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Lecture 1: Fundamental Combinatorial Objects

Copyright, Michael Monagan and Jamie Mulholland, 2020.

We will study four combinatorial objects

1 sets and subsets
2 strings and permutations
3 graphs
4 trees

Example Sets and Subsets
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Strings

Definition ( alphabet and string )
An alphabet Σ is a set of n elements called letters.
A string S of size n is an ordered sequence of n letters from Σ.

Examples Σ = {0, 1} Σ = {A,C ,G ,T}

Exercise How many DNA sequences are there of length n ?
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Example Find all strings of length 6 over {0, 1} that don’t have 10 as a substring.
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Permutations

Definition ( permutation )
A permutation P over an alphabet Σ is a string over Σ where every letter occurs
exactly once.

Example Σ = {1, 2, 3} find all permutations.

Theorem
The number of permutations of a set of n objects is n!.
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Graphs

Definition ( graph )
A (simple) graph G is a pair (V ,E ) where V is a set of vertices and E is a set of
unordered pairs of vertices called edges. If e = {i , j} ∈ E we say vertices i and j
are adjacent. The degree of a vertex is the number of adjacent vertices.

Example V = {1, 2, 3, 4, 5, 6},
E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}, {2, 5}, {4, 6}
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Question. How many edges can a graph with n vertices have?

Definition ( complete graph )
A graph G = (V ,E ) is complete if |V | ≥ 1 and for all i , j ∈ V the edge
{i , j} ∈ E . The complete graph with n vertices is denoted Kn.
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Definition ( path graph )
A graph G = (V ,E ) is a path if |V | ≥ 1 and V may be ordered v1, v2, . . . , vn so
that E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}. The path graph with n vertices is
denoted Pn.

Definition ( cycle graph )
A graph G = (V ,E ) is a cycle if |V | ≥ 3 and V may be ordered
E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}. The cycle graph with n vertices
is denoted Cn.

Examples
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Definition ( connected graph )
A graph G = (V ,E ) is connected if there is a path in G from vertex i ∈ V to
vertex j for all i 6= j .

Definition ( tree )
A graph G = (V ,E ) is a tree if it is connected and has no cycles.

Example. All (unlabelled) trees with 4 vertices.

Exercise. Draw all (unlabelled) trees with 5 vertices.
Exercise. If G is a tree with n > 0 vertices, how many edges must G have?
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Lecture 2: Basic Counting Principles

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Reading: Grimaldi Sections 1.1, 1.2

Lattice paths arise in theoretical physics.

How many lattice paths are there from (0, 0) to (6, 4) if we
are restricted to North steps and East steps only?
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Definition (Rule of Sum)
If there are m ways to perform task X and n ways to perform task Y , there are
m + n ways to perform either X or Y .

Definition (Rule of Product)
If there are m ways to perform task X and n ways to perform task Y , there are
mn ways to perform both X and Y .

Examples.
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Exercise. If there are 10 people at a party and all hug each other, how many hugs
are there?
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Theorem ( Strings )
If Σ is an alphabet with k letters, the number of strings of length n over Σ is kn.

Proof.
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Theorem ( Permutations )
The number of permutations of a set of n distinct objects is n!.

Proof.
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Definition ( Permultations with Repetition )
Suppose there k1 objects of type A, k2 of type B, . . . , and kr of type R and let
n = k1 + k2 + · · ·+ kn be the total number of objects. The number of distinct

permutations is denoted by
(

n

k1, k2, . . . , kr

)
.

Example. Consider the letters M,E ,E ,N,N. How many permutations are there?
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Theorem (Permutations with Repetition)(
n

k1, k2, . . . , kr

)
=

n!

k1!, k2!, . . . , kr !
.

Proof.
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Exercise. How many binary strings of length 20 are there with exactly 13 1’s?
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Theorem ( Subsets and Combinations )

If S is a set of size n, the number of subsets of size k

(
n

k

)
=

n!

k!(n − k)!
.

Proof.
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Lattice paths arise in theoretical physics.

How many lattice paths are there from (0, 0) to (6, 4) if we
are restricted to North steps and East steps only?
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Lecture 3: Combinations and the Binomial Theorem

Copyright, Michael Monagan and Jamie Mulholland, 2020.

(x + y)n =
n∑

k=0

(
n

k

)
xky n−k

Grimaldi Section 1.3
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The quantity
(
n
k

)
is the number of ways of choosing a set of size k from a set of

size n. We also saw that it is the number of binary strings of length n with k 1’s so(
n

k

)
=

n!

k!(n − k)!
.

Theorem (
(
n
k

)
=
(

n
n−k

)
)

Proof.
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Theorem (
n∑

k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n )
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Expanding (x + y)n
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Theorem ( The Binomial Theorem )
If n is a positive integer then

(x+y)n =
n∑

k=0

(
n

k

)
xkyn−k =

(
n

0

)
x0yn+

(
n

1

)
x1yn−1+

(
n

2

)
x2yn−2+· · ·+

(
n

n

)
xny0.

Because of this theorem the numbers
(
n
k

)
are called binomial coefficients

We now have three equivalent ways to think of
(
n
k

)
:
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Using the Binomial Theorem

Exericse. Find the coefficient of x5y95 in (3x − y)100.
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Theorem ( The Multinomial Theorem )
If x1, x2, . . . , xm are variables and n a positive integer, then,

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
xk1
1 xk2

2 · · · x
km
m

Proof:
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Example. What is the coefficient of xy2z2 in (w + x + y + z)5 ?
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Lecture 4: Combinations with repetition: Grimaldi 1.4

Copyright, Michael Monagan and Jamie Mulholland, 2020.

How many combinations of size 3 are there from S = {a, b, c} if repetitions are
allowed?
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Theorem ( combinations with repetitions )
Let S be a set with n elements. The number of ways to select k objects from S ,
with repetition allowed, is(

n + k − 1
k

)
=

(n + k − 1)!

k!(n − 1)!
.

Proof with binary strings.
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Example. How many integer solutions are there to
x1 + x2 + x3 + x4 + x5 = 10 with xi ≥ 0 ?
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Example. How many integer solutions are there to
x1 + x2 ≤ 7 with x1 ≥ 0 and x2 ≥ 0?

Example. How many ways are their to distribute 5 apples, 4 oranges and 3 pears
to three people?
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Example. Consider the following code segments.
What is the value of counter after the loops have executed ?

counter = 0;
for( i=1; i<=20; i++ )

for( j=1; j<=20; j++ )
for( k=1; k<=20; k++ )

counter = counter + 1;

counter = 0;
for( i=1; i<=20; i++ )

for( j=i; j<=20; j++ )
for( k=j; k<=20; k++ )

counter = counter + 1;
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Example. A box contains 10 red balls, 10 green balls and 10 blue balls. Each set
of balls is numbered 1 to 10. Suppose 7 balls are drawn at random from the box.
In how many ways can there be 3 of one colour, 2 of a second colour and 2 of the
3rd colour.
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Exercise. How many paths of length 2 edges are there in K6?
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Lecture 5: Counting in Graphs

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 11.1, 11.3

The Wheel graph W5.

Problem: How many cycles does W5 have?
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Draw the graph G = (V ,E ) where V = {1, 2, 3, 4, 5} and
E = {{1, 3}, {1, 4}, {2, 4}, {2, 5}}.

Definition ( Bipartite graph )
A graph G = (V ,E ) is bipartite if we can partition the vertices in V into two
non-empty sets V1 and V2 such that
(1) V1 ∩ V2 = ∅
(2) V1 ∪ V2 = V

(3) every edge in E is incident with one vertex in V1 and one vertex in V2.
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Definition ( Km,n )
For integers n ≥ 1 and m ≥ 1 we define the complete bipartite graph Km,n to
be the bipartite graph with |V1| = n, |V2| = m and

E = {{v1, v2} | v1 ∈ V1 and v2 ∈ V2}.

Example K2,3
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Question 1: How many edges are in a path on n vertices?
Question 2: How many edges are in a cycle on n vertices?

Question 3: How many edges are in Kn ?
Question 4: How many edges are in Km,n ?
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Question 5: How many graphs are there with n vertices?
Question 6: How many graphs have n vertices and m edges?

Let V1,V2 be disjoint sets with |V1| = n1 and |V2| = n2.
Question 7: How many graphs have bipartition (V1,V2)?
Question 8: How many graphs have bipartition (V1,V2) with m edges?
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Definition ( Subgraph )
Let G = (V ,E ) and G ′ = (V ′,E ′) be two graphs.
G ′ is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E .
If V ′ = V then we call G ′ a spanning subgraph of G .

