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A fundamental technique used by many algorithms in computer algebra

is interpolating polynomials from their values. This paper discusses two

algorithms for-solving this problem for sparse multivariate polynomials,

an- updated version of a probabilistic one and a new deterministic tech-

niqo" that uses some ideas due to Ben-Or and Tiwari (1988). In addition

algorithms are presented for quickly finding points that are not zeroes of

,p"rr" multivariate polynomials-the zero avoidance problem'

1. Introduction

Mathematical calculations involving polynomials or other symbolic quantities

sufier from a problem not found in numerical calculations: intermediate expression

swel/. That is, when performed in a straightforward fashion, the intermediate

expressions of a calculation are much larger than the final answer. Fundamentally,

this difierence is due to the fact that the arnount of space required to represent the -

product of two floating point numbers is about as much as for each of the original

multiplicands. However, the space required for the product of two multivariate

polynomials can be much larger than that required for the multiplicands. In fact,

even the sum of two multivariate polynomials can be twice as large the surnmands.

This efiect is more Pronounced with polynomials with ma,ny variables.

Two funda^rnental approaches to this problem have been suggested. Each gen-

erates one or more simplified computations where some of the symbolic variables

are replaced by numerical values. These simplified problems do not sufier as much

from intermediate expression swell and may be solved more easily than the origr-

nal problem. The two techniques difier in how they determine the solution of the

original problem from the solutions of the simplified ones'

The first approach, which we call the modular technique, solves a large number

of simplified problems but uses carefully chosen values for the symbolic variables.

These solutions are then interpolated to recover the variables eliminated in the

simplified problems, producing the final answer. In many practical algorithms the
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resulting intermediate expressions do not involve any symbolic variables and there
is essentially no intermediate expression swell. This interpolation technique was
first introduced in the modular GcD algorithm of Brown (1921).

The second approach, which we call Newton's techniqueruses the solution to
a single simplified problem as a the initiat value for a padrc solution derived by
Newton's iteration. (Conversion of a p-adic solution to a solution in the original
ring is rarely difficult.) This is the basic idea behind the polynomial factoring
algorithm of wang and Rothschild (1975), the EZGCD algorithm of Moses and
Yun (1973) u,rrd its successors Wang (1978) and most of the polynomial factoring
algorithms now in use. Both the modular technique and Newton's technique sufier
when the answer is sparse (has relatively few non-zero coefficients). In this case a
great deal of effort is expended computing coefficients that are zero.

Versions of both the modular technique and Newton's technique whose time
complexity is random polynomial were first given in Zippel (1gzg, rsao;. Applica_
tions of these techniques to polynomiat factoring and their analysis and extension,
have been presented in a number of papers by von zur Gathen and Kaltofen: von
zur Gathen (1983, 1gg5), Kaltofen (1gg5a, 1gg5b, 1gg7) and von zur Gathen and
Kaltofen (1985). The probabilistic nature of these algorithms stems from an as-
sumption about certain polynomials that arise in the calculation. It is known that
the values of these polynomials at certain points a,re zero. This could happen
either if the polynomials were identically zero or if the points chosen happened to
be zeros of the polynomials. The key assumption of these algorithms is that the
polynomials a,re identically zero. These algorithms can be made deterministic by
choosing points that cannot all be zeroes of these polynomials. We call this the
zero avoidance problem.

Problem. (Zerc Avoidance Problem) Given some set of paranteterc for a polyno-
mial (number of vadables, degree, number of non-zero terms, size of coeffi.cients,
etc.) choose a set of points 5 suc.h that no polynomial with those parameters
vanis.hes at all of the pornts of S.

The original sparse polynomial algorithms used only the number of variables (n)
and degree (d) pa,rameters in choosing the set S. It is easy to show that S must
contain at least (d + 1)' points (see proposition 1 in sectiot 2). To prove that
a polynomial is zero using this set of points would require time exponential in
the number of variables. Thus fast algorithms that use only these pa.rameters are
probabilistic. The deterministic algorithms given here also make use of the number
of non-zero terms (") in choosing 5. It is this additional bit of information about
the polynomial that keeps the size of S small.

Many of the ideas used to'solve the zero avoidance problem can be used to
c-larifr and simplify certain steps in the modular technique. The particular ol";;that we discuss in this paper we ca.ll the interp olation problem. Rather than
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choosing points to prove that a polynomial is not identically zero, we go further
and actually determine the polynomial itself.

Problem. (Interpolation Problem) Given a set of paraneters for a polynomiaJ
(number of vadables, degree, number of non-zero terms, size of coefficients, etc.)
choose a set of points 5 with the following propefiy. For any polynomial P with
those parameterc, P can be determined from E and P(5) quicHy, i.e. either
polynomial time or probabifistic polynomial time.

In this paper we present three solutions to the zero avoidance problem, and
two solutions to the interpolation problem. Each is summarized in the following
two tables.

Zero Avoidance Problem

Schwartz Zippel Ben-Or Tiwari

Algorithm type Probabilistic Deterministic Deterministic

Number of evaluations 1 nT2 T  + t

Chance of error e 0 0

Size of evaluations in bits tog # nTlogT Tlogn

The column labeled "Schwartz" corresponds to the probabilistic algorithm
presented by J. Schwartz (1980) and which is intrinsic to Zippel (1979). Since
it does not take into consideration the number of non-zero terms in the P, the
parameter ? does not appear. In the third column, labeled "Ben-Or Tiwari," we
give the recent results of Ben-Or and Tiwari (1988). The second column, labeled
"Zippelr" is a new algorithm presented here in section 5. Though its performance
is inferior to that of Ben-Or and Tiwari it ma^kes use of some new techniques that
may be of use in other problems. In particular, it yields a deterministic solution
of a variant of the zero avoidance problem for polynomials over finite fields.

For the interpolation problem a new pararneter arises, t the true number of
non-zeroes terms in P. This can be much smaller than the a priori bound on the
number of non-zero terms 7.

The first column of this table characterizes the author's original probabilistic
algorithm updated to include an idea of Ben-Or and Tiwari. The third column
corresponds to the deterministic algorithm due to Ben-Or and Tiwari (1988). It is
unique in that it does not require a priori bounds on the degrees of the variables
that appear in the result. Notice that the probabilistic algorithm is significantly
better than the deterministic one when the bound on the number of terms is not
sharp (" > t). The second "Zippel" algorithm is a new deterministic variant
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Interpolation Problem

Algorithm type

T2 (log2 T +lolnil)

Size of evaluations in bits

of the probabilistic algorithm whose dependence on ? is not quite so strong as
Ben-Or and Tiwari's algorithm. Thus it also performs especially well when ? is
not a sharp bound. This algorithm is presented in section 6.

Kaltofen and Yagati (1988) have suggested an improved technique for solving
the systems of [near equations that arise in the two interpolation algorithms dis-
cussed in this Paper. Their ideas improve the algorithms discussed in the paper
to give the performance figures given above. In this table M(t) denotes the com-
plexity of multiplying two univariate polynomials of degree t. This variant of the
deterministic algorithm is competitive with Ben-Or and Tiwari's algorithm.

