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Abstract

We present a new graph theory package for Maple. The package is
presently intended for teaching and research usage and is designed to
handle graphs of up to 1000 vertices. Most of the standard operations
for graphs are available in this package, and we describe some of them
in this paper. A full list of the currently supported commands is given
in the final section. The package also includes a drawing component.

1 Introduction

We describe in this paper a new graph theory package for Maple. The pack-
age we are developing is presently intended for teaching and research use and
is designed to handle graphs of up to 1000 vertices. The current package in
Maple for solving problems in graph theory is the networks package. This
package is over ten years old and was designed primarily with applications
of networks in mind. Its data structure is too heavy and cumbersome to
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treat some elementary graph theory problems. One design criterion for the
new GraphTheory package is that it must posses a simple, yet flexible, data
structure designed primarily for solving problems related to graphs rather
than networks. Most of the standard operations for graphs, including a pla-
narity test, maximum clique, hamiltonicity, Tutte polynomial, and chromatic
number, are available in this package. The package also includes a drawing
component.

2 The data structure

The data structure of a (di)graph has six arguments and is as follows:

GRAPHLN(D,W, V,A, T,EW ),

where D and W are of type symbol, V is of type list, A is of type Array, T
is of type table, and EW is of type Matrix. Two symbols, namely directed
or undirected, are possible for D, and two symbols, weighted or unweighted,
can be used for W . The list V stores the labels of the vertices of the graph.
The array A contains the set of neighbors for each vertex. Each element
of A is of type set(posint). The table T stores some of the graph proper-
ties which are expensive to find but are cheap to store. The sparse matrix
EW stores the edge weights of the graph if the graph is weighted; other-
wise, EW is not a matrix and is set to 0. The following example shows the
data structure of the unweighted graph G = (V,E) where V = {a, b, c} and
E = {{a, b} , {b, c}}.

> with(GraphTheory):

> G := Graph([a,b,c],{{a,b},{b,c}});

GRAPHLN(undirected,unweighted, [a, b, c], [{2} , {1, 3} , {2}], table([]), 0 )

Notice that the internal representation for the graph uses integers 1, 2, 3
rather than the user labels a, b, c. This is for efficiency and canonicality. Once
a graph G is created, the user cannot remove or insert new vertices without
making a new copy of G. However, the user can remove or insert new edges.

> DeleteEdge(G,{a,b}): G;

GRAPHLN(undirected,unweighted, [a, b, c], [{} , {3} , {2}], table([]), 0 )
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Suppose we insert/delete an edge {i, j} to/from a graph G. Because
we use an array of sets of integers to represent G, the cost of edge inser-
tion/deletion is O(max{degG(i), degG(j)}).

3 Graph constructor command

In order to construct a (di)graph, one may use the constructor commands
Graph() or Digraph(). Various combinations of the parameters V,E,A,D
and/or W may be used to construct a graph, where V is the set or list of
vertices or the number of vertices, E is the set of edges, A is the adjacency
matrix (possibly containing edge weights), D is a symbol of the form di-
rected/undirected or directed=true/false, and W is a symbol of the form
weighted/unweighted or weighted=true/false. The input parameters may
appear in any order, however they should be compatible. The following ex-
amples show some of the different ways of constructing a (di)graph.

> V := [a,b,c,d]:

> E1 := {{a,b},{a,c},{b,d}}:
> E2 := {[[a,b],1.0],[[a,c],2.3],[[b,d],3.1], [[b,a],4]}:
> A := Matrix([[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 0], [0, 1,

0, 0]]):

> Edges(Graph(V));

{}

> AdjacencyMatrix(Graph(E1)), AdjacencyMatrix(Graph(V, E2));
0 1 1 0

1 0 0 1

1 0 0 0

0 1 0 0

 ,


0 1.0 2.3 0

4 0 0 3.1

0 0 0 0

0 0 0 0


> Edges(Graph(A));

{{1, 2}, {1, 3}, {2, 4}}

> Edges(Graph(directed, A, weighted));

{[[1, 2], 1], [[1, 3], 1], [[2, 1], 1], [[2, 4], 1], [[3, 1], 1], [[4, 2], 1]}
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We emphasize that E must of be of type set. Any input of type list
will be interpreted as the labels of vertices. This restriction enables the user
to create graphs with vertex labels of type set. Also, notice that inputs of
the form Graph(E,A) and Graph(V,E,A), where V is of type set, are not
allowed. The problem is that this type of input cannot be interpreted unless
an expensive isomorphism test is run.

