
Irreducible Quadratics over Zn

by

Robyn Hearn

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of
Honours Bachelor of Science

in the
Department of Mathematics

Faculty of Science

c© Robyn Hearn 2018
SIMON FRASER UNIVERSITY

Fall 2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Robyn Hearn

Degree: Honours Bachelor of Science (Mathematics)

Title: Irreducible Quadratics over Zn

Supervisory Committee: Michael Monagan
Supervisor
Professor

Jonathan Jedwab
Professor

Date Approved: December 14, 2018

ii

Abstract

It is commonly known that there are
(n

2
)
irreducible, quadratic polynomials over Zn when

n is a prime. Then it is natural to ask how many irreducible quadratics there are over Zn
without the condition that n is prime. The counting methods that solve the case where n is
prime, rely on field axioms which Zn does not generally satisfy. In this thesis, we relate the
problem of counting reducible, quadratic polynomials to the simpler problem of counting
squares. In the construction of this count, we find an algorithm to generate all quadratic
polynomials over Zn and categorize them as reducible or irreducible. This algorithm is
computationally less expensive than the naive cubic algorithm for generating all irreducible
quadratics.

Keywords: Algebra; Combinatorics; Ring(s); Field(s); Irreducible; Polynomial(s)

iii

Acknowledgements

Many thanks to my research supervisor Michael Monagan for his support and contributions.
Thank you as well to Jonathan Jedwab for his help in clearly communicating my work.
Also to Simon Fraser University, KEY Big Data, and the Natural Sciences and Engineering
Research Council for this opportunity and for financial support.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Algorithms vii

1 Introduction 1
1.1 Motivation . 1
1.2 Computational Experiments . 2
1.3 Further Motivation and Approach . 4

2 Counting Squares 6
2.1 Definitions & Examples . 6
2.2 Quadratic Polynomials & Squares . 6
2.3 Number of Squares in an Integer Ring . 8
2.4 Generate Squares . 14

3 Main Results and Corollaries 16
3.1 Counting Results . 16
3.2 Construction Results . 19

4 Roots 20
4.1 Lifting . 20

5 Conclusion 24

Bibliography 25

A Implementation of Algorithms 1 and 4 26
A.1 Algorithm 1 with n a power of 2 implemented in Cilk 26

v

A.2 Algorithm 1 with n a power of an odd prime implemented in C 28
A.3 Algorithm 4 Implemented in Maple . 29

B Implementation of Algorithms 2 and 3 30
B.1 Algorithm 2 implemented in Maple . 30
B.2 Algorithm 3 implemented in Maple . 30
B.3 Example . 31

C Implementation of Algorithms 5 and 6 32
C.1 Algorithm 5 Implemented in Maple . 32
C.2 Algorithm 6 Implemented in Maple . 32
C.3 Examples . 33

vi

List of Algorithms

1 Generate All Reducible Quadratic Monic Polynomials in Zn[x] 3
2 Generate Quadratic Residues in Zpk . 14
3 Generate Squares in Zpk . 14
4 New Method to Generate Reducible Quadratic Monic Polynomials in Zn[x] 19
5 Lift root r ∈ Zpα of f(x) in Z[x] to root(s) of f(x) in Zpα+1 21
6 Generate all roots in Zpk of f(x) in Z[x] . 23

vii

Chapter 1

Introduction

1.1 Motivation

Introductory courses in field and ring theory often present the following problem.

(1) Show that the number of irreducible quadratic monic polynomials in Zp[x] is
1
2p(p− 1), where p is a prime. [2]

One method of solving this problem is to count all quadratic monic polynomials and subtract
the number of those which are reducible. The total number of quadratic monic polynomials
is p2 since there are p choices for both of the coefficients b, c in x2 + bx+ c. In the potential
factorization (x + α)(x + β), there are p choices for which α = β and

(p
2
)
choices for

which α 6= β. Therefore, the number of quadratic monic polynomials which are reducible is
1
2p(p+1), so the number which are irreducible is p2− 1

2p(p+1) = 1
2p(p−1). Then a natural

question is

Do we require that p is prime for the method to carry over?

By the above method, we see that GF(pk)[x] has 1
2p
k(pk − 1) irreducible quadratic monic

polynomials for each natural number k. However, if GF(pk) 6= Zpk , so this thesis will focus
on the following question:

(2) For a positive integer n, how many irreducible quadratic monic polynomials
are there in Zn[x]?

Consider the following example, which illustrates the difference between problems (1) and (2).

1

Example 1. We classify every quadratic monic polynomial over Z4 as reducible or irre-
ducible.

Reducible Irreducible

x2 = (x+ 0)2 = (x+ 2)2 x2 + 1

x2 + x = (x+ 0)(x+ 1) x2 + 2

x2 + 2x = (x+ 0)(x+ 2) x2 + x+ 1

x2 + 3x = (x+ 0)(x+ 3) x2 + x+ 3

x2 + 2x+ 1 = (x+ 1)2 = (x+ 3)2 x2 + 2x+ 2

x2 + 3x+ 2 = (x+ 1)(x+ 2) x2 + 2x+ 3

x2 + 3 = (x+ 1)(x+ 3) x2 + 3x+ 1

x2 + x+ 2 = (x+ 2)(x+ 3) x2 + 3x+ 3

The number of irreducible quadratics is not 1
24(4− 1) = 6, but 8.

Our count of irreducible quadratic monic polynomials in Zp[x] requires that for all fixed
b, c in Zp, the set of congruence

α+ β ≡ b (mod p)

αβ ≡ c (mod p)

has a unique solution when α, β in Zp. This is not necessarily true in Zn, so 1
2n(n+ 1) over-

counts the number of reducible quadratic monic polynomials (as observed in Example 1.)

1.2 Computational Experiments

Our investigation into this question began with computational experiments using the fol-
lowing algorithm on various values of n. Algorithm 1 is a straight forward way to count
reducible polynomials but has cubic time complexity. Since the algorithm requires so much
time, our experiments began in Maple, but were promptly transferred to C using primarily
bit-wise operations, and finally the work was parallelized in Cilk C to get enough raw data
to work with. More details are included in Appendix A.

