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Students of chemistry find mathematics difficult: some stu-
dents entering a post-secondary institution even select chemis-
try rather than physics because they think that they might
thereby avoid much mathematics. Even while chemistry has
become more mathematical during the past half century, largely
because of an increasing prominence of statistics in analytical
chemistry and chemometrics, and of quantum mechanics in
physical chemistry that diffuses into inorganic and organic
chemistry, there has been a tendency for the number of courses
in mathematics required of a student with chemistry as major
subject to decrease signif-icantly. For instance, at this univer-
sity, in 1997 the requirements for chemistry as a major subject
included five courses in mathematics—two first-year courses
in differential and integral calculus, two second-year courses in
multivariate calculus and linear algebra, and a third-year course
in differential equations. However, in 1998 the course on dif-
ferential equations was no longer required.

During the same period, the methods of undertaking
calculations have likewise altered, in a progression from use
of tables of logarithms and of slide rules, through pocket
calculators with basic arithmetical operations, to powerful
and large digital computers with software possessing ever
increasing capabilities, eventually to ubiquitous graphic cal-
culators for the pocket and computers on most desks and
on many shoulders. Whereas before 1970 children in pri-
mary school learned how to extract square roots manually,
since that era the topic has practically vanished from cur-
ricula: the standard method to calculate a square root now
involves depressing an appropriate button on a calculator.
Likewise, during the latter decades computers have evolved
from being rare, huge, and expensive machines devoted to
mainly scientific and technological applications to become
compact and inexpensive devices for which, at least in a
common domestic or commercial environment, technical
applications are typically peripheral, even while their com-
putational power and other properties have enormously in-
creased.

Within the same past half century there has been some
evolution in the teaching of mathematics, from a formal and
abstract approach based largely on theorems to a more prag-
matic and less systematic development and to service courses,
with decreased numbers of courses or hours of classes not-
withstanding their intent to cover material over an increased
range. The use of computers in the present conditions is non-
uniform: in some institutions courses are taught with greater
or lesser invocation of computer algebra; in North America,
the programs Maple (1) and Mathematica (2) predominate.
Even within a particular university this practice might vary
from one instructor to another; the result is that students pro-

gressing from one course to the next are subject to conflict-
ing philosophies of pedagogy and disparate expected stan-
dards of competence related to manual or machine execution.
In many cases, when computers have become involved, the
content and delivery of standard courses have simply been
developed in an isolated context, retaining a traditional se-
quence and scope of topics.

Taking into account both the learning capabilities of
chemistry students and the heuristic applicability of computer
software, we contend that a radical reorganization of the teach-
ing of mathematics to these students is both timely and fea-
sible (3). Our concern here is with the mathematical material
typically taught by mathematicians, rather than the mathemat-
ics of chemistry, such as solutions of Schrödinger’s equation
for prototypical systems and “group theory” or symmetry that
are generally taught within particular chemistry courses. Pro-
grams for computer algebra or symbolic computation that
operate readily on all current computers, even some devices
small enough to fit in a pocket, not only possess embedded
mathematical knowledge accumulated over thousands of years
during the development of civilization but also might include
material primarily directed toward the teaching of that knowl-
edge. Moreover, new features are being continually added to
some products specifically for instruction; instructors who
were disappointed with software available for teaching pur-
poses a decade or more ago should reexamine the current pro-
grams.

We assert also that an holistic approach to the teaching
of these mathematics at a post-secondary level is obligatory,
so as to optimize the progress of a student through not only
the newly encountered mathematical topics but also their
implementation with the selected software: instead of merely
trying to convert existing courses within a traditional pat-
tern, we must consider the total extent of mathematical
knowledge and capability reasonably expected to be acquired
by chemistry students and chart a course through that mate-
rial in association with chosen software. The scope of appli-
cations is not only their immediate chemical courses but even
their entire technical career to follow, for which undergradu-
ate studies are a direct or indirect preparation; we must or-
ganize the content of mathematical courses accordingly.