Example.

Question 9: How many spanning subgraphs does Kn1,n2 have?
Question 10: How many spanning subgraphs of Kn1,n2 have exactly m edges?
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Definition ( Paths and Cycles )
If P is a subgraph of G that is a path we call P a path of G .
If C is a subgraph of G that is a cycle we call C a cycle of G .

Example.

Question 11: How many 4-vertex paths does the graph Kn have?
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Definition ( induced subgraph )
Let G = (V ,E ) be a graph and let V ′ ⊆ V . The subgraph of G induced by V ′ is
the graph G ′ = (V ′,E ′) where

E ′ = {{x , y} | x ∈ V ′, y ∈ V ′and {x , y} ∈ E}.

For the graph below determine the induced subgraph for the vertex sets {1, 3, 4}
and {1, 0, 3, 4}.
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Lecture 6: Graph Isomorphism

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 11.2
Which of the following graphs are the “same” ?
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Definition ( isomorphic graphs )
Let G = (V1,E1) and H = (V2,E2) be two graphs. Then G is isomorphic to H
(has the same structure as) if there is a bijection f : V1 → V2 such that

{u, v} ∈ E1 ⇐⇒ {f (u), f (v)} ∈ E2.

The function f is called an isomorphism.

Example.
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Example. Draw all non-isomorphic graphs with |V | = 3 and |V | = 4.

Exercise. Draw all non-isomorphic graphs with 5 vertices and 4 edges.
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How can we test if two graphs G and H are isomorphic?

An “efficient” graph isomorphism algorithm is not known.
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Example. For n ≥ t, how many subgraphs of Kn are isomorphic to Kt ?
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Example. Let K−4 be K4 less one edge.
How many subgraphs of Kn are isomorphic to K−4 ?
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Example. How many subgraphs of Kn,m are isomorphic to K3,4?
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Lecture 7: Basics of Discrete Probability

Copyright, Michael Monagan and Jamie Mulholland, 2020. 1cm
Grimaldi 3.4 and 3.5

Suppose we pick a binary string x of length 6 at random.
What is the probability that x has two 1’s in it?
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Example 1. Suppose we pick a binary string x of length 6 at random.
What is the probability that x has two 1’s in it?
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Definition (Probability of an Event)

Hypothesis:
S is a set of possible outcomes called the sample space, all having equal
likelihood. Each subset A ⊆ S is called an event, i.e. a set of considered
outcomes. Each element of S determines an outcome.

Experiment:
We generate an event by “drawing" at random an outcome x from S .
Note: Other words used for “drawing” are “choosing”, “selecting” and “picking”.

Event: Let Pr(A) denote the probability that x ∈ A.

Question: What is Pr(A) ?
Answer: If each outcome is equally likely and |S | is finite then

Pr(A) =
|A|
|S |

Fundamental Principle. Calculating Pr(A) requires defining the two sets S and A.
If all outcomes are equally likely, we just need to calculate |S | and |A|.
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Example 2. What is the probability that a random binary string of size n ≥ 2
starts with 11 ?

Example 3. What is the probability that the sum of two rolls of a dice is 7 ?
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Definition (Axioms of Probability)
Let S be a sample space and let A and B be subsets of S .
1. 0 ≤ Pr(A) ≤ 1
2. Pr(S) = 1
3. If A ∩ B = φ then Pr(A ∪ B) = Pr(A) + Pr(B).

Note: These axioms hold whether the outcomes of S have equal likelihood or not.

Theorem ( the rule of complement )
Let Ā = S − A be the complement of A. Then Pr(Ā) = 1− Pr(A).

Proof:
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Example 3 (illustrating the third axiom ) What is the probability that a random
binary string of size n ≥ 3 has exactly two 1’s or exactly three 1’s ?
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Example 4. Let S = {1, 2, 3, . . . , 12}. If x is chosen from S at random what is the
probability that x is divisible by 2 OR 3 ?
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Theorem ( the additive rule )
Let S be a sample space and A,B ⊆ S be two events from S . Then

Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B).

Proof:
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Exercise. Let S = {1, 2, 3, . . . , 60}. If x is chosen from S at random what is the
probability that x is divisible by 2 or divisible by 3 or divisible or 5 ?
Generalize the additive rule to three subsets A,B,C .
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Lecture 8: Conditional Probability and Independence

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 3.6
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Example 1. Let S be the set of binary sequences of length 8.
Let A ⊂ S be the sequences starting with 111.
Let B be the sequences in S with five 1’s.
Suppose we pick x from A at random. What is Pr(B)?
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Definition ( Conditional Probability )
Let S be a sample space and A and B two subsets of S . The conditional
probability of B given/knowing A, denoted by

Pr(B|A)

is the probability that a random outcome from A also belongs to B. It can be
obtained by the formula

Pr(B|A) =
Pr(B ∩ A)

Pr(A)
.

Example 2. Assume two dice are rolled. What is the probability that, if they sum
up to at least 9 (event A) that both dice have the same value (event B).
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Four consequences of Pr(B|A) = Pr(B ∩ A)/Pr(A).

1. Switching A and B.

2. Multiplicative rule.

3. Law of total probability.

4. Bayes’ Theorem.
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Example 3. Suppose 10% of olympic cyclists use steroid Z and the IOC develops
a test for Z with the following properties.

1. If a cyclist is taking Z the probability they test positive is 0.99.
2. If they are not taking Z the probability they test positive is 0.05.

Question: If a randomly chosen cyclist tests positive for Z , what is the
probability they are taking steroid Z .
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Definition ( Independent Events )
Two events A and B are independent if either one of them has probability 0 or
both have positive probabily and

Pr(B|A) = Pr(B) and Pr(A|B) = Pr(A).

For example, if we toss a coin twice, the first toss is independent of the second.

Theorem
Two events A and B are independent if and only if

Pr(A ∩ B) = Pr(A)Pr(B).

Proof:
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Example 4. Suppose Alex tosses a fair coin 3 times. Here the sample space
S = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}. Consider the events

A: The first toss is a H: A = {HHH,HHT ,HTH,HTT}.
B: The second toss is a H: B = {HHH,HHT ,THH,THT}.
C : There are 2 or 3 heads: C = {HHH,HHT ,HTH,THH}.

Are A and B independent?

Are A and C independent?

Are A and B̄ independent?
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Lecture 9: Discrete Random Variables

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 3.7 (we will not cover variance)
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Definition ( Random Variable )
Let S be a sample space. A random variable X on S is a function X : S → R
that associates a numerical value to each possible outcome.
The range r(X ) of X is the set of all values it can take.

Example 1. If S is the set of all binary sequences of size n = 4.
The function that counts the number of 1’s is a random variable.

Example 2. If S is the set of all rolls of two dice.
The function that adds the values of the dice is a random variable.

Example 3. Suppose we throw m balls into n bins randomly.
Let X be the number of empty bins.
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Definition
Let S be a sample space and X a random variable on S . Let x be a value from
the range of X . The probability of x , denoted by

Pr(X = x)

is the sum of the probabilities of all outcomes s of S such that X (s) = x .

Example 1 (cont.)
Let X (s) be the number of 1 bits in a binary string with n = 4 bits.
Here r(X ) = {0, 1, 2, 3, 4}

Pr( X = 0 ) =

Pr( X = 1 ) =

Pr( X = 2 ) =

Pr( X = 3 ) =

Pr( X = 4 ) =

Pr( X = k ) =
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Definition
The expected value of a random variable X on a sample space S is defined by

E (X ) =
∑

x∈r(X )

xPr(X = x) =
∑
s∈S

X (s)Pr(s).

Example 1 (cont.)
x 0 1 2 3 4

Pr(X = x)
1
16

4
16

6
16

4
16

1
16

E [X ] =
∑

x∈r(X )

xPr(X = x) =
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The Geometric Distribution

Reference Example 9.18 on page 428 of Grimaldi

Example 4. On average, how many times must we roll a fair die before we get a 6?
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Example 4 cont.
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Example 4 cont.

Summary: We say T is geometrically distributed with parameter p
and Pr(T = k) = p(1− p)k−1 for k ≥ 1 and E (T ) = 1/p.
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The Binomial Distribution

Example 5. Suppose we toss a biased coin n times.
Let the probability of getting heads be p = 0.7 and tails be q = 0.3.
Let H be the number of heads. What is Pr(H = k) and E (H)?

