
A Modular Algorithm for Computing Polynomial

GCDs over Number Fields presented with

Multiple Extensions.

Michael Monagan∗∗ Mark van Hoeij††

∗Department of Mathematics, Simon Fraser University,
Burnaby, B.C., V5A 1S6, Canada.

†Department of Mathematics, Florida State University,
Tallahassee, FL 32306-4510, USA.

November 2005

Abstract

We consider the problem of computing the monic gcd of two polyno-
mials over a number field L = Q(α1, . . . , αn). Langemyr and McCallum
have already shown how Brown’s modular GCD algorithm for polynomi-
als over Q can be modified to work for Q(α) and subsequently, Langemyr
extended the algorithm to L[x]. Encarnacion also showed how to use ra-
tional number to make the algorithm for Q(α) output sensitive, that is,
the number of primes used depends on the size of the integers in the gcd
and not on bounds based on the input polynomials.

Our first contribution is an extension of Encarnacion’s modular GCD
algorithm to the case n > 1, which, like Encarnacion’s algorithm, is is
output sensitive.

Our second contribution is a proof that it is not necessary to test if
p divides the discriminant. This simplifies the algorithm; it is correct
without this test.

Our third contribution is extensions to the algorithm to treat the case
of reducible extensions.

Our fourth contribution is an implementation of the modular GCD
algorithm in Maple and in Magma. Both implementations use a recursive
dense polynomial data structure for representing polynomials over number
fields with multiple field extensions. We provide some implementation
details.

Our fifth contribution is a primitive fraction-free algorithm. This is
the best non-modular approach. We present timing comparisons of the

∗Supported by NSERC of Canada and the MITACS NCE of Canada.
†Supported by NSF grant 0098034.

1

Maple and Magma implementations demonstrating various optimations
and comparing them with the monic Euclidan algorithm and our primitive
fraction-free algorithm.

1 Introduction

We recall the relevant details of the so called modular GCD algorithm first
developed by Brown in [3] for polynomials over Z and then by Langemyr and
McCallum in [11], Langemyr in [12] and Encarnacion in [6] for polynomials over
L = Q(α), which we shall generalize to L = Q(α1, . . . , αn). First some notation.

We denote the input polynomials by f1 and f2, their monic gcd by g. The
cofactors are the polynomials f1/g and f2/g. The denominator den(f) of f ∈
Q[x] is the smallest positive integer such that den(f) f ∈ Z[x]. See section 2.2
for the definition of den(f) if f ∈ Q(α1, . . . , αn)[x]. The height H(f) of f is the
magnitude of the largest integer appearing in the rational coefficients of f .

The associate f̃ of f is defined as f̃ = den(h)h where h = monic(f). Here
monic(f) is defined as lc(f)−1f where lc(f) is the leading coefficient of f . Define
the semi-associate f̌ as r f where r is the smallest positive rational for which
den(r f) = 1.

Examples: If f = 2x − 4/3 then den(f) = 3, H(f) = 4, and f̌ = f̃ = 3x − 2.
If α =

√
2 and f = −αx + 1 then H(f) = 1, f̌ = f , monic(f) = x − α/2 and

f̃ = 2x− α.

Computing the associate f̃ is useful for removing denominators, but could be
expensive if lc(f) is a complicated algebraic number. So we preprocess the input
polynomials in our algorithm by taking the semi-associate instead. If lc(f) ∈ Q
then the two notions are the same up to a sign:

f̌ = ±f̃ ⇐⇒ lc(f) ∈ Q

1.1 Motivation for the algorithm

The goal of this paper is to present an efficient GCD algorithm over a field L
that consists of multiple extensions over Q that is practical. As a motivating
application, consider the problem of factoring f ∈ L[x] using Trager’s algorithm
[25]. One sequence of gcd computations in L[x] is required to compute the
square-free factorization of f, beginning with gcd(f, f ′). Then for each square-
free factor, a second sequence of gcd computations in L[x] occurs when the
irreducible factors of f are determined.

Let L be a number field of degree D over Q and let f1, f2 ∈ L[x] both have
degree n and let g be their monic gcd. For a computer algebra system to be
effective at performing computations in L[x] we require a GCD algorithm for
computing g with a complexity which is comparable to that of multiplication and
division in L[x]. It is well known that the size of the integers in the coefficients
of the remainders in the Euclidean algorithm grows rapidly and consequently,

2

the Euclidean algorithm becomes ineffective when deg g is much smaller than
n, the worst case being when g = 1. This leads us to consider a modular GCD
algorithm.

Let c = H(g), that is, c is is the magnitude of the largest integer coef-
ficient appearing the rational coefficients of g. If we knew c in advance, we
could choose a single prime p > 2c2 from a table, compute one modular im-
age in O(n2D2 log2 p)) time and reconstruct the rational coefficients of g in
O(nD log2 p) time. However we do not know c and accurate bounds are not
possible when c is much smaller than H(f1) and H(f2). Thus we compute g
modulo a sequence of primes of almost constant bit length and incrementally
reconstruct g. If we want log(m) = O(log(c)), that is, if we want the number of
primes used to be proportional to the size of the coefficients in g so that small
gcds are recovered quickly, then we are forced to

1. Not use a primitive element to convert to a single extension, which is
expensive and can cause a blowup in the size of the coefficients. This
problem is well known, e.g. see [1]. Note, although the conversion to a
primitive element could be done after reducing the inputs modulo p, thus,
without blowup, it is expensive; it introduces an O(D3) factor into the
overall complexity of the algorithm which is O(D2) otherwise. We make
some additional remarks about this in the conclusion.

2. Not invert lc(f2), which can also cause a blowup, and can also be more
expensive than computing g.

3. Use rational reconstruction – see [5, 18, 22, 27]. Otherwise a denominator
bound would be necessary, but such bounds are generally too large. The
defect bound, usually the (reduced [2]) discriminant, which is part of the
denominator bound, is usually also too large.

4. Use trial division. Otherwise we would need bounds for H(g). Such
bounds will be a function of f1, f2, L and will be much too large when
g is small relative to f1 and f2, an important special case.

Encarnacion’s paper confirms and deals with these items. As a result, Encarna-
cion’s algorithm is the fastest algorithm for a single extension. As for item 1, his
paper deals only with a single extension, but he does illustrate that modifying
that extension (making α1 an algebraic integer) is not efficient. But if modifying
one extension α1 is not efficient, then modifying n extensions (replacing it by a
primitive element) is certainly not efficient.

1.2 Organization of the paper

Our first goal is to generalize Encarnacion’s algorithm to multiple extensions
without using a primitive element. We do this in section 2 where we study the
Euclidean algorithm in L[x] modulo a prime p.

In section 2 we present our modular GCD algorithm and study its expected
time complexity. We also describe how to modify the modular GCD algorithm

3

so that it can be used when one or more of the minimal polynomials defining
the number field L are not irreducible and in section 4 we give explicit code for
how to do this in Magma.

In section 3 we present two implementations of our modular GCD algorithm,
one in Maple and one in Magma. The data structure that we use for both
implementations, for representing polynomials and field elements, is a recursive
dense data structure. We give details and explain why it is a good choice.

To demonstrate the effectiveness of the modular GCD algorithm in L[x] we
compare it with several implementations of the Euclidean algorithm over char-
acteristic 0. Based on the work of Maza and Rioboo in [15] we give a new
primitive Z-fraction-free algorithm for L[x] which is the best non-modular algo-
rithm. Timing comparisons comparing the two implementations of our modular
GCD algorithm with the various non-modular Euclidean algorithm based im-
plementations are given along with comparisons demonstrating the effectiveness
of the other improvements we have made.

2 The modular GCD algorithm

2.1 lc-bad, fail, unlucky and good primes

The modular GCD algorithm computes the monic gcd g ∈ L[x] of f1 and f2. It
does this by reducing f1, f2 modulo one or more primes and calling the Euclidean
algorithm mod p for each of these primes p. The modular GCD algorithm
reconstructs g from these modular images. If the Euclidean algorithm mod p
outputs g mod p we say p is a good prime. Only good primes should be used
during the reconstruction for it to be successful. However, not all primes are
good. We distinguish the following cases:

Definition 1 Let f1, f2 ∈ L[x] and g be their monic gcd. We will distinguish
four types of primes.

• lc-bad primes. Let m1, . . . ,mn be the minimal polynomials of the field
extensions α1, . . . , αn. So mi(z) is a monic irreducible polynomial in
Q(α1, . . . , αi−1)[z] and mi(αi) = 0. If den(f1), den(f2) or any leading co-
efficient of f̌2, m̌1, . . . , m̌n vanishes mod p then we call p an lc-bad prime.

• Fail primes. If p is not an lc-bad prime, and the Euclidean algorithm mod
p returns “failed”, then p is called a fail prime.

• Unlucky primes. If p is not an lc-bad prime nor a fail prime, and if the
output of the Euclidean algorithm mod p has higher degree than g, then p
is called an unlucky prime.

• Good primes. A prime p is called a good prime if the Euclidean algorithm
mod p returns g mod p. Theorem 1 in section 2.2 says that all primes that
are not lc-bad are either fail, unlucky or good.

Remarks:

4

1. Our definition of lc-bad prime is not symmetric in f1, f2. It could be that
p is lc-bad for f1, f2 but not lc-bad for f2, f1. In that case, because of
how we set up the algorithm, we should either: not use p, or: interchange
f1, f2 mod p before calling the Euclidean algorithm mod p.

2. Our definitions are not the same as the standard definitions in [3]. For
example, it is possible that the Euclidean algorithm mod p fails even if the
monic gcd of f1 mod p, f2 mod p exists and equals g mod p. We call such
p a fail prime and not a good prime. This distinction is not necessary if
f1, f2 ∈ Q[x] where there are no fail primes.

3. If p | den(g) (in the standard definition these primes are called bad primes)
then g mod p is not defined and so p can not be a good prime. According
to theorem 1, p must then be either lc-bad, fail, or unlucky.

4. Minimal polynomials are monic so the leading coefficients of m̌1, . . . , m̌n

are den(m1), . . . ,den(mn) ∈ Z. However, lc(f̌2) is in general not an integer
but an algebraic number.

5. It is very easy to tell if a prime p is lc-bad or not, but we can not tell
in advance if p is fail, unlucky, or good. So we will end up calling the
Euclidean algorithm mod p with fail, unlucky, and good primes but never
with lc-bad primes.

2.1.1 lc-bad primes

If f1 = 5x+ 1, f2 = 5x− 1 and p = 5 then p satisfies our definition of an lc-bad
prime as well as the definition of a good prime. However, there are good reasons
not to use any lc-bad prime. Take for example f1 = f2 = 5x + 1. Also, the
proof of theorem 1 requires that p not be lc-bad.

Another example is L = Q(α), f1, f2 ∈ L[x] with gcd g = x+α3, p = 5, and
the minimal polynomial of α is m = z5 +z4 + 1

5z
3− 1

5 . Because of preprocessing,
in the algorithm we work with m̌ = 5z5+5z4+z3−1. Modulo p = 5 this becomes
z3 + 4. If we used the prime p = 5, it is easy to give an example f1, f2 where
the Euclidean algorithm mod p returns g mod (5, α3 + 4) which is x + 1. But,
viewing α as a variable, g 6≡ x+ 1 mod 5.

For our algorithm, the best solution to the above problems is: never use an
lc-bad prime.

2.1.2 Fail primes

Fail primes are primes for which the Euclidean algorithm mod p tries to divide
by a zero divisor, in which case it returns “failed”. Take for example f1 = x2−1,
f2 = ax−a where a = 21/5 + 5. Denote a mod p as a. The Euclidean algorithm
mod p will first try to make f2 mod p monic by multiplying it with 1/a. But if
N(a), the norm of a, vanishes mod p then a is zero or a zero-divisor, and the
computation of 1/a fails. In this example N(a) = 53 · 59 so the fail primes are
53 and 59.

