
MATH 895, Course Project, Summer 2013

Instructor: Michael Monagan

The project is worth 25% of your final grade. You should expect to spend about twice
the time you would spend on an assignment. There are three suggested projects. Each one
requires that you read a paper, implement two algorithms, and generate some timing data
to verify the claims made in the paper, then write up a report.

You may either write a traditional report in LaTeX or create a poster for presentation at
this years Symposium on Mathematics and Computation here at SFU on Wednesday August
7th. See

http://mathcomp2013.irmacs.sfu.ca/

The main event at this meeting is the poster session where students in our department, both
undergraduate and graduate, present their work. I will pay for your registration fee to attend
the symposium.

If you choose to write a report, it should be about 5–7 pages (12pt font). Additionally,
include an Appendix containing Maple code or Maple worksheets with any data that you
want to include.

If you do a poster, you can use my LaTeX poster outline on the course website as an
outline. I will pay for the cost of printing your poster. And, to encourage you, I will give
you one extra grade point (5%).

I anticipate your spending about 50% of your time on the content (implementing the
algorithm(s) and generating the timing data) and 50% of your time reading the paper and
writing the report or creating and presenting the poster.

LaTeX: I will need to give you a tutorial on using LaTeX. Most of what you need you
can copy from my LaTeX file for this document. See the file project.tex. Also helpful: the
Maple command latex(f); will generate LaTeX for a mathematical formula f (including
matrices).
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Project 1: Determinant Algorithms

Read the paper Analysis of Algorithms, A Case Study: Determinants of Matrices with Poly-
nomial Entries by Gentleman and Johnson. It is posted on the course website. It compares
the efficiency of fraction-free Gaussian elimination with minor expansion on matrices with
polynomial entries.

Program two Maple procedures FracFree(A,n) and MinorExp(A,n) which both compute
det(A) for an n by n matrix A of polynomials in Q[x1, x2, ..., xm].

FracFree(A,n) should use the Bareiss fraction-free Gaussian elimination that you imple-
mented this on Assignment 3 for matrices of integers. For matrices of polynomials use
expand for polynomial multiplication and divide(A,B,’Q’) for polynomial division.

MinorExp(A,n) should use the method of minor expansion that avoids recomputation of
minors as described in the paper. The Maple library routine combinat[choose] may be
helpful. The option remember facility may also be helpful. Feel free to talk with me about
how to do this.

Time your algorithms on the following three types of matrices.

The n× n symmetric Toeplitz matrix for (n = 4):
w x y z

x w x y

y x w x

z y x w


The n× n cyclic shift matrix for (n = 4):

w x y z

z w x y

y z w x

x y z w


n× n Random univariate matrices:

> d := 3:

> n := 4:

> R := proc() randpoly(x,degree=d,dense) end:

> A := Matrix(n,n,R);
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You should find that the fraction free method is best on the univariate polynomial matri-
ces (where d is fixed by n grows) but the minor expansion method is best on the multivariate
benchmarks for all n > 2. Thinking about the two algorithms, one significant difference is
that minor expansion has no divisions. We say it is division free. To investigate this further,
recall that at the end of the fraction free elimination, An,n = ± det(A) and that An,n is
computed as

An,n =
An−1,n−1An,n − An,n−1An−1,n

An−2,n−2

Thus the numerator in this division equals An,n × An−2,n−2 and thus must be bigger than
det(A). Print out the number of terms of this numerator and det(A). Generate a table (for
each benchmark) of this data along with the timings for both algorithms. Your table should
look something like this

n # detA max terms time (FracFree) time (MinorExp)
...
6 120 575 0.002s 0.003s
7 427 3277 0.008s 0.008s
8 1628 21016 0.058s 0.053s
9 6090 128530 0.553s 0.087s
...

Table 1: Maple 17 timings (in seconds) for n by n symmetric Toeplitz matrices.

Project 2: Polynomial Division Algorithms

Read the paper Polynomial division using dynamic arrays, heaps and packed exponent vectors
by Monagan and Pearce. It is posted on the course website. It compares the efficiency
of polynomial division algorithms using arrays, heaps and geo-buckets. The goal of this
project is to implement and compare the two heap based division algorithms for multivariate
polynomial division with the naive merging algorithm.

For polynomials in Q[x1, x2, ..., xn] program three boolean Maple procedures

1 QuoHeapDivide(A,B,n,’Q’),

2 DivHeapDivide(A,B,n,’Q’) and

3 MergeDivide(A,B,n,’Q’).

that test if B divides A in Q[x1, x2, ..., xn] and if it does, assigns Q the quotient of A ÷ B.
The parameter n is the number of variables. You can represent the polynomial as a list of
terms in the form [c,m] where c is a coefficient and m is an exponent vector or the encoding
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of an exponent vector. The terms should be sorted (in descending order) in the graded
lexicographical order. For example, the polynomial 3x2y + 5xy2 − 7y4 ∈ Q[x, y] could be
represented as

[ [−7, [0, 4]], [3, [2, 1]], [5, [1, 2]] ]

Now, letting Q1, Q2, Q3, . . . denote the terms of the quotient, the MergeDivide algorithm
should implement the naive division algorithm using (((A−Q1B)−Q2B)−Q3B)− . . . where
you subtract using merging. We know this is inefficient for sparse polynomials.

The QuoHeapDivide(A,B,n,’Q’) procedure should implement Johnson’s division algo-
rithm that you implemented for Assignment 5. Here the product QB is computed using a
heap on the terms of the quotient, i.e., using

A−
#Q∑
i=1

QiB.