Interpolation Problem

Kaltofen-Yagati Kaliofen-Yagati

Algorithm type Probabilistic Deterministic

Degree bounds Yes Yes

Number of operations ndM(t)Iost ndTM(t)lost

Number of evaluations ndt ndtT

Size of evaluations in bits r"s# ?loglog n

In the conclusions we give some comments on how these algorithm impact
some of the original calculations, such as greatest common divisor and factorizaljon
problems.

2. Generalities

We let Z denote the rational integers and, Zl(m) the integers modulo m. Fo
denotes the finite field with q elements and F| its multiplicative subgroup.

!dil&id+==,1u; .
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Throughout this paper we assume polynomials are represented. as a list of
monomials (pairs of exponent vectors and coefficients) and that monomials with
zero coeffi.cients are omitted. The number of variables in a polynomial is denoted
by "r. Thus the exponent vectors are n-tuples. The maximum degree of any
variable in the polynomial is denoted by d. The number of non-zero monomials of
the polynomial P is usually denoted by t or terms(P), for additional preciseness.
For a dense polynomial, one where each monomial has a non-zero coeff.cient,
terms(P) : (d + 1)'. We generally use capital letters to denote a priori bounds,
and lower case letters for the actual value. Thus ? is used to designate a bound
on the number of terms in P, while f denotes the actual number of non-zero terms
present in P.

To minimize the number of subscripts in formulae we use a variant of the
notation introduced by Laurent Schwartz. Let i : (Xr ,,X2,... ,Xn) and e- :
("t, "r, . . . , en) be two vectors. Then we write the usual (inner) dot product as

d .  X  -  e tX t  *  ezXz  *  . . .  *  enXn .

We also extend this notation to exponentiation as follows

ye - (x"., x., ,  . .  .  ,  x"- ) and X€ : Xi, X;, .. .Xi,"

Thus the multivariate polynomial

qX i rLX l r2  . . .  ) (e rn  +  czx f r rx ;z2  . . .  Xe2n +  . . .  +  c1Xl , rX l , ,  . . .  X . ,n

would be written
c l i e t  * c 2 i € "  + . . . +  q i d , .

We always use the vector accent when using this notation.

When evaluating algorithms involving polynomials, we need to measure the
size of a polynomial. In this paper we have chosen to use the number of non-
zero terms. Thus an upper bound on the size of a polynomial of n variables,
each of degree d, is (d + 1)". The number of non-zero terms, however, is often
much smaller. Notice that when establishing that a polynomial P of size O(?) is
identically zero, we already know that P cannot have more than O(?) non-zero
coefficients, though we know little about the exponents.

An alternative measure of the size of a polynomiat P is the size of a straight
line prograrn to compute P. This measure was advanced by Kaltofen (1g82). The
class of straight line progra.ms of size O(T) contains a.lmost all polynomiats with
O(T) non-zero terms and many more. It would be interesting to know if it is
possible to extend the results presented here to this wider class of polynomials.

To prove that a polynomial is zero by considering its value at a number of
points requires some bound on the information content of the polynomial. We
begin with a proposition that establishes a lower bound for our results.
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Proposition 1' Let s: {o-i} be a set of r-L n-tuples. Thereexists apolynomial
wit'h rational integer coefficients, not identically zero, that contains no more thaaT non-zeto monomiars and that vanis&es ut eiery point in E.

Proof: Choose a polynomial with ? monomials:

P( i ) : " r iu ,  *c2r te ,  + . . .+  cr i€r ,

whose coefficients (c;) will be determined later from S, d; * di a,nd chosen arbi_trarily. For P to vanish at d;, at element of .S, the ci must satisfy the following
I i nea r  equa t i on :  

" r , d ,  y " r€ r+ . . .+  cy f f i r  : g .

Since these equations are homogeneous and there are more undetermined variables
than linear constraints, there is a non-trivial solution to this system of equations.I

Assume we wish to prove that a polynomial is zero using only its value atpoints that we are free to specify. Proposition 1 demonstrates that showing the
polynomial is zero at ? points only shows that that the polynomial is either iden-
tically zero or has more than ? non-zero terms. Thus if all that is known about a
polynomial is the number of variables, z and d.egree bounds on those variables, d,
we will need (d + 1)' evaluations to prove that the polynomial is non-zero. This
means that there is no deterministic algorithm that proves a polynomial is zero
from its values, and degree bounds. Additionat information is a.lso needed.

For univariate polynomials over the reals, we can show that by choosing the
points carefully, any polynomial with no more than ? terms that vanishes at ?
points is identically zeto.

Proposition 2. Let P(x) be a univariate polynomia,I with coeficients in Z. The
number of positive rea,I zeroes of p(x) js Jess than or equal do terms(p) _ 1.

Proposition 2 follows immediately from Descartes' rule of signs since the max-
imum number of sign changes in the coefficients of p(c) is teims(p) _ r. (For
instance,. P6lya and szego (1976) part v, chapter 1, problem 36.) The following
corollary is merely a restatement of the proposition.

corollary. A univafiate polynomia,I that vanjsies at theinfegers r,2,...,? r.s
either identically zero or has more than T non-zero coefficients.

Using some new techniques we show in section s that O(nTz) points suffi.ce,where n is the number of variables in P. This is accomplished by finding a special-ization of P to o'e variable that does not increase the number of non-zero termsand then applyrng Proposition 2. The previous best results were that (d+ 1)r + 1sufficed, which is optimar for dense polynomials, but can be exponentially bad
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for sparse polynomials. In section 6 we give Ben Or and Tiwari's result that ?
suffices. In light of proposition 1 this is the best possible.

We occasionally use the notation p; lo indicate the fth prime. It is is also
used to represent the ith element of the vector p1 Our intent should be clear from
the context. Later, we will need a crude estimate for the size of the prod.uct of the
first -lf primes. For our work we can use the crude estimate of

p r y ( ( l f + 1 ) t * . ,

for some small constant e. This is much weaker than the best known results, for
insta^nce Rosser and Schoenfeld (1962).

By tpplytng Sterling's formula to the product of the first N primes we have
lo1(ptpr. . .pN) - log(.0[ * t)!1+.

- (1 + -, (r - ;) rog(N + 2) + o(N)

This proves the following proposition:

Proposition 3. There exists a constant c1 such that

lo9(prpr. .  .  pN) ( clNlog N.

M.ny of the algorithms developed in this paper depend upon the special
properties of Vandermonde matrices, which we summarize here. A Vandermonde
matfix is a matrix of the form

v n -

k? ki-'
k3 kl-'�

i'" kr-t
where the k1 a,re chosen from some field. Similarly, a system of linear equations of
the form

xt * 'r i.xz + k?& + ...+ ki-tx, - u)r
Xr * lczXz + kzzxs + . . .+ lr t- tX^ - u2

:

X r  *  l cnXz  +  k?&  + . . .+  k : - rX^ :  ?Dn
will be called a Vaadetmonde system of equations.