5

The reason that in our terminology 53 and 59 are called fail primes and not
lc-bad primes in the example (after all, the problem was caused by lc(f2) mod
p) is to indicate how these primes are discarded: We do not actively avoid these
primes, instead, they “discard themselves” when the Euclidean algorithm mod
p is called.

One can also construct examples where p is not lc-bad, lc(f2) is a unit mod
p, but p still divides den(g) (occasionally such p can be unlucky instead of
fail). Take for example α with minimal polynomial m = z3 + 3z2 − 46z + 1,
f1 = x3 − 2x2 + (−2α2 + 8α+ 2)x− α2 + 11α− 1, f2 = x3 − 2x2 − x+ 1. The
monic gcd is g = x− 1

91α
2− 23

91α−
50
91 . The denominator is den(g) = 91 = 7 ·13.

In this example, if p ∈ {7, 13} then p is not lc-bad and the leading coefficient of
f2 (as well as of f1) is a unit mod p. Nevertheless, p can not be a good prime
because p | den(g). In this type of example p must divide the discriminant. For
this reason, Encarnacion [6] tests if the discriminant is 0 mod p and avoids such
primes. However, even without the discriminant-test, the primes p ∈ {7, 13}
would still have been discarded at some point: The Euclidean algorithm mod
p will calculate r3 = f1 mod (p, f2), try to make r3 monic and fail because the
leading coefficient of r3, namely, −2α2 + 8α+ 3, is a zero divisor mod p.

Although one can generalize the discriminant-test to L, our algorithm does
not use it because it makes no difference for the correctness of the algorithm.
For an intuitive explanation see lemma 4 and for a proof see theorem 1.

2.1.3 Unlucky primes

Unlucky primes are not trivially detectable like lc-bad primes and do not “dis-
card themselves” like fail primes do, but need to be detected and discarded
nevertheless. Fortunately, Brown [3] showed how to do this in a way that is
efficient and easy to implement: Whenever modular gcd’s do not have the same
degree, keep only those of smallest degree and discard the others.

As an example, take f1 = x2 + (2
√

5 + 1)x + 3, f2 = x2 − x − 1, g =
x + (

√
5 − 1)/2. Then the Euclidean algorithm mod 2 will return x2 + x + 1,

so p = 2 is an unlucky prime. But if f1 = x2 +
√

5 x+ 1, f2 and g the same as
before, then p = 2 is a fail prime.

2.1.4 Good primes

All but finitely many primes must be good. This is because if one would run the
Euclidean algorithm in characteristic 0, it would be a finite computation, and
so there can only be finitely many conditions on the primes and each condition
only excludes finitely many primes (see lemma 5).

Of course we will not run the Euclidean algorithm in characteristic 0, so
this does not tell us which primes to use. But this is not a problem because
to guarantee correctness of the algorithm, just as in Brown’s algorithm, all we
need to do is to avoid the lc-bad primes. Experiments show that random primes
are good with high probability. Hence, even if there was an oracle that quickly
provided good primes, it would not noticeably improve the running time.

6

2.2 The Euclidean algorithm over a ring

Let α1, . . . , αn be algebraic numbers. Let Li = Q(α1, . . . , αi) and L = Ln. Let
di be the degree of αi over Li−1. The dimension of L as a Q-vector space is
d∗ := d1 · · · dn. A basis of L is:

M := {
n∏
i=1

αei
i | 0 ≤ ei < di}.

Let R̃ be the set of all Z-linear combinations of M and let R̃i = R̃
⋂
Li. Let mi

be the minimal polynomial of αi over Li−1. The degree of mi is di, mi is monic
(the leading coefficient is lc(mi) = 1) and mi(αi) = 0. The coefficients of mi

are in Li−1. Let li be the smallest positive integer such that the coefficients of
limi are in R̃i−1. Denote Fp = Z/pZ and l∗ = l1 · · · ln.

In general R̃ is not a ring. For example, α1 ∈ R̃, but αd11 is not in R̃
unless l1 = 1. When a, b ∈ R̃, to compute the product ab ∈ L we replace
α1, . . . , αn by variables z1, . . . , zn, then multiply a,b as polynomials, and after
that take the remainder modulo the polynomials m1(z1), . . . ,mn(zn). During
this computation we only divide a bounded number of times by l1, . . . , ln. Hence,
if k is a sufficiently large integer, then lk∗ab ∈ R̃ for all a, b ∈ R̃.

If a ∈ L then define the denominator of a as the smallest positive integer
den(a) such that den(a)a ∈ R̃. Note that R̃, and hence den(a), depends on the
choice of α1, . . . , αn. For example, if α1 =

√
8 and a = 1

2α1 then den(a) = 2.
For a ∈ L one has a ∈ R̃⇐⇒ den(a) = 1, in particular den(0) = 1. Define

Rp = {a ∈ L | den(a) 6≡ 0 mod p} (1)

= { a
m
| a ∈ R̃, m ∈ Z, m 6≡ 0 mod p}. (2)

If a, b ∈ L then den(ab) divides den(a)den(b)lk∗ for some k. Hence, if p - l∗ then
Rp is a ring. We will always assume that p does not divide l∗ so that Rp is a
ring (if p | l∗ then p is an lc-bad prime). Denote

Z(p) = Rp
⋂

Q = { a
m
| a,m ∈ Z, m 6≡ 0 mod p}.

Then Rp is a Z(p)-module with basis M . Define

R = Rp/pRp.

If a ∈ Rp then we use the notation a, or also a mod p, for the image of a in R.
If a ∈ L, then (primes that divide l∗ are always excluded)

a is defined⇐⇒ a ∈ Rp ⇐⇒ p - l∗den(a).

If a is defined we will say that a can be reduced mod p.
Now R is a ring and also an Fp-vector space with basis M mod p. We can

do the following identifications:

Rp = R̃⊗Z Z(p), L = R̃⊗Z Q, and R = R̃⊗Z Fp (3)

7

If a ∈ L then a is a unit in Rp if and only if both a and 1/a are in Rp
(whenever we write 1/a it is implicitly assumed that a 6= 0). This is equivalent
to p - l∗den(a)den(1/a). If a ∈ L we will call a a unit mod p if a ∈ Rp and a is
a unit in R. The following lemma shows that these two notions are equivalent.

Lemma 1 Let a ∈ Rp. Then a is a unit in Rp if and only if a is a unit in R.

Proof: If a is a unit in Rp then a and 1/a are in Rp, hence a and 1/a are
defined, and since a 7→ a is a ring homomorphism Rp → R one sees that 1/a is
the inverse of a. Hence a is a unit in R.
Conversely, assume a is a unit. Then a 6= 0 so we can take b := 1/a ∈ L. To
finish the proof we need to show that b ∈ Rp. Take the smallest integer k for
which c := bpk ∈ Rp. Since k is minimal, we have c 6= 0 but then ac is the
product of a unit and a nonzero element in R and hence nonzero. But ac equals
abpk = pk so pk 6= 0, hence k = 0, so b ∈ Rp and a is invertible in Rp.

If f ∈ L[x] then the denominator den(f) is defined as the smallest positive
integer such that den(f)f ∈ R̃[x]. Now f ∈ Rp[x] if and only if p - den(f)l∗. The
polynomial f is the image of f in R[x], and is defined if and only if f ∈ Rp[x],
in which case we will say that f can be reduced mod p. Furthermore, if f and
f have the same degree (when lc(f) is nonzero mod p) then we will say that f
reduces properly mod p. If p is not an lc-bad prime it means that f1, f2 can be
reduced mod p, and that f2 reduces properly mod p.

Let 0 ≤ i ≤ j ≤ n and a ∈ Lj . Multiplication by a is an Li-linear map
ψ : Lj → Lj . The characteristic polynomial cpji (a) ∈ Li[x] of a over the
extension Lj : Li is defined as the characteristic polynomial of this linear map.
The trace Trji (a) of a over Lj : Li is the trace of ψ and the norm N j

i (a) of a over
Lj : Li is the determinant of ψ. Whenever we do not mention the extension
Lj : Li it is assumed to be L : Q (so i = 0 and j = n) in which case we write
Tr(a), N(a), cp(a). Now the integral closure of Z in L is

O = {a ∈ L | cp(a) ∈ Z[x]}.

This is a ring (see [9]), and the elements of O are called the algebraic integers
in L. We will use the following notation for the integral closure of Z(p) in L

Op = {a ∈ L | cp(a) ∈ Z(p)[x]}.

Suppose a ∈ L and m = den(cp(a)). Then by definition a ∈ Op if and only if
m 6≡ 0 mod p. The characteristic polynomial of ma is in Z[x], hence ma ∈ O
and hence

Op = { a
m
| a ∈ O, m ∈ Z, m 6≡ 0 mod p}. (4)

Lemma 2 If 0 ≤ i ≤ j ≤ n and a ∈ Op
⋂
Lj then a is a unit in Op if and only

if N j
i (a) is a unit in Op. In particular, a ∈ Op is a unit if and only if N(a) ∈ Q

is a unit in Z(p), in other words, both numerator and denominator of N(a) are
not divisible by p. The same is also true for Rp.

8

Remark: If p - l∗ then Rp ⊆ Op and the lemma implies that if a ∈ Rp and
1/a ∈ Op then 1/a ∈ Rp.
Proof: The Li-linear map ψ : Lj → Lj that corresponds to multiplication by
a is defined over Op, i.e. the entries of the matrix of ψ are in Op. If N j

i (a),
the determinant of ψ, is a unit in Op then the matrix is invertible over Op. So
then ψ−1(1) ∈ Op, so 1/a ∈ Op. Conversely, if a is invertible in Op then ψ is
an invertible linear map, so its determinant must be a unit.
Now N(a) = Nn

0 (a) ∈ L0 = Q and Q
⋂
Op = Z(p) so the second statement

follows. The proof for Rp is the same, although as always p must not divide l∗
so Rp is a ring.

Note that one can check if a ∈ Rp is invertible, and if so, compute its inverse,
with linear algebra over Z(p) or over its field of fractions Q. The matrix of the
system to be solved is the matrix of ψ. The same also holds for a ∈ R, whenever
it is invertible, its inverse can be computed with linear algebra over Fp. But
instead of solving linear equations, we will use the extended Euclidean algorithm
to calculate inverses in R. However, this can increase the number of fail primes
because the calculation can fail even if a is invertible. This is not a serious
problem because the number of fail primes will still be finite (see section 2.1.4).

In the following, let R be a commutative ring with identity 1 6= 0. For
a univariate polynomial f ∈ R[x] define monic(f) as follows: If f = 0 then
monic(f) = 0. If f 6= 0 and if the leading coefficient lc(f) ∈ R of f is a unit,
then define monic(f) = lc(f)−1f . If f 6= 0 and lc(f) is not a unit then define
monic(f)=“failed”.

If f1, f2 ∈ R[x] then the monic gcd is defined as a polynomial g ∈ R[x] such
that g = monic(g) and for every polynomial h one has: h | f1 and h | f2 if and
only if h | g. It is easy to show that if a monic gcd of f1, f2 exists, then it is
unique. The well-known Euclidean algorithm over R works as follows.

Euclidean algorithm.
Input: a list (f1, f2) of two univariate polynomials with coefficients in R.
Output: Either a message “failed” or the monic gcd.

1. Set r1 = f1, r2 = f2, i = 2.
2. If r2 = 0 then set r1 = monic(r1). If r1 = “failed” then return “failed”.
3. If ri = 0 then return ri−1.
4. Set ri = monic(ri). If ri = “failed” then return “failed”.
5. Let ri+1 be the remainder of ri−1 divided by ri.
6. Set i = i+ 1 and go back to Step 3.