The teaching of mathematics that is strongly based on
symbolic computation allows an instructor to explore a topic
or principle according to four points of view:

• a formal statement is devised in words, just as accord-
ing to tradition, but with increased emphasis on expla-
nations of both pertinent terms and their interrelations
according to an accessible dictionary or encyclopedia
of mathematics;
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• an algebraic or symbolic treatment can expand to take
advantage of the speed and scope of software for alge-
braic operations, instead of leaving a student bemused
with “it can be shown that ...”;

• numerical illustrations, with test cases over a large
range, are readily generated through simple repetition
constructs, and numerical techniques, such as con-
struction of splines and their applications, are effort-
lessly applied to complement the algebraic aspects; and

• not only are striking graphics readily produced, in two
and three dimensions, taking full advantage of color-
ing and contouring, but also dynamic animations of
mathematical processes to portray geometrical inter-
pretations; such a capability is consistent with a perti-
nent adage “a picture is worth a thousand words”, and
that picture can remain branded into the memory of
a student long after algebraic details are abjectly for-
gotten.

The capacity of contemporary software for symbolic com-
putation to produce outstanding plots is astonishing; teach-
ing mathematics without use of such displays is incontestably
inferior. Rather than being distracted from the significance
of a particular topic by tedious details of mathematical op-
erations, teaching mathematics directly with computer alge-
bra enables an instructor to convey, and his or her students
to acquire, profound mathematical insight and understand-
ing of the concepts and principles through the above four
approaches in combination. In a course in mathematics, em-
phasis on concepts and reasoning can hence replace drill on
technical details of manipulation required to solve routine
exercises, and plots of geometric constructions can underpin
those concepts to enliven the reasoning.

We illustrate with an example that had a profound im-
pact on us personally, increasing our own understanding of
eigenvectors. Suppose that we seek to introduce the concept
of the eigenvectors of a matrix. In a typical textbook on lin-
ear algebra one would begin with a definition.

Let A be a n × n matrix over the set of real numbers. A
nonzero vector v is called an eigenvector of A if there
exist a scalar λ called an eigenvalue of A, such that Av =
λv.

From this point, how do we proceed? A typical instructor
might show an example and proceed to develop the method
of calculating the eigenvalues and eigenvectors of A via the
characteristic polynomial of the matrix λ I − A. Some prop-
erties of eigenvectors are presented, some applications are pre-
sented. Three years later, what will the student remember
about eigenvalues and eigenvectors? Will the student know
what an eigenvector is? Will he or she remember even the
definition?

We contend that the following plot provides a much
deeper understanding of what the eigenvectors are, and it fixes
the definition in the mind of the student for years to come.
This particular 2 × 2 matrix is called Fibonacci’s matrix. In
what follows, Maple input lines begin with the character > ;
these are Maple commands that we have typed. If required,
the output from Maple appears after such input.

> with(Student :- LinearAlgebra):

> A := Matrix([[1,1],[1,0]]);

> EigenPlot(A, numvectors = 25,
  showeigenvectors = false,
  showunitvectors = true);

Shown in the plot are 25 unit vectors. For each unit vector
u, we have computed v = Au and displayed the vector v with
its tail placed at the head of u. Thus the graphic provides an
enlightening picture of what happens on multiplication by
A. We have deliberately suppressed the display of the eigen-
vectors. Can you estimate what the eigenvectors and the
eigenvalues are? From the definition, it follows that, if v were
an eigenvector of A, it should lie in the same direction as, or
opposite direction to, the corresponding u. We can see one
such vector that almost points in the direction approximately
[3, 2]; this vector v is about 1.5 times as long as the corre-
sponding vector u. Thus we have one eigenvector v1 ≈ [3, 2]
with eigenvalue λ1 ≈ 1.5. We see another eigenvector v2 in
the opposite direction of a unit vector u2 in the direction
[�2, 3]; the length of v2 is just under half the length of u2.
Hence we have a second eigenvector v2 ≈ [�2, 3] with eigen-
value λ2 ≈ �0.5. We can see much more from this plot: for
instance, repeated multiplication of the vector w = [1, 1] by
the matrix A causes the magnitude of w to increase and its
direction to approach the first eigenvector. This plot offers
us a first understanding of what a stable eigenvector is, and,
indeed, a method to compute it. For further visual examples,
including examples of 3 × 3 matrices visualized in three di-
mensions, we refer the reader to ref 4.

