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Lecture 1: Fundamental Combinatorial Objects

Copyright, Michael Monagan and Jamie Mulholland, 2020.

Assigamant | 15 pasked.
We will study four combinatorial objects

1 sets and subsets
2 strings and permutations
3 graphs

4 trees
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Strings

Definition ( alphabet and string )

An alphabet X is a set of n elements called letters.
A string S of size n is an ordered sequence of n letters from X.
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Exercise: Find all strings of length 6 over {0,1} that don't have 10 as a substring.
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Permutations

Definition ( permutation )
A permutation P over an alphabet X is a string over © where every letter occurs

exactly once.
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Theorem J

The number of permutations of a set of n objects is nl.
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Permutations are used in cryptography as functions.
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Definition ( graph )

A (simple) graph G is a pair (V. E) where V is a set of vertices and E is a set of
unordered pairs of vertices called edges. If e = {/,j} € E we say vertices i and J
are adjacent. The degree of a vertex is the number of adjacent vertices.

Example V = {1,2,3,4,5,6}, & vertices
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Question. How many edges can a graph with n vertices have?
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Definition ( complete graph )

A graph G = (V,E) is complete if |V| > 1 and for all i,j € V the edge
{i,j} € E.  The complete graph with n vertices is denoted K.
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Definition ( path graph )

A graph G = (V,E) is a path if |V| > 1 and V may be ordered vy, va..... v, so

that £ = {{v1, w2}, {vo,v3}.....{Va_1.Va}}. The path graph with n vertices is
denoted P,.

Definition ( cycle graph )

A graph G = (V,E) is a cycle if |V| = 3 and V may be ordered
={{vi. v}, {w,va}, ... {vo_1, v}, {va, va}}. The cycle graph with n vertices

is denotecl Cp. )
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Definition ( connected graph )
.+ 5 not
A graph G = (V, E) is connected if there is a path in G from vertex i € V to
. . ~— o
vertex j for all i # j. o
V. Z Z
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Definition ( tree ) lo—-VS
A graph G = (V,E) is a tree if it is connected and has no cycles. ] &
Cadméd@p"

Example. All (unlabelled) trees with 4 vertices.
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Exercise. Draw all (unlabelled) trees with 5 vertices.

Exercise. If G is a tree with n > 0 vertices, how many edges must G have?
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