
MATH 895, Course Project, Summer 2015

Instructor: Michael Monagan

The project is worth 25% of your final grade. You should expect to spend about 2.5 times
the time you would spend on an assignment. There are three suggested projects. Each one
requires that you read two papers, implement an algorithm, think about something, then
present your work.

To present your work you may either write a report in LaTeX or create a poster for
presentation at this years Symposium on Mathematics and Computation here at SFU on
Thursday August 6th. See

http://mathcompsymposium.irmacs.sfu.ca/

The main event at this meeting is the poster session where students in our department, both
undergraduate and graduate, present their work. I will pay for your registration fee to attend
the symposium. If you do the poster option then the project is effectively due August 6th.

If you choose to write a report, it should be about 5–10 pages (12pt font). Additionally,
you may include an Appendix containing Maple code or Maple worksheets with any data
that you wish to include. The report is due Thursday August 20th.

If you choose to do a poster, you can use my LaTeX poster outline on the course website
as an outline. I will pay for the cost of printing your poster.

LaTeX: The Maple command latex(f); will generate LaTeX for a mathematical for-
mula f (including matrices).
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Project 1: Determinant Algorithms

Read the paper Analysis of Algorithms, A Case Study: Determinants of Matrices with Poly-
nomial Entries by Gentleman and Johnson and posted on the course website. It compares
the efficiency of fraction-free Gaussian elimination with minor expansion on matrices with
polynomial entries.

Program two Maple procedures FracFree(A,n) and MinorExp(A,n) which both compute
det(A) for an n by n matrix A of polynomials in Q[x1, x2, ..., xm].

FracFree(A,n) should use the Bareiss fraction-free Gaussian elimination that you imple-
mented this on Assignment 3 for matrices of integers. For matrices of polynomials use
expand for polynomial multiplication and divide(A,B,’Q’) for polynomial division.

MinorExp(A,n) should use the method of minor expansion that avoids recomputation of
minors as described in the paper. The Maple library routine combinat[choose] may be
helpful. The option remember facility may also be helpful. Feel free to talk with me about
how to do this.

Time your algorithms on the following three types of matrices.

The n× n symmetric Toeplitz matrix for (n = 4):
w x y z

x w x y

y x w x

z y x w


The n× n cyclic shift matrix for (n = 4):

w x y z

z w x y

y z w x

x y z w


n× n Random univariate matrices:

> d := 3:

> n := 4:

> R := proc() randpoly(x,degree=d,dense) end:

> A := Matrix(n,n,R);
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You should find that the fraction free method is best on the univariate polynomial matri-
ces (where d is fixed by n grows) but the minor expansion method is best on the multivariate
benchmarks for all n > 2. Thinking about the two algorithms, one significant difference is
that minor expansion has no divisions. We say it is division free. To investigate this further,
recall that at the end of the fraction free elimination, An,n = ± det(A) and that An,n is
computed as

An,n =
An−1,n−1An,n − An,n−1An−1,n

An−2,n−2

Thus the numerator in this division equals An,n × An−2,n−2 and thus must be bigger than
det(A). Print out the number of terms of this numerator and det(A). Generate a table (for
each benchmark) of this data along with the timings for both algorithms. Your table should
look something like this

n # detA max terms time (FracFree) time (MinorExp)
...
6 120 575 0.002s 0.003s
7 427 3277 0.008s 0.008s
8 1628 21016 0.058s 0.053s
9 6090 128530 0.553s 0.087s
...

Table 1: Maple 17 timings (in seconds) for n by n symmetric Toeplitz matrices.

Read the paper Lazy and Forgetful Polynomial Arithmetic and Applications by Paul Vr-
bik and Michael Monagan on the course website. The authors avoid creating the polynomial
An−1,n−1An,n − An,n−1An−1,n explicitly. Explain using pseudo-code with comments how you
would to compute

det(A) = ±An−1,n−1An,n − An,n−1An−1,n

An−2,n−2

without explicitly constructing the numerator. Hint: use heaps to do the multiplications and
division. The paper Lazy and Forgetful Polynomial Arithmetic and Applications by Paul
Vrbik and Michael Monagan on the course website gives a general solution to this problem.
The problem of not expanding the numerator An−1,n−1An,n − An,n−1An−1,n explicitly is was
the motivation for the paper.

Project 2: Gcds over Algebraic Number Fields

Read the paper Computing GCDs of Polynomials over Algebraic Number Fields by Encarna-
cion and the paper A Modular GCD algorithm over Number Fields presented with Multiple
Extensions by Monagan and van Hoeij which are posted on the course website.
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For polynomials a, b in Q(α)[x] implement Encarnacion’s algorithm to compute the monic
gcd g of a and b using rational reconstruction. Let m(z) ∈ Z[z] be the minimal polynomial
for α. You will need to run the monic Euclidean algorithm to compute gcd(a, b) mod p so
over the finite ring R = Zp[z]/m(z) where there may be zero divisors. You can do this using
the RootOf representation modulo a prime p i.e. using

> m := z^2+z+1;

> alias( alpha=RootOf(m,z) );

> g := x^2+1/2*alpha*x+1;

> a := evala(Expand( g*(x^2+alpha*x+1/3) ) );

> b := evala(Expand( g*(x^2-2*alpha*x+1) ) );

> gcd(a,b); # Maple’s implementation

2

x + 1/2 alpha x + 1

> p := 11;

> Gcd(a,b) mod p;

2

6 alpha x + x + 1

In the paper by van Hoeij and Monagan, a prime for which the monic Euclidean algorithm
encounters a zero divisor in R is called a ”fail prime”. Their solution is to simply skip that
prime. If Maple code encounters a zero divisor you will get an error which you can “trap”
and move on to the next prime as shown below.

