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Lecture 22 Graphs: Multigraphs
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Definition ( multigraph )
A multigraph G = (V. E) is a set V of vertices, and a multiset E of edges where
each edge isin V x V.

Example: V = {1,2,3,4}, E = {(1,2),(1,2),(2,3), (3,3), (3,4), (4, 1)}.
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Simple graphs are multigraphs with no loops and no parallel edges.
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Definition ( walks in multigraphs )

Let x and y be two vertices in a multigraph G = (V, E). A walk in G is a finite
alternating sequence
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of vertices x; € V and edges ¢; € E with n > 0 edges. The length of the walk is
n, the number of edges. A walk from x to y is called a closed walk if x = y and
an open walk if x # y. Note, vertices and edges in walks need not be distinct.

o

Convention: Grimaldi allows walks to have length 0 which he calls trivial walks.
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Definition ( trails and circuits )

Let G be a multigraph and x and y be vertices in G. )
A trail from x to y is an open walk in G that has no repeated edges. (can Uit @ vastex wo
A circuit from x to x is a closed walk in G that has no repeated edges.

Convention: Grimaldi says circuits must have at least 1 edge and cycles 3 edges.
We will allow both circuits and cycles to have 1 or more edges.
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Theorem ( trails and paths )

Let G = (V. E) be a multigraph with vertices a and b. If there is a trail in G from
a to b then there is a path in G from a to b.
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Definition ( degree of a vertex in a multigraph )
It G =(V,E)isa multigraph and v € V, the degree of v, denoted deg(v), is the
number of edges incident to v. Here a loop at v counts as two incident edges.
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The definitions subgraph, induced subgraph and spanning subgraph that we
made for simple graphs also work for multigraphs.

Definition ( connected graph and connected components )

Let G = (V, E) be a multigraph. We say G is connected if for all pairs u,v € V
there is a path from u to v. The connected components of G are the maximal
connected subgraphs of G.

Example
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Definition ( directed graphs )

A directed graph or digraph G = (V, E) is a set V of vertices and a set E of
edges where edges are ordered pairs of vertices. We draw arrows on edges to
indicate direction. If a graph is not directed, we say it is an undirected graph.

Example. V = {1,2,3,4,5}, E = {(1,2),(2,3), (3,1), (4,1), (3,5)}.
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We will not study directed graphs in MACM 201.
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Graph Terminology

Graphs are classified as either directed graphs or undirected graphs.
Simple graphs are graphs with no parallel edges and no loops.

Adjacent vertices are also called neighbors.

Graphs are also called networks. Usually a network refers to a real physical
object whereas a graph could be abstract. Mathematicians and Computer
Scientists usually use “graphs” whereas Engineers usually use “networks”.
Some terminology is different, for example

Graph Theory | Network Science

graph network
vertex node
edge link
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