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Abstract. We modify an old algorithm for expanding powers of dense
polynomials to make it work for sparse polynomials, by using a heap to
sort monomials. It has better complexity and lower space requirements
than other sparse powering algorithms for dense polynomials. We show
how to parallelize the method, and compare its performance on a series
of benchmark problems to other methods and the Magma and Singular
computer algebra systems.
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1 Introduction

Expanding powers of sparse polynomials is an elementary function of computer
algebra systems. Despite receiving a lot of attention in the 1970’s, a fragmented
situation exists today where the fastest sparse methods make time and memory
tradeoffs that improve one case at the expense of others. Thus, programmers of
computer algebra systems must implement multiple routines and carefully select
among them to obtain good performance.

For an introduction to this problem and current methods it is hard improve on
the papers by Richard Fateman [1, 2]. He characterizes the relative performance
of the algorithms by counting coefficient operations. We briefly discuss these
results. Let f be a polynomial with t terms to be raised to a power k > 1. We
use fi to refer to the ith term of f and #f to refer to the number of terms of f .
We consider two cases: sparse and dense.

In the sparse case, the terms of f interact as if they were algebraically inde-
pendent, e.g. as in f = x1 + x2 + · · ·+ xt. Expanding fk creates

(
k+t−1
k

)
terms,

the most possible. In the dense case the terms of f combine as much as possible,
e.g. as in f = 1 + x+ x2 + · · ·+ xt−1. If there are no cancellations, fk will have
k(t− 1) + 1 terms.

We want a sparse algorithm to have good performance in the dense case, to
allow for a smooth transition to dense methods inside a general purpose routine.
The literature suggested that current sparse methods do an order of magnitude
too much work in the dense case, so we developed new methods to address this.
This in turn forced us to reassess sparse and dense algorithms for powering, as
the consensus heavily favors dense algorithms.

Our contribution is two methods for powering sparse polynomials. The first,
Sparse SUMS, has the best performance in the dense case. The second method,
which we call FPS, is a modification to improve performance in the sparse case.



Let us review the methods in the literature.

RMUL computes f i = f · f i−1 for i = 2 . . . k. The memory taken by f i−2 may
be reused to hold f i so that total storage is at most twice the result.

RSQR computes f i = (f i/2)2 for i = 2 . . . blog2 kc, with extra multiplication by
f at each 1 in the binary expansion of k. E.g. f13 = f11012 = (((f)2 · f)2)2 · f .

Gentleman and Heindel note in [4, 5] that RSQR is vastly inferior to RMUL
in the sparse case. RSQR also requires asymptotically fast dense multiplication
to improve on RMUL in the dense case. Therefore, RSQR is a dense algorithm.
The best feature of RMUL is that it aggressively combines like terms. This can
be of great importance on large problems which “fill-in”. Its weakness is sparse
problems and high powers.

BINA selects f1 ∈ f and expands g = (f1 + 1)k using the binomial theorem. It

expands (f − f1)i for i = 2...k using RMUL and merges fk =
∑k
i=0 gi · (f − f1)i.

BINB is similar to BINA except that f is split into equal-sized parts f = g+h.
It expands and merges fk =

∑k
i=0

(
k
i

)
· gi · hk−i.

Binomial methods originate with Fateman in [1], who shows that BINB is
nearly optimal in the sparse case. Alagar and Probst [11] improve on this using
recursion, and Rowan [16] expands the set of powers {gi} more efficiently, both
for the sparse case only. For the dense case, Fateman in [2] shows that BINA is
comparable to RMUL and much faster than BINB. The tradeoff made in BINB
assumes that few like terms combine. This makes it unsuitable for our purpose.
In BINA, we avoid unbalanced merging by storing all (f − f1)i and performing
a simultaneous n-ary merge that multiplies by each gi inline. This makes BINA
extremely fast in most cases, at the cost of extra memory.

MNE generates all combinations of terms with multinomial coefficients, see [6].
This quickly becomes infeasible in the dense case.

