
A Toolbox for Program Manipulation and Efficient Code Generation with an
Application to a Problem in Computer Vision

Michael B. Monagan∗ and Gladys Monagan

Centre for Experimental and Constructive Mathematics
Simon Fraser University

Burnaby, British Columbia, V5A 1S6, Canada
monagan@cecm.sfu.ca gladys@cecm.sfu.ca

Abstract

We describe the design of a package for creating efficient
numeric code. The package provides the user with tools
for creating and manipulating programs, in this case Maple
programs, converting the programs into C and Fortran, and
compiling and executing the programs from inside Maple.
The tools for manipulating programs include automatic dif-
ferentiation, code optimization, and the complexity analysis
of a program. An application to an optimization problem
from computer vision which requires a gradient computation
is given.

1 Introduction

This paper is about how to design a facility within a com-
puter algebra system (CAS), in this case Maple, to make it
easy for a user of the system to create an efficient numeric
code (often C or Fortran) from a symbolic representation
of a problem. The package is applied to an optimization
problem in computer vision where we are trying to deter-
mine the wear of a railway line as accurately as possible.
We wanted to automate completely the task of producing
an efficient gradient program so that different models could
be tried out quickly and without error.

Most CASs contain a facility for converting a single for-
mula, or a vector or matrix of formulae, into C or Fortran
code. In some CASs, a code optimization facility is provided.
The user can insert this (optimized) code into a C or Fortran
subroutine using a text editor. Additionally, some software
has been developed to further automate this “assembly pro-
cess”, to include, for example, the necessary program head-
ers, variable declarations, compiler directives, etc. Previous
work in this area includes Gates’ GENTRAN package [6],
the work of van Hulzen et al. [2] in REDUCE, of Dewar [4],
and of others. Gomez’s macrofort and Capolsini’s macroC
[3] are prior attempts to do this in Maple.

A problem with this approach is that the user must be
familiar with three languages; the language of the CAS in

∗This work was supported by NSERC of Canada and by Waterloo
Maple Inc.
Permission to make digital/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. ISSAC’97,
Maui, Hawaii, USA. c©1997 ACM 0-89791-875-4/ 97/ 0007 $3.50

which he or she is working, the language of the “assembly
directives” in which the numeric computation is created and
represented, and thirdly, the target language, which is usu-
ally C or Fortran. This is because the assembly language
directives often correspond closely with the target language.

Our approach differs in that we assemble a complete pro-
gram in the language of the CAS before translation. This
means that the computation can be executed in the CAS.
This makes prototyping easier and provides a check against
the final numeric code. We also provide tools for manipu-
lating the program. These include tools for

(i) differentiation of the program (automatic differentia-
tion),

(ii) optimization of the program

(iii) estimation of the time complexity of the program,

(iv) repackaging the program calling sequence and manip-
ulating the formulae inside the program, and

(v) translation into a C or Fortran executable.

Another important advantage is that representing a com-
putation as a program is potentially more efficient than try-
ing to do so using formulae, because loops, local variables,
and subroutine calls reduce the execution time and the space
complexity of the code. We are not the first to attempt to
design a system to manipulate programs in the context of
CASs. In [5] Kaltofen et al. designed DAGWOOD, a sys-
tem for creating and manipulating straight-line programs.
The primary purpose of DAGWOOD was to compute GCDs
of polynomials and to factor polynomials represented by
straight-line programs using modular based methods. In
our target applications, the primary purpose is to generate
efficient numeric codes, hence computing with floating point
numbers and arrays of floating point numbers is the main
focus. However, for such a design to be of practical use, it
must be easy to create, manipulate and simplify these pro-
grams, ideally, as easy as it is to create, manipulate and
simplify formulae.

The main application tool in our package is efficient
derivative computation using automatic differentiation. See
[1] and [7] for an overview of the field of automatic dif-
ferentiation. Computing derivatives has many important
applications in scientific computing. CASs are effective at
computing derivatives; they can handle problems of modest

257

size and thus can be used reliably inside scientific applica-
tions. In contrast, CASs are not effective at integration or
solving polynomial systems or solving differential equations
because of the non-existence of solutions or the exponential
complexity of the algorithms to compute them; thus for such
problems, CASs often cannot be used reliably in scientific
applications.

