
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

A Fast Parallel Sparse Polynomial GCD Algorithm∗

JIAXIONG HU, Simon Fraser University, Canada

MICHAEL MONAGAN, Simon Fraser University, Canada

We present a parallel GCD algorithm for sparse multivariate polynomials with integer coefficients.

The algorithm combines a Kronecker substitutionwith a Ben-Or/Tiwari sparse interpolationmodulo

a smooth prime to determine the support of the GCD. We have implemented our algorithm in Cilk

C. We compare it with Maple and Magma’s serial implementations of Zippel’s GCD algorithm.

CCS Concepts: • Computing methodologies → Algebraic algorithms;

Additional Key Words and Phrases: Polynomial GCD computation, sparse polynomial interpolation

ACM Reference Format:
Jiaxiong Hu and Michael Monagan. 2017. A Fast Parallel Sparse Polynomial GCD Algorithm. J.
ACM 1, 1 (December 2017), 41 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Let A and B be two polynomials in Z[x0,x1, . . . ,xn]. In this paper we present a modular

GCD algorithm for computing G = gcd(A,B) the greatest common divisor of A and B
which is designed for sparse A and B. We will compare our algorithm with Zippel’s sparse

modular GCD algorithm from [Zippel 1979]. Zippel’s algorithm is the main GCD algorithm

currently used by the Maple, Magma and Mathematica computer algebra systems for

polynomials in Z[x0,x1, . . . ,xn].

Multivariate polynomial GCD computation was a central problem in Computer Algebra

in the 1970’s and 1980’s. Whereas classical algorithms for polynomial multiplication and

exact division are sufficient for many inputs, this is not the case for polynomial GCD

computation. Euclid’s algorithm, and variant’s of it such as the reduced PRS algorithm

[Collins 1967] and the subresultant PRS algorithm [Brown and Traub 1971], result in an

intermediate expression swell of size exponential in n when applied to sparse multivariate

polynomials. This renders these algorithms useless even for inputs of a very modest

size. GCD algorithms which avoid this intermediate expression swell include the dense

∗
This work was supported by NSERC of Canada and Maplesoft

Authors’ addresses: Jiaxiong Hu, Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6,

Canada, jha107@sfu.ca; Michael Monagan, Department of Mathematics, Simon Fraser University, Burnaby,

BC, V5A 1S6, Canada, mmonagan@sfu.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work owned

by others than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.

© 2017 Association for Computing Machinery.

0004-5411/2017/12-ART $15.00

https://doi.org/0000001.0000001

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

:2 Hu and Monagan

modular GCD algorithm [Brown 1971], the the EEZ-GCD algorithm [Wang 1980], the

sparse modular algorithm [Zippel 1979], the heuristic GCD algorithm [Char et al. 1989],

and the black-box algorithm [Kaltofen and Trager 1990]. For the interested reader, Chapter

7 of [Geddes et al. 1992] provides a description of the algorithms in [Brown 1971; Char

et al. 1989; Wang 1980; Zippel 1979].

Let A =
∑dA

i=0
aix

i
0
, B =

∑dB
i=0

bix
i
0
and G =

∑dG
i=0

cix
i
0
where dA > 0, dB > 0 and

the coefficients ai ,bi and ci are in Z[x1, . . . ,xn]. Our GCD algorithm first computes and

removes contents, that is computes cont(A,x0) = gcd(ai) and cont(B,x0) = gcd(bi). These
GCD computations in Z[x1,x2, . . . ,xn] are computed recursively.

Let Ā = A/G and B̄ = B/G be the cofactors of A and B respectively. Let #A denote the

number of terms inA and let Supp(A) denote the set ofmonomials appearing inA. Let LC(A)
denote the leading coefficient of A taken in x0. Let Γ = gcd(LC (A),LC (B)) = gcd(adA ,bdB).
Since LC (G) |LC (A) and LC(G) |LC (B) it must be that LC(G) |Γ thus Γ = LC (G)∆ for some

polynomial ∆ ∈ Z[x1, . . . ,xn].

Example 1.1. If G = x1x
2

0
+ x2x0 + 3, Ā = (x2 − x1)x0 + x2 and B̄ = (x2 − x1)x0 + x1 + 2

we have #G = 3, Supp(G) = {x1x
2

0
,x2x0, 1}, LC(G) = x1, Γ = x1 (x2 − x1), and ∆ = x2 − x1.

We provide an overview of our GCD algorithm. Let H = ∆ × G and hi = ∆ × ci so

that H =
∑dG

i=0
hix

i
0
. Our algorithm will compute H not G. After computing H it must

then compute cont(H ,x0) = gcd(hi) = ∆ and divide H by ∆ to obtain G. We compute H
modulo a sequence of primes p1,p2, . . . , and recover the integer coefficients of H using

Chinese remaindering. The use of Chinese remaindering is standard. Details may be found

in [Brown 1971; Geddes et al. 1992]. Let H1 be the result of computing H mod p1. For the

remaining primes we use the sparse interpolation approach of Zippel [Zippel 1979] which

assumes Supp(H1) = Supp(H). From now on we focus on the computation of H mod p1.
To compute H mod p the algorithm will pick a sequence of points β1, β2, . . . from Z

n
p ,

compute monic images

дj := gcd(A(x0, βj),B (x0, βj)) ∈ Zp[x0]

of G, in parallel, then multiply дj by the scalar Γ(βj) ∈ Zp . Because the scaled image

Γ(βj) × дj (x0) is an image of a polynomial, H , we can use polynomial interpolation to

interpolate each coefficient hi (x1, . . . ,xn) of H from the coefficients of the scaled images.

Let t = max
dG
i=0

#hi . The parameter t measures the sparsity of H . Let d = max
n
i=1

degxi H

and D = max
dG
i=0

deghi . The cost of sparse polynomial interpolation algorithms is de-

termined mainly by the number of points β1, β2, . . . needed and the size of the prime p
needed. These depend on n, t , d and D. Table 1 below presents data for several sparse

polynomial interpolation algorithms. In Table 1 pn denotes the n’th prime which has size

O (logn log logn) bits. Other sparse interpolation algorithms, not directly applicable to the

GCD problem, are mentioned in the concluding remarks.

To get a sense for how large the prime needs to be for the different algorithms in Table

1 we include data for the following benchmark problem: LetG, Ā, B̄ have nine variables

(n = 8), have degree d = 20 in each variable, and have total degree D = 60 (to better reflect

real problems). Let G have 10,000 terms with t = 1000. Let Ā and B̄ have 100 terms so that

A = GĀ and B = GB̄ have about one million terms.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

A Fast Parallel Sparse Polynomial GCD Algorithm :3

#points size of p benchmark

Zippel [1979] O (ndt) p > 2nd2t2 = 6.4 × 10
9

BenOr/Tiwari [1988] O (t) p > pDn = 5.3 × 10
77

Monagan/Javadi [2010] O (nt) p > nDt2 = 4.8 × 10
8

Murao/Fujise [1996] O (t) p > (d + 1)n = 3.7 × 10
10

Table 1. Some sparse interpolation algorithms

Notes: Zippel’s sparse interpolation algorithm [Zippel 1979] is probabilistic. It was devel-

oped for polynomial GCD computation and implemented in Macsyma by Zippel. Rayes,

Wang andWeber parallelized parts of it in [Rayes et al. 1994] for shared memory computers.

Kaltofen and Lee showed in [Kaltofen et al. 2000] how to modify Zippel’s algorithm so

that it will work effectively for primes much smaller than 2nd2t2
.

The Ben-Or/Tiwari algorithm [Ben-Or and Tiwari 1988] is deterministic. The primary

disadvantage of the Ben-Or/Tiwari algorithm is the size of the prime. [Javadi and Monagan

2010] modify the Ben-Or/Tiwari algorithm to work for a smaller prime but using O (nt)
points.

[Murao and Fujise 1996]’s method is a modification of the Ben-Or/Tiwari algorithm

which computes discrete logarithms in the cyclic group Z∗p . We will refer to this method as

the “discrete logs” method. We give details for it in Section 1.2. The advantage over the Ben-

Or/Tiwari algorithm is that the prime size is O (n logd) bits instead of O (D logn log logn)
bits.

In a GCD algorithm that uses interpolation from values, not all evaluation points can

be used. Let βj ∈ Z
n
p be an evaluation point. If gcd(Ā(x0, βj), B̄ (x0, βj)) , 1 then βj is said

to be unlucky and this image cannot be used to interpolate H . Section 1.4 characterizes

which evaluation points are unlucky and describes how they can be detected. In Zippel’s

algorithm, where the βj are chosen at random from Znp , unlucky βj , once identified, can
simply be skipped. This is not the case for the evaluation point sequences used by the

Ben-Or/Tiwari algorithm and the discrete logs method. In Section 1.5, we modify these

point sequences to handle unlucky evaluation points.

To reduce the probability of encountering unlucky evaluation points, the prime p may

need to be larger than that shown in Table 1. Our modification for the discrete logarithm

sequence increases the size ofp which negates much of its advantage. This led us to consider

using a Kronecker substitution Kr on x1,x2, . . . ,xn to map the GCD computation into a

bivariate computation in Zp[x0,y]. Some Kronecker substitutions result in all evaluation

points being unlucky so they cannot be used. We call these Kronecker substitutions unlucky.
In Section 2 we show (Theorem 2.5) that there are only finitely many of them and how to

detect them so that a larger Kronecker substitution may be tried.

If a Kronecker substitution is not unlucky there can still be many unlucky evaluation

points because the degree of the resulting polynomials Kr (A) and Kr (B) in y is exponential

in n. In order to avoid unlucky evaluation points one may simply choose the prime p ≫
max(degy (Kr A), degy (Kr B)), which is what we do for our “simplified” version of our GCD

algorithm. But this may mean p is not a machine prime which will significantly increase

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

:4 Hu and Monagan

the cost of all modular arithmetic in Zp as multi-precision arithmetic is needed. However, it

is well known in the computer algebra research community that unlucky evaluation points

are infact rare. This prompted us to investigate the distribution of the unlucky evaluation

points. Our next contribution (Theorem 2.13) is a result for the expected number of unlucky

evaluations. This theorem justifies our “faster” version of our GCD algorithm which first

tries a smaller prime.

In Section 3 we assemble a “Simplified Algorithm” which is a Las Vegas GCD algorithm.

It first applies a Kronecker substitution to map the GCD computation into Z[x0,y]. It then

chooses p randomly from a large set of smooth primes and computes H mod p using

sparse interpolation in y then uses further primes and Chinese remaindering to recover the

integer coefficients in H . The algorithm chooses a Kronecker substitution large enough to

be a priori not unlucky and assumes a term bound τ ≥ max #hi is given. These assumptions

lead to a much simpler algorithm.

In Section 4, we relax the term bound requirement and we first try a Kronecker substitu-

tion just large enough to recover H . This complicates significantly the GCD algorithm. In

Section 4 we present a heuristic GCD algorithm which we can prove always terminates and

outputs H mod p. The heuristic algorithm will usually be much faster than the simplified

algorithm but it can, in theory, fail several times before it finds a Kroenecker substitution

Kr , a sufficiently large prime p, and evaluation points βj which are all good.

We have implemented our algorithm in C and parallelized it using Cilk C. We did this

initially for 31 bit primes then for 63 bit primes and then for 127 bit primes to handle

polynomials in more variables. The first timing results revealed that almost all the time

was spent in evaluating A(x0, βj) and B (x0, βj) and not interpolating H . In Section 5 we

describe an improvement for evaluation and how we parallelized it.

In Section 6 we compare our new algorithm with the C implementations of Zippel’s

algorithm in Maple and Magma. The timing results are very promising. For our benchmark

problem, Maple takes 22,111 seconds, Magma takes 1,611 seconds. and our new algorithm

takes 4.67 seconds on 16 cores.

If #∆ > 1 then the number of terms in H may be (much) larger than the number of terms

in G. Sections 5.2 and 5.3 describe two practical improvements to reduce #∆ and hence

reduce t . The second improvement reduces the time for our benchmark problem from 4.67

seconds to 0.652 seconds on 16 cores.

1.1 Some notation and results
The proofs in the paper make use of properties of the Sylvester resultant, the Schwartz-

Zippel Lemma and require bounds for the size of the integer coefficients appearing in

certain polynomials. We state these results here for later use.

Let f =
∑t

i=1
aiMi where ai ∈ Z, ai , 0, t ≥ 0 and Mi is a monomial in n variables

x1,x2, . . . ,xn . We denote by deg f the total degree of f , degxi f the degree of f in xi , and
#f the number of terms of f . We need to bound the size of the the integer coefficients

of certain polynomials. For this purpose let || f ||1 =
∑t

i=1
|ai | be the one-norm of f and

|| f || = max
t
i=1
|ai | be the height of f . For a prime p, let ϕp denote the modular mapping

ϕp (f) = f mod p.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

A Fast Parallel Sparse Polynomial GCD Algorithm :5

Lemma 1.2. [Schwartz 1980; Zippel 1979] Let F be a field and f ∈ F [x1,x2, . . . ,xn]

be non-zero with total degree D and let S ⊂ F . If β is chosen at random from Sn then
Prob[f (β) = 0] ≤ D

|S | . Hence if R = {β | f (β) = 0} then |R | ≤ D |S |n−1.

Lemma 1.3. [Gelfond 1952] Lemma II page 135. Let f be a polynomial in Z[x1,x2, . . . ,xn]

and let di be the degree of f in xi . If д is any factor of f over Z then ||д || ≤ e
d1+d2+· · ·+dn || f ||

where e = 2.71828.

Let A be anm ×m matrix with entries Ai, j ∈ Z. Hadamard’s bound H (A) for | det(A) | is

| detA| ≤
m∏
i=1

√√ m∑
j=1

A2

i, j = H (A).

Lemma 1.4. [Goldstein and Graham 1974] LetA be anm×mmatrix with entriesAi, j ∈ Z[y].
Let B be them ×m integer matrix with Bi, j = ||Ai, j ||1. Then || detA|| ≤ H (B).

For polynomials A =
∑s

i=0
aix

i
0
and B =

∑t
i=0

bix
i
0
, Sylvester’s matrix is the following

s + t by s + t matrix

S =

as 0 0 bt 0 0

as−1 as 0 bt−1 bt 0

... as−1

. . . 0

... bt−1

. . . 0

a1

... as b1

... bt
a0 a1 as−1 b0 b1 bt−1

0 a0

... 0 b0

...

0 0

. . . a1 0 0

. . . b1

0 0 a0 0 0 b0

. (1)

where the coefficients of A are repeated in the first t columns and the coefficients of B are

repeated in the last s columns. The Sylvester resultant of the polynomials A and B in x ,
denoted resx (A,B), is the determinant of Sylvester’s matrix. We gather the following facts

about it into Lemma 1.5 below.

Lemma 1.5. LetD be any integral domain and letA andB be two polynomials inD[x0,x1, . . . ,xn]

with s = degx0

A > 0 and t = degx0

B > 0. Let as = LC (A), bt = LC (B), R = resx0
(A,B),

α ∈ Dn and p be a prime. Then

(i) R is a polynomial in D[x1, . . . ,xn],
(ii) degR ≤ degA degB (Bezout bound) and
(iii) degxi R ≤ t degxi A + s degxi B for 1 ≤ i ≤ n.

If D is a field and as (α) , 0 and bt (α) , 0 then
(iv) resx0

(A(x0,α),B (x0,α)) = R (α) and
(v) degx0

gcd(A(x0,α),B (x0,α)) > 0 ⇐⇒ resx0
(A(x0,α),B (x0,α)) = 0.