FFT performs fast multipoint evaluation at roots of unity modulo primes, uses
modular exponentiation on the values, then performs fast interpolation. Over Z
it uses multiple primes and Chinese remaindering.

As noted by Ponder in [10], the FFT can be competitive in practice because
high powers of sparse polynomials tend to fill in. For multivariate polynomials,
one can use the Kronecker substitution as suggested by Moenck [9], however this
separates the variables with very high degrees and thus limits gains from fill-in.
A weakness of the FFT is that small polynomials raised to high powers over Z
require many large FFTs. For that case the following classical method is faster,
a crucial fact which was brought to our attention by Greg Fee.

SUMS is a dense method. Let f =
∑d
i=0 fix

i. To compute g = fk =
∑kd
i=0 gix

i

we compute g0 = fk0 and use the formula gi = 1
if0

∑min(d,i)
j=1 ((k + 1)j − i)fjgi−j

for i = 1 . . . kd.

The SUMS algorithm is originally due to Euler and is used to exponentiate
power series, see [2, 3, 8]. The algorithm is extremely fast for small polynomials
raised to large powers, as it is linear in k and quadratic in d.



Two features of the SUMS formula recall the sparse multiplication algorithm
of Johnson [7]. First, it computes each new term of the result in order. Second,
it merges pairwise products fjgi−j of equal degree, but scaled by ((k+ 1)j − i).
Our starting point was to make a sparse method by skipping over products that
a sparse representation omits, that is, where fj or gi−j equals zero.

What methods do computer algebra systems presently use for this problem?
Singular 3.1 uses RMUL. Magma 2.17 uses RSQR. Maple 16 selects among our
implementations of RMUL, BINA, and RSQR. For univariate powering, Maple
estimates when RSQR will beat BINA. For multivariate powers, Maple bounds
the extra memory needed for BINA and uses RMUL when this is too large.

For the underlying multiplications, Magma and Maple use dense algorithms
for univariate polynomials over Z. Magma uses the Schönhage-Strassen method

with a single modulus of the form 22
k

+ 1. Maple evaluates at a large integer of
the form 264i to leverage the FFT from integer multiplication. For multivariate
multiplications, Maple, Magma, and Singular all use classical sparse algorithms
and distributed polynomial representations. Maple uses our codes from [12, 14].

Our paper is organized as follows. Section 2 develops the Sparse SUMS and
FPS algorithms and describes our implementation. The complexity of powering
is discussed in Section 2.1. Section 2.2 describes our approach to parallelization
which we also used successfully for sparse polynomial division in [15]. Section 3
compares the performance of the algorithms on benchmark problems.

2 Sparse Sums

For completeness we briefly derive SUMS. Let f =
∑d
i=0 fix

i ∈ Q[x] and g = fk.
Then g′ = k fk−1 · f ′ and f · g′ = k g · f ′. Equating terms of degree i− 1 in

(f0 + f1x+ · · · )(g1 + 2g2x+ · · · ) = k(g0 + g1x+ · · · )(f1 + 2f2x+ · · · )

we obtain
min(d,i)∑
j=0

fjx
j · (gi−jxi−j)′ =

min(d,i)∑
j=1

kgi−jx
i−j · (fjxj)′

from which we isolate gi to obtain the formula for i > 0. ut

Algorithm: Dense SUMS (descending order).

Input: dense polynomial f = f0 + f1x+ · · ·+ fdx
d, fd 6= 0 stored as an

array [f0, f1, . . . , fd] indexed from zero, and a positive integer k.

Output: dense polynomial g = fk.
1 g := an array with kd+ 1 elements indexed from zero

2 gkd := fk
d

3 for i from kd− 1 to 0 by −1 do
4 e := kd− i
5 c :=

∑min(d,e)
j=1 ((k + 1)j − e) · fd−j · gi+j

6 gi := c/(e · fd)
7 return g



Our first task is to modify SUMS to produce the terms in descending order,
dividing by the leading coefficient of f rather than the constant term f0. This
leads into the sparse version and solves the problem of what to do when f0 = 0.