A matrix where the degrees of each row rise monotonically, but not necessarily
linea,rly, is called a generaJized Vandermonde matrix, viz,

The following well known theorem gives the determinant of a Vandermonde
matrix.

I 
rr'
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Proposition 4. The determinant of the vandermonde matrix is

de tVn-  f |  & i -k , ) .
1 ( i ( jSn

As an immediate consequence the determinant of a Vandermonde matrix is non-
zero if and only if the /c; are distinct.

A similar result is true for generalized Vandermonde matrices over the re-
als, but the proof is a little trickier. Notice that while proposition 4 applied to
Vandermonde matrices over any field, the following proposition is only valid over
the reals, which has characteristic zero. We know of no sirnilar result for fields of
positive characteristic.

Proposition 5. The determinant of a generalized Vandermonde matfixjs non-
zero iI the k; are distinct positive real numbers.

A proof of this result can be found in Gantmacher (lgbg), volume II, page gg.
The inverse of a Vandermonde matrix can be computed by the following well

known technique. (See Press (1986), 1or s)ca"'ple.) Multiply a Vandermonde
matrix by a general n by n matrix:

The jth element of the top row of the product of these two matrices is

ari * azilq * asikl+ ... + anjk!-r - pj(kl).

In fact the product above is

Choosing rhe P1Q) to be

pi(z): 
S ffi,

1 ( i ( n

we see that the product matrix is the identitS and thus the coefficients of the Pi
a,re the columns of the inverse of the Vandermonde matrix. Each of the Pi(Z) can

l i - l  I  /  o1 atz an arn \kt-' 
| .l 

"r, az2 azs "r, 
I

: , [ :  :  :  I
ki-' / \ o",r ctrn2 an3 o*, /

/ Pr(kt) Pr(kr) . P"(er) t

I 
,r&r) Pr(kr) . p"(kr) 

|
l ' : : f
\&(,b,) Pz(k") P.(k") /
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be computed in O(n) operations from a master polynomial, which itself can be
computed in, O(n2) operations. Thus the Vandermonde matrix can be inverted in
O(n') time.

Assume we wish to solve a Vandermonde system of equations like the follow-
ing:

xt  *  hxz + k?& + . .  .+ kT-tx,  -  w1
xr * kzxz + k3& +. ' .+ kt- 'xn -  rD2

:

Xr *  knXz + k2"&+ . . .  + k l - ,Xn :  lDn

(1 )

If recognized as a Vandermonde system, these equations need only consume O(n)
space. They can be solved using o(n) space by the following device.

Define

P(z )_  I I  Q_k; ) .
1 ( i ( n

This polynomial contains n + | terms. The coefficient of Zn is always 1. The
polynomials P(Z)l@ - ki) can be computed by synthetic division. It is the
numerator of. P1@). The value of P(Z)I(Z - k) at ki is the denominator of
Pi@). Thus each of the P1@) can be computed using o(n) space and time. The
computation of the Xi is arranged as follows.

+ . . . +

After each column vector on the right hand side is computed, it is added to the
accumulating X; and its storage may be reused by the following column vector.

This approach can also be applied to transposed Vandermonde systems like
following

X r * X z * X s + " ' l X n : u r

lqXt *  kzXz * ksXs + . . .+ lcnXn --  1D2

:

k7-t xt + kt-l x2 + ktr-t xs+ . . . + k:-t x* - u)2

since the inverse of the transpose of a matrix is the transpose of the inverse, we
have the following formula for each of the Xl

Xt  : to1 .  coef(Pr ,  Zo)  + u2.  coe! . (P1,  Z ' )  +  . . .  *  u)n.  coef(Pr ,  Z"- t ) .

These results are summanzed in the following proposition.

(  
wn.coef . . (Pn,  Zo)  

)
\ r, . coef(P,", Z"-r) /0:(;: ":::::"1,)

(2)
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Proposition 6. The Vandermonde system (1) and the transposed Vandermonde
system (2) over the field F can be solved in O(nz) operations over F. Furthermore,
the space required is that of o(n) elements of F. If F: e and K : max I numfr;l*
max I den k;l then the largest number used will require O(nlog K) bits and in total
O(n2log K) bits of storage wilt be required.

3. Dense Interpolation

The general problem we consider in this paper is computing a polynomial
from its values at certain points, whose choice may be part of some higher level
algorithm. These polynomials may be multivariate and their coefficients generally
lie in the rational integers, though occasionally they lie in a finite field. Many of
these results can be extended to more complex fields, but we do not do this here.
In this section we assume the number of variables in the polynomial is given, as
well as degree bounds, but no additional assumptions a,re made. In particular,
nothing is known about the number of non-zero terms in the polynomial.

3.1 UNIVARIATE Dnmsn IxrnnpoIATIoN

The simplest form of this problem consists of determining a univariate poly-
nomial from its values at selected points. The straight forward approach works
surprisingly well. Let

P(Z)  :  po  *  nZ +  . . .  *  pn- rzn- r  *  pnZ"

be the polynomial to be determined. Assume the coefficients are over a field F,
and let zyt...,zn be the set of distinct evaluation points. From the values of
P(to) - w6 we get the following system of linear equations in the unknown pi.

Po * pl to + pz"8+ " '  + pnzt :  uo

Po * P1a + pzr?+ " '  + Pnzl  :  usr

:

Po  *  p t zn  +  pz r2 *  +  . . .+  pnzT  :  wn

This is a Vandermonde system and can solved quickly using the algorithm of
Proposition 6.

3.2 MUIUVARIATE Dnusn INrnnpoIATIoN

As pointed out in the previous section, a polynomial in one variable of degree d
can be deternined from its values at d*l points using O(d') arithmetic operations.
This result can be extended to multivariate problems.
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tet P(-f) be the polynomial to be determined. It is a polynomial in n vari-
ables, xt, . . . , xn, whose coefficients lie in an integral domain .r?. Each x; appears
to degree no more than d1 in P. Let t : (dr+ 1Xd2 + 1). . ., the maximum number
of terms in P. Writing P as a sum of monomials using the vector notation we
have

P(iJf) : "r iu, * c2rta, + ...+ cti€.,

where the e-; run through each possible exponent combination. Choosing / random
n-tuples }-; aad computing the values of. P(i;) gives a system of / linear equations.
In general, this requires O(lt) operations to solve, and. perhaps more important
O(t') space.

There remains the question of solvability of the system of equations. Let M
be an nxn matr ixoveraf ie ld  F.  M wi l  be s ingula, r i f  andonly i f  detM - �0 .
Thus the singula,r matrices form an algebraic set of codimension 1 in the space of
all n x n matrices. Thus the probability that the system of equations is singular
is about U#@). For probabilistic algorithms this sufrces. For d.eterministic
algorithms more analysis is required. This is done in later sections by choosing
the evaluation points carefully.

A recursive technique was used by Brown (1971) in the modular GCD aI-
gorithm was first used to bring the time requirements for interpolation down to
O(l'). In this paper we use another approach that leads more naturally to the
techniques for dealing with sparse polynomials.

