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Abstract

We present a probabilistic algorithm to interpolate a sparse multivariate polynomial over a finite
field, represented with a black box. Our algorithm modifies the algorithm of Ben-Or and Tiwari
from 1988 for interpolating polynomials over rings with characteristic zero to characteristic p
by doing additional probes.

To interpolate a polynomial in n variables with t non-zero terms, Zippel’s (1990) algorithm
interpolates one variable at a time using O(ndt) probes to the black box where d bounds the
degree of the polynomial. Our new algorithm does O(nt) probes. It interpolates each variable
independently using O(t) probes which allows us to parallelize the main loop giving an advantage
over Zippel’s algorithm.

We have implemented both Zippel’s algorithm and the new algorithm in C and we have done
a parallel implementation of our algorithm using Cilk [3]. In the paper we provide benchmarks
comparing the number of probes our algorithm does with both Zippel’s algorithm and Kaltofen
and Lee’s hybrid of the Zippel and Ben-Or/Tiwari algorithms.
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1. Introduction

Let p be a prime and f ∈ Zp[x1, . . . , xn] be a multivariate polynomial with t > 0 non-
zero terms which is represented by a black box B : Znp → Zp. On input of (α1, . . . , αn) ∈
Znp , the black box evaluates and outputs f(x1 = α1, . . . , xn = αn). Given also a degree
bound d ≥ deg f on the degree of f , our goal is to interpolate the polynomial f with
minimum number of evaluations (probes to the black box). Newton interpolation needs
O(nd+1) points to interpolate f which is exponential in d. For sparse f , that is, t� nd+1,
we seek algorithms whose computational complexity is polynomial in t, n, d and log p.

Sparse interpolation plays a key role in several algorithms in computer algebra such as
algorithms for polynomial GCD computation in Z[x1, x2, . . . , xn] and solving systems of
polynomial equations involving parameters over Q. In these applications one solves the
problems modulo a prime p where p is usually chosen to be a machine prime, typically
31 or 63 bits. In 1979 Richard Zippel in [30] presented the first sparse interpolation
algorithm which he developed to solve the GCD problem. It makes O(ndt) probes to the
black box. Zippel’s algorithm is probabilistic. It relies heavily on the assumption that if a
polynomial is zero at a random evaluation point, then it is the zero polynomial with high
probability. In 1990, Zippel in [31] improved his algorithm by using evaluation points of
the form (αi1, . . . , α

i
k) ∈ Zkp so that the linear systems to be solved become transposed

Vandermonde systems which can be solved in O(t2) time and O(t) space instead of O(t3)
time and O(t2) space – see [17]. Zippel’s algorithm is used as the main algorithm for
GCD computation in Z[x1, x2, . . . , xn] in several computer algebra systems, including
Mathematica, Maple (see [24]), and Magma. For multivariate GCD computation over
algebraic function fields over Q, in [15], we used Zippel’s interpolation algorithm in to
interpolate variables and parameters.

In 1994 Rayes, Wang and Weber in [28] looked at parallelizing Zippel’s algorithm.
However, because it interpolates f one variable at a time, sequentially, it’s parallelism is
limited. This was our motivation for looking for a new approach that we present in this
paper. Our approach is based on the sparse interpolation of Ben-Or and Tiwari which
we now describe.

In 1988, Ben-Or and Tiwari [2] presented a deterministic algorithm for interpolating
a multivariate polynomial with integer, rational, real or complex coefficients. Given a
bound T on the number of terms t of the polynomial f , the algorithm evaluates the
black box at powers of the first n primes; it evaluates at the points (2i, 3i, 5i, . . . , pin) for
0 ≤ i < 2T . If Mj(x1, . . . , xn) are the monomials of the t non-zero terms of f , it then
uses Berlekamp/Massey algorithm [23] from coding theory and a root finding algorithm
to find the monomial evaluations Mj(2, 3, 5, . . . , pn) for 1 ≤ j ≤ t and then determines
the degree of each monomial Mj in xk by trial division of Mj(2, 3, 5, . . . , pn) by pk. The
major disadvantage of the Ben-Or/Tiwari algorithm for Z[x1, . . . , xn] is that the eval-
uation points are large (O(T log n) bits long − see [2]). Moreover, a severe expression
swell occurs when the Berlekamp-Massey algorithm is run over Q which makes the algo-
rithm very slow. This was addressed by Kaltofen et al. in [18] by running the algorithm
modulo a power of a prime of sufficiently large size; the modulus must be greater than
maxjMj(2, 3, 5, . . . , pn).

The Ben-Or/Tiwari algorithm will work in finite field of characteristic p without mod-
ification when p > pdn. For small finite fields, Grigoriev, Karpinski, and Singer in [10]
propose a parallel algorithm which uses field extensions of degree 2 logq[nt] + 3. This

2



method is not practical for large q as it requires inversion of a general q by q matrix. In
[14], Huang and Rao describe how to make the Ben-Or/Tiwari approach work over finite
fields GF(q) with at least 4t(t − 2)d2 + 1 elements. Their idea is to replace the primes
2, 3, 5, . . . , pn in Ben-Or/Tiwari by linear (hence irreducible) polynomials in GF(q)[y].
Their algorithm is Las Vegas and does O(dt2) probes. Although the authors discuss how
to parallelize the algorithm, the factor of t2 means it’s not practical for large t.

In 2000, Kaltofen et al. in [19, 20] presented a hybrid of the Zippel and Ben-Or/Tiwari
algorithms, which they call a “racing algorithm”. To reduce the number of probes when
interpolating the next variable in Zippel’s algorithm, their algorithm runs Newton inter-
polation and univariate Ben-Or/Tiwari simultaneously, stopping when the first succeeds.
However, this further sequentializes the algorithm. In Section 5, we compare the num-
ber of probes made by this algorithm to our new algorithm. Experimentally, for random
sparse polynomials, we find that it makes approximately 2nt probes.

In 2009, Giesbrecht, Labahn and Lee in [9] presented two new algorithms for sparse
interpolation for polynomials with floating point coefficients. The first is a modification
of the Ben-Or/Tiwari algorithm that uses O(t) probes. To avoid numerical problems, it
evaluates at powers of complex roots of unity of relatively prime order. In principle, this
algorithm can be made to work over finite fields GF (p) for applications where one can
choose the prime p. One needs p − 1 to have n distinct prime factors p1, p2, . . . , pn all
> d. Given a primitive element α and elements ω1, ω2, . . . , ωn of order p1, p2, . . . , pn in
GF (p), the exponents (e1, e2, . . . , en) of the value of a monomial m = ωe11 ω

e2
2 . . . ωen

n can
be obtained from the discrete logarithm; ei = β mod pi where β = logα(m). Finding
such primes is not difficult. For example, for n = 6, d = 30, we find 31, 33, 35, 37, 41 are
the first five relatively prime integers greater than d. Let q = 54316185 be their product.
We find r = 58 is the first even integer satisfying r > d, gcd(r, q) = 1, and p = rq + 1 is
prime. Now for such primes discrete logarithms in GF (p) can be done efficiently using the
Pohlig-Hellman algorithm [26]. The prime p has 31.6 bits in length. In general, the prime
p > (d + 1)n thus the length of the prime depends linearly on the number of variables.
We have not explored the feasibility of this approach.

In 2010 Kaltofen [21] suggested a similar approach. He first reduces multivariate inter-
polation to univariate interpolation using the Kronecker substitution (x1, x2, . . . , xn) =
(x, xd+1, . . . , x(d+1)n

) and interpolates the univariate polynomial from powers of a prim-
itive element α using a prime p > (d + 1)n. If p is smooth, that is, p − 1 has no large
prime factors, then the discrete logarithms are efficient and the complexity is polynomial
in the logarithm of the degree. This approach has the added advantage that by choosing
p smooth of the form p = 2ks+ 1, one can directly use the FFT in GF(p) when needed
elsewhere in the algorithm.

In 2009 Garg and Schost [5] presented an interpolation algorithm to interpolate over
any commutative ring S with identity which is polynomial in log d. For sparse univariate
g(x) in S[x] they evaluate g(x) modulo xpi−1 for N primes p1, p2, . . . , pN , also exploiting
the roots of unity. The result that they obtain requires N > T 6 log d probes, thus too
many probes to be practical for large t. For multivariate f(x1, x2, . . . , xn) they also use
the Kronecker substitution. A similar idea is used in [11] by Giesbrecht and Roche for
interpolating shifted-lacunary polynomials.