If D = Z and ϕp (as) , 0 and ϕp (bt) , 0 then
(vi) resx0

(ϕp (A),ϕp (B)) = ϕp (R) and
(vii) degx0

gcd(ϕp (A),ϕp (B)) > 0 ⇐⇒ resx0
(ϕp (A),ϕp (B)) = 0.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

:6 Hu and Monagan

Proofs of (i), (ii), (iv) and (v) may be found in Ch. 3 and Ch. 6 of [Cox et al. 1991]. In

particular the proof in Ch. 6 of [Cox et al. 1991] for (ii) for bivariate polynomials generalizes

to the multivariate case. Note that the condition on α that the leading coefficients as and
bt do not vanish means that the dimension of Sylvester’s matrix for A(x0,α) and B (x0,α)
is the same as that for A and B which proves (v). The same argument used to prove (iv)
and (v) works for (vi) and (vii). To prove (iii) we have

degxi det S ≤
∑

c ∈columns (S)

max

f ∈c
degxi f =

t∑
j=1

degxi A +
s∑
j=1

degxi B.

1.2 Ben-Or Tiwari Sparse Interpolation
Let C (x1, . . . ,xn) =

∑t
i=1

aiMi where ai ∈ Z and Mi are monomials in (x1, . . . ,xn). In
our context, C represents one of the coefficients of H = ∆G we wish to interpolate. Let

D = degC and let d = max
n
i=1

degxi C and let pn denote the n’th prime. Let

vj = C (2
j , 3j , 5j , . . . ,p jn) for j = 0, 1, . . . , 2t − 1.

The Ben-Or/Tiwari sparse interpolation algorithm [Ben-Or and Tiwari 1988] interpolates

C (x1,x2, . . . ,xn) from the 2t points vj . Let mi = Mi (2, 3, 5, . . . ,pn) ∈ Z and let λ(z) =∏t
i=1

(z −mi) ∈ Z[z]. The algorithm proceeds in 5 steps.

1 Compute vj = C (2
j , 3j , 5j , . . . ,p jn) for j = 0, 1, . . . , 2t − 1.

2 Compute λ(z) from vj using the Berlekamp-Massey algorithm [Massey 1969] or the

Euclidean algorithm [Atti et al. 2006; Sugiyama et al. 1975].

3 Compute the integer rootsmi of λ(z).
4 Factor the integersmi using trial division by 2, 3, . . . ,pn from which we obtainMi .

For example, for n = 3, ifmi = 45000 = 2
3
3

2
5

4
thenMi = x1

3x2

2x3

4
.

5 Solve the following t×t linear system for the unknown coefficients ai inC (x1, . . . ,xn).

V a =

1 1 . . . 1

m1 m2 . . . mt
m1

2 m2

2 . . . mt
2

...
...

...
...

m1

t−1 m2

t−1 . . . mt−1

t

a1

a2

a3

...
at

=

v0

v1

v2

...
vt−1

= b (2)

The matrix V above is a transposed Vandermonde matrix. Recall that

detV = detVT =
∏

1≤j<k≤t

(mj −mk).

Since the monomial evaluationsmi = Mi (2, 3, 4, . . . ,pn) are distinct it follows that Va = b
has a unique solution. The linear systemVa = b can be solved inO (t2) arithmetic operations

(see [Zippel 1990]). Note, the master polynomial P (Z) in [Zippel 1990] is λ(z).

Notice that the largest integer in λ(z) is the constant term Πt
i=1

mi which is at most

pDtn hence of size O (tD logn log logn) bits. Moreover, in [Kaltofen et al. 1990], Kaltofen,

Lakshman and Wiley noticed that a severe expression swell occurs if either the Berlekamp-

Massey algorithm or the Euclidean algorithm is used to compute λ(z) over Q. For our

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

A Fast Parallel Sparse Polynomial GCD Algorithm :7

purposes, because we want to interpolate H modulo a prime p, we run Steps 2, 3, and 5

modulo p. Provided we pick p > max
t
i=1

mi ≤ pDn the integersmi remain unique modulo p
and we recover the monomials Mi (x1, . . . ,xn) in Step 4 and the linear system in Step 5

has a unique solution modulo p. For Step 3, the roots of λ(z) ∈ Zp[z] can be found using

Berlekamp’s algorithm [Berlekamp 1970] which has classical complexity O (t2
logp).

In [Ben-Or and Tiwari 1988], Ben-Or and Tiwari assume a sparse term bound T ≥ t is
known, that is, we are given some T such that t ≤ T ≪ (d + 1)n and in Step 1 we may

compute 2T evaluations in parallel. In practice such a bound on t may not known in advance

so the algorithm needs to be modified to also determine t . For p sufficiently large, if we

compute λ(z) after j = 2, 4, 6, . . . points, we will see deg λ(z) = 1, 2, 3, . . . , t − 1, t , t , t , . . .
with high probability. Thus we may simply wait until the degree of λ(z) does not change.
This problem is first discussed by Kaltofen, Lee and Lobo in [Kaltofen et al. 2000]. We will

return to this in Section 4.1.

Steps 2, 3, and 5 may be accelerated with fast multiplication. LetM (t) denote the cost of
multiplying two polynomials of degree t in Zp[t]. The fast Euclidean algorithm can be used

to accelerate Step 2. It has complexityO (M (t) log t). See Ch. 11 of [von zur Gathen and Ger-
hard 1999]. Computing the roots of λ(z) in Step 3 can be done inO (M (t) log t log(pt)). See
Corollary 14.16 of [von zur Gathen and Gerhard 1999]. Step 5 may be done inO (M (t) log t)
using fast interpolation. See Ch 10 of [von zur Gathen and Gerhard 1999]. We summarize

these complexity results in Table 2 below.

Step Classical Fast

2 O (t2) O (M (t) log t)
3 O (t2

logp) O (M (t) log t log(pt))
5 O (t2) O (M (t) log t)

Table 2. Number of arithmetic operations in Zp for t monomials.

1.3 Ben-Or/Tiwari with discrete logarithms
The discrete logarithm method modifies the Ben-Or/Tiwari algorithm so that the prime

needed is a little larger than (d+1)n thus of size isO (n logd) bits instead ofO (D logn log logn).
[Murao and Fujise 1996] were the first to try this approach. Some practical aspects of it are

discussed by van der Hoven and Lecerf in [van der Hoven and Lecerf 2014]. We explain

how the method works.

To interpolate C (x1, . . . ,xn) we first pick a prime p of the form p = q1q2q3 . . .qn + 1

satisfying 2|q1, qi > degxi C and gcd(qi ,qj) = 1 for 1 ≤ i < j ≤ n. Finding such primes is

not difficult and we omit presenting an explicit algorithm here.

Next we pick a random primitive element α ∈ Zp which we can do using the partial

factorization p − 1 = q1q2 . . .qn (see [Stinson 2006]). We set ωi = α (p−1)/qi
so that ω

qi
i = 1

and replace the evaluation points (2j , 3j , . . . ,p jn) with (ω j
1
,ω j

2
, . . . ,ω j

n). After Step 2 we

factor λ(z) in Zp[z] to determine themi . If Mi =
∏n

k=1
xdkk we havemi =

∏n
k=1

ωdk
k . To

compute dk in Step 4 we compute the discrete logarithm x := logα mi , that is, we solve

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

:8 Hu and Monagan

αx ≡mi (mod p) for 0 ≤ x < p − 1. We have

x = logα mi = logα

n∏
k=1

ωdk
k =

n∑
k=1

dk
p − 1

qk
. (3)

Taking (3) modqk we obtaindk = x[(p−1)/qk]
−1

mod qk . Note the condition gcd(qi ,qj) =
1 ensures (p − 1)/qk is invertible mod qk . Step 5 remains unchanged.

For p = q1q2 . . .qn + 1, a discrete logarithm can be computed inO (
∑m

i=1
ei (logp +

√
pi))

multiplications in Zp using the Pohlig-Helman algorithm where the factorization of p− 1 =∏m
i=1

peii . See [Pohlig and Hellman 1978; Stinson 2006]. Since the qi ∼ d this leads to an

O (n
√
d) cost. Kaltofen showed in [Kaltofen et al. 2010] that this can be made polynomial in

logd and n if one uses a Kronecker substitution to reduce multivariate interpolation to a

univariate interpolation and uses a prime p > (d + 1)n of the form p = 2
ks + 1 with s small.

1.4 Bad and Unlucky Evaluation Points
Let A and B be non constant polynomials in Z[x0, . . . ,xn], G = gcd(A,B) and Ā = A/G
and B̄ = B/G . Let p be prime such that LC (A)LC (B) mod p , 0.

Definition 1.6. Let α ∈ Znp and let д̄α (x) = gcd(Ā(x ,α), B̄ (x ,α)). We say α is bad if

LC (A) (α) = 0 or LC (B) (α) = 0 and α is unlucky if deg д̄α (x) > 0. If α is not bad and not

unlucky we say α is good.

Example 1.7. Let G = (x1 − 16)x0 + 1, Ā = x2

0
+ 1 and B̄ = x2

0
+ (x1 − 1) (x2 − 9)x0 + 1.

Then LC (A) = LC (B) = x1 − 16 so {(16, β) : β ∈ Zp } are bad and {(1, β) : β ∈ Zp } and
{(β , 9) : β ∈ Zp } are unlucky.

Our GCD algorithm cannot reconstructG using the image дα (x) = gcd(A(x ,α), B (x ,α))
if α is unlucky. Brown’s idea in [Brown 1971] to detect unlucky α is based on the following

Lemma.

Lemma 1.8. Let α and дα be as above and hα = G (x ,α) mod p. If α is not bad then hα |дα
and degx дα ≥ degx G.

For a proof of Lemma 1.8 see Lemma 7.3 of [Geddes et al. 1992]. Brown only uses α
which are not bad and the images дα (x) of least degree to interpolate G. The following
Lemma implies if the prime p is large then unlucky evaluations points are rare.

Lemma 1.9. If α is chosen at random from Znp then

Prob[α is bad or unlucky] ≤
degAB + degAdegB

p
.

proof: Let b be the number of bad evaluation points and let r be the number of unlucky

evaluation points that are not also bad. Let B denote the event α is bad and G denote the

event α is not bad andU denote the event α is unlucky. Then

Prob[B or U] = Prob[B] + Prob[G and U]

= Prob[B] + Prob[G] × Prob[U |G]

=
b

pn
+

(
1 −

b

pn

)
r

pn − b
=

b

pn
+

r

pn
.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

A Fast Parallel Sparse Polynomial GCD Algorithm :9

Now α is bad =⇒ LC(A) (α)LC(B) (α) = 0 =⇒ LC (AB) (α) = 0. Applying Lemma 1.2

with f = LC(AB) we have b ≤ degLC (AB)pn−1. Let R = resx0
(Ā, B̄) ∈ Zp[x1, . . . ,xn].

Now α is unlucky and not bad =⇒ deg gcd(Ā(x ,α), B̄ (x ,α)) > 0 and LC(Ā) (α) , 0 and

LC(B̄) (α) , 0 =⇒ R (α) = 0 by Lemma 1.5 (iv) and (v). Applying Lemma 1.2 we have

r ≤ deg(R)pn−1
. Substituting into the above we have

Prob[B or U] ≤
deg LC(AB)

p
+

degR

p
≤

degAB

p
+

degAdegB

p
2

The following algorithm applies Lemma 1.9 to compute an upper bound d for degxi G .

Algorithm DegreeBound(A,B,i)

Input: Non-zero A,B ∈ Z[x0,x1, . . . ,xn] and i satisfying 0 ≤ i ≤ n.
Output: d ≥ degxi (G) where G = gcd(A,B).

1 Set LA = LC(A,xi) and LB = LC(B,xi).
So LA,LB ∈ Z[x0, . . . ,xi−1,xi+1, . . . ,xn].

2 Pick a prime p ≫ degAdegB such that LA mod p , 0 and LB mod p , 0.

3 Pick α = (α0, . . . ,αi−1,αi+1, . . . ,αn) ∈ Z
n
p at random until LA(α)LB (α) , 0.

4 Compute a = A(α0, . . . ,αi−1,xi ,αi+1, . . . ,αn) and
b = B (α0, . . . ,αi−1,xi ,αi+1, . . . ,αn).

5 Compute д = gcd(a,b) in Zp[xi] using the Euclidean algorithm.

6 Output d = degxi д.

1.5 Unlucky evaluations in Ben-Or/Tiwari
Consider again Example 1.7 where G = (x1 − 16)x0 + 1, Ā = x2

0
+ 1 and B̄ = x2

0
+ (x1 −

1) (x2 − 9)x0 + 1. For the Ben-Or/Tiwari points α j = (2j , 3j) for 0 ≤ j < 2t observe that
α0 = (1, 1) and α2 = (4, 9) are unlucky and α4 = (16, 81) is bad. Since none of these points
can be used to interpolateG we need to modify the Ben-Or/Tiwari point sequence. For the

GCD problem, we want random evaluation points to avoid bad and unlucky points. The

following fix works.

Pick 0 < s < p at random and use α j = (2s+j , 3s+j , . . . ,pn
s+j) for 0 ≤ j < 2t . Steps 1,2

and 3 work as before. To solve the shifted transposed Vandermonde system

W c =

ms
1

ms
2

. . . ms
t

m1

s+1 m2

s+1 . . . mt
s+1

...
...

...
...

m1

s+t−1 m2

s+t−1 . . . ms+t−1

t

c1

c2

...
ct

=

vs
vs+1

...
vs+t−1

= u .

we first solve the transposed Vandermonde system

V b =

1 1 . . . 1

m1 m2 . . . mt
...

...
...

...
m1

t−1 m2

t−1 . . . mt−1

t

b1

b2

...
bt

=

vs
vs+1

...
vs+t−1

= u

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

:10 Hu and Monagan

as before to obtain b = V −1u. Observe that the matrixW = VD where D is the t by t
diagonal matrix with Di,i =m

s
i . SolvingWc = u for c we have

c =W −1u = (VD)−1u = (D−1V −1)u = D−1 (V −1u) = D−1b .

Thus ci = bim
−s
i and we can solveWc = u in O (t2 + t log s) multiplications.

Referring again to Example 2, if we use the discrete logarithm evaluation points α j =

(ω j
1
,ω j

2
) for 0 ≤ j < 2t then α0 = (1, 1) is unlucky and also, since ω

q1

1
= 1, all

αq1
,α2q1

,α3q1
, . . . are unlucky. Shifting the sequence to start at j = 1 and picking qi > 2t is

problematic because for the GCD problem, t may be larger than max{#ai , #bi }, or smaller;

there is no way to know in advance. This difficulty led us to consider using a Kronecker

substitution.

2 KRONECKER SUBSTITUTIONS
We propose to use a Kronecker substitution to map amultivariate polynomial GCD problem

in Z[x0,x1, . . . ,xn] into a bivariate GCD problem in Z[x ,y]. After making the Kronecker

substitution, we need to interpolate H (x ,y) = ∆(y)G (x ,y) where degy H (x ,y) will be
exponential in n. To make discrete logarithms in Zp feasible, we follow Kaltofen [Kaltofen

et al. 2010] and pick p = 2
ks + 1 > degy H (x ,y) with s small.

Definition 2.1. LetD be an integral domain and let f be a polynomial inD[x0,x1, . . . ,xn].

Let r ∈ Zn−1
with ri > 0. LetKr : D[x0,x1, . . . ,xn]→ D[x ,y] be the Kronecker substitution

Kr (f) = f (x ,y,yr1 ,yr1r2 , . . . ,yr1r2 ...rn−1).

