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Abstract. We present a parallel modular algorithm for finding charac-
teristic polynomials of matrices with integer coefficient bivariate polyno-
mials. For each prime, evaluation and interpolation gives us the bridge
between polynomial matrices and matrices over a finite field so that the
Hessenberg algorithm can be used.

1 Introduction

We are interested in specific structured matrices obtained from [9] which arise
from combinatorial problems. The goal is to compute their respective charac-
teristic polynomials. Let A(x, y) represent the matrix of interest with dimension
n× n. The entries of A are polynomials in x and y of the form

Aij(x, y) = cijx
ayb

with a, b ∈ N ∪ {0}, cij ∈ Z, 1 ≤ i, j ≤ n. Please see appendix A1 for the 16 by
16 example. Let C(λ, x, y) ∈ Z[λ, x, y] be the characteristic polynomial, which is

C(λ, x, y) = det (A− λIn)

by definition, where In is the n× n identity matrix.

The matrix sizes range from 16 to 256, so using the general purpose routine in a
computer algebra system like Maple will work only for the small cases. Finding
the characteristic polynomial using Maple takes over one day for the 128 by 128
case. Fortunately, there is much structure in the coefficients of the characteristic
polynomial. We are able to automatically find this structure and take advantage
of it. This paper presents the optimizations to computing the characteristic poly-
nomial. On multi-core machines, we can compute the characteristic polynomial
of the largest size 256 matrix in less than 24 hours.

Paper Outline

Section 2 discusses some background along with core routines in our method.
Section 3 summarizes a naive first approach. Section 4 is the query phase of our



algorithm, which determines the structure to be taken advantage of. Section 5
presents how the optimizations work, based on the structure discovered from
section 4. Section 6 is on the parallel algorithm. Section 7 and onwards include
timings, appendix and references.

2 Background

One method for computing the characteristic polynomial C(λ, x, y) for a poly-
nomial matrix is to construct the characteristic matrix A − λIn and use the
Bareiss fraction-free algorithm [2] to compute its determinant. Magma uses this
method. The Bariess algorithm is a modification of Gaussian elimination based
on Sylvester’s identity. Since the core routine is similar to that of Gaussian elim-
ination, it does O(n3) arithmetic operations in the ring Z[λ, x, y] which include
polynomial subtraction, multiplication and exact division.

Maple uses the Berkowitz method [3] when the “CharacteristicPolynomial” rou-
tine in the “LinearAlgebra” package is called. This algorithm does O(n4) arith-
metic operations in the ring Z[x, y] with no divisions. For our matrices, it is
much faster than the O(n3) fraction-free method, over 10 times faster for the
16 by 16 case. The reason is that the intermediate polynomials in the Bareiss
fraction free method grow in size and the multiplications and divisions are more
expensive than the multiplications in the Berkowitz algorithm.

2.1 Hessenberg

For matrix entries over a field F , the Hessenberg algorithm [4] does O(n3) arith-
metic operations in F to find C(λ) in F [λ]. This algorithm builds up the charac-
teristic polynomial from submatrices, and is the core of our modular algorithm.
The first stage transforms the matrix A into a matrix H in Hessenberg form
while preserving the characteristic polynomial. The Hessenberg form of H is
given below.

H =


h1,1 h1,2 h1,3 . . . h1,n

k2 h2,2 h2,3 . . . h2,n

0 k3 h3,3 . . . h3,n

...
. . .

. . .
. . .

...
0 . . . 0 kn hn,n


The second stage computes the characteristic polynomial of H using a recur-
rence. Let Cm(λ) represent the characteristic polynomial of the top left subma-
trix formed by the first m rows and columns. We have the following recurrence
relation starting with C0(λ) = 1,

Cm(λ) = (λ− hm,m)Cm−1(λ)−
m−1∑
i=1

hi,mCi−1(λ)

m∏
j=i+1

kj

 .



2.2 The Modular Algorithm

We compute the image of the characteristic polynomial for a sequence of primes
p1, p2, . . . pm. Then to recover the solution over the integers we simply use Chi-
nese remainder algorithm. Below is the outline, followed by the homomorphism
diagram in Figure 1 for the modular algorithm.

1. For each prime p in p1, p2, . . . pm, do the following:
(a) Evaluate the matrix entries at x = αi and y = βj modulo p.
(b) Apply the Hessenberg algorithm to compute C(λ, αi, βj) the character-

istic polynomial of the evaluated matrix A(αi, βj) modulo p.
(c) Interpolate the coefficients of λ in y and x for C(λ, x, y) modulo p.