Remark on a shortcut: Suppose that ri in step 3 is a nonzero constant.
Some implementations of the Euclidean algorithm over a field will then take
a shortcut: stop the computation, the output is 1. Over a ring we should not
use this shortcut because that would invalidate lemma 3 below. This plays a
role because our algorithm will not test if p divides the discriminant. We may

9

only use the shortcut if ri is a unit. For ri ∈ R we can test that efficiently by
computing N(ri) mod p (see lemmas 1,2).

Denote GCDR(f1, f2) as the output of this algorithm. If GCDR(f1, f2) 6=
“failed” then the sequence of polynomials r1, . . . , rm with rm−1 6= 0, rm = 0, is
called the monic polynomial remainder sequence of f1, f2.

Lemma 3 If g = GCDR(f1, f2) and g 6= “failed” then the ideal (ri−1, ri) =
R[x]ri−1+R[x]ri remains the same during each step. In particular (f1, f2) = (g)
which implies:

1. There exist s, t ∈ R[x] such that g = sf1 + tf2.

2. f1 and f2 are divisible by g.

3. g is the monic gcd of f1 and f2.

Proof: When we make ri monic, we divide by a unit, which does not change
the ideal. In step 6 we increase i so we must show that (ri−1, ri) = (ri, ri+1)
which is clear because ri+1 is the remainder of ri−1 modulo ri. Hence (f1, f2) =
(r1, r2) = (rm−1, rm) = (g, 0) = (g). So g ∈ (f1, f2) which is part 1, f1, f2 ∈ (g)
which is part 2. Finally, every h that divides both f1 and f2 divides any element
of (f1, f2) in particular it divides g. Since g is monic it satisfies precisely the
definition of the monic gcd.

Remark: If GCDR(f1, f2) 6= “failed” then the extended Euclidean algorithm,
which calculates s and t as well as g will not fail either.

Let d = GCDR(f1, f2) be the output of the Euclidean algorithm. If all lead-
ing coefficients during the computation are units then the algorithm succeeds,
the monic gcd exists and equals d = rm−1. If there is no monic gcd in R[x]
then d = “failed”. If a monic gcd g does exist then it is not necessarily true
that the algorithm will find it; the output d is then either g or “failed”. A
situation where the output is “failed” even when a monic gcd exists is given in
the following lemma.

Lemma 4 Suppose p - l∗ and f1, f2 ∈ Rp[x]. Then f1, f2 ∈ Op[x]. Suppose a
monic gcd g ∈ Op[x] exists and that g 6∈ Rp[x]. Then GCDOp(f1, f2) = “failed”.

Proof: If p - l∗ then α1, . . . , αn ∈ Op, hence Rp ⊆ Op so f1, f2 ∈ Op[x]. Since
GCDRp

(f1, f2) = “failed”, when we run the Euclidean algorithm over Rp we will
encounter a leading coefficient in Rp that is not a unit in Rp. But according to
the remark after lemma 2, if a ∈ Rp is not a unit in Rp then it is also not a unit
in Op and hence the algorithm fails over Op as well.

If the ring R in the Euclidean algorithm is a field L, then the output is never
“failed”, so GCDL(f1, f2) is always the monic gcd of f1, f2 ∈ L[x].

10

Lemma 5 Suppose f1, f2 ∈ L[x] and r1, . . . , rm ∈ L[x] is the monic polynomial
remainder sequence. Let lc1, . . . , lcm−1 in L be the leading coefficients that we
divided by in steps 2 and 4. For all but finitely many primes the following holds:

1. f1, f2 ∈ Rp[x], and lc1, . . . , lcm−1 are units in Rp.

2. r1, . . . , rm ∈ Rp[x] and r1, . . . , rm is the monic polynomial remainder se-
quence of f1, f2.

3. p is a good prime which means: The monic gcd of f1, f2 exists, will be
found by the Euclidean algorithm, and equals g where g ∈ L[x] is the monic
gcd of f1, f2.

Proof: Part 1 holds for all primes that do not divide any of the following: l∗,
den(f1), den(f2), den(lci), den(1/lci) for i < m. Since these are finitely many
integers, all nonzero, we see that part 1 holds for all but finitely many primes.
The only divisions in the Euclidean algorithm are divisions by lci, so if the input
is in Rp[x] and all lci are units in Rp, then all polynomials in the GCDL(f1, f2)
computation are in Rp[x]. Induction shows that r1, . . . , rm is precisely the monic
polynomial remainder sequence of f1, f2, so part 2 follows from part 1. Part 3
follows from part 2.

Since we will only run the Euclidean algorithm in R[x] for various primes p,
and not in L[x], we do not know the values of lci. So the lemma does not tell us
which primes are good, it only says that all but finitely many primes are good.
We now investigate the relation between GCDR(f1, f2) and GCDL(f1, f2) when
p is not an lc-bad prime.

Theorem 1 Let f1, f2 ∈ L[x] and let g ∈ L[x] be the monic gcd. Assume
p - l∗den(f1)den(f2), f2 6= 0 and lc(f2) 6≡ 0 mod p, so p is not an lc-bad prime.
Let d = GCDR(f1, f2). If d 6= “failed” then

deg(d) ≥ deg(g).

Furthermore, if deg(d) = deg(g) then g reduces properly mod p and d = g.

Remark: The theorem says that if p is not lc-bad then p is either fail, unlucky,
or good. This implies that if lc-bad primes are avoided then the modular GCD
algorithm is correct.

Proof: lc(f2) 6≡ 0 mod p, so if we assume d 6= “failed” then lc(f2) must be a
unit mod p, see step 4 in the Euclidean algorithm. There exist (see lemma 3)
s0, t0 ∈ Rp[x] such that

s0f1 + t0f2 = d.

Now take a monic polynomial d0 ∈ Rp[x] such that d = d0. Then we have

s0f1 + t0f2 ≡ d0 mod p.

11

We will apply Hensel lifting to increase the modulus p to a higher power of p.
Define (starting with i = 1)

hi = (si−1f1 + ti−1f2 − di−1)/pi ∈ Rp[x]

and let qi, ri ∈ Rp[x] be the quotient and remainder of hi divided by d0 (this
division works because d0 is monic). Then define

s̃i = si−1 − piqis0, t̃i = ti−1 − piqit0, di = di−1 + piri.

Then
s̃if1 + t̃if2 ≡ di mod pi+1.

Now s̃i, t̃i can have higher degrees than si−1, ti−1. To remedy this, do the
following. For j ∈ {1, 2} denote fj,d ∈ Rp[x] as a polynomial whose modular
image equals fj/d. Take qis0 mod p, and divide it by f2,d ∈ R[x]. This division
works because the leading coefficient of f2,d is lc(f2) mod p, which is invertible.
Take q, r ∈ Rp[x] such that q, r are the quotient and remainder of this division.
Take q, r in such a way that they have the same degree as q, r. Then define

si = si−1 − pir, and ti = ti−1 − pi(qit0 + qf1,d),

and we still have
sif1 + tif2 ≡ di mod pi+1.

We can now increase i and do the next Hensel step, and continue in this way.
Because deg(r) < deg(f2,d) and deg(ri) < deg(d0), the degrees of si and di will
be bounded as i increases, and hence the degree of ti mod pi+1 is bounded as
well. So when i→∞, the limit ŝ, t̂, d̂ of si, ti,di exists in the ring R̂p[x] defined
below.
Denote Ẑp as the ring of p-adic integers. Ẑp is the completion of Z(p) with
respect to the p-adic valuation norm. Let Q̂p be the field of p-adic numbers,
the field of fractions of Ẑp. Denote L̂p = Rp ⊗Z(p) Q̂p = L ⊗Q Q̂p. This is
in general not an integral domain because minimal polynomials can become
reducible when one replaces Q by a larger field Q̂p. Denote R̂p = Rp ⊗Z(p) Ẑp.
Now R̂p and L can be viewed as subrings of L̂p and

Rp = R̂p
⋂
L (5)

After doing infinitely many Hensel steps we find ŝ, t̂, d̂ ∈ R̂p[x] such that

ŝf1 + t̂f2 = d̂.

Now d̂ is monic and deg(d̂) = deg(d0) = deg(d) because the piri, i = 1, 2, . . .,
that we added to d0 have smaller degree than d0. The polynomials f1, f2 are
elements of L[x]g ⊆ L̂p[x]g. Hence ŝf1+ t̂f2, which equals d̂, is a also an element
of L̂p[x]g. But d̂ 6= 0 so

deg(d) = deg(d̂) ≥ deg(g).

12

If the degrees are the same then d̂ = g because g is the only monic element of
L̂p[x]g of that degree. Equation (5) then implies g ∈ Rp[x] (recall that d̂ ∈ R̂p[x]
and g ∈ L[x]). So g can be reduced mod p. Hence g reduces properly mod p

because it is monic. The theorem now follows because d equals d̂ mod p, which
equals g mod p.

2.3 The Modular GCD Algorithm in L[x]

We give a high-level description of the modular GCD algorithm.

Modular GCD algorithm.
Input: Non-zero f1, f2 ∈ L[x], L a number field.
Output: g, the monic gcd of f1 and f2.

1. Preprocessing: Set n = 0, f1 = f̌ and f2 = f̌2.
2. Main Loop: Take a new prime p that is not lc-bad.
3. Let d be the output of the Euclidean algorithm applied to f1 and f2 mod
p. If d =“failed” then go back to step 2.

4. If d = 1 then return 1.
5. If n = 0 or deg(d) < deg(c) then

set c = d,m = p, n = 1 and go to step 8.
6. If deg(d) > deg(c) then go back to step 2.
7. Let c be the output of applying Chinese remaindering to c mod m and d

mod p. Set m = mp, k = k + 1.
8. Apply rational reconstruction to obtain h ∈ L[x] from c mod m.

If this fails, go back to step 2.
9. Trial division: If h|f1 and h|f2 then return h,

otherwise, go back to step 2.

Step 1 is a preprocessing step. We compute f̌1 and f̌2, the semi-associates of f1
and f2 respectively, that is, we cancel any rational scalar from the input poly-
nomials before proceeding. We do not compute f̃1 or f̃2, the monic associates
of f1 and f2 which can cause a blowup.

Since lc-bad and fail primes are actively discarded in steps 2 and 3, the
primes p1, p2, ..., pk remaining after step 6 are either all unlucky or all good. Let
m = Πk

i=1pi. Suppose rational reconstruction succeeds at step 8 with output
h. If h|f1 and h|f2 then h = g and the modular GCD algorithm terminates. If
either trial division fails then from Theorem 1 either m is not yet large enough
to recover the rational coefficients in g or all primes are unlucky. Before we state
the time complexity of the algorithm we examine three technical problems.

13

Problem 1: The Trial Divisions

If h 6= g the trial divisions h|f1 and h|f2 in step 9 may be very expensive because
the rational coefficients in the quotient f1/h may be much larger in length than
those in f1/g. There are many ways to engineer the algorithm so that this
happens with very low probability.

One is to modify the trial division algorithm so it first tests if h|f1 mod q
and h|f2 mod q for some prime q before attempting divisions in characteristic
0. For this test to be of value the prime q must be different from the primes
used thus far by the modular GCD algorithm. Magma, for example, reserves a
special prime not used by modular algorithms for this purpose.

A second way is to build into the rational reconstruction algorithm some
redundancy so that if it succeeds with output h then h = g with high probability.
This is our preferred approach. To do this one can either modify Wang’s rational
reconstruction algorithm in [26, 27], or use the algorithm of Monagan in [18].

A third possibility is to modify the modular GCD algorithm so that when
rational reconstruction succeeds with output h, we compute gk+1, the GCD
modulo an additional prime pk+1 and require that h ≡ gk+1 mod pk+1 before
we attempt the trial divisions. Maple version 8, for example, uses this approach
for a number of modular algorithms.

Problem 2: Rational Reconstruction is not Incremental

When we apply the Chinese remainder theorem to compute the new value of
c in step 7 such that cnew ≡ cold mod m and cnew ≡ d mod p, we can do this
incrementally, i.e., in O(logm) instead of O(log2m) time per integer coefficient,
using only classical algorithms for integer arithmetic as follows:

Step 9: Chinese remaindering.
Set ∆ = d− c mod p.
Set i = m−1 mod p.
Set v = i∆ mod p.
Set c = c+mv.
Set m = mp, k = k + 1.