Students of chemistry traditionally receive instruction in
mathematics either through service courses offered in depart-
ments of mathematics for other than their own major stu-
dents or, less commonly, directly by instructors in chemistry.
In agreement with Simons (5), symbolic computation can
serve to make trivial the traditional service courses in math-
ematics; although Simons wrote in a context of teaching
mathematics to students of engineering, exactly the same logic
and argument are applicable to a chemical context. The con-
tent of these traditional service courses in mathematics has
been developed in the light of needs of users of mathematics
before the era of accessible computers; a revised course must
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emphasize concepts and their implementation with software,
rather than manual techniques. For that reason a service
course in mathematics in which the calculations are per-
formed with appropriate software must have a content, and
emphasis on skills, different from those of a traditional course.
Likewise, the use of computer algebra increases the level of
what a student can achieve without much understanding of
technical details; for instance, a few general commands in re-
lation to exact or numerical solution of differential equations
can replace instruction in a long sequence of particular meth-
ods applicable to individual cases. Service courses in math-
ematics that concentrate on solution of exercises, in linear
algebra or differential equations for instance, can be trans-
formed into courses on use of software for computer algebra.
Although understanding essentially all major concepts of
mathematics traditionally taught in service courses for under-
graduates is not difficult for most students of chemistry, ap-
plicable manual techniques to implement those mathematical
principles might be tedious; in that sense many students of
chemistry find mathematics difficult and repulsive, because
not everybody has the capacity to be successful in such tech-
niques. When the tedious details are executed with a com-
puter, the material becomes tractable and attractive. In
contrast, superior students who find such manual techniques
boring can benefit from learning mathematics at a higher level
of concepts and applications; software for computer algebra
is again a valuable tool for enriching the curriculum.

What Should Courses of Mathematics
Taught with Symbolic Computation Contain?

First, we must appreciate and accept that teaching with,
or use of, computers for mathematical operations incurs an
overhead in the form of learning to use the particular soft-
ware. Although some programs have a steeper learning curve
than others, any software imposes on a user the constraint
that he or she must comply with conventions of that par-
ticular software. The design of curriculum must hence in-
clude an explicit initial component of instilling acquaintance
with common commands and conventions of chosen soft-
ware. After a student gains familiarity with one program,
switching to another program is not particularly challeng-
ing, because almost all programs for computer algebra oper-
ate in similar manners. It is important for a prospective
instructor to recognize that, if a student learns and practises
mathematics with computer software, that student must be
expected to use and to apply that software generally; for in-
stance, an examination written without access to a computer
is counterproductive: a student will question why he or she
should bother to learn to use the software if that skill is irrel-
evant for the eventual assessment in the course.

The plan of curriculum that we proffer begins at an al-
most zero formal level of mathematical knowledge: arithmetic
with integers, rational fractions, real numbers, random num-
bers, and complex numbers, including relevant aspects of the
International System of Units, Symbols and Notation, is fol-
lowed by simple algebraic operations and solution of equa-
tions of various types. This beginning permits a student to
become acquainted with the language of a symbolic proces-