2. Recover the integer coefficients of C(λ, x, y) using the Chinese remainder
algorithm (CRA).

Zn×n[x, y] Z[λ, x, y]

Zn×n
p [x, y] Zp[λ, x, y]

Zn×n
p Zp[λ]

Characteristic Polynomial

p ∈ {p1, p2, . . . , pm}Mod

x = αi, y = βjEvaluate

CRA

Hessenberg Algorithm

O(n3) arithmetic operations in Zp

Interpolate y, x

Fig. 1. Modular algorithm homomorphism diagram.

2.3 Degree Bounds

To interpolate x and y in C(λ, x, y) the modular algorithm needs 1 + degx C
points for x and 1 + degy C for y. The degrees in x, y of the characteristic
polynomial are bounded by the following:

degx C(λ, x, y) ≤ Dx = min

 n∑
i=1

n
max
j=1

degxAij ,

n∑
j=1

n
max
i=1

degxAij


degy C(λ, x, y) ≤ Dy = min

 n∑
i=1

n
max
j=1

degy Aij ,

n∑
j=1

n
max
i=1

degy Aij


Each sum within the two equations above adds the largest degree in each row
and column respectively. Then we take the minimum of the two to obtain the
best degree bound in that variable.



Kronecker Substitution

There is no doubt that the problem will be simpler if the matrices of interest
only consist of one variable. This can be achieved by a Kronecker substitu-
tion. To ensure a reversible substitution, let b > degx C(λ, x, y), and apply it to
A(x, y = xb). Then C(λ, x, y) can be recovered from the characteristic polyno-
mial of A(x, y = xb).

We use b = Dx+1, as this is the smallest possible value for an invertible mapping.
As expected, the degrees of the polynomial entries in A(x, y = xb) become quite
large. Now the problem has effectively become solving for

det(A(x, xb)− λIn) = C(λ, x, xb).

Note that in our benchmarks section, no Kronecker substitution was involved.

Coefficient Bound

The classical Hadamard inequality for n by n integer matrix M = (mij) asserts

|det(M)| ≤ H(M) =

 n∏
i=1

n∑
j=1

|mij |2
1/2

.

A similar bound [11] exists for matrices with polynomial entries. Let M(x) =
(mij) with mij a polynomial in Z[x]. Let s0, s1, . . . be the coefficients of the
polynomial representation of det(M(x)). Let T = (tij) be the n by n matrix
obtained from M as follows. Let tij be the sum of the absolute values of the
coefficients of mij(x). Then the equivalent bound is given by

||det(M)||2 =
(∑

|si|2
)1/2

≤ H(T ) =

 n∏
i=1

n∑
j=1

|tij |2
1/2

.

This bound generalizes to matrices of multivariate polynomials with integer co-
efficients by using a Kronecker substitution. The entries of our matrix A(x, y)
are unit monomials. Thus for M = A − λIn, tii = 2 and tij = 1 for i 6= j. The
height of C(λ, x, y), denoted ||C(λ, x, y)||∞, is bounded by

||C(λ, x, y)||∞ ≤ ||C(λ, x, y)||2 ≤

(
n∏

(n+ 3)

)1/2

= (n+ 3)n/2.

This bound tells us how many primes are needed at most to recover the integer
coefficients of C(λ, x, y). Namely, we need

∏m
i=1 pi > 2(n + 3)n/2. Note that,

with optimizations to be mentioned, the integer coefficients can be recovered
with fewer primes.



Let C(λ) =
∑n

i=0 ciλ
i be the characteristic polynomial of A. Because c0 =

C(0) = det(A) we suspected that ||C(λ)||∞ ≤ H(T ). Thus for our matrices, we
thought we could replace the above bound (n+3)n/2 with the Hadamard bound
nn/2 on det(T ). But in [5], an example of integer matrix with entries ±1 is given
where |c1| > nn/2 > |c0|.

3 Naive First Approach

For starters, we will proceed with a Kronecker substitution. With that, the
degrees of the matrix entries are much larger, so we decided to use fast evaluation
and interpolation. The fast algorithms used are based on the FFT (Fast Fourier
Transform), which have been optimized. Since the transform itself is not the
main concern, we will take advantage of the transforms decimated in time and
frequency, as the authors did in [10].