However, no incremental version of rational reconstruction is known. If one
uses the Euclidean algorithm (see section 3.2), rational reconstruction will cost
O(log2m) per coefficient. Suppose g = x + n/d and |n|, |d| < M . If ratio-
nal reconstruction were applied at each step it will introduce an O(log3M)
component per rational coefficient into the modular GCD algorithm. This
can be reduced to O(log2M) without increasing the asymptotic cost of the
other components of the modular GCD algorithm and without using fast arith-
metic if we perform rational reconstruction periodically. For example, after
F = 1, 2, 3, 5, 8, 13, 21, 34, 55, ... primes.

In practice the cost of rational reconstruction is usually much less than
O(log3M) per coefficient and the Fibonacci sequence is much too sparse on most

14

data. Suppose g has N rational coefficients that need to be reconstructed. Sup-
pose rational reconstruction is designed so that it will fail with high probability
when the input is the image of a rational number which cannot be reconstructed
because m is not yet large enough. Suppose also it remembers the monomial in
g where it failed in the previous step so that it always starts with a coefficient
for which it previously failed. Then if rational reconstruction is applied at ev-
ery step, the expected total cost of rational reconstruction, assuming classical
integer arithmetic, is O(log3M +N log2M), that is, O(log3M/N +log2M) per
coefficient.

Problem 3: Computing Inverses in the Euclidean Algorithm

In Step 3 the Euclidean algorithm is applied over L modulo p which is not
a field in general; it is a finite ring Lp with zero divisors in general. The
(monic) Euclidean algorithm, described in section 2, needs to invert the leading
coefficient of the divisor, an element of Lp. Units in Lp can be inverted using
linear algebra in O(D3) arithmetic operations in Zp where D = [L : Q] is the
degree of L over Q. However this would introduce an O(D3) factor into the
modular GCD algorithm. Thus we prefer to apply the Euclidean algorithm to
compute inverses in Lp because it requires only O(D2) arithmetic operations in
Zp. However, if Lp is not a field, the Euclidean algorithm may fail to compute
an inverse even when the inverse exists. If this happens we will also call p a
fail prime. Thus a prime p is a fail prime if the Euclidean algorithm with input
f1 and f2 in L[x] fails modulo p where inverses are computed in Lp using the
Euclidean algorithm. Thus there are two sources of failure. One is elements of
L which are not invertible modulo p and the other is units in Lp which are not
invertible by the Euclidean algorithm. It is not hard to see that the number of
fail primes is finite. Run the Euclidean algorithm in characteristic 0 to invert
elements of L. The conditions on p for which elements of L are not invertible
when using the Euclidean algorithm involve integers of finite length and hence
the number of fail primes for any given input f1 and f2 is finite.

2.4 Time Complexity of the Modular GCD Algorithm

We estimate the average asymptotic time complexity of our modular GCD al-
gorithm for L[x]. We will not include the cost of the trial divisions in our
complexity estimate and we will state the expected running time in terms of
m̌1, ..., m̌k, f̌1 and f̌2.

Let D be the degree of the number field L and let C = log maxki=1H(m̌i(z)),
that is, C bounds the size of the largest coefficient appearing in the m̌i. Let
N = max(degx(f1),degx(f2)), n = degx(g), M = log max(H(f̌1), H(f̌2)), and
let m be the number of good primes needed to reconstruct g. In most cases
m ∈ O(M) though it can happen that the coefficients of g are larger than those
of f1 and f2.

We will assume that the probability that a prime is good is high so that m
is close to the actual number of primes that were used. This assumption is true

15

in practice when we use 30 bit primes. However, for theoretical completeness
of the complexity estimate, we would need to determine some B = B(f1, f2, L)
such that if p > log B then the probability that p is good is greater than some
constant, say 1/2. Moreover, we require that B(f1, f2, L) is a polynomial func-
tion of the size of f1, f2, L, i.e., polynomial in D,C,N,M . We did not determine
such B because it appears to be difficult to obtain a useful result and secondly,
this issue would not have consequences for the algorithm in practice (one hardly
ever encounters primes that are not good). However, we do claim that such a
bound that is polynomial in D,C,N,M exists.

Because neither of our implementations use asymptotically fast arithmetic
throughout it makes sense for us to first assume classical arithmetic, i.e., quadratic
algorithms for integer and polynomial arithmetic. Under the assumptions made
we have

Theorem 2 The expected running time of our modular GCD algorithm is

O(m(C +MN)D +mN(N − n+ 1)D2 +m2(nD +m)))

arithmetic operations on integers of size O(log p) bits.

The three contributions are for reducing the minimal polynomials m1, ...,mk and
input polynomials f̌1 and f̌2 modulo m primes (step 3), applying the Euclidean
algorithm m times (step 3), and reconstruction of O(nD) rational coefficients
(steps 7 and 8), respectively.

The hardest gcd problems for our algorithm occur when n = N/2 + o(N)
and when m is large, that is, m ∈ O(M). This happens when the gcd g and
cofactors f̄1 and f̄2 are of similar size. This is also when dividing f1 and f2 by g
using the classical division algorithm is most expensive. Under the simplifying
assumption that C ≤ MN , that is the coefficients of the minimal polynomials
are not larger than those in f1 and f2, the expected time complexity for these
“hard” gcds is O(M2(ND +M) +MN2D2).

2.5 When L is not a field

Until now we have assumed that L is a field, i.e., we assumed that Li−1 is a field
and each mi(zi) is irreducible over Li−1. The algorithm does not verify these
assumptions because testing irreducibility of mi with a factorization algorithm
could be costly, and in many applications, it will be known a priori that each
Li is a field hence such tests would be redundant. However, in the context of
solving a systems of polynomial equations over Q with finitely many solution,
Lazard in [13] presents an algorithm for decomposing a lex Gröbner basis into
a union of triangular sets where univariate gcds are computed in L[x] and L
is often not field, that is, one or more of the mi are be reducible over Li−1.
Another algorithm of Kalkbrenner in [14] also computes gcds in L[x] where L
is often not a field. Kalkbrenner’s algorithm decomposes a polynomial system
into a union of triangular sets using pseudo-remainders and gcd computations in
L[x]. The problem of computing gcds efficiently in L[x] when one or more of the

16

mi are reducible is studied by Maza and Rioboo in [15]. We will look at their
algorithm in more detail in a later section. As our algorithm is stated, if any
mi(zi) is reducible, and the leading coefficient of a remainder in the Euclidean
algorithm (when run over L) is not invertible, our modular algorithm will most
likely enter an infinite loop because the Euclidean algorithm mod p will fail for
all but finitely many p. This is a serious flaw which we now address.

Let d = GCDL(f1, f2) be the output of Euclidean algorithm over L (over
characteristic 0). If d 6= “failed”, then it is still true that all but finitely many
primes are good. In this case, the modular GCD algorithm presented thus far
will produce d ∈ L[x]. However, if d = “failed”, then all but finitely many
primes are fail primes. So we can not expect the modular GCD algorithm to
terminate. We want to have a modified modular GCD algorithm that has the
following specifications:

1. It must always terminate, whether L is a field or not.

2. If L is a field, the output must be GCDL(f1, f2) ∈ L[x].

3. If L is not a field, then the output must one of the following: Either the
monic gcd in L[x]. Or the output is “failed”, in which case a second output
must be returned as well, namely a non-trivial factor di of some mi, a zero
divisor in Li.

Example: Let L = Q(α1) where m1(z1) = z2
1 − 1. Let f1 = x2 + α and

f2 = (α+ 1)x+ 1. Inverting lcx f2 = α+ 1 will fail for all primes p. Thus in our
example the output of our modified algorithm should be ”failed”, z1 + 1.

Remark: Suppose L is not a field and the Euclidean algorithm if run in char-
acteristic 0 would encounter a zero divisor. The modification to our modular
algorithm described below will most probably output this zero divisor. It can,
however, output a different zero divisor.

It is well known that the Euclidean algorithm can easily be modified to meet
the above specifications without calling a factoring algorithm: The Euclidean
algorithm GCDL(f1, f2) in characteristic 0 will only fail if we divide by a zero
divisor, that is, we try to invert a zero divisor. Inverses use the extended
Euclidean algorithm applied to mi(zi) and some other element of Li−1[zi] for
some i. The inverse only fails when this gcd is not 1, in which case a non-trivial
factor di of mi has been found. The modified Euclidean algorithm will then
return “failed” for the gcd of f1, f2, but will also return di(zi) as second output.
Exactly how this is implemented will depend on the system. In our Maple
implementation, when we compute inverses in Li using the extended Euclidean
algorithm, if an inverse does not exist, we generate a run-time error and return
the non-trivial gcd found as part of the error. The calling routine may “catch”
this error and process it. In our Magma implementation, because Magma has no
non-local goto mechanism, we must use a different approach which we describe
in detail in the next section.

17

For efficiency reasons, we want to turn this into a modular algorithm. If we
run the modified Euclidean algorithm mod p, using the same arguments as in
lemma 5 one sees that for all but finitely many p the result will be “failed” with
di mod p as a second output. So we make the following modification to the
modular GCD algorithm: In addition to all the steps done before, we will also
store the second outputs of the modified Euclidean algorithm mod p. Each time
the number of these second outputs reaches a certain threshold (for example
a Fibonacci number Fn) we combine them using Chinese remaindering, apply
rational reconstruction, and if rational reconstruction suceeds, perform a trial
division to see if we found a true factor di ∈ Li−1[zi] of mi(zi). To prevent that
a prime p, for which the second output is different from di mod p, can cause
an infinite loop, we do not use all available primes when computing di with
Chinese remaindering; instead we omit the first Fn−2 primes, thus use only the
last Fn−1 primes.

3 Implementation

At the end of this section we describe two implementations of our modular
GCD algorithm, one in Maple 9 [16] and one in Magma 2.10 [4]. We give timing
comparisons for the two implementations to demonstrate the effectiveness of
our improvements and for comparison with the Euclidean algorithm.

To fix notation, recall that L = Q(α1, . . . , αn) where αi is algebraic over
Li−1 = Q(α1, . . . , αi−1), and mi(zi) ∈ Li−1[zi] is the minimal polynomial for
αi over Li−1. To implement the the modular GCD algorithm, we start with
input polynomials over L, reduce them modulo p a machine prime so that they
are over L modulo p, run the Euclidean algorithm retract them to be over
Z for application of the Chinese remainder theorem, reconstruct the rational
coefficients so the output is over L and finally perform trial divisions over L.

3.1 A Data Structure for L[x] and Lp[x]

Our Maple and Magma implementations both use a recursive dense represen-
tation for polynomials. This is the representation advocated by Stoutemyer in
[24] as the best overall representation for polynomials based on the his system
Derive. We choose this data representation for elements of L and for polyno-
mials in L[x]. That is we regard the inputs f1 and f2 as polynomials in x and
z1, . . . , zn.

In our Magma implementation, we are implicitly using this representation
as we construct L[x] as a tower of univariate polynomial extensions over Q. In
Magma, univariate polynomials are represented as a vector of coefficients, that
is, a dense one-dimensional array of coefficients. In our Maple implementation,
we have implemented a recursive dense data type. The datatype, implemented
in Maple code, is being implemented in the Maple kernel.

We describe the Maple data type <poly> using a BNF notation.

<poly> ::= POLYNOMIAL(<ring>, <data>)

18

<ring> ::= [<char>, <vars>, <exts>]
<char> ::= <nonnegative integer>
<vars> ::= vector(<variables>)
<data> ::= <immediate integer> | <rational number> | vector(<data>)
<exts> ::= vector(<data>)

The characteristic of the ring is encoded by <char> and <exts> is a vector of
the minimal polynomials. Thus the ring to which the polynomial belongs is
encoded explicitly in the data structure. Since the ring information is identical
for polynomials in the same ring it is stored once so that the cost of storing the
ring information is one word (a pointer) per polynomial.