Let di = degxi f be the partial degrees of f for 1 ≤ i ≤ n. We note that Kr is a homomor-

phism and it is invertible if ri > di for 1 ≤ i ≤ n − 1. Not all such Kronecker substitutions

can be used, however, for the GCD problem. We consider an example.

Example 2.2. Consider the following GCD problem

G = x + y + z, Ā = x3 − yz, B̄ = x2 − y2

in Z[x ,y, z]. Since degy G = 1 the Kronecker substitution Kr (G) = G (x ,y,y2) is invertible.

But gcd(Kr (Ā),Kr (B̄)) = gcd(Ā(x ,y,y2), B̄ (x ,y,y2)) = gcd(x3 − y3,x2 − y2) = x − y. If we
proceed to interpolate the gcd(Kr (A),Kr (B)) we will obtain (x − y)Kr (G) in expanded

form from which and we cannot recover G.

We call such a Kronecker substitution unlucky. Theorem 2.5 below tells us that the

number of unlucky Kronecker substitutions is finite. To detect them we will also avoid

bad Kronecker substitutions in an analogous way Brown did to detect unlucky evaluation

points.

Definition 2.3. Let Kr be a Kronecker substitution. We say Kr is bad if degx Kr (A) <
degx0

A or degx Kr (B) < degx0

B and Kr is unlucky if degx gcd(Kr (Ā),Kr (B̄)) > 0. If Kr is

not bad and not unlucky we say Kr is good.

Proposition 2.4. Let f ∈ Z[x1, . . . ,xn] be non-zero and di ≥ 0 for 1 ≤ i ≤ n. Let X be
the number of Kronecker substitutions Kr such that Kr (f) = 0 where

r ∈ {[d1 + k,d2 + k, . . . ,dn−1 + k] for k = 1, 2, 3, . . . }

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

A Fast Parallel Sparse Polynomial GCD Algorithm :11

Then X ≤ (n − 1)
√

2 deg f .

proof: Kr (f) = 0 ⇐⇒ f (y,yr1 ,yr1r2 , . . . ,yr1r2 ...rn−1) = 0

⇐⇒ f mod ⟨x1 − y,x2 − y
r1 , . . . ,xn − y

r1r2 ...rn−1⟩ = 0

⇐⇒ f mod ⟨x2 − x
r1

1
,x3 − x

r2

2
, . . . ,xn − x

rn−1

n−1
⟩ = 0. Thus X is the number of ideals I =

⟨x2 − x
r1

1
, . . . ,xn − x

rn−1

n−1
⟩ for which f mod I = 0 with ri = di + 1,di + 2, We prove that

X ≤ (n − 1)
√

2 deg f by induction on n.
If n = 1 then I is empty so f mod I = f and hence X = 0 and the Lemma holds. For

n = 2 we have f (x1,x2) mod ⟨x2 − x
r1

1
⟩ = 0 =⇒ x2 − x

r1

1
| f . Now X is maximal when

d1 = 0 and r1 = 1, 2, 3, We have∑X
r1=1

r1 ≤ deg f =⇒ X (X + 1)/2 ≤ deg f =⇒ X <
√

2 deg f .

For n > 2 we proceed as follows. Either xn−x
rn−1

n−1
| f or it doesn’t. If not then the polynomial

S = f (x1, . . . ,xn−1,x
rn−1

n−1
) is non-zero. For the sub-case xn − xrn−1

n−1
| f we obtain at most√

2 deg f such factors of f using the previous argument. For the case S , 0 we have

S mod I = 0 ⇐⇒ S mod ⟨x2 − x
r1

1
, . . . ,xn−2 − x

rn−2

n−1
⟩ = 0

Notice that degxi S = degxi f for 1 ≤ i ≤ n − 2. Hence, by induction on n, X < (n −

2)
√

2 deg f for this case. Adding the number of unlucky Kronecker substitutions for both

cases yields X ≤ (n − 1)
√

2 deg f . 2

Theorem 2.5. Let A,B ∈ Z[x0,x1, . . . ,xn] be non-zero, G = gcd(A,B), Ā = A/G and
B = B̄/G. Let di ≥ degxi G . Let X be the number of Kronecker substitutions Kr where
r ∈ {[d1 + k,d2 + k, . . . ,dn−1 + k] for k = 1, 2, 3, . . . } which are bad and unlucky. Then

X ≤
√

2(n − 1)
[√

degA +
√

degB +
√

degAdegB
]
.

proof: Let LA = LC(A) and LB = LC(B) be the leading coefficients of A and B in x0. Then

Kr is bad ⇐⇒ Kr (LA) = 0 or Kr (LB) = 0. Applying Proposition 2.4, the number of bad

Kronecker substitutions is at most

(n − 1) (
√

2 degLA +
√

2 degLB) ≤ (n − 1) (
√

2 degA +
√

2 degB).

Now let R = resx0
(Ā, B̄). We will assume Kr is not bad.

Kr is unlucky ⇐⇒ degx (gcd(Kr (Ā),Kr (B̄)) > 0

⇐⇒ resx (Kr (Ā),Kr (B̄)) = 0

(Kr is not bad and is a homomorphism) ⇐⇒ Kr (resx (Ā, B̄)) = 0

⇐⇒ Kr (R) = 0

By Proposition 2.4, the number of unlucky Kronecker substitutions ≤ (n − 1)
√

2 degR ≤

(n − 1)
√

2 degAdegB by Lemma 1.5(ii). Adding the two contributions proves the theorem.

2

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

:12 Hu and Monagan

Theorem 2.5 tells us that the number of unlucky Kronecker substitutions is finite. Our

algorithm, after identifying an unlucky Kronecker substitution will try the next Kronecker

substitution r = [r1 + 1, r2 + 1, . . . , rn−1 + 1].

It is still not obvious that a Kronecker substitution that is not unlucky can be used

because it can create a content in y of exponential degree. The following example shows

how we recover H = ∆G when this happens.

Example 2.6. Consider the following GCD problem

G = wx2 + zy, Ā = ywx + z, B̄ = yzx +w

in Z[x ,y, z,w]. We have Γ = wy and ∆ = y. For Kr (f) = f (x ,y,y3,y9) we have

gcd(Kr (A),Kr (B)) = Kr (G) gcd(y10x + y3,y4x + y9) = (y9x2 + y4)y3 = y7 (y5x2 + 1).

One must not try to compute gcd(Kr (A),Kr (B)) because the degree of the content of
gcd(Kr (A),Kr (B)) (y

7
in our example) can be exponential in n the number of variables and

we cannot compute this efficiently using the Euclidean algorithm. The crucial observation

is that if we compute monic images дj = gcd(Kr (A) (x ,α
j),Kr (B) (x ,α

j)) any content is

divided out, and when we scale by Kr (Γ) (α
j) and interpolate y in Kr (H) using sparse

interpolation, we recover any content. We obtain Kr (H) = Kr (∆)Kr (G) = y10x2 + y5
, then

invert Kr to obtain H = (yw)x2 + (y2z).

2.1 Unlucky primes
Let A,B be polynomials in Z[x0,x1, . . . ,xn], G = gcd(A,B), Ā = A/G and B̄ = B/G. In
the introduction we defined the polynomials Γ = gcd(LC (A),LC (B), ∆ = Γ/LC (G) and
H = ∆G where LC (A), LC (B) and LC (G) are the leading coefficients of A, B and G in x0

respectively.

Let Kr : Z[x0,x1, . . . ,xn] → Z[x ,y] be a Kronecker substitution Kr (f) = f (x ,y,
yr1 ,yr1r2 , . . . ,yr1r2 ...rn−1) for some ri > 0. Our GCD algorithmwill compute gcd(Kr (A),Kr (B))
modulo a prime p. Some primes cannot be used.

Example 2.7. Consider the following GCD problem in Z[x0,x1] where a andb are positive
integers.

G = x0 + b x1 + 1, Ā = x0 + x1 + a, B̄ = x0 + x1

In this example, Γ = 1 so H = G. Since there are only two variables the Kronecker

substitution is Kr (f) = f (x ,y) hence Kr (Ā) = x + y + a, Kr (B̄) = x + y. Notice that

gcd(Kr (Ā),Kr (B̄)) = 1 in Z[x ,y], but gcd(ϕp (Kr (Ā)),ϕp (Kr (B̄))) = x + y for any prime

p |a. Like Brown’s modular GCD algorithm in [Brown 1971], our GCD algorithm must

avoid these primes.

If our GCD algorithm were to choose primes from a pre-computed set of primes S =
{p1,p2, . . . ,pN } then notice that if we replace a in example 2.7 with a = ΠN

i=1
pi then every

prime would be unlucky. To guarantee that our GCD algorithm will succeed on all inputs

we need to bound the number of primes that cannot be used and pick our prime from a

sufficiently large set at random.

Because our algorithm will always choose ri > degxi H , the Kronecker substitution Kr
leaves the coefficients of H unchanged. Let pmin be the smallest prime in S . From Section

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

A Fast Parallel Sparse Polynomial GCD Algorithm :13

1, H =
∑dG

i=0
hix

i
0
with t = max(#hi), we have #H ≤ (d + 1)t hence if p is chosen at random

from S then

Prob[Supp(ϕp (H)) , Supp(H)] ≤
(d + 1)t logpmin ||H ||

N
.

Theorem 2.10 below bounds ||H || from the inputs A and B.

Definition 2.8. Let p be a prime and let Kr be a Kronecker substitution. We say p is

bad if degx ϕp (Kr (A)) < degx Kr (A) or degx ϕp (Kr (B)) < degx Kr (B) and p is unlucky if

degx gcd(ϕp (K̄r (A)),ϕp (K̄r (B))) > 0. If p is not bad and not unlucky we say p is good.

Let R = resx (Ā, B̄) ∈ Z[x1, . . . ,xn] be the Sylvester resultant of Ā and B̄. Unlucky primes

are characterized as follows; if p is not bad then Lemma 1.5(vii) implies p is unlucky ⇐⇒

ϕp (Kr (R)) = 0. Unlucky primes are detected using the same approach as described for

unlucky evaluations in section 1.3 which requires that we also avoid bad primes. If p is

bad or unlucky then p must divide the integerM = ||Kr (LC (A)) || · ||Kr (LC (B)) || · ||Kr (R) ||.
Let pmin = min

N
i=1

pi . Thus if p is chosen at random from S then

Prob[p is bad or unlucky] ≤
logpmin M

N
.

Proposition 2.9. Let A be an m ×m matrix with entries Ai, j ∈ Z[x1,x2, . . . ,xn] sat-
isfying the term bound #Ai, j ≤ t , the degree bound degxk Ai, j ≤ d and the coefficient
bound ||Ai, j || < h (for 1 ≤ i, j ≤ m). Note if a term bound for #Ai, j is not known
we may use t = (1 + d)n . Let Kr : Z[x1,x2, . . . ,xn] → Z[y] be the Kronecker map
Kr (f) = f (y,yr1 ,yr1r2 , . . . ,yr1r2 ...rn−1)k > 0 and let B = Kr (A) be the m ×m matrix of
polynomials in Z[y] with Bi, j = Kr (Ai, j) for 1 ≤ i, j ≤ m. Then

(i) || detA|| < mm/2tmhm and
(ii) || detB || < mm/2tmhm .

proof: To prove (i) let S be them ×m matrix of integers given by Si, j = ||Ai, j ||1 We claim

|| detA|| ≤ H (S) where H (S) is Hadamard’s bound on | det S |. Then applying Hadamard’s

bound to S we have

H (S) =
m∏
i=1

√√ m∑
j=1

S2

i, j =

m∏
i=1

√√ m∑
j=1

||Ai, j ||
2

1
<

m∏
i=1

√
m(th)2 = mm/2tmhm

which establishes (i).

To prove our claim letKs be a Kronecker map with si > md and letC be them×m matrix

with Ci, j = Ks (Ai, j). Notice that degxk Ai, j ≤ d implies degxk detA ≤ md for 1 ≤ k ≤ n.
Thus Ks (detA) is a bijective map on the monomials of detA thus Ks (detA) = detC which

implies || detA|| = || detC ||. Now letW be the m ×m matrix withWi, j = ||Ci, j ||1 and let

H (W) be Hadamard’s bound on | detW |. Then || detC || ≤ H (W) by Lemma 1.4 and since

Ks is bijective S =W hence H (S) = H (W). Therefore || detA|| = || detC || ≤ H (W) = H (S)
which proves the claim.

To prove (ii), let S and T be the m × m matrices of integers given by Si, j = ||Ai, j ||1
and Ti, j = ||Bi, j ||1 for 1 ≤ i, j ≤ m. From the claim in part (i) if rk > md we have

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

:14 Hu and Monagan

|| detA|| = || detB || ≤ H (T) = H (S). Now if rk ≤ md for any 1 ≤ k ≤ n − 1 then Kr (detA)
is not necessarily one-to-one on the monomials in detA. However, for all rk > 0 we still

have

||Kr (Ai, j) ||1 ≤ ||Ai, j ||1 ≤ i, j ≤ m

so that Ti, j ≤ Si, j hence H (T) ≤ H (S). We have || detB || ≤ H (T) ≤ H (S) and (ii) follows.
2

Theorem 2.10. Let A,B,G, Ā, B̄,∆,H be as given at the beginning of this section and let
R = resx0

(Ā, B̄). Suppose A =
∑dA

i=0
ai (x1, . . . ,xn)x

i
0
and B =

∑dB
i=0

bi (x1, . . . ,xn)x
i
0
satisfy

degA ≤ d , degB ≤ d , dA > 0, dB > 0, ||ai || < h and ||bi || < h. Let Kr : Z[x0,x1, . . . ,xn] →

Z[x ,y] be the Kronecker map Kr (f) = f (x ,y,yr1 ,yr1r2 , . . . ,yr1r2 ...rn−1). If Kr is not bad, that
is, Kr (adA) , 0 and Kr (adB) , 0, then

(i) ||Kr (LC (A)) || ≤ (1 + d)nh and ||Kr (LC (B)) || ≤ (1 + d)nh,
(ii) ||Kr (R) || ≤ mm/2 (1 + d)nmEm and
(iii) if ri > degxi H for 1 ≤ i ≤ n − 1 then ||H || ≤ (1 + d)nE2

wherem = dA + dB and E = e
(n+1)dh.

proof: Since LC (A) ∈ Z[x1, . . . ,xn] we have #LC (A) ≤ (1 + d)n thus ||Kr (LC (A)) || ≤
(1 + d)n ||LC (A) || ≤ (1 + d)nh. Using the same argument we have ||Kr (LC (B)) || ≤ (1 + d)nh
which proves (i).

Let Ā =
∑dĀ

i=0
āix

i
0
and B̄ =

∑dB̄
i=0

¯bix
i
0
. Because A = GĀ and B = GB̄, Lemma 1.3 implies

||Ā|| < E and ||B̄ || < E. Let S be Sylvester’s matrix formed from Kr (āi) and Kr (¯bi). Now
Kr (R) = det S and S has dimension dĀ+dB̄ ≤ dA+dB =m. Applying Proposition 2.9 to S
we have

||Kr (R) || = || det S || ≤ tmEmmm/2

where t = maxi, j #Si, j . Since Ā|A and B̄ |B we have degx j āi (x1, . . . ,xn) ≤ d and

degx j
¯bi (x1, . . . ,xn) ≤ d thus #Si, j ≤ (1 + d)n and (ii) follows.

For (iii) since G |A and ∆|LC (A), Lemma 1.3 implies ||G || < E and ||∆|| < E. Thus

||H || = ||∆G || ≤ #∆ · ||∆|| · ||G || ≤ (1 + d)nE2. 2

We remark that our definition for unlucky primes differs from Brown [Brown 1971].