In algorithm Dense SUMS we identify i as the degree of the next term being
computed for g. To compute gi, we merge products of degree i + d, scaling by
((k + 1)j − e). To make our sparse algorithm, we express this scale factor using
the terms’ degrees. To merge fαx

α × gβxβ where α + β = i + d, we scale by
((k + 1)j − e) = β − kα.

The sparse version of SUMS is presented below. It uses a heap of pointers
into f and g to combine only the products fi × gj . The idea is to use a heap to
merge the set of all pairwise products fi× gj in descending order. A property of
X +Y sorts, namely that fi× gj is strictly greater than fi× gj+1 and fi+1× gj ,
is used to reduce the number of products compared in the heap where possible.
This optimization is fully exploited in our other heap based routines [12, 14, 15].
Also note, because the coefficients of g are much larger than those of f , there is
an advantage to multiplying (β − kα) · cof(fi) first.

Algorithm: Sparse SUMS.
Input: sparse univariate polynomial f = f1 + f2 + · · ·+ ft ∈ Z[x]

with terms descending in degree, and a positive integer k.

Output: sparse polynomial g = fk.
1 H := an empty heap ordered by degree with maximum element H1

2 g := fk
1

3 insert f2 × g1 = (2, 1, deg(f2) + deg(g1)) into H
4 while |H| > 0 and deg(H1) ≥ deg(f) do
5 M := deg(H1); C := 0; Q := {};
6 while |H| > 0 and deg(H1) = M do
7 (i, j,M) := extract max(H)
8 (α, β) := (degree(fi), degree(gj))
9 C := C + (β − kα) · cof(fi) · cof(gj)
10 Q := Q ∪ {(i, j)}
11 for all (i, j) ∈ Q do
12 if j < #g and (i = 1 or fi−1 × gj+1 was merged) insert fi × gj+1 into H
13 if i < #f and fi+1 × g not in H then insert fi+1 × gj into H
14 if C 6= 0 then
15 C := C/((deg(g1)−M) · cof(f1))

16 g := g + C xM−deg(f1)

17 if f2 × g has no term in H then insert f2 × g#g into H
18 return g

In computer memory, the heap is an array of size O(#f) with pointers into
a second array for the products fi × gj . For most inputs (1000 terms or fewer)
these structures fit inside the L1 cache. For each fi ∈ f , we maintain a pointer
to the next term gj ∈ g for which we have yet to merge fi × gj . This makes the
test for whether fi−1 × gj has been merged easy. We simply check if the pointer
for fi−1 has advanced beyond gj . We set a bit to indicate whether each product
fi × gj is in the heap or not.



2.1 Complexity and FPS

Theorem 1. Sparse sums expands g = fk ∈ Z[x] using (2 #f − 1) #g + 2 log k
coefficient multiplications, #g divisions, and O(#f#g log #f) comparisons.

Proof. Binary powering g1 = fk1 does at most 2 log k multiplications. We merge
the set of all products {fi × gj} for 2 ≤ i ≤ #f and 1 ≤ j ≤ #g with the heap.
Each product requires two multiplications in line 9 and O(log #f) comparisons
for the heap in lines 7, 10 and 13. We do not count the exponent multiplication
in β − kα. To construct each term of g, we perform one multiplication and one
division in line 15. ut

For dense polynomials the O(#f#g log #f) comparisons for the heap are a
bottleneck. We use a heap optimization called chaining in all of our algorithms
that reduces the cost of heap operations to O(1) in the dense case. See [13, 14].
This optimization provides large gains on most problems.

For multivariate polynomials we use the Kronecker substitution to treat the
problem as univariate. In general, one can use any invertible map of monomials
to integers so long as monomial multiplications correspond to integer additions.
The mapping has two caveats that we have not seen in other sparse algorithms.
Because we multiply by the exponents, any padding in the map that increases
the univariate degrees can also increase the cost of arithmetic in Sparse SUMS.
And, because we divide by the exponents, we can not run the algorithm mod p
if the degree of g under the mapping is greater than or equal to p.