The bottom of the data structure is a word of storage which is either a
pointer to a rational number or an immediate integer. In Maple 9, on a 32 bit
computer, immediate integers are signed integers of 30 bits in length where one
bit is used to distinguish them from pointers.

In a recursive dense representation a zero coefficient at any level in the data
structure, except the bottom level, is represented by the immediate integer 0
(or the nil pointer). This means that every algorithm must treat 0 as a special
case. This exceptional case does not bother us because in the implementation
of most operations, 0 is a special case anyway. In the Maple examples below,
vectors are indicated by square brackets.

Example 1: The representation of the polynomial z4−10z2+1 in characteristic
0 and characteristic 3 is

POLYNOMIAL([0,[z],[]], [1,0,-10,0,1])
POLYNOMIAL([3,[z],[]], [1,0,2,0,1])

The empty vector [] indicates that there are no extensions and the data in
both these examples is a vector of machine integers. Allowing one word as a
header word for the POLYNOMIAL structure and for each vector, the storage
requirement for both polynomials is 16 words. Since the ring information can
be shared between polynomials over the same ring, a more accurate count is
that 9 words are required. From now on we count 1 word (a pointer) for the
ring storage.

Example 2: The representation for the polynomial x2 − 3zx + 5 in Q[x, z],
Q[z]/〈z2 − 2〉[x], and Z3[z]/〈z2 − 2〉[x] is

POLYNOMIAL([0, [x, z], []], [[5], [0, -3], [1]])
POLYNOMIAL([0, [x, z], [[-2, 0, 1]]], [[5], [0, -3], [1]])
POLYNOMIAL([3, [x, z], [[1, 0, 1]]], [[2], 0, [1]])

The storage requirement is 14, 14 and 11 words respectively.

Example 3: Even for moderately sparse polynomials, the recursive dense data
structure is surprisingly compact. Consider the sparse polynomial 1 + 2xn +
3yn + 4zn. Our data structure for this polynomial for n = 3 is

POLYNOMIAL(R, [[[1,0,0,4], 0, 0, [3]], 0, 0, [[2]]]);

19

This is 24 words. In general it is 15 + 3n words. One of the main sparse
representations for polynomials that is used in AXIOM is a linked list of pairs
where each pair is a pointer to a coefficient and a pointer to a monomial where
the monomial xiyjzk would be stored as an exponent vector [i, j, k]. Thus each
non-zero term of the polynomial requires 2+2+4 = 8 words of storage. On our
example this would be 35 words, allowing 3 words for the top level of the data
structure. On this example, the recursive dense representation uses less storage
for n ≤ 6.

Example 4: Multiple extensions are handled in the obvious way. Consider the
polynomial x2 −

√
2/3 x+

√
3/2. We show how to input this polynomial in two

ways, first, directly, using the rpoly command which converts from Maple’s
native sum-of-products representation for formulae to the POLYNOMIAL data
structure, and secondly, by first creating the number field and polynomial ring
using the rring command. We then reduce the polynomial g modulo p = 5.

> f := rpoly(x^2-u/3*x+v/2, [x,u,v], [u^2-2,v^2-3]);
2 2 2

f := (x - 1/3 u x + 1/2 v) mod <u - 2, v - 3>
> lprint(f);
POLYNOMIAL([0, [x, u, v], [[[-2], 0, [1]], [-3, 0, 1]]],
[[[0, 1/2]], [0, [-1/3]], [[1]]])

> L := rring([u,v], [u^2-2,v^2-3]);
L := [0, [u, v], [[[-2], 0, [1]], [-3, 0, 1]]]

> Lx := rring(L,x); # construct L[x] from L
Lx := [0, [x, u, v], [[[-2], 0, [1]], [-3, 0, 1]]]

> g := rpoly(x^2-u/3*x+v/2, Lx);
2 2 2

g := (x - 1/3 u x + 1/2 v) mod <u - 2, v - 3>
> h := phirpoly(g,5);

2 2 2
h := (3 v + 3 u x + x) mod <3 + u , 2 + v , 5>

An advantage of the recursive dense representation is the following. When
we reduce mod p, using the phirpoly comand above, we obtain a recursive
structure where the bottom level of the structure, representing polynomials in
Zp[v] in the example, is a vector of machine integers. This is the most efficient
representation for arithmetic in Zp[v]. This is important because this is where
most of the computation will occur when the Euclidean algorithm is executed
modulo p.

3.2 Trial Division

Another bottleneck of the modular GCD algorithm is the trial divisions. If h
is the result of rational reconstruction then we must check that h|f1 and h|f2

20

to show that h = g. Because these trial divisions can be expensive, we have
considered abandoning trial divisions altogether in favor of a probabilistic result,
that is, check that result of rational reconstruction agrees, say, with the gcd
modulo five additional primes instead of one. However, in many applications
where one computes gcd’s, for example, normalizing a rational function, one
wants to compute also the cofactors f1/g and f2/g, hence, the divisions cannot
be avoided.

There are also situations where one cofactor is enough. If Trager’s factor-
ization algorithm is used to factor a polynomial f ∈ L[x] where k = [L : Q],
one computes g1 = GCD(f, f1) where f1 is an irreducible polynomial over Q
and f1 is the norm of a factor of f . Since the degree of g1 is known to be
d = deg f1/k in advance, it is not hard to see that if the modular GCD algo-
rithm constructs a polynomial h of degree d and h|f then h must also divide f1
and hence h = g1. Since it is useful to compute the cofactor f/g1 in Trager’s
algorithm, but not the cofactor f1/g1, then the latter trial division, which is
usually the larger in degree, may be avoided. This simple observation can make
a significant improvement.

When dividing f1 and f2 by h over L using the classical division algorithm,
a very significant improvement can be obtained if one avoids fractions as much
as possible. This idea of avoiding fractions has been used to speed up many
computations in computer algebra. Notice that the leading coefficient of ȟ in
the modular GCD algorithm is an integer. If also li = den(mi) = 1, which is
often the case, then the entire division algorithm can be completed using only
integer arithmetic. If li 6= 1 for some i then the division algorithm can still be
modified to avoid fractions. We show how to do this for univariate polynomials
with one field extension with minimal polynomial M .

Algorithm Fraction Free Long Division.
Input: A,B ∈ Q[x, z], M ∈ Z[z] : B 6= 0, lcxB ∈ Q, and degM ≥ 1.
Output: Q = A/B mod M if B|A mod M ; “failed” otherwise.

Set m = degxA, n = degxB and d = degzM .
Set ia = ic(A) and a = A/ia.

Set ib = ic(B) and b = B/ib.

Set lb = lcx b and lm = lczM . Remark: lb, lm ∈ Z.
Set s = 1, r = a, and q = 0.
While r 6= 0 and m ≥ n do

Set lr = lcx r. Remark: lr ∈ Z[z].
Set g = GCD(ic(lr), lb).
Set s = (lb/g)× s.
Set t = (lr/g)× xm−n.
Set q = q + t/s.
Set r = (lb/g)× r − t× b.
Set k = degz r.

21

While r 6= 0 and k ≥ d do

Set lr = lcz r. Remark: lr ∈ Z[x].
Set g = GCD(ic(lr), lm).
Set t = (lr/g)zk−d.

* Set r = (lm/g)× r − t×M .
Set s = (lm/g)× s and k = degz r.

Set m = degx r.

If r 6= 0 then output “failed”.
Set Q = (ia/ib)× q and output Q.

The algorithm first makes the inputs A and B primitive over Z. We claim that
each time round the outer loop and also each time round the inner loop the
following invariant holds: a ≡ bq + r/s(modM) where s ∈ Z and r has integer
coefficients. From this the correctness of the algorithm follows easily. The outer
loop reduces the degree of the remainder r in x. In the outer loop we multiply
r by the smallest possible integer so that lcx r, a polynomial in Z[z], will be
exactly divisible by the integer lcx b. The inner loop then reduces the remainder
r modulo M . In the inner loop we multiply r by the smallest integer so that
lcz r, a polynomial in Z[x], will be divisible by the integer lczM . The scalar s,
an integer, keeps track of the integer factors of lcx b and lczM , respectively, that
r was multiplied by so that the terms of quotient q may be correctly computed.

Remark: The algorithm works over any integral domain D for which GCDs
exist. That is, replacing Z by D and Q by the quotient field D/D generalizes
the algorithm to work for inputs A,B ∈ (D/D)[z][x] and M ∈ D[z]. One
application of this is for D = Zp[t] which arises when computing a gcd over an
algebraic function field in a single parameter t using a modular GCD algorithm.
There for each prime p used, the algorithm makes trial divisions in Zp(t)[z][x]
modulo M(t).

3.3 Maple Implementation

Program NGCD, our Maple implementation of our modular GCD algorithm uses
the recursive dense polynomial data structure described in section 4.1. Here
we demonstrate it’s usage on three problems. The first gcd problem is in K[x]
where K = Q(

√
2,
√

3). We create the field as K = Q[a, b]/〈a2 − 2, b2 − 3〉,
create the polynomial ring K[x], convert the two given polynomials f1 and f2
below from Maple’s native sum of product representation for polynomials to the
recursive dense representation described in section 4.1, and then compute and
display their gcd using the command NGCD. This command also prints some
diagnostic information.

> read recden; read NGCD; read PGCD;

> K := rring([a,b],[a^2-2,b^2-3]);

K := [0, [a, b], [[[-2], 0, [1]], [-3, 0, 1]]]

> Kx := rring(K,x):

22

> f1 := rpoly(x^2+(a*b-a-1)*x-a*b-2*b,Kx):

> f2 := rpoly(x^2+(a*b-4*a+1)*x+a*b-8*b,Kx):

> NGCD(f1,f2);

NGCD: GCD in Q[a, b][x] mod <b^2-3, a^2-2>

NGCD: Prime 1 = 46273

NGCD: Prime 2 = 46271

NGCD: Trial divisions over Z starting after 2 primes

2 2

(a b + x) mod <b - 3, a - 2>

We now demonstrate our implementation on two gcd problems over L = K[c]/〈c2−
6〉 which is not a field. In the first problem an error is generated. The error
message shows the zero divisor found in characteristic 0, namely, c− ab and the
corresponding extension polynomial c2 − 6 that it divides.

> L := rring(K,c,c^2-6):

> Lx := rring(L,x);

[0, [x, c, b, a], [[[[-6]], 0, [[1]]], [[-3], 0, [1]], [-2, 0, 1]]]

> f1 := rpoly(x^2+a*b*x+1,Lx):

> f2 := rpoly((c-a*b)*x+1,Lx):

> NGCD(f1,f2);

NGCD: GCD in Q[c, b, a][x] mod <a^2-2, b^2-3, c^2-6>

NGCD: Prime 1 = 46273

NGCD: fail prime 46273

Error, (in NGCD) zero divisor found, c^2-6, c-a*b

The second example shows a gcd computation of two polynomials in L[x, y, z]
succeeding even though L is not a field. Note that our NGCD returns the primitive
associate of the monic gcd, that is, g̃ = den(g)g.

> P := rring(L,[x,y,z]): # create L[x,y,z]

> f1 := rpoly((2*x+c*y+a*b+2*z)*(x-a*y*z-c)^2,P):

> f2 := rpoly((2*x+c*y+a*b+2*z)*(y-c*x*z-b)^2,P):

> NGCD(f1,f2);

NGCD: GCD in Q[c, b, a][x, y, z] mod <-2+a^2, -3+b^2, c^2-6>

NGCD: Prime 1 = 46273

NGCD: Prime 2 = 46271

NGCD: Trial divisions over Q starting after 2 primes

2 2 2

(a b + 2 z + c y + 2 x) mod <c - 6, -3 + b , -2 + a >

3.4 Magma Implementation

Here we give details and examples of a Magma implementation of our modular
GCD algorithm for polynomials over a number fields. The algorithm cannot, in
fact, be implemented in Magma 2.9. We will describe modifications made by
Allan Steel to Magma 2.10 that permit our algorithm to be implemented.