Choose a random rz-tuple y'. This is the initial evaluation point. Denote the
values of the monomials p"-t by rn;. Additional evaluation points are obtained by
raising y'to successive powers (starting with 0). Notice that (fl)'t - *i.Thus
we have the following system of equations to solve.

Q * c z + " ' +  c a - P ( f )

Qmt *  czr l lz+ . . .  +  c2m2 -  P(p)

crn? * c2ml+ . .. + "tmtr - P(f )

:

crn!- r  *  c2m$-r  + . . .+ "r* i - t : P(f-')

This is the transpose of a Vandermonde system. As discussed in section 2, this
system can be solved in O(12) time and O(/) space.

The key issue in this approach is guaranteeing the mi are distinct so that
the Vandermonde system will be non-singular. If the coefficient domain, .rB, is
a unique factorization domain we can do this easily. For instance, assume .R is
the rational integers. We choose the components of p-to be distinct primes, viz.,
F: (2,3,5, . . .). By unique factoization each of the m; will be distinct.
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If the coefficient domain is a finite field Fo, then the problem can be more
difficult. The finite field must contain at least / elements for the Vandermonde
system to be non-singular. For the dense interpolation technique being discussed,
the maximum value of / is (d + l)". When q < (iI+ 1)" the modular inl"rpolation
technique can still be used but elements should be chosen from an algebraic ex-
tension of Fo that has more than (d + 1)" elements. In general, we can solve the
system of equations using conventional (O(tt)) techniques.

If the characteristic of Fo is sufficiently large, we can do better. Choose the
components of y'to be the rational primes, (2,9,5,...). If each of the rn;, when
computed inZ, is less than the cha,racteristic of Fo then they witl be distinct as
elements of Fo. For this to be the case the cha-racteristic must be greater than

( 2 ' 3 . - . p n ) d  N n " ' n d ,

by proposition 3.
This idea of substituiing primes for each of the variables was first suggested

by Grigoriev and Karpinksi (1987), who were studying a problem involving poly-
nomials with 0/1 coefrcients. These ideas were first applied to interpolation by
Tiwari (1987).

In the following paragraphs we analyze the hard case: We assume that q is
greater than (d* 1)", but that the characteristic of Fo is less than n"rnd. The
actual analysis is staightforward but somewhat lengthy. We consider the following
somewhat more general question since its solution will be of use in analyzing
the sparse algorithms. Let {e*;} be a set of ? n-tuples where each component is
bounded by d. (In the current case ? - (d+ 1)".) What is the probability that
for a randomly chosen c- € F;' there is an e-; and di such that f=t : F: ?

We begin with an elementary enumeration proposition. The one dimensional
version can be found in a.lrnost any book on elementary number theory.

Proposition 7. Let d { 0 be a fixed n-tuple where each component is an element
of zl(m) and c be the common GCD of the a; and m. Let E be an n-tuple wiose
comPonents range over Zl(m). Then d. E takes on mf c distinct vaJues. These
vaJues divide the difrercnt i intomf c classes each containing crnn-l different E.

Proof: First wereduce to the case where c_1. Since d.Eis a mult iple of c for
every i,, d'd can take on no more than mf c values, i.e. 0, cr2c,.. .. Let cc be one
of these values. Each solution of

(mod mlc)

gives rise to c' solutions of d. E : ca (mod rn). Thus if we can show that (B) has
(*/")"-'solutions, we are finished. The rest of the proof proceeds via a stightly
complicated induction.

(3)
d , E- : c

c

:r i , r : i . : . . : : : : .  .  : r r r  :  :
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Consider the one dimensional case, ax : b (mod rn). Since a and m are
relatively prime, there is exactly one value of z that satisfies the relation for everv
value of b, as required by the proposition.

Now assume the proposition is true for all vectors a'of dimension less than
n. Let o be an a"rbitrary element of zl@). We want to show that a, . i : a
(mod rn) has nt'-r zeroes. Without loss of generality we can assume that a1 is
not zero. If a1 and rn are relatively prime then for every choice of a2r... tdr. there
is a unique a1 that satisfies the relation. Thus there axe mn-r zeroes of the relation
as desired.

Assume that a1 and rn have a GCD of g. The relation has no zeroes if g does
not divide azxz * ... ancn - a. Thus we consider the number of zeroes of

a z r z  *  . . . o . v r n :  s  ( m o d  g ) .

Notice thal a2t...tQn cannot have a GCD dividing g. Thus this equation has
gn-2 zeroes modulo g. Each is the image of. (mld"-l elements modulo rn. Thus
there ate mn-r fg choices of a2,... tan. Each one will give rise to g choices for c1
giving the desired result. I

Corollary. Let d, m aad c be as in the previous ptoposition. Then there are
crnn-r distinct soludions to d . o-: 0 (mod rn).

Proof: 0 is always one of the values of. d .d since fs components could be all
zeroes. E

This result can now be used to answer the question raised above.

Proposition 8. Let d1r... ,dT be n-tuples where each componentjs less than il.
There exists no more than

d ' T ' ( T - t ) . ( q - t ) " - t
2

n-tuples i -;tn components in Fo such that for some i, and j iu, and iai have
the sarne val.ues. Equivalently, for at least

( q - 1 ) ' - ' ( o - t -
\

n-tuples X, *ut l,;.kes on distinct values.

. ( 7  -  1 )
,

d . T

Proof: Let g be a generator of the multiplicative group F|. Then for each n-tuple
-f *" can assign another n-tuple d such that X; : gor, assuming no X; is zero.
The a1 are elements of zlk - t). Two monomials far u,od f"i huo" the same
value when

6e; - gd.€, - gd."'i _ ue.xdi .
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Tha t i s ,when  d .Go  -d i ) : 0  (modq-1 ) .By  thep rev ious  co ro l l a ry the re  a re

c(q- 1)'-t such zeroes, where c is the GCD of the elements of e-; - e-i and q - L.

Since c I d there are at most d(q - 1)'*t tuples r- that cause these two terms to

take on the same value.

There are ?(? - 1)12 distinct pairs oI d;,, so the maximum number of c- that

cause a pair of d€; to take on the same value is

d . T . ( T - L ) . ( q - 1 ) ' - 1  
.

2

I
Since there are only (q - 1)"-t possible c- (ignoring those with a zero compo-

nent), we have the following corollary.

Corollary. The probability that a randomly chosen i wiII cause two of the dt;

to have the sa,me vaJue is
d . r . g  - L )

2(q -  L)

If we wish the probability of a collision to be less than e, then for dense

polynomials this means that

n ' ' 
(d +-t)'"*t '

2e

This is actually quite impractical for polynomials with large numbers of variables

and high degree. Fortunately, many problems are spaxse, i.e. ? < (d * 1)', which

gives much better results. This is the topic of the next section.

4. Sparse InterPolation

The purpose of this section is to develop Zippel's spaxse interpolation algo-

rithm, which gives a probabilistic resolution of the interpolation problem. What

is presented is an improvement of the author's original results based on some of

the ideas first suggested by Ben-Or and Tiwari. This algorithm is given no infor-

mation about the number of non-zero terms in the polynomial being interpolated.

