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For constants a, b, ¢ consider a recurrence relation of the form
Z Second  oriey
nED
axp+ bxp_1+cxp_20=0 forn=2. (1) Moﬂ‘"ﬁﬂ

Lostent coetft
Suppose that x, = " Ls}soluf:n to eqlation (1). In this case we have

K="
) = s
2 <5 Flar phtary=o
n=z = | (ar®b¥+() =0
Observe that the n > 2 condition is redundant in equation (2). If this holds for

n =2, then it holds for all larger values (multiplying by powers of r gives the
other equations). This reduces us to a familiar equation

ar"+br" 4 "2 =0 foralln>2. (2)

ar’ + br+c¢c=0

Conclusion: A number r satisfies ar> + br + ¢ =0 if and only if x, = r" is a

solution to our recurrence.
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Definition
The homogeneous second order linear recurrence relation

axp + bxp,_1 + exp_n =0 . n
i M‘a
- n
has characteristic equation / m/ﬁdéfls"l s FD(&
(ar2 + br 4+ cﬂ: 0. )
The roots of ar? + br + ¢ are precisely those numbers r for which x, = r” satisfies
the above recurrence.
Exercise. Find all real numbers r so that x, = r" is a solution to the recurrence
|-%n — 5xp-1 + 6x,_2 =0
o + (25— 2
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Theorem ( Linearity )
Both of the properties befow hold for the recurrence relation
axp + bx, 1+ exp 0 =0 (3)

(A) Ifxy=1"§ soh% (3) then Cr" is a m to (3) for any constant C.

(B) /fx, =5" and x, =/t" are solutions of (3) then s” + t" is a solution.

It follows from (A) and (B) that Cs" + Dt" is a solution for any constants C, D.
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Exercise. The recurrence relation

Xn_SXn 1+6Xn 2:0

has the solutions™, = 3" and x, = 2". Check that C2" 4+ D3" is a solution.

ik - -7
Kne CLeDD 1 (€ D2Y- 5(c2+03" ) +6(C= £0)

—1 - -

—_— -

How do we detefmine what C and D are? With two consecutive initial values.
Find the solutiof with the initial values x = 6 and x; = 13.

n=1: A=C2+D3%=1 &
2(d - (2) 0-c =D =R-R==1 = D=t/
o) =R =S5 s
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General solutions

Theorem

Let a, b, ¢ be fixed constants with a # 0 and consider the recurrence

ax, + bx,_1 + cx,_o = 0. (4)

If the characteristic equation,

ar’ +br+c¢c=0

has two distinct real roots, say i and ra, then every sequence satisfying this
recurrence has the form

%, — Gl Dyt 9QAM{ O lctan. (5)

where C and D are fixed constants. Accordingly, we will call equation (5) the
general solution to the recurrence.
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Example. The Fibonacci sequence (fi, fo, f3,...) is generated by the recurrence

fp =11+ o2 forn>=2
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Solving ar? + br + ¢ = 0 using the quadratic formula we get
—bEtVb? —dace— r(r_scr'imma,n*
i
2a
\/hc b? — 4ac — 0 then we have two repeated real roots.
X If b2 — 4ac < 0 we have two complex roots.
Theorem ( Repeated real roots case )
Let a, b, ¢ be real constants with a # 0, ¢ # 0 and consider the recurrence
ax,+bx, 1+cx, »=0.
If the characteristic polynomial ar® + br + ¢ has a repeated root r then every
sequence satisfying this recurrence has the form
xp = Cr"+ Dnr" (6)
where C and D are constants. Equation (6) is the general solution to the
recurrence.
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Example. Solve the following recurrence
| Xp—6xp-1+9%,-2=0 with xp=2, xy =3. . ~ N
e Lo h=2803
=S (F=3) =2 5 (=35
= Xp= C'sm—l— D-V\-:’)V\
n=o: Xo= C 1+ D-01=2 D=2
f=i: Xy= C3+D13=2% = 6+30=3=9 D=—L.
C "\QCk % _ n-24 n=-2
LE—nt)-63 6 3")+9(23-0"3
\/;
3 (24—4n —6(6=3(0)+ G (2=(2))
RIS =6+ 8y (=N ~€(=3) ()46 ) = O,
=D =0
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