3.1 Structures Found

Here we identify the foundation and justification for the following sections/phases,
as there is much room for optimization. Let C(λ, x, y) =

∑n
i=0 ci(x, y)λi. Then

the coefficients of λi can be written in the form

ci(x, y) = fi(x, y)xgiyhi(x2 − 1)ki

where the fi are bivariate polynomials with even degrees in x. See Appendix
A3 for c0(x, y) and c1(x, y) for 16 by 16 matrix. The exponent values gi, hi, ki ∈
N ∪ {0}, for 0 ≤ i < n, represent factors. Table 1 below contains the values
for these parameters for the n = 16 matrix (see Appendix A1) and also other
information about fi(x, y). The columns degx are the degrees of fi in x and
columns degy are the degrees of fi in y. Notice that the largest integers in
ci(x, y) in magnitude (see columns ||ci||∞) decrease as i increases but those in
fi (see columns ||fi||∞) increase and decrease.

i gi hi ki degx degy ||fi||∞ ||ci||∞ i gi hi ki degx degy ||fi||∞ ||ci||∞
0 32 32 32 0 0 1 601080390 8 12 10 10 20 12 4730 35264
1 32 28 28 4 4 4 160466400 9 14 8 8 16 12 3740 10876
2 24 25 25 14 6 31 28428920 10 8 6 6 20 12 2116 3242
3 26 22 22 12 8 128 16535016 11 10 4 4 16 12 806 1556
4 20 19 19 18 10 382 3868248 12 4 3 3 18 10 454 322
5 22 16 16 16 12 684 946816 13 6 2 2 12 8 142 108
6 16 14 14 20 12 1948 183648 14 0 1 1 14 6 31 22
7 18 12 12 16 12 3738 82492 15 4 0 0 4 4 4 4

Table 1. Data for the coefficients of C(λ, x, y) for n = 16.



3.2 Method of Approach

As the structure suggests, the most complicated factors to recover are the bi-
variate polynomials fi(x, y). In the next two sections, we present two phases to
recover C(λ, x, y). The first phase is to find gi, hi, ki for 0 ≤ i < n. The second
phase is to compute the “cofactors” fi(x, y).

4 Phase 1 - Query

The factors that need to be found for each λ coefficient are namely

xgiyhi(x2 − 1)ki .

We can find the lowest degrees gi and hi by making two queries mod a prime,
one for each variable. In each query, we evaluate one variable of the matrix A
to obtain an image of the characteristic polynomial in the other variable. Let p
be the prime and γ be chosen at random from Zp. We evaluate the matrix A to
obtain the two univariate matrices with integer coefficients modulo p

A(x, γ) mod p and A(γ, y) mod p.

Their respective characteristic polynomials are

C(λ, x, y = γ) and C(λ, x = γ, y).

This is a much simpler problem, as the entries have much smaller degree and
no Kronecker substitution is necessary. Even for our large matrices, the charac-
teristic polynomial of univariate matrices can solved within minutes. The query
phase concludes by finding the necessary parameters for phase 2, which are the
factor degrees gi, hi, ki for 0 ≤ i < n, and hence the minimal number of evalua-
tion points ex and ey.

Due to two random evaluations, there is a possibility of failure in this phase.
But we will show that the failure probability is small.

4.1 Lowest Degree Factors

After making the two queries, we have images C(λ, x, y = γ) and C(λ, x = γ, y).
For each λ coefficient, simply search for first and last non-zero coefficient in x
or y. The lowest degrees correspond to gi, hi for 0 ≤ i < n. Now also let ḡi, h̄i
be the largest degrees with non-zero coefficient in x, y respectively. To see it in
perspective, the coefficient of λi in C(λ, x, y = γ) has the form

•xḡi + · · ·+ •xgi

where the symbol • represents integers modulo p. Similarly for C(λ, x = γ, y),

•yh̄i + · · ·+ •yhi

and the key values ḡi, gi, h̄i, hi can found easily by searching for first non-zeroes.



Non-Zero Factors

Most coefficients of λ have a factor of (x2 − 1)ki with ki large. Removing this
reduces the number of evaluation points needed and the integer coefficient size
of ci(x, y)/(x2− 1)ki , hence also the number of primes needed. To determine ki,
we pick 0 < γ < p at random and divide ci(x, γ) by (x2−1) modulo p repeatedly.
For our matrices it happens that ki = hi.