2

Algorithm 1 Generate All Reducible Quadratic Monic Polynomials in Zn[x]
Input: n ∈ Z+

1: P ← []; i← 0
2: \\Generate all quadratic monic polynomials
3: for b ∈ Zn do
4: for c ∈ Zn do
5: \\Look for a root, x0 ∈ Zn
6: for x0 ∈ Zn do
7: if x2

0 + bx0 + c ≡ 0 (mod n) then
8: \\If a root is found, increase count by 1
9: P [i]← {x2 + bx+ c}; i++

10: break
11: end if
12: end for
13: end for
14: end for
15: return P

We sought to find a pattern in the number of polynomials output by this algorithm. In
the case of n = 2k, define Ck as the number of reducible quadratic polynomials over Zn
as determined by Algorithm 1, and define Dk as the difference between Ck and the count
which (1) suggests, 1

22k(2k − 1).

k 1 2 3 4 5 6 7 8 9

Ck 1 8 36 160 656 2688 10816 43520 174336

Dk 0 2 8 40 160 672 2688 10880 43520

Table 1.1: Output of Algorithm 1 with input n = 2k on increasing values of k

Curiously, neither of these sequences were found in the On-Line Encyclopedia of Integer
Sequences [3], but the following relationship is observed.

Ck =

Dk+1 if k is even

Dk+1 − 2k−1 if k is odd.
(1.1)

Substituting Dk = Ck − 1
2p
k(pk − 1), and solving for a closed from, (1.1) gives the

following conjecture.

3

Conjecture 1. Let C(n) denote the number of irreducible quadratic monic polynomials in
Zn[x]. Then for each natural number k,

C(2k) =


1
322k+1 − 4

62k if k is even
1
322k+1 − 5

62k if k is odd.

The same procedure was run for n = pk for a variety of small primes p, though a pattern
does not emerge as clearly. Throughout this paper, we will discuss powers of 2 separately
from powers of odd primes, the reason for which will become clear.

p = 3

k 1 2 3 4 5 6

output 3 45 432 4050 36693 331695

output −1
2p
k(pk − 1) 0 9 81 810 7290 66339

p = 5

k 1 2 3 4 5 6

output 10 350 9000 227500 5693750

output −1
2p
k(pk − 1) 0 50 1250 32500 812500

p = 7

k 1 2 3 4 5 6

output 21 1323 65856 3241350

output −1
2p
k(pk − 1) 0 147 7203 360150

Table 1.2: Output of Algorithm 1 with input n = pk on a variety of p, k ∈ N

Table 1.2 has missing entries where computation was excessively expensive; this high-
lights the impracticality of Algorithm 1, and motivates a more efficient algorithm.

1.3 Further Motivation and Approach

The concept of irreducible polynomials is reminiscent of prime numbers; that is, when
we count irreducible polynomials, we are counting the "building blocks" of polynomials.
Further, irreducible polynomials over integer rings are useful in the construction of fields, so
an efficient construction of irreducible polynomials could provide an efficient construction
of fields. The focus of this thesis is the proof of Conjecture 1 and of similar expressions
for n = pk where p is an odd prime, and for composite n. From this proof we have an

4

efficient construction of irreducible polynomials. This construction relies on the relationship
between quadratic polynomials and squares as described in [1]. In Section 2 we discuss this
relationship between quadratic polynomials and squares, as well as a count of quadratic
residues and squares in Zn using methods from [4]. Section 3 contains our main theorems,
their constructive proofs, and an exploration of efficiency. Since this relationship between
quadratic polynomials and squares does not generalize to larger degree polynomials, we also
explore some closely related problems in hopes of finding a more general counting approach.
To this end, Section 4 will consider counting and generating all roots of these polynomials.

5

Chapter 2

Counting Squares

2.1 Definitions & Examples

The basic definitions and notation conventions regarding rings and fields follow the text
of [2]. In particular, Zn denotes the set of integers from 0 to n − 1 together with addition
and multiplication modulo n. Definitions and notation regarding squares and quadratic
residues follow the text of [4].
An integer a in the range 0 ≤ a < n is a square in Zn if x2 = a has a solution in Zn. The
square a is also a quadratic residue if a is invertible in Zn; that is, if gcd(a, n) = 1.

Example 2.
In Z24, the squares are 0, 1, 4, 9 and the quadratic residues are 1, 9.
In Z25, the squares are 0, 1, 4, 9, 16, 17, 25 and the quadratic residues are 1, 9, 17, 25.

2.2 Quadratic Polynomials & Squares

We begin with the question of how squares are related to quadratic polynomials; the answer
is presented in 1964 text by Trygve Nagell, [1].

Lemma 2. Let a, b, c, n be integers such that a 6= 0. Then ax2 + bx+ c ≡ 0 (mod n) has a
solution if and only if the system of congruencesy

2 ≡ b2 − 4ac (mod 4an)

y ≡ b (mod 2a)

has a solution.

Proof.

(⇒) Consider
ax2 + bx+ c ≡ 0 (mod n) (2.1)

6

where a, b, c, n are integers and a 6= 0. Then congruence (2.1) is equivalent to

0 = ax2 + bx+ c+ kn where k is some integer

= 4a2x2 + 4abx+ 4ax+ 4akn

= (2ax+ b)2 − b2 + 4ac+ k(4an).

Let y = 2ax+ b. Then
y ≡ b (mod 2a)

and
y2 ≡ b2 − 4ac (mod 4an)

directly follow.

(⇐) Consider
y2 ≡ b2 − 4ac (mod 4an) (2.2)

and
y ≡ b (mod 2a) (2.3)

where a, b, c, n are integers.
By (2.3), y− b = j(2a) for some integer j, so 2a | y− b. Let x = (y− b)/2a; then x ∈ Z and

y = 2ax+ b. (2.4)

Hence congruence (2.2) is equivalent to

0 = y2 − b2 + 4ac+ k(4an) where k is some integer

= (2ax+ b)2 − b2 + 4ac+ k(4an) (by (2.4))

= 4a2x2 + 4abx+ b2 − b2 + 4ac+ k(4an).

Dividing by 4a we get
0 = ax2 + bx+ c+ kn

which implies
ax2 + bx+ c ≡ 0 (mod n).

Example 3. Congruence x2 + 3x+ 8 ≡ 0 (mod 9) has solutions

x = 2 and x = 4.

The set of congruences {y2 ≡ 32 − 4(8) (mod 4(9)), y ≡ 3 (mod 2)} has solutions

y = 7, y = 11, y = 25, and y = 29.

