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I .  Introduction.  

Modular  approaches [1] to algebraic algorithms, such as tlle GCD, }lave been very 

useful in cases where there arc very few variables. These algorithms have, unfortunately,  

an exponential  worst ease behaviSr since they need as many as (d + 1) v independent  

evaluat ions  for a problem with v variables of degree d in each variable. The Hensel lemma 

was successfully used in many GCD and factorization problems [3, 4, 7, 9, i0] when the 

problems were sparse. The Hcnsel lemma approach exhibi~,s exponential behavior at  "bad 

zero" cases that  correspond to a zero derivative in the Newton's method analogue. This  

occurs when substituting zero for one or more variables destroys too much information 

and reduces the corresponding .lacobian to zero. In such cases it is common to make a 

l inear substitution, such as Y + 3 for Y, in order to avoid tile bad point, The substi~,ution, 
however, causes a large growth in the size of the revised problem. Thus the Hensel lemma 

based algorithms tend to run out of space relatively early on bad zero problems. 

This paper discusses a probabilitistie technique for avoiding the exponential behavior  

of the modular and Hensel algorithms. This technique's expected running time is a poly- 

nomial  in the number of terms. Since the results for GCD and factorization can be checked 

by  division, one is guaranteed to obtain the correct answer, if need be, by performing the 

calculation twice. The probability of getting incorrect results can be made so low, however, 

t ha t  no such backtracking has been required in any of our tests so far. As expected, the  

exper imental  results of the algorithms verify the fact that it is exponentially faster than 
any  of the existing algorithms in their worst eases, and its performance is a polynomial  

function of the size of the final answer in all cases. The probabilistic algorithm presen[ed 

here will be a variation of the modular GCD algorit, hm. In [ii], we present a formulation 

of Hensel 's lemma that is somewhat more general than the one in current use and our  

probabil is t ic  analogue to it. Here, we shall only present the modular algorithm. In [11] we 
shall  also discuss how our ideas can be used in computing determinants, resultants and 

solutions of both linear and non-linear equations. Except in the latter ease, it is relat ively 

diffmult to check the answers, so a smalI probability of error is possible. But as our analysis  

shows, that  probabili ty can be made as low as one pleases, tn [11], we also discuss the 
use of our main idea in solving the "intermediate expression swell" problem in those cases 

where the form of the final answer is known in advance. 
* This work was supported, in part, by the United States Department of Energy under Contract Number 
E(11-1)-3070 and by the National Aeronautics and Space Administration under Grant NSG 1323. 
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We should also note that Paul Wang, in his Enhanced EZ GCD algorithm [8], uses 
ideas similar to those we use. Although the EEZ GCD algorithm wilt often run faster than 
ours, there has becn no analysis of Wang's heuristics that indicates they arc effective in 
all cases. There also seems to be empirical evidence that the EEZ GCD algorithm can 
still suffer from the "bad zero" problem. Furthermore, it is not clear how to extend his 
approach to problems other than GCD or factorization. 

The basic idea of our probabillstic approach is as follows: We substitute randomly 
chosen, large integers for all but one variable in the problem. The solution is built up by  
interpolating for one variable at a time. Our main probabilistic assumption is that  when 
a coefficient has been determined to be zero somewhcre in the interpolation process it is 
assumed to be zero everywhere. Thus, one need never eomputc more terms then therc will 
actual ly be in the answer. The algorithm resorts to solving t linear equations at each level,. 
where t is the number of terms at that level. Thus its cost is asymptotically cubic in the 
number  of terms. 

2. Sparse Modular Algorithm. 

All modular algorithms have basically the same form--a polynomial is interpolated 
from its value at  a number points. We will call this polynomial the goal p o l y n o m i a l  of the 
algorithm, The goal polynomial is assumed to involve v variables. Each variable appears  
to no higher degree than d in the goal polynomial. Tim goal polynomial will be denoted 
by  P ( X ~ ,  . . . , Xt,). 