In general, to determine if (ax + b) is a factor of a coefficient of ci(x, y), for
small integers a > 0, b, we could compute the roots of ci(x, γ), a polynomial
in Zp[x], using Rabin’s algorithm [12]. From each root, we try to reconstruct a
small fraction − b

a using rational number reconstruction (section 5.10 of [6]). We
have not implemented this.

4.2 Required Points

Now to find the minimal points required to recover all the fi(x, y), for 0 ≤ i < n.
Since we have already computed the largest, smallest and factor degrees, we can
know the maximal degrees of fi(x, y) in both variables. The minimal number of
evaluation points in x, y needed to interpolate x and y are given respectively by

ex := max
1

2
{ḡi − gi − 2ki}+ 1, for 0 ≤ i < n

ey := max{h̄i − hi}+ 1, for 0 ≤ i < n

The scalar of half in ex is due an optimization to be mentioned later (see section
5.3). The subtraction of 2ki corresponds to the factor (x2 − 1)ki .

4.3 Unlucky Evaluations

As mentioned earlier, random evaluations may cause the algorithm to return an
incorrect answer, as we will explain here. Without loss of generality, consider the
query of randomly evaluating at y = γ. Let di = degx fi(x, y), then

fi(x, y) =

di∑
j=0

fij(y)xj , where fij ∈ Z[y].

When fi0(γ) = 0, then the lowest degree is strictly greater than gi, which is in-
correct. If the algorithm continues, the target for interpolation is compromised,
and the final answer is incorrect.

If fidi
(γ) = 0, then the largest degree becomes less than ḡi. This may affect ex,

the required number of evaluation points, which takes the maximum of a set (see
section 4.2). The final answer will still be correct as long as ex is correct.



Definition 1 Let p be a prime, and 0 ≤ γ < p. Then γ is an unlucky evaluation
if for any 0 ≤ i < n,

fi0(γ) = 0 (mod p) or fidi
(γ) = 0 (mod p)

where Dy ≥ degy C(λ, x, y) (from section 2.3).

Theorem 1 The probability that γ is unlucky is at most
2nDy

p .

Proof. Since Dy ≥ degy C(λ, x, y), so degy fij ≤ Dy for all i, j. For each 0 ≤ i <
n, there are at most 2Dy points where

fi0(γ) = 0 (mod p) or fidi
(γ) = 0 (mod p).

There are n of these cases, giving a total of 2nDy unlucky evaluations. Therefore
the probability of an unlucky evaluation (for 0 ≤ i < n) is given by

Pr [fi0(γ) = 0 (mod p) or fidi
(γ) = 0 (mod p)] ≤ 2nDy

p
.

We use a 31 bit prime p = 227×15+1 in the query phase. For our largest matrix,
the parameters are n = 256, Dx = 3072 and Dy = 1024. Our algorithm makes
two queries, one for each variable, so the probability of an unlucky evaluation is
less than 0.105%.

5 Phase 2 - Optimizations

The structure for each λ coefficient is already known, so in this section we will
use a specific matrix and its characteristic polynomial. We have implemented
each of the following optimizations with Newton interpolation. We note that
these optimizations apply for fast interpolation (FFT) too.

We will illustrate the optimizations on the λ6 coefficient from the 16 by 16
matrix. The coefficient of λ6 is

c6(x, y) = f6(x, y)x16y14
(
x2 − 1

)14

where f6(x, y) (see appendix A2) has 91 terms and is irreducible over Z. The
parameters for the 16 by 16 matrix include g6 = 16, h6 = 14 = k6, and
ḡ6 = 64, h̄6 = 26.

If the Kronecker substitution were to be used, it will use the substitution y = x97,
implying Fourier transform size of s = 4096 > 64+26(97) = 2586. If we work on
one variable at a time, it will require (64+1)(26+1) = 1755 points. Keep in mind
that the total number of evaluation points is the same as the number of calls to
the Hessenberg algorithm, which is the bottleneck of the whole algorithm. Our
implementation of the FFT involves the staircase increments as well, but can be



eliminated if the truncated FFT (see [8, 1]) were to be used.

Consider the step of interpolating x after y is interpolated. Let E = {α1, α2, . . . }
be the evaluation points, and Vi = {ci(α1, y), ci(α2, y), . . . } be the values. By
the end of this section, we will only require (10 + 1)(12 + 1) = 143 points, which
gives a gain of more than a factor of 12. Note that the gain is greater for larger
matrices.