Our benchmarks revealed one case where Sparse SUMS is highly inefficient.
For low powers of extremely sparse polynomials, the set of monomials {fi × gj}
is much larger than #g, and the algorithm spends a substantial amount of time
computing zero. On multivariate problems we can skip monomials not divisible
by f1, but the resulting improvement is often modest.

Instead, we observe that Sparse SUMS could construct fk+1 almost for free
because it already multiplies every term of g = fk by every term of f except f1.
To exploit that fact, we created a variant of the algorithm that computes fk−1

and outputs fk as a side effect. We call this alternative method FPS.

Table 1. Coefficient multiplications to power (t terms)k.

sparse case dense case

RMUL
(k + t− 1)!

(t− 1)!(k − 1)!
− t t(k − 1)(kt− k + 2)/2 ∈ O(k2t2)

BINA
t · (k + t− 2)!

(t− 1)!(k − 1)!
+ 2k t(k − 1)(kt− 2k + 4)/2 + 2 ∈ O(k2t2)

BINB
(k + t− 1)!

k!(t− 1)!
+ . . . k2(k − 1)(t− 2)2/24 + · · · ∈ O(k3t2)

SUMS
(2t− 1)(k + t− 1)!

k!(t− 1)!
(2t− 1)((t− 1)k + 1) ∈ O(kt2)

FPS
(2t− 1)(k + t− 2)!

(k − 1)!(t− 1)!
(2t− 1)((t− 1)(k − 1) + 1) ∈ O(kt2)



Table 1 counts coefficient multiplications to compare the cost of algorithms.
The sparse result has (k+ t− 1)!/(k!(t− 1)!) terms, so BINB is nearly optimal.
RMUL is more expensive by a factor of k, slowing it down on high powers, and
BINA by a factor of kt/(k + t− 1), which balances contributions from k and t.
Sparse SUMS adds a factor of (2t−1) and FPS a factor of (2t−1)k/(k+ t−1).
Those methods also do divisions, which matter here but do not dominate.

The FFT is inefficient for sparse problems. One may assume these problems
have distinct variables, e.g. (1 + x+ y + z)50, and Kronecker substitution must
separate variables in the result. For t terms to the power k, we must replace the
ith term by at least x(k+1)i−2

for i > 2, so the degree of fk is d = k (k + 1)t−2.

An FFT does about 1
2n log2 n multiplications, where n is the first power of

2 greater than d. For example, (1 + x+ y + z)50 will have d = 50 · 512 = 130050
and n = 214. The two FFT calls do about n log2 n = 2.29× 106 multiplications,
but SUMS and FPS require 1.64 × 105 and 1.55 × 105 operations respectively.
In the dense case, SUMS and FPS are O(kt2) and the other sparse algorithms
are O(k2t2). Only the FFT can beat them, for sufficiently large polynomials.

We present FPS below, by simply adding lines to the description of SUMS.
To lower the cost, cof(fi) · cof(gj) can be reused in lines 9 and 11, and in lines
17 and 18 we can compute C := C/(deg(g1)−M); S := S+C; C := C/cof(f1).

Algorithm: FPS.
Input: sparse univariate polynomial f = f1 + f2 + · · ·+ ft ∈ Z[x]

with terms descending in degree, and a positive integer k.