There are (d -I- 1)" independent coefficients in P. An algorithm that has no probabil- 
istic aspects needs at least (d ~- 1)" "points" worth of information to determine these 
coefficients. Just looking at these points requires time exponential in the number of vari-  
ables. Throughout this section P is assumed to be sparse, and has t terms (~ << (d -t- 1)v). 

2.1. Overview of Sparse Modular Algorithm. 

The  sparse modular algorithm begins by choosing a starting point for the interpolation, 
(xl0,. .  •, xv0). It then produces the sequence of polynomials, 

P1 = P ( x l , x 2 0  . . . .  ,x~0), 

P2 = P(x1, x~, x3o,..., x,o), 
: 

P~ = P(x~, x2, . . . ,  x,).  

Note that  PI is a univariatc polynomial in X 1. The coefficient of X~: in P is a polynomial 
f k ( X 2 , . . . ,  Xv).  If P is sufficiently sparse there will be certain powers of )(1 that  do not 
appear  in Pi.  Assume that tile X~ term is one of those terms that is not present.. There 
are two possible explanations why X~ did not appear in Pl. Either f~ is identically zero or 
f k ( x l o , . . . ,  x~.0) is equal to zero. If the ~tarting point (xl0,... ,  x,0) is chosen at random then 
the probabil i ty that ~ ( Z l O , . . . ,  x~o) is zero is extremely small. Thus the probability that  fk 
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is identically zero is quite large. The key idea in this algorithm is to assume that  X1 k does 

not  appear  in P; i.e., fk is identically zero. Thus it is assumed that tile coeflicient of every 

monomial  involving X~ is known, and thai, it is zero. 

This information is used to construe~ P2. The same reasoning can be applied to each 

monomlal  in -3(1 and X2 that does not appear in P2. Since there are at most t terms in any 

of the Pi, almost all of the terms will be zero the number of coefficients that  wc don ' t  know 

is small. 

We will demonstrate this algorithm when P is a polynomial in 3 variables, P(X, Y, Z). 
As usual, we assume that P is a sparse polynomial with t terms (t << (d n k- l) v, v -~- 3). 

Whenever  we say "pick xi" we will mean pick an integer xl randomly from a set :f that  has 

at  least B distinct elements.* Pick Y0 and z0 randomly. We now pick x0 , . . . ,  xd and examine 

the values of P at  the points (xi, N,z0). These may be interpolated to glve a univar ia te  
polynomial  in X, namely P(X, Yo, zo). So far nothing probabilistie has entered the algori thm. 

We now assume that, if some power of X had a zero coefficient in P(X, N, zo) it will 

have a zero coefficient, in P(X, Y, Z). Pick a yr. From P(X, ~, zo) we know that  a number 

of the coefficients of P(X, yl, zo) are zero. The only coefficients that need to be deter-  

mined are the non-zero ones. There can be no more than t of these unknown coefficients. 

They  can be determined by solving a system of linear equations. Only the values of 

P(xo, Yi, zo),..., P(xt, Yb ~) will be needed to set up this system of equations. 

This procedure may be repeated until we have determined the sequence of polynomials  

P(X, Yo, zo),..., P(X, ya, zo). Pick a monomial in X which appears in each of these polyno- 

mials. For  simplicity we will assume that it is the linear term. The linear term (in X) of 

P(X, Y, zo) is a polynomial in Y of degree at most d. Call this polynomial f(Y). From the 

d n t- 1 polynomials we have computed we can determine the values of f(Y) at N , . . . ,  yd. 

Again using the usual interpolation methods we can dot.ermine f(Y) from this information. 