Instead it develops an estimate of the number of terms as each new variable is

introduced. As a consequence its performance depends upon the actual number of

non-zero terms in the polynomial rather than an a pfiori bound. This probabilistic

algorithm tends to be more useful in practical situations than the deterministic

algorithms presented in the following sections.

This section has been divided into three subsections. In the first we give a

demonstration of the algorithm and its benefits. In the subsequent subsections

we give a more formal presentation of its details, and analyze the algorithmls

performance.
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4.1 Heunrsrrc pRnsrmterrox

As before we wish to determine the polynomiar p(i) e utilfrom its var_ues, where u is a field with sufficiently many distinct elements. we assume thatd; bounds the degree of' X; in P. The sparse interpolation algorithm computes
P one variable at a time. That is, we initiaily compute p(or,ezt...,arr), then'^lI:,,o2,"'.,an), then P(xr,x2,os,..., a,r) and so on, unti l we have determined.
rlx)' 'r'he introduction of each new variable is called a stage of the argorithm.
we use clues from the polynomial produced in the preceding stage to minimizethe effort required to produce the next polynomiar in the sequence.

The description of the sparse interpolation algorithm becomes rather involved
and it is easy to get bogged down by uJl the subscripts and "J"ui", i""olved, butit is fundamentally quite simple. In this section *" girr. an explicit exampre.

Assume we wish to interpolate a polynomial in three variables, p(x,y,z)
over a field, where the degree of each variable is not greater than b. When the
polynomial is dense, there are 125 different coefficients that must be determined.
We assume that most of these coefficients are zero and that p possesses only a few
non-zero monomials. By using one of the dense interpolation schemes of section
3,  we can compute  P(X,  yorzo)  f rom p(os  ,Uo, ,zo) , ,p ( r r , ,Uorzo) , . . . ,p ( r r ,yo ,zo) .
Assume this yields

P(X,,yo, zo) : coXs * c1X .; c,r.

This is the end of the first stage.
Beginning stage two, we know that p(x ,y, z) can be written as

P(X,y ,Z)  = ps(y ,Z)Xu *  p+(y,Z)Xo +. . .+  po(y ,Z) .

From the first interpolation we know that p5(go,zo) : c1t pr(yo,zo) : c1 and
Po(Aorto): c2. Since the other coefficients are zero

P+(yo, zo) : Ps(go, zo) : Pz(Vo, zo) : 0.

The key step in the sparse interpolation algorithm is to assume that this is true
for all values of Y and Z. That is. that

Pa(Y, Z) : Ps(Y, Z) : Pz(Y, Z) : O.

In typical calculations, where /s and zs dre chosen at random from a large set
of possibilities, this is a good assumption. Proposition 9 below gives a precise
measure of how good an assumption this is.

we now choose a new value for y,p1, and compute p(x,h, zo). without the
assumption of the previous paragraph, this interpolation would require 6 additional
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values of P. Instead'we assume that P(X,yt,,zo) contains only 3 non-zero terms.
i . " . ,

P(XrAtrzo):  ca,X5 * caX * cs,

where the ca, c4 and c5 a,re to be determined. Since there are only three unknowns
to be determined only three new values of P are required..

This process is repeated until we have six polynomials.

coXs +  c rx  *  cz :  P(Xryorzo)

csXs I caX * cs : P(X,yr, zo)

:
q s X s  * c r o X  * c n :  P ( X , y s , z o )

By the dense interpolation algorithm of section 3, the coefficients of the X5 terms
can be interpolated to produce a polynomial in Y, and similarly for the linear and
constant terms. Combining these results we have P(X,Y, zo). Notice that we have
only needed 6*3+3+3+3+3 values of  p to compute th is polynomial .  The
dense interpolation scheme would have requilsd nlmest twice as m&ny evaluation
points.

Beginning the third stage, let us assume this gives the polynomial

P(X,Y,, zo) = &r X5 + (lc2y4 + hy)X * Ieeys
: lctXs i kzXYa * tcsXY * lcny',

where the &; are elements of the ground field. We axe now in a position to begin
the process again, but this time introducing the variable Z . To do this we need
to calculate the polynomials P(X, Y, zo), P(X,y, zr),. . ., p(X,y, za). We assume
that those XY-monomials that did not arise in P(X, Y, "o) have coefficients of
zero in P(X,Y, Z\.

Thus to compute

P(X,Y, zr) :  ksXs + k6XY4 * kzXY * keYs

we only need interpolate four values of P. Thus the additional 5 polynomials only
required 5 x 4 : 20 evaluation points. Without the sparsity assumptions each of
the 5 polynomial would have required 36 evaluation points, and 180 in all.

4.2 FonuAL PRESENTATIoN

To fix our notation, assume we want to use the sparse interpolation algorithm
to determine a polynomial P(Xr.,. . . ,Xn) € F[_f] where we know that each X;
does not appear to degree higher than d and that there are J non-zero monomials
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in P. Furthermore, we assume that we can compute the value of p given avalue for f ' It is convenient to consider just or," jrr" of the interpolation. Thecomputation of p(X) being just a sequence of n stages.
Now assume that we have performed the first k _ L stages of the sparsemodular algorithm and we are about to begin the &th stage. From the previousstagets computation we have

P ( X t r . . . , X k _ r t x k o t . . .  , t n o )  =  p t o f € ,  *  p z o i e ,  +  .  . .  +  p r o i € ,  .

The set of  exponents of  P(Xt, . . . ,&-r  t r ,k1t . . . ,xno) is cal led the s.keJet onof p,
which we denote by skelP. since there are / non-zero monomials in p, the skeletonof P can never have more than t elements.

Throughout this stage, the values assigned to x3..1 ,...,xn do not vary. Tosimplify the notation, we will omit them.l We write

P ' ( y r , . . . , y k )  :  P ( y r , . . .  t U k t o & + l , 0 , . . . , x n , - ) .

The computation of p(x1 , . . . , xk-r, x1) proceeds in two phases. In the first
we determine

P ' ( X i , . . . , X & _ r , x k i )  :  h j t d '  +  p r j i u " +  . . .  +  p r i * € r ,

for 7 - 0,. . .,d by the following technique:
For each of d + 1 randomly chosen values of X1, cej perform the following.

Pick a random ft - l-tuple denoted by (yt t... tak-�r) : i, such that each of f-, ar.
distinct. Since the e-; are known, verifying that this is the case is easy. Actually
finding y- is discussed in the analysis of the next subsection. This value y- allows
us to set up the following (non-singular) system of linea,r equations

P ' ( 1 , . . . , 1 ,  x r i )  :  h i  *  p z i  * . . .  i  p r i
P'(yr t . . .  tuk-r , rk j )  :  r t - j f '  + pzi f ,  + . . .  + pr i f ,
P ' (v? , . . . , y?- r , rk i ) :  p t i f€ '  +  pz j f " - ,  + . . .+  p r i fu ,

:

P ' (gT , . . . , yT - r , sk i ) :  h j f € ,  +  p r i f € ,  + . . .+  p r j y *€ ,

This is a Vandermonde system of equations and can be solved by the techniques
of Section 2 in o(t2) time while requiring only o(/) space. The result will be a
polynomial

P ( X t r .  -  -  , X k - t t t k j t x k + t , o r .  . .  , r n o \ ,

, i F 
practical implementations this may be more than notational. Eliminating the variablesthat do not vary at this stage can save significant time *t "" **puting the values of p.
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for each of the d+l values c11.

