Polynomial factorization in Maple 2019

Michael Monagan and Baris Tuncer

Department of Mathematics, Simon Fraser University mmonagan@cecm.sfu.ca

Extended Abstract

Maple 2019 has a new multivariate polynomial factorization algorithm for factoring polynomials in $\mathbb{Z}[x_1, x_2, ..., x_n]$, that is, polynomials in *n* variables with integer coefficients. The new algorithm, which we call MTSHL, was developed by the authors at Simon Fraser University. The algorithm and its sub-algorithms have been published in a sequence of papers [3–5]. It was integrated into the Maple library in early 2018 by Baris Tuncer under a MITACS internship with Maplesoft. MTSHL is now the default factoring algorithm in Maple 2019.

The multivariate factorization algorithm in all previous versions of Maple is based mainly on the work of Paul Wang in [6, 7]. Keith Geddes is the main author of the Maple code. The algorithm and sub-algorithms are described in Chapter 6 of [1]. Wang's algorithm is still available in Maple 2019 with the method="Wang" option to the factor command.

Wang's method can be exponential in n the number of variables. MTSHL is a random polynomial time algorithm. In [3] we found that it is faster than previous polynomial time methods of Kaltofen [2] and Zippel [8] and competitive with Wang's method in cases where Wang's method is not exponential in n.

Here we give an overview of the main idea in MTSHL. Let a be the input polynomial to be factored. Suppose a = fg for two irreducible factors $f, g \in \mathbb{Z}[x_1, \ldots, x_n]$. The multivariate polynomial factorization algorithm used in all computer algebra systems is based on Multivariate Hensel Lifting (MHL). For a description of MHL see Chapter 6 of [1]. MHL first chooses integers $\alpha_2, \alpha_3, \ldots, \alpha_n$ that satisfy certain conditions and factors the univariate image $a_1 = a(x_1, \alpha_2, \ldots, \alpha_n)$ in $\mathbb{Z}[x_1]$. Suppose $a_1(x_1) = f_1(x_1)g_1(x_1)$ and $f_1(x_1) =$ $f(x_1, \alpha_2, \ldots, \alpha_n)$ and $g_1(x_1) = g(x_1, \alpha_2, \ldots, \alpha_n)$. Next MHL begins Hensel lifting. Wang's design of Hensel lifting recovers the variables x_2, \ldots, x_n in the factors f and g one at a time in a loop. Let us use the notation

$$f_j = f(x_1, \ldots, x_j, \alpha_{j+1}, \ldots, \alpha_n)$$
 for $j \ge 1$.

So at the j'th step of MHL we have the factorization $a_{j-1} = f_{j-1}g_{j-1}$ and we want to obtain the factorization $a_j = f_jg_j$. Consider the polynomials f_j and g_j expanded as a Taylor polynomial about $x_j = \alpha_j$

$$f_j = \sum_{i=0}^{\deg(f_j, x_j)} \sigma_i (x_j - \alpha_j)^i$$
 and $g_j = \sum_{i=0}^{\deg(g_j, x_j)} \tau_i (x_j - \alpha_j)^i$

Here $\sigma_i, \tau_i \in \mathbb{Z}[x_1, \ldots, x_{j-1}]$ and $\sigma_0 = f_{j-1}$ and $\tau_0 = g_{j-1}$ are known. MHL recovers the coefficients σ_i, τ_i one at a time in a loop. Let $\operatorname{supp}(\sigma)$ denote the support of σ , that is, the set of monomials in σ . Before continuing we give an example to fix the ideas and notation presented so far. Let $f = x_1^3 - x_1 x_2 x_3^2 + x_2^3 x_3^2 + x_3^3 - 27$. For $\alpha_3 = 2$, we have $f_2 = f(x_1, x_2, 2) = x_1^3 + 4 x_2^3 - 4 x_1 x_2 - 19$. Expanding f about $x_3 = 2$ we have

$$f = \underbrace{(x_1^3 + 4x_2^3 - 4x_1x_2 - 19)}_{\sigma_0} + \underbrace{(4x_2^3 - 4x_1x_2 + 12)}_{\sigma_1}(x_3 - 2) + \underbrace{(x_2^3 - x_1x_2 + 6)}_{\sigma_2}(x_3 - 2)^2 + \underbrace{1}_{\sigma_3}(x_3 - 2)^4.$$