The use of the reverse mode for automatic differentiation
is more efficient than either symbolic differentiation used in
CASs or the numeric approach of divided differences. If the
input program is a function of n variables, and it does m
arithmetic operations (or elementary functions), then the
complexity of the resulting code for computing gradient us-
ing the reverse mode is O(m + n). The complexity for sym-
bolic differentiation and the numerical approach of divided
differences is O(m × n) in comparison. The use of auto-
matic differentiation means that very large problems can be
handled by a CAS.

2 The Code Generation Package

The CODEGEN package contains a number of components.
To motivate their existence, we walk through two simple
applications which motivate the need for the capabilities
demonstrated. We end with a summary giving some de-
tails about the package. The package will execute in Maple
V Release 4. It is available from the authors.

2.1 A Jacobian Example

We show an example of a Jacobian computation. We begin
by assuming that the user has created two functions f and g
in two variables x and y, which are represented in the CAS
by formulae.1

> f := exp(x+y)*y*x-exp(x+y)*x^2;

f := e(x+y) y x− e(x+y) x2

> g := 1-exp(x+y)*y*x-exp(x+y)*x;

g := 1− e(x+y) y x− e(x+y) x

It is desired to calculate the Jacobian matrix of partial
derivatives. Many users of CASs would proceed as follows.
First, they would use the built-in symbolic differentiation
facility to generate formulae for the Jacobian matrix. Next,
to use this matrix with numeric software, they would convert
it to C or Fortran code. Some editing of the code generated
might then be required.

Instead, we proceed as follows. First we build a program
in the CAS for computing f and g. The makeproc command
below creates a Maple procedure which on input of x and
y returns a vector (a one-dimensional array in Maple) of
f(x, y) and g(x, y). Alternatively, the user may specify that
the vector is to be a parameter instead.

> with(codegen):
> A := vector([f,g]);

1For readers not familiar with Maple, lines beginning with the >
character are input commands to Maple. The output from Maple is
centered and in italics unless it is a Maple procedure, in which case
it is displayed left justified in same font as the input.

A := [e(x+y) y x− e(x+y) x2, 1− e(x+y) y x− e(x+y) x]

> F := makeproc(A, [x,y]);

F := proc(x, y)
local A;

A := array(1 .. 2);
A[1] := exp(x + y)*y*x - exp(x + y)*x^2;
A[2] := 1 - exp(x + y)*y*x - exp(x + y)*x;
A

end

If we were writing this program by hand we would not
calculate the exponential four times. We would store it in
a local variable. Hence before we proceed to calculate the
Jacobian, we optimize the program. This will also reduce
the time and space complexity of computing the Jacobian
program.

> F := optimize(F);

F := proc(x, y)
local A, t2, t4, t5;

A := array(1 .. 2);
t2 := exp(x + y);
t4 := t2*y*x;
t5 := x^2;
A[1] := t4 - t2*t5;
A[2] := 1 - t4 - t2*x;
A

end

Now we create the Jacobian program using automatic
differentiation. The GRAD command is detailed in [8]. The
output is a program which on input of x, y constructs and re-
turns the Jacobian matrix. In the code below, the Jacobian
is the variable grd, a two dimensional array.

> J := GRAD(F,[x,y],result_type=array);

J := proc(x, y)
local dfr0, t4, t2, A1, A2, grd, t5, df;

t2 := exp(x + y);
t4 := t2*y*x;
t5 := x^2;
A1 := t4 - t2*t5;
A2 := 1 - t4 - t2*x;
df := array(1 .. 5);
dfr0 := array(1 .. 5);
df[4] := 1;
df[3] := - df[4]*t2;
df[2] := df[4];
df[1] := - df[4]*t5 + df[2]*y*x;
dfr0[5] := 1;
dfr0[2] := -dfr0[5];
dfr0[1] := - dfr0[5]*x + dfr0[2]*y*x;
grd := array(1 .. 2, 1 .. 2);
grd[1, 1] := 2*df[3]*x + df[2]*t2*y + df[1]*exp(x + y);
grd[1, 2] := df[2]*t2*x + df[1]*exp(x + y);
grd[2, 1] := - dfr0[5]*t2 + dfr0[2]*t2*y

+ dfr0[1]*exp(x + y);
grd[2, 2] := dfr0[2]*t2*x + dfr0[1]*exp(x + y);
RETURN(grd)

end

258

Because of the chain rule, common subexpressions have
appeared in the Jacobian. Secondly, we can see that con-
stant folding will be effective on this example. A further
optimization pass after automatic differentiation is usually
effective.