Our approach for sparse interpolation over Zp is to use evaluation points of the form
(αi1, . . . , α

i
n) ∈ Znp and modify the Ben-Or/Tiwari algorithm to do extra probes to deter-

mine the degrees of the variables in each monomial in f . We do O(nt) probes in order
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to recover the monomials from their images. The main advantage of our approach is the
increased parallelism.

Our paper is organized as follows. In Section 2 we present an example showing the main
flow and the key features of our algorithm. Our algorithm is probabilistic. We identify
possible problems that can occur and how the new algorithm deals with them in Section 3.
In Section 4 we present our new algorithm and analyze its sequential time complexity
and failure probability. We then present two optimizations and an improvement for root
finding over finite fields. Finally, in Section 5 we compare the C implementations of our
algorithm and Zippel’s algorithm with the racing algorithm of Kaltofen and Lee [20]
on various sets of polynomials. A preliminary version of this work appeared in [16]. In
comparison with our work in [16], we have redesigned the algorithm in this paper to
improve it’s parallel performance.

2. The Idea and an Example

Let f =
∑t
i=1 CiMi ∈ Zp[x1, . . . , xn] be the polynomial represented with the black

box B : Znp → Zp with Ci ∈ Zp\{0}. Here t is the number of non-zero terms in f .
Mi = xei1

1 × xei2
2 × · · · × xein

n is the i’th monomial in f where Mi 6= Mj for i 6= j. Let
T ≥ t be a bound on the number of non-zero terms and let d ≥ deg f be a bound on the
degree of f so that d ≥

∑n
j=1 eij for all 1 ≤ i ≤ t. We demonstrate our algorithm on the

following example. Here we use x, y and z for variables instead of x1, x2 and x3.

Example 1. Let f = 91yz2 + 94x2yz + 61x2y2z + 42z5 + 1 and p = 101. Here t = 5
terms and n = 3 variables. We suppose we are given a black box that computes f and we
want to interpolate f . We will use T = 5 and d = 5 for the term and degree bounds. The
first step is to pick n non-zero elements α1, α2, . . . , αn from Zp at random. We evaluate
the black box at the points

(αi1, α
i
2, . . . , α

i
n) for 0 ≤ i < 2T.

Thus we make 2T probes to the black box. Let V = (v0, v1, . . . , v2T−1) be the output.
For our example, for random evaluation points α1 = 45, α2 = 6 and α3 = 69 we obtain
V = (87, 26, 15, 94, 63, 15, 49, 74, 43, 71).

Now we use the Berlekamp/Massey algorithm [23] (See [19] for a more accessible
reference). The input to this algorithm is a sequence of elements s0, s1, . . . , s2t−1, . . .
from any field F . The algorithm computes a linear generator for the sequence, i.e. the
univariate polynomial Λ(z) = zt − λt−1z

t−1 − · · · − λ0 such that

st+i = λt−1st+i−1 + λt−2st+i−2 + · · ·+ λ0si for all i ≥ 0.

In our example where F = Zp, the input is V = (v0, . . . , v2T−1) and the output is

Λ1(z) = z5 + 80 z4 + 84 z3 + 16 z2 + 74 z + 48.

In the next step, we choose n non-zero (b1, . . . , bn) ∈ Znp at random such that bk 6= αk
for all 1 ≤ k ≤ n. In this example we choose b1 = 44, b2 = 9, b3 = 18. Now we choose
the evaluation points (bi1, α

i
2, . . . , α

i
n) for 0 ≤ i < 2T − 1. Note that this time we are

evaluating the first variable at powers of b1 instead of α1. We evaluate the black box at
these points and apply the Berlekamp/Massey algorithm on the sequence of the outputs
to compute the second linear generator

Λ2 = z5 + 48 z4 + 92 z3 + 9 z2 + 91 z + 62.
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We repeat the above process for a new set of evaluation points (αi1, b
i
2, α

i
3, . . . , α

i
n) ∈

Znp , i.e., we replace α2 by b2 obtaining

Λ3 = z5 + 42 z4 + 73 z3 + 73 z2 + 73 z + 41

the third linear generator. Similarly, for evaluation points (αi1, α
i
2, b

i
3) we compute

Λ4 = z5 + 73 z4 + 8 z3 + 94 z2 + 68 z + 59.

Note that we can compute Λ1, . . . ,Λn+1 in parallel. We know (see [2]) that if the mono-
mial evaluations are distinct over Zp for each set of evaluation points, then degz(Λi) = t
for all 1 ≤ i ≤ n and each Λi has t non-zero roots in Zp. Ben-Or and Tiwari prove that
for each 1 ≤ i ≤ t, there exists 1 ≤ j ≤ t such that

mi = Mi(α1, . . . , αn) ≡ r0j mod p.

where r01, . . . , r0t are the roots of Λ1. In the next step we compute r(i−1)1, . . . , r(i−1)t

the roots of the Λi. We have

{r01 = 1, r02 = 50, r03 = 84, r04 = 91, r05 = 98} (roots of Λ1)
{r11 = 1, r12 = 10, r13 = 69, r14 = 84, r15 = 91} (roots of Λ2)
{r21 = 1, r22 = 25, r23 = 69, r24 = 75, r25 = 91} (roots of Λ3)
{r31 = 1, r32 = 8, r33 = 25, r34 = 35, r35 = 60} (roots of Λ4)

The main step now is to determine the degrees of each monomial Mi of f in each variable.
Consider the first variable x. We know that m′i = Mi(b1, α2, . . . , αn) is a root of Λ2 for
1 ≤ i ≤ n. On the other hand we have

m′i
mi

=
Mi(b1, α2, . . . , αn)
Mi(α1, α2, . . . , αn)

= (
b1
α1

)
ei1

. (1)

Let r0j = Mi(α1, α2, . . . , αn) and r1k = Mi(b1, α2, . . . , αn). From Equation 1 we have

r1k = r0j × (
b1
α1

)
ei1

,

i.e. for every root r0j of Λ1, r0j × ( b1α1
)
ei1 is a root of Λ2 for some ei1 which is the degree

of some monomial in f with respect to x. This gives us a way to compute the degree of
each monomial Mi in the variable x.

In this example we have b1
α1

= 93. We start with the first root of Λ1 and check if

r01 × ( b1α1
)
i

is a root of Λ2 for 0 ≤ i ≤ d. To do this one could simply evaluate the
polynomial Λ2(z) at z = r01( b1α1

)i and see if we get 0. This costs O(t) operations. Instead
we compute and sort the roots of Λ2 so we can do this using binary search in O(log t).
For r01 = 1 we have r01× ( b1α1

)
0

= 1 is a root of Λ2, and, for 0 < i ≤ d, r01× ( b2α1
)
i

is not
a root of Λ2, hence we conclude that the degree of the first monomial of f in x is 0. We
continue this to find the degrees of all the monomials in f in the variable x. We obtain

e11 = 0, e21 = 2, e31 = 0, e41 = 0, e51 = 2.

We proceed to the next variable y. Again using the same approach as above, we find that
the degrees of the monomials in the second variable y to be

e12 = 0, e22 = 1, e32 = 1, e42 = 0, e52 = 2.
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Similarly we compute the degrees of other monomials in z:

e13 = 0, e23 = 1, e33 = 2, e43 = 5, e53 = 1.

At this point we have computed all the monomials. Recall that Mi = xei1
1 ×x

ei2
2 ×· · ·×xein

n

hence we have

M1 = 1,M2 = x2yz,M3 = yz2,M4 = z5,M5 = x2y2z.

The reader may observe that once Λ1(z) is computed, determining the degrees of
the monomials Mi in each variable represent n independent tasks which can be done in
parallel. This is a key advantage of our algorithm.

Now we need to compute the coefficients. We do this by solving one linear sys-
tem. We computed the roots of Λ1 and we have computed the monomials such that
Mi(α1, . . . , αn) = r0i. Recall that vi is the output of the black box on input (αi1, . . . , α

i
n)

hence we have
vi = C1r

i
01 + C2r

i
02 + · · ·+ Ctr

i
0t

for 0 ≤ i ≤ 2t − 1. This linear system is a Vandermonde system which can be solved in
O(t2) time and O(t) space (see [31]). After solving we obtain

C1 = 1, C2 = 94, C3 = 91, C4 = 42 and C5 = 61

and hence g = 1 + 94x2yz + 91yz2 + 42z5 + 61x2y2z is our interpolated polynomial. We
will show later that for p sufficiently large, g = f with high probability. However, we can
also check whether g = f with high probability as follows; we choose evaluation points
(α1, . . . , αn) at random and test if B(α1, . . . , αn) = g(α1, . . . , αn). If the results match,
the algorithm returns g as the interpolated polynomial, otherwise it fails.