Output: sparse polynomial h = fk.
1 H := an empty heap ordered by degree with maximum element H1

2 g := fk−1
1 ; h := fk

1

3 insert f2 × g1 = (2, 1, deg(f2) + deg(g1)) into H
4 while |H| > 0 do
5 M := deg(H1); C := 0; S := 0; Q := {};
6 while |H| > 0 and deg(H1) = M do
7 (i, j,M) := extract max(H)
8 (α, β) := (degree(fi), degree(gj))
9 S := S + cof(fi) · cof(gj)
10 if M ≥ deg(f1) and β 6= (k − 1)α then
11 C := C + (β − (k − 1)α) · cof(fi) · cof(gj)
12 Q := Q ∪ {(i, j)}
13 for all (i, j) ∈ Q do
14 if j < #g and (i = 1 or fi−1 × gj+1 was merged) insert fi × gj+1 into H
15 if i < #f and fi+1 × g not in H then insert fi+1 × gj into H
16 if C 6= 0 then
17 C := C/((deg(g1)−M) · cof(f1))
18 S := S + C · cof(f1)

19 g := g + C xM−deg(f1)

20 if f2 × g has no term in H then insert f2 × g#g into H
21 if S 6= 0 then
22 h := h+ S xM

23 return h



2.2 Parallelization

Our design for the parallel algorithm follows the approach used for polynomial
division in [15]. Both problems have a tight data-dependency among the terms
in the result. That is, each new term of g can depend on any subset of previous
terms with no predictable pattern. To create parallelism we split the work into
dynamically interacting pieces and exploit structure to hide latencies.

Fig. 1. Threads multiply strips of f by all of g. A global function merges the results
from the threads and the first strip, while computing new terms of g.
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Figure 1 shows features common to all our parallel algorithms. The work of
merging products fi × gj is divided into strips along the terms of f , so threads
are given subsets of f to multiply by g. A global function combines their results
and computes new terms of g. This function is protected by a lock and may be
called by any thread, which allows them to cooperatively balance the load [12].

Another feature from our earlier work on division [15] is used to resolve the
data-dependency. The first strip of f is assigned to the global function, so that
as new terms gj are computed there is no delay in merging f2 × gj . Recall that
this term must be compared to all others immediately as it could be used next.

The global strip is also used to resolve the nasty problem of blocked threads.
Threads block when they merge fi × gj and go to insert fi × gj+1 in their heap
only to find that gj+1 does not exist. The reason could be a delay, but perhaps
fi × gj was merged by the global function and no new term of g was computed.
In that case, the global function now needs fi+1 × gj to progress. Our solution
is for the global function to steal rows from the threads when this happens.

To implement stealing, we have two shared variables that are read by all of
the threads. The first variable t is the number of terms computed in the result.
The variable s is the number of rows stolen by the global function. To ensure a
valid state, threads must read s before t, and the global function must update t
before incrementing s. We enforce this with memory barriers.

Incrementing t means that a new term of g was computed, and alongside its
monomial and coefficient the global function stores the current value of s. This
tells the threads what products involving gt are stolen and must not be merged.
When threads block waiting for t to be incremented, they attempt to enter the
global function and then they update their local copies of s and t. The global
function can steal rows with impunity. We do this whenever it is blocked.



Table 2. Timings (in CPU seconds) for completely sparse (t terms)k.

input result C code Magma RSQR Singular
t k terms degree bits SUMS RMUL BINA FFT sparse RMUL
3 100 5151 10100 152 0.001 0.030 0.001 0.010 0.250 0.050
3 250 31626 62750 388 0.010 0.480 0.010 0.450 12.840 1.040
3 500 125751 250500 784 0.050 4.570 0.050 3.480 278.13 12.750
3 1000 501501 1001000 1575 0.320 45.630 0.290 31.380 – 125.29
3 2500 3128751 6252500 3951 4.130 – 5.260 (*) – –
4 50 23426 130050 92 0.005 0.030 0.005 0.120 1.340 0.180
4 100 176851 1020100 191 0.060 0.760 0.060 3.100 98.710 2.490
4 200 1373701 8080200 389 0.480 13.308 0.480 74.360 – 44.610
4 400 10827401 64320400 788 5.180 252.23 5.160 – – 889.79
5 40 135751 2756840 83 0.030 0.130 0.020 4.300 13.890 0.680
5 60 635376 13618860 128 0.180 0.580 0.130 38.040 371.76 5.300
5 80 1929501 42515280 174 0.580 6.460 0.460 171.46 – 21.860
5 100 4598126 103030100 220 1.530 19.950 1.280 – – 66.810
5 140 17178876 392450940 312 6.320 110.34 5.190 – – 444.74
6 20 53130 3889620 42 0.010 0.030 0.010 3.250 0.770 0.070
6 30 324632 27705630 67 0.060 0.190 0.040 63.270 26.000 1.170
6 40 1221759 113030440 91 0.370 1.500 0.220 – 460.42 6.670
6 50 3478761 338260050 117 1.150 6.670 0.810 – – 26.890
6 70 17259390 1778817670 167 6.050 51.140 4.840 – – 176.80
8 15 170544 251658240 34 0.030 0.050 0.020 (*) 0.950 0.100
8 20 888030 1715322420 47 0.170 0.310 0.130 – 36.200 1.840
8 25 3365856 7722894400 62 0.640 1.430 0.460 – 284.64 10.700
8 30 10295472 2.66× 1010 76 2.780 5.750 1.530 – – 42.920
8 35 26978328 7.62× 1010 90 9.580 26.800 5.680 – – 148.97