> J := optimize(J);

J := proc(x, y)
local df, t3, t7, dfr0, t8, t13, t15, grd, t2, t4, t5;

t2 := exp(x + y);
t3 := t2*y;
t4 := t3*x;
t5 := x^2;
t7 := t2*x;
df := array(1 .. 5);
dfr0 := array(1 .. 5);
df[3] := -t2;
t8 := y*x;
df[1] := -t5 + t8;
dfr0[1] := -x - t8;
grd := array(1 .. 2, 1 .. 2);
t13 := df[1]*t2;
grd[1, 1] := 2*df[3]*x + t3 + t13;
grd[1, 2] := t7 + t13;
t15 := dfr0[1]*t2;
grd[2, 1] := df[3] - t3 + t15;
grd[2, 2] := -t7 + t15;
grd

end

We execute the resulting program in the CAS at x = 1.0
and y = 1.0.

> print(J(1.0,1.0));[
−7.389056101 7.389056099
−29.55622440 −22.16716830

]
Next, we determine an operation count of the program for

comparison with other approaches.

> cost(J);

22 storage + 18 assignments + functions

+ 10 additions + 9multiplications

Now we convert the program to a C subroutine.

> C(J);
#include <math.h>
void J(x,y,grd)
double x;
double y;
double grd[2][2];
{

double df[5], t3, t7, dfr0[5], t8, t13, t15, t2, t4, t5;
{

t2 = exp(x+y);
t3 = t2*y;
t4 = t3*x;
t5 = x*x;
t7 = t2*x;
df[2] = -t2;
t8 = y*x;
df[0] = -t5+t8;
dfr0[0] = -x-t8;
t13 = df[0]*t2;
grd[0][0] = 2.0*df[2]*x+t3+t13;
grd[0][1] = t7+t13;

t15 = dfr0[0]*t2;
grd[1][0] = df[2]-t3+t15;
grd[1][1] = -t7+t15;
return;

}
}

In translating to C we make assumptions about the types of
the variables. Notice also that the matrix of partial deriva-
tives is passed as a parameter in the above C code. We
will discuss these two points later. We compile the Maple
code in C and execute it on the data x = 1.0, y = 1.0 as a
practical check that the compiled program is correct.

> cJ := compile(J,precision=single):
compile: Compiling and linking ./J.c and ./mainJ.c .
./J.c:
./mainJ.c:
> cJ(1.0,1.0);

[
−7.389056 7.389056
−29.55622 −22.16717

]
If we are going to use J with a subroutine from a numeric
library package, that subroutine will very probably use a dif-
ferent calling sequence than our J program uses. It will use a
vector for the independent variables x and y and it will prob-
ably pass a pointer to the storage for the Jacobian matrix in
which to write the Jacobian entries rather than dynamically
allocating storage each time the program is called. The user
may effect these transformations explicitly as follows.

> J := packargs(J,[x,y],X):
> J := makeparam(grd::’array’(1..2,1..2),J):
> J := makevoid(J);

J := proc(X::array(1 .. 2), grd::array(1 .. 2, 1 .. 2))
local df, t3, t7, dfr0, t8, t13, t15, t2, t4, t5;

t2 := exp(X[1] + X[2]);
t3 := t2*X[2];
t4 := t3*X[1];
t5 := X[1]^2;
t7 := t2*X[1];
df := array(1 .. 5);
dfr0 := array(1 .. 5);
df[3] := -t2;
t8 := X[2]*X[1];
df[1] := -t5 + t8;
dfr0[1] := -X[1] - t8;
t13 := df[1]*t2;
grd[1, 1] := 2*df[3]*X[1] + t3 + t13;
grd[1, 2] := t7 + t13;
t15 := dfr0[1]*t2;
grd[2, 1] := df[3] - t3 + t15;
grd[2, 2] := -t7 + t15;
RETURN()

end

At some point the user may wonder, whether, after such
a sequence of manipulations, the resulting program is cor-
rect. A simple independent symbolic proof is often possible
for straight-line programs.

> A := array(1..2,1..2):
> X := array([x,y]):
> J(X,A);
> A[1,1] - diff(f,x);

259

(−x2 + y x) e(x+y) − e(x+y) y x + e(x+y) x2

> simplify(");

0

We emphasize the following points about this example.
Firstly, in general, a more efficient program is obtained by
using automatic differentiation compared with symbolic dif-
ferentiation. This can be quantified precisely by using the
cost command to compare the cost of two programs. Sec-
ondly, there are various changes one may want to make to
the calling sequence of a program to make it compatible with
other software.