Summary: We say X is binomially distributed with parameters p and n
and Pr(X = k) =

(
n
k

)
pk(1− p)n−k for 0 ≤ k ≤ n and E (X ) = np.
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Lecture 10: Applications of Discrete Random Variables

Copyright, Michael Monagan and Jamie Mulholland, 2020.

The bins and balls problem
Suppose we throw m balls into n bins randomly.
On average, how many bins will be empty?
On average, how many bins will have one ball in them?

The coupon collectors problem
Suppose we have a bin containing n types of coupons and we draw coupons one
at a time from the bin at random. Assume the probability of drawing each type of
coupon is 1/n and the bin has a very large number of coupons. On average, how
many draws do we need to make until we get all n coupons?
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Definition
Let S be a sample space and X a random variable on S . Let x be a value from
the range of X . The probability of x , denoted by Pr(X = x) is the sum of the
probabilities of all outcomes s of S such that X (s) = x .

Example 1 Let S be the set of all binary sequences of size n = 3 bits.
Let X (s) be the number of 1 bits in a binary string s ∈ S .
Here the range of X denoted r(X ) is {0, 1, 2, 3}.

Pr(X = 0) =

Pr(X = 1) =

Pr(X = 2) =

Pr(X = 3) =

Pr(X = k) =
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Definition
The expected value of a random variable X on a sample space S is defined by

E (X ) =
∑

x∈r(X )

xPr(X = x) =
∑
s∈S

X (s)Pr(s).

Example 1 (cont.)
x 0 1 2 3

Pr(X = x)
1
8

3
8

3
8

1
8

E [X ] =
∑

x∈r(X )

xPr(X = x) =
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Theorem ( Linearity of Expection )
Let X and Y be two random variables on the same sample space S and a ∈ R.
Then
(1) E (aX ) = aE (X ) and
(2) E (X + Y ) = E (X ) + E (Y ).

Proof
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The bins and balls problem

Suppose we throw m balls into n bins randomly.
Question 1: What is the probability that bin i has k balls?
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Question 2: On average, how many bins are empty?

Exercise: On average, how many bins have one ball?
Michael Monagan and Jamie Mulholland 79 / 270



The coupon collectors problem

Suppose a large bin contains many copies of n = 10 coupons. Assuming there are
an equal number of each coupon, if we draw coupons at random from the bin, on
average, how many draws will it take to get all n coupons?
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The coupon collectors problem continued.

Exercise: On average, how many times must you toss a fair coin before you get a
head and a tail?
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Lecture 11 Recurrence Relations

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi Chapter 10 Recurrence Relations

The Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . is generated by the recurrence

fn+1 = fn + fn−1 for n ≥ 2

and initial values
f1 = 1, f2 = 1.
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Example 2. Let bn be the number of binary strings of length n bits.

A new way: To construct a binary string of length n first construct one of length
n − 1 bits.
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Example 3. Let kn be the number of edges in Kn the complete graph on n vertices.
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Definition
A linear recurrence relation (RR) of order k with constant coefficients for a
sequence a1, a2, a3, . . . is an equation of the form

c0an + c1an−1 + · · ·+ ckan−k = f (n) for n ≥ k

where c0, c1, . . . , ck are constants and c0 6= 0, ck 6= 0. If f (n) = 0 the RR is said
to be homegeneous, otherwise it is non-homogeneous.

Examples
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Note: We can shift a RR up or down without changing the solutions. For example

an+1 = 2an + n
an = 2an−1 + n − 1

an+2 = 2an+1 + n + 1

Initial Values:
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Example 4. Let Sn be the set of all binary strings of length n with the property
that every 1 is followed by a 0 (so 1 cannot be the last bit).

(1) List S1,S2,S3.
(2) Let cn = |Sn|. Give a recurrence relation for cn.
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Example 5. Let Dn be the set of all strings of length n over the alphabet
Σ = {A,B,C ,D} such that every A is followed by a C and every B is followed by
DD.

(1) List D0,D1,D2.
(2) Let dn = |Dn|. Give a recurrence relation for dn.
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Additional space
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Lecture 12 Solving First Order Recurrence Relations

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi Chapter 10.1

pn = n pn−1

cn = (n − 1) + cn−1

hn = 1 + 2hn−1
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1: void Bubblesort( double A[], int n ) {
2: // sort the array A of size n into ascending order
3: int i; double t;
4: if( n==1 ) return;
5: for( i=1; i<=n-1; i++ )
6: if( A[i-1] > A[i] ) {
7: t = A[i-1]; A[i-1] = A[i]; A[i] = t;
8: }
9: Bubblesort(A,n-1);

10: return;
11: }

What should we count to determine the cost of the Bubblesort algorithm?
We will count the number of comparisons between elements of A in line 6.
Let cn be the number of comparisons.
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A First Look at Solving Recurrence Relations.
How can we solve RRs like
(1) bn = 2bn−1 for n ≥ 2 and b1 = 2.
(1) cn = cn−1 + (n − 1) for n ≥ 2 and c1 = 0.

Example bn = 2bn−1
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Example cn = cn−1 + (n − 1)
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Theorem ( A different way to solve first order RRs )
Every sequence x0, x1, x2, . . . satisfying the recurrence xn = dxn−1 has the general
solution xn = cdn for some constant c . (The sequence is a geometric progression.)

Proof (substitution)

This suggests the following general strategy for solving RRs:
(1) Find the general solution to the RR. This will have one or more constants.

Note: a RR of order k will has k constants.
(2) Use the k initial values to determine the constants. This gives a unique

solution.
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Example. Suppose xn = 5xn−1 and x0 = 7. First find the general solution then the
unique solution satisfying x0 = 7.

Exercise 1. Solve pn = npn−1 where p1 = 1.
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Exercise 2. Solve xn = xn−1 + An + B for x1 = C .
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Lecture 13 Second Order Recurrence Relations

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 10.2

fn+1 = fn + fn−1

an = an−1 + 2an−2
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For constants a, b, c consider a recurrence relation of the form

a xn + b xn−1 + c xn−2 = 0 for n ≥ 2. (1)

Suppose that xn = rn is a solution to equation (1). In this case we have

arn + brn−1 + crn−2 = 0 for all n ≥ 2. (2)

Observe that the n ≥ 2 condition is redundant in equation (2). If this holds for
n = 2, then it holds for all larger values (multiplying by powers of r gives the
other equations). This reduces us to a familiar equation

ar2 + br + c = 0

Conclusion: A number r satisfies ar2 + br + c = 0 if and only if xn = rn is a
solution to our recurrence.
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Definition
The homogeneous second order linear recurrence relation

axn + bxn−1 + cxn−2 = 0

has characteristic equation

ar2 + br + c = 0.

The roots of ar2 + br + c are precisely those numbers r for which xn = rn satisfies
the above recurrence.

Exercise. Find all real numbers r so that xn = rn is a solution to the recurrence

xn − 5xn−1 + 6xn−2 = 0
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Theorem ( Linearity )
Both of the properties below hold for the recurrence relation

axn + bxn−1 + cxn−2 = 0 (3)

(A) If xn = rn is a solution of (3) then Crn is a solution to (3) for any constant C .
(B) If xn = sn and xn = tn are solutions of (3) then sn + tn is a solution.

It follows from (A) and (B) that Csn + Dtn is a solution for any constants C ,D.

Proof:
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Exercise. The recurrence relation

xn − 5xn−1 + 6xn−2 = 0

has the solutions xn = 3n and xn = 2n. Check that C2n + D3n is a solution.

How do we determine what C and D are? With two consecutive initial values.
Find the solution with the initial values x0 = 6 and x1 = 13.
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General solutions

Theorem
Let a, b, c be fixed constants with a 6= 0 and consider the recurrence

axn + bxn−1 + cxn−2 = 0. (4)

If the characteristic equation,

ar2 + br + c = 0

has two distinct real roots, say r1 and r2, then every sequence satisfying this
recurrence has the form

xn = Crn1 + Drn2 (5)

where C and D are fixed constants. Accordingly, we will call equation (5) the
general solution to the recurrence.
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Example. The Fibonacci sequence (f1, f2, f3, . . .) is generated by the recurrence

fn = fn−1 + fn−2 for n ≥ 2

together with the initial values f0 = 0 and f1 = 1.
(1) Find the general solution to the above recurrence.
(2) Find a closed form (a formula in n) for the Fibonacci sequence.

