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Grimaldi 11.5

In 1856 a mathematician William Hamilton invented a game in which the ojbect is
to find a cycle along the edges of a dodecahedron.

Problem: Can you find a cycle in the graph that includes all 20 vertices?
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Definition
Let G be a graph. A path of G is a Hamiltonian path if it contains every vertex
of G. A cycle of G is a Hamiltonian cycle if it contains every vertex of G.
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Algorithm Exhaustive Search: try all possible paths.

SoCC‘e((W\I\ Glhfl'\

" v=60

1&| =490
der(V=3

Re2>! 1«}

t

1
\ S
V¢ DT
/) d
\,& d?—‘j\'

Michael Monagan and Jamie Mulholland 3 /10

Hamiltonian vs. Eulerian

The definition of Hamiltonian is very similar to Eulerian. In Hamiltonian each
vertex appears exactly once. In Eulerian each edge appears exactly once.
Although they looks similar, having a Hamiltonian cycle and Having an Euler
circuit is very different.

(1) There is a fast algorithm to test if a graph G = (V, E) has an Euler circuit
where the running time is a linear function of |V| + |E|, namely, test if G is
connected and all vertices have even degree.

(2) No such fast test is known for a Hamiltonian circuit. The problem of deciding
if a graph has a Hamiltonian path/cycle is NP-complete. So it is widely
believed that there does not exist an algorithm which takes as input an
arbitrary graph G = (V, E) and determines if G has a Hamiltonian path/cycle
where the running time is bounded by a polynomial function of |V/| + |E]|.
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Eae
Definition ( Necessary and sufficient conditions )
Let P be a property of graphs and C be a set of condtiong/
(1) C is necessary for P if every graph satisfying P als6 satisfies C. P:? c

—3 (2) Cis sufficient for P if every graph satisfying @ also satisfies P & — P

(3) If C is both necessary and sufficient for P, then a graph G satisfies P if
and only if G satisfies C. We say C characterize when p is satisfied. Pé)C

Al

Examples

(1) [§ is necessary for G to be connected to have a H.P.

Chg o« HP = G w© omected.

{2) Being a complete graph is a sufficient condition to have a H.P.
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Necessary conditions

Theorem If G =(V,E) is a graph with a Hamiltonian cycle, then G — v is
connected for every vertex v £ V.

Proof.

X

Theorem Let G = (V, E) be a bipartite graph with bipartition V = V; U V5.
If G has a Hamiltonian cycle, then |Vi| = |V5l.
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A sufficient condition Tdea. G it enswh edges
wil_laewe ¢ H'Cw'j

Theorem
Let G = (V.E) be a graph with |V| = n. If

deg(x) +deg(y) = n—1 foralfx,y € V with x £ y aWﬁMrﬁ/f

then G has Hamiltonian path.
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Proof (cont.)
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Proof (cont) Tg gkt e © & cydde n ZViy-yVmd.
Sing 1 pith P= b T VM ¢ maimal , Tl veskicer M G

adJMB“+‘1'B '2)" ar. on P, S‘,M'.ldif'[-j '&T’Uﬂ\.

. -l en—2
Let A = f | € ¢ €m=-\ 5 VU 1% .,.af')ocaaf » Tley 35 Al f ::t_]; S,
Le-{— é ] itgf,évu-l e I 1 u&jawf v Vmi{ S0 'Bl = i z

AL + (8| = AT +oleg (VD) 2= S, AN B camot b2 emp'fj,
Vil and §V5Umi are v G ad € Containg

Sinw
Lot :)QA('\@- So Vi,
g((2 Sd‘ﬂojm?)’\

P W\ UL ’[)J UJ V- ’LJ-M

Obsert it we celele T eslgl $V; Un§ ke hart &
Cl([(,(e 'U\-;'U&}..‘.)/U.S) ’Um)/\.fm-L ol 7{,2-11,"[};.

Michazl Monagan and Jamiz Mulhclland 9 f 10

et

Corollary -
z
If G = (V.E) is a graph with |V| = n and deg(v) @ holds for every v € V, J

then G has a Hamiltonian path.
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