> p := 13;

> Factor(m) mod p;

(z + 4) (z + 10)

> Gcd( (alpha+4)*x+1, (alpha+10)*x+2 ) mod 13;

Error, (in evalgf1/Gcd) the modular inverse does not exist

> g := traperror( Gcd( (alpha+4)*x+1, (alpha+10)*x+2 ) mod 13 );

g := "the modular inverse does not exist"

Test your algorithm on your own examples, including m(z) = z4 + z3 + z2 + z + 1.
Now suppose m(z) ∈ Z[z] satisfies m(α) = 0, degz(m) > 0 but m(z) is reducible over Q.
Such applications occur in solving polynomial systems of equations and we’d still like to
compute gcd(a, b) if it exists. Modify the modular GCD algorithm to have the following
properties.

If the monic Euclidean algorithm when executed over Q encounters a zero divisor
then the modular GCD algorithm should output a factor of m(z), otherwise it
should output the monic gcd(a, b).
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For example if m(z) = (3z−1)(z2 + 1), on input of a = x2 + zx+ 2 and b = x2 + 1/3x+ 1
the monic Euclidean algorithm will compute the remainder r = a÷b = (z−1/3)x+1. Now to
make the remainder monic we need to invert lc(r) = z−1/3 which is a zero divisor. This will
be discovered when attempting to invert z− 1/3 modulo m(z) using the extended Euclidean
algorithm. So the modular GCD algorithm should reconstruct z−1/3 from modular images.

You will need to implement the monic Euclidean algorithm in R[x] youself so that when
you make ri monic, you can run the extended Euclidean algorithm on m(z) and lc(ri) modulo
p to compute the inverse of lc(ri) it it exists, otherwise you will have a factor of m(z) modulo
p. You will need to design the algorithm so you can prove termination; in a finite number of
steps it either outputs g = gcd(a, b) or a factor of m(z).

Project 3: Zippel’s GCD Algorithm

Read the 1979 paper Probabilistic Algorithms for Sparse Polynomials by Zippel. It is posted
on the course website. It develops a sparse GCD algorithm and compares it with the efficiency
of several GCD algorithms, including Brown’s dense algorithm (see column Modular) on page
224.

Zippel’s algorithm is probabilistic.
State and prove the Schwarz Zippel Lemma.

Let A,B be polynomials in Z[x1, x2, ..., xn] and let G = gcd(A,B). For your MGCD and
PGCD algorithms from assignment 2, modify both of them to use Zippel’s sparse interpola-
tion. Call these new procedures SparseMGCD and SparsePGCD. I suggest you pass the vari-
ables as a list as a parameter so that you code SparseMGCD(A,B,X) and SparsePGCD(A,B,X,p)

for prime p. To simplify the coding of PGCD assume that G is monic in x1 i.e. G =
cxd1 + f(x1, x2, ..., xn) where degx1

f < d and c ∈ Z.
Let

G =
m∑
i=1

ci(x2, ..., xn)xi1 where cm ∈ Z.

Suppose t is the maximum number of terms in the coefficients of G, i.e. t = maxm−1
i=1 #c.

When you implement the algorithm you will construct systems of linear equations, one for
each coefficient in x1 of G, the biggest of which will be t × t. Because we use random
evaluation points modulo p, it is possible that a linear system will be underdetermined, i.e.,
have rank < t. If this happens you need another equation. It is also possible that the
“skeleton” or “assumed form” of the previous result from PGCD is wrong and we need some
way to detect this. Use one more univariate image (so t + 1 images) so that you have one
more equation than the number of unknowns to detect this case. If the skeleton is wrong
then the t+ 1 by t linear system will be inconsistent with high probability.

In the appendix of the paper you will see 10 test problems. In the test problems the
inputs are difi and digi where the gcd is the di polynomials. But they are not monic so
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make them monic in x1 by adding xm1 for m = 1 + degx1
di. Zippel reports timings only for

the benchmarks. It would be more helpful if we counted U , the number of univariate gcds
in Z[x1] that PGCD makes. Use the prime p = 231 − 1 so that one prime is sufficient for
MGCD. Generate a table of timings and U for procedures MGCD and SparseMGCD. For
each benchmark include the number variables n and the maximum number terms t and the
number of univariate GCDs computed U . So your table will look something like this

Brown Zippel
Test n t time U time U
1 1 1 ? ? ? ?
2 2 2 ? ? ? ?
3 3 2 ? ? ? ?
4 4 3 ? ? ? ?
...

Table 2: Maple 17 timings (in seconds) for the Zippel’s benchmarks.

Zippel’s benchmarks all have very small values for t which makes his algorithm look
better than it performs on real problems that occur in practice. Include this benchmark as
an 11’th benchmark with t = 21.

d11 = (x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7)2 + 3, f11 = d11 + x6, g11 = d11 + x3.

Discuss whether the number of univariate GCDs agree with the theory or not. SparsePGCD
should use at most (n− 1)(d+ 1)(t+ 1) univariate GCDs where d = maxn

i=2 degxi
G. PGCD

should use at most Πn
i=2(1 + degxi

G).
Zippel’s method needs to solve linear systems of size t+ 1× t+ 1 which costs O(t3) time

and O(t2) space which is bad for large t. Zippel’s 1990 paper Interpolating Polynomials from
their Values (also on the course webpage) shows how to choose the evaluation points in such
a way that he can solve the linear systems in O(t2) time and O(t) space. You can implement
this if you would like to.
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