In the second phase, we independently interpolate the coefficients of each

monomial, using the dense interpolation algorithm. The results of these interpo-

lations can be combined to produce

P'(Xr,. . . ,Xk-yXr) :  pr(Xr,) i€ '  + pz(X*)iez * .  - .  * pr(X)ier .

The dense interpolation yielded the univariate polynomials pl(Xr). This polyno-

mial is in turn expanded to get

P(Xr , . . . rXkrorc+ l ,g ,  . . .  t tno) :  p \o id t  +  p ' ro td '  +  " '+  pbo id ' ,

and we are ready to begin lifting the next variable.

4.3 ANnl,Ysts

We begin by presenting the probabilistic resolution of the zero avoidance
problem. The following proposition gives a sharp estimate of how difficult it is to

avoid the zeroes of a polynomial given only degree bounds.

Proposition 9. Let k be afi.eld, f uoy element of klX1,,...,Xnf suchthat the

degree of X; in / is bounded by dt. Let Z"(B) be the number of zeroes of f , E

such that c; € 5 (a set with B elements " 2 d;). Then

z"(B) < Bn -  (B -  dt)(B -  dz).  . ' (B -  d")

x  o  ( (d1  *  dz  *  . . .  *  d " )B" - t )  .

Historical note: This result initially appeared in two papers simultaneously and

independently at the EUROSAM '79 conference in Marseille during the summer

of 19?9. Schwartz gave the second estimate of this proposition while Zippel gave a

version of the first. The proof given here is a simplification and extension of that

given in Zippel (1979).

Proof: There are at most d,, values of Xn at which f is identically zero. So for

any of these d,, values of Xn and any value for the other X;, f is zero. This comes

to dnB"-r. For all other B - dn values of Xn we have a polynomial in n - 1

variables. The polynomial can have no more than Zn-t(B) zeroes. Therefore,

z"(B) 1 dnB"-r  + (B -  d.)Z"-r(B).

Rather than solving this recurrence fot Zn,, we solve it for Nn - B" - Zr.
Since 21 is less than or equal to d1, Nl > @ - d1). This is the basis step of the
inductive proof. Writing the recurrence in terms of N" we have

l  ' '

, , = . . '  ,  
,  Bn  -  l r , " (B )  l dnBn- t  + (B_  d^ ) (B" - t  -N"_ r (B ) )
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N" (B)>(B-d , )N, - r (B) ,

from which the proposition follows. I
Polynomiats of the following actualy have Bn - (B - d)...(B _ d,)zeroeswith components less than B

Thus the inequality in the proposition cannot be further strengthened.. The fol-lowing corollary phrases this result as a probability.

corollary' Let f1,fz,"',f" b" elements of k[x1,...,xnf, where the degree ineach variable is bounded by d,. Let p(f ,,,. . . , /,) 
'be- 

the probabifity that a randomly
c-hosen 

!"y.8 
is a zero of any of the fi, whete x6 is an erement of a set with Betements.'I 'hen

P( f r , . . ' , " f " )  .+
Proof: Let f : hfz " ' f ". The degree of each variable in / is bounded by ds. Ap-
plying the previous proposition, we see that the number of zeroes of / is bounded
by ndsB"-I, for sufficiently large B. Since there ate Bn possible c- to choose from,
we have the corollary. E

This corollary gives the probabilistic solution to the zero avoidance problem.
Let P be an element oLz[xl , . . . ,xnf .choosearandompoint  inzn with com_
ponents less than B. The probability that this point will be a zero of p is less
than

nd
E.

Thus to keep the chance of error below e, using a single evaluation, we must choose

Turning now to the sparse modular interpolation algorithm, if all the proba-
bilistic assumptions hold, the cost of lifting a single variable can be computed as
follows. In phase 1- we comp:ute d,* 1 polynomials ai a cost of at most f evaluation
points each, requiring O(dtz) time and O(dt) space. The dense interpolation in
phase 2 requires O(d'') steps for each coefficient that is interpolated. At most I
such interpolations are performed so a total of. O(td2) steps a,re required. Since n
stages need to be performed the total time requirements are O(ndt(it+ t)), while
the maximum space requirement is always A@1. Remember that I is the actual
number of terms in P, not an a priori bound on the number of terms in p.

B > n d
e
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As we shall see, the chance for error in the interpolation depends entirely on
the initial evaluation point (rro,rror...rrno). By perfor*iog several interpola_
tions with diferent initial points we ca,rr decrease the chance of error. This may
be appropriate in practical implementations. Here we use € to denote the chance
for error from a single starting point. We assume P is a polynomial over a finite
field, Fo. We want to determine € as a function of q, d, n and, t. In practical
implementation, P will most lik"ly be a polynomial over Z. Then g is chosen to
minimize e and still remain efficient. To convert from a solution in a finite field to
one over the integers a coefficient bound is needed for the solution in Z. In this
section we ignore these issues. From a theoretical point of view, we continue to
compute in Z (or Q as necessary), and restrict our random choices to integers less
than g.

There are two sources of potential error in this algorithm. First, the structure
inherited from earlier stages in phase 1 structure may be incorrect. That is, a term
that was assumed to be zero really wasn't zero. To be precise, consider a three
variable problem. Assume the polynomial to be computed is

p{Y, Z)X", + p2(y, Z)X"" + . . .  + pt(y, Z)X"' , ,

and the initiat evaluation point is (us,yo,z0).After the single variable interpola-
tion computed in stage one we have the polynomial

p{go, zo)X"' * pz(y0,, zo)X" + .. . + pt(yo, to)X", .

In passing from the one variable case (X) to the two variable case (X, y), the
algorithm just presented assumes the structure given above is correct. If p; van-
ished ut (yo , zs) we would have assumed e; was zero erroneously. At the end of
this stage we will have the biva,riate polynomial

%("0)(x,y)i, + neo)(x,y)i, + ...* qt(zo)(x, r;r1.

Again, if any of the gr vanish at zs 'we will get erroneous results. To compute the
exponent vectors correctly, we need to assume that the p, and e; do not vanish
at the initial point (*o,yo,z6). These are the polynomials whose zeroes we must
avoid.

At the ith stage of the interpolation process, there are at most t polynomials
in n- f variables whose zeroes must be avoided. The aggregate number of non-zero
terms these polynomials contain must be less than f.. The degrees of each poly-
nomial is bounded by d. So by proposition 9, the chance of the initiat evaluation
point being the zero of any of these is

n2dt
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Now consider ihe probability that the vandermonde systems are singular.

lif:*:f:",T:,1r,-", 
"l ,?"0 

:i 3"r1 f.. By the corollury to proposition 8, theprobability that this system is singular is

d . t  . ( t  _  L )  =  d t ,
z ( q - t )  -  

2 q '

At each stage there arc d such systems to be solved and there ate n- 1 stages inall, so the probabfity that one of them wilt fail is bounded bv

ndzt2

q

Thus we have the following proposition.