In Magma, before one may compute with f ∈ K[x], K a number field,
the user must explicitly construct the number field K and the polynomial ring

23

K[x]. In the following Magma session1 we construct Q[z], input the polynomial
m = z2 − 2 ∈ Q[z], compute m2, construct K = Q(a) = Q[z]/〈z2 − 2〉 using the
NumberField constructor, and then compute a3.

> Q := RationalField();

> P<z> := PolynomialRing(Q); // construct Q[z]

> m := z^2-2;

> m^2; // compute and display m^2

z^4 - 4*z^2 + 4

> K<a> := NumberField(m);

> a^3;

2*a

Number fields may also be constructed with the quotient ring constructor quo.
Our modular GCD algorithm supports both. Magma users are more likely to use
NumberField because the Magma library for it is extensive. The NumberField
constructor requires, naturally, that minimial polynomials are irreducible whereas
the quotient ring constructor does not. As an example we construct the number
field K = Q(

√
2,
√

3) and the ring L = K(
√

6) using both approaches.

> P<v> := PolynomialRing(K); K := NumberField(v^2-3);

> a^3/b^3; // computes sqrt(2)^3/sqrt(3)^3

2/9*a*b

> R<w> := PolynomialRing(K);

> L<c> := NumberField(w^2-6);

^

Runtime error in ’NumberField’: Argument 1 is not irreducible

// using the quotient ring constructor ...

> P<u> := PolynomialRing(Q); K<a> := quo<P|u^2-2>;

> P<v> := PolynomialRing(K); K := quo<P|v^2-3>;

> R<w> := PolynomialRing(K); L<c> := quo<R|w^2-6>;

> c^3*a^3/b^3;

4/3*a*b*c

We create two polynomials f1 and f2 in K[x] and compute their gcd. First we
use the built-in Gcd command which uses the ordinary Euclidean algorithm and
then we use modgcdA, our modular GCD algorithm which prints the primes used
(30 bit primes).

> P<x> := PolynomialRing(K);

> f1 := x^2+(a*b-a-1)*x-a*b-2*b;

> f2 := x^2+(a*b-4*a+1)*x+a*b-8*b;

> Gcd(f1,f2);

x + a*b

> modgcdA(f1,f2);

prime=1073741789

prime=1073741783

x + a*b

1Lines beginning with the > character are input lines and other lines are Magma output

24

To implemement our modular GCD algorithm we need to compute over K
modulo a prime p. In our example this means we need to compute over the
finite ring (Zp[u]/〈u2 − 2〉)[v]/〈v2 − 3〉. We may construct this ring in Magma
as a composition of univariate quotients using the quo constructor. Below we
do this for p = 7 and then attempt to compute the gcd(f1, f2) mod p using
Magma’s Gcd command.

> Z7 := GaloisField(7);

> R7<z> := PolynomialRing(Z7); K7<a> := quo<R7|z^2-2>;

> R7<y> := PolynomialRing(K7); K7 := quo<R7|y^2-3>;

> P7<x> := PolynomialRing(K7);

> f1 := x^2+(a*b-a-1)*x-a*b-2*b;

> f2 := x^2+(a*b-4*a+1)*x+a*b-8*b;

> Gcd(f1,f2);

^

Runtime error in ’Gcd’: Algorithm is not available for this kind

of coefficient ring

The error arises because Magma refuses to execute the Euclidean algorithm here
because K7 is not a field. So we attempt to implement the (monic) Euclidean
algorithm (from section 2) directly.

> r1 := f1 mod f2; r1; // f2 is already monic

(3*a + 5)*x + (5*a + 6)*b

> u := LeadingCoefficient(r1);

> r1 := u^(-1)*r1; // make r1 monic

^

Runtime error in ’^’: Argument is not invertible

When a zero divisor is encountered, an error occurs, which is expected because
p = 7 is, in fact, a fail prime. For the modular GCD algorithm we would like to
“catch” this error, compute the zero divisor over Zp, and move on to the next
prime, which is what we do in our Maple implementation. Unfortunately there is
no non-local goto facility in Magma. A consequence of this is that our modular
GCD algorithm cannot be implemented in Magma 2.9 without programming
our own polynomial arithmetic operations from scratch. In Magma 2.10, Allan
Steel has implemented IsInvertible2 for rings in Magma, in particular for
quotient rings, so that we can detect a zero divisor before dividing by it. For
example:

> IsInvertible(3*a+5);

false

> IsInvertible(3*a+4);

true 5*a + 5

This enables the following implementation of the Euclidean algorithm for f1, f2 ∈
R[x] where R is a univariate quotient ring over a field, to detect a zero divi-
sor, and if a zero divisor occurs, to compute it by calling the same algorithm

2Because the implementation of IsInvertible uses the extended Euclidean algorithm, it may
output false even though the input is invertible in the ring.

25

recursively. Our implementation outputs a pair of values. The output (true, g)
means the algorithm succeeded and g is the GCD(f1, f2) in R[x]. The output
(false, g) means the algorithm failed and g is the zero divisor in R that the
Euclidean algorithm encountered.

> forward GetZeroDivisor;

> EuclideanAlgorithm := function(f1,f2)

> // Input f1,f2 in R[x], R a univariate quotient ring

> while Degree(f2) ge 0 do

> u := LeadingCoefficient(f2);

> t,i := IsInvertible(u);

> if not t then return false, GetZeroDivisor(u); end if;

> f2 := i*f2; // make f2 monic

> r := f1 mod f2; f1 := f2; f2 := r;

> end while;

> u := LeadingCoefficient(f1);

> t,i := IsInvertible(u);

> if not t then return false, GetZeroDivisor(u); end if;

> return true, i*f1;

> end function;

> GetZeroDivisor := function(u)

> K := Parent(u); // K = R[z]/<m>, m in R[z]

> m := Modulus(K); // m is in R[z]

> P := Parent(m); // P = R[z]

> f := P!u; // this coerces u in K to R[z]

> t,g := EuclideanAlgorithm(m,f);

> if not t then return g; end if;

> return K!g; // coerces g in R[z] back to K

> end function;

The example below shows the Euclidean algorithm hitting the zero divisor a+4
in the subring K7(a) = Z7[u]/〈u2 − 2〉 where note u2 − 2 = (u+ 3)(u+ 4).

> EuclideanAlgorithm(f1,f2);

false a + 4

We now demonstrate our implementation on the two gcd problems from the
previous section, namely, over L = K(

√
6) which is not a field. In the Magma

session below we construct L = K(c) as K[w]/〈w2 − 6〉 where a =
√

2, b =
√

3,
and c =

√
6. The first gcd problem in L[x] is for f1 = x2 + 1, f2 = (c− ab)x+ 1

where the c−ab is not invertible. Our algorithm correctly computes and outputs
w − ab a divisor of w2 − 6, the minimal polynomial for L.

> P<x> := PolynomialRing(L);

> f1 := x^2+a*b*x+1;

> f2 := (c-a*b)*x+1;

> modgcdA(f1,f2);

prime=1073741789

prime failed

hit zero divisor w - a*b

26

The second gcd problem is a multivariate gcd problem in L[x, y, z]. Note that
we convert the flat multivariate polynomial representation used for input to a
recursive univariate tower L[x][y][z] to improve the efficiency of the modular
GCD algorithm.

> R<x,y,z> := PolynomialRing(L,3);

> f1 := (2*x+c*y+a*b+2*z)*(x-a*y*z-c)^2;

> f2 := (2*x+c*y+a*b+2*z)*(y-c*x*z-b)^2;

> modgcdA(f1,f2);

prime=1073741789

prime=1073741783

x + 1/2*c*y + z + 1/2*a*b

3.5 Triangular Sets

In the following subsection we will make a timing comparison comparing our
modular GCD algorithm with the monic Euclidean algorithm on polynomials in
L[x]. The bottleneck of the monic Euclidean algorithm is the many integer gcds
that are computed to add, subtract and multiply the fractions that appear.
Arithmetic with fractions can be reduced by using Z-fraction-free algorithms
for arithmetic in L and could be eliminated entirely if one uses a Z-fraction-free
GCD algorithm for L[x]. In order to properly demonstrate the superiority of
the modular GCD algorithm we want to include in our timing comparison an
implementation of the best possible non-modular GCD algorithm for L[x]. The
fraction-free algorithm of Maza and Rioboo [15] for computing a gcd over a
triangular set applies to our problem. We modify the ideas of Maza and Rioboo
to construct a primitive Z-fraction-free GCD algorithm for L[x] which, based on
our experiments, is clearly the fastest of the non-modular algorithms for gcds
in L[x].

Triangular sets

For 1 ≤ i ≤ n let Pi = Q[z1, z2, ..., zi], mi ∈ Pi, and Ti = 〈m1, ...,mi〉, Ki =
Pi/Ti and let T = Tn, P = Pn and K = Kn. It is clear that Ki is isomorphic to
Li and thus a gcd computation in Li[x] is equivalent to a gcd computation in
Ki[x]. The set of generators m1, ...,mn for T is called a triangular set because
mi is a polynomial in z1, ..., zi only for 1 ≤ i ≤ n. Such sets arise naturally in
elimination algorithms and in that context it will often be the case that one or
more of the mi are reducible over Ki−1 and thus K is not a field in general.

In [15], Maza and Rioboo show how to compute g modulo T by modifying
the subresultant gcd algorithm for K[x] to be fraction-free, that is, to work
inside the ring Z[z1, z2,, zn][x]. Their algorithm outputs either an associate of
the gcd of f1, f2 or it outputs a non-trivial factor of some mi. Their algorithm
works if Z is replaced by any integral domain where gcds exist. In the context
of polynomial systems this would apply if there were parameters in the system.
For simplicity of exposition, let us suppose that for 1 ≤ i ≤ n, mi ∈ Pi[zi]
is monic over Z, that is, den(mi) = 1, so that reduction modulo T does not

27

introduce fractions. And let us assume for the moment that K is a field. We
recall the notion of pseudo division in K[x].

Definition 2 Let f, g ∈ K[x] be non-zero, δ = deg f − deg g + 1 > 0, c = lc(g)
and µ = cδ. The pseudo-remainder and pseudo-quotient of f divided by g are
the polynomials r̄ and q̄, respectively, satisfying µa = bq̄ + r̄ and r̄ = 0 or
deg r̄ < deg b.

The key observation about pseudo-division is that if f and g have no fractions
on input, that is, den(f) = den(g) = 1, and the usual division algorithm is
applied to µf divided by g, no fractions appear in the division algorithm and
den(r̄) = den(q̄) = 1.

Maza and Rioboo define the notion of a quasi-inverse for commutative rings
with identity. We specialize the definition to K.

Definition 3 Let u ∈ K. Then v ∈ K is a quasi-inverse of u if den(v) = 1 and
uv = r for some integer r.

Example: Let u ∈ K = Q[z]/〈m〉 where m is monic and irreducible with
den(m) = 1. If den(u) = 1 then there exist s, t ∈ Z[z] such that sm + tu = r
where r ∈ Z is the resultant of m and x. Thus v = t is a quasi-inverse of u in
K. The polynomials s, t and resultant r can be computed without any fractions
using the extended subresultant algorithm.

Remarks: The definition for quasi-inverse is unique up to multiplication by
a non-zero integer and an algorithm for computing a quasi-inverse of u may
or may not return the quasi-inverse of u with smallest positive r. Notice that
in the case where d = den(u) > 1, if v is a quasi-inverse for du, then dv is a
quasi-inverse for u.