7

Then solve y = 2x+ 3 to get

x = 2, x = 4, x = 11 ≡ 2 (mod 9), and x = 13 ≡ 4 (mod 9).

2.3 Number of Squares in an Integer Ring

Motivated by the relationship between squares and quadratic polynomials, we now count
squares in integer rings. The lemmas and theorems in this section come from a 1996 paper
by Walter D. Stangl, [4] and are crucial to our study of squares.

Lemma 3. For k ≥ 3 and p a prime, the number of squares in Zpk is equal to the sum of
the number of quadratic residues in Zpk and the number of squares in Zpk−2.

Proof. We want to show that every square in Zpk which is not a quadratic residue is in
one-to-one correspondence with a square in Zpk−2 . To this end, we will construct a bijection
between the sets

S := {s ∈ Z : 0 ≤ s < pk, ∃ x such that x2 ≡ s (mod pk), and gcd(s, pk) > 1}, and

S′ := {s ∈ Z : 0 ≤ s < pk−2 and ∃ x such that x2 ≡ s (mod pk−2)}.

Define f : S → S′ by f(s) = s/p2. f is a mapping from S to S′ because for s ∈ S, s/p2 is in
S′ by the following:
Since s ∈ S, there exist integers x, r such that

x2 = s+ rpk. (2.5)

Since gcd(s, pk) > 1, p divides the right side of (2.5), so p also divides the left side. Since p
is prime, p2 divides x2, the left side of (2.5), so p2 also divides the right side. Then we have

(x/p)2 = s/p2 + rpk−2,

and s/p2 is an integer less than pk−2 since s < pk.
Claim: f is surjective.
Let s′ be an element of S′. There exist integers y, t such that

y2 = s′ + tpk−2.

Then multiplication by p2 gives

(yp)2 = s′p2 + tpk−2

and s′p2 is an integer less than pk since s′ < pk−2. So s′p2 is in S and f(s′p2) = s′.
Claim: f is injective.

8

Let s1, s2 be elements of S such that f(s1) = f(s2). Then

s1/p
2 = s2/p

2,

and multiplication by p2 gives s1 = s2.

Example 4.
As seen in Example 2, Z24 has 2 quadratic residues which are 1 and 9.
Z22 has 2 squares, 0 and 1.
Then as seen in the proof of Lemma 3, Z24 has 4 squares: 1, 9, 22 × 0 = 0, and 22 × 1 = 4.
Similarly, Z25 has 4 quadratic residues and Z23 has 3 squares, so Z25 has 7 squares.

Recall that we shall consider the odd primes separately from 2. We will first consider
the squares in Z2k .

Lemma 4. The equation x2 = u has exactly 0 or 4 solutions in Z2k when u is a unit
and k ≥ 3.

Proof. Let k be some integer greater than or equal to 3, and u a unit in Z2k .
Suppose x2 ≡ a (mod 2k) has a solution, b. Then clearly −b is also a solution.
Claim: The solutions b,−b are distinct.
Suppose toward a contradiction that b ≡ −b (mod 2k). Then 2b ≡ 0 (mod 2k) which implies
gcd(b, 2k) > 1. But we require that gcd(b2, 2k) = 1 since u is a unit; hence, the claim holds.
We have that 2k−1 ± b are also solutions since

(2k−1 ± b)2 ≡ 22k−2 ± 2kb+ b2 (mod 2k)

≡ b2 (mod 2k).

Claim: The solutions 2k−1 + b and 2k−1 − b are distinct from b,−b, and each other.
These solutions are distinct in Z2k by the following:
2k−1 + b ≡ 2k−1 − b =⇒ b ≡ −b
2k−1 + b ≡ b =⇒ 2k−1 ≡ 0
2k−1 − b ≡ b =⇒ 2k−2 ≡ b which contradicts gcd(u, 2k) = 1
2k−1 + b ≡ −b =⇒ 2k−2 ≡ −b which contradicts gcd(u, 2k) = 1
2k−1 − b ≡ −b =⇒ 2k−1 ≡ 0.

Then x2 ≡ u (mod 2k) has at least four distinct solutions.

Now suppose toward a contradiction that there exists a fifth distinct solution, c. Then
b2 ≡ c2 which implies b2 − c2 ≡ (b − c)(b + c) ≡ 0 in Z2k . Since b, c are both odd, b + c

is of the form (2m + 1) + (2n + 1) = 2(m + n + 1) for some non-negative integers m,n.
Then we have (b− c)× 2(m+ n+ 1) ≡ 0 (mod 2k), so (b− c)(m+ n+ 1) ≡ 0 (mod 2k−1).

9

Hence either b− c is a multiple of 0 or 2k−1 or m+ n+ 1 is a multiple of 2k−1 all of which
imply c ≡ ±b.

Example 5.
In Z24, x2 = 3 has no solution since 3 is not a square (seen in Example 2).
However, x2 = 9 has solutions 3, 5, 11, and 13.

Lemma 5. The number of quadratic residues in Z2 and in Z4 is 1. For k > 2, the number
of quadratic residues in Z2k is 2k−3.

Proof. Clearly the only quadratic residue in Z2 is 1, and the same is true of Z4.
Now consider k > 2. The odd numbers make up the units in Z2k of which there are 2k−1.
By Lemma 4, the units of Z2k can be split into equivalence classes of 4 elements with
equal squares; that is, if we square each unit, we will generate each square exactly 4 times.
Then there are 2k−1/4 = 2k−3 of these squares which are, more precisely, quadratic residues
in Z2k .

Note that this matches our results from Example 2. We now have all that we need to
count the number of squares in Z2k .

Theorem 6. The number of squares in Z2k is

S(2k) =


2k−1+4

3 if k is even

2k−1+5
3 if k is odd.

Proof. We use proof by induction on k.
Consider the first base case k = 1. In Z2, 02 = 0 and 12 = 1, so 0 and 1 are both squares.
Also, 21−1+5

3 = 6
3 = 2, so the theorem holds for k = 1.

Suppose the theorem holds for natural numbers less than or equal to k.
We also requre a second base case, k = 2. In Z4, 02 = 22 = 0 and 12 = 32 = 1, so 0 and 1
are both squares.
Also, 22−1+4

3 = 6
3 = 2, so the theorem also holds for k = 2.

