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In 1856 a mathematician William Hamilton invented a game in which the ojbect is

[

to find a cycle along the edges of a dodecahedron.

Problem: Can you find a cycle in the graph that includes all 20 vertices?
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Definition
Let G be a graph. A path of G is a Hamiltonian path if it contains every vertex
of G. A cycle of G is a Hamiltonian cycle if it contains every vertex of G.
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Algorithm Exhaustive Search: try all possible paths.
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Hamiltonian vs. Eulerian

The definition of Hamiltonian is very similar to Eulerian. In Hamiltonian each
vertex appears exactly once. In Eulerian each edge appears exactly once.
Although they look similar, having a Hamiltonian cycle and Having an Euler
circuit is very different.

(1) There is a fast algorithm to test if a graph G = (V/, E) has an Euler circuit
where the running time is a linear function of |V/| + |E|. namely, test if G is
connected and all vertices have even degree.

(2) No such fast test is known for a Hamiltonian eh;’eu-lt The problem of deciding
if a graph has a Hamiltonian path/cycle is NP-complete. So it is widely
believed that there does not exist an algorithm which takes as input an
arbitrary graph G = (V. E) and determines if G has a Hamiltonian path/cycle
where the running time is bounded by a polynomial function of |V| + |E]|.
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Definition ( Necessary and sufficient conditions )

Let P be a property of graphs and C be a set of condtions.

(1) C is necessary for P if every graph satisfying P also satisfies C.  F =C.
(2) C is sufficient for P if every graph satisfying C also satisfies P. (C =2 F

(3) If C is both necessary and sufficient for P, then a graph G satisfies P if
and only if G satisfies C. We say C characterize P. CE 61

Examples
(1) ls is necessary for a graph to be connected to have a H.P.
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(2) Being a complete graph is a sufficient condition to have a H.P.
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(3) nis odd is a necessary and sufficient condition for K, to have an Euler circuit.
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A sufficient condition for G to have an H.P.
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Theorem
Let G = (V,E) be a graph with |V| = n. If

deg(x)+deg(y) = n—1 forallx,y e Vwithx#y

then G has Hamiltonian path. HC—/:_"‘—:?\‘P \
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Corollary

then G has a Hamiltonian path.
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