Michael Monagan and Jamie Mulholland 104 / 270



Solving ar2 + br + c = 0 using the quadratic formula we get

r =
−b ±

√
b2 − 4ac
2a

If b2 − 4ac = 0 then we have two repeated real roots.
If b2 − 4ac < 0 we have two complex roots.

Theorem ( Repeated real roots case )
Let a, b, c be real constants with a 6= 0, c 6= 0 and consider the recurrence

a xn + b xn−1 + c xn−2 = 0.

If the characteristic polynomial ar2 + br + c has a repeated root r then every
sequence satisfying this recurrence has the form

xn = Crn + D nrn (6)

where C and D are constants. Equation (6) is the general solution to the
recurrence.
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Example. Solve the following recurrence

xn − 6xn−1 + 9xn−2 = 0 with x0 = 2, x1 = 3.
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Lecture 14 Solving first order non-homogeneous RRs

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 10.3

1 2 3

Can you move the disks on pole 1 to pole 3 using pole 2 as needed?
Rule 1: move one disk at a time.
Rule 2: do not put a disk on top of a smaller disk.
Question: how many moves is necessary?
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Solving first order non-homogeneous recurrences

Consider the non-homogenous recurrence relations

(1) an + c1an−1 = f (n) where c1 6= 0 and f (n) 6= 0
(2) xn + c1xn−1 + c2xn−2 = f (n) where c2 6= 0 and f (n) 6= 0

How do we solve them?
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Case (1) an + c1an−1 = f (n) where c1 = −1.

Example 1. Solve an − an−1 = 3n2 with a0 = 7.
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Example 2. Solve an − 3an−1 = 5 · 3n with a0 = 2.
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Example 3 – The Towers of Hanoi.

1 2 3

Move the disks from pole 1 to pole 3 using pole 2 as needed.
Move one disk at a time. Do not put a bigger disk on top of a smaller one.

(1)

(2)
(3)

Let mn be the number of moves.
Determine and solve a recurrence relation for mn.
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Example 3 – The Towers of Hanoi (cont.)
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Example 4 – Interest on a loan.
Pauline takes out a bank loan for $S dollars. She pays bak $P every month and
the bank charges her r% interest per month. Let an be the amount she owes after
n months. Determine, and solve, a recurrence relation for an.
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Example 4 – Interest on a loan (cont.)
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Lecture 15: Solving Non-Homogeneous Relations

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 10.3

Definition
If f (n) 6= 0, a recurrence relation of the form
(1) axn + bxn−1 = f (n) a 6= 0, b 6= 0
(2) axn + bxn−1 + cxn−2 = f (n) a 6= 0, c 6= 0

is called a non-homogeneneous recurrence relation.
The associated homogeneous relation is obtained by setting f to be 0
(1) axn + bxn−1 = 0
(2) axn + bxn−1 + cxn−2 = 0
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Definition

A particular solution is a single sequence x
(p)
n satisfying a recurrence

without consideration of the initial condition.
The general solution to a recurrence is the set of all sequences xn satisfying
it (without consideration of the initial condition)

Theorem
The general solution to a non-homogeneous recurrence is given by one particular
solution, x (p)n , plus the general solution to the associated homogeneous
equation, x (h)n . That is, the solution has the form

xn = x (p)n + x (h)n .
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Example 1 xn = 6xn−1 + 3n for n > 1 and x0 = 7.
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Example 2 xn − 4xn−1 + 3xn−2 = 2n

4 and x0 = 5, x0 = 6.
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To find a particular solution to a non-homogeneous recurrence of the form

axn + bxn−1 = f (n) n ≥ 1

axn + bxn−1 + cxn−2 = f (n) n ≥ 2

(1) Exponential functions f (n) = krn

(a) If r is not a root of the char. poly. of the homog. recurrence then look for a
particular solution of the form x

(p)
n = Crn.

(b) If r is a root of multiplicity m then look for a particular solution of the form
x
(p)
n = Cnmrn

(2) Power functions f (n) = knd

(a) Look for a solution of the form x
(p)
n = adn

d + ad−1n
d−1 . . .+ a1n + a0

(b) If nt , for some t ≤ d , is a solution to the homogeneous equation then multiply
the trial solution x

(p)
n by the smallest power of n, say ns , for which no

summand of ns f (n) is a solution of the homog. relation.

See Grimaldi page 479-481 for examples on how to determine the form of x (p)n .

Michael Monagan and Jamie Mulholland 119 / 270



Example 3. Find a particular solution to xn − 3xn−1 + 2xn−2 = 4n.
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Example 3 (continued).
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Extra space.
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Lecture 16: Divide and Conquer Algorithms and Recurrences

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Please use the notes on Canvas not 10.6 Grimaldi.

What is the fastest algorithm for sorting an array of n numbers ?
What is the fastest algorithm to multiply two polynomials of degree n ?
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Sorting Algorithms

Suppose we want to sort an A of n integers e.g.

A = 9 3 11 2 6 13 5

To compare sorting algorithms, by tradition, we count the number of comparisons
they do. Bubblesort does exactly n(n − 1)/2 comparisons. Mergesort does at
most n log2 n − n + 1 comparisons. Below is a table for various values of n
comparing the number of comparisons of these two algorithms.

n 4 16 64 1024 106

Bubblesort n(n − 1)/2 6 120 2016 523776 approx 5× 1011

Mergesort n log2 n − n + 1 5 49 321 9217 approx 20× 106

For n = 106 Mergesort does a factor of over 25, 000 fewer comparisons!
Demo Mergesort
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1: void Merge( int A[], int n1, int B[], int n2, int C[] ) {
2: // Merge the sorted arrays A of length n1 and B of length n2 into C
3: int i,j,k;
4: i = j = k = 0;
5: while( i<n1 && j<n2 )
6: if( A[i]<B[j] ) { C[k] = A[i]; i++; k++; }
7: else { C[k] = B[j]; j++; k++; }
8: while( i<n1 ) { C[k] = A[i]; i++; k++; }
9: while( j<n2 ) { C[k] = B[j]; j++; k++; }

10: return;
11: }

Figure: C code for merging two sorted arrays A and B into the array C
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The Mergesort Algorithm

1: void Mergesort( int A[], int n, int C[] ) {
2: // sort A[0],A[1],...,A[n] into ascending order
3: // C is an array of length n for working storage
4: int n1,n2,*B;
5: if( n<=1 ) return;
6: n1 = n/2;
7: n2 = n-n1;
8: B = A + n1;
9: Mergesort(A,n1,C); // sort the first half of A

10: Mergesort(B,n2,C); // sort the second half of A
11: Merge(A,n1,B,n2,C); // merge A and B into C
12: for( i=0; i<n; i++ ) A[i] = C[i]; // copy C into A
13: return;
14: }
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Solving C (n) ≤ 2C (n/2) + n − 1 with C (1) = 0.
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Divide and Conquer Algorithms

Suppose we are given a problem of size n.

S1: Divide the problem into a ≥ 2 subproblems of approximately the same size,
say size b. Algorithm Mergesort divided A into a = 2 subproblems of size
n1 = n/2 and n2 = n − n1.

S2: Solve the subproblems recursively using the same “divide-and-conquer”
approach.

S3: Combine the results from the subproblems to obtain the final solution.
Algorithm Mergesort merges two sorted arrays of size n1 and n2 into one
sorted array of size n.
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Example. Adding an array of numbers.

1: double Add( double A[], int n ) {
2: // Add A[0]+A[1]+...+A[n-1]
3: double s1,s2,*B; int n1,n2;
4: if( n==1 ) return A[0];
5: n1 = n/2; n2 = n-n1;
6: s1 = Add(A,n1); // s1 = A[0]+A[1]+...+A[n1-1]
7: B = A + n1; // B is a subarray of A starting at n1
8: s2 = Add(B,n2); // s2 = A[n1]+A[n2+1]+...+A[n-1]
9: return s1+s2;

10: }
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Solving recurrences using Maple’s rsolve command.

A second order recurrence

> re := a(n) = 5*a(n-1) - 6*a(n-2);

re := a(n) = 5 a(n − 1)− 6 a(n − 2)

> rsolve( {re,a(0)=1,a(1)=4}, a(n) );

2 3n − 2n

The mergesort recurrence

> re := c(n) = 2*c(n/2) + n-1;

re := c (n) = 2 c (n/2) + n − 1

> expand( rsolve( {re, c(1)=0}, c(n) ) );

−n +
ln (n) n

ln (2)
+ 1

Michael Monagan and Jamie Mulholland 130 / 270



Lecture 17 Generating Functions

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi Chapter 9 Generating Functions

A new powerful way of counting.
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The binomial coefficient
(
n
k

)
counts different objects:(n

k
)

= the number of subsets of {1, 2, . . . , n} of size k
= the number of binary strings of length n with k 1’s
= the coefficient of xkyn−k in the expansion of (x + y)n

Example (1 + x)3 =
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Definition (coefficient)
If P(x) is a polynomial we denote by [xk ]P(x) the coefficient of xk in P(x).