4 Commands and features

4.1 Maximum clique

The problem of finding a maximum clique (or a maximum independent set)
of a graph is NP-hard. We have implemented a backtracking (branch and
bound) algorithm to solve this problem; the bounding function that we have
used is the greedy coloring of a graph (see [4]).

> G := RandomGraph(15,.4):

> MaximumClique(G);

[2, 4, 10, 15]

> MaximumIndependentSet(G);

[1, 2, 6, 9, 14]

4.2 Planarity test

To test whether a graph on n vertices is planar or not, we have implemented
an algorithm of Demoucroun, et al. (see [3]), which has running time O(n2).
There are some algorithms such as the Hopcroft-Tarjan algorithm which are
linear time. However, the algorithm we have used is much simpler and seems
to be more efficient for graphs with less than 1000 vertices. If a graph is
planar, we output the plane embedding of the graph as a set of faces. This
information is useful for drawing the planar graph.

> IsPlanar(PetersenGraph());

false, {}
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> IsPlanar(DodecahedronGraph());

true, {[15, 6, 11, 16, 20], [9, 4, 5, 10, 14], [19, 14, 10, 15, 20],

[20, 16, 17, 18, 19], [7, 2, 3, 8, 12], [5, 1, 6, 15, 10],

[3, 2, 1, 5, 4], [17, 12, 8, 13, 18], [13, 9, 14, 19, 18],

[1, 2, 7, 11, 6], [11, 7, 12, 17, 16], [3, 4, 9, 13, 8]}

4.3 Traveling salesman problem

Given a collection of cities and the cost of travel between each pair of them,
the traveling salesman problem, is to find the cheapest way of visiting all
of the cities and returning to your starting point. The TravelingSalesman

command will return two objects. The first argument is the optimal value for
the traveling salesman problem, and the second is a Hamiltonian cycle that
achieves the optimal value. The strategy is a branch and bound algorithm
using the so-called Reduce bound (see [4]).

> G := CompleteGraph(10):

> M; 

0 68 37 95 57 30 1 25 71 84

68 0 9 26 90 26 97 29 47 78

37 9 0 84 59 11 67 61 75 35

95 26 84 0 1 99 55 63 19 8

57 90 59 1 0 61 66 18 7 48

30 26 11 99 61 0 93 10 14 54

1 97 67 55 66 93 0 47 20 95

25 29 61 63 18 10 47 0 28 52

71 47 75 19 7 14 20 28 0 92

84 78 35 8 48 54 95 52 92 0


> TravelingSalesman(G,M);

142, [1, 7, 9, 5, 4, 10, 3, 2, 6, 8]
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4.4 Maximum flow

The basic problem of finding a maximal flow in a network occurs not only in
transportation and communication networks, but also in currency arbitrage,
image enhancement, machine scheduling and many other applications. To
find the maximum flow of a network on n vertices and m edges, we have
implemented the so called preflow-push (push-relabel) algorithm. This algo-
rithm runs in O(n2m) time, an improvement over the O(nm2) augmenting
path algorithms, e.g. Edmonds-Karp, which are often used. This algorithm
is also used to find the vertex connectivity and edge connectivity of a graph.