3. Problems

The evaluation points α1, . . . , αn must satisfy certain conditions for our new algorithm
to output f . Here we identify all problems.

3.1. Distinct Monomials

The first condition is that for 1 ≤ i 6= j ≤ t

Mi(α1, . . . , αn) 6= Mj(α1, . . . , αn) in Zp
so that deg(Λ1(z)) = t. Also, at the k’th step of the algorithm, when computing the
degrees of the monomials in xk, we must have for all 1 ≤ i 6= j ≤ t

mi,k 6= mj,k in Zp where mi,k = Mi(α1, . . . , αk−1, bk, αk+1, . . . , αn)

so that deg(Λk+1(z)) = t. We now give an upper bound on the probability that no mono-
mial evaluations collide when we use random non-zero elements of Zp for evaluations.

Lemma 1. Let α1, . . . , αn be random non-zero evaluation points in Zp and let mi =
Mi(α1, . . . , αn). Then the probability that two different monomials evaluate to the same
value (we get a collision) is

Prob(mi = mj : 1 ≤ i < j ≤ t) ≤
(
t

2

)
d

(p− 1)
<

dt2

2(p− 1)
.
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Proof. Consider the polynomial

A =
∏

1≤i<j≤t

(Mi(x1, . . . , xn)−Mj(x1, . . . , xn)) .

Observe that A(α1, . . . , αn) = 0 iff two monomial evaluations collide. Recall that the
Schwartz-Zippel lemma ([29, 30]) says that if r1, . . . , rn are chosen at random from any
subset S of a field K and F ∈ K[x1, . . . , xn] is non-zero then

Prob(F (r1, . . . , rn) = 0) ≤ degF
|S|

.

Our result follows from noting that d ≥ deg f and thus degA ≤
(
t
2

)
d and |S| = p − 1

since we choose αi to be non-zero from Zp. 2

Remark 1. If any of the αi = 1 then the probability of monomial evaluations colliding
is clearly high. To reduce the probability of monomial evaluations colliding, in an earlier
version of our algorithm, we picked αi to have order > d. We did this by picking random
generators of Z∗p. There are φ(p − 1) generators where φ is Euler’s totient function.
However, if one does this, the restriction on the choice of α leads to a weaker result,
namely,

(
t
2

)
d

φ(p−1) .

3.2. Root Clashing

Let r01, . . . , r0t be the roots of Λ1(z) which is the output of the Berlekamp/Massey
algorithm using the first set of evaluation points (αi1, . . . , α

i
n) for 0 ≤ i < 2T . To compute

the degrees of all the monomials in the variable xk, as mentioned in the Example 1, the
first step is to compute Λk+1. Then if degxk

(Mi) = eik we have rki = r0i × ( bk

αk
)eik is a

root of Λk+1. If r0i × ( bk

αk
)e
′
, 0 ≤ e′ 6= eik ≤ d is also a root of Λk+1 then we have a root

clash and we cannot uniquely identify the degree of the monomial Mi in xk.

Example 2. Consider the polynomial given in Example 1. Suppose instead of choosing
b1 = 44, we choose b1 = 72. Since α1, α2 and α3 are the same as before, Λ1 does not change
and hence the roots of Λ1 are r01 = 1, r02 = 7, r03 = 41, r04 = 61 and r05 = 64. In the next
step we substitute b1 = 72 for α1 and compute Λ2 = z5 + 61z4 + 39z3 + 67z2 + 37z+ 98.
We proceed to compute the degrees of the monomials in x but we find that

r4 × (
α4

α1
)2 = 15 and r4 × (

α4

α1
)4 = 7

are both roots of Λ2, hence we can not determine the degree of the last monomial in x.

Lemma 2. If deg Λ1(z) = deg Λk+1(z) = t then the probability that there is a root clash,
that is, we can not uniquely compute the degrees of all the monomials Mi(x1, . . . , xn) in
xk is at most d(d+1)t2

4(p−2) .

Proof. Let Si = {r0j × ( bk

αk
)i | 1 ≤ j ≤ t} for 0 ≤ i ≤ d. We assume that r0i 6= r0j for all

1 ≤ i 6= j ≤ t. We will not be able to uniquely identify the degree of the j’th monomial in
xk if there exists d̄ such that r0j × ( bk

αk
)d̄ = rki is a root of Λk+1(z) and 0 ≤ d 6= ejk ≤ d

where ejk is degxk
(Mj). But we have rki = r0i× ( bk

αk
)eik thus r0j × ( bk

αk
)d̄ = r0i× ( bk

αk
)eik .

Without loss of generality, assume d̃ = d̄− eik > 0. We have r0i = r0j × ( bk

αk
)d̃ and hence
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r0i ∈ Sd̃ ⇒ S0 ∩ Sd̃ 6= ∅. Hence we will not be able to compute the degrees in xk if
S0 ∩ Si 6= ∅ for some 1 ≤ i ≤ d. Let

g(x) =
∏

1≤l 6=j≤t

(r0jx
i − r0lα

i
k).

We have r0l = r0j×( bk

αk
)i ∈ S0∩Si iff g(bk) = 0. Applying the Schwartz-Zippel lemma, the

probability that g(bk) = 0 is at most deg g
|S| = (t

2)i
(p−2) <

it2

2(p−2) since we chose bk 6= αk 6= 0
at random from Zp. If we sum this quantity for all 1 ≤ i ≤ d we obtain that the overall
probability is at most d(d+1)t2

4(p−2) . 2

4. The Algorithm

Algorithm: Parallel Interpolation
Input: A black box B : Znp → Zp that on input α1, . . . , αn ∈ Znp outputs f(α1, . . . , αn)

where f ∈ Zp[x1, . . . , xn]\{0}.
Input: A degree bound d ≥ deg(f).
Input: A bound T ≥ t on the number of terms in f . (For reasonable probability of

success we require p > dT 2.)
Output: The polynomial f or FAIL.

1: Choose α1, . . . , αn from Zp\{0} at random.
2: for k from 0 to n in parallel do
3: Case k = 0 : Compute Λ1(z) using (α1, . . . , αn):

Evaluate the black box B at (αi1, . . . , α
i
n) ∈ Znp for 0 ≤ i ≤ 2T − 1 and apply the

Berlekamp Massey algorithm to the sequence of 2T outputs.
4: Case k > 0: Choose non-zero bk ∈ Zp\{0} at random until bk 6= αk and

compute Λk+1(z) using α1, . . . , ak−1, bk, αk+1, . . . , αn.
5: end for
6: Set t = deg Λ1(z). If the degree of the Λ’s are not all equal to t then return FAIL.
7: for k from 0 to n in parallel do
8: Compute {rk1, . . . , rkt} the set of distinct roots of Λk+1(z).
9: end for

10: for k from 1 to n in parallel do
11: Determine degxk

(Mi) for 1 ≤ i ≤ t as described in Section 2. If we failed to to
compute the degrees uniquely (see Section 3.2) then return FAIL.

12: end for
13: Let S = {C1r

i
01 + C2r

i
02 + · · ·+ Ctr

i
0t = vi | 0 ≤ i ≤ 2t− 1}. Solve the linear system

S for (C1, . . . , Ct) ∈ Ztp and set g =
∑t
i=1 CiMi where Mi =

∏n
j=1 x

eij

j .
14: Choose α1, . . . , αn from Zp\{0} at random.

If B(α1, . . . , αn) 6= g(α1, . . . , αn) then return FAIL.
15: return g.

Remark 2. The algorithm presented corresponds to our parallel implementation in Cilk.
Further parallelism is available. In particular, one may compute the 2T probes to the
black box B in step 3 in parallel. We remark that Kaltofen in [22] pointed out to us that
assuming T ≥ t, then T + t probes are sufficient to determine any Λ(z) and that the
Berlekamp-Massey algorithm can be modified to stop after processing T + t inputs.
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Remark 3. The algorithm is probabilistic. If the degrees of the Λ’s are all equal but
less than t then monomial evaluations have collided and the algorithm cannot compute
f . The check in step 14 detects incorrect g with probability at least 1 − d/(p − 1) (the
Schwartz-Zippel lemma). Thus by doing one additional probe to the black box, we verify
the output g with high probability. Kaltofen and Lee in [20] also use additional probes
to verify the output this way.