Let us assume for now that we know how to compute a quasi-inverse of
u ∈ K. In the monic Euclidean algorithm for K[x] (see section 2) we make
ri monic, that is, we multiply ri by u−1 where u = lc(ri). To obtain a Z-
fraction-free algorithm in K[x], Maza and Rioboo multiply ri by a quasi-inverse
of u before pseudo-division by ri−1. Suppose den(ri) = 1 and let v be a quasi-
inverse of u = lc(ri). Then den(vri) = 1 and lc(vri) ∈ Z thus quantity µ in
the pseudo-division will be an integer. We obtain the following Z-fraction-free
algorithm for computing an associate of the monic gcd g of f1, f2 ∈ K[x].

1 Set r1 = f̂1, r2 = f̂2.
2 Compute v s.t. vu = r for r ∈ Z where u = lc(r1) and set r1 = vr1.
3 Set i = 2.
4 Compute v s.t. vu = r for r ∈ Z where u = lc(ri) and set ri = vri.
5 Let r̄ be the pseudo-remainder of ri−1 divided ri mod T .
6 If r̄ = 0 then output ri.
7 Set i = i+ 1 and ri = r̄ and go to step 4.

28

Although this algorithm is Z-fraction-free the size of the integer coefficients
blows up exponentially. This is caused by multiplication by the integer µ in
pseudo-division and also by multiplication by r when multiplying by the quasi-
inverse v. This blowup can be reduced either by dividing out by known integer
factors, which is the approach that Maza and Riboo take in [15] in modifying the
subresultant GCD algorithm, or by making ri and r̄ primitive, that is, dividing
out by the gcd of their integer coefficients. Which approach is better depends
on the relative cost of computing gcds verses multiplication and division in the
base coefficient domain which in our case is Z. We recall the notion of integer
primitive part and integer content for K[x].

Definition 4 Let f ∈ K[x] with den(f) = 1. The integer content of f, denoted
ic(f) is the gcd of the integer coefficients of f when f is viewed as a polynomial
in Z[z1, .., zn][x]. The Z-primitive part of f, denoted pp(f) is f/ic(f). Thus we
have f = pp(f) ic(f) and pp(f) = f̂ .

After computing ri = vri in step 4 we set ri = pp(ri) and also after computing
r̄, in step 5 we set r̄ = pp(r̄). The resulting GCD algorithm that we obtain is a
primitive Z-fraction-free algorithm.

It remains to describe how we compute a quasi-inverse of u ∈ K. One way to
do this would be to compute u−1 using the extended Euclidean algorithm applied
to mn and u in Kn−1[zn] and then clear fractions. In the same way we have
just described how to modify the monic Euclidean algorithm for computing a
gcd in K[x] where K = Kn−1[zn]/〈mn〉, to be Z-fraction-free, Maza and Rioboo
modify the extended monic Euclidean algorithm in Kn−1[zn] to be fraction-free
by using pseudo-division and multiplication by quasi-inverses in Kn−1. Again,
an eponential blow up occurs which can be reduced by dividing out by known
integer factors or it can be minimized by dividing out by integer contents. To
fix the details of this algorithm we present our Maple code for computing the
quasi-inverse of u ∈ K and integer r using our Maple data structure from the
previous section.

quasiInverse := proc(x) local Q,K,P,m,u,r0,r1,t0,t1,i,c,den,g,pr,mu,pq;

Input x in K = K_{n-1}[z]/<m(z)>

Output v in K and r in Z^+ s.t. v x = r and r = den(1/x)

Q := [0,[],[]]; # field of rational numbers

K := getring(x);

if K=Q then u := rpoly(x); RETURN(rpoly(denom(u),Q), numer(u)) fi;

m := getalgext(K); # m is a polynomial in z

u := liftrpoly(x); # u is a polynomial in z

u := ipprpoly(u,’c’); # x = c u and u for u primitive over Z

P := getring(m); # P = K[i-1][z]

r0,r1,t0,t1 := m,u,rpoly(0,P),rpoly(1,P);

while degrpoly(r1) > 0 do

(i,den) := quasiInverse(lcrpoly(r1));

(r1,t1) := mulrpoly(i,r1),mulrpoly(i,t1);

g := igcd(icontrpoly(r1), icontrpoly(t1));

(r1,t1) := iquorpoly(r1,g),iquorpoly(t1,g);

29

pr := ippremrpoly(r0,r1,’mu’,’pq’);

if iszerorpoly(pr) then ERROR("inverse does not exist", [r1,P]) fi;

r0,r1,t0,t1 := r1,pr,t1,subrpoly(mulrpoly(mu,t0),mulrpoly(pq,t1));

g := igcd(icontrpoly(r1), icontrpoly(t1));

(r1,t1) := iquorpoly(r1,g),iquorpoly(t1,g);

end while;

(v,r) := quasiInverse(lcrpoly(r1),args[2..nargs]);

t1 := mulrpoly(v,t1); g := igcd(icontrpoly(t1),r);

t1 := scarpoly(denom(c),iquorpoly(t1,g));

RETURN(subsop(1=K,t1), numer(c)*r/g);

end;

We remark that at the start of the loop we have sm + t1u = r1 for some
r1 in Ki−1[z] (and some s ∈ Ki−1[z] which is not computed). Thus when the
loop exits we have t1u ≡ r1 mod m for a constant polynomial r1 ∈ Ki−1[z].
We multiply t1 by v the quasi-inverse of r1 so that we have t1x ≡ r mod m for
some r ∈ Z. But multplication by v introduces an integer multiplier and since
this algorithm algorithm is recursive it is critical that we clear it here. Thus we
compute g the gcd of r and the coefficients of t1 and divide through by g.

We can improve the performance of this algorithm further by modifying
pseudo-division as follows; instead of multiplying f1 by µ and then performing
a normal long division, we modify the division algorithm to multiply the cur-
rent pseudo remainder ri−1 by the smallest integer s.t. the leading coefficient
of the divisor ri will divide the leading coefficient of ri exactly. We call this
Z−primitive pseudo-division. This is what the subroutine ippremrpoly does.
This improvement gives us typically another 30% improvement in quasi-inverse
computation.

Finally, what if K is not a field? Suppose we call the algorithm with u ∈ K.
If the algorithm returns normally, it outputs v ∈ K and r ∈ Z such that vu = r.
Then u is invertible for u−1 = v/r. Suppose an error occurs and the algorithm
outputs g, P . Then g ∈ P = Ki−1[zi] for some 1 ≤ i < n is a non-trivial factor
of mi ∈ P and thus we have encountered a zero divisor w ∈ Ki.

Of the two, Maza and Rioboo’s algorithm and our primitive Z-fraction-free
algorithm which is derived from Maza and Rioboo’s algorithm, ours appears to
be much faster. In [19], we showed that there is a cubic growth in the size of the
integers in Maza and Rioboo’s algorithm whereas the growth in the primitive
Z-fraction-free algorithm is linear.

3.6 Timing Results

In this section we compare the Magma and Maple implementations of our mod-
ular GCD algorithm with the default Maple and Magma system GCD imple-
mentations for a sequence of univariate gcd problems over a number field L of
degree 24. The number field L = Q(α, β) used in our test problems is defined
by mα(z) = z8 − 40z6 + 352z4 − 960z2 + 576 and mβ(z) = z3 − 11z − 13. The
gcd problems are constructed as follows. Let

g = x2 + 123βx+ αx/13 + 531α3 − 199,

30

a = x2 + αx/12 + 123β − 25α3 + 251, and

b = x2 + β/21 + 123αx+ 17α3 − 173.

For k = 0, 1, 2, ..., n the input polynomials f1 and f2 are defined as follows:
f1 = gkan−k and f2 = gkbn−k.

Thus we consider a sequence of gcd problems over L where the degree of
the input polynomials is fixed at 2n and the gcd(f1, f2) = gk, is a polynomial
of degree 2k. The reason for this choice of gcd problems, where the degree of
the gcd is increasing relative to the degree of the inputs, is that it includes a
range of types of gcd problem that occur in practice. In comparison with the
Euclidean algorithm, we expect our modular GCD algorithm to perform best
for small k and worst for large k.

The following comparison is made between Maple 9 and Magma 2.10 on an
AMD Opteron running at 2.0 GHz for n = 10, that is, the degree of the input
polynomials f1 and f2 is 20. All timings are in CPU seconds. The timings in
columns 1 and 4 are for our Maple and Magma implementations of our mod-
ular Gcd algorithm where the number of primes required for reconstruction is
indicated in parens. The Maple timings in column 2 are for the monic Eu-
clidean. The Maple timings in column 3 are for the primitive fraction free GCD
algorithm over L. This algorithm uses a fraction-free algorithm for computing
pseudo-inverses in L - it is the best non-modular algorithm. The Magma tim-
ings in columns 5 and 6 are for the monic Euclidean algorithm over L. where
the elements of L are created using Magma’s NumberField constructor (column
5) and Magma’s quotient field constructor (column 6).

Maple Rel 9 ZN Magma 2.10
k 1 2 3 4 5 6
0 .27 (1) NA NA 0.06 (1) NA 200.4 NA
1 1.3 (3) NA NA 0.09 (2) NA 151.6 NA
2 1.5 (4) NA NA 0.12 (3) NA 106.1 NA
3 2.4 (6) 367.3 (64%) NA 0.16 (4) NA 66.1 NA
4 3.1 (9) 193.7 (58%) NA 0.20 (5) NA 37.8 NA
5 3.4 (11) 90.0 (53%) NA 0.21 (6) 229.0 (96%) 18.3 808.5
6 3.4 (13) 37.7 (46%) NA 0.20 (7) 99.6 (94%) 7.3 282.4
7 3.1 (15) 13.0 (38%) 176.2 0.19 (8) 32.6 (90%) 2.1 73.7
8 2.4 (17) 3.5 (26%) 39.5 0.19 (10) 5.6 (93%) 0.4 12.4
9 1.6 (19) 0.8 (13%) 2.0 0.14 (11) 0.1 (99%) 0.1 1.1

10 1.0 (22) 0.1 0.0 0.11 (12) 0.0 0.0 0.0

Table 1: NA means not attempted

Remarks

1. The number of primes (indicated in parens) for the modular algorithm is
more in Maple than in Magma. This is because Maple 9 uses 15.5 bit

31

primes for portability [17] and Magma 2.10 uses 30 bit primes [23].

2. Even allowing for the fact that Magma uses fewer primes than Maple, the
Magma implementation is considerably faster. The Maple implementation
is using compiled code for arithmetic in Z, Q and Zp[z] but not for rational
reconstruction, nor arithmetic in Q[x] and Zp[z]/〈m(z)〉[x] wheres Magma
does. Thus less time is spent in the Magma interpreter.

3. The times for both implementations increase to a maximum at k = 6 then
decrease even though the number of primes increases linearly. The reason
is that the cost of the modular gcds, which is O((n/2+k/2+1)(n+1−k))
coefficient operations, is decreasing quadratically to O(n+1) as k increases
to n, and the cost of the trial divisions, which is O((k + 1)(n + 1 − k))
coefficient operations in L, is also decreasing after k = n/2 quadratically
to O(n+ 1).

4. The reason for the huge difference in times between columns 5 and 6 is
because of the different representation of field elements being used and
the different algorithm for inverting field elements. In column 5 we used
the NumberField constructor to build L which represents field elements
as as polynomials over Z with denominators factored out. In column 6 we
have used the quotient ring constructor to build L which doesn’t. Thus
NumberField avoids arithmetic with fractions. The second reason is that
NumberField uses a modular algorithm to compute inverses in L which is
where, by experiment, most of the time is spent on this data.

5. The data clearly shows the superiority of the modular GCD algorithm.
And yet the non-modular timings are still impressive. This is partly be-
cause Maple 9 and Magma 2.10 both have asymptotically fast integer
arithmetic. However, the data also shows that the Euclidean algorithm is
faster than the modular GCD algorithm when deg(g) is large. The effi-
ciency of the modular GCD algorithm can be improved when g is large if
we reconstruct also f2/g, the smaller cofactor. We will show timings for
this next.