2.2 A Symbolic Loop Example

Suppose that a user wants to build an efficient subroutine
for evaluating a function f(x). The example that we use
is ex to keep the presentation simple and the focus on the
tools and not on how to calculate ex. For ex we construct a
simple Taylor series accurate to 10−7 on [0,0.5].

> t := taylor(exp(x),x,8):
> t := convert(t,polynom);

t := 1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7

The simplest way to build a program is to write what is
essentially a template for the program and substitute specific
formulae and values for dummy variables into the template.

> e := subs(T=t, proc(x) local h;
> if x<0 then 1/e(-x)
> elif x<0.5 then T
> else h := e(x/2); h^2
> fi
> end);

e := proc(x)
local h;

if x < 0 then 1/e(-x)
elif x < .5 then 1 + x + 1/2*x^2

+ 1/6*x^3 + 1/24*x^4 + 1/120*x^5
+ 1/720*x^6 + 1/5040*x^7

else h := e(1/2*x); h^2
fi

end

> e := horner(e,x);

e := proc(x)
local h;

if x < 0 then 1/e(-x)
elif x < .5 then 1 +

(1 + (1/2 + (1/6 + (1/24 + (1/120
+ (1/720 + 1/5040*x)*x)*x)*x)*x)*x)*x

else h := e(1/2*x); h^2
fi

end

Of course the polynomial could have been converted to
Horner form before the substitution was made, however, we
argue that the tools for manipulating formulae should work

for programs as well. We would like to be able to apply any
command for manipulating formulae that preserves equality,
such as collecting in a variable, factoring or expanding a
formula, to a program. The default action of such commands
is to apply the command to all formulae inside the program.

We give an alternative approach which a user of a CAS
might take. It is surely reasonable to proceed instead in the
following “symbolic” way.

> e := ’e’:
> p := piecewise(
> x<0, 1/e(-x),
> x<0.5, Sum(x^i/i!,i=0..7),
> e(x/2)^2);

p :=

1

e(−x)
x < 0

7∑
i=0

xi

i!
x < .5

e(
1

2
x)2 otherwise

The piecewise function definition is a symbolic represen-
tation of a conditional statement. The Sum function can
be thought of as a symbolic representation of a for loop.
Note that the capital S distinguishes the Sum from the
sum command in Maple which would expand the sum into
1 + x + x2/2 + ... + x7/5040. We proceed as follows. First
we create a program from the formula

> e := makeproc(p,x);

e := proc(x)
piecewise(x < 0, 1/e(-x), x < .5,
Sum(x^i/i!, i = 0 .. 7), e(1/2*x)^2)

end

Translation of the piecewise command into a conditional
statement is straight-forward, however, a naive translation
of the sum into a loop which leaves the factorial computed
explicitly would destroy any efficiency that we are trying to
obtain. Hence we must translate properly this symbolic sum
into the target language.

> e := prep2trans(e);

e := proc(x)
local t1, i2, t2, s2, t3;

if x < 0 then t1 := e(-x); 1/t1
elif x < .5 then

t2 := 1;
s2 := 1;
for i2 to 7 do t2 := x*t2/i2; s2 := s2 + t2 od;
s2

else t3 := e(1/2*x); t3^2
fi

end

Compiling, in single precision, and checking the result
of the compiled C code with the interpreted code in Maple
provides an engineer with some assurance that the compiled
code is correct.

> ec := compile(e, precision=single):
compile: Compiling and linking ./e.c and ./maine.c .
./e.c:
./maine.c:
> exp(1.0), e(1.0), ec(1.0);

260

2.718281828, 2.718281823, 2.718281

We emphasize the following points about this second exam-
ple. Users will expect that if symbolic representations for
sums and products are provided by the CAS, that the re-
sulting code that is created is at least as good as one would
write by hand.

3 Details about the Package

Our approach to the design of the CODEGEN package is to
provide a toolbox of Maple program-to-program transfor-
mations as illustrated in the previous two examples, and a
language in which to program other transformations. Some
of the commands that we illustrated, optimize, cost, C,
already exist in Maple. We have been updating these com-
mands in Maple to work for Maple procedures as well as
formulae.