Doing this with all the coefficients of the P(X,y~,z~) we can degermine P(X, Y, zo). 
Now that  we have P(X, Y, z0), it is only natural to try to compute P(X, Y, zt) for a new 

Zl. This can be done in a manner almost identical with that used earlier. We know tha t  

the monomials which appear in P(X, Y,z~) will have non-zero coefficients in P(X, Y,Z). 
We assume that  none of the XiY ~ monomials in P are missing. There are at most t of 

these monomials, and thus at most)  unknown eoeNeients to be determined. Picking t pairs  

of values (xl, Yl) , . . , ,  (x~, y~) and computing P(:c~,yi,zl) we can set up a system of linear 

equations in the unknown coefIicients. Solving this system we have P(X, Y, zl). Repeat ing  

this procedure we will finally determine P(X, Y, ze). By repeating the standard interpolation 

scheme we wiI1 finally arrive at P(X, Y,Z). 
There are two essentially different types of interpolation going on in this algori thm. 

The first time we try to generate a polynomial in X, it is not known what its s t ructure  
is and thus the interpolation is preformed as if the polynomial were dense. This we call a 

dense interpolation. (Actually the polynomial in X can be read off from its values using the 
Lagrange  interpolation formula, but. this gives only a slight increase in efficiency.) Now a 

"The set Y is usually chosen to be the interval [O,B -- l]. Thoughout this section lower case symbols will 
denote integers chosen at random while uppercase symbols will be reserved for variables. 
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number of sparse interpolations are done [or different values of Y to get more polynomials 
in X. The coefficients arc then combined via a dense interpolation to give polynomials 

in Y. The algorithm proceeds in this manner. The first polynomial produced involving 
a particular variable is done via a dense interpolation. The structure determined by the 
dcnsc interpolation is then used to produce a skeleton for the polynomial. This skeleton is 
used as the basis for a scries of sparse interpolations which arc done to set up the points 
for a new variable. 

2.2. General Formalism of Sparse Modular Algorithm. 

In this section wc will present a precise form of the sparse modular algorithm that  
will also aid in the analysis of the algorithm. Algorithm D makes no assumptions about  
the sparsity of the goal polynomial. It uses the Chinese remainder algorithm to produce a 
univariatc polynomial over a field. This is the dcl~sc lifting stage mentioned in the previous 
section. 

Algorithm D. Given two sets of rational integers {Pl, .- . ,  P~ } and { m l , . . . ,  mk  }, it returns 
a polynomial f ( x )  such that f(p~) = mi  for I <~ i < k. 

D L  [Initialize] Set f ( x )  ~ ml ,  q(x) ~- (x - -P l ) .  

D2. ['Loop] For i ~ 2 , . . . ,  k do step D3. 

D3. [Determine new ]1 Set f (x)  * - - - f ( x ) + q ( p i ) - l q ( x ) ( m i - - f ( p i ) )  and q(x) ~ ( x - - p i ) q ( x ) .  

D4. [E,d] aeturn f(,). 

It  is important to note that even if the goal polynomial for algorithm Di s  very sparse 
the intermediate results can be completely dense. The full sparse modular algorithm alter- 
nates between stages of dense interpolations using algorithm D abovc, and stages of sparse 
interpolation in algorithm S below. 

The sparse interpolation algorithm needs a data structure to indicate which terms are 
known to bc zero. Since there are fewer terms which are likely to have nonzero coefficients 
than terms with zero coefficients, we will keep track of the nonzero terms. A monomial of 
the form X~ ~.. .X~ v will bc reprcscuted by the v4uple (c~,..., eo). A skeletal  po l ynomia l  S ,  

is understood to be a scl: v4uplcs where each element of S represents a nonzero term in 
the goal polynomial. 