Case k + 1 is even:
Then by Lemma 3, S(2k) = S(2k−2) + Q(2k) where Q(2k) is the number of quadratic

10

residues in Z2k . By Lemma 5, Q(2k) = 2k−3, so from our induction hypothesis we have

S(2k+1) = S(2k−1) +Q(2k+1)

= 2k−2 + 4
3 + 2k−2

= 4× 2k−2 + 4
3

= 2k + 4
3 .

Case k + 1 is odd:
Again, by Lemmas 3 and 5 we have

S(2k+1) = S(2k−1) +Q(2k+1)

= 2k−2 + 5
3 + 2k−2

= 4× 2k−2 + 5
3

= 2k + 5
3 .

Example 6.
Theorem 6 matches what we have seen of Z24 which has S(24) = 24−1+4

3 = 4 squares,
namely {0, 1, 4, 9}.
Similarly, we saw that Z25 has S(25) = 25−1+5

3 = 7 squares, namely {0, 1, 4, 9, 16, 17, 25}.

We have determined the number of quadratic residues and squares in Zpk where p = 2
and now reconsider with p an odd prime.

Lemma 7. The number of quadratic residues of Zpk where p is an odd prime is

Q(pk) = pk − pk−1

2 .

Proof. We use the Euler φ function on pk to see that Zpk has pk − pk−1 units; each of these
units are a power of the primitive root of pk, say α. Then the units α2j for 0 ≤ j < φ(pk)

2
are distinct quadratic residues. Hence there are pk−pk−1

2 quadratic residues in Zpk .

In the proof of Lemma 7, we rely on primitive roots. Note that there are no primitive
roots of 2k when k > 2 which is why, as discussed above, we handled Z2k separately. Now
we can write our last theorem for counting squares.

11

Theorem 8. The number of squares in Zpk when p is an odd prime is

S(pk) =


pk+1+p+2

2(p+1) if k is even

pk+1+2p+1
2(p+1) if k is odd.

Proof. As in Theorem 6, we use proof by induction on k.
Consider first base case k = 1. In Zp, 0 is the only non-unit and is a square, so S(p) =
Q(p) + 1. Then the theorem holds for k = 1 if

Q(p) + 1 = p1+1 + 2p+ 1
2(p+ 1) .

Observe that

Q(p) + 1− p1+1 + 2p+ 1
2(p+ 1) = p− 1

2 + 1− p2 + 2p+ 1
2(p+ 1)

= (p+ 1)2 − (p2 + 2p+ 1)
2(p+ 1)

= 0.

As in Theorem 6, we require a second base case, k = 2. In Zp2 , 0 is also the only non-unit
and is a square, so S(p2) = Q(p2) + 1. Then the theorem holds for k = 1 if

Q(p2) + 1 = p2+1 + p+ 2
2(p+ 1) .

Observe that

Q(p2) + 1− p2+1 + p+ 2
2(p+ 1) = p2 − p

2 + 1− p3 + p+ 2
2(p+ 1)

= p(p− 1)(p+ 1) + 2(p+ 1)− p3 − p− 2
2(p+ 1)

= 0.

Suppose the theorem holds for natural numbers less than or equal to k.
Case k + 1 is even:
Claim

S(pk+1) = p(k+1)+1 + p+ 2
2(p+ 1) .

By Lemma 3,

S(pk+1)− p(k+1)+1 + p+ 2
2(p+ 1) = S(pk−1) +Q(pk+1)− pk+2 + p+ 2

2(p+ 1) . (2.6)

12

By Lemma 7, the RHS of (2.6) is equal to

S(pk−1) + pk+1 − pk

2 − pk+2 + p+ 2
2(p+ 1) .

Then by the induction hypothesis,

S(pk+1)− p(k+1)+1 + p+ 2
2(p+ 1) = pk + p+ 2

2(p+ 1) + pk+1 − pk

2 − pk+2 + p+ 2
2(p+ 1)

= pk + p+ 2 + (p+ 1)(pk+1 − pk)− (pk+2 + p+ 2)
2(p+ 1)

= 0.

Case k + 1 is odd:
Claim

S(pk+1) = p(k+1)+1 + 2p+ 1
2(p+ 1) .

By Lemma 3,

S(pk+1)− p(k+1)+1 + 2p+ 1
2(p+ 1) = S(pk−1) +Q(pk+1)− pk+2 + 2p+ 1

2(p+ 1) . (2.7)

By Lemma 7, the RHS of (2.7) is equal to

S(2k−1) + pk+1 − pk

2 − pk+2 + 2p+ 1
2(p+ 1) .

Then by the induction hypothesis,

S(pk+1)− p(k+1)+1 + 2p+ 1
2(p+ 1) = pk + 2p+ 1

2(p+ 1) + pk+1 − pk

2 − pk+2 + 2p+ 1
2(p+ 1)

= pk + 2p+ 1 + (p+ 1)(pk+1 − pk)− (pk+2 + 2p+ 1)
2(p+ 1)

= 0.

Example 7.
We see that Z33 has S(33) = 33+1+2×3+1

2(3+1) = 11 squares, namely {0, 1, 4, 7, 9, 10, 13, 16, 19, 22, 25}.
Q(33) = 33−33−1

2 = 9 of these are quadratic residues, and those are every square except for
0 and 9.
Similarly, Z52 has S(52) = 52+1+5+2

2(5+1) = 11 squares, namely {0, 1, 4, 6, 9, 11, 14, 16, 19, 21, 24}.
Q(52) = 52−52−1

2 = 10 of these are quadratic residues, and those are every square except
for 0.

13

2.4 Generate Squares

From the constructive proofs of the above lemmas and theorems, we have the following
algorithms for generating all quadratic residues and then all squares in an integer ring.