sor while making no significant demands on the assimilation
of difficult mathematical concepts; an instructor need not,
however, hesitate to include aspects of number theory, for
instance, and of sets and other formal mathematical struc-
tures that were likely absent from courses in preceding school
years. The next large component of the total program of
mathematical study begins with elementary functions—ex-
ponential and logarithmic, and forming and working with
plots of various kinds; structures of simple molecules and unit
cells of prototypical inorganic compounds are an immediate
application of plotting in three dimensions. This basis pro-
vides an excellent platform for a review of descriptive geom-
etry: triangles in some detail, quadrangles and other polygons,
but also polyhedra from a tetrahedron that might represent
the structure of P4, to a truncated icosahedron to model the
shape of C60, each with its geometric properties. Trigonom-
etry follows, including circular and hyperbolic functions, and
their inverses, that are readily interrelated in a way that is never
envisaged within a school environment. Although complex
numbers in Cartesian form were previously introduced as
numbers of a particular kind, with trigonometry and plots
other properties can be explored through their polar forms;
conformal plots provide enlightenment about significant as-
pects of complex analysis. Properties of series, polynomials,
and rational functions, and their applications in exact fits of
data through polynomials and splines of varied degree, are
standard. Hence, although much of this material might be
considered to be a precursor to study of mathematics at uni-
versity level, one can avail of the opportunity to include, with-
out undue strain on students, additional related topics still
at a rather simple level; with astounding graphics to aid as-
similation of concepts, such new topics actually serve to
stimulate the interest of students at the same time that much
emphasis is placed on learning the commands of the sym-
bolic processor, with chemical illustrations and applications
where appropriate, rather than to present fresh material in a
concerted manner.

Even though some introduction to calculus might have
been attempted in schools, the study of mathematics in tra-
ditional courses at tertiary educational level by chemistry stu-
dents begins typically with calculus, first differentiation then
integration, progressing to multivariate calculus. When com-
parable topics are taught with a symbolic processor, a stu-
dent might be amazed to discover the power of a few
commands or operators to implement all calculus, relative
to the many commands and operators associated with the
preceding topics. Traditional textbooks on calculus typically
omit or neglect numerical differentiation and integration, but
such topics are strongly relevant to the processing of numeri-
cal data collected in a chemical laboratory; their inclusion
within a course taught with computer algebra poses no diffi-
culties in either comprehension or implementation: the com-
puter does the tedious calculations. Fourier series constitute
a topic readily explored as an application of integration. Plots
of rotatable surfaces in three dimensions are readily gener-
ated with computer graphics to illuminate aspects of direc-
tional or partial derivatives, whereas comparable renderings
made freehand by an instructor on a blackboard must be much
less inspiring. Operations with thermodynamic state functions
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and use of Lagrange multipliers in constrained optimization
illustrate important applications of derivatives of functions
of multiple variables. When a student has grasped the sig-
nificance of a derivative through geometric constructs in first
two and then three dimensions through appropriate plots,
including animations, extension to variables of increased
number typical of a chemical problem, which are handled
with the software just as readily as for a single independent
variable, is straightforward.

The power of a symbolic processor is most prominent
in application to linear algebra, differential equations, and
statistics. No longer must an instructor restrict examples of
matrices to those of second or third order, but he or she can
work effortlessly with matrices of, for instance, sixth order
that might be applicable to an important chemical system
such as benzene. Operations with vectors, arrays, eigenval-
ues and eigenvectors, vector calculus, and even tensors of sec-
ond order, amply illuminated with striking plots, are simple
to understand and readily executed with symbolic software.
Plots of a slope, or direction, field impress upon a student
the meaning of a differential equation of first order in a man-
ner that is impracticable without such a plot, and again la-
borious efforts by an instructor on a blackboard are largely
ineffectual compared with the impact of a plot generated in-
stantly with a symbolic processor. Solution of differential
equations, single or within sets, pertaining to prototypical
cases in chemical kinetics poses no problem for a symbolic
processor, but has immediate relevance to obvious chemical
applications. Numerical solution of ordinary or partial dif-
ferential equations is extremely tedious by hand, but just a
few commands to contemporary symbolic processors readily
yield accurate results. Statistics, ranging from probability
through distributions, linear and nonlinear regression to op-
timization, provide another instance of tedious human ma-
nipulation because of the extent of the data that must be
treated in a realistic case. Although some calculators provide
multiple statistical functions, the additional and profound
capability of advanced software on a standard computer is a
valuable asset in teaching statistics and its embodiment in
chemometrics.