3.1 Maple Procedures as the Program Represen-
tation

The most important design question is what should this lan-
guage for representing programs be? We feel that it should
be the CAS’s native language and if necessary, the CAS
needs to be modified to support this. One needs to be able
to construct and destruct programs, compile and execute or
interpret programs, in the language of the CAS. We have
had to modify the parameter type checking mechanism in
Maple to make this work smoothly. Specifically we allow
Fortran style parameter declarations for arrays as in

proc(n::integer,A::array(1..n,1..n))

3.2 INTREP – an INTermediate REPresentation
for Maple procedures

Although it is possible to program the Maple program-to-
program transformations using Maple procedures directly as
the data representation for programs (using the addressof,
disassemble, assemble and pointto commands), it is awk-
ward. What we do instead is first convert the Maple proce-
dure into an intermediate representation, a DAG, which is
convenient to work with. We apply the program-to-program
transformations on this intermediate representation, then
convert the result back to a Maple procedure. The inter-
mediate representation allows us to attach type information
and other information to the program. We do not expect av-
erage users to see this intermediate form or need to program
with it.

3.3 The GRAD facility for automatic differentia-
tion

The automatic differentiation facility is described in [8]. It
provides facilities for gradients, Jacobians and Hessians of
Maple programs. The Maple programs may use any func-
tion which Maple knows how to differentiate. For unknown
functions it applies the chain rule, e.g.

> f := proc(x,y) g(x)*h(x,y) end;
> GRAD(f);
proc(x, y)

RETURN([D[1](g)(x)*h(x, y) + g(x)*D[1](h)(x, y),
g(x)*D[2](h)(x, y)])

end

3.4 The optimize facility

The code optimizer is designed to perform optimizations on
programs which can be done in expected linear time in the
size of the input program. The reason for this is so that
we can handle truly large codes, in particular, large Hes-
sians and Jacobians. This means that little data flow anal-
ysis can be done. However, optimizations such as common
subexpression elimination and constant folding can be done
in linear time. For common sub-expression optimization we
make use of Maple’s built-in hashing of formulae to identify
all distinct subexpressions in linear time. Note, by subex-
pressions we mean suboperands in Maple. For example, in
Maple, x is a suboperand of w*x*y*z but x*y is not. For con-
stant folding, we use assignment and evaluation to replace
variables in formulae by their values in linear time.

3.5 The cost facility

The example previously given for the cost command showed
a simple calculation of the number of arithmetic operations
that a straight-line program makes. We can also count the
number of operations in loops and conditional statements.
At present we do not analyze recursive programs. For ex-
ample

> f := proc(l, m, n)
> local i, j, k;
> global a, b, c;
> for i to l do
> for j to n do
> c[i, j] := sum(a[i, k]*b[k, j], k = 1 .. m)
> od
> od
> end:
> c := cost(prep2trans(f));

c := l n (1 + (

{
0 −1 + m < 0
−1 + m otherwise

)) additions

+ l n (

{
0 −1 + m < 0
m otherwise

)multiplications

+ l n ((

{
1 −1 + m < 0
m otherwise

) + 1) assignments

+ 6 storage

This is an exact operation count. To obtain a simplified
asymptotic count one may do

> assume(m>1);
> assignments := 0: # don’t count assignments
> storage := 0: # don’t count storage
> collect(c,[l,n,m]);

(additions + multiplications) m n l

3.6 Building and manipulating programs

The makeproc command is used to build a program with
given parameters. We can build a program to evaluate a
single formula or an array of formulae. The user may spec-
ify whether an array is to be created dynamically inside
the program and returned as the value of the program, or
passed as a parameter. We use equations to represent as-
signments and a list of expressions to represent a sequence of

261

computations. Symbolic sums and products, and piecewise
function definitions can be used to encode some conditional
statements and loops in formulae. More complicated pro-
grams must be built using the intermediate representation
described previously.

3.7 The C, Fortran, and compile commands

The type of a variable in a Maple program is usually not
specified. It needs to be determined when translating into
C or Fortran. Type information for parameters can be spec-
ified for a Maple procedure in the Maple code. This is usu-
ally sufficient to determine the types of all other variables
in the program. We can also deduce the the types of certain
expressions in Maple programs from their context. For ex-
ample, the type of i in A[2*i-1] must be an integer if A is
known to be an array. Where there is no information we as-
sume floating point by default. The user may also override
any type analysis by specifying the type of a variable to be
used in translation.

The compile command constructs a C executable and
communicates data with Maple via files.

4 An Application in Computer Vision

The application presented in this section is part of a larger
application of computer vision to a problem from the railway
industry. For proprietary reasons, we are not able to give
certain details of the application. We provide the following
background information.