After a skeletal polynomial is produced we will want to determine what its coefficients 
arc. This will be done by solving a system of linear equations. To simplify the notation 
a bit wc will adopt the following convcntion. Assume a skeletal polynomi~tl S contains 
t terms. We "will assume that each skeletal polynomial has associated with it t symbols 
which will represent the cocfflcicnts of the monomials given by S. Denote these symbols by 
s j , . . . ,  st where the subscript, i, is associated with the exponent vector (c/ t , . . . ,  civ). Then 
wc define 

sla 1 a v --}- s2a I a v • , . .  2 U sta~t,...a~tV 

The sparse modular algorithm can bc specified as follows. 
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Algorithm S takes a set of variables { X1, •. •, X~, }, a degree bound d, a function F ( X b . . . ,  Xv )  
and a starting point (a i , . . . , a , )  as arguments. It is assumed that the values F returns 
are the v,~tues of some polynomial of at most v variables and of degree at most d in each 
variable. The starting point is assumed to be a good stating point. The algorithm returns 

a polynonfial P(X1 . . . .  ,X , ) ,  Where each variable occurs to degree no more than d and 
P ( b i , . . . ,  b~) = F ( b l , . . . ,  b~) for all integers b,. 

S L  [hitiali~e] Se~ S ~- { (0) } and p0 ~- ~0. 

$2. [Loop over variables] For i = 1 thru v do $3 thru 88. 

S3. [Iterate d times] For j = 1 thru d do 84 thru $7. 

$4. [Initial linear equations] Pick rj, set L to the empty list, set t to the length of S. 

$5. [Iterate ~ times] For k ~- 1 thru t do $6. 

S6. [Set up liner equations] Pick a random (i--1)-tuple hk, and add the the linear equation 

S(Ak) ---~ V(ak, r i, a j + l , . . . ,  av).., 

87. [Solve] Solve the system of equations L and merge the solution with S to produce a 

polynomial pa(XI, . . . , X i -1 ) .  

$8. [Introduce Xi] For each monomial in S pass the corresponding coefficients from 
p0 , . . . ,  pd and a,, r l , . . . ,  U to algorithm D. This will produce t polynomials which can 
bc merged with S. Set P0 to this new polynomial and S to its skeletal polynomial. 

$9. [Done] Return Po- 

There is one point at which caution should bc exercised in implementating this pro- 
cedure. The first time through the i loop the linear equations which are set up will bc 
trivial since there is only one unknown. There is a chance that the linear equations that  
are developed will not be independent. If this happens then it is necessary to run stcp $6 

until sul'Iiciently ma.ny independent equations are produced. 

3. Analysis and Timings. 

Probabilistic algorithms are rather new in algebraic manipulation. O~her probabilistic 

algorithms are discussed in [5,6]. In this section we first define wha~ is meant by a "good 
starting point." The probability that a random point is good is then determined. This 
probability is very small and can easily be made even smaller. Then the running time of the 
algorithms of section 2 are analyzed. Finally a number of sample problems are presented to 
compare the analysis~ the actual running time and the running tiine of several competing 

algorithm including the EZGCD algorithm. 

3.1. Good and Bad Point.s. 

Assume the goal poty~mmial is P ( X I , . . . ,  X~) and the starting point is a ~ ( a b . . . ,  av). 
The polynomials which are produced by the sequence of dense iterations is 

p ( x l ,  a2 . . . .  , a,,), p (x l ,  x2, an , . . . ,  a , ) , . . . ,  P(X~, x 2 , . . . ,  x , ) .  
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The  entire algorithm depends upon the accuracy of the skeletal polynomials. The skeletal 

polynomials  are extracted from the structure of the polynomials in this sequence. Thus it is 

impor tan t  to know if P(XI, a2,..., av) has too few terms. This will happen if the coefficient 

of some X~ in P(Xb. . . ,  ~ )  is zero at a. Lct Fl be the product of the nonzero coefficients 

of X1 ~ in P for k ~--- 1 thru d. If E is not a zero of FI then the second skeletal polynomial  
will be computed correctly. 