Theorem 1. If (p− 2) > 2k−23(n+ 1)d(d+ 3)t2 then Algorithm Parallel Interpolation
outputs f(x1, . . . , xn) with probability at least 1− 1/2k. Moreover, the probability that

the algorithm outputs an incorrect result is less than d
p−1 ×

(
dt2

2(p−1)

)n
.

Proof. Algorithm Parallel Interpolate will need (n+ 1) Λ’s all of degree t. The choice of
αk, and bk must be non-zero and distinct. Thus applying Lemmas 1 and 2, the proba-
bility that all n + 1 Λ’s have degree t and we can compute all the monomial degrees
with no collisions is at least 1 − (n+1)d t2

2(p−2) −
nd(d+1)t2

4(p−2) > 1 − 3(n+1)d(d+3)t2

4(p−2) . Solving

1 − 3(n+1)d(d+3)t2

4(p−2) > 1 − 2−k for p − 2 gives the first result. For the second result, the
algorithm outputs an incorrect result only if all Λ1, . . . ,Λn+1 have degrees less than t

and the check in step 14 fails. This happens with probability less than ( dt2

2(p−1) )n (see
Lemma 1) and less than d

p−1 (see Remark 3), respectively. 2

4.1. Complexity Analysis

We now give the sequential complexity of the algorithm in terms of the number of
arithmetic operations in Zp. We need to consider the cost of probing the black box. Let
E(n, t, d) be the cost of one probe to the black box. We make 2(n+1)T probes in the first
loop and one in step 14. Hence the cost of probes to the black box is O(nTE(n, t, d)).
The n+1 calls to the Berlekamp/Massey algorithm in the first loop (as presented in [19])
cost O(T 2) each. The Vandermonde system of equations at Step 13 can be solved in O(t2)
using the method given in [31]. Note that as mentioned in [31], when inverting a t × t
Vandemonde matrix defined by k1, . . . , kt, one of the most expensive parts is to compute
the master polynomial M(z) =

∏t
i=1(z − ki). However, in our algorithm we can use the

fact that M(z) =
∏t
i=1(z − r0i) = Λ1(z).

To compute the roots of Λk+1(z) at Step 8, we use Rabin’s Las Vegas algorithm from
[27]. The idea of Rabin’s algorithm is to split Λ(z) using the following gcd in Zp[z]

g(x) = gcd((z + β)(p−1)/2 − 1,Λ(z))

for β chosen at random from Zp. For Λ(z) with degree t, if classical algorithms for
polynomial multiplication, division and gcd are used for Zp[z], the cost is dominated
by the first split which has expected cost O(t2 log p) (see Ch. 8 of Geddes et. al. [8])
arithmetic operations in Zp.
To compute the degree of the monomials in the variable xk in Step 11 of the algorithm,
we sort the roots of Λ1(z) and Λk+1(z). Then checking if r0i× ( bk

αk
)d̄ is a root of Λk+1(z)

can be done in O(log t) using binary search. Hence the the degrees can be computed in
O(t log t+ dt log t).
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Theorem 2. The expected number of arithmetic operations in Zp that Algorithm Par-
allel Interpolation does is

O(n(t2 log p+ dt log t+ T 2 + TE(n, t, d))

using classical (quadratic) algorithms for polynomial arithmetic. For T ∈ O(t) this sim-
plifies to O(n(t2 log p+ dt log t+ tE(n, t, d)).

Apart from the cost of the probes, the most expensive component of the algorithm is
the computation of the roots of the Λ(z)’s, each of which costs O(t2 log p) using classical
arithmetic. It is well known that this can be improved to O(log t(M(t) log p+M(t) log t))
using fast multiplication (see Algorithm 14.15 of von zur Gathen and Gerhard [6]) where
M(t) is cost of multiplication of polynomials of degree t in Zp[z]. In our implementation
we have implemented this asymptotically fast root finding algorithm because we found
that the root finding was indeed an expensive component of the cost. We present an
improvement in section 4.3.

Similarly, the generator polynomial Λk(z) can also be computed using the Fast Eu-
clidean Algorithm in O(M(t) log t). See [6] Ch. 11 for a description of the Fast Euclidean
Algorithm and [6] Ch. 7 for a description of how to compute Λk(z). Furthermore, once the
support (the monomials) for a polynomial are known, the coefficients can be determined
in O(M(t) log t) time using fast multiplication (see van der Hoven and Lecerf [13]). This
leads to a complexity, softly linear in T , of O(n(M(t) log p log t+ dt log t+M(T ) log T +
TE(n, t, d))).

If we choose p to be a Fourier prime then multiplication in Zp[t] M(t) ∈ O(t log t) using
the FFT. Hence the expected sequential complexity of our algorithm is O(n[t log2 t log p+
dt log t+ T log2 T + TE(n, t, d)]) arithmetic operations in Zp.

4.1.1. Zippel’s Algorithm
For comparison, we will briefly discuss the number of probes Zippel’s 1990 interpo-

lation algorithm does. Let ti be the number of terms in the target polynomial f after
evaluating variables xi+1, . . . , xn. We have t0 = 1 and tn = t. The number of probes to
the black box using Zippel’s algorithm is

d+ 1 + (t1d+ t2d+ . . . tn−1d) = 1 + d

n−1∑
i=0

ti.

Since ti ≤ tn for all 1 ≤ i ≤ n− 1, the number of probes is in O(ndt).

Example 3. Let f = x20 + y20 + z20 + 1 with p = 1009, d = 20 and t = 4. Our new
algorithm will do 33 probes to the black box while Zippel’s does about 121 probes.

We expect Zippel’s algorithm to perform better than our algorithm for dense target
polynomials.

Lemma 3. Let f be a dense polynomial of degree d in each variable so that the number
of terms in f is t = (d + 1)n. Then the number of probes to the black box in Zippel’s
algorithm is exactly t. In comparison, our algorithm does 2(n+ 1)t+ 1 probes.

Proof. Here we have ti = (d+ 1)i thus the number of probes is 1 + d×
∏n−1
i=0 (d+ 1)i =

1 + d× (d+1)n−1
d+1−1 = (d+ 1)n = t. 2

10



4.2. Optimizations

4.2.1. Computing the degrees of the monomials in the last variable.
The first optimization is to compute the degree of each monomial Mi = xei1

1 xei2
2 . . . xein

n

in the last variable xn without doing any more probes to the black box. Suppose we have
computed the degree of Mi in xk for 1 ≤ k < n. We know that Mi(α1, . . . , αn) is equal
to r0i, a root of Λ1. Hence r0i = αei1

1 · αei2
2 · · · · · αein

n . Since we know the degrees eij for
1 ≤ j < n we can determine ein by division of r0i · (αei1

1 . . . α
ein−1
n−1 )−1 by αn. This reduces

the total number of probes from 2(2n + 1)t to 2(2n − 1)t and increases the probability
of success from > 1− 3(n+1)d(d+3)t2

4(p−2) to > 1− 3nd(d+3)t2

4(p−2) .

4.2.2. Bipartite perfect matching.
We now present an improvement that will allow our algorithm to determine the degree

of the monomialMi in xk even when r0i× bk

αk

e′

is also a root of Λk+1(z) in most cases. Note
that we assume the monomial evaluations are distinct, i.e. ∀ 1 ≤ i 6= j ≤ t, mi,k 6= mj,k.

Suppose we have computed Λk+1 and we want to compute the degrees of the monomials
in xk and let R1 = {r01, . . . , r0t} be the set of roots of Λ1 and Rk = {rk1, . . . , rkt} be the
set of roots of Λk+1. Let

Dj = {(i, r) | 0 ≤ i ≤ d, r = r0j × (
bk
α1

)i ∈ Rk}.

Dj contains the set of all possible degrees of the j’th monomial Mj in the k’th variable
xk. We know that (ejk, rkj) ∈ Dj and hence |Dj | ≥ 1. If |Dj | = 1 for all 1 ≤ j ≤ t, then
the degrees are unique and this step of the algorithm is complete. Let Gk be a balanced
bipartite graph defined as follows. Gk has two independent sets of nodes U and V each
of size t. Nodes in U and V represent elements in R1 and Rk respectively, i.e. ui ∈ U
and vj ∈ V are labeled with r0i and rkj . We connect ui ∈ U to vj ∈ V with an edge of
weight (degree) dij if and only if (dij , rkj) ∈ Di. We illustrate with an example.