5.1 Lowest Degree

Since the lowest degree is known, that is g6 = 16, we need to interpolate
c6(x, y)/x16. For each αj ∈ E, divide Vi by αg6

j point wise. Then regular in-
terpolation will give

c6(x, y)/x16 = f6(x, y)y14(x2 − 1)14.

In this example there is a saving of g6 = 16 points. This optimization also
applies to the other variable y, as hi = 14. When both variables are taken
into account, the total number of evaluation points is reduced from 1775 to
(64− 16 + 1)(26− 14 + 1) = 637.

5.2 Even Degree

All the terms in fi(x, y) have even degrees in x. So if we interpolate fi(x
1/2, y)

instead of fi(x, y), the degree of the target is halved, and the number of evalua-
tion points is also (approximately) halved. To do so, simply square each value in
E, and proceed with interpolation as usual. The polynomial recovered will have
half of the true degree, then double each exponent to recover fi(x, y).

The even degrees structure for our matrices only applies to variable x. With this
optimization the number of evaluation points decreases from (64+1) to (32+1).

5.3 Non-zero Factors

Here we have multiplicity of k6 = 14. This optimization is similar to that of the
lowest degree. For each αj ∈ E, we divide each Vi value by (α2

j − 1)hi . Then
regular interpolation will return

ci(x, y)/(x2 − 1)14 = fi(x, y)x16y14.

E cannot contain ±1, because there will be divisions by zero. This optimization
is only applicable to variable x, and it alone decreases the number of evaluation
points from (64 + 1) to (36 + 1).

Since ki is large, ||fi(x, y)||∞ will be much smaller than ||ci(x, y)||∞. Therefore
the algorithm needs fewer primes to recover C(λ, x, y). The largest coefficient of



(x2 − 1)ki is
(

ki

dki/2e
)
. For the 16 by 16 case, the coefficient bound for C(λ, x, y)

is (16 + 3)8 a 34 bit integer. The actual height ||C(λ, x, y)||∞ is a 30 bit integer
(see Table 1) and max ||fi(x, y)||∞ = 4730 = ||f8(x, y)||∞ is a 13 bit integer. For
the 64 by 64 case, ||C(λ, x, y)||∞ is 188 bits and max ||fi(x, y)||∞ is 72 bits.

Due to this loose bound, the problem has effectively become much smaller in
terms of integer coefficient size. The target is max0≤i<n ||fi(x, y)||∞, instead of
the much larger max0≤i<n ||ci(x, y)||∞. So C(λ, x, y) can be recovered with fewer
primes. We give more details in section 5.5.

5.4 Combined

If all three improvements in sections 5.1, 5.2 and 5.3 are combined together, the
number of evaluation points required for x is ex = (64− 16− 2× 14)/2 + 1 = 11.
Likewise for y, ey = (26− 14) + 1 = 13. So the total the number of evaluations
and hence Hessenberg calls decreases from 1755 to 11 × 13 = 143. Since the
degrees in y are dense with the lowest degree optimization, we evaluate x first
then y and interpolate in reverse order.

5.5 Chinese Remainder Algorithm

The last step of the modular algorithm is to recover the solution over the integers.
For m primes and each non-zero coefficient 0 ≤ ci < pi, we have to solve the
system of congruences

u ≡ ci (mod pi) for 1 ≤ i ≤ m.

To build up the final coefficients u over Z, we use the mixed radix representation
for the integer u, namely, we compute integers v1, v2, . . . , vm such that

u = v1 + v2p1 + v3p1p2 + · · ·+ vmp1p2 . . . pm−1.

See page 206 of [7]. To account for negative coefficients in C(λ) we solve for vi
in the symmetric range −pi

2 < vi <
pi

2 to obtain u in the range −M
2 < u < M

2
where M =

∏m
i=1 pi. From the non-zero factors optimization, the coefficient size

bound on ||fi(x, y)||∞ becomes a very loose one. As stated previously for the 64
by 64 matrix, the bound is is 188 bits, but we can recover C(λ, x, y) with only
72 bits. So after computing each image of C(λ, x, y) mod p1, p2, . . . , we build the
solution in mixed radix form until it stabilizes, that is when vk = 0.

