
1 Divide and Conquer Algorithms

One way to create fast algorithms is to devise a divide-and-conquer algorithm for a problem. Divide-
and-conquer algorithms are naturally recursive algorithms and recurrence relations are the natural
too needed to determine their cost. Three important divide and counquer algorithms are Mergesort,
Quicksort and the FFT (Fast Fourier Transform). Let us give a simple example first.

Suppose we are given an array A of n numbers and we want to add them. For example

A = 1 3 5 7 9 4

The simplest way to add them is to use a loop. The following C code does this. The type double

is for variables whose values are decimal numbers like 3.145159265.

1: double Add( double A[], int n ) {

2: // Add A[0]+A[1]+...+A[n-1]

3: int i;

4: double s = 0.0;

6: for( i=0; i<n; i++ )

7: s = s + A[i];

8: return s;

9: }

How many additions of decimal numbers does the Add algorithm do? The answer is n because
it adds decimal numbers in line 7 and line 7 is executed n times.

Another way to add the numbers in an array is to use the following divide-and-conquer algo-
rithm. The idea is to divide the array A into halves, add the numbers of the first half to get s1,
then add the entries of the second half to get s2, then return s1 + s2. In our example we have

1 3 5

s1 = 9

7 9 6

s2 = 20

One reason we might want to add this way is so we can assign one processor to calculate s1 and a
second processor to calculate s2 to speed up the computation.

The idea of a divide-and-conquer algorithm is to apply the same strategy recursively to the two
halves of A. Here is C code to do this. The code assumes n ≥ 1.

1: double Add( double A[], int n ) {

2: // Add A[0]+A[1]+...+A[n-1]

3: double s1,s2,*B; int n1,n2;

4: if( n==1 ) return A[0];

5: n1 = n/2; n2 = n-n1;

6: s1 = Add(A,n1); // s1 = A[0]+A[1]+...+A[n1-1]

7: B = A + n1; // B is a subarray of A starting at n1

8: s2 = Add(B,n2); // s2 = A[n1]+A[n2+1]+...+A[n-1]

9: return s1+s2;

10: }

Line 7 makes B a subarray of A that starts at index n1 of A. This means B[0] gets the value
in A[n1], and B[1] gets the value in A[n1+1], etc. You may picture the arrays A and B as follows.
where we have included subscripts for both arrays.

A0 A1 A2

1 3 5

B−3 B−2 B−1

A3 A4 A5

7 9 4

B0 B1 B2
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Let T (n) be the number of additions algorithm Add does in line 9. We have T (1) = 0 from line
4 and T (n) = T (n1) + T (n2) + 1 from lines 6,8 and 9. If n is even then n1 = n2 = n/2 and the
recurrence simplifies to

T (n) = 2T (n/2) + 1.

We will solve this recurrence later and show that T (n) = n − 1 additions. But first, let us give a
general strategy for divide-and-conquer algorithms. If we are given a problem of size n > 1, the
general strategy is to

Step 1: Divide the problem into a ≥ 2 subproblems of approximately the same size, say
size b. Algorithm Add divided A into a = 2 subproblems of size n1 = n/2 and
n2 = n− n1.

Step 2: Solve the subproblems recursively using the same “divide-and-conquer” approach.
Algorithm Add does this in lines 6 and 8 obtaining solutions s1 and s2.

Step 3: Combine the results from the subproblems to obtain the final solution.
Algorithm Add does this when it computes s1 + s2 in line 9.

Let f(n) be the number of operations to solve the problem using the divide-and-conquer algorithm
and we let h(n) be the number of operations in steps 1 and 3. To make our analysis easier, we will
assume n = bk which means we can always divide n exactly into b sub-problems of size n/b. Then
we have a recurrence for f(n) of the form

f(n) = af(n/b) + h(n) for n > 1. (1)

For n = 1 we may assume the time to solve the problem is a constant c ≥ 0 so that f(1) = c. In our
Add example we have a = 2, b = 2, c = 0 and h(n) = 1 so that the recurrence is f(n) = 2f(n/2)+1.
Theorem 10.1 below solves recurrence (1) for the case h(n) = d where d is a constant. Our Theorem
10.1 generalizes slightly Theorem 10.1 in the Grimaldi text.