Implementation of Courses
and Examples of Applications of Symbolic Software

Will any professor of chemistry be unhappy if his or her
undergraduate students both understood the concepts of all
topics mentioned above and are able to execute the corre-
sponding mathematical operations to solve chemical prob-
lems? What is even more enticing about this approach is that
the total duration of formal courses, comprising lecture dem-
onstrations and supervised practice sessions at a weekly rate
of two or three hours each for lectures and practice, might
require as little as one year (or equivalent), although courses
through three semesters would likely place an optimal pres-
sure on students to meet applicable standards of proficiency.
The most obvious characteristic of a textbook to support such
courses would be that it should have an electronic nature,
operating on a computer with particular software in a truly
interactive manner; it should provide both explanatory text,
including mathematical definitions and explaining concepts

and principles, and description of commands and elucida-
tion of their results. A reader interactively executes commands
that readily lend themselves to experimenting with values of
parameters; sequences of commands illustrate the concepts
and implement pertinent operations in a concerted sequence
through the entire progression of topics. Although traditional
contemporary textbooks of mathematics typically contain
dozens or hundreds of problems per chapter, few purely math-
ematical exercises suffice in a context of computer algebra
because generally the same command can effect operations
on diverse functions that might be explored manually; instead,
problems involving truly chemical applications can be as-
signed. Such a textbook is eminently suitable even for self
study, but students likely expect, and can in most cases profit
from, lecture classes in almost a traditional format, in which
an instructor relies mostly on a computer display to accom-
pany explanation, rather than presenting all traditional ma-
terial with the aid of a blackboard.

Despite the availability of software for pedagogical pur-
poses to operate in association with some symbolic proces-
sors, one factor that has hampered the widespread application
of symbolic computation for the teaching of mathematics has
been the lack of a specially designed textbook for this pur-
pose. Even though software for symbolic computation has
become remarkably enhanced and extended since 1997 when
Simons wrote his provocative essay (5), great emphasis in the
development of software has been placed, in some notable
cases, on packages designed specifically for pedagogical pur-
poses. Such a lack of an appropriate textbook has been rem-
edied with the preparation of at least one interactive electronic
textbook of mathematics for chemistry (6) of a type and con-
tent described above. For use in composite classes of students
from multiple science departments, it would be highly de-
sirable for each student to have a textbook with examples and
exercises designed for each particular subject; a mathemati-
cian as instructor could then concentrate on mathematical
concepts and their implementation in purely mathematical
contexts with which he or she might feel most comfortable,
but a student could apply the particular examples and exer-
cises pertaining to his subject to gain an improved knowl-
edge of his or her field. At this time of writing, no comparable
textbook is, however, available for biology, geology, or phys-
ics for instance, although there are generally several worthy
printed books that might supplement conventional textbooks
by supporting the use of a symbolic processor for applica-
tions of mathematics to each other subject. Experience has
shown, however, that an interested chemistry professor with-
out an exceptionally profound knowledge of mathematics can
employ that textbook (6) to teach mathematics to chemistry
students.

At this point, a reader might be curious—or even ex-
pect—to see displayed here some examples of advantageous
application of symbolic computation to teach mathematics
to chemistry students. Although one can readily invoke many
such examples, naturally their presentation on a printed page
falls far short of their impact on a live computer screen; such
examples include animation of a plot of a Riemann sum ap-
proaching a limit of a definite integral, illustration of a dis-
tinction between image vectors and eigenvectors when a
matrix of third order acts on vectors on a unit sphere, visual
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illustrations of partial derivatives in three dimensions, and
so forth.