6 Parallelization

The modular algorithm was originally chosen since the computation for each
prime can be done in parallel. Each evaluation, Hessenberg call and interpola-
tion may also be computed in parallel. We chose to run each prime sequentially
and look to parallelize within each prime for two reasons. First, we don’t know



how many primes are necessary because of the loose bound from section 5.3.
Second, memory may become an issue for computers with low RAM.

Our implementation in Cilk C does the x evaluations in parallel, and it suits the
incremental method more. With each prime, the algorithm starts by evaluating
x, and this evaluation is trivial since the matrix has unit monomials. In the
previous section we have seen that ex = 11 is required for the smallest case (16
by 16). But this matrix is too small to see any significant speed up. The 64 by 64
matrix on a computer with 4 cores shows a good speed up close to the theoretical
maximum. Please see the benchmarks section for more details on timings.

7 Benchmarks

Table 2 consists of timings of our modular algorithm. Column min is is the
minimum number of 30 bit primes needed to recover the integer coefficients
in C(λ, x, y). Column bnd is the number of primes needed using the bound for
||C(λ, x, y)||∞. The number of calls to the Hessenberg algorithm is (xy)(min +k)
assuming we require k check primes. Our implementation uses k = 1 check prime.
Table 3 includes data for Maple 2016 and Magma V2.22-2. The names and details
of machines we ran our software on are given below and they all run Fedora 22.

– sarah: Intel Core i5-4590 quad core at 3.3 GHz, 8 GB RAM
– mark: Intel Core i5-4670 quad core at 3.4 GHz, 16 GB RAM
– luke: AMD FX8350 eight core at 4.2 GHz, 32 GB RAM
– ant: Intel Core i7-3930K six core at 3.2 GHz, 64 GB RAM

Size #points #primes sarah mark luke ant
n x, y min,bnd 1 core 4 cores 1 core 4 cores 1 core 8 cores 1 core 6 cores

16 11,13 1, 2 0.04s 0.01s 0.04s 0.01s 0.04s 0.01s 0.04s 0.01s
32 28,31 1, 3 0.48s 0.10s 0.58s 0.10s 0.60s 0.10s 0.64s 0.14s
64 67,61 3, 7 19.12s 5.19s 18.64s 5.08s 32.93s 4.84s 21.52s 4.16s
128 131,141 6, 16 14.72m 3.92m 14.30m 4.41m 30.36m 4.41m 16.85m 2.87m
256 261,281 12, 35 14.42h 3.75h 14.23h 3.77h 31.29h 4.28h 16.53h 2.74h

Table 2. Modular algorithm timings in seconds (s), minutes(m) or hours (h)

Maple Magma

Size sarah mark luke ant ant

n real cpu real cpu real cpu real cpu cpu

16 0.28s 0.30s 0.21s 0.23s 0.46s 0.53s 0.32s 0.36s 0.32s
32 34.1s 45.2s 30.2s 41.1s 50.3s 83.7s 32.7s 46.3s 99.7s
64 19.9h 32.6h 12.1h 23.2h 3.63h 5.42h 2.86h 3.91h 15.1h

128,256 Not attempted

Table 3. Maple and Magma timings in seconds (s), minutes(m) or hours (h)