Similarly if the coefficient of some monomial in )(i and )(2 is zero at : the second skeletal 

polynomial  will be erroneous. Define F2 to be the product of the coefficients of nonzero 

monomials  in X: and X2 and define Fa .... ,Fv-1 similarly. The auxNiary polynomial for 

P is defined to b e F  =FtF2.. "Fv->F is a polynomial in X2,.. . , .k~. The key assumption 

throughout  this section is that our initial eva]uation point is not a zero of this polynomial.  A 

point  a t  which F is non-zero is called a good poinL F is the auxiliary polynomial which was 

mentioned earlier. Since all bad points satisfy F = 0 they form a variety of codimension 

1. Thus almost all points in affine v - -  1 space are good. 

Each of the Fj is the product of no more than t polynomials. Thus the degree of Xi 
in Fj is bounded by dt and in F by dvt. The following theorem gives the probabil i ty tha t  
a point  chosen from a set of a given size will be bad for a polynomial of degreeD in v variables.  

Theorem I .  Let f @ Z[XI,... , ~ ]  and the degree o f f  in Xi be bounded by D. Let N,(B) 
be the number of zeroes off, (z~,..., z,,) such ~hat xi E 3 (a set with B elements~ B >> D). 
Then (B--D) 

Proof:  There are at most D values of x~ which zero f identically. So for any of the D 

values  of x ,  and any value for the other xi, f is zero. This comes to DB v-1. For  all o ther  

B - - D  values of xv we have a polynomial in v - -  1 variables. The polynomial can have no 

more than 74,-1(t3) zeroes. Therefore, 

NdB) _< DS'-: + (B- D)N._:(B). 

L e t  Nv = (t3 --D)V-lfv. The resulting equation is easily solved and the theorem follows 
direct ly .  

This bound is actually attained by the polynomial 

D D 

:(:,,-. -, :o) = (:: - O. 
i~l  i~l  

This  polynomial  is dense in att of its variables. One would expect a much tighter bound 
to hold for sparse polynomials. 

Each of the Fi is ~,he product of, at most, t terms and each term is of degree, a t  most,  
d. There  are v - -  1 of these polynomials, so the maximum possible degree o f f  is ( v - -  1)~d. 

There  are only v - -  1 variables in Y. There areB v points in the set 5' X " "  X 5". Applying  
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the theorem to F the probability that a point chosen at random will be a zero of F is 

N~_t(B) = B ~'-I --  (B --D) ~'-1 

< v(v--  1)td v2td 
- z < - B  

At worst the number of terms in the goal polynomial will be (d "t- 1) v. So a worst case 
bound for the probability that a point will be a zero of F, and thus a bad point is 

,2d(~ + 1)" 
B 

If we wanted to makc the probability of choosing a bad point be at most 10 - a °  we 
would have 

B >_> i03°v2(d + 1) v+I 

logB ~_ 69 + 2 log v + (v + 1)log(d -[- 1). 

Notice that the size of the numbers which arc used is about v log d. Thus each arith- 
metic operation will take polynomial time, Since there are only a polynomial number of 
arithmetic operations the algorithm's expected running time is polynomial, 

3.2. Analysis. 

Throughout this section we will assume that all arithmetic can be done in unit time, 
the goat polynomial involves v variables and no variable appears to degree more than d 
in the goal polynomial. 

Wc will make a number of crude assumptions in analyzing Algorithm S. We assume 
tha t  cost of evaluating F is constant and requires C arithmetic operations, We will also 
assume that the number of terms of P(Xb a2,..., ao) is t h of P(Xh)(2, a3,..., av) is ~2 and 
so on; tv is equal to t. 

Each monomial contained in S is a product of i - -  1 terms, and cach term is exponen- 
tinted to degree, at most, d. Evaluation of a monomial will thus cost ( i - -  1) log d operations. 