Algorithm 2 Generate Quadratic Residues in Zpk
Input: p, k ∈ Z+ where p is prime

1: if p = 2 then
2: if k < 4 then
3: return 1
4: end if
5: return {(ip+ 1)2 mod n : i = 0, 1, ..., pk−2 − 1}
6: end if
7: α← a primitive root modulo pk

8: S ← []
9: S[0]← α2

10: for i from 1 to φ(pk)
2 do

11: S[i]← (α2S[i− 1]) mod pk

12: end for
13: return {S}

Algorithm 3 Generate Squares in Zpk
Input: p, k ∈ Z+ where p is prime

1: if k = 0 then
2: return {0}
3: else if k = 1 then
4: return {0} ∪ output of Algorithm 2 with input p, 1
5: end if
6: T ← output of Algorithm 3 with input p, k − 2
7: S ← output of Algorithm 2 with input p, k
8: return S ∪ {ip2 mod pk : i ∈ T}

Algorithm 3 is more efficient than the intuitive approach of simply squaring every ele-
ment in Zpk . These algorithms were implemented in Maple alongside this intuitive approach,
and below is a comparison of their run-time. More information can be found in Appendix B.

14

18 20 22 240

10

20

30

k

tim
e
(s
)

Counting Squares in Z2k (Maple)

Naive Algorithm
Algorithm 3

10 12 14 160

20

40

60

80

100

k

tim
e
(s
)

Counting Squares in Z5k (Maple)

Naive Algorithm
Algorithm 3

8 100

200

400

600

k

tim
e
(s
)

Counting Squares in Z5k (Maple)

Naive Algorithm
Algorithm 3

15

Chapter 3

Main Results and Corollaries

3.1 Counting Results

Finally, we answer our original inquiry with the following theorem. Refer to Theorems 6 and 8
for definitions of S(2k) and S(pk).

Theorem 9. Suppose n has prime factorization

n = 2α0pα1
1 pα2

2 . . . pαkk ,

where pi are odd primes and αi are non-negative integers. Then the number of irreducible,
quadratic, monic polynomials in Zn[x] is

C(n) = n2 − n

2S(2α0+2)
k∏
i=1

S(pαii)

where S(n) is defined as in Theorems 6 and 8.

Proof. As in Problem (1), we count all quadratic monic polynomials and subtract the num-
ber of those which are reducible. The number of quadratic monic polynomials, x2 +bx+c in
Zn[x] is n2 since there are n choices for each of b and c. To count those that are reducible,
we count the number of b, c pairs such that x2 + bx+ c ≡ 0 (mod n) has a solution.
By Lemma 2, this is equal to the number of b, c pairs such that

y
2 ≡ b2 − 4c (mod 4n)

y ≡ b (mod 2).

By the Chinese Remainder Theorem,

y2 ≡ b2 − 4c (mod 2α0+2pα1
1 pα2

2 . . . pαkk) (3.1)

16

has a solution which is unique modulo n if and only if

y2 ≡ b2 − 4c (mod 2α0+2) (3.2)

has a solution, and
y2 ≡ b2 − 4c (mod pαii) (3.3)

has a solution for all 1 ≤ i ≤ k.
We have from Theorem 5 that there are S(2α0+2) distinct values of b2 − 4c for which 3.2
has a solution. From Theorem 7, for each i there are S(pαii) distinct values of b2 − 4c such
that 3.3 has a solution. Then there are S(2α0+2)

∏k
i=1 S(pαii) distinct values of b2 − 4c such

that 3.1 has a solution. Let s be one of the S(2α0+2)
∏k
i=1 S(pαii) squares in Zn. Then we

solve for b, c pairs in Zn such that, s = b2 − 4c and y ≡ b (mod 2), so there are n
2 choices

for b, and c is uniquely determined to be b2−y2

4 .
Finally we see that there are

n

2S(2α0+2)
k∏
i=1

S(pαii)

reducible monic quadratic polynomials over Zn and subtract this from the total number of
monic quadratic polynomials over Zn.

In the special case that n is a power of a single prime, we have the following formulas.

Corollary 10.

C(2i) =


1
322i+1 − 4

62i if i is even
1
322i+1 − 5

62i if i is odd.

Proof. By Theorem 9,

C(2i) = 22i − 2i

2 S(2i+2).

By Theorem 6,

S(2i+2) =


2(i+2)−1+4

3 if i is even
2(i+2)−1+5

3 if i is odd.

Then if i is even,

C(2i) = 22i − 2i−1 2i+1 + 4
3

= 22i+1

3 − 2× 2i

3 .

17

And if i is odd,

C(2i) = 22i − 2i−1 2i+1 + 5
3

= 22i+1

3 − 5× 2i

6 .

Note that Corollary 10 matches Conjecture 1!

Corollary 11. For odd prime p,

C(pi) =

p
2i − pi(pi+1+p+2)

2(p+1) if i is even

p2i − pi(pi+1+2p+1)
2(p+1) if i is odd.

Proof. By Theorem 9,

C(pi) = p2i − pi

2 S(22)× S(pi).

By Theorem 6 S(22) = 22−1+4
3 = 2, and by Theorem 8

S(pi) =


pi+1+p+2

2(p+1) if i is even
pi+1+2p+1

2(p+1) if i is odd.

Then if i is even,

C(pi) = p2i − pi

2 × 2× pi+1 + p+ 2
2(p+ 1)

= p2i − pi(pi+1 + p+ 2)
2(p+ 1) .

And if i is odd,

C(pi) = p2i − pi

2 × 2× pi+1 + 2p+ 1
2(p+ 1)

= p2i − pi(pi+1 + 2p+ 1)
2(p+ 1) .

18

3.2 Construction Results

From the proof of Theorem 9, we have the following algorithm for generating irreducible
quadratics over Zn.

Algorithm 4 New Method to Generate Reducible Quadratic Monic Polynomials in Zn[x]
1: P ← []; i← 0
2: for s ∈ {x2 mod 4n : x ∈ Z4n} do
3: if 2|s then
4: B ← {b ∈ Zn : 2 | b}
5: else
6: B ← {b ∈ Zn : 2 - b}
7: end if
8: for b ∈ B do
9: c← b2−s

4 mod n

10: P [i]← {x2 + bx+ c}; i+ +
11: end for
12: end for
13: return P

This algorithm is computationally less expensive than the naive Algorithm 1 as shown
in Figure 3.2. More details can be found in Appendix A.

200 400 600 800

1

2

3

n

tim
e
(s
)

Generating Reducible Polynomials over Zn (Maple)

Algorithm 1
Algorithm 4

19

Chapter 4

Roots

4.1 Lifting

The reader should now see why the method used in this paper does not generalize to larger
degree polynomials, so we hope to find a more general approach for this same count. For
the sake of further exploration, we consider the problem of counting roots. An efficient way
to generate roots of polynomials in Zpk [x] is to "lift roots" from Zp[x]. Returning to Nagell’s
text, we see that

"If we know the solution of the congruence

f(x) ≡ 0 (mod pα) (α ≥ 1), (4.1)

it is possible to deduce the solutions of the congruence

f(x) ≡ 0 (mod pα+1)" (4.2)

by the following algorithm, the details of which are given in Appendix C.

