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Definition ( tree )

A multigraph G is a tree if G is connected and G does not contain a cycle.
—_—— —

Theorem ( main properties of trees )

If T =(V,E) is a tree then V| = |E| + 1 and secondly,
there is a unfgue path in T between every pair of vertices.
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Theorem (Characterization of Trees)

Let G = (V, E) be a multigraph. The following statements are equivalent.
1) G is connected and has no cycle. (G is a tree)
2) G is connected and |V| = |E|[+ 1.
3) G has no cycle and |V| = |E| + 1.
@4) There is a unique path between every pair of vertices in G.
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Definition ( rooted tree ) f2.l

A rooted tree 7 = (V, E) is a tree with a distinguished vertex called the root.
For every vertex v € V the level of v is the length of the path from v to the root.
Note: the root is the unique vertex at level 0.
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Definition ( rooted tree terminology )

e The height of a rooted tree is the maximum level of a vertex.
A rooted tree consisting of just a root vertex has height 0.

e Every non-root vertex v at level i is adjacent to exactly one vertex u at level
i — 1. We call u the parent of v and we say that v is a child of wu.

e For every vertex v there is a walk "up the tree” to the root obtained by
moving to the parent vertex at each step. If v is another vertex on this walk,
we call & an ancestor of v and v a descendant of u.

H£:7H = Lf-'

< is fhe padt ) vertox 1§
Lsfe o thid 7 vex S

Michael Monagan and Jami= Mulhclland 6 /10



We are frequently interested in working with rooted trees recursively. Therefore, it
will be helpful to think of a rooted tree as composed out of smaller rooted trees.

Definition ( subtree )

Let v be a vertex of a rooted tree T with level /. Define T’ to be the subgraph of
T induced by v together with its descendants. Then T’ forms a new rooted tree
with root vertex v. We say that T’ with root v is the subtree of T at v.

Ty W e Subhee 4 T
T Tex & subbeedy 7.
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Definition ( isomorphism of rooted trees)

Let Ty, T> be rooted trees with T; = (V;, E;) for i = 1,2. We say that T; and T,
are isomorphic if there exists a bijection f : V; — V, satisfying:

(1) {f(u),f(v)}e B & {u,v} ek
(2) For every v € V4 the level of v and f(v) is the same.

In particular, f sends the root of T; to the root of T. m”'[' i &t leL@( 0.
—
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A rooted tree is m-ary if every internal node has at most m children. A 2-ary tree
is called binary tree.

Definition yion- leaf vestex }

VD
Exercise. Find all binar);ltrees with height 0, 1, and 2 up to isomorphism.
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Let b, denote the number of binary trees of height at most n. Find by, by, bs.

bo=1 b=bstz=3 b,=b+71=3¢t7=(0.
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Use the recursive structure of rooted trees find a recurrence for b,,. [ﬁe-’q[&r a Wl05+ n)
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