We have $\operatorname{supp}(\sigma_0) = \{x_1^3, x_2^3, x_1x_2, 1\}$, $\operatorname{supp}(\sigma_1) = \operatorname{supp}(\sigma_2) = \{x_2^3, x_1x_2, 1\}$, and $\operatorname{supp}(\sigma_3) = \{1\}$. Multivariate Hensel Lifting (MHL) computes σ_i and τ_i by solving the multivariate polynomial diophantine (MDP) equation

$$\sigma_i g_{j-1} + \tau_i f_{j-1} = c_i \text{ in } \mathbb{Z}_p[x_1, \dots, x_{j-1}]$$

where the polynomial c_i is the Taylor coefficient

$$\operatorname{coeff}(a_j - \left(\sum_{i=0}^{k-1} \sigma_i (x_j - \alpha_j)^i\right) \left(\sum_{i=0}^{k-1} \tau_i (x_j - \alpha_j)^i\right), \ (x_j - \alpha_j)^k \).$$

Most of the time in MHL is solving these MDP equations. Wang's method for solving them is recursive. If the $\alpha_2, \ldots, \alpha_n$ are non-zero Wang's method is exponential in n. For many polynomials it is possible to use zero for some or all α_j and avoid this exponential behaviour. But this is not always possible as there are several conditions that $\alpha_2, \ldots, \alpha_n$ must satisfy. The sparse Hensel lifting methods of [2] and [8] were developed to solve this problem. It turns out that if the integer α_j is chosen randomly from a large set then

$$\operatorname{supp}(\sigma_i) \supseteq \operatorname{supp}(\sigma_{i+1}) \text{ for } 0 \le i < \operatorname{deg}(f_j, x_j)$$
 (1)

with high probability. The reader may verify this support chain holds in Example 1 where $\alpha = 2$ but it does not hold if $\alpha = 0$. See Lemma 1 in [3] for a precise statement for the probability and proof. MTSHL exploits (1) by using $\operatorname{supp}(\sigma_{i-1})$ as the support for σ_i to construct linear systems to solve for the coefficients of σ_i in x_1 . The linear systems are $t_j \times t_j$ transposed Vandermonde systems where $t_j = \#\operatorname{coeff}(\sigma_i, x_1^j)$. We use Zippel's method from [9] to solve them in $O(t_j^2)$ time and $O(t_j)$ space. Since the number of terms in σ_i and τ_i is not more than those in f and g respectively, our algorithm takes advantage of sparse factors f and g.

We present two benchmarks comparing the new algorithm MTSHL in Maple 2019 with Wang's method in Maple 2019. The following Maple code creates an input polynomial $a \in \mathbb{Z}[x_1, \ldots, x_n]$ which is a product of two factors $f \times g$. Each factor has n variables, 100 terms, and degree at most d. The Maple command randpoly creates each term randomly to have degree at most d with an integer coefficient chosen at random from $[-10^6, 10^6]$.

```
kernelopts(numcpus=1); t := 100; d := 15;
for n from 5 to 12 do
    X := [seq( x||i, i=1..n )];
    f := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);
    g := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);
    a := expand(f*g);
    h := CodeTools[Usage]( factor(a,method="Wang") );
    #h := CodeTools[Usage]( factor(a) ); # Uses MTSHL in Maple 2019
od:
```

n	Wang	(MDP)	MTSHL	$\mid n$	Wang	(ML)	PP)	MTSHL

$\overline{5}$	4.87s(89.4%)	.509s	10	65.55s (98.0%)	.911s	
6	8.67s (85.8%)	.589s	11	154.8s (98.0%)	.989s	
7	6.77s (91.2%)	.616s	12	169.8s (99.0%)	1.78s	
8	35.04s (94.7%)	.718s	13	163.8s (96.5%)	1.16s	
9	40.33s (99.6%)	.788s	14	603.6s (98.7%)	2.37s	
Table 1. Factorization timings in CPU seconds						

Shown in column (MDP) in Table 1 is the percentage of time Wang's algorithm spent solving Multivariate Diophantine Equations. MTSHL is not impacted significantly by the number of variables. In theory the cost of MTSHL is linear in n which is supported by this example.