Brown’s definition depends on the vector degree whereas ours depends only on the degree

in x0 the main variable. The following example illustrates the difference.

Example 2.11. Consider the following GCD problem and prime p.

G = x + y + 1, Ā = (y + p)x2 + y2, B̄ = yx3 + y + p.

We have gcd(ϕp (Ā),ϕp (B̄)) = gcd(yx +y2,yx2 +y) = y. By definition 2.8, p is not unlucky

but by Brown’s definition, p is unlucky.

Our GCD algorithm in Z[x0,x1, . . . ,xn] only needs monic images in Zp[x0] to recover

H whereas Brown needs monic images in Zp[x0,x1, . . . ,xn] to recover G. A consequence

of this is that our bound on the number of unlucky primes is much smaller than Brown’s

bound (see Theorems 1 and 2 of [Brown 1971]). This is relevant because we also require p
to be smooth.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

A Fast Parallel Sparse Polynomial GCD Algorithm :15

2.2 The number of unlucky evaluation points
Even if the Kronecker substitution is not unlucky, after applying it to input polynomials A
and B, because the degree iny may be very large, the number of bad and unlucky evaluation

points may be very large.

Example 2.12. Consider the following GCD problem

G = x0 + x
d
1
+ xd

2
+ · · · + xdn , Ā = x0 + x1 + · · · + xn−1 + x

d+1

n , B̄ = x0 + x1 + · · · + xn−1 + 1.

To recoverG, if we use r = [d + 1,d + 1, . . . ,d + 1] for x1,x2, . . . ,xn−1 we need p > (d + 1)n .
But R = resx0

(Ā, B̄) = 1− xd+1

n and Kr (R) = 1− (yr1r2 ...rn−1)d+1 = 1−y (d+1)n
which means

there could be as many as (d + 1)n unlucky evaluation points. If p = (d + 1)n + 1, all

evaluation points would be unlucky.

To guarantee that we avoid unlucky evaluation points with high probability we would

need to pick p ≫ degKr (R) which could be much larger than what is needed to interpolate

Kr (H). But this upper bound based on the resultant is a worst case. This lead us to investi-

gate what the expected number of unlucky evaluation points is. We ran an experiment.

We computed all monic quadratic and cubic bivariate polynomials over small finite fields

Fq of size q = 2, 3, 4, 5, 7, 8, 11 and counted the number of unlucky evaluation points to

find the following result.

Theorem 2.13. Let Fq be a finite field with q elements and f = x l +
∑l−1

i=0
(
∑di

j=0
ai jy

j)x i

and д = xm +
∑m−1

i=0
(
∑ei

j=0
bi jy

j)x i with l ≥ 1,m ≥ 1, and ai j ,bi j ∈ Fq . Let X = |{α ∈ Fq :

gcd(f (x ,α),д(x ,α)) , 1}| be a random variable over all choices ai j ,bi j ∈ Fq . So 0 ≤ X ≤ q
and for f and д not coprime in Fq[x ,y] we have X = q. If di ≥ 0 and ei ≥ 0 then E[X] = 1.

proof: LetC (y) =
∑d

i=0
ciy

i
withd ≥ 0 and ci ∈ Fq and fix β ∈ Fq . Consider the evaluation

mapCβ : Fd+1

q → Fq given byCβ (c0, . . . , cd) =
∑d

i=0
ciβ

i
. We claim thatC is balanced, that

is, C maps qd inputs to each element of Fq . It follows that f (x , β) is also balanced, that is,

over all choices for ai, j each monic polynomial in Fq[x] of degree n is obtained equally

often. Similarly for д(x , β).
Recall that two univariate polynomials a,b in Fq[x] with degree dega > 0 and degb > 0

are coprime with probability 1− 1/q (see Ch 11 of Mullen and Panario [Mullen and Panario

2013]). This is also true under the restriction that they are monic. Therefore f (x , β) and
д(x , β) are coprime with probability 1 − 1/q. Since we have q choices for β we obtain

E[X] =
∑
β ∈Fq

Prob[gcd(A(x , β),B (x , β)) , 1] = q(1 − (1 −
1

q
)) = 1.

Proof of claim. Since B = {1,y − β, (y − β)2, . . . , (y − β)d } is a basis for polynomials of

degree d we can write each C (y) =
∑d

i=0
ciy

i
as C (y) = u0 +

∑d
i=1

ui (y − β)
i
for a unique

choice of u0,u1, . . . ,ud ∈ Fq . Since C (β) = u0 it follows that all q
d
choices for u1, . . . ,ud

result in C (β) = u0 hence C is balanced. 2

That E[X] = 1 was a surprise to us. We thought E[X] would have a logarithmic depen-

dence on deg f and degд. In light of Theorem 2.13, we will first pick p > degy (Kr (H))

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

:16 Hu and Monagan

and, should the algorithm encounter unlucky evaluations, restart the algorithm with a

larger prime.

3 SIMPLIFIED ALGORITHM
We now present our GCD algorithm. It consists of two parts: the main routine MGCD

and the subroutine PGCD. PGCD computes the GCD modulo a prime and MGCD calls

PGCD several times to obtain enough images to reconstruct the coefficients of the target

polynomial H using Chinese Remaindering. In this section, we assume that we are given a

term bound τ on the number of terms in the coefficients of target polynomial H , that is

τ ≥ #hi (x1,x2, . . . ,xn). We will also choose a Kronecker substitution that is a priori not

bad and not unlucky. These assumptions will enable us to choose the prime p so that PGCD

computes G with high probability. We will relax these assumptions in the next section.

The algorithm will need to treat bad and unlucky primes and bad and unlucky evaluation

points.

3.1 Bad and unlucky Kronecker substitutions
Lemma 3.1. Let Kr : Z[x0,x1, . . . ,xn]→ Z[x ,y] be the Kronecker substitution Kr (f) :=

f (x ,y,yr1 ,yr1r2 , . . . ,yr1r2 · · ·rn−1). If f , 0 and ri > degxi (f) for 1 ≤ i ≤ n − 1 then Kr (f)
sends monomials in f to unique monomials and therefore Kr is one-to-one and Kr (f) , 0.

Proof. Suppose two monomials xd0

0
xd1

1
· · · xdnn and xe0

0
ee1

1
· · · xenn in f are mapped to the

same monomial in Z[x ,y] so that

xd0yd1yr1d2 · · ·yr1r2 · · ·rn−1dn = xe0ye1yr1e2 · · ·yr1r2 · · ·rn−1en

Clearly d0 = e0 and

d1 + r1d2 + · · · + r1r2 · · · rn−1dn = e1 + r1e2 + · · · + r1r2 · · · rn−1en (4)

Reducing (4) modulo r1 we have d1 ≡ e1 (mod r1). Now r1 > degx1

f implies r1 > d1 and

r1 > e1 implies d1 = e1. Subtracting d1 = e1 from this equation and dividing through by r1

we have

d2 + r2d3 + . . . r2r3 · · · rn−1dn = e2 + r2e3 + . . . r2r3 · · · rn−1en

Repeating the argument we obtain di = ei for 1 ≤ i ≤ n. □

In our case, we are considering the polynomialsA,B ∈ Z[x0,x1, . . . ,xn] with degx0

A > 0

and degx0

B > 0. Let G = gcd(A,B) and Ā = A/G and B̄ = B/G and let LC (A) and LC (B)
the the leading coefficients of A and B with respect to x0. Lemma 3.1 implies that if we

pick ri > max(degxi LC (A), degxi LC (B)) then Kr (LC (A)) , 0 and Kr (LC (B)) , 0 thus Kr

is not bad. Let R = resx0
(Ā, B̄). By Lemma 1.5(iii), we have

degxi R ≤ degx0B̄ degxi Ā + degx0Ādegxi B̄.

Since degxi Ā ≤ degxi A and degxi B̄ ≤ degxi B for 0 ≤ i ≤ n we have

degxi R ≤ degx0

B degxi A + degx0

Adegxi B.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

A Fast Parallel Sparse Polynomial GCD Algorithm :17

So if we pick ri = (degx0

B degxi A+degx0

Adegxi B)+1, thenKr is always lucky by Lemma

3.1. The assumption that degx0

A > 0 and degx0

B > 0 gives

(degx0

B degxi A + degx0

Adegxi B) ≥ max{degxi LC (A), degxi LC (B))}

hence the Kronecker substitution Kr with the sequence

[ri = (degxi Adegx0

B + degxi B degx0

A) + 1]1≤i≤n

is good.

3.2 Bad and unlucky evaluations
In this section, the Kronecker substitution Kr is assumed to be good. We also assume that

the prime p is good.

Proposition 3.2. Let d = max{max{degxi A, degxi B}0≤i≤n } and let ri = 2d2 + 1 for
1 ≤ i ≤ n. Note 2d2 + 1 ≥ (degxi Adegx0

B + degxi B degx0

A) + 1. Then

(1) degy Kr (A) < (2d2 + 1)n and degy Kr (B) < (2d2 + 1)n ,
(2) degy LC (Kr (A)) (y) < (2d2 + 1)n and degy LC (Kr (B)) (y) < (2d2 + 1)n ,
(3) degy Kr (H) < (2d2 + 1)n , and
(4) degy Kr (R) < 2d (2d2 + 1)n , where Kr (R) = resx (Kr (Ā),Kr (B̄)).

Proof. For (1), after the Kronecker substitution, the exponent of y ≤ e1 + e2 (2d
2 + 1) +

· · · + en (2d
2 + 1)n−1

, where ei is the exponent of xi and ei ≤ d for all i . So degy Kr (A) and
degy Kr (B) are bounded by

d + d (2d2 + 1) + · · · + d (2d2 + 1)n−1 = d (1 + (2d2 + 1) + · · · + (2d2 + 1)n−1)

= d (1 +
(2d2 + 1)n − (2d2 + 1)

(2d2 + 1) − 1

)

=
2d3

2d2
+
d (2d2 + 1)n − d (2d2 + 1)

2d2
)

=
d (2d2 + 1)n − d

2d2

< (2d2 + 1)n .

Property (2) follows from (1). For (3), recall that degy Kr (H) = degy Kr (∆G). Since ∆ =

gcd(LC(Ā),LC (B̄)), we have

degy Kr (∆G) = degy Kr (∆) + degy Kr (G)

≤min(degy Kr (LC (Ā)), degy Kr (LC (B̄))) + degr Kr (G)

≤min(degy Kr (Ā), degy Kr (B̄)) + degr Kr (G)

=min(degy Kr (A), degy Kr (B)) < (2d2 + 1)n .

For (4),

degy Kr (R) ≤ degy Kr (Ā) degx Kr (B̄) + degy Kr (B̄) degx Kr (Ā),

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

:18 Hu and Monagan

where degx Kr (Ā) = degx0

Ā ≤ degx0

A ≤ d , degx Kr (B̄) = degx0

B̄ ≤ degx0

B, ≤ d , and

degy Kr (Ā) ≤ degy Kr (A) and degy Kr (B̄) ≤ degy Kr (B). So we have

degy Kr (R) < d (2d2 + 1)n + d (2d2 + 1)n = 2d (2d2 + 1)n .

□

By proposition 3.2(1), a prime p > (2d2 + 1)n is sufficient to recover the exponents for

the Kronecker substitution. With the assumption that p is not bad and not unlucky, we

have the following lemma.

Lemma 3.3. Let p be a prime. If α is chosen at random from [0,p − 1], then

(i) Prob[α is bad] <
2(2d2 + 1)n

p
and

(ii) Prob[α is unlucky or α is bad] <
(2d + 2) (2d2 + 1)n

p
.

Proof. Prob[α is bad] = Prob[LC (Kr (A) (α) LC (Kr (B)) (α) = 0]

≤ degLC (Kr (AB)) (y)/p < 2(2d2 + 1)n/p. For (ii) from the proof of Lemma 1.9 we have

this probability ≤ degKr (LC(AB))/p + degKr (R)/p where R = resx0
(Ā, B̄). Applying

proposition 3.2(1) and (4) we have the probability < 2(2d2 + 1)n/p + 2d (2d2 + 1)n/p and

the result follows. □

The probability that our algorithm does not encounter a bad or unlucky evaluation

can be estimated as follows. Let U denote the bound of the number of bad and unlucky

evaluation points and τ ≥ maxi {#hi }. We need 2τ good consecutive evaluation points (a

segment of length 2τ in the sequence (1, . . . ,p − 1)) to compute the feedback polynomial

for hi . Suppose α
k
is a bad or unlucky evaluation point where s ≤ k < s + 2τ − 1 for

any positive integer s ∈ (0,p − 1]. Then every segment of length 2τ starting at α i where
k − 2τ + 1 ≤ i ≤ k includes the point αk . Hence our algorithm fails to determine the

correct feedback polynomial. The union of all segments including αk has length 4τ − 1.

We can not use every segment of length 2τ from k − 2τ + 1 to k + 2τ − 1 to construct the

correct feedback polynomial. The worst case occurs when all bad and unlucky evaluation

points, their corresponding segments of length 4τ − 1 do not overlap. Since there are

at most U of them, we can not determine the correct feedback polynomials for at most

U (4τ − 1) points. Note, this does not mean that all those points are bad or unlucky,

there is only one bad or unlucky point in each segment of length 2τ . U is bounded by

2(2d2 + 1)n + 2d (2d2 + 1)n = (2d + 2) (2d2 + 1)n .

Lemma 3.4. Suppose p is good. Then

Prob[2τ evaluation points fail to determine the feedback polynomial]

≤
4τU −U

p − 1

<
4τU

p − 1

=
4τ (2d + 2) (2d2 + 1)n

p − 1

.

So if we choose a prime p > 4Xτ (2d + 2) (2d2 + 1)n for some positive number X , then the
probability that PGCD fails is at most 1

X .

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

A Fast Parallel Sparse Polynomial GCD Algorithm :19

We note that the choice of p in previous lemma implies p > (2d2 + 1)n ≥ degy (Kr (H)).
So we can recover the exponents of y in H .

3.3 Bad and unlucky primes
Our goal here is to construct a set S of smooth primes, with |S | large enough so if we

choose a prime p ∈ S at random, the probability that p is good is at least
1

2
. Recall that a

prime p is said to be y-smooth if q |p − 1 implies q ≤ y. The choice of y affects the efficiency

of discrete logarithm computation in Zp .
A bad prime must divide ∥LC (Kr (A))∥ or ∥LC (Kr (B))∥ and an unlucky prime must

divide ∥Kr (R)∥. Recall that in section 2.1,

M = ∥LC (Kr (A))∥∥LC (Kr (B))∥∥Kr (R)∥.

We want to construct a set S = {p1,p2, . . . ,pN } of N smooth primes with each pi >
4τ (2d +4) (2d2+1)nX . If p > 4τ (2d +4) (2d2+1)nX , then the probability that our algorithm

fails to determine the feedback polynomial is < 1

X . The size N of S can be estimated as

follows. If

N = Y ⌈log
4Xτ (2d+4) (2d2+1)n M⌉ > Y logpmin M,

where a bound forM is given by Theorem 2.10 (ii), pmin = minpi ∈S pi and Y > 0, Then

Prob[p is bad or unlucky] ≤
logpmin M

N
<

1

Y
.

We construct the set S which consists of N y-smooth primes so that minpi ∈S pi >
4τX (2d + 4) (2d2 + 1)n which is the constraint for the bad or unlucky evaluation case. We

conclude the following result.