Example 1 How many integer solutions a1 + a2 + a3 = 7 have if 0 ≤ ai ≤ 3?
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Example 2 Suppose we roll two dice. If we add the values of the dice, how many
ways can we get 6?
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Example 3 How many integer solutions does

a1 + a2 + a3 = 9

have if 2 ≤ a1 ≤ 4, 1 ≤ a2 ≤ 5, 3 ≤ a3 ≤ 7 ?

[x9]P(x) where P(x) =

Exercise: What if a1 is odd, a2 is even and a3 ∈ {0, 3, 6} ?

[x9]P(x) where P(x) =
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Example 4. How many integer solutitions does

a1 + a2 + a3 = n have if ai ≥ 0 ?
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Definition
The generating function for an infinite sequence a0, a1, a2, . . . is the series

A(x) = a0 + a1x + a2x
2 + · · · =

∞∑
n=0

aix
i .

We are interested in the coefficients of A(x) not the values of A(x).
Example 5. What is the generating function for 1, 1, 1, . . . ?
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Example 6. What is the generating function for the sequence 1, 2, 3, 4, 5, . . . ?
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Lecture 18 Calculating with Generating Functions
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Grimaldi 9.2
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Definition ( Generating Function )
Let a0, a1, a2, a3, . . . be a sequence of real numbers (or integers). The function

A(x) = a0 + a1x + a2x
2 + a3x

3 + · · · =
∞∑
i=0

aix
i

is called the generating function for the sequence.

Note: we are interested in the coefficients of A(x) not the values of A(x).
All polynomials may be viewed as generating functions.

Example 1
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Example 2. How many ways can we make 30 cents from nickels, dimes and
quarters?

Example 3. How many integer solutions does x1 + x2 + x3 = n have if xi ≥ 0?
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Definition ( Arithmetic for Generating Functions )
Let A(x) = a0 + a1x + a2x

2 + a3x
3 + . . .

and B(x) = b0 + b1x + b2x
2 + b3x

3 + . . . and c be a constant. Then

(1) Sum: A(x) + B(x) = (a0 + b0) + (a1 + b1)x + · · · =
∞∑
n=0

(an + bn)xn.

(2) Scalar product: cA(x) = ca0 + ca1x + · · · =
∞∑
n=0

(can)xn.

(3) Product:

A(x) · B(x) = (a0b0) + (a0b1 + a1b0)x + · · · =
∞∑
n=0

(
n∑

k=0

akbn−k

)
xn.

(4) Derivative: A′(x) = a1 + 2a2x + 3a3x
2 + · · · =

∞∑
n=1

(nan)xn−1.
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Example. Let A(x) = 1+ x + x2 + x3 + . . . and B(x) = 2+ 2x + 2x2 + 2x3 + . . . .

2A(x) + B(x) =

A(x) · B(x) =

A′(x) =
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What about inverses? Let x be a real number.
The number 1 has the property 1 · x = x for all x . [identity]
If x is non-zero it has an inverse 1/x so that x · 1

x = 1. [inverses]

Example 1 Let A(x) = 1 + x + x2 + . . . and B(x) = 1− x .
Verify that A(x) · B(x) = 1 and conclude that A(x) = 1/B(x) = 1/(1− x).
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Example 2. Find the inverse of (1− x)k .
Let an be the number of integer solutions of x1 + x2 + · · ·+ xk = n where xi ≥ 0.
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Example 3 Let C (x) = 1 + 2x + 4x2 + 8x3 + . . . and
N(x) = 1 + x5 + x10 + x15 + . . . (the GF for nickels).
Using 2xC (x) and x5N(x) find the inverse of C (x) and N(x).

Express C (x) and N(x) in terms of A(x) = 1 + x + x2 + x3 + · · · = 1/(1− x).
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Lecture 19 Rational Generting Functions

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 9.2

A(x) = 1 + x + x2 + x3 + x4 + · · · =
1

1− x

A′(x) = 1 + 2x + 3x2 + 4x3 + · · · =
1

(1− x)2
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We have already seen that the generating function

A(x) = 1 + x + x2 + x3 + . . . =
∞∑
n=0

xn =
1

1− x

has a compact represenation as the rational function 1
1−x . Generating functions

which can be compactly represented as rational functions will be our main subject.

Definition
A generating function A(x) = a0 + a1x + a2x

2 + . . . is rational if it can be
expressed as

A(x) =
p(x)

q(x)

where p(x) and q(x) are polynomials and q(x) 6= 0.

(1) Given a sequence of numbers express it as a rational GF ?
(2) Given a rational GF, find the associated sequence (coefficient extraction)
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Two useful generating functions

A(x) = 1 + x + x2 + x3 + . . . =
∞∑
n=0

xn =
1

1− x
.

A′(x) = 1 + 2x + 3x2 + . . . =
∞∑
n=0

(n + 1)xn =
1

(1− x)2 .

Using just these two GF’s with basic arithmetic operations gives us the ability to
describe many other GF’s.

Example 1. Determine the sequence for the GF
x3 − 2
1− x
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Example 2. Determine the sequence for the GF
2x2 + 5
(1− x)2 + 7x
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Definition ( Substitution )
Let A(x) = a0 + a1x + a2x

2 + . . . be a GF and c be a constant. Define

A(cxm) = a0 + a1(cxm) + a2(cxm)2 + a3(cxm)3 · · · =
∞∑
n=0

anc
nxmn.

Example 1. The GF for nickels is N(x) = 1 + x5 + x10 + · · · =
∑∞

n−0 x
5n.

Express N(x) as a rational function.
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Example 2. What is the GF for 1,−1, 1,−1, . . . ?

Example 3. Express C (x) = 1− 2x + 4x2 − 8x3 + 16x4 − . . . as a rational
function.
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Example 4. Find a rational GF for the sequence 1,−2, 3,−4, 5,−6, . . . ?

Example 5. Express D(x) = −x + 2x2 − 3x3 + 4x4 − . . . as a rational function.
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Finding Coefficients

Using substitution and our two basic GF’s A(x) = 1 + x + x2 + . . . and A′(x) we
can now determine the coefficients for any GF that has the form

p(x)

ax + b
or

p(x)

(ax + b)2

Problem 1. Find the coefficient of xk in the GF

C (x) =
x2

2x + 3
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Problem 2. Find the coefficient of xk in the GF

D(x) =
x2

(x + 2)2
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Lecture 20 Rational Generating Functions continued.
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Grimaldi 9.2 Calculation Techniques
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We have been working with the two basic GF’s

1
1− x

= 1 + x + x2 + x3 + · · · =
∞∑
n=0

xn

1
(1− x)2 = 1 + 2x + 3x2 + 4x3 + · · · =

∞∑
n=0

(n + 1)xn

We already proved the more general generating function:

1
(1− x)k

=
∞∑
n=0

(
n + k − 1

n

)
xn

Combining this formula with substitution allows us to determine the coefficients
of any rational function of the form

p(x)

(ax + b)k
.

On page 422 the textbook uses a natural generalization of binomial coefficients,
called the extended binomial theorem to get these coefficients. We will use
substitutions instead.
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Example 1. For A(x) =
x

(1− x)2 find [xn](A(x)).

Example 2. Find the coefficient of x5 of A(x) =
1

(1− 2x)7
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Partial Fractions

Question: How can we deterine the coefficients of GFs of the form

p(x)

ax2 + bx + c
and

p(x)

ax3 + bx2 + cx + d
etc?

If ax2 + bx + c = a(x − α)(x − β) and α 6= β solve

1
(x − α)(x − β)

=
A

x − α
+

B

x − β

for A,B. If ax3 + bx2 + cx + d = a(x − α)(x − β)(x − γ) and α 6= β 6= γ solve

1
(x − α)(x − β)(x − γ)

=
A

x − α
+

B

x − β
+

C

x − γ

for A,B,C . If ax3 + bx2 + cx + d = a(x − α)(x − β)2 and α 6= β solve

1
(x − α)(x − β)2 =

A

x − α
+

B

x − β
+

C

(x − β)2

for A,B,C . Then use the formula for 1/(1− x)k with substitutions.
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Example 1. Find the coefficient of xn of C (x) =
3x

x2 − 3x + 2
.
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Example 2. Find values for A,B,C so that the expression below is true.