8 Appendix

A1: 16 x 16 matrix

x8 x5y x5y x4y2 x5y x2y2 x4y2 x3y3 x5y x4y2 x2y2 x3y3 x4y2 x3y3 x3y3 x4y4

x7 x6y x4y x5y2 x4y x3y2 x3y2 x4y3 x4y x5y2 xy2 x4y3 x3y2 x4y3 x2y3 x5y4

x7 x4y x6y x5y2 x4y xy2 x5y2 x4y3 x4y x3y2 x3y2 x4y3 x3y2 x2y3 x4y3 x5y4

x6 x5y x5y x6y2 x3y x2y2 x4y2 x5y3 x3y x4y2 x2y2 x5y3 x2y2 x3y3 x3y3 x6y4

x7 x4y x4y x3y2 x6y x3y2 x5y2 x4y3 x4y x3y2 xy2 x2y3 x5y2 x4y3 x4y3 x5y4

x6 x5y x3y x4y2 x5y x4y2 x4y2 x5y3 x3y x4y2 y2 x3y3 x4y2 x5y3 x3y3 x6y4

x6 x3y x5y x4y2 x5y x2y2 x6y2 x5y3 x3y x2y2 x2y2 x3y3 x4y2 x3y3 x5y3 x6y4

x5 x4y x4y x5y2 x4y x3y2 x5y2 x6y3 x2y x3y2 xy2 x4y3 x3y2 x4y3 x4y3 x7y4

x7 x4y x4y x3y2 x4y xy2 x3y2 x2y3 x6y x5y2 x3y2 x4y3 x5y2 x4y3 x4y3 x5y4

x6 x5y x3y x4y2 x3y x2y2 x2y2 x3y3 x5y x6y2 x2y2 x5y3 x4y2 x5y3 x3y3 x6y4

x6 x3y x5y x4y2 x3y y2 x4y2 x3y3 x5y x4y2 x4y2 x5y3 x4y2 x3y3 x5y3 x6y4

x5 x4y x4y x5y2 x2y xy2 x3y2 x4y3 x4y x5y2 x3y2 x6y3 x3y2 x4y3 x4y3 x7y4

x6 x3y x3y x2y2 x5y x2y2 x4y2 x3y3 x5y x4y2 x2y2 x3y3 x6y2 x5y3 x5y3 x6y4

x5 x4y x2y x3y2 x4y x3y2 x3y2 x4y3 x4y x5y2 xy2 x4y3 x5y2 x6y3 x4y3 x7y4

x5 x2y x4y x3y2 x4y xy2 x5y2 x4y3 x4y x3y2 x3y2 x4y3 x5y2 x4y3 x6y3 x7y4

x4 x3y x3y x4y2 x3y x2y2 x4y2 x5y3 x3y x4y2 x2y2 x5y3 x4y2 x5y3 x5y3 x8y4



A2: f6(x, y) of 16 x 16 matrix

(2x
16

+ 4x
14

)y
12

+ (4x
18

+ 32x
16

+ 28x
14

+ 8x
12

)y
11

+

(x
20

+ 34x
18

+ 149x
16

+ 188x
14

+ 43x
12 − 22x

10
+ 3x

8
)y

10
+

(16x
20

+ 128x
18

+ 452x
16

+ 568x
14

+ 268x
12 − 32x

10 − 72x
8 − 8x

6
)y

9
+

(52x
20

+ 348x
18

+ 910x
16

+ 1172x
14

+ 704x
12

+ 68x
10 − 136x

8 − 120x
6 − 28x

4
)y

8
+

(112x
20

+ 596x
18

+ 1344x
16

+ 1788x
14

+ 1224x
12

+ 216x
10 − 220x

8 − 184x
6 − 92x

4 − 32x
2
)y

7
+

(133x
20

+ 734x
18

+ 1551x
16

+ 1948x
14

+ 1476x
12

+ 428x
10 − 320x

8 − 276x
6 − 81x

4 − 34x
2 − 15)y

6
+

(112x
20

+ 596x
18

+ 1344x
16

+ 1788x
14

+ 1224x
12

+ 216x
10 − 220x

8 − 184x
6 − 92x

4 − 32x
2
)y

5
+

(52x
20

+ 348x
18

+ 910x
16

+ 1172x
14

+ 704x
12

+ 68x
10 − 136x

8 − 120x
6 − 28x

4
)y

4
+

(16x
20

+ 128x
18

+ 452x
16

+ 568x
14

+ 268x
12 − 32x

10 − 72x
8 − 8x

6
)y

3
+

(x
20

+ 34x
18

+ 149x
16

+ 188x
14

+ 43x
12 − 22x

10
+ 3x

8
)y

2
+

(4x
18

+ 32x
16

+ 28x
14

+ 8x
12

)y + (2x
16

+ 4x
14

)y
0



A3: First two coefficients of C(λ, x, y) for 16 by 16 matrix

c0(x, y) = x32y32
(
x2 − 1

)32

c1(x, y) = −x32y28
(
x2 − 1

)28 (
2x4y2 + 4x2y3 + 4x2y2 + y4 + 4x2y + 1

)
B1: Time 16 by 16 on Maple

A := Matrix(16, 16, [ [x^8, x^5*y, ...], ... ]);

with(LinearAlgebra):

C := CodeTools[Usage]( CharacteristicPolynomial(A, lambda) ):

B2: Time 16 by 16 on Magma

P<x,y> := PolynomialRing( IntegerRing(), 2);

A := Matrix(P, 16, 16, [ [x^8, x^5*y, ...], ... ]);

time C := CharacteristicPolynomial(A);
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