Theorem 3.5. Let S be constructed as just described. Let p be chosen at random from
S , s be chosen at random from 0 < s ≤ p − 1 and αp be a random generator of Z∗p . Let
E = {α s+jp : 0 ≤ j < 2τ } be 2τ consecutive evaluation points. For any X > 0 and Y > 0, we
have

Prob[p is дood and E are all дood] > (1 −
1

X
) (1 −

1

Y
).

3.4 The Simplified GCD Algorithm
Let S = {p1,p2, . . . ,pN } is the set of N primes constructed in the previous section. We’ve

split our GCD algorithm into two subroutines, subroutine MGCD and PGCD. The main

routine MGCD chooses a Kronecker substitution Kr and then chooses a prime p from S at

random and calls PGCD to compute Kr (H) mod p.
Algorithm MGCD is a Las Vegas algorithm. The choice of S means that algorithm PGCD

will compute Kr (H) mod p with probability at least (1 − 1

X) (1 − 1

Y). By taking X = 4 and

Y = 4 this probability is at least
1

2
. The design of MGCD means that even with probability

1

2
, the expected number of calls to algorithm PGCD is linear in the minimum number of

primes needed to recover H using Chinese remaindering, that is, we do not need to make

the probability that algorithm PGCD computes H mod p high for algorithm MGCD to be

efficient.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

:20 Hu and Monagan

Algorithm MGCD(A, B, τ)

Inputs A,B ∈ Z[x0,x1, . . . ,xn] and a term bound τ satisfying n > 0, A and B are primitive

in x0, degx0

A > 0, degx0

B > 0 and τ ≥ max #hi .

Output G = gcd(A,B).

1 Compute Γ = gcd(LC (A),LC (B)) in Z[x1, . . . ,xn].

2 Set ri = 1 + (degxi Adegx0

B + degxi B degx0

A) for 1 ≤ i < n.
3 Let Y = (y,yr1 ,yr1r2 , . . . ,yr1r2 ...rn−1).
Set KrA = A(x ,Y), KrB = B (x ,Y) and Kr Γ = Γ(Y).

4 Construct the set S of smooth primes according to Theorem 3.5 with X = 4 and

Y = 4.

5 Set Ĥ = 0,M = 1,d0 = min(degx0

A, degx0

B).

LOOP: // Invariant: d0 ≥ degx0

H = degx0

G.

6 Call PGCD(KrA, KrB, Kr Γ, S , τ ,M).

If PGCD outputs FAIL then goto LOOP.

Let p and Ĥp =
∑dx

i=0
ĥi (y)x

i
be the output of PGCD.

7 If dx > d0 then either p is unlucky or all evaluation points were unlucky so goto
LOOP.

8 If dx < d0 then either this is the first image or all previous images in Ĥ were unlucky

so set d0 = dx , Ĥ = Hp,M = p and goto LOOP.

Chinese-Remaindering
9 Set Hold = Ĥ . Solve {Ĥ ≡ Hold mod M and Ĥ ≡ Ĥp mod p} for Ĥ . SetM = M ×p.

If Ĥ , Hold then goto LOOP.

Termination.
10 Set H̃ = K−1

r Ĥ (x ,y) and let H̃ =
∑d0

i=0
c̃ix

i
0
where c̃i ∈ Z[x1,x2, . . . ,xn].

11 Set Ĝ = H̃/ gcd (̃c0, c̃1, . . . , c̃d0
) (Ĝ is the primitive part of H̃).

12 If Ĝ |A and Ĝ |B then output Ĝ.
13 goto LOOP.

Algorithm PGCD(KrA, KrB, Kr Γ, S , τ ,M)

Inputs KrA,KrB ∈ Z[x ,y], Kr Γ ∈ Z[y], S a set of smooth primes, a term bound τ ≥
max #hi andM a positive integer.

Output With probability ≥ 1

2
a prime p and polynomial Hp ∈ Zp[x ,y] satisfying Hp =

Kr (H) mod p and p does not divideM .

1 Pick a prime p at random from S that is not bad and does not divideM .

2 Pick a random shift s such that 0 < s < p and any generator α for Z∗p .

Compute-and-scale-images:
3 For j from 0 to 2τ − 1 do

4 Compute aj = KrA(x ,α
s+j) mod p and bj = KrB (x ,α

s+j) mod p.
5 If degx aj < degx KrA or degx bj < degx KrB then output FAIL (α s+j is a bad

evaluation point.)

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

A Fast Parallel Sparse Polynomial GCD Algorithm :21

6 Compute дj = gcd(aj ,bj) ∈ Zp[x] using the Euclidean algorithm and set дj =
Kr Γ(α

s+j) × дj mod p.
End for loop.

7 Set d0 = degд0 (x). If degдj (x) , d0 for any 1 ≤ j ≤ 2τ − 1 output FAIL (unlucky

evaluations).

Interpolate-coefficients:
8 For i = 0 to d0 do

9 Run the Berlekamp-Massey algorithm on the coefficients of x i in the images

д0,д1, . . . ,д2τ−1 to obtain λi (z) and set τi = deg λi (z).
10 Compute the rootsmj of each λi (z) in Zp . If the number of distinct roots of λi (z) is

not equal τi then output FAIL (the feedback polynomial is wrong due to undetected

unlucky evaluations.)

11 Set ek = logα mk for 1 ≤ k ≤ τi and let σi = {y
e1 ,ye2 , . . .yeτi }.

12 Solve the τi by τi shifted transposed Vandermonde system

τi∑
k=1

(α s+j)ekuk = coefficient of x i in дj (x) for 0 ≤ j < τi

modulo p for u and set hi (y) =
∑τi

k=1
uky

ek . Note: (α s+j)ek =ms+j
k

End for loop.

13 Set Hp :=
∑d0

i=0
hi (y)x

i
and output (p,Hp).

We remark that we do not check for termination after each prime because computing

the primitive part of H̃ or doing the trial divisions Ĝ |A and Ĝ |B in Step 12 could be

more expensive than algorithm PGCD. Instead algorithm MGCD waits until the Chinese

remaindering stabilizes in Step 9 before proceeding to test for termination.

Theorem 3.6. Let N = logpmin ||2H ||. So N primes in S are sufficient to recover the integer
coefficients of H using Chinese remaindering. Let X be the number of calls that Algorithm
MGCD makes to Algorithm PGCD. Then E[X] ≤ 2(N + 1).

Proof. Because the Kronecker substitution Kr is not bad, and the primes p used in

PGCD are not bad and the evaluations points {α s+j : 0 ≤ j ≤ 2τ − 1} used in PGCD

are not bad, in Step 6 of Algorithm PGCD, degдj (x) ≥ degx0

G by Lemma 1.8. Therefore

d0 ≥ degx0

H = degx0

G throughout Algorithm MGCD and degx Ĥ = degx0

Ĝ ≥ degx0

G.

SinceA and B are primitive in x0, if Ĝ |A and Ĝ |B then it follows that Ĝ = G , so if algorithm
MGCD terminates, it outputs G.
To prove termination observe that Algorithm MGCD proceeds in two phases. In the

first phase MGCD loops while d0 > degx0

H . In this phase no useful work is accomplished.

Observe that the loops in PGCD are of fixed length 2τ andd0+1 so PGCD always terminates

and algorithm MGCD tries another prime. Because at least 3/4 of the primes in S are

good, and, for each prime, at least 3/4 of the possible evaluation point sequences are good,

eventually algorithm PGCDwill choose a good prime and a good evaluation point sequence

after which d0 = degx0

H .

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

:22 Hu and Monagan

In the second phase MGCD loops using images Hp with degx Hp = d0 to construct

Ĥ . Because the images дj (x) used satisfy degx дj (x) = d0 = degx0

H and we scale them

with Γ(α s+j), PGCD interpolates Hp = H mod p thus we have modular images of H .

Eventually Ĥ = H and the algorithm terminates.

Because the probability that the prime chosen from S is good is at least 3/4 and the

evaluations points α s+j are all good is at least 3/4, the probability that PGCD outputs a

good image of H is at least 1/2. Since we need N images of H to recover H and one more

to stabilize (see Step 9), E[X] ≤ 2(N + 1) as claimed. □

4 FASTER ALGORITHM
In this section we consider the practical design of algorithms MGCD and PGCD. We make

three improvements. Unfortunately, each improvement leads to a major complication.

4.1 Term Bounds
Recall that H = ∆G =

∑dG
i=0

hi (x1, . . . ,xn)x
i
0
. Algorithms MGCD and PGCD assume a term

bound τ on #hi (y). In practice, good term bounds are usually not available. For the GCD

problem, one cannot even assume that #G ≤ min(#A, #B) so we must modify the algorithm

to compute ti = #hi (y).
We will follow [Kaltofen et al. 2000] which requires 2ti + O (1) evaluation points to

determine ti with high probability. That is, we will loop calling the Berlekamp-Massey

algorithm after 2, 4, 6, 8, . . . , evaluation points and wait until we get two consecutive zero

discrepancies, equivalently, we wait until the output λi (z) does not change. This means

λi (z) is correct with high probability when p is sufficiently large. We give details in section

4.5. This loop will only terminate, however, if the sequence of points is generated by a

polynomial and therein lies a problem.

Example 4.1. Consider the following GCD problem in Z[x ,y]. Let p be a prime and let

G = 1, Ā = (yx + 1) ((y + 1)x + 2), B̄ = (yx + 2) (y + p + 1)x + 2).

Observe that LC (A) = y (y+1), LC (B) = y (y+p+1), Γ = y and gcd(A mod p,B mod p) =
(y + 1)x + 2 so p is unlucky.

Suppose we run algorithm PGCD with inputs A = GĀ, B = GB̄ and Γ = y and suppose

PGCD selects the prime p. Let F (x ,y) = x + 2

y+1
. Algorithm PGCD will compute monic

images дj (x) = F (x ,α s+j) mod p which after scaling by Γ = α s+j are images of yx +
2y
y+1

which is not a polynomial in y. So the Berlekamp-Massey algorithm will likely not stabilize

and algorithm PGCD will loop trying to compute λ0 (z). The problem is that scaling by

Γ = y does not result in a polynomial. We note that the same problem may be caused by

an unlucky Kronecker substitution.

Our solution is to scale with either Γ = LC (A) or Γ = LC (B), whichever has fewer
terms. Then, assuming p is not bad, LC (gcd(A mod p,B mod p)) must divide both LC (A)
mod p andLC (B) mod p thus scalingдj (x) byLC (A) (α

s+j) mod p orLC (B) (α s+j) mod p
will always give an image of a polynomial. The downside of this solution is that it may

increase ti = #hi (y).

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

A Fast Parallel Sparse Polynomial GCD Algorithm :23

Another difficulty caused by λi (z) stabilizing too early is that the support σi of Kr (hi)
computed in Step 11 of PGCD may be wrong. We consider an example.

Example 4.2. Consider the following GCD problem in Z[x ,y]. Let p and q be prime and

G = x + py + qy2 + py4, Ā = 1, B̄ = 1.

Suppose MGCD choosesp first and suppose PGCD returns x+qy2
mod p so that σ0 = {y

2}.

Suppose MGCD chooses q next and suppose λ0 (z) stabilizes too early and σ0 = {y
3} which

is wrong. This could also be due to a missing term, for example, ifG = x +pqy +qy2 +py3
.

If we combine these two images modulo p and q using Chinese remaindering to obtain

Ĥ of the form x + ·y2 + ·y3
we have a bad image in Ĥ and we need somehow to detect

it. Once detected, we do not want to restart the entire algorithm because we might be

throwing away a lot of good images in Ĥ . Our solution in Steps 7–10 of algorithm MGCD1

is probabilistic.

4.2 Using smaller primes
Another consideration is the size of the primes that we use. We have implemented our

GCD algorithm for 63 bit primes and 127 bit primes. By choosing a Kronecker substitution

that is a priori good, and requiring that the 2τ evaluation points are good, the primes in

S must be greater than 4τ (2d + 2) (2d2 + 1)n where d bounds the degree of A and B in all

variables. If instead we choose ri > degxi H then we will still be able to recover H from

Kr (H) but Kr may be unlucky.

Since degxi H ≤ min(degxi A, degxi B) ≤ d , using ri = d + 1 we replace the factor

(2d2 + 1)n with (d + 1)n . We will detect if Kr is unlucky when degдj (x) > d0 by computing

d0 = DeдreeBound (A,B, 0) periodically (see Step 6 of MGCD1) so that eventually we obtain

d0 = degx0

G and can detect unlucky Kr . Once detected we will increase ri by 1 to try a

larger Kronecker substitution.

Recall that p is an unlucky prime if p |R where R = resx0
(Ā, B̄). Because the inputs A and

B are primitive in x0 it follows that the integer coefficients of Ā and B̄ are relatively prime.

Therefore, the integer coefficients of R are also likely to have a very small common factor

like 2. Thus the expected number of unlucky primes is very close to 0. In Theorem 2.13

we showed that the expected number of unlucky evaluations is 1 hence instead of using

p > 4τ (2d + 2) (d + 1)n we first try a prime p > 4(d + 1)n . Should we encounter bad or

unlucky evaluation points we will increase the length of p until we don’t. This reduces the

length of the primes for most inputs by at least a factor of 2.

Example 4.3. For our benchmark problem where n = 8, d = 20 and τ = 1000 we have

log
2
[4τ (2d + 2) (2d2 + 1)n] = 94.5 bits which precludes our using 63 bit primes. On the

other hand log
2
[4(d + 1)n] = 37.1 bits, meaning a 63 bit prime is more than sufficient.

4.3 Using fewer evaluation points
LetKr (hi) =

∑ti
j=1

ci jy
ei j

for some coefficients ci j ∈ Z and exponents ei j so that Supp(Kr (hi)) =
{yei j : 1 ≤ j ≤ ti }. Because of the size of the primes chosen by algorithm MGCD, it is

likely that the first good image Hp computed by PGCD has the entire support of Kr (H),

that is, Supp(ĥi) = Supp(Kr (hi)). Assuming this to be so, we can compute the next image

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

:24 Hu and Monagan

of Kr (H) modulo p using only t evaluations instead of 2t +O (1) as follows. We choose a

prime p and compute дj (x) for 0 ≤ j < t as before in PGCD. Assuming these t images are

all good, one may solve the the ti by ti shifted transposed Vandermonde systems

ti∑
k=1

(α s+j)ei jui j = coefficient of x i in дj (x) for 0 ≤ j ≤ τi − 1

for the unknown coefficients ui j obtaining Hp =
∑d0

i=0

∑ti
j=0

ui jy
ei j .

It is possible that the prime p used in PGCD may divide a coefficient ci j in Kr (H) in
which case we will need to call PGCD again to compute more of the support of Kr (H).

Definition 4.4. Let f =
∑d

i=0
ciy

ei
be a polynomial in Z[y]. We say a prime p causes

missing terms in f if p divides any coefficient ci in f .

Our strategy to detect when Supp(ĥi) 1 Supp(Kr (hi)) is probabilistic. We compute one

more image j = τi and check that the solutions of the Vandermonde systems are consistent

with this image. Thus we require t + 1 evaluations instead of 2t +O (1). Once missing terms

are detected, we call PGCD again to determine Supp(Kr (hi)).

4.4 Algorithm MGCD1
We now present our algorithm as algorithm MGCD1 which calls subroutines PGCD1 and

SGCD1. Like MGCD, MGCD1 loops calling PGCD1 to determine the Hp = Kr (H) mod p.
Instead of calling PGCD1 for each prime, MGCD1 after PGCD1 returns an image Hp,
MGCD1 assumes the support of Kr (H) is now known and uses SGCD1 for the remaining

images.