Rail wears over time. When the inside of the rail be-
comes too worn, it is necessary to grind it to restore its
shape. Because the steel used on rails is very hard, grinding
is expensive. Minimizing the amount of grinding required,
for example saving one one-thousandth of an inch, can save a
lot of money. The old way of determining how much grind-
ing is required was to have a technician stop at intervals
along the railway line and measure by hand the wear of the
rail. The new way of doing it is to attach what is essentially
a light and a camera to a vehicle, take photographs of the
rail and then measure the wear of the rails from the digital
images. This can be done faster — the vehicle drives at
60 kmph along the railway line — and more thoroughly —
several photos per second can be taken and processed. How-
ever, accuracy is very difficult to obtain for several technical
reasons.

The computer processing of the digital photographs pro-
ceeds in outline as follows. An analysis of the digital image
is done to determine the cross section of the rail line. In
order to determine the wear, the image is compared with a
model rail, the CAD specification of the rail. In the com-
parison, the bottom of the rail is used as a reference point.
The part of the application of interest in this paper is the
matching of the base and stem of the rail. It is a basic op-
timization problem of matching data to a model. The CAD
specification for the cross section of the rail is a piecewise
function consisting of a sequence of arcs and lines. Thus
what we want to do is to move (i.e. translate and rotate)
the data to fit the pieces of the model image as closely as
possible.

Given a data point (x, y), we want to translate the point
by (C, D) then rotate it by θ radians about the origin so
that some function of the distance between the data and
the model is minimized. We use a standard optimization

method which requires that we be able to compute the gra-
dient of the function with respect to C, D, θ. We require the
gradient for the different curve types and we want to be able
to try different measures for closeness. We also require that
the code be fast because speed is critical in this application.

Note that the approach described here is not restricted
to data collected using structured light. For other types of
images, one would typically binarize the gray scale image
and then one would extract the contours of the objects to
have data points to match against ideal models.

4.1 Arc Case

Given a point (x, y), we translate (x, y) by (C, D) then rotate
by θ radians about the origin. In the Maple code below, the
variables x̄ and ȳ are the coordinates of the resulting point.
The function f calculates the square of the distance between
(x̄, ȳ) and an arc of a circle with center (h, k) and radius r.

> f := proc(C,D,theta,x,y,h,k,r)
> local s,c,xbar,ybar,d1,d2,d;
> s := sin(theta);
> c := cos(theta);
> xbar := (x+C)*c + (y+D)*s;
> ybar := (y+D)*c - (x+C)*s;
> d1 := (h-xbar)^2;
> d2 := (k-ybar)^2;
> d := sqrt(d1+d2) - r;
> d^2
> end:

The optimized gradient, with respect to C, D, θ, is computed
below. This was translated into C for use with the applica-
tion.

> F := optimize(GRAD(f,[C,D,theta],result_type=array));

F := proc(C, D, theta, x, y, h, k, r)
local d1, d2, s, cr0, t1, t3, grd, t8, t7,
t10, dfr0, t19, t21;

s := sin(theta);
cr0 := cos(theta);
t1 := x + C;
t3 := y + D;
t7 := h - t1*cr0 - s*t3;
d1 := t7^2;
t8 := k - t3*cr0 + t1*s;
d2 := t8^2;
t10 := sqrt(d1 + d2);
dfr0 := array(1 .. 7);
dfr0[7] := 2*t10 - 2*r;
dfr0[6] := 1/2*dfr0[7]/t10;
dfr0[5] := dfr0[6];
dfr0[4] := -2*dfr0[5]*t8;
dfr0[3] := -2*dfr0[5]*t7;
t19 := dfr0[4];
t21 := dfr0[3];
dfr0[2] := t19*t3 + t21*t1;
dfr0[1] := - t19*t1 + t21*t3;
grd := array(1 .. 3);
grd[1] := - t19*s + t21*cr0;
grd[2] := t19*cr0 + t21*s;
grd[3] := - dfr0[2]*s + dfr0[1]*cr0;
grd

end

262

4.2 Line Case

This case is for the distance between a point, after trans-
lation and rotation, and a line. We tried using the signed
distance rather than the square of the distance. Given a
point (x, y), we translate it by (C, D) then rotate it by θ
degrees about the origin to obtain (x̄, ȳ) as before. Then
we calculate the signed distance between (x̄, ȳ) and the line
y = mx + b as follows{ mx̄−ȳ+b√

m2+1
b < 0

−mx̄−ȳ+b√
m2+1

otherwise

where a positive distance corresponds to a point lying above
the line. In the first version of the program below, as we tried
it, the piecewise definition for the distance is implemented
as a conditional statement. In the second version we have
encoded it as a formula using the sign function, signum in
Maple. We show both versions because what happens in
the former case is that the automatic differentiation does
not recognize the special nature of the conditional state-
ment and consequently produces what looks like poor code.
This is typical of what happens with many of the program-
to-program transformations. We find that we are always
working on code optimization. Here is the first version

