
Polynomial factorization in Maple 2019

Michael Monagan and Baris Tuncer

Department of Mathematics, Simon Fraser University
mmonagan@cecm.sfu.ca

Extended Abstract

Maple 2019 has a new multivariate polynomial factorization algorithm for
factoring polynomials in Z[x1, x2, ..., xn], that is, polynomials in n variables with
integer coefficients. The new algorithm, which we call MTSHL, was developed by
the authors at Simon Fraser University. The algorithm and its sub-algorithms
have been published in a sequence of papers [3–5]. It was integrated into the
Maple library in early 2018 by Baris Tuncer under a MITACS internship with
Maplesoft. MTSHL is now the default factoring algorithm in Maple 2019.

The multivariate factorization algorithm in all previous versions of Maple is
based mainly on the work of Paul Wang in [6, 7]. Keith Geddes is the main author
of the Maple code. The algorithm and sub-algorithms are described in Chapter 6
of [1]. Wang’s algorithm is still available in Maple 2019 with the method="Wang"

option to the factor command.
Wang’s method can be exponential in n the number of variables. MTSHL

is a random polynomial time algorithm. In [3] we found that it is faster than
previous polynomial time methods of Kaltofen [2] and Zippel [8] and competitive
with Wang’s method in cases where Wang’s method is not exponential in n.

Here we give an overview of the main idea in MTSHL. Let a be the in-
put polynomial to be factored. Suppose a = fg for two irreducible factors
f, g ∈ Z[x1, . . . , xn]. The multivariate polynomial factorization algorithm used
in all computer algebra systems is based on Multivariate Hensel Lifting (MHL).
For a description of MHL see Chapter 6 of [1]. MHL first chooses integers
α2, α3, . . . , αn that satisfy certain conditions and factors the univariate image
a1 = a(x1, α2, . . . , αn) in Z[x1]. Suppose a1(x1) = f1(x1)g1(x1) and f1(x1) =
f(x1, α2, . . . , αn) and g1(x1) = g(x1, α2, . . . , αn). Next MHL begins Hensel lift-
ing. Wang’s design of Hensel lifting recovers the variables x2, . . . , xn in the factors
f and g one at a time in a loop. Let us use the notation

fj = f(x1, . . . , xj , αj+1, . . . , αn) for j ≥ 1.

So at the j’th step of MHL we have the factorization aj−1 = fj−1gj−1 and we
want to obtain the factorization aj = fjgj . Consider the polynomials fj and gj
expanded as a Taylor polynomial about xj = αj

fj =

deg(fj ,xj)∑
i=0

σi(xj − αj)i and gj =

deg(gj ,xj)∑
i=0

τi(xj − αj)i

Here σi, τi ∈ Z[x1, . . . , xj−1] and σ0 = fj−1 and τ0 = gj−1 are known. MHL
recovers the coefficients σi, τi one at a time in a loop. Let supp(σ) denote the
support of σ, that is, the set of monomials in σ. Before continuing we give an
example to fix the ideas and notation presented so far. Let f = x31 − x1x2x23 +
x32x

2
3 + x33 − 27. For α3 = 2, we have f2 = f(x1, x2, 2) = x31 + 4x32 − 4x1x2 − 19.

Expanding f about x3 = 2 we have

f = (x31 + 4x32 − 4x1x2 − 19)︸ ︷︷ ︸
σ0

+ (4x32 − 4x1x2 + 12)︸ ︷︷ ︸
σ1

(x3 − 2)

+ (x32 − x1x2 + 6)︸ ︷︷ ︸
σ2

(x3 − 2)2 + 1︸︷︷︸
σ3

(x3 − 2)4.

We have supp(σ0) = {x31, x32, x1x2, 1}, supp(σ1) = supp(σ2) = {x32, x1x2, 1},
and supp(σ3) = {1}. Multivariate Hensel Lifting (MHL) computes σi and τi by
solving the multivariate polynomial diophantine (MDP) equation

σigj−1 + τifj−1 = ci in Zp[x1, . . . , xj−1]

where the polynomial ci is the Taylor coefficient

coeff(aj −

(
k−1∑
i=0

σi(xj − αj)i
)(

k−1∑
i=0

τi(xj − αj)i
)
, (xj − αj)k).

Most of the time in MHL is solving these MDP equations. Wang’s method for
solving them is recursive. If the α2, . . . , αn are non-zero Wang’s method is expo-
nential in n. For many polynomials it is possible to use zero for some or all αj
and avoid this exponential behaviour. But this is not always possible as there are
several conditions that α2, . . . , αn must satisfy. The sparse Hensel lifting meth-
ods of [2] and [8] were developed to solve this problem. It turns out that if the
integer αj is chosen randomly from a large set then

supp(σi) ⊇ supp(σi+1) for 0 ≤ i < deg(fj , xj) (1)

with high probability. The reader may verify this support chain holds in Example
1 where α = 2 but it does not hold if α = 0. See Lemma 1 in [3] for a precise
statement for the probability and proof. MTSHL exploits (1) by using supp(σi−1)
as the support for σi to construct linear systems to solve for the coefficients of
σi in x1. The linear systems are tj × tj transposed Vandermonde systems where

tj = #coeff(σi, x
j
1). We use Zippel’s method from [9] to solve them in O(t2j) time

and O(tj) space. Since the number of terms in σi and τi is not more than those
in f and g respectively, our algorithm takes advantage of sparse factors f and g.