As three explicit illustrative examples, we present one
from linear algebra and two from differential equations, for
which we have employed commands in Maple (1). In our
first example, not particularly chemical, we form a 3 × 3 ma-
trix A with numeric elements,

> with(Student :- LinearAlgebra):

> A := Matrix([[1,1,1],[2,-1,0],
   [1,-2,-1]]);

and a column vector b with these numeric components,

> b := Vector([2,3,1]);

With this intuitively obvious command we construct the aug-
mented matrix,

> Ab := <A|b>;

and convert it to reduced row-echelon form, which yields this
result:

> ReducedRowEchelonForm(Ab);

For this purpose, Maple has evidently not applied decimal
numbers, but exact arithmetic, just as an instructor would use:
the closer that the output from the software is to what one
would do in class, the more confident the student becomes
in proceeding to the next step. With a Maple command,

> LinearSolve(A, b, free = t);

we solve this linear system. Instead of an error message be-
ing presented because the system of linear equations exhibits
a linear dependence, the solution is presented in terms of a
parameter t in the same way that we should present the solu-
tion set by hand on the blackboard. A command to form a

plot for which one specifies the matrix A and the vector b
yields a three-dimensional plot containing three solid circles,
colored red, blue, and green, that all intersect along a line,
consistent with the solution above. This graphic facility can
not be underestimated: an instructor might easily sketch
points, lines, and vectors in a plane, but on a blackboard the
latter diagram in three dimensions is difficult to draw quickly,
and is not rotatable, unlike the computer display. For the same
reason, to show this diagram on a printed page is difficult; if
Maple is available to the reader, this Maple command gener-
ates the plot:

> LinearSystemPlot(A, b);

A typical traditional course on differential equations
comprises a sequence of recipes for solving differential equa-
tions of several selected types; although it is valuable and nec-
essary for a student to be able to solve some equations by
hand, it is poor use of a student’s time to devote an entire
course to this activity. For students of chemistry the course
should emphasize modeling and applications, teaching stu-
dents how to construct differential equations, or systems
thereof, from a chemical or physical model. For instance, as
a problem in thermodynamics, consider two bodies, A and
B, at different temperatures, that are placed in contact. Heat
can then flow from one body to another as well as from each
body to the surroundings; the temperatures of the bodies vary
with time, as A(t) and B(t). We can then write these two
coupled differential equations:

> des :=
   diff(A(t), t) = -k[1]*(A(t) - T[m])
    + k[2]*(B(t) - A(t)),
   diff(B(t), t) = -k[1]*(B(t) - T[m])
    - k[2]*(B(t) - A(t)) + F;

Here Tm is the temperature of the surroundings that can
accept all heat isothermally, F denotes a constant posi-
tive flux of heat being supplied directly to object B, and
positive coefficients k1 and k2 pertain to the rates of
transfer of heat from either body to the surroundings
and from one body to the other, respectively. Perhaps
the most important feature of a processor for symbolic
computation such as Maple is that the display of a
mathematical formula is typeset, and resembles closely
the way that it would appear on the blackboard or in a
textbook.

We seek to compute the temperatures of the two bodies
in a steady state in terms of parameters k1, k2, and F. Invok-
ing a command to solve two linear simultaneous equations
in this set for the temperatures of A and B in a steady state,
that is, when both derivatives in the left sides are equal to
zero, and simplifying the resulting expressions yields the
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following results:

> sys :=
   {0 = -k[1]*(A - T[m])
         + k[2]*(B - A),
    0 = -k[1]*(B - T[m])
         - k[2]*(B - A) + F};

Solving the system, we write the solutions as polynomials in
F, and simplify their coefficients:

> TempSteadyState :=
   collect(solve(sys, {A, B}),
   T[m], simplify);