20

Algorithm 5 Lift root r ∈ Zpα of f(x) in Z[x] to root(s) of f(x) in Zpα+1

Input: prime p, α ∈ N, f ∈ Z[x], and r ∈ Z such that 0 ≤ r < pα and f(r) ≡ 0 (mod pα)
Output: {r′ ∈ Z : 0 ≤ r′ < pα+1, f(r′) ≡ 0 (mod pα+1), and r′ ≡ r

(mod pα)}
1: g ← f ′(r) mod p

2: h← (−f(r)/pα) mod p

3: if g = 0 and h = 0 then
4: return {r + t · pα : t ∈ Z and 0 ≤ t < p}
5: else if g = 0 or h = 0 then
6: return ∅
7: else
8: t = h · g−1 mod p

9: return {r + t · pα}
10: end if

Example 8.
Consider calling Algorithm 5 with input

p = 7, α = 1, f = x2 + 2x+ 1, and r = 6.

Since f ′ = 2x+ 2, line 1 assigns g ← 0, and line 2 assigns h← 0.
Then line 3 returns {6, 13, 20, 27, 34, 41, 48}.
We can check that in fact f(r) ≡ 0 (mod 72) for all r in {6, 13, 20, 27, 34, 41, 48}.
Consider calling Algorithm 5 with input

p = 3, α = 3, f = x2 + 23x+ 4, and r = 11.

Since f ′ = 2x+ 23, line 1 assigns g ← 0, and line 2 assigns h← 1.
Then line 6 returns ∅.
We can check that in fact f has no root in Z34 which is congruent to 11 modulo p.
Consider calling Algorithm 5 with input

p = 5, α = 2, f = x2 + 15x+ 9, and r = 9.

Since f ′ = 2x+ 15, line 1 assigns g ← 3, and line 2 assigns h← 1.
Then t = 3, so line 9 returns {9 + 2 · 52 = 59}.
We can check that in fact, f(59) ≡ 0 (mod 53).

21

Theorem 12. Algorithm 5 is correct.

Proof. Any solution r′ to 4.2 must also be a solution to 4.1 since

f(r′) = cpα+1 = (cp)pα

for some integer c. Then r′ is of the form r + tpα where r as a solution to 4.1, 0 ≤ r < pα,
t ∈ Z, and 0 ≤ t < p. So we want to show that Algorithm 5 will "lift" the root r to
r′ = r + tpα, a solution to 4.2.
By Taylor’s theorem

f(r + tpα) = f(r) + f ′(r)tpα + f ′′(r)tpα+1

2 + . . .

≡ f(r) + f ′(r)tpα mod pα+1.

Then Algorithm 5 should solve for t such that

f(r) + f ′(r)tpα ≡ 0 mod pα+1.

In fact, Algorithm 5 solves
gt ≡ h mod p

where
g = f ′(r), h = −f(r)

pα
.

This is equivalent by the following:

f(r) + f ′(r)tpα ≡ 0 mod pα+1

⇐⇒ f(r) + f ′(r)tpα + dpα+1 = 0

⇐⇒ f(r) + dpα+1 = −f ′(r)tpα

⇐⇒ − f(r)
pα
− dp = f ′(r)t

⇐⇒ f ′(r)t ≡ −f(r)
pα

mod p.

Also note that we have 0 ≤ r < pα and 0 ≤ t < p, so 0 ≤ r + tpα < pα+1 as desired.
We also want to show that every r′ which satisfies the set conditions of the output of
Algorithm 5 is indeed in the output of Algorithm 5. Let r0 be one such integer.

22

Then we have

1. 0 ≤ r0 < pα+1,

2. f(r0) ≡ 0 (mod pα+1), and

3. r0 ≡ r (mod pα)}.

By (2), there exists a solution to 4.1, ε and an integer t such that r0 = ε + tpα. By (3), ε
must be r, so r0 = r+ tpα. Then r0 is in the output of Algorithm 5 with input p, α, f, r.

Finally, we have the following algorithm to generate all roots of f(x) in Zpk .

Algorithm 6 Generate all roots in Zpk of f(x) in Z[x]
Input: prime p, k ∈ N, and f ∈ Z[x]
Output: {r ∈ Z : 0 ≤ r < pk and f(r) ≡ 0 (mod pk)}

1: R← roots of f modulo p
2: if k = 1 then
3: return R
4: else
5: for i from 1 to k − 1 do
6: R←

⋃
r∈R output of Algorithm 5 with input p, i, f, r

7: end for
8: return R

9: end if

Theorem 13. Algorithm 6 is correct.

Proof. Let R denote the output of Algorithm 6 with input p, k, f . From Theorem 12, every
element in R is a root of f modulo pk. Then it suffices to show that R contains every root
of f modulo pk.
We proceed by induction on k. As a base case, consider k = 1; the claim trivially holds
by lines 1 through 3 of Algorithm 6. Suppose that the output of Algorithm 6 with input
p, k−1, f returns every root of f modulo pk−1. We want to show that the output of Algorithm
6 with input p, k, f returns every root of f modulo pk. By the induction hypothesis, the
k − 2nd iteration of the for-loop in Algorithm 6 assigns R as the set of every root of f
modulo pk−1. By Theorem 12, Algorithm 5 with input p, k − 1, f, r returns every root of f
modulo pk which are congruent to r modulo pk−1. Then the k−1st iteration of the for-loop
assigns R as the set of every root of f modulo pk.

23

Chapter 5

Conclusion

By considering the squares of integer rings, we have now answered the question: how many
irreducible quadratic monic polynomials are there are over Zn for all natural numbers n > 1?
In doing so, we have produced an algorithm which efficiently generates these polynomials.
A primary application of irreducible polynomials is in the construction of extension fields,
so Algorithm 4 can be further used to efficiently generate ideals and extension fields. In
the current case of quadratic polynomials, we are limited to extension fields of size p2 for p
prime. A natural next problem for this area of research is

For positive integers n, k, how many irreducible monic polynomials of degree k are there in
Zn[x]? How can we efficiently generate them?