> N := Digraph([s,v1,v2,v3,v4,t],

{[[s,v1],16],[[s,v2],13],[[v1,v2],10],[[v2,v1],4],[[v1,v3],12],
[[v3,v2],9],[[v2,v4],14],[[v4,v3],7],[[v3,t],20],[[v4,t],4]}):
> MaxFlow(N,s,t);

23, table([(1,3)=10, (2,3)=1, (5,6)=4, (3,5)=11, (5,4)=7, (4,6)=19,
(2,4)=12, (1,2)=13])

4.5 Coloring

A proper coloring of a graph G is a labelling of V (G) so that adjacent vertices
do not have the same label. A graph is k-colorable if it has a proper coloring
with k labels, and the chromatic number χ(G) is the minimum k such that
V is k-colorable. Computing χ(G) is an NP-hard problem. To compute the
chromatic number, the GraphTheory package first computes a fast bound for
the region in which χ(G) must lie, then uses a successive backtrack approach
to find the exact value. A greedy coloring is used for the upperbound, and
either the maximum clique size ω(G) or |V |/α(G), where α(G) is the inde-
pendence number, whichever is easier to compute for a given graph, is used
for the lowerbound. The coloring commands in GraphTheory return both
the number of colors used and the (zero-based) coloring itself.

> G := CycleGraph(5): GraphTheory:-GreedyColor(G));

3, [0, 1, 0, 1, 2]

> CliqueNumber(G), NumberOfVertices(G) / IndependenceNumber(G);

2, 5/2
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> H := ShrikhandeGraph():GraphTheory:-GreedyColor(H));

4, [0, 0, 1, 2, 0, 0, 2, 1, 1, 2, 3, 3, 2, 1, 3, 3]

> CliqueNumber(H), IndependenceNumber(H);

3, 4

So, in both the cases above the greedy coloring actually finds an optimal
coloring. A trivial way to augment a graph so that the chromatic number
increases is to add cliques as subgraphs of the graph; however, the lower-
bound for the chromatic number of the graph would increase as well. The
Mycielski construction (see, for example, [6]) gives a way to build up triangle-
free graphs with increasing chromatic number. Figure 1 shows the Mycielski
construction applied to the five-cycle.

Figure 1: Mycielski construction applied to C5

> M := Mycielski(G):

> ChromaticNumber(M);

4, [0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3]

> M2 := Mycielski(M):

> ChromaticNumber(M2);

5, [0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 4]
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4.6 Polynomials

There are several polynomials associated with graphs. The chromatic polyno-
mial, when evaluated at the variable p, counts the number of proper colorings
of a graph using p colors. Hence, the smallest positive integer that is not a
root of the polynomial is the chromatic number. In other words computing
the chromatic polynomial involves finding the chromatic number as a sub-
problem. As an illustration, it is evident that χ(G) = 3 in the example below.

> G := RandomGraph(10,0.3):

> ChromaticPolynomial(G,p);

p3(p− 1)(p2 − 4p+ 5)(p− 2)4

The chromatic polynomial is one of several polynomials that are special
cases of the bivariate Tutte polynomial of G = (V,E) which is defined by

T (G, x, y) =
∑
E′⊆E

(x− 1)ρ(E)−ρ(E′)(y − 1)|E
′|−ρ(E′),

where ρ(E ′) is the number of vertices minus the number of components of
the graph G[E ′]. All these polynomials follow the general recursion

TuttePolynomial(G, x, y) = TuttePolynomial(DeleteEdge(G, e), x, y)

+TuttePolynomial(Contract(G, e), x, y),

and we use this recursion to compute them. Other polynomials in this family
that are included in GraphTheory are: AcyclicPolynomial, FlowPolynomial,
RankPolynomial and SpanningPolynomial. In certain cases we are able to
speed up the algorithms by taking advantage of some graph isomorphisms
which are not too expensive to check; SpanningPolynomial is one such ex-
ample.

> TuttePolynomial( CompleteGraph(4) );

y3 + 3y2 + 4yx+ 2y + 2x+ 3x2 + x3

> G := RandomGraph(10,0.8): f := SpanningPolynomial(G,p);

f := 132240p37 − 4164696p36 + 63358344p35 − · · · − 22436993424p12 +
3308086227p11 − 317966985p10
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> eval(f,p=0.5)

0.9116

Other graph theory polynomials of interest included in GraphTheory are
the well-known characteristic polynomial and the more recently studied graph
polynomial. The characteristic polynomial of a graph is simply the charac-
teristic polynomial of the adjacency matrix of the graph, and the following
are only a few of the results relating roots of this polynomial (still called
eigenvalues in this setting) to other graph parameters.