Expressing the solutions in this way using symbolic compu-
tation provides physical insight; according to these results one
can directly understand that the temperature in the steady state
is directly proportional to F, that is, if F = 0, the temperature
in the steady state is Tm of the surroundings and that other-
wise object B is hotter than A—this is a proof! With the avail-
able graphical capability and inserting appropriate values of
the parameters, we can show a phase-portrait plot with an
initial-value solution and make an animation as a function of
the ratio of k1 and k2. Such plots exhibit the physical or chemi-
cal principles and activities and confirm the algebraic results.
We can show no animation here on the printed page, but, for
F = 5, k1 = 0.1, k2 = 0.3, and Tm = 0 in appropriate units, we
show one frame, with four solution curves; these curves show
the extent, at time t = 10, of the approach of the tempera-
tures of both bodies A and B to the steady state from four
initial conditions, in which one or other, or both, bodies be-
gin at 0 or 35 degrees:

> (k[1], k[2], F, T[m])
   := (0.1, 0.3, 5, 0);

> ivs := {[A(0)=0,B(0)=0],
   [A(0)=0,B(0)=35], [A(0)=35,B(0)=0],
   [A(0)=35,B(0)=35]};

> DEtools[DEplot]([des],
   [A(t),B(t)], t = 0..10, A = 0..40,
   B = 0..40, ivs, linecolour = black,
   arrows = medium);

We compute to three digits the temperature at the steady
state:

> evalf[3](TempSteadyState);

As a final example genuinely appropriate to chemical ki-
netics, we consider a chemical system of two reactants, A and
B, that combine to form product C,

   CA  +  B   
kf

but C also dissociates to reform A and B,

   A  +  BC   
kr

the coefficients of rates of forward, kf, and reverse, kr, reac-
tions have similar magnitudes. We use here A, B, and C as
both the names of reactants and their respective concentra-
tions. With initial concentrations a, b, and c, the differential
equation for the loss of reactant A in this kinetic system,

dA( )t
( )t

dt
kf= kr−− A ( )tB ( )tC

is expressed in this Maple statement with x(t) as the extent
of depletion of A at duration t after the onset of reaction:

> eqA := -Diff((a - x(t)), t)
   = k[f]*(a - x(t))*(b - x(t))
      - k[r]*(c + x(t));

Although Maple can produce an algebraic expression as the
solution to this equation with a, b, c, kf, and kr in symbolic
form, to avoid complicated formulas it is preferable here to
apply numerical values for these parameters, as follows:

> a := 1: b := 2: c := 0:
   k[f] := 1: k[r] := 1/5:
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With the initial condition x(t) = 0 at t = 0, the differential
equation is then readily solved with this command:

> sol := dsolve({eqA, x(0) = 0}, x(t));

We plot the results, which show how the concentrations of
reactants A and B decrease from their initial values, eventu-
ally becoming constant but neither zero for A nor unit con-
centration for B, whereas the concentration of C increases
from its initially assigned zero value to a constant value:

> plot([a-rhs(sol),b-rhs(sol),
   c+rhs(sol)], t = 0..5, 0..2,
   colour = [red,blue,green],
   titlefont = [TIMES,BOLD,12],
   title = “concentrations of A,B,C
   versus time\n for a reversible
   reaction”);

We calculate the concentration of A when, at infinite dura-
tion, the system attains equilibrium:

> Aequil := limit(a - rhs(sol),
   t = infinity);

> evalf(Aequil);

According to analogous statements, the corresponding con-
centration of B is 1.148 and of C is 0.852, in the same units
implied in the initial conditions. The rate of a chemical re-

action is proportional to concentrations of pertinent species
whereas equilibrium properties depend on their activities; ne-
glecting a distinction between concentrations and activities,
we find that the equilibrium quotient, Keq = Ceq�(AeqBeq),
for this system in this approximation is simply the ratio, kf�kr,
of the coefficients of rates of forward and reverse reactions.
By altering the numerical values of the five parameters we can
discern how the final concentrations of the three compounds
A, B, and C and the equilibrium quotient depend on the rate
coefficients.

