^2+1):
> A := Randpoly(300,x,rof) mod p:

> B := Randpoly(300,x,rof) mod p:

231



> t2 := time( Gcd(A,B) mod p ):

> t2/(16*t1);
22.20192308

On the other hand, if the number �eld has relatively
high degree, this overhead drops. For a similar example
with the degree 16 minimal polynomial x16 � 136x14 +
6476x12�141912x10+1513334x8�7453176x6+13950764x4�
5596840x2+46225 we obtained only a factor of 3:3 slowdown
more than the expected factor of 256. Therefore, for num-
ber �elds, an implementation of Brown's algorithm should
map Z[�]=(m(�)) into Zp[�]=m(�) for high degree and map
Zp[�]=m(�) into Zp for low degree. We have found that the
additional cost of searching for primes such that m(�) has
k distinct roots in Zp to be negligible for k � 4.

Included in the comparison timings below is the heuristic
method of Gonnet et al. [6] which works by choosing an
integer s and computing the GCD of a(� = s)(x; y) and
b(� = s)(x; y). The computation is performed modulo
an integer q (possibly composite) that divides the integer
m(� = s), where q is suÆciently large to enable reconstruc-
tion of g(�) from a single image. The GCD computation in
Zq[x; y] in Maple done using sparse Hensel lifting.

The timings in Table 8 are for the balanced GCD problem
over Q(

p
2;
p
3) where m(�) = �4 � 10� + 1. The input

polynomials were created as follows.

> rof := RootOf(x^4-10*x^2+1);
> c := rand(10^n):
> cA := c()*x^n + c()*y^n + c() +

randpoly([x,y,rof],coeffs=c,terms=n,degree=n-1):
> cB := c()*x^n + c()*y^n + c() +

randpoly([x,y,rof],coeffs=c,terms=n,degree=n-1):
> G := c()*x^n + c()*y^n + c() +

randpoly([x,y,rof],coeffs=c,terms=n,degree=n-1):
> A := evala(Expand(cA*G)): B := evala(Expand(cB*G)):

n Heuristic DIVBRO DIVBRO
over Zp Zp[�]=m(�)

5 0.32 0.13 0.70
10 1.94 0.34 5.77
15 10.61 0.91 25.88
20 47.00 1.70 68.41
25 105.53 2.94 153.86
30 294.31 4.93
35 713.49 8.46
40 14.42
45 21.96
50 43.02

Table 8: Semi-sparse Balanced GCD over Q(�)

The following set of timings in Table 9 are for the same num-
ber �eld but for the balanced GCD problem with a dense
GCD and cofactors. We have included the percentage of
time spent performing the divisions in parentheses. The in-
put polynomials were created as follows.

> rof := RootOf(x^4-10*x^2+1);

> c := rand(10^n):

> cA := randpoly([x,y,rof],coeffs=c,dense,degree=n):

> cB := randpoly([x,y,rof],coeffs=c,dense,degree=n):
> G := randpoly([x,y,rof],coeffs=c,dense,degree=n):
> A := evala(Expand(cA*G)): B := evala(Expand(cB*G)):

n Heuristic DIVBRO DIVBRO
over Zp Zp[�]=m(�)

5 0.84 0.26 (34%) 0.99
10 23.70 1.93 (70%) 10.26
15 279.88 9.00 (84%) 52.80
20 642.68 33.7 (89%) 235.8

Table 9: Dense Balanced GCD over Q(�)

This �nal set of timings in Table 10 are for the same num-
ber �eld but for the small GCD problem with semi-sparse
cofactors. In this example the Heuristic method does poorly
because it does not know that the integer coeÆcients in g
are small.

> rof := RootOf(x^4-10*x^2+1);
> c := rand(10^(2*n)):
> cA := c()*x^n + c()*y^n + c() +

randpoly([x,y,rof],coeffs=c,terms=n,degree=n-1):
> cB := c()*x^n + c()*y^n + c() +

randpoly([x,y,rof],coeffs=c,terms=n,degree=n-1):

> c := rand(100):
> G := randpoly([x,y,rof],coeffs=c,dense,degree=2):
> A := eval(Expand(cA*G)): B := eval(Expand(cB*G)):

n Heuristic DIVBRO DIVBRO
over Zp Zp[�]=m(�)

10 0.38 0.12 0.34
20 1.7 0.18 0.94
30 6.2 0.30 1.50
40 18.1 0.70 2.80
50 17.1 0.65 4.26
60 48.2 0.87 6.27
70 65.1 1.00 6.83
80 68.7 1.36 8.75
90 176.2 2.06 11.46
100 { 2.15 15.26

Table 10: Semi-Sparse Small GCD over Q(�)

The timing results show that when using Brown's algorithm,
it is worthwhile to map a GCD computation over a small
number �eld into Zp instead of Zp[�]=m(�).

7. CONCLUSION
We have designed and implemented a variation of Brown's
modular GCD algorithm which improves signi�cantly the
asymptotic complexity of the small GCD case which oc-
curs frequently in practice. We have also shown that for
bivariate polynomials, this algorithm is considerably bet-
ter asymptotically than the GCDHEU algorithm and the
EEZGCD algorithm for dense and semi-sparse polynomials,
having the same complexity as polynomial division in each
case. Our implementation timings con�rm this asymptotic
improvement. Despite the simplicity of the GCDHEU al-
gorithm, which maps a GCD computation in Z[x;y] to a
single integer GCD computation, the improved version of
Brown's algorithm is faster in practice in almost all cases.

232



Since in practice GCD problems in a few variables (one, two,
or three) are not very sparse, we think that this is the best
algorithm to be using in a general purpose CAS.

Our implementation of the improved Brown's algorithm over
Q(�) using the approach taken in the literature is ineÆcient
when the degree of the number �eld is small. In this case
one can obtain an eÆcient algorithm if one maps into Zp by
choosing primes for which m(�) splits. This yields an algo-
rithm which is much faster than the Heuristic algorithm of
Gonnet et al. in practice on dense and semi-sparse bivariate
polynomials.

Note, we did not include our implementation of Zippel's
sparse modular GCD algorithm [12] in this comparison as
it is not possible at this point to implement it eÆciently in
Maple (Maple lacks eÆcient linear algebra facilities for Zp)
to make a fair empirical comparison.
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