Let C_n denote the $n \times n$ cyclic matrix. See Figure 1. Observe that det C_n is a homogeneous polynomial in $\mathbb{Z}[x_1, \ldots, x_n]$. Because the factors of det C_n are dense, MTSHL has no inherent advantage over Wang's method and we expected it to be slower than Wang's method.

$\begin{bmatrix} x_1 & x_2 & \dots & x_{n-1} & x_n \end{bmatrix}$	
$\left \begin{array}{cccc} x_n \ x_1 \ \dots \ x_{n-2} \ x_{n-1} \\ \vdots \ \vdots$	$egin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{pmatrix} x_1 - x_2 + x_3 - x_4 \\ x_1^2 - 2x_1x_3 + x_2^2 - 2x_2x_4 + x_3^2 + x_4^2 \end{pmatrix} $
$\begin{bmatrix} x_2 & x_3 & \dots & x_n & x_1 \end{bmatrix}$	

Fig. 1. The cyclic $n \times n$ matrix C_n and the factors of det (C_4) .

Maple code for computing det C_n and factoring det C_n is given below. Note, for a homogenous input polynomial det C_n , the factor command evaluates one variable $x_i = 1$, factors det $(C_n)(x_i = 1)$ then homogenizes the factors. To fix *i* we compute and factor det $(C_n(x_n = 1))$.

```
kernelopts(numcpus=1);
for n from 6 to 10 do
  Cn := Matrix(n,n,shape=Circulant[x]);
```

```
Cn := eval(Cn,x[n]=1); # dehomogenize Cn
d := LinearAlgebra[Determinant](Cn,method=minor);
F := CodeTools[Usage](factor(d));
#F := CodeTools[Usage](factor(d,method="Wang"));
od:
```

Table 2 contains data for det C_n and timing data for factoring det $C_n(x_n = 1)$. Column 2 is the number of terms of det C_n . Column 3 is the degrees of the factors of C_n . Column 4 is the number of terms of the largest factor. Columns 5–7 are the CPU time to factor det C_n using our new algorithm MTSHL in Maple 2019, Wang's algorithm in Maple 2019 and Wang's algorithm in the Magma computer algebra system.

n	# det	$\deg(f_i)$	$\max \# f_i$	MTSHL	Wang	(MDP)	Magma
8	810	1,1,2,4	86	0.140s	0.096s	(52%)	0.12s
9	2704	1,2,6	1005	0.465s	0.253s	(76%)	1.02s
10	7492	1,1,4,4	715	3.03s	1.020s	(49%)	10.97s
11	32066	1,10	184756	1.33s	12.43s	(88%)	142.85s
12	86500	$1,\!1,\!2,\!2,\!2,\!4$	621	4.97s	20.51s	(65%)	7575.14s
13	400024	$1,\!12$	2704156	10.24s	212.40s	(88%)	30,871.9s
14	1366500	$1,\!1,\!6,\!6$	27132	666.0s	1364.4s	(68%)	$> 10^{6} s$

Table 2. Timings (CPU time seconds) for factoring $det(C_n(x_n = 1))$

References

- 1. Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Computer Algebra, Kluwer Acad. Publ. (1992).
- Kaltofen, E., Sparse Hensel lifting. Proc. EUROCAL '85, LNCS 204: 4–17, Springer, (1985).
- Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lifting. Proceedings of CASC 2016, LNCS 9890, 381–400, Springer, (2016).
- Michael Monagan and Baris Tuncer. Factoring multivariate polynomials with many factors and huge coefficients. *Proceedings of CASC 2018*, LNCS 11077, 319–334, Springer, (2018).
- 5. Michael Monagan and Baris Tuncer. The complexity of sparse Hensel lifting and sparse polynomial factorization. To appear in *J. Symbolic Computation*, 2019.
- Wang, P.S., Rothschild, L.P. Factoring multivariate polynomials over the integers. Mathematics of Computation, 29(131): 935–950, (1975).
- Wang, P.S. An improved Multivariate Polynomial Factoring Algorithm. Mathematics of Computation, 32:1215–1231, (1978).
- Zippel, R.E. Newton's iteration and the sparse Hensel algorithm. Proc. SYMSAC 1981, pp. 68–72, ACM (1981).
- 9. Zippel, R.E. Interpolating polynomials from their values. J. Symbolic Comput., **9**(3):375–403, (1990).