Proposition 1o' Let P be a polynomial in n variables, each of degree no more
thaa d and with t (> ") non'zeroterms. Assume the coefficients of p lie in a finite
field with q elements. The probability that t.he sparse interpolation algotithm will
give the wtong answer for this polynomialjs /ess than

nd2t2

q

The nndonly chosen vaJues must be crrosen from a set of at least

ndzt2

e

vaJues for the probability of err:or to be Jess f.han e.

Since we cannot know the true number of non-zero terms of p before beginning
the algorithm, the random values must be chosen from a set of

ndzT2

pomts.

5. Deterministic Zero Avoidance
As mentioned earlier, proposition 2 shows that univariate polynomials over

the rational integers cannot have many real zeroes. We extend this proposition
to one for a multivariate polynomial in the variables Xt by finding . *brtitotioo
(Xi t* 2e;) that sends a multivariate polynomial into a univariate polynomiat.
We then apply the proposition to the univariate polynomial to get our result. The
crucial part of the proof is to show that we can find a substitution such that p(Z€)
is not identically zero.
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Before, proceeding with our version of the bounds, it is instructive to examine
the bound derivable from Kronecker's technique, van der Waerden (1953). We are
given a polynomial in n variables, P(X1 ,...,Xn) where the maximum degree in
any one variable is d and assume there are no more than 7 non-zero terms in
P. Let lbe an integer larger than d. Consider the substitution, X; * Zt'-'. L
monomial f"- ir mapped to a monomial in Z rarsed. to the power:

er + ezl.  + ei lz + .  . .  + €ntn-r.

Since each of the e; are strictly smaller thar- (. this mapping is one to one and
invertible.

Furthermore, we haven't changed the number of non-zero terms in the poly-
nomial, i.e. terms(P(t)) : terms(P (Z)). BV proposition 1, if P(Z) vanishes for
? positive values of Z, then it (and thus P(.f,)) is identically zero. This would
be our desired proposition if the values chosen for the X; were small enough. The
smallest integer values we can choose ftor Z are 1, 2r. . . r7. Thus the values for X;
are

L t r_ t  , 2 l r_ t  , .  .  .  ,T r t_ ,  .

Unfortunately, the size of the largest substitution, !t"-' i, "*pooential in the
number of variables.

This basic idea can be salvaged by a more flexible choice of exponent substitu-

tions. Rather than using an invertible substitution, as Kronecker does, we choose

one that merely guarantees that P(Z) is not identically zero if PG) is not. In

light of the results of Ben-Or and Tiwari the importance of this result is somewhat

diminished. However the technique used to reduce a multivariate polynomial to a

univariate polynomial, while preserving the number of non-zero terms seems quite
powerful.

We begin with a definition and some lemmas.

Deffnition: 1. Let A be a set of n-tuples with components in a ring R. ,4 is

said to be maximaJly independent if every subset of n elements of .,4 is R-linearly
independent.

In our situation, each element of ,,4, s-, corresponds to a substitution X; v-+ Z"i .
The following lemma shows that there exist sets of N maximally independent n-
tuples with entries not much larger than l/.

Lemma L. Let S be a positive integer, and p the smallest prime larger than S.
There exists a maximally independent set of S n-tuples with components in Z
where each of the components of the n-tuples is Jess than p.

Proof: First we show that we can construct arbitrarily large maximally indepen-
dent sets of n-tuples. Then by reducing them modulo a prime we get the n-tuples
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required by the lemma. consider n-tuples of the form (1, krkr,. . . ,kn-t). For n
of these to be independent the determinant of the matrix

must not be zero. Since this is a Vandermonde matrix, its determinant is lI;2i(kt-ki), by proposition 3.
Thus if the &; are distinct the vectors they generate will be Iinearly indepen-

dent. ln particular if we let u-1 : (1, k,...,k"-r) then any subset of n of the z-6
will be linearly independent. Furthermore, if we reduce the elements of il1, by a
prime larger than any of the &, the n-tuples remain maximally independent. E
Lemma 2. Let L(X) - rf i n" a linear form in the n va,riables X; thatjs nof
identically zero. rf ft,. . . ,Fn are linearly ind.epend.ent n-vectors, then L(F) # o
for some i.

Proof: since the n-tuples dr - (pnrpn,... ,pn) are linearly independent, the ma-
trix

A _

Ptz
Pzz

Pnz

is non-singular. Denote by ,i the column vector (.r,. . . ,wn)T. If Z vanishes at
each of the n-tuples p-; then

A . ? t - 0 .

Since A is non-singular, u.r- must be identically zero. I

Lemma 3. Let Li(f*) - rij .i A" a set of T linear forms in n variables X;,
where none of the forms is identically zero. There exists a set of (" - 1) .T + L
n'tuples such that for one of these n-tuples none of the Li vanish. Farthermore,
the components of these n-tuples can be chosen such that each componentjs Jess
than 2nT.

Proof: By the previous lemma, each L; can vanish at no more than n - 1 inde-
pendent n-tuples. Assuming none of the forms vanish at the same n-tuple, there
can only (" - 1) .T n-tuples for which one of the forms vanish. I

This Lemma can be extended somewhat to give a estimate of the number of
n-tuples required to ensure that each linear form takes on a distinct value. This
is important enough to justify calling it a proposition.

(, I: ri
\ 1  k n  k "

y:')

,:r)
(:')
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Proposition 11. Let L1(i) : ,ii . i n" a set of T distinct hinear forms in n
variables X;. Therc exists a set of

( n  -  r )  . T  . ( T  -  r )  , . ,
T f ,

n-tuples such that each L5 takes on a different value for at least one of them. and
where the components are each less than nT(T - L).

Proof: Consider the set of forms

M ; i : ( 6 ; _ d ) . I .

Ignoring the diagonal forms (M;;), which are identically zero, there arcT(T -L)12
distinct forms up to sign. -L; and Li have the sa.yne value for some n-tuple, if and
only if M;i vanishes at the same n-tple. By Lemma 3, there exists a set of

( n  - 1 ) . ? . ( ? - 1 )  
, . ,

T f t

n-tuples such that for one them, none of the M;i vanish, and each has components
less than nT@ - l). tI
Proposition 12. There exists a set of nTz n-tuples such that there is no poly-
nomial wit.h Iess thaa T non-zero terms that vanishes at each of the n-tuples.
Furthermore, the absolute value of the components of the n-tuples js Jess t.haa
TznT, and they have size O(nTlogT).

This proposition is proven by applying the sarne type of reasoning used. earlier
with Kronecker's trick, using a sufficiently large, maximally independent set of
n-tuples.

Proof: Assume P(Xr,. . . ,Xn) is not identically zero and let the terms of p be

P6) : " r i "  * c2 r te ,  + . . .+  c7 r td r .