For innumerable additional examples, we respectfully
suggest that an interested reader sample a particular compre-
hensive interactive electronic textbook (6) that has been de-
signed, and tested in practice, for the teaching of mathematics
to chemistry students. Computer files that constitute this elec-
tronic textbook require operation with specific software for
computer algebra, but the cost to a student of both the book
and that software that operates on all common operating sys-
tems is comparable with the cost of a traditional printed text-
book; that printed book might be prescribed for a particular
course during only one semester, whereas the software, with
or without the electronic book, is useful for general math-
ematical applications until the user hungers for a newer ver-
sion! Of course software other than Maple is available, in some
cases even free, on the basis of which one might compose an
alternative electronic textbook, but so far such a realization is
lacking. Another factor hampering the widespread application
of software for symbolic computation has been the price of
the software, but the price of software is in some cases de-
creasing; for example, versions of Maple are being bundled
with textbooks for a modest cost.

We add a cautionary note about the teaching of math-
ematics in schools. We in no way advocate the replacement,
during primary and secondary education, of acquiring sub-
stantial mental and manual skills in arithmetic and algebra
by direct use of calculators and computers with their associ-
ated software, although such devices might enrich the teach-
ing of pertinent topics through illustrative plots or otherwise.
Furthermore, when the total duration of primary and sec-
ondary education involves study of arithmetic and mathemat-
ics for twelve years or less, we have grave reservations about
the inclusion of calculus as a significant component of that
curriculum; instead, in addition to algebra and introductory
statistical topics, geometry, with appropriate trigonometry,
in both formal and descriptive aspects should be emphasized
as a preparation of every adult to appreciate the concepts of
space and form, as a basis of understanding architecture and
art. For the illustration of geometric operations and concepts,
there exists commendable heuristic software that is applicable
to a school context.

Conclusion

We must all agree not only that computers are here for-
ever but also that they affect strongly the teaching and prac-
tice of mathematics, for chemistry students or otherwise, just
like every other aspect of knowledge activity and communi-
cation; hence our chemistry student who is deprived of a sig-
nificant acquaintance with mathematical—not merely
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arithmetical—software is not being prepared properly for a
technical career. Currently available mathematical software,
nominally for symbolic computation but with associated nu-
merical and graphical capabilities highly developed, provides
an invaluable tool for both teaching and doing mathematics
and should become an integral component of routine instruc-
tional presentation. Instruction should emphasize mathemati-
cal concepts and principles, with numerical and graphical
interpretations and illustrations, and indicate how mathemati-
cal operations are implemented, although there is no neces-
sity to restrict implementation to a single software product.
Just as each student practises manipulation of chemicals and
instruments in the chemical laboratory, he or she should learn
how to adopt an experimental and constructive approach to
mathematics, based on mathematical software, rather than a
sterile formal description according to theorems, corollaries,
lemmas, and so forth, for the chemist will be a user of math-
ematics not a developer of mathematics. As mathematical
software continues to evolve, both instructors and their stu-
dents must expect to expand their mathematical horizons and
to progress in their own development stimulated through that
software. The future development of Internet communica-
tion and its impact on education are difficult to predict—
even a few years into the future—but what is certain is that
both content and process of mathematical and chemical edu-
cation are evolving rapidly as a consequence of the existence
and deployment of digital computers and symbolic compu-
tation. Each instructor of both chemistry and mathematics
has a solemn duty and responsibility to adapt to, and to work
with, computers to prepare optimally his or her students for
future technical careers. The future might be unpredictable
in detail, but the trends are clear: computers and symbolic
computation in the teaching and practice of chemistry and
mathematics are indisputably part of them.

We must likewise accept that, just like the demise of
manual calculation of square roots of numbers, the future
practice—already well in progress—of mathematics by chem-

ists will involve not manipulation of numbers and formulas
by hand but mostly invocation of symbolic computation for
such purposes. At this time it is only sensible to revise the
teaching of mathematics for students of chemistry to reflect
the realities of available computer hardware and software; with
an interactive electronic textbook, software in the form of so-
phisticated processors for computer algebra, and cognate op-
erations makes such study of mathematics for chemistry
eminently practicable.
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