Theorem 1.

(i) Diameter(G) < the number of distinct eigenvalues of G (for connected
G);

(ii) MinimumDegree(G) ≤ the largest eigenvalue of G ≤ MaximumDegree(G);

(iii) [7] χ(G)− 1 ≤ the largest eigenvalue of G.

Occasionally, (iii) in the above theorem gives a better upperbound for
χ(G) than a greedy coloring does (as in the example below), but usually
greedy coloring is a better strategy for bounding.

> G := RandomGraph(15,0.15):

> f := CharacteristicPolynomial(G):

> Ev := solve( f=0 ) :

> EvList := [ seq( evalf(simplify(Ev[j])), j=1..nops(Ev) ) ]:

> max(op(EvList))+1;

3.647463440

> GraphTheory:-GreedyColor(G);

4, [0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 1, 2, 0, 2, 3]

The so-called graph polynomial of G = (V,E) is the n-variate polynomial
defined by

∏
{i,j}∈E, i<j(xi − xj). A result due to Alon and Tarsi [1, 2] says

that G is not k-colorable if and only if GraphPolynomial(G) ∈ 〈xk1 − 1, xk2 −
1, . . . , xkn − 1〉 over the complex numbers. Using this result and using the
new PolynomialIdeals package in Maple ([5]), we can determine that the
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chromatic number of the following graph is three without actually finding a
3-coloring.

> E := {{2, 6}, {3, 5}, {4, 5}, {3, 4}, {4, 6}, {5, 6}, {1, 4}}
> G := Graph(E):

> f := GraphPolynomial(G);

f := (x2 − x6)(x3 − x5)(x4 − x5)(x3 − x4)(x4 − x6)(x5 − x6)(x1 − x4)

> GraphTheory:-GreedyColor(G);

4, [0, 0, 0, 1, 2, 3]

> with(PolynomialIdeals):

> n := nops(Vertices(G)):

> for k from 2 to 3 do

> xvars := seq( x[j], j=1..n):

> printf("%d-colorability:\n", k);

> J := < seq( xvars[j]^k -1, j=1..n) >;

> NormalForm(f,J,plex(xvars));

> end do;

2-colorability:

J :=< x26 − 1, x25 − 1, x24 − 1, x23 − 1, x21 − 1, x22 − 1 >

0

3-colorability:

J :=< x31 − 1, x36 − 1, x32 − 1, x34 − 1, x35 − 1, x33 − 1 >

x5x
2
6x1 + · · ·+ x26x

2
4

5 Drawing the graph

The graph visualization component of GraphTheory consists of two modules,
namely layout and display modules. The layout module gets a Graph data
structure and determines how to arrange the vertices and edges. It also de-
termines in what color each vertex or edge should be displayed. The display
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module gets the output of the Layout module and displays the graph accord-
ingly. Currently our display module uses Maple’s plot command to display
a graph.

The advantage of this modular structure is that we can replace one
module by another existing module or implement a different module for
a special purpose. For example GraphViz is a software package capable
of displaying different types of graphs and diagrams in various ways, e.g.
PostScript, GIF/JPEG/PNG, MetaPost, and simple text format. We could
use GraphViz as a layout module by getting the text output of it—which
contains information on the layout of the input—and write an adapter that
converts this text output to what our display module expects it to be. An-
other example would be implementing a display module which gets the layout
output and generates a metapost file to be inserted into a LATEX document.