12 10 352716 2.59× 1011 22 0.090 0.070 0.050 – 1.600 0.180
12 12 1352078 1.65× 1012 29 0.340 0.310 0.170 – 11.850 0.890
12 14 4457400 8.07× 1012 35 1.130 1.110 0.600 – 78.810 4.060
12 16 13037895 3.22× 1013 41 3.090 3.440 1.720 – 500.20 21.990
12 18 34597290 1.10× 1014 47 8.510 10.410 4.830 – – (*)

– Not attempted. (*) Ran out of memory.

3 Benchmarks

Our benchmarks were performed on a 2.66 GHz Intel Core i7 920 with 6 GB of
RAM running Linux. This is a 64 bit 4 core processor. Timings are the median
time in seconds of 3 runs. Magma is version 2.17 while Singular is version 3.10.
Timings for SUMS, RMUL, and BINA are from our C library.

3.1 Sparse Problems

To create polynomials with t terms whose powers up to k are completely sparse,
we may use Kronecker’s substitution on F = 1+x1 +x2 + · · ·+xt−1 to construct

f = 1 + x+ x(k+1) + x(k+1)2 + · · ·+ x(k+1)t−2

.



This polynomial to the power k generates the largest possible number of terms.
That is what is meant by sparse. Notice how we can not have too many terms t
before the integer exponents become massive. This suggests that most practical
problems (whose result can be stored) have t� k, so the extra factor of 2t− 1
in the cost of sparse SUMS is not as disadvantageous as it may first appear.

In Table 2 we compare our SUMS method to RMUL and BINA. The polyno-
mials are too short to run our parallel routines. For Magma we give two times;
FFT is the binary algorithm for univariate powering with Schönhage-Strassen
multiplication, but we also tried writing the problem as multivariate and using
Magma’s sparse RSQR. Singular uses RMUL which is a sensible choice.

The timing data shows that on sparse problems SUMS is consistently better
than RMUL and almost as fast as BINA. Note that for BINA to run as fast
as it does here it must store the polynomials (f − f1)i for 1 ≤ i ≤ k and do a
simultaneous n-ary merge. This doubles the space versus SUMS, which stores a
tiny heap and the result.

3.2 Dense Problems

Table 3 shows timings for expanding powers of the polynomial

f = 1 + x+ x2 + · · ·+ xt−1.

Timings for SUMS for t = 500 and t = 1000 are real timings on 1 core and 4
cores. For t = 500 our code runs 3 threads so the speedup is a factor of 3 not 4.
For t = 1000 it runs 4 threads and the speedup approaches 4.

Dense problems are a strong case for SUMS. RMUL and BINA are competi-
tive only for low powers. Higher powers benefit SUMS even versus the FFT. For
500 terms, SUMS goes from 14 times slower than the FFT at k=20 down to 1.5
times slower for k=320 and breaks even at k=640. For a sparse algorithm this
is a good result. SUMS dominates the timings for t=10 and t=100 terms.