> f := proc(C,D,theta,x,y,m,b)
> local s,c,xbar,ybar,d,r;
> s := sin(theta);
> c := cos(theta);
> xbar := (x+C)*c+(y+D)*s;
> ybar := (y+D)*c-(x+C)*s;
> d := m*xbar-ybar+b;
> r := sqrt(m^2+1);
> if b>=0 then -d/r else d/r fi;
> end:

> GRAD(f,[C,D,theta],result_type=array);

proc(C, D, theta, x, y, m, b)
local s, ybar, xbar, d, r, dfr0, cr0, grd;

s := sin(theta);
cr0 := cos(theta);
xbar := (x + C)*cr0 + (y + D)*s;
ybar := (y + D)*cr0 - (x + C)*s;
d := m*xbar - ybar + b;
r := sqrt(m^2 + 1);
if 0 <= b then

dfr0 := array(1 .. 5);
dfr0[5] := - 1/r;
dfr0[4] := -dfr0[5];
dfr0[3] := dfr0[5]*m;
dfr0[2] := dfr0[4]*(y + D) + dfr0[3]*(x + C);
dfr0[1] := dfr0[4]*(-x - C) + dfr0[3]*(y + D);
grd := array(1 .. 3);
grd[1] := - dfr0[4]*s + dfr0[3]*cr0;
grd[2] := dfr0[4]*cr0 + dfr0[3]*s;
grd[3] := - dfr0[2]*sin(theta)

+ dfr0[1]*cos(theta);
RETURN(grd)

else
dfr0 := array(1 .. 5);
dfr0[5] := 1/r;
dfr0[4] := -dfr0[5];
dfr0[3] := dfr0[5]*m;
dfr0[2] := dfr0[4]*(y + D) + dfr0[3]*(x + C);
dfr0[1] := dfr0[4]*(-x - C) + dfr0[3]*(y + D);
grd := array(1 .. 3);
grd[1] := - dfr0[4]*s + dfr0[3]*cr0;

grd[2] := dfr0[4]*cr0 + dfr0[3]*s;
grd[3] := - dfr0[2]*sin(theta)

+ dfr0[1]*cos(theta);
RETURN(grd)

fi
end

Here is the second version of the code translated into C using
single precision.

> f := proc(C,D,theta,x,y,m,b)
> local s,c,xbar,ybar,d,r;
> s := sin(theta);
> c := cos(theta);
> xbar := (x+C)*c+(y+D)*s;
> ybar := (y+D)*c-(x+C)*s;
> d := m*xbar-ybar+b;
> r := sqrt(m^2+1);
> -signum(b)*d/r
> end:

> C(F,optimized,precision=single);
#include <math.h>
void F(C,D,theta,x,y,m,b,grd)
float C;
float D;
float theta;
float x;
float y;
float m;
float b;
float grd[3];
{

float t3, t10, t8, t13, t16, cr0, s,
dfr0[5], r, t14, t1;

{
s = sinf(theta);
cr0 = cosf(theta);
t1 = x+C;
t3 = y+D;
t8 = m*m;
r = sqrtf(t8+1.0);
t10 = signum(b);
dfr0[4] = -t10/r;
t13 = dfr0[4];
dfr0[3] = -t13;
dfr0[2] = t13*m;
t14 = dfr0[3];
t16 = dfr0[2];
dfr0[1] = t14*t3+t16*t1;
dfr0[0] = -t14*t1+t16*t3;
grd[0] = -t14*s+t16*cr0;
grd[1] = t14*cr0+t16*s;
grd[2] = -dfr0[1]*s+dfr0[0]*cr0;
return;

}
}

The sinf, cosf, and sqrtf function calls in the C code
are for single precision. The gradient vector grd is returned
through a parameter.

This code is clearly not limited to the computer vision
application. This final generated code is close to the best
possible and might be of value elsewhere. We remark that
when we first tried this out, we rotated then translated the
points. We then realized that the rest of the software in the
application was assuming translation followed by rotation.
Having automated the task of obtaining a gradient this was
easy to change.