If our method could be generalized from k = 2 to all integers k, we would be able to quickly
construct extension fields of size pk−1 for prime p and integer k ≥ 4. Since the relationship
between polynomials and squares would not be so clear in this generalized case, we would
likely require an entirely new approach. Perhaps the presented method for counting roots
would be a good starting point.

24

Bibliography

[1] Trygve Nagell. Introduction to Number Theory. Chelsea Publishing Company, New
York, second edition, 1964.

[2] Norman R. Reilly. Introduction to Applied Algebraic Systems. Oxford University Press,
New York, 2009.

[3] N.J.A. Sloane. On-line encyclopedia of integer sequences. https://oeis.org/. Ac-
cessed: 2018-11-15.

[4] Walter D. Stangl. Counting squares in Zn. Mathematics Magazine, 69(4):285–289, 1996.

25

https://oeis.org/

Appendix A

Implementation of Algorithms 1
and 4

A.1 Algorithm 1 with n a power of 2 implemented in Cilk

1 #inc lude <s t d i o . h>
2 #inc lude <s t d l i b . h>
3

4 i n t ∗ array (i n t n) { re turn (mal loc (n∗ s i z e o f (i n t))) ; }
5

6 void p r i n t a r r a y (i n t ∗A, i n t n) {
7 i n t i ;
8 p r i n t f (" [") ;
9 f o r (i =0; i<n ; i++) { i f (i !=0) p r i n t f (" , ") ; p r i n t f ("%ld " ,A[i]) ; }

10 p r i n t f ("] \ n ") ;
11 re turn ;
12 }
13

14 i n t sumArray (i n t ∗P, i n t s i z e) {
15 i n t i , sum ;
16 sum = 0 ;
17 f o r (i =0; i<s i z e ; i++) { sum = sum + P[i] ; }
18 re turn sum ;
19 }
20

21 void pr in tdata (i n t ∗N, i n t ∗C, i n t ∗D, i n t numTrials) {
22 p r i n t f (" \nN = ") ;
23 p r i n t a r r a y (N, numTrials) ;
24 p r i n t f ("C = ") ;
25 p r i n t a r r a y (C, numTrials) ;
26 p r i n t f ("D = ") ;
27 p r i n t a r r a y (D, numTrials) ;
28 }
29

30 c i l k i n t para l l e lCount (i n t n , i n t l , i n t m) {
31 i n t N, a , b , f , IRRED, y , mask , z ;
32 N = 0 ;
33 mask = n−1; // assuming n = 2^ i
34 f o r (a=0; a<n ; a++) {
35 f o r (b=0; b<n ; b++) {
36 // f := x^2+a∗x+b ;

26

37 IRRED = 1 ;
38 f o r (y=0; y<n && IRRED; y++) {
39 // i f (((y∗y+a∗y+b) % n) == 0) IRRED = 0 ;
40 i f (((y∗y+a∗y+b) & mask) == 0) IRRED = 0 ;
41 }
42 i f (IRRED) N++;
43 }
44 }
45 re turn N;
46 }
47

48

49 c i l k i n t main (i n t argc , char ∗ argv []) {
50 i n t i , j , numTrials , NumCores , step , MinI , MaxI , k ;
51 i n t ∗N; i n t ∗C; i n t ∗D; i n t ∗P;
52 MinI = 1 ;
53 MaxI = 2 ;
54 numTrials = MaxI−MinI+1;
55 N = array (numTrials) ; C = array (numTrials) ; D = array (numTrials) ;
56

57 NumCores = 1 ; // d e f a u l t 1 core
58 i f (argc > 1) s s c a n f (argv [1] , "%d\n" , &NumCores) ;
59 p r i n t f ("NumCores = %d\n" ,NumCores) ;
60

61 P = array (NumCores) ;
62

63 k=0;
64 f o r (i=MinI ; i<=MaxI ; i++) {
65 N[k] = 1 << i ;
66 C[k] = 0 ;
67 i f (N[k] <4) {
68 C[k] = count (N[k]) ;
69 } e l s e {
70 s tep = N[k] / NumCores ;
71 f o r (j =0; j<NumCores ; j++) {
72 P[j] = spawn para l l e lCount (N[k] , j ∗ step , (j +1)∗ s tep) ;
73 }
74 sync ;
75 C[k] = sumArray (P, NumCores) ;
76 }
77 D[k] = (N[k]−N[k] ∗N[k]) /2 + C[k] ;
78 k++;
79 }
80

81 pr in tdata (N, C, D, numTrials) ;
82

83 re turn 1 ;
84 }

27

A.2 Algorithm 1 with n a power of an odd prime imple-
mented in C

1 #inc lude <s t d i o . h>
2 #inc lude <s t d l i b . h>
3

4 FILE ∗ f ;
5

6 i n t ∗ array (i n t n) { re turn (mal loc (n∗ s i z e o f (i n t))) ; }
7

8 void p r i n t a r r a y (i n t ∗A, i n t n) {
9 i n t i ;

10 p r i n t f (" [") ;
11 f o r (i =0; i<n ; i++) { i f (i !=0) p r i n t f (" , ") ; p r i n t f ("%d" ,A[i]) ; }
12 p r i n t f ("] \ n ") ;
13 re turn ;
14 }
15

16 i n t power (i n t b , i n t e) {
17 i f (e==0) return 1 ;
18 e l s e re turn b∗power (b , e −1) ;
19 }
20

21 i n t count (i n t n) {
22 i n t N, a , b , IRRED, y , z ;
23 N = 0 ;
24 f o r (a=0; a<n ; a++) {
25 f o r (b=0; b<n ; b++) {
26 // f := x^2+a∗x+b ;
27 IRRED = 1 ;
28 f o r (y=0; y<n ; y++) {
29 f p r i n t f (f , " x^2 + %dx + %d\ r \n\ r \n" , a , b) ;
30 i f (((y∗y+a∗y+b) % n) == 0) { IRRED = 0 ; break ; }
31 }
32 i f (IRRED) {N++; f p r i n t f (f , "N = %d\ r \n" , N) ; }
33 }
34 }
35 re turn N;
36 }
37