Table 3. Timings (in CPU seconds) for completely dense (t terms)k.

t k SUMS RMUL BINA FFT t k SUMS (4 cores) RMUL FFT

10 200 0.000 0.085 0.095 0.006 500 10 0.0849 0.0313 0.150 0.004
10 500 0.005 0.760 1.035 0.095 500 20 0.2005 0.0716 1.330 0.014
10 1000 0.020 4.450 7.930 0.501 500 40 0.4734 0.1638 6.955 0.057
10 1500 0.040 13.370 28.950 0.510 500 80 1.1889 0.4165 35.075 0.247
10 2000 0.054 29.811 – 2.640 500 160 3.4083 1.1575 192.326 1.352
10 2500 0.086 55.749 – 2.670 500 320 10.6490 3.5878 – 6.890

100 50 0.020 0.420 0.420 0.017 1000 3 0.0432 0.01452 0.035 0.001
100 100 0.055 2.090 2.110 0.056 1000 5 0.0750 0.02298 0.115 0.003
100 200 0.155 11.090 11.425 0.262 1000 10 0.3633 0.09679 0.785 0.013
100 400 0.490 65.980 69.565 1.360 1000 20 0.8324 0.21790 5.735 0.030
100 800 1.700 439.380 – 6.990 1000 40 1.9637 0.50269 29.250 0.130
100 1600 6.156 – – 36.310 1000 80 4.6245 1.28255 148.835 0.570



Table 4 considers powers of two dense multivariate polynomials. The data
shows the sparse methods beat the FFT as the number of variables increase even
though the polynomials are dense which favors the FFT. SUMS beats the other
sparse methods for large k but not for small k. This is because for multivariate
f and small k, we often have #fk � #f (k−1) � ... � #f3 � #f2. For such
cases RMUL does just over t#f (k−1) coefficient multiplications but SUMS does
2t#fk. We find that for small t parallel speedup for SUMS is limited and drops
off as k increases. For larger t parallel speedup improves.

Table 4. Timings (in CPU seconds) for dense multivariate fk.

f = (1 + x+ y)15 t = 136 Magma Singular
k #g SUMS (4 cores) RMUL (4 cores) BINA (4 cores) FFT RMUL

20 45451 0.537 0.151 1.513 0.421 1.554 0.439 0.49 12.33
40 180901 3.167 0.848 15.810 4.214 16.018 4.444 5.49 134.59
60 406351 9.303 2.484 65.342 17.085 65.500 17.996 27.27 522.59
80 721801 20.765 5.399 183.694 47.406 185.721 50.943 56.42 –

120 1622701 60.237 15.809 – – – – 325.60 –
f = (1 + w + x+ y + z)4 t = 70 Magma Singular

k #g SUMS (2 cores) RMUL (2 cores) BINA (2 cores) FFT RMUL
4 4845 0.0075 0.0075 0.0027 0.0022 0.0029 0.0024 0.30 0.01
8 58905 0.0663 0.0588 0.0671 0.0457 0.0679 0.0480 1.24 1.01

12 270725 0.6796 0.4228 0.9034 0.5708 0.9103 0.5837 10.84 10.40
16 814385 2.2402 1.3432 4.9317 2.9980 4.9729 3.0815 65.50 46.49
20 1929501 5.7590 3.4088 16.2635 9.7505 16.3970 9.8145 218.14 166.02
24 3921225 11.8027 8.6765 41.9719 24.5222 42.1545 24.8397 391.42 394.08
28 7160245 22.5105 21.7034 92.1249 53.6990 92.6547 54.5460 (*) –

3.3 Real Examples

We were first motivated to investigate sparse powering by a post to the Sage
development newsgroup by Tom Coates. He wanted to raise the polynomial

f = xy3z2 + x2y2z + xy3z + xy2z2 + y3z2 + y3z

+2y2z2 + 2xyz + y2z + yz2 + y2 + 2yz + z

to high powers but no computer algebra system could do so in a reasonable
amount of time. This can now be done quickly. Table 5 shows that SUMS is by
far the best method. Note, in order to get Magma to use the FFT, we explicitly
converted f(x, y, z) into a univariate polynomial using Kronecker’s substitution.
Otherwise Magma uses sparse RSQR which is not competitive on this problem;
it takes 134.49s for k = 40.