263

In the application, the CAD model for the rail consists
of a sequence of lines and arcs. It is a piecewise function.
Determining which piece the data belongs to is done after
the values of C, D and θ have been updated in the iteration.
This is not described here.

5 Conclusion

The way we have designed our code generation package is to
use complete programs as the primary data representation
for a computation and to make all code manipulations as
program-to-program transformations. This leads to a very
clean design in which the codes can be prototyped easily
in the CAS. Also, from a complexity viewpoint, the use of
programs to represent a computation is more general and
more efficient than formulae. Although the components of
our system worked smoothly together in the real applica-
tion from computer vision that we presented, each of the
main components has its shortcomings, however. We list a
number of them here

• Program Creation

Because we have symbolic representations for formulae,
piecewise functions, sums and products, we can easily
assemble many programs. But we have no symbolic
representation for an iteration, for example adding up
the terms of a series until it converges. Thus if one
wants to create a program with such an iteration, one
must build the program in the intermediate representa-
tion. Adding symbolic constructions like this to a CAS
would make it easier to build certain programs.

• Program Limitations

Not all Maple programs can be converted to C or For-
tran code, or differentiated by the GRAD automatic
differentiation software. This in itself is not a major
problem. However, what we would like to be able to
do is to handle programs which perform matrix/vector
arithmetic. For this a Fortran 90 code generator would
be valuable.

• Program Optimization

The output program of most program-to-program
transformations needs further optimization. At present
our optimizer does not handle loops and does not do
in-lining of code. The reader should understand that
just as the simplify command is arguably the most
important command in a CAS for manipulating formu-
lae, the program optimization facility is very important
when manipulating programs.

• Maple Compiler

The compiler that we have developed is simple. It con-
verts the Maple code to C, constructs a C executable
and communicates data via files. The resulting code is
slow for two reasons. Maple arrays are unsuitable for
large floating point computations and the data com-
munication overhead may be high. A new hardware
floating point data structure is being incorporated into
Maple to resolve the first problem and a dynamic link-
ing mechanism is being added to resolve the second
problem.

Finally, CASs need to be designed with the understanding
that the system not just provide tools for manipulating for-
mulae (functions represented by mathematical expressions),
but also functions represented by programs. One can sim-
plify a formula using the CAS’s simplify command. One
should be able to simplify a program using, perhaps, the
same command. This paper has alluded to what can be
done and hopefully how clean the resulting system can be
for creating efficient programs.

References

[1] Berz, M., Bischof, C., Corliss, G., and Griewank,
A., Eds. Computational Differentiation: Techniques,
Applications, and Tools (1996), Proceedings of the Sec-
ond SIAM International Workshop on Computational
Differentiation, SIAM.

[2] Borst, W., Goldman, V., and van Hulzen, J. GEN-
TRAN 90: A REDUCE package for the generation of
Fortran 90 code. In Proceedings of ISSAC ’94 (1994),
ACM Press, pp. 45–51.

[3] Capolsini, P., and Gomez, C. MacroC and Macro-
fort: C and Fortran Code Generation within Maple.
MapleTech 3, 1 (1996), 14–19.

[4] Dewar, M. C. IRENA – An Integrated Symbolic and
Numerical Computation Environment. In Proceedings of
ISSAC ’89 (1989), ACM Press, pp. 171–176.

[5] Freeman, T., Imirzian, G., and Kaltofen, E. A
System for Manipulating Polynomials Given by Straight-
Line Programs. In Proceedings of SYMSAC ’86 (1986),
ACM Press, pp. 169–175.

[6] Gates, B. L. A numerical code generation facility for
REDUCE. In Proceedings of SYMSAC ’86 (1986), ACM
Press, pp. 94–99.

[7] Griewank, A., and Corliss, G. F., Eds. Automatic
Differentiation of Algorithms: Theory, Implementation,
and Application (1991), Proceedings of the First SIAM
Workshop on the Automatic Differentiation of Algo-
rithms, SIAM.

[8] Monagan, M. B., and Rodini, R. R. An Implemen-
tation of the Forward and Reverse Modes of Automatic
Differentiation in Maple. In Computational Differentia-
tion: Techniques, Applications, and Tools (1996), Pro-
ceedings of the Second SIAM International Workshop on
Computational Differentiation, SIAM, pp. 353–362.

264