Example 4. Let f be the polynomial given in Example 1 and suppose for some evalua-
tion points α1, . . . , α3 and b1 we obtain the graph G1 as shown in Figure 1. Notice that
this graph has a unique perfect matching, i.e., the set of edges {(r0i, r1i) | 1 ≤ i ≤ 5}.
Thus the degrees of the 5 monomials in x must be are 0, 0, 0, 2, and 2.
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Fig. 1. The bipartite graph G1

Lemma 4. We can uniquely identify the degrees of all the monomials in xk if the
bipartite graph Gk has a unique perfect matching.
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Proof. Let mi = Mi(α1, . . . , αn) and without loss of generality, assume r0i = mi and
rki = mi,k for all 1 ≤ i ≤ t. We have (eik, rki) ∈ Di and hence ui ∈ U is connected to
vj ∈ V in Gk with an edge of weight eik. This means that the set S = {(ui, vi, eik) | ui ∈
U, vi ∈ V } is a perfect matching in Gk. If this perfect matching is unique then by finding
it, we have computed eik’s, the degrees of the monomials in xk. 2

To find a prefect matching in the graph Gk one can use the Hopcroft–Karp algo-
rithm [12]. This algorithm finds a matching in time O(e

√
v) where e and v are the num-

ber of edges and vertices respectively. However, for random sparse bipartite graphs, Bast
et al. [1] (See also [25]) prove that the Hopcroft-Karp algorithm runs in time O(e log v)
with high probability.

Lemma 5. If p−1 > dT 2 then the expected number of edges in the graph Gk is at most
(d+ 1)/4 + t.

Proof. In lemma 2 we showed that the probability that there are no root clashes is greater
than 1 − d(d+1)t2

4(p−2) . Therefore, the expected number of root clashes is less than d(d+1)t2

4(p−2)

hence the expected number of edges of Gk is less than t + d(d+1)t2

4(p−2) . If we choose p such
that p − 1 > dT 2 then p − 1 > dt2 and the expected number of edges in Gk is at less
than (d+ 1)/4 + t. 2

Thus if 4(d+ 1) ≤ t then the expected number of edges is less than at most 2t hence Gk
is sparse and the expected cost of finding a perfect matching would be O(t log t), which
is softly linear in t.

4.2.3. Computing the degrees of the monomials in xk.

LetD = deg(f). If the prime p is large enough, i.e. p > nD(D+1)t2

4ε then with probability
1 − ε the degree of every monomial in xk can correctly be computed using only Gk
and without needing any extra probes to the black box. In fact in this case, with high
probability, every r0i will be matched with exactly only one rkj and hence every node
in Gk would have degree one. But if d � D, i.e. the degree bound d is not tight, the
probability that we could identify the degrees uniquely drops significantly even though p
is large enough. This is because the probability that root clashing (see Section 3) happens,
linearly depends on d. In this case, with probability 1− ε, the degree of Mi in xk would
be min {dij | (dij , ri) ∈ Gk}, i.e. the edge connected to r0i in Gk with minimum weight
(degree) is our desired edge in the graph which will show up in the perfect matching. We
apply Theorem 3.

Lemma 6. Let Gk be the bipartite graph for the k’th variable. Let ui1 → vj1 → ui2 →
vj2 → · · · → vjs → ui1 be a cycle in Gk where ul ∈ U is labeled with r0l (a root of Λ1)
and vm ∈ V is labeled with rkm (a root of Λk+1). Let dlm be the weight (degree) of the
edge between ul and vm. We have

∑s
m=1 dimjm −

∑s
m=1 dim+1jm = 0.

Proof. It is easy to show that r0i1 = ( bk

αk
)d̄r0is where d̄ = di1j1−di2j1 +di2j2−di3j2 +· · ·+

dis−1js−1−disjs−1 . Also both ui1 and uis are connected to vjs in Gk hence we have r0i1 =
( bk

αk
)di1js rkis and r0is = ( bk

αk
)disjs rkis . These three equations yield to r0i1 = ( bk

αk
)d̃r0i1

where d̃ = di1j1 − di2j1 + di2j2 − di3j2 + · · ·+ dis−1js−1 − disjs−1 + disjs − di1js . But if bk

αk

12



is of sufficiently high order, d̃ must be zero thus
∑s
m=1 dimjm −

∑s
m=1 dim+1jm = 0. 2

Example 5. In G′1 shown in Figure 2, there is a cycle r3 → r̃4 → r7 → r̃7 → r3. The
weights (degrees) of the edges in this cycle are as 7, 3, 0 and 4. We have 7−3 + 0−4 = 0.
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Fig. 2. The bipartite graph G′
1

Theorem 3. Let Hk be a graph obtained by removing all edges connected to r0i in Gk
except the one with minimum weight (degree) for all 1 ≤ i ≤ t. If the degree of every
node in Hk is one, then eik is equal to the weight of the edge connected to r0i in Hk.

This theorem can be proved using Lemma 6 and the fact that there can not be any cycle
in the graph Hk. We will give an example.

Example 6. Let f = 25y2z+90yz2+93x2y2z+60y4z+42z5. Here t = 5, n = 3,deg(f) =
5 and p = 101. We choose the following evaluation points α1 = 85, α2 = 96, α3 = 58 and
b1 = 99. Suppose we want to construct G2 in order to compute the degrees of the
monomials in y. Suppose our degree bound is d = 40 which is not tight. The graph G2

and H2 are shown in Figures 3(a) and 3(b) respectively. The graph H2 has the correct
degrees of the monomials in y.
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Fig. 3. The bipartite graphs G2 and H2

Theorem 3 suggests the following optimization. In the construction of the bipartite graph
Gk, connect r0i to rkj with degree dij only if there is no d̄ < dij such that r0i × ( bk

αk
)d̄

is a root of Λk+1, i.e. the degree of the node r0i in U is always one for all 1 ≤ i ≤ n. If
there is a perfect matching in this graph, this perfect matching is unique because this
implies that the degree of each node rkj in V is also one (e.g. see Figure 3(b)). If not, go
back to and complete the graph Gk. This optimization makes our algorithm sensitive to
the actual degree of f(x1, . . . , xn) in each variable.
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4.3. Fast root finding over finite fields.

For our first attempt to implement our algorithm (see [16]) the most expensive part
was computing the roots of the Λ(z)s. In this section we consider this problem in detail.
Let p be an odd prime, b(x) ∈ Zp[x], and d = deg(b). We suppose d > 1 and b(x) is
known to have d distinct roots and we have removed any zero root if present so that
b(0) 6= 0. To split b(x) we compute the following gcd for randomly chosen β ∈ Zp:

h(x) = gcd((x− β)(p−1)/2 + 1, b(x)).

Since the polynomial xp−1−1 = (x−1)(x−2) . . . (x−(p−1)), the polynomial x(p−1)/2−1
is a product of half of the linear factors of xp−1−1 and hence (x−β)(p−1)/2−1 randomly
shifts the linear factors so that h(x) will have approximately half of the factors of b(x).
Of course it might have none or all of them in which case one must try another β. One
then recursively splits h(x) and b(x)/h(x), in parallel.

This idea was presented by Rabin in [27]. It was one of the first examples of a Las
Vegas algorithm. It is a beautiful algorithm. In [4] it was generalized by Cantor and
Zassenhaus to a complete factorization algorithm for Zp[x]. Joachim von zur Gathen,
in his plenary talk at ISSAC 2006 (see [7]), showed us that the main idea was already
known to Gauss. We compute the gcd in two steps. First we compute

g(x) = (x− β)(p−1)/2−1 mod b(x) then h(x) = gcd(g(x)− 1, b(x)).

To compute g(x) we use the binary powering algorithm. There are two ways to do this
which we explain with an example. To compute a13 we think of the exponent 13 = 1101 in
binary. In the first method one computes the powers a2, a4, a8 by repeated squaring in a
loop and assembles a13 using a13 = (a1)(a4)(a8). All multiplications are reduced modulo
b(x). In the second method, we read the bits 1101 of 13 from left to right starting with
the second bit and compute a11 = (a2)a then a110 = (a11)2 then a1101 = (a110)2a.
If deg(a) = d − 1 then both algorithms would cost the same. However, in our case
a(x) = x− β has degree 1 and the second method is better. We detail it here

Algorithm: Binary Powering

Input: m ∈ N, a(x), b(x) ∈ Zp[x], with deg(a) < deg(b) = d.
Output: a(x)m mod b(x).