D(x) =
1

(x − 3)(x − 2)2 =
A

x − 3
+

B

x − 2
+

C

(x − 2)2
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Series Division

To find the series for the quotient

C (x) =
A(x)

B(x)
=

a0 + a1x + a2x
2 + · · ·

b0 + b1x + b2x2 + · · ·
let C (x) = c0 + c1x + c2x

2 + · · · and write A(x) = B(x)C (x) so that

(a0 + a1x + a2x
2 + · · · ) = (b0 + b1x + b2x

2 + · · · )(c0 + c1x + c2x
2 + · · · )

In this equation the ai and bi are known coefficients, the ci are unknown.
Equating coefficients in x i for i = 0, 1, 2, · · · and solving for ci we obtain

[x0] a0 = b0c0 =⇒ c0 = a0/b0 =⇒ b0 6= 0
[x1] a1 = b0c1 + b1c0 =⇒ c1 = (a1 − b1c0)/b0
[x2] a2 = b0c2 + b1c1 + b2c0 =⇒ c2 = (a2 − b1c1 − b2c0)/b0
. . .
[xn] an = b0cn + b1cn−1 + · · ·+ bnc0 =⇒ cn = (an − b1cn−1 − · · · − bnc0)/b0
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Example 1. Let A(x) = (1 + x)/(1− x)2 = (1 + x)/(1− 2x + x2). Find the
coefficients of A(x) up to x3 using series division.
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Example 2. Find a recurrence for the coefficients of x/(1− x − x2) using series
division.

Exercise. Find the series for (1 + x)/(1− 3x + 3x2 − x3) to x4 using series
division and determine a recurrence for the nth coefficient.
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Lecture 21: Solving Recurrences using Generating Functions
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Grimaldi 10.4

Given a0, the recurrence an = 3an−1 + 1 defines a sequence

a0, a1, a2, . . . , an, . . .

which in turn defines the generating function

A(x) = a0 + a1x + a2x
2 + · · ·+ anx

n + . . .

If we find a rational form for A(x), that is

A(x) =
p(x)

q(x)

for polynomials p(x) and q(x), then we can use partial fractions to get a formula
for an = [xn]A(x).
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Example 1. Solve an − 3an−1 = n for n ≥ 1 and a0 = 1.
The recurrence relation represents an infinite set of equations.

Multiply equation (k) be xk we get

Adding all equations up gives
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Now plug in a0 and isolate A(x).

Now we do a PDF and get a formula for an.
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Example 2. Consider the sequence defined by a0 = 0, a1 = 1 and

an − 5an−1 + 6an−2 = 0 for n ≥ 2.

Find a rational expression for A(x) =
∑∞

n=0 anx
n.
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Example 2 (cont.)
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Method.

Let a0, a1, a2, . . . be a sequence satisfying a recurrence

cnan + cn−1an−1 + · · ·+ ckan−k = f (n).

Let A(x) = a0 + a1x + a2x
2 + . . .

(1) Multiply the recurrence by xk , xk+1, . . . and sum both sides to infinity.
(2) Rewrite the infinite sums on the LHS in terms of A(x) and the sum on the

RHS as a rational function.
(3) Isolate A(x) and use partial fractions to calculate an = [xn]A(x).
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Problem. Consider the sequence defined by

a0 = 2, a1 = 3 and an − 4an−1 + 4an−2 = 2n for n ≥ 2.

Solve the recurrence using a generating function.
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Problem (cont.)
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Lecture 22: The Summation Operator
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Problem:
n∑

i=1

i2 =?
n∑

i=0

i3 =?
n∑

i=1

i4 =? etc.
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Let A(x) = a0 + a1x + a2x
2 + . . . . What is

A(x)
1

1− x
=
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Example 1. For A(x) = x + x2 find
A(x)

(1− x)
,

A(x)

(1− x)2 and
A(x)

(1− x)3 .
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Example 2. We will find a formula for
n∑

k=0

k2 = 02 + 12 + 22 + 32 + · · ·+ n2.
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Example 2 (cont.)
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Example 2 (cont.)

Exercise 1. Use the summation operator to show
n∑

k=1

k =
n(n + 1)

2
.
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Proofs by induction.

Example 1. Show that
n∑

k=1

2k − 1 = n2 for n ≥ 1 by induction on n.
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Example 1 continued.

Exercise 2. Show that
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
for n ≥ 1 by induction on n.
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Example 2. Show that every integer n ≥ 2 can be factored into a product of
primes.
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Example 2 continued.
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Lecture 23 Graphs: Multigraphs
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Definition ( multigraph )
A multigraph G = (V ,E ) is a set V of vertices, and a multiset E of edges where
each edge is in V × V .

Example: V = {1, 2, 3, 4}, E = {(1, 2), (1, 2), (2, 3), (3, 3), (3, 4), (4, 1)}.

Simple graphs are multigraphs with no loops and no parallel edges.
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Definition ( walks in multigraphs )
Let x and y be two vertices in a multigraph G = (V ,E ). A walk in G is a finite
alternating sequence

x e1 x1 e2 x3 e3 . . . en−1 xn−1 en y

of vertices xi ∈ V and edges ei ∈ E with n ≥ 0 edges. The length of the walk is
n, the number of edges. A walk from x to y is called a closed walk if x = y and
an open walk if x 6= y . Note, vertices and edges in walks need not be distinct.

Convention: Grimaldi allows walks to have length 0 which he calls trivial walks.

Examples
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Definition ( trails and circuits )
Let G be a multigraph and x and y be vertices in G .
A trail from x to y is an open walk in G that has no repeated edges.
A circuit from x to x is a closed walk in G that has no repeated edges.

Convention: Grimaldi says circuits must have at least 1 edge and cycles 3 edges.
We will allow both circuits and cycles to have 1 or more edges.

Examples
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Theorem ( trails and paths )
Let G = (V ,E ) be a multigraph with vertices a and b. If there is a trail in G from
a to b then there is a path in G from a to b.

Proof.
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Definition ( degree of a vertex in a multigraph )
If G = (V ,E ) is a multigraph and v ∈ V , the degree of v , denoted deg(v), is the
number of edges incident to v . Here a loop at v counts as two incident edges.

Example

Theorem
Every multigraph G = (V ,E ) satisfies

∑
v∈V deg(v) = 2|E |.

Poof.
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The Bridges of Königsberg Problem

Question: Is it possible walk around the city,
crossing each bridge exactly once, and end up
where you started?
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The definitions subgraph, induced subgraph and spanning subgraph that we
made for simple graphs also work for multigraphs.

Definition ( connected graph and connected components )
Let G = (V ,E ) be a multigraph. We say G is connected if for all pairs u, v ∈ V
there is a path from u to v . The connected components of G are the maximal
connected subgraphs of G .

Example
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Definition ( directed graphs )
A directed graph or digraph G = (V ,E ) is a set V of vertices and a set E of
edges where edges are ordered pairs of vertices. We draw arrows on edges to
indicate direction. If a graph is not directed, we say it is an undirected graph.

Example. V = {1, 2, 3, 4, 5}, E = {(1, 2), (2, 3), (3, 1), (4, 1), (3, 5)}.

We will not study directed graphs in MACM 201.
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Graph Terminology

Graphs are classified as either directed graphs or undirected graphs.
Simple graphs are graphs with no parallel edges and no loops.
Adjacent vertices are also called neighbors.
Graphs are also called networks. Usually a network refers to a real physical
object whereas a graph could be abstract. Mathematicians and Computer
Scientists usually use “graphs” whereas Engineers usually use “networks”.
Some terminology is different, for example

Graph Theory Network Science
graph network
vertex node
edge link
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Lecture 24: Eulerian Trails and Circuits

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 11.3

Question: Is it possible walk around the city crossing each bridge exactly once,
and end up where you started?
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Definition ( Eulerian circuit )
An Euler ciruit of a multi-graph G = (V ,E ) is a circuit

W = v1, e1, v2, e2, . . . , en, v1

such that every edge in E appears once in W .

Examples.
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Lemma
Let G = (V ,E ) be a multigraph with |E | ≥ 1.
If deg(v) ≥ 2 for all v ∈ V , then G contains a cycle of length ≥ 1.