38

39 i n t main () {
40 i n t a , b , c , d , n , i , r ;
41 i n t ∗A;
42

43 f = fopen (" output . txt " , "w") ;
44 i f (f == NULL) {
45 p r i n t f (" Error opening f i l e output . txt \n ") ;
46 e x i t (1) ;
47 }
48

49 f o r (i =1; i <=3; i++) {
50 n = power (3 , i) ;
51 c = count (n) ;
52 p r i n t f ("n=%d #=%d \n" ,n , c) ;
53 }
54 re turn 1 ; }

A.3 Algorithm 4 Implemented in Maple
> #generate all monic, quadrative polynomials over Z_{p^k}
> AllPolynomials := proc(p,k)
> local n,b,c,P;
> P := {};
> n := p^k;
> for b from 0 to n-1 do
> for c from 0 to n-1 do
> P := P union {x^2 + b*x + c};
> od;
> od;
> return P;
> end proc:
> IrrPolynomials := proc(p,k)
> local s,S,b,B,c,P,n,s1,s2;
> n := p^k;
> P := {};
> if p=2 then
> S := Squares(p,k+2);
> for s in S do
> if type(s,even) then
> B := {seq(2*i,i=0..(n/2)-1)};
> else
> B := {seq(2*i+1,i=0..(n/2)-1)};
> fi;
> for b in B do
> c := (b^2 - s)/4 mod n;
> P := P union {x^2 + b*x + c};
> od;
> od;
> else
> for s1 in Squares(2,2) do
> for s2 in Squares(p,k) do
> s := chrem([s1,s2],[4,p^k]);
> if type(s,even) then
> B := {seq(2*i,i=0..(n/2))};
> else
> B := {seq(2*i+1,i=0..(n/2))};
> fi;
> for b in B do
> c := (b^2 - s)/4 mod n;
> P := P union {x^2 + b*x + c};
> od;
> od;
> od;
> fi;
> return (AllPolynomials(p,k) minus P);
> end proc:

Appendix B

Implementation of Algorithms 2
and 3

B.1 Algorithm 2 implemented in Maple
> with(NumberTheory):
> Quads := proc(p,k)
> local S,i,alpha,n;
> n := p^k;
> if p=2 then
> if k<4 then return {1}; fi;
> return {seq((p*i + 1)^2 mod n,i=0..p^(k-2)-1)};
> fi;
> alpha := PrimitiveRoot(p);
> S := Array(0..phi(n)/2);
> S[0] := alpha^2;
> for i from 1 to phi(n)/2 do
> S[i] := (alpha^2 * S[i-1]) mod n;
> od;
> return {seq(S[i],i=0..phi(n)/2)};
> end proc:

B.2 Algorithm 3 implemented in Maple
> #A new implementation to generate all squares in Z_{p^k}
> Squares := proc(p,k)
> local S,T,i,n;
> n := p^k;
> if k=0 then return {0}; fi;
> if k=1 then return {0} union Quads(p,1); fi;
> T := Squares(p,k-2);
> S := Quads(p,k);
> return S union {seq((i*p^2) mod n, i in T)};
> end proc:

30

B.3 Example
> p := 3;
> k := 4;
> Squares(p,k);

p := 3
k := 4

{0, 1, 4, 7, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 36, 37, 40, 43, 46, 49, 52, 55, 58, 61, 63, 64, 67, 70, 73, 76, 79}

Appendix C

Implementation of Algorithms 5
and 6

C.1 Algorithm 5 Implemented in Maple
> #lifts a single root (r) of function (f with derivative F) in Z_{p^alpha}[x]
to root(s) of f in Z_{p^{alpha+1}}[x]
> liftRoot := proc(f,F,p,alpha,r)
> local a,ainv,b,T,t;
> a := Eval(F,x = r) mod p;
> b := -(eval(f,x = r)/p^alpha);
> b := b mod p;
> if (a=0 and b=0) then return [seq(r + t*p^alpha, t=0..p-1)];
> fi;
> if (a=0 or b=0) then return NULL; fi;
> ainv := 1/a mod p;
> t := b*ainv mod p;
> return r + t*p^alpha;
> end proc:

C.2 Algorithm 6 Implemented in Maple
> #lifts root(s) (R) of function (f) in Z_{p^alpha}[x] to root(s) of f in
Z_{p^{alpha+1}}[x]
> PadicLift := proc(f,F,p,alpha,R)
> return [seq(liftRoot(f,F,p,alpha,r), r in R)];
> end proc:
> #Uses p-adic lifting to find the roots of function (f) in Z_{p^alpha}[x]
> findRoots := proc(f,p,alpha)
> local rootsZp,i,R,F;
> rootsZp := Roots(f) mod p;
> R := [seq(rootsZp[i,1], i=1..nops(rootsZp))];
> if alpha = 1 then return rootsZp; fi;
> F := diff(f,x);
> for i from 1 to alpha-1 do
> R := PadicLift(f,F,p,i,R);
> od;
> end proc:

32

C.3 Examples
> #A reducible example
> f := x^6 + 2*x^5 + 2*x^3 + 6*x + 3;
> p := 3;
> alpha := 4;
> findRoots(f,p,alpha);

f := x6 + 2x5 + 2x3 + 6x+ 3
p := 3
α := 4

[41]
> #An irreducible example
> f := x^6 + 3*x^5 + 2*x^3 + 15*x + 7;
> p := 3;
> alpha := 4;
> findRoots(f,p,alpha);

f := x6 + 3x5 + 2x3 + 15x+ 7
p := 3
α := 4

[]

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Algorithms
	Introduction
	Motivation
	Computational Experiments
	Further Motivation and Approach

	Counting Squares
	Definitions & Examples
	Quadratic Polynomials & Squares
	Number of Squares in an Integer Ring
	Generate Squares

	Main Results and Corollaries
	Counting Results
	Construction Results

	Roots
	Lifting

	Conclusion
	Bibliography
	Implementation of Algorithms 1 and 4
	Algorithm 1 with n a power of 2 implemented in Cilk
	Algorithm 1 with n a power of an odd prime implemented in C
	Algorithm 4 Implemented in Maple

	Implementation of Algorithms 2 and 3
	Algorithm 2 implemented in Maple
	Algorithm 3 implemented in Maple
	Example

	Implementation of Algorithms 5 and 6
	Algorithm 5 Implemented in Maple
	Algorithm 6 Implemented in Maple
	Examples