Algorithm MGCD1(A, B)

InputsA,B ∈ Z[x0,x1, . . . ,xn] satisfying n > 0,A and B are primitive in x0, and degx0

A >
0, degx0

B > 0.

Output G = gcd(A,B).

1 If #LC (A) < #LC (B) set Γ = LC (B) else set Γ = LC (A).
2 Call Algorithm DegreeBound(A,B,i) to get di ≥ degxi G for 0 ≤ i ≤ n.
If d0 = 0 return 1.

3 Set ri = min(degxi A, degxi B, di + degxi (Γ)) for 1 ≤ i ≤ n.
Set δ = 1.

Kronecker-Prime
4 Set ri = ri + 1 for 1 ≤ i < n. Let Y = (y,yr1 ,yr1r2 , . . . ,yr1r2 ...rn−1).
Set KrA = A(x ,Y), KrB = B (x ,Y) and Kr Γ = Γ(Y).
If Kr is bad goto Kronecker-Prime otherwise set δ = δ + 1.

RESTART
5 Set Ĥ = 0,M = 1 and MissingTerms = true.

Set σi = ϕ and τi = 0 for 0 ≤ i ≤ d0.

LOOP: // Invariant: d0 ≥ degx0

H .

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

A Fast Parallel Sparse Polynomial GCD Algorithm :25

6 Compute dx = DeдreeBound (A,B, 0).
If dx < d0 set d0 = dx and goto RESTART.

7 For each prime p |M do // check current images

8 Set a = KrA mod p, b = KrB mod p and h = Ĥ mod p.
9 Pick β from [0,p − 1] at random.

10 If Kr Γ(β) , 0 and either h(x , β) does not divide a(x , β) or does not divide b (x , β)

then h is wrong so setM = M/p and Ĥ = Ĥ mod M to remove this image.

End for loop.

If MissingTerms then // for first iteration

11 Pick a new smooth prime p > 2
δ ∏n

i=1
ri that is not bad.

12 Call PGCD1(KrA, KrB, Kr Γ, d0, τ , r , p).

13 If PGCD1 returned UNLUCKY(dmin) set d0 = dmin and goto RESTART.

If PGCD1 returned FAIL goto Kronecker-Prime.

14 Let Ĥp =
∑d0

i=0
ĥi (y)x

i
be the output of PGCD1.

Set MissingTerms = false, σi := σi ∪ Supp(ĥi) and τi = |σi | for 0 ≤ i ≤ d0.

else

15 Pick a new prime p > 2
δ ∏n

i=1
ri that is not bad.

16 Call SGCD1(KrA, KrB, Kr Γ, d0, σ , τ , p).

17 If SGCD1 returned UNLUCKY(dmin) set d0 = dmin and goto RESTART.

If SGCD1 returned FAIL goto Kronecker-Prime.

If SGCD1 returned MISSINGTERMS set δ = δ + 1, Missingterms = true and goto
LOOP.

18 Let Ĥp =
∑d0

i=0
ĥi (y)x

i
be the output of SGCD1.

End If

Chinese-Remaindering
19 Set Hold = Ĥ . Solve {Ĥ ≡ Hold mod M and Ĥ ≡ Ĥp mod p} for Ĥ . SetM = M ×p.

If Ĥ , Hold then goto LOOP.

Termination.
20 Set H̃ = K−1

r Ĥ (x ,y). Let H̃ =
∑d0

i=0
c̃ix

i
0
where c̃i ∈ Z[x1, . . . ,xn].

21 Set Ĝ = H̃/ gcd (̃c0, c̃1, . . . , c̃d0
) (Ĝ is the primitive part of H̃).

22 If deg Ĝ ≤ degA and deg Ĝ ≤ degB and Ĝ |A and Ĝ |B then return Ĝ.
23 goto LOOP.

Algorithm PGCD1(KrA, KrB, Kr Γ, d0, τ , r , p)

Inputs KrA,KrB ∈ Z[x ,y] and Kr Γ ∈ Z[y], d0 ≥ degx0

G where G = gcd(A,B), term

bound estimates τ ∈ Zd0+1
, r ∈ Zn , and a smooth prime p.

Output Hp ∈ Zp[x ,y] satisfying Hp = Kr (H) mod p or FAIL or UNLUCKY(dmin).

1 Pick a random shift s ∈ Z∗p and any generator α for Z∗p .
2 Set T = 0.

LOOP

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

:26 Hu and Monagan

3 For j from 2T to 2T + 1 do

4 Compute aj = KrA(x ,α
s+j) mod p and bj = KrB (x ,α

s+j) mod p.
5 If degx aj < degx KrA or degx bj < degx0

KrB then return FAIL (α s+j is a bad

evaluation point.)

6 Compute дj = gcd(ai ,bi) ∈ Zp[x] using the Euclidean algorithm.

Make дj monic and set дj = Kr Γ(α
s+j) × дj mod p.

End for loop.

7 Set dmin = min degдj (x) and dmax = max degдj for 2T ≤ j ≤ 2T + 1.

If dmin < d0 output UNLUCKY(dmin).

If dmax > d0 output FAIL.
8 Set T = T + 1.

If T < #Kr Γ or T < max
d0

i=0
τi goto LOOP.

9 For i from 0 to d0 do

10 Run the Berlekamp-Massey algorithm on the coefficients of x i in the images

д0,д1, . . . ,д2T−1 to obtain λi (z) and set τi = deg λi (z). If either of the last two

discrepancies were non-zero goto LOOP.

End for loop.

11 For i from 0 to d0 do

12 Compute the rootsmk of λi (z). If λi (0) = 0 or the number of distinct roots of λi (z)
is not equal τi then goto LOOP (λi (z) stabilized too early)

13 Set ek = logα mk for 1 ≤ k ≤ τi and let σi = {y
e1 ,ye2 , . . .yeτi }.

If ek ≥
∏n

i=1
ri then ek > degy Kr (H) so output FAIL (either the λi (z) stabilized

too early or Kr or p or all evaluations are unlucky).

14 Solve the τi by τi shifted transposed Vandermonde system

τi∑
k=1

(α s+j)ekuk = coefficient of x i in дj (x) for 0 ≤ j < τi

modulo p for u and set ĥi (y) =
∑τi

k=1
uky

ek . Note: (α s+j)ek =ms+j
k .

End for loop.

15 Set Hp =
∑d0

i=0
ĥi (y)x

i
and output Hp.

The main for loop in Step 3 of algorithm PGCD1 evaluates KrA and KrB at α s+j for
j = 2T and j = 2T + 1 in Step 4 and computes their gcd in Step 6, that is, it computes

two images before running the Berlekamp-Massey algorithm in Step 10. In our parallel

implementation of algorithm PGCD1, for a multi-core computer with N > 1 cores, we

compute N images at a time in parallel. We discuss this in Section 5.1.

Algorithm SGCD1(KrA, KrB, Kr Γ, d0, σ , τ , p)

Inputs KrA,KrB ∈ Z[x ,y], Kr Γ ∈ Z[y], d0 ≥ degx0

G where G = gcd(A,B), supports σi
for Kr (hi) and τi = |σi |, a smooth prime p.

Output FAIL or UNLUCKY(dmin) or MISSINGTERMS or Hp ∈ Zp[x ,y] satisfying if

d0 = degx0

G and σi = Supp(Kr (hi)) then Hp = Kr (H) mod p.

1 Pick a random shift s such that 0 < s < p and any generator α for Z∗p .

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

A Fast Parallel Sparse Polynomial GCD Algorithm :27

2 Set T = max
d0

i=1
τi .

3 For j from 0 to T do // includes 1 check point

4 Compute aj = KrA(x ,α
s+j) mod p and bj = KrB (x ,α

s+j) mod p.
5 If degx aj < degx KrA or degx bj < degx0

KrB then output FAIL (α s+j is a bad

evaluation point.)

6 Compute дj = gcd(ai ,bi) ∈ Zp[x] using the Euclidean algorithm.

Make дj monic and set дj = Kr Γ(α
s+j) × дj mod p.

End for loop.

6 Set dmin = min degдj (x) and dmax = max degдj for 0 ≤ j ≤ T .
If dmin < d0 output UNLUCKY(dmin).
If dmax > d0 output FAIL.

7 For i from 0 to d0 do

8 Let σi = {y
e1 ,ye2 , . . . ,yeτi }.

Solve the τi by τi shifted transposed Vandermonde system

τi∑
k=1

uk (α
s+j)ek = coefficient of x i in дj (x) for 0 ≤ j ≤ τi − 1

modulo p for u and set ĥi (y) =
∑τi

k=1
uky

ek . Note (α s+j)ek =ms+j
k .

9 If ĥi ((α)
s+τi) , coefficient of x i in дτi then output MISSINGTERMS.

End for loop.

10 Set Hp =
∑d0

i=0
ĥi (y)x

i
and output Hp.

We prove that algorithmMGCD1 terminates and outputsG = gcd(A,B). We first observe

that because MGCD1 avoids bad Kronecker substitutions and bad primes, and because the

evaluation points α s+j used in PGCD1 and SGCD1 are not bad, we have Kr (Γ) (α
s+j) , 0

and degдj (x) ≥ degx0

G by Lemma 1.8. Hence degx Ĥ = degx0

Ĝ ≥ degx0

G. Therefore,

if algorithm MGCD1 terminates, the conditions A and B are primitive and Ĝ |A and Ĝ |B

imply Ĝ = G.
To prove termination we observe that Algorithm MGCD1 proceeds in four phases. In

the first phase MGCD1 loops while d0 > degx Kr (H) = degx0

G . Because Γ is either LC (A)
or LC (B), even if Kr or p or all evaluations points are unlucky, the scaled images in Step 6

of algorithm PGCD1 are images of a polynomial in Z[x ,y] hence the λi (z) polynomials

must stabilize and algorithm PGCD1 always terminates.

Now if PGCD1 or SGCD1 output UNLUCKY(dmin) then d0 is decreased, otherwise,

they output FAIL or MISSINGTERMS or an image Hp and MGCD1 executes Step 6 at

the beginning of the main loop. Eventually the call to DegreeBound in Step 6 will set

d0 = degx0

G after which unlucky Kronecker substitutions, unlucky primes and unlucky

evaluation points can be detected.

Suppose d0 = degx0

G for the first time. In the second phase MGCD1 loops while

PGCD1 outputs FAIL due to an unlucky Kronecker substitution or an unlucky prime

or bad or unlucky evaluation points or the Berlekamp-Massey algorithm stabilized too

early. If PGCD1 outputs FAIL, since we don’t know if this is due to an unlucky Kronecker

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

:28 Hu and Monagan

substitution or an unlucky prime p, MGCD1 increases ri by 1 and the size of p by 1 bit. Since

there are only finitely many unlucky Kr , eventually Kr will be lucky. And since there are

only finitely many unlucky primes, eventually p be lucky. Finally, since we keep increasing

the length of p, eventually p will be sufficiently large so that no bad or unlucky evaluations

are encountered in PGCD1 and the Berlekamp-Massey algorithm does not stabilize too

early. Then PGCD1 succeeds and outputs an image Hp with degx Hp = d0 = degx0

G.

In the third phase MGCD1 loops while the σi ⊉ Kr (hi), that is, we don’t yet have the
support for allKr (hi) ∈ Z[y] either because of missing terms or because a λi (z) polynomial

stabilized too early in PGCD1, and went undetected.

We now prove that Step 9 of SGCD1 detects that σi ⊉ Supp(Kr (hi)) with probability at

least
3

4
so that PGCD1 is called again in MGCD1.

Suppose σi ⊉ Supp(Kr (hi)) for some i . Consider the first τi equations in Step 8 of

SGCD1. We first argue that this linear system has a unique solution. Letmk = αek so that

(α s+j)ek =ms+j
k . The coefficient matrixW of the linear system has entries

Wjk =m
s+j−1

k for 1 ≤ j ≤ τi and 1 ≤ k ≤ τi .

W is a shifted transposed Vandermonde matrix with determinant

detW =ms
1
×ms

2
× · · · ×ms

τi ×
∏

1≤j<k≤τi

(mj −mk).

Since mk = αek we have mk , 0 and since p > degy Kr (H) the mk are distinct hence

detW , 0 and the linear system has a unique solution for u.

Let E (y) = ϕp (Kr (hi) (y)) − ĥi (y) where ĥi (y) =
∑τi

k=1
uky

ek is the polynomial in Zp[y]

computed in Step 8 of SGCD1. It satisfies E (α s+j) = 0 for 0 ≤ j < τi . If σi ⊉ Supp(Kr (hi))
then E (y) , 0 and algorithm SGCD1 tests for this in Step 9 when it checks if E (α s+τi) , 0.

It is possible, however, that E (α s+τi) = 0. We bound the probability that this can happen.

Lemma 4.5. If s is chosen at random from [1,p − 1] then

Prob[E (α s+τi) = 0] <
1

4

.

Proof. The condition in Step 13 of algorithm PGCD1 means deg
¯hi (y) <

∏n
j=1

r j hence
degy (E) <

∏n
j=1

r j . Now s is chosen at random so α s+τi is random on [1,p − 1] therefore

Prob[E (α s+τi) = 0] ≤
degy (E)

p − 1

<

∏n
j=1

r j

p − 1

.

Since the primes in SGCD1 satisfy p > 4

∏n
j=1

r j the result follows. □

Thus eventually σi ⊉ Supp(Kr (hi)) is detected in Step 9 of algorithm SGCD1. Because

we cannot tell whether this is caused by missing terms or λi (z) stabilizing too early and

going undetected in Steps 12 and 13 of PGCD1, we increase the size of p by 1 bit in Step

17 so that with repeated calls to PGCD1, λi (z) will eventually not stabilize early and we

obtain σi ⊇ Supp(Kr (hi)) mod p.
How many good images are needed before σi ⊇ Supp(Kr (hi)) for all 0 ≤ i ≤ d0 ? Let

pmin be the smallest prime used by algorithm PGCD1. Let N = ⌊logpmin ||Kr (H) ||⌋ . Since

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

A Fast Parallel Sparse Polynomial GCD Algorithm :29

at most N primes ≥ pmin can divide any integer coefficient in Kr (H) then N + 1 good

images from PGCD1 are sufficient to recover the support of Kr (H).

In the fourth and final phase MGCD1 loops calling SGCD1 while Ĥ , Kr (H). If SGCD1
outputs an image Hp then since d0 = degx0

H and σi ⊇ Supp(Kr (hi)) then Hp satisfies

Hp = H mod p. The image is combined with previously computed images in Ĥ using

Chinese remaindering. But as noted in example 4.2, Ĥ may contain a bad image. A bad

image arises because either PGCD1 returns a bad image Hp because a λi (z) stabilized too

early or because SGCD1 uses a support with missing terms and fails to detect it.

Consider the prime p and polynomial h(x ,y) in Step 8 of MGCD1. Suppose h(x ,y) is a
bad image, that is, h , Kr (H) mod p. We claim Steps 7 − 10 of MGCD1 detect this bad

image with probability at least 1/2 and since the test for a bad image is executed repeatedly

in the main loop, algorithm MGCD1 eventually detects it and removes it hence eventually

MGCD1 computes Kr (H) and terminates with output G.
To prove the claim recall thatH = ∆G and LC (H) = Γ. Because Step 8 of PGCD1 requires

T ≥ #Kr (Γ) this ensures algorithm PGCD1 always outputs Hp with LC (Hp) = Kr (Γ)
mod p hence LC (h) = Kr (Γ) mod p.
If h = Kr (H) mod p and Kr (Γ) (β) , 0 then in Step 10 of MGCD1 h(x , β) must divide

a(x , β) and divide b (x , β) as a(x , β) = Kr (A) (x , β) and b (x , β) = Kr (B) (x , β). Now suppose

h , Kr (H) mod p. Then Step 10 of MGCD1 fails to detect this bad image if Kr Γ(β) , 0

and h(x , β) |a(x , β) and h(x , β) |b (x , β) in Zp[x]. Since degx h = d0 = degx Kr (H) it must be

that h(x , β) is an associate of Kr (H) (x , β). But since LC (h) = Kr (Γ) mod p = LC (Kr (H))
mod p we have h(x , β) = Kr (H) (x , β) mod p. Let E = h − Kr (H) mod p. Therefore the
test for a bad image h succeeds iff Kr (Γ) (β) , 0 and E (x , β) , 0. Lemma 4.6 below implies

the test succeeds with probability at least 1/2.