Proof.
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Proof (cont).
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Theorem ( Euler )
A connected multigraph G = (V ,E ) which is not the singleton vertex, has an
Euler circuit if and only if every vertex in V has even degree.

Proof.
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Proof (cont.)
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Proof (cont.)

The proof gives a recursive algorithm for finding an Euler circuit!
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Definition
An Euler trail of a multi-graph G = (V ,E ) is a trail

T = v0, e1, v1, e2, . . . , en, vn

such that every edge in E appears once in T .

Example

Corollary ( of Euler’s theorem )
A connected multigraph G = (V ,E ) has an Euler trail if and only if there are
exactly two vertices in G of odd degree.

Proof. Exercise.
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Lecture 25: Planar Graphs
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These are both drawings of the same graph. To see this
locate the cycles 1− 2− 3− 4− 5− 1 and 16− 17− 18− 19− 20 in both graphs.
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Definition ( planar graph )
A graph G is planar if G has a drawing (in the plane) so that the edges intersect
only at the vertices of G . Such a drawing is called a planar embedding of G .

Examples
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Observation: The graph K3,3 is not planar.
Proof sketch (we will give a formal proof next day)

Observation: The graph K5 is not planar.
Proof sketch (we will give a formal proof next day)
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Definition ( subdivision )
Let G = (V ,E ) be a multigraph and let e = {u, v} be an edge in E . To
subdivide the edge e is to delete e and add a new vertex w and two new edges
e1 = {u,w} and e2 = {w , v} to G . If the graph H is obtained from G by a
sequence of subdivions, then H is called a subdivison of G .

Example

Observation. If H is a subdivision of G then H is planar if and only if G is planar.
This means that every subdivision of K3,3 and K5 is nonplanar.
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Example: Is this graph planar? I.e. can you find a planar embedding?

Exercise: find a subdivision of K3,3 in the graph.
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Question: Which graphs are planar ?

Definition
Let G and H be multigraphs. We say that G contains a subdivision of H if
there is a subgraph of G isomorphic to some subdivision of H.

Theorem ( Kuratowski-Wagner )
A multigraph G is planar if and only if G does not contain a subdivision of K3,3 or
a subdivision of K5.

Notes.
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Definition ( Faces )
Let G be a planar graph embedded in the plane. The embedding partitions the
plane into connected regions called faces. There is one unbounded region called
the infinite face. All other faces are internal faces. If G is connected, every face
has vertices and edges on its boundary. They form a closed walk called a facial
walk

Example

Michael Monagan and Jamie Mulholland 207 / 270



Theorem ( Euler’s formula )
If G = (V ,E ) is an connected multigraph embedded in the plane and F is the set
of faces, then

|V | − |E |+ |F | = 2.

This implies all embeddings of a planar graph have the same number of faces.

Example

Proof.
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Proof (cont.)
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Extra space.
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Lecture 26: Planar Graphs continued
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Question: Can a given electronic circuit be layed out on an circuit board such
that no wires cross each other?
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Review:
A graph G = (V ,E ) is planar if G has a drawing (in the plane) where the edges
intersect only at the vertices of G . Such a drawing is called a planar embedding
of G . The embedding partitions the plane into at set F of regions called faces.
We proved Euler’s formula |V | − |E |+ |F | = 2.

Examples.
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Definition ( Face degrees )
Let G = (V ,E ) be a connected multigraph embedded in the plane and let f be a
face of this embedding. We define the degree of f , denoted deg(f ), to be the
number of edges in a facial walk of f .

Example

Theorem

If G has faces f1, f2, . . . , fk then
k∑

i=1

deg(fi ) = 2|E |.

Proof
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What is the maximum number of edges a planar simple graph can have?

Theorem ( Bound 1 for the number of edges )
If G = (V ,E ) is a connected planar simple graph with |V | ≥ 3 then

|E | ≤ 3|V | − 6 and 2|E | ≥ 3|F |.

Proof.
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Corollary ( to bound 1 for the number of edges )
The graph K5 is not planar.

Proof.
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Theorem ( Bound 2 for the number of edges )
If G = (V ,E ) is a connected planar simple graph with |V | ≥ 3 and with no cycle
of length 3 or less then

|E | ≤ 2|V | − 4 and |E | ≥ 2|F |.

Proof.
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Corollary ( to bound 2 for the number of edges )
The graph K3,3 is not planar.

Proof.
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Definition ( Dual graphs )
Let G = (V ,E ) be a connected multigraph embedded in the plane. The vertices
of the dual multigraph G∗ are the faces of G . If two faces fi and fj share an edge
e then e∗ = {fi , fj} is an edge in G∗. This may be done so that e∗ crosses e and
G∗ also ends up embedded in the plane.

Examples.
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Features of duals

(1) Duals only exist for planar graphs
(2) If G∗ is a dual of G then G is a dual of G∗ !
(3) The degree of a vertex in G∗ is the degree of the corresponding face of G .
(4) The dual of a simple graph may be a multigraph.
Examples
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Lecture 27: Hamiltonian Paths and Cycles
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In 1856 a mathematician William Hamilton invented a game in which the ojbect is
to find a cycle along the edges of a dodecahedron.

Problem: Can you find a cycle in the graph that includes all 20 vertices?
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Definition
Let G be a graph. A path of G is a Hamiltonian path if it contains every vertex
of G . A cycle of G is a Hamiltonian cycle if it contains every vertex of G .

Examples
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Algorithm Exhaustive Search: try all possible paths.
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Hamiltonian vs. Eulerian

The definition of Hamiltonian is very similar to Eulerian. In Hamiltonian each
vertex appears exactly once. In Eulerian each edge appears exactly once.
Although they look similar, having a Hamiltonian cycle and Having an Euler
circuit is very different.

(1) There is a fast algorithm to test if a graph G = (V ,E ) has an Euler circuit
where the running time is a linear function of |V |+ |E |, namely, test if G is
connected and all vertices have even degree.

(2) No such fast test is known for a Hamiltonian cycle. The problem of deciding
if a graph has a Hamiltonian path/cycle is NP-complete. So it is widely
believed that there does not exist an algorithm which takes as input an
arbitrary graph G = (V ,E ) and determines if G has a Hamiltonian path/cycle
where the running time is bounded by a polynomial function of |V |+ |E |.
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Definition ( Necessary and sufficient conditions )
Let P be a property of graphs and C be a set of condtions.
(1) C is necessary for P if every graph satisfying P also satisfies C .
(2) C is sufficient for P if every graph satisfying C also satisfies P.
(3) If C is both necessary and sufficient for P, then a graph G satisfies P if

and only if G satisfies C . We say C characterize P.

Examples
(1) It is necessary for a graph to be connected to have a H.P.

(2) Being a complete graph is a sufficient condition to have a H.P.

(3) n > 1 is odd is a necessary and sufficient condition for Kn to have an Euler
circuit.
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A sufficient condition for G to have an Hamiltonian path.

Theorem
Let G = (V ,E ) be a graph with |V | = n. If

deg(x) + deg(y) ≥ n − 1 for all x , y ∈ V with x 6= y

then G has Hamiltonian path.

Proof.

Michael Monagan and Jamie Mulholland 225 / 270



Proof (cont.)
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Proof (cont.)

Michael Monagan and Jamie Mulholland 227 / 270



Corollary
If G = (V ,E ) is a graph with |V | = n and deg(v) ≥ n−1

2 holds for every v ∈ V ,
then G has a Hamiltonian path.

Proof.
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Lecture 28: Trees
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Definition ( tree, forest and leaf )
Let G = (V ,E ) be a multigraph. G is a tree if G is connected and G does not
contain a cycle. G is a forest if G does not contain a cycle. A vertex of degree 1
is called leaf or pendant vertex.

Examples

Since a tree cannot have loops or parallel edges, it is a simple graph.
We previously showed that every graph with all vertices of degree ≥ 2 must have a
cycle. Therefore, every tree with ≥ 2 vertices must have a leaf. Later we will see
that all trees with at least two vertices have at least two leaves.
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Lemma
If T = (V ,E ) is a tree with leaf v then T − v is a tree.

Proof

This observation gives us a powerful tool for proving properties of trees. Try using
induction on the number of vertices and, for the inductive step, deleting a leaf
then applying the inductive hypothesis.
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Theorem ( unique paths )
If T = (V ,E ) is a tree and u, v ∈ V are distinct, there is a unique path in T with
ends u, v .

Proof.
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Theorem ( main property of trees )
If T = (V ,E ) is a tree then |V | = |E |+ 1.
If G = (V ,E ) is a forest with k trees then |V | = |E |+ k .