Theorem 10.1 Let a and b be positive integers with b ≥ 2. Let c and d be positive real numbers.
Let n = bk for k ≥ 0 and let f : Z+ → R. If f(1) = c and f(n) = af(n/b) + d for n > 1 then

(1) f(n) = d logb n + c for a = 1.

(2) f(n) = d
anlogb a − 1

a− 1
+ cnlogb a for a ≥ 2.

(3) f(n) = n−1
a−1d + nc for a ≥ 2 and b = a.

Proof: For k ≥ 1 we expand the recurrence to obtain the following equations

f(n) = af(n/b) + d

af(n/b) = a(af(n/b2) + d) = a2f(n/b2) + ad

a2f(n/b2) = a2(af(n/b3) + d) = a3f(n/b3) + a2d

... ≤
...

ak−2f(n/bk−2) = ak−1f(n/bk−2) + ak−2d

ak−1f(n/bk−1) = akf(n/bk) + ak−1d = akf(1) + ak−1d

akf(1) = akc

2



Adding these equations and cancelling equal terms we have

f(n) = akf(1) + (d + ad + a2d + . . . + ak−1d)

= akc + (1 + a + a2 + . . . + ak−1)d.

Using n = bk so that k = logb n, for a = 1 we obtain (1) f(n) = c + kd = c + d logb n. To show (2)

we use
∑k−1

i=0 ai = ak−1
a−1 and ak = alogb n = nlogb a so that

f(n) = akc +
ak − 1

a− 1
d = cnlogb a + d

nlogb a − 1

a− 1
.

For case (3) where a = b we have logb a = 1 so f(n) = cn + n−1
a−1d. This ends the proof.

Returning to our example of adding an array of n numbers where we had T (n) = 2T (n/2) + 1 and
T (1) = 0. Applying Theorem 10.1 (3) with c = 0, d = 1, and a = b = 2 we obtain

T (n) = cn +
n− 1

a− 1
d = n− 1.

The choice h(n) = d in Theorem 10.1 is too restrictive in general. For the Mergesort algorithm
we will need to solve the recurrence T (n) = 2T (n/2) + n − 1 with T (1) = 0. In the exercises we
ask you to solve the recurrence T (n) = aT (n/b) + h(n) for h(n) = An + B because this recurrence
occurs in many important divide-and-conquer algorithms.

2 Mergesort

Suppose we are given an array A of n objects, perhaps integers, and suppose we want to sort them.
Previously we saw that the Bubble sort algorithm does n(n − 1)/2 comparisons. The Mergesort
algorithm is much faster. We will show that for n = 2k for k ≥ 0, it does at most n log2 n− n + 1
comparisons. Below is a table comparing the number of comparisons of the two algorithms.

n 4 16 64 1024 106

Bubblesort n(n− 1)/2 6 120 2016 523776 approx 5× 1011

Mergesort n log2 n− n + 1 5 49 321 9217 approx 20× 106

For an array with n = 1024 entries, Bubblesort does a factor of 523776/9217=56.8 times as many
comparisons as Mergesort. The power of Mergesort becomes apparent for larger n. For n = 106

Mergesort does a factor of over 25, 000 fewer comparisons! So how does the Merge sort algorithm
work? Consider the array A below with n = 7 elements.

A = 17 3 12 5 1 14 10

The main idea of Mergesort is to split the array into two halves and sort them recursively. Since
the size n may not be even we will use n1 = bn/2c = 3 for the first array and n2 = n− n1 = 4 for
the second. So we have

A = 17 3 12 5 1 14 10

The next step is to sort the two sub-arrays recursively. That is, we use the Mergesort algorithm on
the first n1 elements and then the Mergesort algorithm on the remaining n2 elements. After this is
done we will have
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A = 3 12 17 1 5 10 14

The final step is to “merge” the two sorted arrays into a new array C of size n then copy the
contents of C back into A. We give the code for Mergesort below where we have not yet defined
the Merge step. In the code line 8 defines B to be the subarray of A starting at index n1.