Lemma 4.6. If β is chosen at random from [0,p − 1] then

Prob[Kr (Γ) (β) , 0] ≥
3

4

and Prob[E (x , β) , 0] ≥
3

4

.

Proof. The primes p chosen in Step 15 of MGCD1 satisfy p > 2
δ ∏n

i=1
ri with δ ≥ 2.

Since degy Kr (Γ) <
∏n

i=1
ri by Step 3 of MGCD1 then Prob[Kr (Γ) (β) mod p = 0] ≤

degy (Γ)

p < 1

4
. Since degy h <

∏n
i=1

ri by Step 13 of PGCD 1 and since ri is chosen in Step

3 of MGCD1 so that ri ≥ degxi H we have degy Kr (H) <
∏n

i=1
ri . Hence Prob[E (x , β) =

0] ≤
degy E

p < 1

4
. □

4.5 Determining t
Algorithm PGCD1 tests in Steps 9 and 10 if both of the last two discrepancies are 0 before

it executes Step 11. But it is possible that in Step 11 τi < #hi .
LetVr = (v0,v1, . . . ,v2r−1) be a sequence where r ≥ 1. The Berlekamp-Massey algorithm

(BMA) with input Vr computes a feedback polynomial c (z) which is the reciprocal of λ(z)
if r = t . In PGCD1, we determine the t by computing c (z)s on the input sequence Vr for
r = 1, 2, 3, If a c (z) remains unchanged from the input Vk to the input Vk+1, then we

conclude that this c (z) is stable which implies that the last two consecutive discrepancies

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

:30 Hu and Monagan

are both zero, see [Kaltofen et al. 2000; Massey 1969] for a definition of the discrepancy.

However, it is possible that the degree of c (z) on the input Vk+2 might increase again. In

[Kaltofen et al. 2000], Kaltofen, Lee and Lobo proved (Theorem 3) that the BMA encounters

the first zero discrepancy after 2t points with probability at least

1 −
t (t + 1) (2t + 1) deg(C)

6|S |

where S is the set of all possible evaluation points. Here is an example where we encounter

a zero discrepancy before 2t points. Consider

f (y) = y7 + 60y6 + 40y5 + 48y4 + 23y3 + 45y2 + 75y + 55

over Z101 with generator α = 93. Since f has 8 terms, 16 points are required to determine

the correct λ(z) and two more for confirmation. We compute f (α j) for 0 ≤ j ≤ 17 and

obtain V9 = (44, 95, 5, 51, 2, 72, 47, 44, 21, 59, 53, 29, 71, 39, 2, 27, 100, 20).We run the BMA

on input Vr for 1 ≤ r ≤ 9 and obtain feedback polynomials in the following table.

r Output c (z)
1 69z + 1

2 24z2 + 59z + 1

3 24z2 + 59z + 1

4 24z2 + 59z + 1

5 70z7 + 42z6 + 6z3 + 64z2 + 34z + 1

6 70z7 + 42z6 + 25z5 + 87z4 + 16z3 + 20z2 + 34z + 1

7 z7 + 67z6 + 95z5 + 2z4 + 16z3 + 20z2 + 34z + 1

8 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1

9 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1

The ninth call of the BMA confirms that the feedback polynomial returned by the eighth call

is the desired one. But, by our design, the algorithm terminates at the third call because the

feedback polynomial remains unchanged from the second call. It also remains unchanged

for V4. In this case, λ(z) = z2c (1/z) = z2 + 59z + 24 has roots 56 and 87 which correspond

to monomials y4
and y20

since α4 = 56 and α20 = 87. The example shows that we may

encounter a stable feedback polynomial too early.

5 IMPLEMENTATION AND OPTIMIZATIONS
5.1 Evaluation
Let A,B ∈ Zp[x0,x1, . . . ,xn], s = #A + #B, and d = max

n
i=1

di where di = max(degxi A,
degxi B). If we use a Kronecker substitution

K (A) = A(x ,y,yr1 , . . . ,yr1r2 ...rn−1) with ri = di + 1,

then degy K (A) < (d + 1)n . Thus we can evaluate the s monomials in K (A) (x ,y) and

K (B) (x ,y) at y = αk in O (sn logd) multiplications. Instead we first compute β1 = αk and

βi+1 = βrii for i = 1, 3, . . . ,n − 2 then precompute n tables of powers 1, βi , β
2

i , . . . , β
di
i for

1 ≤ i ≤ n using at most nd multiplications. Now, for each term in A and B of the form

cxe0

0
xe1

1
. . . xenn we compute c × βe1

1
× · · · × βenn using the tables in n multiplications. Hence

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

A Fast Parallel Sparse Polynomial GCD Algorithm :31

we can evaluate K (A) (x ,αk) and K (B) (x ,αk) in at most nd + ns multiplications. Thus for

T evaluation points α ,α2, . . . ,αT , the evaluation cost is O (ndT + nsT) multiplications.

When we first implemented algorithm PGCD we noticed that often well over 95% of

the time was spent evaluating the input polynomials A and B at the points αk . This
happens when #H ≪ #A + #B. The following method uses the fact that for a monomial

Mi (x1,x2, . . . ,xn)

Mi (β
k
1
, βk

2
, . . . , βkn) = Mi (β1, β2, . . . , βn)

k

to reduce the total evaluation cost from O (ndT + nsT) multiplications to O (nd + ns + sT).
Note, no sorting on x0 is needed in Step 4b if the monomials in the input A are are sorted

on x0.

Algorithm Evaluate.
Input A =

∑m
i=1

cix
ei
0
Mi (x1, . . . ,xn) ∈ Zp[x0, . . . ,xn], T > 0, β1, β2, . . . , βn ∈ Zp , and

integers d1,d2, . . . ,dn with di ≥ degxi A .

Output yk = A(x0, β
k
1
, . . . , βkn) for 1 ≤ k ≤ T .

1 Create the vector C = [c1, c2, . . . , cm] ∈ Zmp .

2 Compute [β ji : j = 0, 1, . . . ,di] for 1 ≤ i ≤ n.
3 Compute Γ = [Mi (β1, β2, . . . , βn) : 1 ≤ i ≤ m].

4 For k = 1, 2, . . . ,T do

4a Compute the vector C := [Ci × Γi for 1 ≤ i ≤ m].

4b Assemble yk =
∑m

i=1
Cix

ei
0
= A(x0, β

k
1
, . . . , βkn).

The algorithm computes yk as the matrix vector product.

Γ1 Γ2 . . . Γm
Γ1

2 Γ2

2 . . . Γm
2

...
...

...
...

Γ1

T Γ2

T . . . Γm
T

c1 x
e1

0

c2 x
e2

0

c3 x
e3

0

...
cm xem

0

=

y1

y2

...
yT

.

Even with this improvement evaluation still takes most of the time so we must parallelize

it. Each evaluation of A could be parallelized in blocks of sizem/N for N cores. In Cilk

C, this is only effective, however, if the blocks are large enough (at least 50,000) so that

the time for each block is much larger than the time it takes Cilk to create a task. For this

reason, it is necessary to also parallelize on k . To parallelize on k for N cores, we multiply

the previous N values of C in parallel by the vector

ΓN = [Mi (β1, β2, . . . , βn)
N

: 1 ≤ i ≤ m]

Because most of the time is still in evaluation, we have considered the asymptotically

fast method of van der Hoven and Lecerf [van der Hoven and Lecerf 2013] and how to

parallelize it. For our evaluation problem it has complexity O (nd + ns + s log
2T) which is

better than ourO (nd+ns+sT) method for largeT . In [Monagan andWong 2017], Monagan

and Wong implemented this method using 64 bit machine integers and in comparing it

with our method used here, found the break even point to be around T = 500.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

:32 Hu and Monagan

5.2 The non-monic case and homogenization.
Algorithm PGCD interpolates H = ∆G from scaled monic images K (Γ) (α j)дj (x) which are

computed in Step 6. If the number of terms of ∆ ism andm > 1 then it is likely that #H is

greater than #G, which means we need more evaluation points for sparse interpolation.

For sparse inputs, this may increase t by a factor ofm.

One such example occurs in multivariate polynomial factorization. Given a polynomial

f in Z[x0,x1, . . . ,xn], factorization algorithms first identify and remove repeated factors

by doing a square-free factorization. See Section 8.1 of [Geddes et al. 1992]. The first Step

of square-free factorization computes

д = gcd(f ,h =
∂ f

∂x0

).

Thenwe have Γ = gcd(LC (f),LC (h)) = gcd(LC (f),dLC (f)) = LC (f) and∆ = LC (f)/LC (д)
which can be a large polynomial.

Obviously, if either A or B is monic in xi for some i > 0 then we may simply use xi as
the main variable our GCD algorithm instead of x0 so that #Γ = #∆ = 1. Similarly, if either

A or B have a constant term in any xi , that is, A =
∑

j=0
ajx

j
i and B =

∑
j=0

bjx
j
i and either

a0 or b0 are integers, then we can reverse the coefficients of both A and B in xi so that

again #Γ = #∆ = 1. But many multivariate GCD problems in practice do not satisfy any of

these conditions.

Suppose A or B has a constant term. We propose to exploit this by homogenizing A and

B. Let f be a non-zero polynomial in Z[x1,x2, . . . ,xn] and

Hz (f) = f (
x1

z
,
x2

z
, . . . ,

xn
z
)zdeg f

denote the homogenization of f in z. We have the following properties of Hz (f).

Lemma 5.1. Let a and b be in Z[x1,x2, ...,xn]. For non-zero a and b

(i) Hz (a) is homogeneous in z,x1, . . . ,xn of degree dega,
(ii) Hz (a) is invertible: if f (z) = Hz (a) then H−1

z (f) = f (1) = a,
(iii) Hz (ab) = Hz (a)Hz (b), and
(iv) Hz (gcd(a,b)) = gcd(Hz (a),Hz (b)).

proof: To prove (i) letM = xd1

1
xd2

2
. . . xdnn be a monomial in a and let d = dega. Then

Hz (M) = zd
xd1

1

zd1

. . .
xdnn
zdn
.

Observe that since d ≥ d1 + d2 + · · · + dn then degz (Hz (M)) ≥ 0 and degHz (M) = d .
Properties (ii) and (iii) follow easily from the definition ofHz . To prove (iv) let д = gcd(a,b).
Then a = дā and b = д ¯b for some ā, ¯b with gcd(ā, ¯b) = 1. Now

gcd(Hz (a),Hz (b)) = gcd(Hz (дā), Hz (д ¯b))

= gcd(Hz (д)Hz (ā), Hz (д)Hz (¯b)) by (iii)

= Hz (д) × gcd(Hz (ā), Hz (¯b)) up to units.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

A Fast Parallel Sparse Polynomial GCD Algorithm :33

Let c (z) = gcd(Hz (ā),Hz (¯b)) in Z[z,x1, . . . ,xn]. It suffices to prove that gcd(ā, ¯b) = 1

implies c (z) is a unit. Now c (z) = gcd(Hz (ā),Hz (¯b)) ⇒ c (z) |Hz (ā) and c (z) |Hz (¯b) which
implies

Hz (ā) = c (z)q(z) and Hz (¯b) = c (z)r (z)

for someq, r ∈ Z[z,x1, . . . ,xn]. ApplyingH−1
to these relationswe get ā = c (1)q(1) and

¯b =
c (1)r (1). Now gcd(ā, ¯b) = 1 implies c (1) is a unit and thus q(1) = ±ā and r (1) = ±¯b. We

need to show that c (z) is a unit. Let d = degHz (ā). Since degHz (ā) = deg ā by (i) and

q(1) = ±ā then degq(1) = d and hence degq(z) ≥ d . Now since Hz (ā) = c (z)q(z) it
must be that deg c (z) = 0 and degq(z) = d . Since c (1) = ±1 then deg c (z) = 0 implies

c (z) = ±1. 2.

Properties (iii) and (iv) mean we can compute G = gcd(A,B) using

G = H−1

z gcd(Hz (A),Hz (B)).

Notice also that homogenization preserves sparsity. To see why homogenization may help

we consider an example.

Example 5.2. LetG = x2+y+1, Ā = xy+x +y+1 = (y+1)x + (y+1) = (x +1)y+ (x +1)
and B̄ = x2y + xy2 + x2 + y2 = (y + 1)x2 + y2 (x + 1). Then Hz (G) = z2 + yz + x2

,

Hz (Ā) = z2 + (x + y)z + xy, and Hz (B̄) = (x2 + y2)z + (x2y + xy2).

Notice in Example 11 that A and B are neither monic in x nor monic in y but since

A has a constant term, Hz (A) is monic in z. If we use x as x0 in Algorithm PGCD then

Γ = gcd(y + 1,y + 1) = y + 1 = ∆ and we interpolate H = ∆G = (y + 1)x2 + (y2 + 2y + 1)
and t = 3. If we use y as x0 in Algorithm PGCD then Γ = gcd(x + 1,x + 1) = x + 1 = ∆
and we interpolate H = ∆G = (x + 1)y + (x3 + x2 + x + 1) and t = 4. But if we use use z
as x0 in Algorithm PGCD then Γ = gcd(1,x2 + y2) = 1 hence ∆ = 1 and we interpolate

Hz (G) = z2 + yz + x2
and t = 1.

If A or B has a constant term then because homogenizing A and B means Γ ∈ Z and

∆ ∈ Z, we always homogenize if #Γ > 1. There is, however, a cost to in homogenizing for

the GCD problem, namely, we increase the number of variables to interpolate by 1 and

we increase the cost of the univariate images in Zp[z] if the degree increases. The degree

may increase by up to a factor of n + 1. For example, ifG = 1+
∏n

i=0
xd−1

i , Ā = 1+
∏n

i=0
xi

and B̄ = 1 −
∏n

i=0
xi then degxi A = d = degxi B but degz Hz (A) = (n + 1)d = degz Hz (B).

Homogenizing can also increase t when G has many terms of the same total degree.

5.3 Bivariate images
Recall that we interpolate H =

∑dG
i=0

hi (x1, . . . ,xn)x
i
0
where H = ∆G. The number of

evaluation points used by algorithm PGCD is 2t +O (1) where t = max
dG
i=0

#hi . Since the
cost of our algorithm is multiplied by the number of evaluation points needed we can

reduce the cost of algorithm PGCD if we can reduce t .
Algorithm PGCD interpolates H from univariate images in Zp[x0]. If instead we inter-

polate H from bivariate images in Zp[x0,x1], this will likely reduce t when #∆ = 1 and

when #∆ > 1. For our benchmark problem, where ∆ = 1, doing this reduces t from 1198 to

130 saving a factor of 9.2. On the other hand, we must now compute bivariate GCDs in

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

:34 Hu and Monagan

Zp[x0,x1]. To decide whether this will lead to an overall gain, we need to know and the

cost of computing bivariate images and the likely reduction in t .
To compute a bivariate GCD in Zp[x0,x1] we have implemented Brown’s dense modu-

lar GCD algorithm from [Brown 1971]. If G is sparse, then for sufficiently large t and n,
G is likely dense in x0 and x1, so using a dense GCD algorithm is efficient. The complexity of

Brown’s algorithm isO (d3) arithmetic operations inZp whered = max
1

i=0
(degxi A, degxi B).