The DivHeapDivide(A,B,n,’Q’) procedure should implement Monagan and Pearce’s
divisor heap algorithm where the product QB is computed using a heap on the terms of the
divisor B, i.e.,

A−
#B∑
i=1

BiQ.

Time your algorithms on the following polynomial benchmarks. Here I’ve shown the
division using Maple.

Dense benchmark

> d := 16;

> for n from 2 to d-2 do

> F := expand( (1+x)^d*(1+y)^d*(1+z)^d );

> B := expand( (1-x)^d*(1-y)^d*(1-z)^d );

> A := expand( F*B );

> st := time(); divide(A,B,’Q’); tt := time()-st;

> od:

Fateman benchmark

> d := 24;

> for n from 3 to d-3 do

> F := expand( (1+x+y+z)^n );

> B := expand( (1+x+y+z)^(d-n) );

> A := expand( F*B );

> st := time(); divide(A,B,’Q’); tt := time()-st;

> od:
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Sparse benchmark

> d := 36;

> for n from 2 to d-2 by 4 do

> F := expand( (1+x)^d*(1+y)^d );

> B := expand( (1+x)^(n-d)*(1+z)^(n-d) );

> A := expand( F*B );

> st := time(); divide(A,B,’Q’); tt := time()-st;

> od:

Now time your algorithm on these benchmarks. Compute also the number of monomial
comparisons that each algorithm takes. Generate a table (for each benchmark) of this data
along with the timings for both algorithms. Include the number of terms on A, B and Q in
the table so that the table looks like

MergeDivide QuoHeapDivide DivHeapDivide
n #A #B #Q time #comp time #comp time #comp
2 3885 1225 9 ? ? 0.663 70267 ? ?
6 8029 961 49 ? ? 3.678 465989 ? ?
10 10989 729 121 ? ? 7.492 954503 ? ?

Table 2: Maple 17 timings (in seconds) for the Sparse benchmark.

Project 3: Polynomial GCD Algorithms

Read the 1979 paper Probabilistic Algorithms for Sparse Polynomials by Zippel. It is posted
on the course website. It develops a sparse GCD algorithm and compares it with the efficiency
of several GCD algorithms, including Brown’s dense algorithm (see column Modular) on page
224.

Let A,B be polynomials in Z[x1, x2, ..., xn] and let G = gcd(A,B). For your MGCD and
PGCD algorithms from assignment 2, modify both of them to use Zippel’s sparse interpola-
tion. Call these new procedures SparseMGCD and SparsePGCD. I suggest you pass the vari-
ables as a list as a parameter so that you code SparseMGCD(A,B,X) and SparsePGCD(A,B,X,p)

for prime p. To simplify the coding of PGCD assume that G is monic in x1 i.e. G =
cxd

1 + f(x1, x2, ..., xn) where degx1
f < d and c ∈ Z.

Let

G =
m∑
i=1

ci(x2, ..., xn)xi
1 where cm ∈ Z.

Suppose t is the maximum number of terms in the coefficients of G, i.e. t = maxm−1
i=1 #c.

When you implement the algorithm you will construct systems of linear equations, one for
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each coefficient in x1 of G, the biggest of which will be t × t. Because we use random
evaluation points modulo p, it is possible that a linear system will be underdetermined, i.e.,
have rank < t. If this happens you need another equation. It is also possible that the
“skeleton” of the previous result from PGCD is wrong and we need some way to detect this.
Use one more univariate image (so t + 1 images) so that you have one more equation than
the number of unknowns to detect this case. If the skeleton is wrong then the t + 1 by t
linear system will be inconsistent with high probability.

In the appendix of the paper you will see 10 test problems. In the test problems the
inputs are difi and digi where the gcd is the di polynomials. But they are not monic so
make them monic in x1 by adding xm

1 for m = 1 + degx1
di. Zippel reports timings only for

the benchmarks. It would be more helpful if we counted U , the number of univariate gcds
in Z[x1] that PGCD makes. Use the prime p = 231 − 1 so that one prime is sufficient for
MGCD. Generate a table of timings and U for procedures MGCD and SparseMGCD. For
each benchmark include the number variables n and the maximum number terms t and the
number of univariate GCDs computed U . So your table will look something like this

Brown Zippel
Test n t time U time U
1 1 1 ? ? ? ?
2 2 2 ? ? ? ?
3 3 2 ? ? ? ?
4 4 3 ? ? ? ?
...

Table 3: Maple 17 timings (in seconds) for the Zippel’s benchmarks.

Zippel’s benchmarks all have very small values for t which makes his algorithm look
better than it performs on real problems that occur in practice. His method needs to solve
linear systems of size t + 1× t + 1 which costs O(t3) time and O(t2) space which is bad for
large t. Zippel’s 1990 paper Interpolating Polynomials from their Values (also on the course
webpage) shows how to choose the evaluation points in such a way that he can solve the
linear systems in O(t2) time and O(t) space – if you are interested. Anyway, include this
benchmark as an 11’th benchmark with t = 21.

d11 = (x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7)2 + 3, f11 = d11 + x6, g11 = d11 + x3.

Discuss whether the number of univariate GCDs agree with the theory or not. SparsePGCD
should use at most (n− 1)(d+ 1)(t+ 1) univariate GCDs where d = maxn

i=2 degxi
G. PGCD

should use at most Πn
i=2(1 + degxi

G).
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