1: void Mergesort( int A[], int n, int C[] ) {

2: // sort A[0],A[1],...,A[n] into ascending order

3: // C is an array of length n for working storage

4: int n1,n2,*B;

5: if( n<=1 ) return;

6: n1 = n/2;

7: n2 = n-n1;

8: B = A + n1;

9: Mergesort(A,n1,C); // sort the first half of A

10: Mergesort(B,n2,C); // sort the second half of A

11: Merge(A,n1,B,n2,C); // merge A and B into C

12: for( i=0; i<n; i++ ) A[i] = C[i];

13: return;

14: }

Figure 1: C code for the Mergesort algorithm

Let C(n) be the number of comparisons that Mergesort does and let M(n1, n2) be the number of
comparisons that the, as yet, unspecified Merge algorithm does in line 11. Line 5 means C(1) = 0.
Because of the two recursive calls in lines 9 and 10 we have the recurrence

C(n) = C(n1) + C(n2) + M(n1, n2). (2)

Now we need to explain how the Merge step works. To merge the two halves of A, we maintain
three array indexes i, j, k. In the merge the index i tells us which element of A we are at, the index
j tells us which element of the array B we are at, and k tells us the next empty slot in the array
C. Schematically, at the start of the merge, we have the following picture

i=0
3 12 17
A

j=0
1 5 10 14
B

k=0

C

Now the merge begins. Since the first half of A and the second half of A are already sorted, the
smallest element in A must be either A0 or B0. In our example, B0 = 1 is the smallest element. So
we copy B0 into C0 and add 1 to i and k so that we have the following picture.

i=0
3 12 17
A

j=1
1 5 10 14
B

k=1
1
C

Now we compare Ai and Bj again. Since i = 1 and j = 0 we compare A[i]=3 with B[j]=5. As
the smaller is 3 we copy 3 into Ck and add 1 to i and k. Now we have this picture

i=1
3 12 17
A

j=1
1 5 10 14
B

k=2
1 3
C
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Repeating this we will stop the merging process when i = n1 or j = n2, whichever occurs first. In our
example since 17 is the largest element we will reach j = n2 = 4 first. And we will have

i=2
3 12 17
A

j=4
1 5 10 14
B

k=6
1 3 5 10 12 14
C

The final step is to copy any remaining elements from A or B into C. In our example, we have i = 2 so
we copy A2 into Ck. C code for doing a merge is presented below.

1: void Merge( int * A, int n1, int * B, int n2, int *C ) {

2: // Merge the sorted arrays A of length n1 and B of length n2 into C

3: int i,j,k;

4: i = j = k = 0;

5: while( i<n1 && j<n2 )

6: if( A[i]<B[j] ) { C[k] = A[i]; i++; k++; }

7: else { C[k] = B[j]; j++; k++; }

8: while( i<n1 ) { C[k] = A[i]; i++; k++; }

9: while( j<n2 ) { C[k] = B[j]; j++; k++; }

10: return;

11: }

Figure 2: C code for merging two sorted arrays A and B into the array C

Our next task is to determine how many comparisons between elements of the arrays A and B the Merge
algorithm does. Let M(n1, n2) be the number of comparisons. We make the following observation. Each
time the loop in lines 5–7 is executed, one element from either A or B is moved to C and one comparison is
done in line 6. Since there are n1 elements in A, and n2 elements in B, at most n1 + n2− 1 are moved to C,
so at most n1 + n2 − 1 comparisons are done. Thus

M(n1, n2) ≤ n1 + n2 − 1.

There can be fewer comparisons. For example, if all elements in A are less then B0, then only n1 comparisons
would be done.

Now we complete the analysis of the Mergesort algorithm where C(n) is the total number of comparisons.
From equation (2), using n1 + n2 = n we have

C(n) = C(n1) + C(n2) + M(n1, n2)

≤ C(n1) + C(n2) + n1 + n2 − 1

= C(m) + C(n−m) + (n− 1).

Substituting n1 = bn/2c we have

C(n) ≤ C(bn/2c) + C(dn/2e)) + (n− 1).