1: Let B1B2 . . . Bl be the bits of m with B1 = 1, the leading bit.
2: Set r = a.
3: for k = 2 to l do
4: Set r = r2 mod b.
5: If Bk = 1 then set r = a r mod b.
6: end for
7: return r.

If m is large, the multiplication and division in r = r2 mod b will both cost O(d2) using
classical arithmetic. Since deg(a) = 1 the multiplication and division in r = ar mod b
cost O(d). For m = (p − 1)/2 we have l = blog2(p)c + 1 thus the cost of the algorithm
is O(d2 log p) arithmetic operations in Zp. If we choose p to be a Fourier prime so that
we can use the Fast Fourier Transform directly in Zp to multiply polynomials in Zp[x],
the multiplication and division in r = r2 mod b can be done in O(d log d) arithmetic
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operations in Zp resulting in an O(d log d log p) algorithm. We explain here how fast
division is done, its cost, in preparation for improving it.

Definition 1. Let b(x) = b0 + b1x+ · · ·+ bdx
d.

Define the reciprocal of b by b̂ = bd + bd−1x+ · · ·+ b0x
d.

Define the truncation of b by bbck = b mod x(k+1) = b0 + b1x+ · · ·+ bkx
k.

Let a(x) = a0 + a1x + · · · + akx
k with k ≥ d. Let q(x) and r(x) be the quotient

and remainder of a ÷ b in Zp[x]. Thus a = bq + r with r = 0 or degx(r) < d and
degx(q) = k−d. To compute q̂ we could expand â/b̂ as a power series to order xk−d then
take the reciprocal of the result. To do this using fast multiplication, we expand b̂−1 to
degree xk−d using a Newton iteration, multiply bâck−d by bb̂−1ck−d then truncate the
result to degree k− d to obtain q̂. Finally we compute a− bq to obtain the remainder r.

Let M(d) be the cost of a multiplication in Zp[x] of degree d. For deg b = d computing
bb̂−1cd using a Newton iteration costs 3M(d) + o(d) (see Theorem 9.4 of [6]) arithmetic
operations in Zp. Computing q̂ costs one multiplication and then qb another multipli-
cation for a total of 5M(d) for obtaining the remainder. Thus fast division is expensive
relative to fast multiplication. We proceed to optimize the computation. Instead of count-
ing multiplications we will count transforms (FFTs) of order n and minimize the number
of FFTs of order n.

To speed up the computation we will do the entire computation in the reciprocal
representation. A complication occurs when computing the remainder using r = a − bq
when polynomials are represented in arrays. Let k = deg a, d = deg b and suppose

r = r0 + r1x+ · · ·+ rd−1−δx
l

where l = d− 1− δ for some δ ≥ 0. In the reciprocal representation, cancellation occurs
at the low order coefficients and we obtain

â− b̂ q̂ = [ 0, 0, . . . , 0︸ ︷︷ ︸
k−d+1 zeroes

, 0, 0, . . . , 0︸ ︷︷ ︸
δ zeroes

, rl, . . . , r1, r0]

To extract r̂ = rlx
l + · · ·+ r1x+ r0 we first divide â− b̂ q̂ by xk−d+1 (shift the array left

by k − d+ 1). Then we need to determine l the degree of r̂ and divide by xδ. Note, the
reason for doing this in two steps will be made clear later. We have

1: Compute bb̂−1cd.
2: Set r̂ = â and dr = 1
3: for k = 2 to l do

4: Set r̂ = r̂2 and dr = 2dr.
5: If Bk = 1 then set r̂ = â r̂ and dr = dr + 1.
6: if dr ≥ d then ( divide by b̂ )

7: Set dq = dr − d
8: Set t̂ = br̂cdq
9: Set q̂ = bt̂ b̂−1cdq
10: Set r̂ = r̂ − q̂ b̂
11: Set r̂ = r̂/xdq+1

12: Determine δ and dr and set r̂ = r̂/xδ

13: end if
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14: end for
15: return r.

As noted by von zur Gathen and Gerhard in [6], the first optimization is to move the
computation of b̂−1 out of the loop. This saves 3M(d) in the loop for a gain of a factor of 2
asymptotically. There are three multiplications, r̂2, t̂ b̂−1, and q̂ b̂, which take, respectively,
2, 3 and 3 transforms. The reader can see that the transforms of b̂−1 and b̂ can also be
pre-computed once before the loop saving 2 out of the 8 transforms in the loop. Can we
do better? Our idea is to stay in the the transform co-ordinates as much as possible. In
transform co-ordinates, multiplication, addition and subtraction of polynomials are linear
operations, thus r̂ − q̂ b̂ can be computed in O(n). Also, exact division by a monomial
xdq+1 can be accomplished in transform co-ordinates with O(n) multiplications since,
for any non-zero ω ∈ Zp, f(x)

xdq+1 (ωi) = f(ωi)ω−i(dq+1). But, truncation cannot be done
efficiently – we have to go out of transform co-ordinates, truncate, and come back in which
costs 2 FFTs. Our improvement comes from determining l the degree of the remainder
r hence δ = d − 1 − l, so that we can obtain the correct the remainder r̂ without going
out of transform co-ordinates. If δ > 0, then in the reciprocal representation after step
11, r̂ will have δ leading zeroes in transform co-ordinates. After squaring r̂ in the next
iteration of the loop (and multiplying by â where a = x − β if Bi = 1), r̂ will have 2δ
(provided β 6= 0) leading zeroes. We detect this and correct r̂ when we transform r̂ out
of transform co-ordinates to truncate it in step 8. To describe the algorithm we let

Fω(b) = [b(1), b(ω), b(ω2), . . . , b(ωn−1)] ∈ Znp
denote the Fourier transform of b(x) for ω a primitive n′th root of unity and F−1

ω denote
the inverse transform. We now present the algorithm.

Algorithm: Fast Binary Powering

Input: m ∈ N, a(x), b(x) ∈ Zp[x], with degx(a) < degb(b) = d.
We require the trailing coefficients of both a and b to be non-zero.

Output: a(x)m mod b(x).
Comment: Variables in bold font represent polynomials in transform co-ordinates.

1: Let B1B2 . . . Bl be the bits of m with B1 = 1, the leading bit.
2: Compute bb̂−1cd−1 using a Newton iteration and set î = Fω(bb̂−1cd−1).
3: Set b̂ = Fω(b̂) and set â = Fω(â).
4: Set r̂ = â and dr = 1.
5: for k = 2 to l do
6: Set r̂ = [r̂2

i mod p : i = 1..n] and dr = 2dr. O(n)
7: If Bk = 1 then set r̂ = [r̂iâi mod p : i = 1..n] and dr = dr + 1. O(n)
8: if dr ≥ d then ( divide by b̂ )
9: Set t̂ = F−1

ω (r̂). 1 FFT
10: Let t̂ = [0, 0, . . . , 0︸ ︷︷ ︸

2δ zeroes

, x, y, z, . . .].

if 2δ > 0 then
11: Set t̂ = [x, y, z, . . ., 0, 0, . . . , 0] and set dr = dr − 2δ.
12: Divide r̂ by x2δ in transform co-ordinates. O(n)
13: Set dq = dr − d.
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14: Set t̂ = Fω(bt̂cdq). 1 FFT
15: Set t̂ = [t̂i îi mod p : i = 1..n]. O(n)
16: Set q̂ = Fω(bF−1

ω (t̂)cdq). 2 FFTs
17: Set r̂ = [r̂i − q̂ib̂i mod p : i = 1..n]. O(n)
18: Divide r̂ by x(dq+1) in transform co-ordinates. O(n)
19: Set dr = d− 1.
20: end if
21: end for
22: Set r̂ = F−1

ω (r̂).
23: Let r̂ = [0, 0, . . . , 0, rk, . . . , r1, r0, 0, 0, . . . ].

Set r = r0 + r1x+ . . . rkx
k and return r.

Thus the algorithm does 4 FFTs + O(n) arithmetic operations in Zp in the loop
instead of 8 FFTs for an overall gain of another factor of 2 asymptotically. Assuming the
powers of ω have been precomputed, one FFT can be done in n

2 log n multiplications in
Zp, hence the cost of one iteration of the loop is 2n log n+ o(n).

We now determine how large n must be in terms of deg b = d. The degree of âr̂2 is
at most 2(d − 1) + 1 = 2d − 1 thus we require n > 2d − 1. The degree of the quotient
dq = dr− d is at most (2d− 1)− d = d− 1 hence we compute b̂−1 to degree d− 1. Thus
we require ω to have order n ≥ 2d.