The second set of data below is for the same gcd problem set but with n = 15
instead of n = 10. The four sets of timings, all in CPU seconds, in columns 0,
1, 3, and 5 are for the primitive Z-fraction-free algorithm and for three versions
of our Maple implementation of the modular GCD algorithm. In column 1
we are using Wang’s rational reconstruction algorithm (see [26]). In column
3 we are instead using Monagan’s maximal quotient rational reconstruction
algorithm (MQRR) from [18]. In column 5 we also reconstruct the smaller
cofactor, stopping when rational recocnstruction succeeds on the cofactor or
the gcd. In columns 2, 4 and 6, the first number in parens is the number of
(good) primes that the modular GCD algorithm and second number indicates
the time spent in trial division.

32

k 0 1 2 3 4 5 6
0 - 0.659 (1, 0%) 0.669 (1, 0%) 0.660 (1, 0%)
1 - 1.631 (2, 17%) 1.621 (2, 17%) 1.599 (2, 16%)
2 - 2.679 (3, 25%) 2.681 (3, 25%) 2.710 (3, 26%)
3 - 4.529 (5, 29%) 3.860 (4, 33%) 3.860 (4, 34%)
4 - 6.859 (8, 27%) 5.600 (6, 33%) 5.689 (6, 34%)
5 - 7.910 (10, 24%) 6.590 (7, 37%) 7.500 (7, 33%)
6 - 10.32 (12, 28%) 7.350 (8, 39%) 8.449 (8, 33%)
7 - 11.33 (14, 28%) 7.820 (9, 38%) 9.140 (9, 33%)
8 - 11.68 (16, 27%) 8.000 (10, 37%) 9.350 (10, 32%)
9 268. 11.71 (18, 25%) 7.809 (11, 36%) 8.119 (9*, 34%)

10 126. 11.67 (21, 23%) 7.430 (12, 33%) 6.659 (8*, 37%)
11 53.2 10.19 (22, 21%) 6.559 (13, 30%) 4.530 (6*, 43%)
12 19.1. 8.840 (25, 17%) 5.539 (14, 25%) 3.030 (5*, 44%)
13 5.49. 9.170 (27, 8%) 4.170 (15, 17%) 1.470 (3*, 52%)
14 1.21 4.120 (29, 6%) 3.310 (17, 8%) 0.580 (2*, 52%)
15 0.14 2.030 (31, 0%) 2.259 (18, 0%) 0.149 (2*, 34%)

Table 2: (*) means cofactor reconstructed and (-) not attempted.

4 Conclusion and Remaining Problems

Let L be a number field of degree D presented with l field extensions. Let
f1, f2 ∈ L[x] and let g be the monic gcd of f1 and f2. We have presented a
modular GCD algorithm which computes g without converting to a single field
extension and without computing discriminants (Thereom 1). Our goal was to
design an algorithm with a complexity that is as good as classical polynomial
multiplication and division in L[x]. Recall that H(g) denotes the magnitude
of the largest integer appearing in the rational coefficients of g ∈ L[x]. Let
m = logH(g) and M = max(logH(f1), logH(f2)). Our algorithm incremen-
tally reconstructs g from its image modulo k machine primes such that k is
proportional to logH(g). It uses rational reconstruction. The reason for using
an incremental approach with trial division rather than using a bound is that
there are no good bounds for H(g), in particular, when H(g) is much smaller
than min(H(f1), H(f2)).

Our implementations of the algorithm in Maple and Magma demonstrate its
effectiveness compared with non-modular algorithms. Both implementations use
a recursive dense representation for field elements and for polynomial variables
to eliminate data structure overhead in the algorithm which otherwise may ruin
a modular implementation.

Although our goal was to construct an algorithm which is practical in the
sense that the complexity is comparable to polynomial multiplication and eact
division, there are other possible designs for a modular GCD algorithm for L
which may be asymptotically fast. If we apply reconstruction after 1, 2, 4, 8, 16, ..., 2n

33

primes, we can reduce the reconstruction cost to m log2m log logm per integer
coefficient by using the fast Chinese remaindering algorithm (see 10.3 in [7]) and
fast rational reconstruction algorithm (see (1.9) in [22]). This, however, has no
asymptotic benefit unless we can also reduce the coefficients in the inputs mod-
ulo the primes more rapidly than in O(m2) operations in Zp per coefficient.
One way to do this is to reduce the inputs modulo the product of 2n primes
using an asymptotically fast integer division algorithm, and then to recursively
reduce those images modulo the product of the first 2n−1 primes and the last
2n−1 primes until we have the inputs modulo all 2n primes. The complexity of
this splitting up process has the same complexity as that of the fast Chinese
remaindering, namely, O(m̃ = m log2m log logm) per coefficient. However such
algorithms require m to be many (fifty thousand) thousands of bits long before
a speedup is obtained in practice.

Write L = Q(α1, . . . , αl) and D = d1 · · · dl where di is the degree of the min-
imal polynomial of αi. If the degree D of L over Q is high then the use of fast
multiplication techniques can speed up the arithmetic in L mod p. In particular,
if l = 1 we can multiply and divide in Zp[z] in O(D̃ = D logD log logD). To mul-
tiply polynomials in Lp[x] where Lp = Zp[z]/〈m(z)〉 rapidly, first multiply them
as bivariate polynomials in Zp[z, y] then reduce the coefficients modulo m(z)
using asymptotic fast division. To multiply the bivariate polynomials rapidly,
first convert them, in linear time to univariate polynomials using the subtitution
y → zD. This large multiplication in Lp[z] is in O(ND(log(ND) log log(ND))).
Now a fast multiplication in Lp[x] enables a fast GCD computation in Lp[x] in
O(ND log2(ND) log log(ND))) = O(ÑD̃). Thus for l = 1, we have sketched
out an asymptotically modular GCD algorithm which runs in O(M̃ND+mÑD̃)
time with high probability.

If l > 1, asymptotically fast multiplication and division in Lp will be less
effective than if l = 1. This suggests that we first convert to a single field exten-
sion. Using a primitive element in characteristic 0 should be avoided because it
can cause coefficient growth. But in characteristic p this is not a concern. Let
γ = c1α1 + c2α2 + ... + clαl be a primitive element. Using linear algebra one
can compute the minimal polynomial m(z) ∈ Zp[z] for γ, and also the repre-
sentation for all D power products αe11 × ...× α

el
l in Zp[z] in O(D3) arithmetic

operations in Zp and then make the substitutions for the power products in f1
and f2 in O(ND2) arithmetic operations in Zp. If N, the degree of f1 and f2
is high enough, the time saved by the fast multiplication techniques in the Eu-
clidean algorithm mod p will be larger than the cost of the conversion to a single
extension mod p. However, if we want to do this then we really need also to
think about how to convert to a single field extension faster than O(D3 +ND2).
We do not know how to do this.

Acknowledgment

We acknowledge John Cannon and the Magma group for hosting in Sydney in
2003 and Allan Steel for helping us with our Magma implementation. We also
acknowlege Mark Moreno Maza for providing details of his implementation of

34

the fraction free algorithm in [15].

References

[1] J. A. Abbott, R. J. Bradford, J. H. Davenport (1986). The Bath Algebraic
Number Package, Proceedings of SYMSAC ’86, ACM press, pp. 250–253.

[2] R. J. Bradford (1989). Some Results on the Defect, Proceedings of ISSAC
’89, ACM press, pp. 129–135.

[3] W. S. Brown (1971). On Euclid’s Algorithm and the Computation of Poly-
nomial Greatest Common Divisors, J. ACM 18, pp. 476–504.

[4] J. J. Cannon (2003). Magma Handbook,
http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm

[5] G. E. Collins and M. J. Encarnacion (1995). Efficient Rational Number
Reconstruction. J. Symbolic Computation 20, pp. 287–297.

[6] M. J. Encarnacion (1995). Computing GCDs of Polynomials over Algebraic
Number Fields, J. Symbolic Computation 20, pp. 299–313.

[7] J. von zur Gathen and J. Gerhard (1999). Modern Computer Algebra. Uni-
versity of Cambridge Press.

[8] The GNU Multiple Precision Arithmetic Library. Copyright, Free Software
Foundation, Inc. (2002). http://www.gnu.org/software/gmp/gmp.html

[9] E. Hecke (1981). Lectures on the Theory of Algebraic Numbers, Springer
Graduate Texts in Mathematics 77.

[10] D. E. Knuth (1998). The Art of Computer Programming: Volume 2
Seminumerical Algorithms Third Edition, Addison Wesley, section 4.5.3.

[11] L. Langemyr, S. McCallum (1989). The Computation of Polynomial GCD’s
over an Algebraic Number Field, J. Symbolic Computation 8, pp. 429–448.

[12] L. Langemyr (1991). An Asymptotically Fast Probabilistic Algorithm for
Computing Polynomial GCD’s over an Algebraic Number Field. Proc. of
AAECC ’90, Springer-Verlag LNCS 508, pp. 222–233.

[13] D. Lazard (1992). Solving Zero-dimensional Algebraic Systems. J. Symbolic
Comp. 13, 117–131.

[14] M. Kalkbrenner (1993). A Generalized Euclidean Algorithm for Computing
Triangular Representations of Algebraic Varieties. J. Symbolic Comp. 15,
143–167.

[15] M. Moreno Maza, R. Rioboo (1995). Polynomial Gcd Computations over
Towers of Algebraic Extensions, Proc. of AAECC-11 Springer-Verlag LNCS
948 (1995), pp. 365–382.

35

[16] Maple 9 Introductory Programming Guide M. B. Monagan, K. O. Ged-
des, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, P. DeMarco.
Maplesoft, 2003. ISBN: 1-894511-43-3.

[17] M. B. Monagan (1993). In-place arithmetic for polynomials over Zn. Pro-
ceedings of DISCO ’92, Springer-Verlag LNCS, 721, pp. 22–34.

[18] M. B. Monagan (2004). Maximal Quotient Rational Reconstruction: An
Almost Optimal Algorithm for Rational Number Reconstruction. Proceedings
of ISSAC 2004, ACM Press, pp. 243–249.

[19] M. B. Monagan, M. van Hoeij (2004). Algorithms for Polynomial GCD
Computation over Algebraic Function Fields. Proceedings of ISSAC 2004,
ACM Press, pp. 297–304.

[20] M. B. Monagan, A. D. Wittkopf (2000). On the Design and Implementation
of Brown’s Algorithm over the Integers and Number Fields, Proceedings of
ISSAC 2000, ACM Press, pp. 225–233.

[21] P .L Montgomery (1992). An FFT Extension of the Elliptic Curve Method
of Factorization. PhD thesis, University of California, Los Angeles.

[22] V .Y Pan, X. Wang (2002). Acceleration of the Euclidean Algorithm and
Extensions, Proceedings of ISSAC ’02, ACM Press, pp. 207–213.

[23] A. Steel (2003). Private communication.

[24] D. Stoutemyer (1984). Which Polynomial Representation is Best? Surprises
Abound! Proceedings of the 1984 Macsyma User’s Conference, pp. 221–243.

[25] B. M. Trager (1976). Algebraic Factoring and Rational Function Integra-
tion. Proc. of ISSAC ’76, ACM Press, pp 219–226.

[26] P. Wang (1981). A p-adic Algorithm for Univariate Partial Fractions. Pro-
ceedings of SYMSAC ’81, ACM Press, pp 212-217.

[27] P. Wang, M. J. T. Guy, J. H. Davenport (1982). p-adic Reconstruction of
Rational Numbers. in SIGSAM Bulletin, 16, No 2.

[28] R. Zippel (1979). Probabilistic algorithms for sparse polynomials. Proceed-
ings of EUROSAM ’79, Springer-Verlag LNCS, pp. 216–226.

36

