A new edge selection heuristic for computing the Tutte polynomial.

S F U Michael Monagan. Department of Mathematics, Simon Fraser University, British Columbia.

In [1] Garry Haggard and David Pearce computed the Tutte polyno-
mial for the truncated icosahedron graph shown in the figure below
right. It took their C++ code about one week to compute it on a
grid of 150 computers. Using the edge selection and vertex order-
ing heuristics presented here we are able to compute it in less than 2
minutes in Maple on a single core of an Intel Core 17 desktop. The
heuristics appear to work well for all sparse graphs. We present
timings for random cubic graphs.

The Tutte polynomial is of interest because the chromatic, flow and
reliability polynomials are special cases. It follows that computing
the Tutte polynomial 1s NP-hard. But perhaps some sparse families
of graphs are easy cases? We recall Tutte’s definition from [2].

Definition. Let G be an undirected graph, possibly a multi-graph.
Lete = (u,v) be an edge in GG. Let G — e denote the graph obtained
by deleting e and let GG / e denote the graph obtained by contracting
e, that 1s, first deleting e then joining vertexes u and wv.

The Tutte polynomial, denoted 7'(G, x, y), is defined by

.

1 if GG has no edges,
TG) = rT(G/e) %fe%sacut—eflge in G,

yT(G —e) if eis aloop in G

T(G—e)+T(G/e) otherwise.

It follows that T'(G, x, y) is a bivariate polynomial with integer co-
efficients. The definition gives a recursive algorithm for comput-
ing T'(G) known as the “edge-deletion-contraction” algorithm. The
recursive calls in T(G — e) + T(G/e) imply an exponential time
complexity for computing it. If, however, we remember the Tutte
polynomial for each recursive call in the computation tree, 1t may
happen that we encounter a graph that we have already seen which
could reduce the cost, possibly to polynomial time, for some fam-
ilies of graphs. In [3] Haggard, Pearce and Royle use the graph
1somorphism test from Brendan Makay’s nauty package to imple-
ment this. Roughly speaking, for random cubic graphs, they find
this doubles the size of the graph they can handle in a given amount
of time.

Which edge in G should we pick to improve the likelihood that
edge deletion and contraction will generate graphs that we have
seen before? In [3] Haggard, Pearce and Royle propose two heuris-
tics called MAXDEG and VORDER. By trying all variations on
their VORDER heuristic we have found one that works dramati-
cally better. Moreover, it 1s sufficient to test for identical graphs in
the computation tree only — so no graph 1somorphism test 1s needed.

MITACS

Edge selection heuristics: Local 1s good.
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Consider the graph G shown in the figure above. The vertex order heuristic picks the
edge e = (u,v) where u is the first vertex in the G and v is the first vertex adjacent to w.
In our example v = 1, v = 3, hence e = (1, 3) is chosen. Shown are the graphs G — e
and GG / e where when we contracted the edge e = (1, 3) we “pulled” vertex 3 down to
vertex 1. The next edge selected in G / e will be one of the edges (1,4).

There is alternative choice here when constructing GG / e. Instead of “pulling” vertex
v = 3 down to u = 1, 1f instead we “push” vertex u = 1 up to v = 3 we get the
contracted graph shown in the figure below. Observe that the two contracted graphs
GG / e in the figures are isomorphic. However, in the vertex order heuristic, the next edge
selected in GG / e is different. Edge (2,4) is selected.

S S S
1 2 1 2 2
VORDER-push
3 4 3 4 3 4
G G—e Gle

The short-arc vertex order heuristic SHARC.
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The truncated icosahedron graph GG and its planar dual G*.
Their Tutte polynomials are related by T'(G, z,y) = T(G*, y, x).

T(G*) = 23 + 59 2% + 60 2%y + 1710 2% + ... + 160271797870414 y° + 11551226205884 y

If you look at the vertex ordering 1n the truncated icosahedron graph above, you will
see a cycle for vertices (1,2,3,4,5,6,1). The next three vertices (7,8,9) form a shortest
path from the cycle back to the cycle, that visually looks like an arc. The next three
vertices (10,11,12) form another shortest path from the set of vertices included so far
back to itself. Repeating this gives an ordering on the vertices that we call a short arc
ordering. Such an ordering can be computed in linear time using a breadth-first-search
in (G. See the paper for detalils.

What difference does all this make? It turns out it makes a huge difference. We find that
VORDER-push is much better than VORDER-pull and the SHARC ordering is consis-
tently better than a simple breadth-first-search ordering and much better than depth-first-
search ordering. Why? We don’t really know yet.

Timings and Maple implementation

We implemented the heuristics in Maple using a simple list of neighbors rep-
resentation for G as shown in the figure below. Our software will become
available in Maple’s GraphTheory package (see [4]) for Maple 17.

L2033 121, 11.3.31 12.2.41, [3]]
G Maple list of lists data structure.

We generated 10 random connected cubic graphs on n vertices and computed
T(G, x,y) using the VORDER-pull and VORDER-push heuristics (also the
MINDEG heuristic). The first table 1s for a random vertex ordering. The
second table 1s for the SHARC ordering. Timings (in CPU seconds) are for
an Intel Core 17 desktop computer with 6 gigabytes of RAM.

MINDEG | VORDER pull VORDER push
n ave med ave med ave med
16 041 036 0.18 0.11 0.22 0.14
18 1.21 1.02 0.53 0.33 0.57 0.45
200 390 3.38 1.27 1.02 1.86 1.46
221 1440 12.07 4.65 3.36| 7.22 6.88
241 56.24 32.19 13.84 9.23 25.05 22.46
26193.34 118.98 41.03 20.07 58.94 24.57
28 199.70 116.32/210.69 75.24

Timings (in seconds) for random cubic graphs with n vertices using random vertex order.

MINDEG |VORDER pull| VORDER push
n ave med ave med ave med
18 0.68 0.51 0.05 0.03 0.02 0.02
221 7773 4.68 0.38 0.14 0.10 0.07
26/80.11 3845 1.24 041 0.17 0.12

30 11.10 436/ 0.67  0.37
34 9458 19.15 2.06 1.29
33 540  2.83
42 40.66  8.82
46 87.63 49.03
50 179.64 39.61

Timings (in seconds) for random cubic graphs with n vertices using SHARC vertex order.
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