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Grimaldi 12.5

An application of the depth-first search spanning tree.
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Articulation Points
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Definition ( Articulation Point )

Let G = (V, E) be a graph. A vertex v in G is an articulation point (AP) if
removing v from G increases the number of connected components of G.
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Lemma (12.3)

Let G = (V,E) be a graph. A vertex v € V is an articulation point of G if and
only if there are two vertices x and y in V' such that x # y # v and every path
between x and y includes v.
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Definition ( Biconnected Component )

Let G = (V, E) be a graph. A subgraph of G with no articulation points is
biconnected. A maximal biconnected subgraph of G is called a biconnected
component of G.

Lemma

Let G = (V,E) be a graph. If G has a Hamiltonian cycle then G must have no
APs, equivalently, G must be biconnected.
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Exercise: Find a biconnected graph which does not have a Hamiltonian cycle.
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How can we find the Articulation points in a connected graph G?

Algorithm 1.

set AP = ¢.
for each v € V do
if removing v from G disconnects G then Xa"‘
set AP = AP U{v}. 0}
end if N

end for &
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How can we find the APs and BCs in a graph G7

Step 1: Construct a DFS spanning tree T for G and
number the edges in T in the order visited during the DFS.
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Step 2: Traverse T in pre-order. If a vertex v has a backedge e, from to u,
number all edges on the walk from vey x; ex... 6, 1ue,v

from v to v and back with the edge number on .
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What are the articulation points? /ﬂl.Q HPS o 'he V’szcaﬂ oy
T‘ Whoe iacdeut edees are nrt numbveed TR Same .

What are the biconnected components?
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Why is this algorithm better than Algorithm 17
If implemented carefully, can be done in time proportional to | V| + |E|.

Cn D N+ 1N =2nN.
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