The substitution X; * Zoi sends this polynomial into

P(Z )  :  c rZ€ ' ' d  *  "2 |d r ' t  + .  . .  *  cy f l € r ' a .

This substitution must be chosen so that P(Z) is not identically zero. This can
be done by requiring that for any i + L

or equivalently (d; - 4) .d + O.

- :,t. ' ,-.,

{ t )e t . u * e ; . u
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By Lemma 3, we can choose a set of (n - r)(" - 1) + 1 maximally independent
n-tuples such that one of them satisfies ("-l _ A) .i + 0. We can bound ihe
components of u- by p where p be the smallest prime larger than (n _ lX" _ 1) + 1.
Notice that p <2nT.

Each of the rz-tuples gives rise to a mapping from p(h to p(z). since p(z)
has no more than ? monomials, we need not try *o.. than ? positive integervalues for each zi. In pa,rticurar we ca.n use the values Lr2r. . . ,T for z. Thusthere
exists a set of (n - t)(" - 1)T + T < nT2 poinls that satisfies the requirements
of the theorem. Furthermore, each component of the substitution is bounded by
Te < TznT. I
Proposition 13. There exr'sfs a set of nTz n-tuples, whose components a*e of
size O(nTlogT), such that for every set of polynomials p; e Zlrt)...,r.1 *;th

I terms( P) < T,

there is at least one n-tupd" *nu" none of the polynomials vanish.

This proposition follows from proposition 12 and the observation that if /r +. . ' * t r  -  ? ,  then the  max imumvalue  o f  t ]  +  . . .+ t . i s  ? �2 .

The remaiting result in this section is due to Ben-Or and Tiwari (19gg). By
using a direct multivariate approach to the zero-avoidance problem, they improve
the O(nT2) result of proposition L2 for the zero avoidance problem to ?, which is
best possible. Ben-Or and Tiwari's main idea for this problem is contained in the
following proposition.

Proposition 14. Let P(i) be a non-zero polynomial jn Rti] with at, most T
terms and with monomial exponent vectors e-;. Assum e there exr'sts an n-tuple i
such that the *'; are distinct. Then not all of p(f),p(i),p(*),...,,p({-t)
ate zeto.

Proof: Denote fi by m;. By assumption, each of the rn; are distinct. If p
vanished at each of the ri then the following system of linear equations would.
hold.

q * c z * . . . c r - A

c t r n t  *  c z m z  +  . . . +  c T r n T : 0

" t *?  *  c2m!+ . . .  +  c7m2,  -  O

:

" r *T - t  *  c2ml -1+  . . .+  cym$-L  :  g
Since this is a Vandermonde system and we have assumed that the rmi axedistinct,
the system of equations is non-singular. Thus the c; must all be zero, and p must
be identically zero for all of P(rJ, P(#), P(#), . . . , p(ir-r 

) to vanish. I
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The key then is finding a substitution that keeps the monomials d.istinct.
If P is a polynomial over a unique factorization domain (such as the rational
integers) then this is relatively easy-we choose the components of s- to be distinct
primes. In this case each of the ?n; must be distinct by unique factorization. For
polynomials over finite fields estimates of the difficulty in finding such the right
initial substitution carl be made form proposition 7, but this leads to r prob.bilistic
algorithm.

The following proposition considers the zero avoidance problem for several
polynomials.

Proposition 18. Let Pr(i), . . . , p,(i) be non-zeroporynomials inulxr,. . .x,1,
U auniquefactor izat ion domain and assumethat terms& +.. .* terms p":7.
Let d beavectorof  n pr imesinu. Thenfor integer j ,0 < j  <7,  aJlof  pr(Ej)
a,re different from zero.

Proof: Denote the points {fl,8,..., irI by A. p;
terms P; elements of ",4 by proposition 5. Since ,,4
must be one for which none of the p; vanish.

cannot vanish at more than
contains T+t points, there

6. New fnterpolation Algorithm
Using either of the deterministic solutions of the zero avoidance problem given

in the previous section (propositions 13 and L5), it is possible to modify the prob-
abilistic sParse polynomial interpolation algorithm of section 4 to make it deter-
ministic.

As usual, we wish to interpolate a sparse polynomial with no more than ?
non-zero terms, P(x) € F[xl ,...,xn], from its values. As in the last section
we will only consider the case when F is the rational integers or a finite field
of sufficiently large characteristic. For simplicity our discussion will use F - Z.
Thus we can guarantee that the Vandermonde systems of equations are always
non-singular, bX using as the init ial starting point: (2,,g,5,...,pn), where p'is
the nth prime.

The only remaining source of erroneous answers in the probabfistic algorithm
of section 4, is that coefficient polynomials may vanish at the starting point. To
be more precise, assume the sta^rting point of the interpolation is ,torrzot. ..tfin'.
consider stage &, where we are introducing xr.we can write r1_fy a,

P ( t r )  :  p r r ( X 6 * r : . . . r  X ^ ) ( X t , . . . , X * ) 4  +  . . .

*  p rn(X*+ l r .  .  . ,  X" ) (Xr , .  .  . ,  Xx)€ ,  .

If the polynomials p;* do not vanish at the starting point, then skeleton produced
at stage k will be a correct image of skel P.If this is the case we say the starting
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point is a stage Ic good sta^rting point. If the starting point was not good, then
the resulting skeleton will be strictly smaller than the correct one at that stage.

The deterministic version of the sparse modular atgorithm assumes that at
stage k -t, the polynomiat it is given has the correct skeleton. It then produces a
ft variable polynomial that has the correct skeleton, by ensuring that it has used a
sta"rting point for which none of the p;1, vanish. This is easily Joo. by performing
the operations of stage Ie, T ti-.es, using (ri+r,o,...,cio) as the values for the
undetermined variables. Since the total number'of terms io p* not greater than
Trby proposition 14, one of these starting points will be stage B good. Since we
know the correct k - 1 skeleton it is not necessary to repeat lower stages of the
algorithm.

Thus this algorithm will require ? times more operations than the proba-
bilistic version- The components of the evaluation points a,re always primes (or
a random integer for x,n). Thus the largest component will b. pT, whose size is
approximately O(? log n).

7. Conclusions

We have presented new deterministic solutions to both the zero avoidance
problem and the interpolation problem for sparse polynomials. The zero avoidance
technique of proposition 13 reduces multivariate problems to univariate problems.
The interpolation algorithm presented may have better performance than Ben-Or
and Tiwari's interpolation algorithm if the bound on the number of terms is not
sharp.

Unfortunately, these deterministic results do not immediately yield determin-
istic algorithms for the multivariate polynomial greatest common divisor (GCD)
and factorization problems. For the GCD problem a technique for avoiding the
zeroes of the resultant of the two polynomials is needed. Unfortunately, straight
forward estimates of the number of terms of the resultant are exponential in the
number of variables even if the original polynomials were sparse. For the factor-
ization problem, using the current techniques, there still remains the need for an
effective version of the Eilbert Irreducibility theorem with good constants. The
existing versions give probabilistic results, von zur Gathen (1988), Heintz and
Sieveking (1981) and Kaltofen (198bb).
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