We make one further optimization. If d = deg b = 600 then we require n ≥ 2d = 1200.
Since n must be a power of 2, we need n = 2048. However, suppose we compute r̂2 î
(or r̂2â̂i) in transform coordinates without truncating r̂2 to degree dq first. We can still
determine 2δ after we compute F−1

ω (q̂) and then correct r̂. Then since deg(âr̂2b̂−1) ≤
1 + 2(d− 1) + (d− 1) = 3d− 2 = 1798 we still require n = 2048 and we save 2 FFTs for
another gain of a factor of 2 asymptotically.

In summary, we save 3M(d) out of 6M(d) by precomputing b̂−1 for a gain of one factor
of 2, then we saved 4 FFTs out of 8 for a total gain of a factor of 4, and one third of the
time, we can save 2 more FFTs for a total gain of a factor of 8.

5. Benchmarks

5.1. Root finding benchmarks.

We have implemented the improved binary powering algorithm in C for 31 bit primes
on a 64 bit machine. We give some timing data comparing our implementation with
that in Magma 2.16 and Maple 14 on an Intel Core i7 CPU running at 2.66 GHz. For
the benchmarks we used the prime p = 2114977793. The timings in rows 1 through 4
in Table 5.1 are for computing (x + β)(p−1)/2 mod b(x) for p = 2114977793 a 31 bit
prime with b(x), monic, of degrees d = 1000, 2000, 4000, 8000, with coefficients chosen
at random from Zp[x]. The timings for row 1 are for our own C implementation us-
ing classical arithmetic. The timings for row 2 are for our new improved implemen-
tation. The timings for Magma and Maple in rows 3 and 4 give some perspective.
In Magma we use the Modexp(x+beta,(p-1)/2,b); command. In Maple we use the
Powmod(x+beta,(p-1)/2,b,x) mod p; command.

The data in Table 1 for d = 1000 shows that without the improvement of the factor of
4, the fast binary powering algorithm would not break even with the classical implemen-
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d=1000 d = 2000 d = 4000 d = 8000

C classical 0.048 0.185 0.668 2.52
C new 0.011 0.023 0.047 0.097
Magma 0.056 0.129 0.310 0.610
Maple 0.800 3.11 12.21 45.0

Table 1. Timings (in CPU seconds) for polynomial arithmetic operations in Zp[x].

tation until d = 1000. We remark that in our classical implementation for polynomial
multiplication and division in Zp[x], because 64 bit integer division by p is much slower
than a 64 bit multiplication (on the Core i7 division takes 25 cycles and multiplication
takes 3 cycles), one obtains a factor of 5 speedup by moving division by p out of the
inner loop. To multiply C = A×B where A,B,C are arrays of signed int, indexed from
0, of degree da, db and da+ db, we exploit the sign bit as follows.

long t,M;

M = p<<32; // M = 2^32*p;

for( i=0; i<=da+db; i++ ) C[i] = 0;

for( i=0; i<=da; i++ )

for( j=0; j<=db; j++ )

{ t = C[i+j]; if(t>0) t -= M; C[i+j] = t+A[i]*B[j]; }

for( i=0; i<=da+db; i++ ) { C[i] %= p; if( C[i]<0 ) C[i] += p; }

We find that our implementation of the FFT breaks even with classical multiplication
around degree 250. The timings in rows 1 through 4 of Table 2 are for computing the
d − 2 roots of the polynomial f = (xd − 1)/(x2 − 1) over Zp for p = 2114977793.
Maple and Magma are also using Rabin’s algorithm. The timings in row 1 are for our
C implementation using classical polynomial arithmetic. The timings in row 2 are for
our improved fast binary powering algorithm. The timings in row Magma (Fact) are for
Magma’s Factorization(f); command (we found that Magma’s Roots(f) command
was slower). The timings in row 5 are for the Roots(f) mod p; command in Maple.

d=1024 d = 2048 d = 4096 d = 8192

C classical 0.144 0.488 1.788 6.826
C new 0.096 0.247 0.618 1.449

Magma (Fact) 0.41 1.07 2.91 8.08
Maple (Roots) 1.72 6.51 24.97 95.25

Table 2. Timings (in CPU seconds) for computing Roots in Zp[x].

5.2. Interpolation benchmarks.

Here, we compare the performance of our new algorithm, Zippel’s algorithm and the
racing algorithm of Kaltofen and Lee from [20]. We have implemented Zippel’s algorithm
and our new algorithm in C. We have also implemented an interface to call the interpola-
tion routines from Maple. The racing algorithm is implemented in Maple in the ProtoBox
package by Lee [20]. Since this algorithm is not coded in C, we only report (see columns
labelled ProtoBox) the number of probes it makes to the black box.

We give benchmarks comparing their performance on five problem sets. The polyno-
mials in the first four benchmarks were generated at random. The fifth set of polynomials
is taken from [20]. We count the number of probes to the black box that each algorithm
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takes and we measure the total CPU time for our new algorithm and Zippel’s algorithm
only. All timings reported are in CPU seconds and were obtained using Maple 13 on a
64 bit Intel Core i7 920 @ 2.66GHz running Linux. This is a 4 core machine. For our
algorithm, we report the real time for 1 core and (in parentheses) 4 cores.

The black box in our benchmarks computes a multivariate polynomial with coefficients
in Zp where p = 2114977793 is a 31 bit prime. In all benchmarks, the black box simply
evaluates the polynomial at the given evaluation point. To evaluate efficiently we compute
and cache the values of xji mod p in a loop in O(nd). Then we evaluate the t terms in
O(nt). Hence the cost of one black box probe is O(nd+nt)) arithmetic operations in Zp.

Benchmark #1
This set of problems consists of 13 multivariate polynomials in n = 3 variables. The

i’th polynomial (1 ≤ i ≤ 13) is generated at random using the following Maple command:

> randpoly([x1,x2,x3], terms = 2^i, degree = 30) mod p;

The i’th polynomial will have about 2i non-zero terms. Here D = 30 is the total degree
hence the maximum number of terms in each polynomial is tmax =

(
n+D
D

)
= 5456. We

run both the Zippel’s algorithm and our new algorithm with degree bound d = 30. The
timings and the number of probes are given in Table 3. In this table “DNF” means that
the algorithm did not finish after 12 hours.

Table 3. benchmark #1: n = 3 and D = 30

i t New Algorithm Zippel ProtoBox
Time Probes Time Probes Probes

1 2 0.00 (0.00) 13 0.00 217 20
2 4 0.00 (0.00) 25 0.00 341 39
3 8 0.00 (0.00) 49 0.00 558 79
4 16 0.00 (0.00) 97 0.01 868 156
5 32 0.00 (0.00) 193 0.01 1519 282
6 64 0.01 (0.00) 385 0.03 2573 517

7 128 0.02 (0.01) 769 0.08 4402 962
8 253 0.08 (0.03) 1519 0.21 6417 1737
9 512 0.17 (0.09) 3073 0.55 9734 3119
10 1015 0.87 (0.29) 6091 1.16 12400 5627
11 2041 3.06 (1.01) 12247 2.43 15128 DNF
12 4081 10.99 (3.71) 24487 4.56 16182 DNF
13 5430 19.02 (6.23) 32581 5.93 16430 DNF

As i increases, the polynomial f becomes denser. For i > 6, f has more than
√
tmax

non-zero terms. This is indicated by a horizontal line in Table 3 and also in subsequent
benchmarks. The line approximately separates sparse inputs from dense inputs. The last
polynomial (i = 13) is 99.5% dense.

The data in Table 3 shows that for sparse polynomials 1 ≤ i ≤ 6, our new algorithm
does a lot fewer probes to the black box compared to Zippel’s algorithm. It also does
fewer probes than the racing algorithm (ProtoBox). However, as the polynomials get
denser, Zippel’s algorithm has a better performance. For a completely dense polynomial
with t non-zero terms, Zippel’s algorithm only does O(t) probes to the black box while
the new algorithm does O(nt) probes.
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To show how effective the first optimization described in Section 4.2 is, we run both
our algorithm and Zippel’s algorithm on the same set of polynomials but with a bad
degree bound d = 100. The timings and the number of probes are given in Table 4. One
can see that our algorithm is unaffected by the bad degree bound; the number of probes
and CPU timings are the same.