Proof.
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Proof (cont).
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Lemma
If G = (V ,E ) satisfies |V | = |E |+ 1 then G must have a vertex of degree 0 or at
least two of degree 1.

Proof.
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Lemma
Every tree T = (V ,E ) with |V | ≥ 2 has at least two leaves.

Proof.

Exercise. Let T be a tree. Show that removing any edge from T disconnects T .

Michael Monagan and Jamie Mulholland 236 / 270



Lecture 29: Trees and Rooted Trees

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Grimaldi 12.1, 12.2

Michael Monagan and Jamie Mulholland 237 / 270



Definition ( tree )
A multigraph G is a tree if G is connected and G does not contain a cycle.

Theorem ( main properties of trees )
If T = (V ,E ) is a tree then |V | = |E |+ 1 and secondly,
there is a unique path in T between every pair of vertices.

Examples
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Theorem (Characterization of Trees)
Let G = (V ,E ) be a multigraph. The following statements are equivalent.
(1) G is connected and has no cycle. (G is a tree)
(2) G is connected and |V | = |E |+ 1.
(3) G has no cycle and |V | = |E |+ 1.
(4) There is a unique path between every pair of vertices in G .

Proof.
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Proof (cont).
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Definition ( rooted tree )
A rooted tree T = (V ,E ) is a tree with a distinguished vertex called the root.
For every vertex v ∈ V the level of v is the length of the path from v to the root.
Note: the root is the unique vertex at level 0.

Example
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Definition ( rooted tree terminology )
• The height of a rooted tree is the maximum level of a vertex.

A rooted tree consisting of just a root vertex has height 0.
• Every non-root vertex v at level i is adjacent to exactly one vertex u at level

i − 1. We call u the parent of v and we say that v is a child of u.
• For every vertex v there is a walk “up the tree” to the root obtained by

moving to the parent vertex at each step. If u is another vertex on this walk,
we call u an ancestor of v and v a descendant of u.
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We are frequently interested in working with rooted trees recursively. Therefore, it
will be helpful to think of a rooted tree as composed out of smaller rooted trees.

Definition ( subtree )
Let v be a vertex of a rooted tree T with level i . Define T ′ to be the subgraph of
T induced by v together with its descendants. Then T ′ forms a new rooted tree
with root vertex v . We say that T ′ with root v is the subtree of T at v .
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Definition ( isomorphism of rooted trees)
Let T1,T2 be rooted trees with Ti = (Vi ,Ei ) for i = 1, 2. We say that T1 and T2
are isomorphic if there exists a bijection f : V1 → V2 satisfying:
(1) {f (u), f (v)} ∈ E2 ⇔ {u, v} ∈ E1

(2) For every v ∈ V1 the level of v and f (v) is the same.
In particular, f sends the root of T1 to the root of T2.

Example.
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Definition
A rooted tree is m-ary if every internal node has at most m children. A 2-ary tree
is called binary tree.

Exercise. Find all binary trees with height 0, 1, and 2 up to isomorphism.

Let bn denote the number of binary trees of height at most n. Find b0, b1, b2.
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Use the recursive structure of rooted trees find a recurrence for bn.
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Lecture 30: Rooted Trees
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What formula does this tree encode?
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Ordered rooted trees

For some applications it is essential to have not just a rooted tree, but also an
ordering of the children for each internal vertex.

Example

Thesis
Ch1
S1.1
S1.2

Ch2
S2.1
S2.2
S2.2.1

S2.3
Ch3
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How do we walk through and process a rooted tree?

Definition ( preorder, postorder tree traversals )
A preorder traversal of a tree T first visits the root vertex then visits, in
preorder, the vertices of the subtrees T1,T2, . . . ,Tk of T .
A postorder traversal of a tree T visits, in postorder, the vertices of the subtrees
T1,T2, . . . ,Tk of T then visits the root.

Example
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Exercise Draw the expression tree for (3× 5) + ((7− 4)× 2) and give the
postorder traversal.

Preorder is also called Polish notation and postorder is also called reverse Polish
notation. HP calculators used postorder and a stack to evaluate expressions.
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Definition ( spanning tree )
Let G be a connected multigraph. A subgraph T of G is a spanning tree if T
spans G (so T contains all vertices in G ) and T is a tree.

Example

Question How many spanning trees does Cn have?
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Theorem ( existence of spanning trees )
Every connected multigraph G = (V ,E ) has a spanning tree.
Here are three algorithms to construct a spanning tree in G :
(1) Start from G . If there is a cycle C in G delete an edge from C . Repeat this

until G has no cycles. Output G .
(2) Create the graph H = (V , φ). For each edge e in G add e to H if it does not

make H have a cycle. Output H.
(3) The depth-first-search algorithm.

Proof (1)
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The Depth-First Search (DFS) algorithm
Input. A graph G = (V ,E).
Output. A set ET of edges such that (V ,ET ) is a spanning tree of G .

1. Let v = 1, ET = φ and and mark vertex 1 as visited.
2. If all neighbors of v have been visited Then

a) If v = 1 Then Return (V ,ET ).
b) Else (backtrack step) Let v = parent(v) and Goto step 2.

3. Else
a) Let i be the smallest neighbor of v that has not been visited.
b) Mark i as visited.
c) Add the edge {v , i} to ET and Let parent(i) = v .
d) Let v = i and Goto step 2.

Example

Michael Monagan and Jamie Mulholland 253 / 270



Extra space.
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Lecture 31: Articulation Points and Biconnected
Components
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An application of the depth-first search spanning tree.
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Articulation Points

Definition ( Articulation Point )
Let G = (V ,E ) be a graph. A vertex v in G is an articulation point (AP) if
removing v from G increases the number of connected components of G .
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Lemma (12.3)
Let G = (V ,E ) be a graph. A vertex v ∈ V is an articulation point of G if and
only if there are two vertices x and y in V such that x 6= y 6= v and every path
between x and y includes v .
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Definition ( Biconnected Component )
Let G = (V ,E ) be a graph. A subgraph of G is biconnected if it is connected
and has no articulation points. A maximal biconnected subgraph of G is called a
biconnected component of G .

Lemma
Let G = (V ,E ) be a graph. If G has a Hamiltonian cycle then G must have no
APs, equivalently, G must be biconnected.

Exercise: Find a biconnected graph which does not have a Hamiltonian cycle.
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How can we find the Articulation points in a connected graph G?

Algorithm 1.

set AP = φ.
for each v ∈ V do
if removing v from G disconnects G then
set AP = AP ∪{v}.

end if
end for
output AP.
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Algorithm 2

Step 1: Construct a DFS spanning tree T for G and
number the edges in T in the order visited during the DFS.
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Step 2: Traverse T in pre-order. If a vertex v has a backedge en from u to v ,
number all edges on the walk v e1 x1 e2 . . . xn−2 en−1 u en v from v down to u and
back to v with the edge number on e1.

Michael Monagan and Jamie Mulholland 261 / 270



What are the articulation points?

What are the biconnected components?

Why is this algorithm better than Algorithm 1?
If implemented carefully, can be done in time proportional to |V |+ |E |.
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Lecture 32: Weighted Graphs and Minimum Spanning Trees
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Definition ( Weighted Graph )
A weighted graph G = (V ,E ) is a multigraph together with a function
w : E → R+ is called an edge-weighting.

Examples
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Definition ( Minimum Spanning Tree )
Let G = (V ,E ) be a connected multigraph with edge-weighting w .
For any subgraph H = (V ′,E ′) of G , the weight of H is

w(H) =
∑
e∈E ′

w(e).

A minimum spanning tree is a spanning tree of G of minimum weight.

Example.
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Lemma ( property of minimum spanning trees )
Let G = (V ,E ) be a weighted connected graph. Let V1 and V2 be a partition of
V . Amongst the edges in G with one vertex in V1 and the other in V2 let e one of
minimum weight. There is a minimum spanning tree in G with e as one of it’s
edges.

Proof.
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Kruskal’s algorithm to compute a minimum spanning tree

Input: a connected multigraph G = (V ,E ) with an edge-weighting w .
Output: a mimimal spanning tree of G .
1. Set E ′ = φ.
2. Sort the edges in E from least weight to highest weight.
3. While (V ,E ′) is not connected do

Let e be the next heaviest edge in E .
If (V ,E ′ ∪ {e}) does not have a cycle set E ′ = E ′ ∪ {e}.

4. Return the tree (V ,E ′).

Example
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Additional Space.
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Additional Space.
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