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These are both drawings of the same graph. To see this
locate the cycles 1 —2—-3—-4—-5—1and 16 — 17 — 18 — 19 — 20 in both graphs.
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Definition ( planar graph )

A graph G is planar if G has a drawing (in the plane) so that the edges intersect
only at the vertices of G. Such a drawing is called a planar embedding of G.
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Observation: The graph K3 3 is not planar.
Proof sketch (we will give a formal proof next da
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Observation: The grapl"@s not planar.
Proof sketch (we will give a formal proof next day)
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Definition ( subdivision )

Let G = (V, E) be a multigraph and let e = {u, v} be an edge in E. To
subdivide the edge e is to delete e and add a new vertex w and two new edges
e; = {u,w} and e; = {w, v} to G. If the graph H is obtained from G by a
sequence of subdivions, then H is called a subdivison of G.

Example
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Observation. If H is a subdivision of G then H is planar if and only if G is planar.
This means that every subdivision of K33 and Ks is nonplanar.
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Example: Is this graph planar? l.e. can you find a planar embedding?
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Exenig: Fnd o subdivsim 4 (K33 1 E.
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Question: Which graphs are planar ?

Definition
Let G and H be multigraphs. We say that G contains a subdivision of H if
there is a subgraph of G isomorphic to some subdivision of H.

Theorem ( Kuratowski-Wagner )

A multigraph G is planar if and only if G does not contain a subdivision of K33 or
a subdivision of Ks.
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Notes.
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Definition ( Faces )

Let G be a planar graph embedded in the plane. The embedding partitions the
plan into connected regions called faces. There is one unbounded region called the
infinite face. All other faces are internal faces. If G is connected, every face has
vertices and edges on its boundary. They form a closed walk called a facial walk

Example ]
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Michael Monagan and Jamie Mulholland 7/ 10

Theorem ( Euler's formula )

FG=(V.E)is amu.-‘tfgraph embedded in the plane and F is the set

of faces, then
M= |El=]El= 2

This implies all embeddings of a planar graph have the same number of faces.
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Proof.
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Definition ( Face degrees )

Let G = (V, E) be a connected multigraph embedded in the plane and let f be a
face of this embedding. We define the degree of f, denoted deg(f), to be the
number of edges in a facial walk of f.

Example \
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Theorem J

I =
If G has faces fi, fy, ... . i then > deg(f) = 2|E|.
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