We present two benchmarks comparing the new algorithm MTSHL in Maple
2019 with Wang’s method in Maple 2019. The following Maple code creates an
input polynomial a ∈ Z[x1, . . . , xn] which is a product of two factors f ×g. Each
factor has n variables, 100 terms, and degree at most d. The Maple command
randpoly creates each term randomly to have degree at most d with an integer
coefficient chosen at random from [−106, 106].

kernelopts(numcpus=1); t := 100; d := 15;

for n from 5 to 12 do

X := [seq(x||i, i=1..n)];

f := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);

g := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);

a := expand(f*g);

h := CodeTools[Usage](factor(a,method="Wang"));

#h := CodeTools[Usage](factor(a)); # Uses MTSHL in Maple 2019

od:

n Wang (MDP) MTSHL n Wang (MDP) MTSHL

5 4.87s (89.4%) .509s 10 65.55s (98.0%) .911s
6 8.67s (85.8%) .589s 11 154.8s (98.0%) .989s
7 6.77s (91.2%) .616s 12 169.8s (99.0%) 1.78s
8 35.04s (94.7%) .718s 13 163.8s (96.5%) 1.16s
9 40.33s (99.6%) .788s 14 603.6s (98.7%) 2.37s

Table 1. Factorization timings in CPU seconds

Shown in column (MDP) in Table 1 is the percentage of time Wang’s al-
gorithm spent solving Multivariate Diophantine Equations. MTSHL is not im-
pacted significantly by the number of variables. In theory the cost of MTSHL is
linear in n which is supported by this example.

Let Cn denote the n × n cyclic matrix. See Figure 1. Observe that detCn
is a homogeneous polynomial in Z[x1, . . . , xn]. Because the factors of detCn are
dense, MTSHL has no inherent advantage over Wang’s method and we expected
it to be slower than Wang’s method.


x1 x2 . . . xn−1 xn

xn x1 . . . xn−2 xn−1

...
...

...
...

...
x3 x4 . . . x1 x2

x2 x3 . . . xn x1


(x1 + x2 + x3 + x4)
(x1 − x2 + x3 − x4)(

x2
1 − 2x1 x3 + x2

2 − 2x2 x4 + x2
3 + x2

4

)

Fig. 1. The cyclic n× n matrix Cn and the factors of det(C4).

Maple code for computing detCn and factoring detCn is given below. Note,
for a homogenous input polynomial detCn, the factor command evaluates one
variable xi = 1, factors det(Cn)(xi = 1) then homogenizes the factors. To fix i
we compute and factor det(Cn(xn = 1)).

kernelopts(numcpus=1);

for n from 6 to 10 do

Cn := Matrix(n,n,shape=Circulant[x]);

Cn := eval(Cn,x[n]=1); # dehomogenize Cn

d := LinearAlgebra[Determinant](Cn,method=minor);

F := CodeTools[Usage](factor(d));

#F := CodeTools[Usage](factor(d,method="Wang"));

od:

Table 2 contains data for detCn and timing data for factoring detCn(xn = 1).
Column 2 is the number of terms of detCn. Column 3 is the degrees of the factors
of Cn. Column 4 is the number of terms of the largest factor. Columns 5–7 are
the CPU time to factor detCn using our new algorithm MTSHL in Maple 2019,
Wang’s algorithm in Maple 2019 and Wang’s algorithm in the Magma computer
algebra system.

n #det deg(fi) max #fi MTSHL Wang (MDP) Magma

8 810 1,1,2,4 86 0.140s 0.096s (52%) 0.12s
9 2704 1,2,6 1005 0.465s 0.253s (76%) 1.02s
10 7492 1,1,4,4 715 3.03s 1.020s (49%) 10.97s
11 32066 1,10 184756 1.33s 12.43s (88%) 142.85s
12 86500 1,1,2,2,2,4 621 4.97s 20.51s (65%) 7575.14s
13 400024 1,12 2704156 10.24s 212.40s (88%) 30,871.9s
14 1366500 1,1,6,6 27132 666.0s 1364.4s (68%) > 106s

Table 2. Timings (CPU time seconds) for factoring det(Cn(xn = 1))

References

1. Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Com-
puter Algebra, Kluwer Acad. Publ. (1992).

2. Kaltofen, E., Sparse Hensel lifting. Proc. EUROCAL ’85, LNCS 204: 4–17,
Springer, (1985).

3. Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lifting.
Proceedings of CASC 2016, LNCS 9890, 381–400, Springer, (2016).

4. Michael Monagan and Baris Tuncer. Factoring multivariate polynomials with
many factors and huge coefficients. Proceedings of CASC 2018, LNCS 11077,
319–334, Springer, (2018).

5. Michael Monagan and Baris Tuncer. The complexity of sparse Hensel lifting and
sparse polynomial factorization. To appear in J. Symbolic Computation, 2019.

6. Wang, P.S., Rothschild, L.P. Factoring multivariate polynomials over the integers.
Mathematics of Computation, 29(131): 935–950, (1975).

7. Wang, P.S. An improved Multivariate Polynomial Factoring Algorithm. Mathe-
matics of Computation, 32:1215–1231, (1978).

8. Zippel, R.E. Newton’s iteration and the sparse Hensel algorithm. Proc. SYMSAC
1981, pp. 68–72, ACM (1981).

9. Zippel, R.E. Interpolating polynomials from their values. J. Symbolic Comput.,
9(3):375–403, (1990).