There are no more than t i - i  terms in S, so step $6 will take about C +  (i - -  1)ti-1 logd 
operations. Step $6 will be iterated ti-1 times to produce the each set of lincar equations. 
Thus i~ will cost Ct i - i  + ( i -  t)i~_llogd operations to produce the system of linear 

equations. 
There will be t~--i independent linear equations to be solved, Using straight forward 

algorithms this will take about c l ~ - i  operations. Steps $5 thru $7 will be executed d times 
for each variable so it will cost 
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opera t ions  to produce the polynomials, P l , . . . ,  Ptl_ ~. 
There will be t i - i  germs in each of these polynomials, so algorithm D will be run ti--1 

t imes. Each invocation of algorithm D will require about c2d 2 operations. Adding this mess 

up and summing from i = 1 thru v we get 

t~ 

i = l  

We need to make some assumptions about the structure of ti to get anything mean- 

ingful out  of this. We will assume that the ratio of terms t i / t i - i  is a constant, k. Doing 

this we get, 

k 3u t 3 dlogdt~ [k2U-k7 " ~--  ~ I ~ - - ~ o  + ~-r;~L i (v--1)--v)+k2]-l-c2d2tk(k__11;;° 

Despi te  appearances to the contrary this expression is not exponential in v. Remember  

tha t  kVto --~ t. There are two special cases of this formula that are of interest. If k is large 
when compared with 1, we can ignore the small terms involving k and get 

~3 ~2 t 
cld~ + e log d,~ + ~2p 

If k is very close to 1, then to = t and we get 

q dv~a 4- dv2t2 log d "4- c2 d2vt. 

In both of these cases the dominant behavior is O(t3), assuming t >> d or v. This is clearly 

not  exponential  in the number of variables (unless t is) which is unlike any other modular  

algori thm. 

3.3. Timings. 

Here we present a few sample timings and compare them with our estimates from the 

previous section. A more detailed analysis and further examples are contained in [11]. 

The first, example was chosen to show the sparse modular GCD allzorithm at its best. 

Nine monomials were chosen at random and combined to produce three polynomials with 3 

terms each. One was multiplied by the other two to give two polynomial of 9 terms. These 

two polynomials were used as the input to the GCD routines. The number of variables 

ranged up to i0 and the degree of each variable was less than 3. The following table gives 

the computat ion times for tile EZGCD algorithm, the Modular algorithm, the Reduced 

algori thm, Wang's  new EEZGCD alg~rlthm and finally the Sparse Modular algorithm. 
These timings were done on a DEC KL-10 using MACS~MA [2]. The polynomials used are  
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contained in the appendix. Tile asterisks indicate that the machine ran out of space. 

v EZ Modular Reduccd EEZ Sparse Mod 

t .036 .047 .047 .036 .040 

2 .277 .275 .216 .377 .160 

3 .431 .920 .478 .522 .381 

4 1.288 7.595 2.027 .742 .842 

5 3.128 65.280 , 1.607 1.825 

6 * 483.700 , 1.897 3.364 

7 , 2409.327 , 1.715 4.190 

t 8 * * * ) ___* 4.534 

9 * * , .... * 4.006 

10 * * * * 8.202 

As expected the modular algorithm ran in exponential time. Both tile EZ and the 

Reduced algorithms ran out of storage. This example was carefully designed so tha t  all 

the  G C D ' s  were bad zero problems for the EZ algorithm. When thcse problems were run a 

LISP machine with 30 million words of address space the exponential behavior of the EZ 

algor i thm was evident. 

4. Conclusions. 

In this paper we have tried to demonstrate how sparse techniques can bc used to incrcase 

the effectiveness of the modular algorithms of Brown and Collins. These techniques can 

be used for an extremely wide class of problems and can applied to a number of diffcrcnt 

a lgori thms including ttenseI's lemma. We believe this work has finally laid to rest the bad 

zero problem. 
Much of the work here is the direct result of discussion with Barry Trager and Joel  

Moses whose help we wish to acknowledge. 