In [17] Zeilberger writes (in 1994)

“In my research on constant term conjectures, I often need to expand
powers of polynomials Pm where m is very large and P is (usually) a
polynomial of several variables. I was frustrated by the slowness of all
the commercial computer algebra packages. For example, in Maple, it
takes several days to expand (1 + 3x+ 2x2)3000.”



Table 5. Timings (in CPU seconds) to power fk.

C code Magma Maple Singular
k #g SUMS RMUL BINA FFT RMUL RMUL

40 243581 0.159 0.968 0.941 1.47 1.36 5.50
70 1284816 0.941 10.833 10.624 28.26 13.97 62.85

100 3721951 3.026 48.932 51.670 93.64 59.37 316.11
150 12499176 10.880 276.320 – (*) 324.00 –
250 57636126 68.626 – – – – –

– Not attempted. (*) Ran out of memory.

Zeilberger coded dense SUMS in Maple and noted that it was theoretically
faster than the FFT though his analysis does not take into account the size of
the integers in the result which grow to over 2,300 digits long in his example.

At that time (1994) Maple was using BINA which is a bad choice here as it
needs over 2 gigabytes to store the expanded powers of (3x + 1)i for 0 ≤ i ≤
3000. Maple 15 and 16 use RSQR with the univariate polynomial multiplications
done by evaluating at a large integer to leverage the FFT from fast integer
multiplication. Maple 15 and 16 take 1 second on our Intel Core i7 @ 2.66
GHz computer. However SUMS takes less than 9 milli-seconds! It does less than
2t2k = 2× 9× 3000 coefficient multiplications. Actually, since the coefficients of
f = 2x2 + 3x + 1 are small, at most half of these multiplications (see line 9 of
Sparse SUMS ) are multi-precision. Column digits shows the length in decimal
digits of the largest coefficient in the output.

Table 6. Timings (in CPU seconds) to power (2x2 + 3x+ 1)k.

C code Magma Maple Singular
k digits SUMS RMUL BINA FFT RSQR RMUL

1000 777 0.00130 0.302 0.591 0.02 0.088 0.76
2000 1555 0.00418 1.858 6.562 0.08 0.419 4.62
3000 2333 0.00884 5.461 28.847 0.25 1.03 15.04
4000 3111 0.01540 12.202 83.870 0.41 2.13 35.57
5000 3889 0.02318 23.008 (*) 1.31 3.48 70.32

(*) BINA ran out of space; it exceeded the 6 gigabytes available. Note
BINA needs to expand and store the powers (3x+ 1)i for 0 ≤ i ≤ k.

4 Conclusion

We adapted a classical method for powering dense series to make a new method
for powering sparse polynomials. SUMS has better complexity than other sparse
algorithms in the dense case, which is important for general problems. It has
reasonable performance in the completely sparse case.

In comparing SUMS with RMUL, the larger the power and the smaller the
polynomial, the better. We also compared it to the FFT and explained why
the FFT struggles to power multivariate polynomials. It is due to the very high
degrees that are needed in Kronecker substitution when powering. We conclude



that SUMS has a wide range of applicability. It performed extremely well on a
benchmark problem coming from a real application.

Our effort to parallelize Sparse SUMS was largely successful. For inputs with
a large number of terms, 500 or more, we often obtained good parallel speedup.
A problem with this approach is that it requires the input to have a lot of terms,
at least 50, to conceal communication latencies.

Our next task is to optimize and parallelize the FPS variant presented here.
That algorithm should offer better performance in the cases where SUMS loses
to RMUL or BINA, while retaining the best qualities of SUMS.
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