To simplify the analysis we assume n = 2k for some k ≥ 0 so that k = log2 n and n1 = n2 = n/2 and

C(n) ≤ 2C(n/2) + n− 1.

Now we solve the recurrence with C(1) = 0. We have

C(n) ≤ 2C(n/2) + n− 1

2C(n/2) ≤ 2[2C(n/4) + (n/2− 1)] = 4C(n/4) + n− 2

4C(n/4) ≤ 4[2C(n/8) + (n/4− 1)] = 8C(n/8) + n− 4
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... ≤ . . .
n

4
C(4) ≤ n

4
[2C(2) + (4− 1)] =

n

2
C(2) + n− n

4
n

2
C(2) ≤ n

2
[2C(1) + (2− 1)] = nC(1) + n− n

2
nC(1) = 0

Adding these inequalities and cancelling equal terms we have

C(n) ≤ (n− 1) + (n− 2) + (n− 4) + . . . + (n− n/4) + (n− n/2) + 0

=

k−1∑
i=0

(n− 2i)

=

k−1∑
i=0

n−
k−1∑
i=0

2i

= nk − (2k − 1)

= n log2 n− n + 1

We note that this is the maximum number of comparisons that the Mergesort algorithm does. In the exercises
you will consider the minimum number of comparisons which happens when the array A is already sorted.
You will also consider another divide and conquer algorithm, the Fast Fourier Transform. Many consider
the Faster Fourier Transform the most important algorithm discovered in the 20th century. We have shown
that for n = 2k the Mergesort algorithm does at most n log2 n− n + 1 comparisons.

Exercises

1 Consider the recurrence T (n) = aT (n/b) + h(n) for h(n) = An + B with initial value T (1) = C where
a, b are positive integers with b ≥ 2 and A,B,C are real numbers with A ≥ 0 and C ≥ 0. Using the
method in the proof of Theorem 10.1 solve for T (n). Simplify the formula for the case a = b = 2.

2 Below is C code for the Fast Fourier Transform for the integers modulo p. The input is the array A
of long integers and the output is the array B of long integers. Note, you do not need to know what
algorithm FFT is doing in order to count the number of operations that it does. If you are interested,
the FFT algorithm and applications of it will be presented in detail in MACM 401.

1: void FFT( long A[], long n, long w, B[], long p ) {

2: // assumes 0 <= A[i] < p and B is an array of size n and n = 2^k

3: long i,n2,w2,wi,s,t;

4: if( n==1 ) return;

5: n2 = n/2;

6: for( i=0; i<n2; i++ ) { B[i] = A[2*i]; B[n2+i] = A[2*i+1]; }

7: w2 = w*w % p;

8: FFT( B, n2, w2, A, p );

9: FFT( B+n2, n2, w2, A+n2, p );

10: wi = 1;

11: for( i=0; i<n2; i++ ) {

12: s = B[i]; t = w*B[n2+i] % p;

13: A[i] = (s+t) % p; A[n2+i] = (s-t) % p;

14: wi = w*wi % p;

15: }

16: return;

17: }
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Let T (n) be the number of multiplications that algorithm FFT does in lines 7, 12 and 14. Give a
recurrence equation for T (n) and an initial value for T (1) then solve for T (n). You should get an
answer of the form T (n) = An log2 n + Bn + C for some constants A,B,C.

3 Recall that the recurrence for number of comparisons that the Mergesort algorithm does is C(n) ≤
2C(n/2)+n−1 and C(1) = 0. If the input array A is already sorted, give a recurrence for the number
of comparisons Mergesort does and solve it.

4 Consider the recurrence f(n) = 2f(n/2) + h(n) with f(1) = c and h(1) > 0. Suppose, for n even,
we know that h(n) ≥ 2h(n/2). Here h(n) represents the cost of solving some problem of size n.
The assumption h(n) ≥ 2h(n/2) means solving a problem of size n costs at least as much as solving
two problems of half the size. This is true of sorting for example. Use this to show that f(n) ≤
h(n) log2 n + cn.
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