GraphTheory package includes a command named DrawGraph for display-
ing graphs. DrawGraph distinguishes three types of graphs: trees, bipartite
graphs and special graphs such as the Petersen, Dodecahedron, Icosahedron,
Octahedron and the so-called Clebsch graph. If the graph to be drawn does
not fall into one of these categories, then the vertices are equally spaced in
a circle. The user can force DrawGraph to display the graph using a specific
style by writing DrawGraph(G, style=‘s’) where s has one of these three
values: circle, tree, bipartite. DrawGraph also detects all components
of a disconnected graph and displays each component separately.

> G := CompleteGraph(5, 3):

> DrawGraph(G);

5

8

31

6 7

42

There are some cases when the user may want to mark an edge or a
set of edges of a graph. If S is a subgraph of G, then Highlight(G, S)

achieves this result. The color used for highlighting may be specified by
writing Highlight(G, S, COLOR(RGB, r, g, b).
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> G := PetersenGraph():

> S := SpanningTree(G):

> Highlight(G, S):

> DrawGraph(G);

e

i

b

c

h

j

a

d

f

g

One other useful command when drawing graphs is SetVertexPos which
gets three arguments: a graph, a vertex label and the position for that vertex.
SetVertexPos can be used when the user wants to specify how to arrange the
vertices of a graph. The following example displays the input graph as a grid.

> G := Graph({{1,2},{1,4},{4,5},{2,5},{2,3},{3,6},{5,6}}):
> p := [[0,0], [0.5,0], [1,0], [0,0.5], [0.5,0.5], [1,0.5]]:

> for i to nops(p) do

> SetVertexPos(G, i, p[i]):

> end do:

> DrawGraph(G);

4

31

5

2

6
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A command named SetOption will be available to set the output of
commands generating a Graph data structure. For example, one of the
options would be to set the output to be the plotted graph by writing
SetOption(GraphOutput=‘Plot’).

In the future we will add the possibility of drawing directed or weighted
graphs. Also, we are going to support more special graphs and some other
general graphs such as Grid graphs and BiConnected graphs. Also, one
other feature that can be added in future is supporting 3-dimensional plots
of graphs.

6 List of commands of the GraphTheory package

AcyclicPolynomial AddArc AddEdge
AddVertex AdjacencyMatrix AllPairs
Arrivals BiConnectedComponents CharacteristicPolynomial
ChromaticNumber ChromaticNumberBound ChromaticPolynomial
ClassicDrawGraph ClebschGraph CliqueNumber
CompleteBinaryTree CompleteGraph CompleteBinaryTree
Connect ConnectedComponents Contract
CopyGraph CycleBasis CycleGraph
Deck Degree DegreeSequence
DeleteArc DeleteEdge DeleteVertex
Departures Diameter Digraph
Distance DodecahedronGraph DrawGraph
EdgeConnectivity Edges FlowPolynomial
FundamentalCycle Girth Graph
GraphComplement GraphDifference GraphIntersection
GraphJoin GraphPower GraphRank
GraphSum GraphUnion GridGraph
Head Highlight HyperCubeGraph
IcosahedronGraph IncidenceMatrix IncidentEdges
InDegree IndependenceNumber InducedSubgraph
IsAcyclic IsBipartite IsClique
IsConnected IsCutSet IsDirected
IsEulerian IsGraphicSequence IsHamiltonian
IsPlanar IsRegular IsTree
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IsWeighted LineGraph MakeDirected
MakeWeighted MaxFlow MaximumClique
MaximumDegree MaximumIndependentSet MinimumDegree
MinimumSpanningTree MycielskiGraph Neighbors
NumberOfEdges NumberOfTrees NumberOfVertices
OctahedronGraph OutDegree PathGraph
PayleyGraph PermuteVertices PetersenGraph
RankPolynomial RandomDigraph RandomGraph
RandomTournament RelabelVertices SeidelSpectrum
SequenceGraph SetOption SetVertexPos
ShortestPath ShrikhandeGraph SpanningPolynomial
SpanningTree Spectrum StandardGraph
Subdivide Subgraph Switch
Tail TetrahedronGraph TopologicSort
TravelingSalesman TuttePolynomial UnderlyingGraph
VertexConnectivity Vertices WheelGraph
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