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What formula does this tree encode?
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Ordered rooted trees

For some applications it is essential to have not just a rooted tree, but also an

ordering of the children for each internal vertex. -’]‘T ’]:-z_
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How do we walk through and process a rooted tree?

Definition ( preorder, postorder tree traversals )

A preorder traversal of a tree T first visits the root vertex then visits, in
preorder, the vertices of the subtrees Ty, To,..., T4 of T.

A postorder traversal of a tree T visits, in postorder, the vertices of the subtrees
T1, To, ..., Ty of T then visits the root.
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Exercise. Draw the expression tree for (3 x 5) 4+ ((7 — 4) x 2) and give the
postorder traversal.
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Preorder is also cailed Polish notation and postorder is also called reverse Polish
notation. HP calculators used postorder and a stack to evaluate expressions.
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Definition ( spanning tree )

Let G be a connected multigraph. A subgraph T of G is a spanning tree if T
spans G (so T contains all vertices in G) and T is a tree.
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Theorem ( existence of spanning trees )

Every connected multigraph G = (V, E) has a spanning tree.
Here are two algorithms to select a spanning tree in G:

(1) Start from G. If there is a cycle C in G delete an edge from C. Repeat this
until G has no cycles. Output G.

(2) Create the graph H = (V, ¢). For each edge e in G add e to H if it does not
make H have a cycle. Output H.
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Proof (sketch).
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Graph Algorithms

Consider the graph G = (V,E) where V = {1.2.3.4,5,6} and

E = {{1,5},{5.3},{4.1},{4,3},{2.6}}. 6 S ]
How can a computer test if G is connected? planar?
If G is connected, how can it find a spanning tree in G7 S 3

If G is planar, how can it find a planar embedding of G?

Most algorithms need to visit the neighbors of a vertex.
Question: What is a good way to store the edges?

Definition ( list of neighbors )

The list of neighbors representation for £ is an array A of size n = |V/| where A;
is the set of neighbors of vertex i (the vertices adjacent to /).
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Question: How do algorithms walk through the graph?
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The Depth-First Search (DFS) algorithm
Input. A graph G = (V. E).
Output. A set Er of edges such that (V. Et) is a spanning tree of G.

1. Let v =1, Er = ¢ and and mark vertex 1 as visited.

2. If all neighbors of v have been visited Then
a) If v =1 Then Return (V, Er).
b) Else (backtrack step) Let v = parent(v) and Goto step 2.
3. Else
a) Let i be the smallest neighbor of v that has not been visited.
) Mark i as visited.
c) Add the edge {v,i} to Er and Let parent(i) =
) Let v =/ and Goto step 2.

Example
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