5. Appendix.  

This appendix lists the polynomials that were used to test the various GCD algori thms 

in scction 3. The di polynomials are the GCDs which are computed, the 1~ and gi the  
cofactors. The polynomials that were fed to the various GCD routines were dill and dig~. 

d~ = z~ + zl + 3 

= + + d + 1 
2 2--X2 x ) ~2=xlz2-t- 1 ~ x l z 2 + z ~  + z l  
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XI~ 2 

d4 ~ - - -  2:13; 4 -~ X2X3X4 . XlX2X4 "~- X2Z4 

'4 - x -~x 2 ~ ~ ~ x~ + xix3x4 

2 2  2 2  

XlX22:3Z42;5 ~ XlX2Z 5 -~- Xl:V3Z4Z 5 XlZ2X3Z 4 

@ XlX2Z3Z4XsX, 52[_ XlZ3X6 .~  ZIX2X3X4~:SZ 6 @ ZIZ3XSZ{ ] 
2 2 2+XlX3X2X~+ 2 2  2 2 2  2 f~ = x~x,~x4zsx ~ xix2x ~ --~ xlx2x~xsx~ -~ xix~x4x5 
2 2 2 2 2 2 r, XlX22Z3X24X 5 2 2 ~ x2x~X~XsX~ + x~x4xsx~ + x2zax~z~x~ + + x~x3z5 

2.,/;,2 2 2 2 ,  2T2 2 2 2 2 2 ~X3X4X2 
d7 = ~'lX2 .,4zOx7 ~ Xl~,3X4X 6. 7 @ X3X4X7 "J- XlX2X4X9 

Z t Z2Z3Z4 ZvZ5 

-~-  .~-  X2Z3X4X5:~Z 7 -'~ Z4X(~X 7 --~ XlX2X3XsXoX 7 -~- XlX3Z4Z 5 

2 2 2 2 2 2 2  2 2 2 2  2 2 2  2 2 2 
d 8 ~ x2x4z5xoz7x 8 ~ xt:~2x3x4x6x7x8 --~ xlx3x4xsx 7 --~ xlx2x3x4x5z6x7 ~ x2x4x~ 

2 2  2 2 2  2 2  2 2 2 2 2 2  2 2  .2 2 2 2 2  
f8 ~ .TlX2.T3Z4XSX6X8 -~ x2x5xsz8 ~ XlX2X3z4;~Sx73:'8 21- XlX3XdZ'5X7X8 "3[- ZlX2'T3X5:~7 

..~ ZlX,2Z4Z5XsX 8 ~_ X.lX2X3x4x6x 8 ~ XlZ2X3X4Z5X82f- ZIX2XdZ5 

d,.) ~ 3 2 z~z2z3z~z~zsz .~ ~ . 3 2 2 ~ ~ 2 .  2 XlZ3X4Xt3XsZ 9 -~ , -@ x2z3~,4z5x3z 9 -j- ZlX3X4z5xox7x8 -J- x2X3XdX5XBx7x 8 
2 2 

2 2 2 2 2 ,r 2 2 22, . 2 2 2 2 2 2 2 
g9 ~--- XlX,23;dx5XOZTZSX 9 ~ XlX2X3~5.~:6X7:r, Sx9 ~ xlX3x4XOZTX&'r,9 "@ Xl~:2X4}~ 8 ~ X2~:dX52:6X7 

2 2 2 2 2 2 2 2 2~.2 2 2 2,2 2 x2x _ x2_2 
d l o ~  xlx2x4zsx9ZloJvX2x4x5x~zTzgxlo-~-xlx2~xs-7x9"JcXlX3X4XTXg"@ 1 3x4 7~8 
~ 0  2 ,  2 2  2 2 2 2 .  2 .2,2 , . . 22  

~t~2x3z4x~7~8~9ZlO2i-z2z3z4zfi29XlO ~- XI~,2X3X4~5~.GX7~sXgXlO 
2 x 2 2  .22  2 2 

-~-ZI,,2X4~SXSXgZIO'-~-X3~4~SZSXTXgXlO 
2 2 2 2  2 2  .22 2 2 2 2  

glO~XlX2X3x5x6XTXSXgXlo2t - xlz2~z4zszoxszozlo 
2 . 2 2  2 

"~ -X lX3~XlO-~X4X5X6X7X  9 
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