Table 4. benchmark #1: bad degree bound d = 100

i t New Algorithm Zippel’s Algorithm
Time Probes Time Probes

1 2 0.00 (0.00) 13 0.01 707
2 4 0.00 (0.00) 25 0.01 1111
3 8 0.00 (0.00) 49 0.02 1818
4 16 0.00 (0.00) 97 0.03 2828
5 32 0.00 (0.00) 193 0.07 4949
6 64 0.01 (0.01) 385 0.14 8383

7 128 0.03 (0.01) 769 0.36 14342
8 253 0.09 (0.03) 1519 0.79 20907
9 512 0.29 (0.10) 3073 1.97 31714
10 1015 0.89 (0.31) 6091 3.97 40400
11 2041 3.08 (1.02) 12247 8.18 49288
12 4081 10.98 (3.61) 24487 15.16 52722
13 5430 18.92 (6.19) 32581 19.62 53530

Benchmark #2
In this set of benchmarks the i’th polynomial is in n = 3 variables and is generated

at random in Maple using
> randpoly([x1,x2,x3], terms = 2^i, degree = 100) mod p;

This set of polynomials differs from the first benchmark in that the total degree of
each polynomial is set to be 100 in the second set. We run both the Zippel’s algorithm
and our new algorithm with degree bound d = 100. The timings and the number of
probes are given in Table 5. Comparing this table to the data in Table 3 shows that the
number of probes to the black box in our new algorithm does not depend on the degree
of the target polynomial.

Table 5. benchmark #2: n = 3 and D = 100

i t New Algorithm Zippel ProtoBox
Time Probes Time Probes Probes

3 8 0.00 (0.00) 49 0.02 1919 89
4 16 0.00 (0.00) 97 0.04 3434 167
5 31 0.00 (0.00) 187 0.08 6161 320
6 64 0.01 (0.00) 385 0.19 10504 623
7 127 0.03 (0.01) 763 0.49 18887 1149
8 253 0.09 (0.03) 1519 1.38 32219 2137

9 511 0.29 (0.10) 3067 4.36 56863 4103
10 1017 0.91 (0.31) 6103 13.99 98677 7836
11 2037 3.07 (1.04) 12223 43.23 166650 DNF
12 4076 11.02 (3.61) 24457 121.68 262802 DNF
13 8147 40.68 (13.32) 48883 282.83 359863 DNF
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Benchmarks #3 and #4
These sets of problems consist of 14 random multivariate polynomials in n = 6 vari-

ables and n = 12 variables all of total degree D = 30. The i’th polynomial will have
about 2i non-zero terms. We run both the Zippel’s algorithm and our new algorithm
with degree bound d = 30. The timings and the number of probes are given in Tables 6
and 7.

Table 6. benchmark #3: n = 6 and D = 30

i t New Algorithm Zippel ProtoBox
Time Probes Time Probes Probes

3 8 0.00 (0.00) 97 0.01 1364 140
4 16 0.00 (0.00) 193 0.02 2511 284
5 31 0.00 (0.00) 373 0.05 4340 521
6 64 0.02 (0.01) 769 0.15 8060 995
7 127 0.06 (0.02) 1525 0.44 14601 1871
8 255 0.22 (0.07) 3061 1.51 27652 3615
9 511 0.72 (0.24) 6133 5.19 50530 6692
10 1016 2.43 (0.85) 12193 17.94 90985 12591

11 2037 8.69 (2.87) 24445 65.35 168299 DNF
12 4083 32.37 (10.6) 48997 230.60 301320 DNF
13 8151 122.5 (40.5) 97813 803.26 532549 DNF

Table 7. benchmark #4: n = 12 and D = 30

i t New Algorithm Zippel ProtoBox
Time Probes Time Probes Probes

3 8 0.00 (0.00) 193 0.08 5053 250
4 15 0.00 (0.00) 361 0.20 10230 470
5 32 0.02 (0.01) 769 0.54 18879 962
6 63 0.06 (0.02) 1513 1.79 36735 1856
7 127 0.18 (0.05) 3049 6.10 69595 3647
8 255 0.62 (0.17) 6121 22.17 134664 7055
9 507 2.14 (0.55) 12169 83.44 259594 13440
10 1019 7.70 (1.94) 24457 316.23 498945 26077
11 2041 28.70 (7.23) 48985 1195.13 952351 DNF
12 4074 108.6 (27.2) 97777 4575.83 1841795 DNF
13 8139 421.1 (105.4) 195337 > 10000 - DNF

Parallel benchmark.
To better assess the parallel implementation of our algorithm, table 8 reports timings

for benchmark #4 for the our new algorithm with the asymptotically fast root finding
algorithm running on two 6 core Intel Xeon X7460 CPUs running at 2.66GHz. We report
timings and speedups for 4 and 12 cores. The data is extremely good showing a near
linear speedup. For i = 13, if the solving were not parallelized, the maximum speedup
for 12 cores would be, by Amdahl’s law, 435.3/((435.3−4.2)/12+4.2) = 10.85. However,
by also parallelizing the coefficient solving step, (it is a simple observation that each
coefficient can be solved for independently in O(t) time) we obtain a speedup of 11.95
on 12 cores.
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Table 8. Parallel speedup timing data for benchmark #4 for the new algorithm.

1 core 4 cores 12 cores

i t time roots solve probe time (speedup) time (speedup)

7 127 0.218 0.01 0.00 0.12 0.062 (3.35x) 0.050 (4.2x)
8 255 0.688 0.01 0.01 0.40 0.186 (3.70x) 0.106 (6.5x)
9 507 2.33 0.05 0.02 1.53 0.603 (3.86x) 0.250 (9.3x)
10 1019 8.20 0.14 0.07 5.97 2.10 (3.90x) 0.748 (10.96x)
11 2041 30.17 0.34 0.26 23.6 7.62 (3.96x) 2.61 (11.56x)
12 4074 113.1 0.87 1.06 93.5 28.6 (3.96x) 9.90 (11.78x)
13 8139 435.3 2.25 4.20 371.7 110.5 (3.94x) 36.46 (11.95x)

Benchmark #5
In this benchmark, we compare our new algorithm and the racing algorithm on seven

target polynomials (below) from [20, p. 393]. Note, f6 is dense. The number of probes
for each algorithm is reported in Table 5.2.
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f5(x1, . . . , x50) =
Pi=50

i=1 x50
i

f6(x1, . . . , x5) =
Pi=5

i=1 (x1 + x2 + x3 + x4 + x5)i

f7(x1, x2, x3) = x20
1 + 2x2 + 2x2

2 + 2x3
2 + 2x4

2 + 3x20
3

Table 9. benchmark #5.

i n d #fi New Algorithm ProtoBox

1 9 3 5 90 126
2 10 2 5 100 124
3 9 3 5 90 133
4 9 4 5 100 133
5 50 50 50 5000 251
6 5 5 251 2510 881
7 3 20 6 36 41

The reader may observe that in all benchmarks, the number of probes our algorithm
makes is exactly 2nt+ 1.

6. Conclusion

Our sparse interpolation algorithm is a modification of the Ben-Or/Tiwari algorithm [2]
for polynomials over finite fields. It does a factor of between n and 2n − 1 more probes
where n is the number of variables. Our benchmarks show that for sparse polynomials,
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it does fewer probes to the black box than Zippel’s algorithm and a comparable number
to the racing algorithm of Kaltofen and Lee. Unlike Zippel’s algorithm and the racing
algorithm, our algorithm does not interpolate each variable sequentially and thus can
easily be parallelized. Our parallel implementation using Cilk, demonstrates a very good
speedup. The downside of our algorithm is that it is clearly worse than Zippel’s algorithm
and the racing algorithm for dense polynomials. This disadvantage is partly compensated
for by the increased parallelism.

Although we presented our algorithm for interpolating over Zp, it also works over any
finite field GF (q). Furthermore, if p (or q) is too small, one can work inside a suitable
extension field. We conclude with some remarks about the choice of p in applications
where one may choose p.

Theorem 1 says that monomial collisions are likely when dt2

2(p−1) >
1
2 , that is when

p − 1 < dt2. In our benchmarks we used 31 bit primes. Using such primes, if d = 30,
monomial collisions will likely occur when t > 8, 460 which means 31 bit primes are too
small for applications where the number of terms t is large. The 31 bit prime limitation
is a limitation of the C programming language. On a 64 bit machine, one can use 63 bit
primes if one programs multiplication in Zp in assembler. We are presently implementing
this.
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