Thus if this cost is less than the cost of evaluating the inputs, which using our evaluation

algorithm from 3.2 is s multiplications in Zp where s = #A + #B, then the cost of the

bivariate images does not increase the overall cost of the algorithm significantly. For our

benchmark problem, s = 2 × 10
6
and d3 = 40

3 = 64, 000 so the cost of a bivariate image is

negligible compared with the cost of an evaluation.

Let us write

H =
d0∑
i=0

hi (x1, . . . ,xn)x
i
0
=

d0∑
i=0

d1∑
j=0

hi j (x2, . . . xn)x
i
0
x j

1

and define t1 = max #hi and t2 = max #hi j . The ratio t1/t2 is reduction of the number of

evaluation points needed by our algorithm. The maximum reduction in t occurs when
the terms in H are distributed evenly over the coefficients of H in x1, that is, then t1/t2 =
1 + d1 = 1 + degx1

∆ + degx1

G . For some very sparse inputs, there is no gain. For example,

for

H = xd
0
+ xd

1
+ xd

2
+ · · · + xdn + 1

we have t1 = n and t2 = n − 1 and the gain is negligible.

If H has total degree D and H is dense then the number of terms in hi (x1, . . . ,xn) is(
D−i+n

n

)
which is a maximum for h0 where #h0 =

(
D+n
n

)
. A conservative assumption is that

#hi is proportional to
(
n+D−i

n

)
and similarly #hi j is proportional to

(
n−1+D−(i+j)

n−1

)
. In this

case, the reduction is a factor of

#h0

#h00

=

(
n + D

n

)
/

(
n − 1 + D

n − 1

)
=
n + D

n
.

For our benchmark problem where n = 8 and D = 60 this is 8.5 = 68

8
.

6 BENCHMARKS
We have implemented algorithm PGCD for 31, 63 and 127 bit primes in Cilk C. For 127 bit

primes we use the 128 bit signed integer type __int128_t supported by the gcc compiler.

We parallelized evaluation (see Section 3.2) and we interpolate the coefficients hi (y) in
parallel in Step 11 of Algorithm PGCD1.

The new algorithm requires 2t + δ images (evaluation points) for the first prime and

t + 1 images for the remaining primes. The additional image (t + 1 images instead of t) is
used to check if the support of H (see Step 9 of Algorithm SGCD1) obtained from the first

prime is correct.

To assess how good our new algorithm is, we have compared it with the serial imple-

mentations of Zippel’s algorithm in Maple 2016 and Magma V2.22. For Maple we are able

to determine the time spent computing G modulo the first prime in Zippel’s algorithm. It

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

A Fast Parallel Sparse Polynomial GCD Algorithm :35

is typically over 99% of the total GCD time. The reason for this is that Zippel’s algorithm

requires O (ndt) images for the first prime but only t + 1 images for the remaining primes.

We also timed Maple’s implementation of Wang’s EEZ-GCD algorithm from [Wang

1980, 1978]. It was much slower than Zippel’s algorithm on these inputs so we have not

included timings for it. Note, older versions of Maple and Magma both used the EEZ-GCD

algorithm for multivariate polynomial GCD computation.

All timings were made on the gaby server in the CECM at Simon Fraser University. This

machine has two Intel Xeon E-2660 8 core CPUs running at 3.0 GHz on one core and 2.2

GHz on 8 cores. Thus maximum parallel speedup is a factor of 16 × 2.2/3.0 = 11.7.

6.1 Benchmark 1
For our first benchmark (see Table 3) we created polynomials G, Ā and B̄ in 6 variables

(n = 5) and 9 variables (n = 8) of degree at most d in each variable. We generated 100d
terms for G and 100 terms for Ā and B̄. That is, we hold t approximately fixed to test the

dependence of the algorithms on d .
The integer coefficients of G, Ā, B̄ were generated at random from [0, 231 − 1]. The

monomials inG, Ā and B̄ were generated using random exponents from [0,d − 1] for each

variable. For G we included monomials 1,xd
0
,xd

1
, . . . ,xdn so that G is monic in all variables

and Γ = 1. Maple and Magma code for generating the input polynomials is given in the

Appendix.

Our new algorithm used the 62 bit prime p = 29 × 2
57 + 1. Maple used the 32 bit prime

2
32 − 5 for the first image in Zippel’s algorithm.

New GCD algorithm Zippel’s algorithm

n d t 1 core (eval) 16 cores Maple Magma

5 5 110 0.29s (64%) 0.074s (3.9x) 3.57s 0.60s

5 10 114 0.62s (68%) 0.091s (6.8x) 48.04s 6.92s

5 20 122 1.32s (69%) 0.155s (8.5x) 185.70s 296.06s

5 50 121 3.48s (69%) 0.326s (10.7x) 1525.80s > 10
5s

5 100 123 7.08s (69%) 0.657s (10.8x) 6018.23s NA

5 200 125 14.64s (71%) 1.287s (11.4x) NA NA

5 500 135 38.79s (71%) 3.397s (11.4x) NA NA

8 5 89 0.27s (61%) 0.065s (4.2x) 32.47s 2.28s

8 10 110 0.63s (65%) 0.098s (6.4x) 138.41s 7.33s

8 20 114 1.35s (66%) 0.163s (8.3x) 664.33s 78.77s

8 50 113 3.52s (66%) 0.336s (10.5x) 6390.22s 800.15s

8 100 121 7.43s (68%) 0.645s (11.5x) NA 9124.73s

Table 3. Real times (seconds) for GCD problems.

In Table 3 column d is the maximum degree of the terms of G, Ā, B̄ in each variable,

column t is the maximum number of terms of the coefficients ofG. Timings are shown in

seconds for the new algorithm for 1 core and 16 cores. For 1 core we show the %age of

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

:36 Hu and Monagan

the time spent evaluating the inputs, that is computing K (A) (x0,α
j) and K (B) (x0,α

j) for
j = 1, 2, . . . ,T . The parallel speedup on 16 cores is shown in parens.

Table 3 shows that most of the time in the new algorithm is in evaluation. It shows a

parallel speedup approaching the maximum of 11.7 on this machine. There was a parallel

bottleneck in how we computed the λi (z) polynomials that limited parallel speedup to 10

on these benchmarks. For N cores, after generating a new batch of N images we used the

Euclidean algorithm for Step 12b which is quadratic in the number of images j computed so

far. To address this we now use an incremental version of the Berlekamp-Massey algorithm

which is O (N j).

6.2 Benchmark 2
Our second benchmark (see Table 4) is for 9 variables where the degree ofG, Ā, B̄ is at most

20 in each variable. The terms are generated at random as before but restricted to have

total degree at most 60. The row with #G = 10
4
and #A = 10

6
is our benchmark problem

from Section 1. We show two sets of timings for our new algorithm. The first set is for

projecting down to univariate image GCDs in Zp[x0] and the second set it for bivariate

GCDs and consequently the values of t are different.
The timings for the new algorithm are for the first prime only. Although one prime

is sufficient for these problems to recover H that is, no Chinese remaindering is needed,

our algorithm uses an additional 63 bit prime to verify H mod p1 = H . The time for the

second prime is always less than 50% of the time for the first prime because it needs only

t + 1 points instead of 2t + δ points and it does not need to compute degree bounds.

For #G = 10
3
, #A = 10

5
, the time of 497.2s breaks down as follows. 38.2s was spent

in computing degree bounds for G, 451.2s was spent in evaluation, of which 43.2s was

spent computing the powers. Using the support of H from this first prime it took 220.9s to

compute H modulo a second prime.

Table 4 shows again that most of the time in the new algorithm is in evaluation. This is

also true of Zippel’s algorithm and hence of Maple and Magma too. Because Maple uses

random evaluation points, and not a power sequence, the cost of each evaluation in Maple

is O (n(#A + #B)) multiplications instead of #A + #B evaluations for the new algorithm.

Also, Maple is using % p to divide in C which generates a hardware division instruction

which is much more expensive than a hardware multiplication instruction. For the new

algorithm, we are using Roman Pearce’s implementation of Möller and Granlund [Moller

and Granlund 2011] which reduces division by p to two multiplications plus other cheap

operations. Magma is doing something similar. It is using floating point primes (25 bits) so

that it can multiply modulo p using floating point multiplications. This is one reason shy

Maple is slower than Magma.

In comparing the new algorithm with Maple’s implementation of Zippel’s algorithm,

for n = 8,d = 50 in Table 3 we achieve a speedup of a factor of 1815 = 6390.22/3.52 on 1

core. Since Zippel’s algorithm uses O (dt) points and our Ben-Or/Tiwari algorithm uses

2t +O (1) points, we get a factor of O (d) speedup because of this.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

A Fast Parallel Sparse Polynomial GCD Algorithm :37

N
e
w
G
C
D
:
u
n
i
v
a
r
i
a
t
e
i
m
a
g
e
s

N
e
w
G
C
D
:
b
i
v
a
r
i
a
t
e
i
m
a
g
e
s

Z
i
p
p
e
l
’
s
a
l
g
o
r
i
t
h
m

#
G

#
A

t
1
c
o
r
e
(
e
v
a
l
)

1
6
c
o
r
e
s

t
1
c
o
r
e
(
e
v
a
l
)

1
6
c
o
r
e
s

M
a
p
l
e

M
a
g
m
a

1
0

2
1
0

5
1
3

0
.1
4
s
(
6
2
%
)

0
.0
4
3

3
.3
x

4
0
.1
5
6
s
(
6
5
%
)

0
.0
3
2
s

2
.8
x

5
1
.8
s

1
0
.9
2
s

1
0

3
1
0

5
1
1
3

0
.5
9
s
(
6
6
%
)

0
.1
0
0
s

5
.9
x

1
3

0
.3
0
6
s
(
5
5
%
)

0
.0
6
6
s

4
.6
x

2
1
0
.9
s

6
0
.2
4
s

1
0

4
1
0

5
1
1
9
7

7
.3
2
s
(
4
8
%
)

1
.0
2
2
s

7
.2
x

1
1
8

2
.2
9
9
s
(
3
6
%
)

0
.2
2
4
s

1
0
.3
x

7
0
0
3
.4
s

1
0
.8
4
s

1
0

2
1
0

6
1
3

1
.3
6
s
(
7
0
%
)

0
.1
6
7
s

8
.2
x

4
1
.0
2
4
s
(
6
0
%
)

0
.1
6
4
s

6
.2
x

7
9
7
.4
s

4
5
.0
8
s

1
0

3
1
0

6
1
3
0

5
.7
0
s
(
9
0
%
)

0
.5
2
0
s

1
1
.0
x

1
4

1
.7
1
3
s
(
6
9
%
)

0
.2
2
8
s

7
.1
x

2
1
3
5
.9
s

2
0
7
.6
3
s

1
0

4
1
0

6
1
1
9
8

4
8
.1
7
s
(
8
7
%
)

4
.6
7
3
s

1
0
.3
x

1
2
2

7
.6
1
4
s
(
7
5
%
)

0
.6
8
5
s

1
1
.1
x

2
2
1
1
1
.6
s

1
6
1
1
.4
6
s

1
0

5
1
0

6
1
1
8
7
2

4
6
6
.0
9
s
(
8
2
%
)

4
5
.8
3
s

1
0
.2
x

1
1
1
5

8
0
.0
4
s
(
5
7
%
)

6
.0
7
9
s

1
3
.2
x

N
A

8
7
6
.8
9
s

1
0

2
1
0

7
1
1

1
2
.3
7
s
(
6
7
%
)

1
.4
6
s

8
.5
x

3
1
0
.6
9
s
(
5
8
%
)

1
.6
3
s

6
.6
x

N
A

3
5
4
.9
0
s

1
0

3
1
0

7
1
2
2

4
7
.7
2
s
(
9
1
%
)

4
.4
7
0
s

1
0
.7
x

1
6

1
5
.7
6
s
(
7
1
%
)

2
.0
9
s

7
.5
x

N
A

1
5
5
3
.9
1
s

1
0

4
1
0

7
1
2
1
2

4
2
9
.6
1
s
(
9
8
%
)

3
7
.7
2
s

1
1
.4
x

1
2
2

5
7
.2
3
s
(
9
0
%
)

5
.1
0
s

1
1
.2
x

N
A

8
3
3
4
.9
3
s

1
0

5
1
0

7
1
1
8
6
7

3
7
0
5
.4
s
(
9
8
%
)

3
1
1
.6
s

1
1
.9
x

1
1
1
4

4
3
8
.8
7
s
(
9
0
%
)

3
4
.4
s

1
2
.8
x

N
A

7
2
3
4
1
.0
s

1
0

6
1
0

7
1
1
7
5
0
8

4
7
5
6
8
.s

(
9
0
%
)

3
8
3
5
.9
s

1
2
.4
x

1
1
0
0
2

4
7
9
4
.5
s
(
8
3
%
)

3
4
6
.1
s

1
3
.8
x

N
A

N
A

1
0

2
1
0

8
1
2

1
2
9
.2
6
s
(
6
9
%
)

1
5
.8
6
s

8
.2
x

4
1
0
1
.8
s
(
6
0
%
)

1
6
.8
8
s

6
.0
x

N
A

N
A

1
0

3
1
0

8
1
2
1

5
2
2
.1
4
s
(
9
2
%
)

4
9
.1
7
s

1
0
.6
x

1
7

1
5
0
.0
s
(
7
3
%
)

2
3
.2
5
s

6
.4
x

N
A

N
A

1
0

4
1
0

8
1
1
8
4

4
2
9
5
.0
s
(
9
9
%
)

4
1
2
.6
9
s

1
0
.4
x

1
2
1

5
5
5
.5
s
(
8
9
%
)

7
8
.7
6
s

7
.0
x

N
A

N
A

1
0

5
1
0

8
1
1
8
6
9

4
3
5
5
1
.s

(
9
9
%
)

3
8
0
4
.9
3
s

1
1
.4
x

1
1
6
2

4
4
1
7
.7
s
(
9
8
%
)

6
2
6
.1
9
s

7
.0
x

N
A

N
A

Ta
bl
e
4.

Ti
m
in
gs

(s
ec
on

ds
)f
or

9
va
ri
ab
le
G
C
D
s

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

:38 Hu and Monagan

7 CONCLUSION AND FINAL REMARKS
We have shown that a Kronecker substitution can be used to reduce a multivariate GCD

computation to bivariate by using a discrete logs Ben-Or/Tiwari point sequence. Our

parallel algorithm is fast and practical. For polynomials in more variables or higher degree

algorithm PGCD may need a prime p larger than what a 63 bit prime for a 64 bit machine.

Can we do anything to reduce the size of the prime needed?

We cite the sparse interpolation methods of [Garg and Schost 2009], [Giesbrecht and

Roche 2011] and Roche [Arnold et al. 2016] which can use a smaller prime and would

also use fewer than 2t + O (1) evaluations. These methods compute ai = Kr (A) (x ,y),
bi = Kr (B) (x ,y) and дi = gcd(ai ,bi) all mod ⟨p,yqi − 1⟩ for several primes qi and recover

the exponents of y in Kr (H) using Chinese remaindering. The algorithms differ in the size

of qi and how they avoid and recover from exponent collisions modulo qi . It is not clear
whether this approach can work for the GCD problem as these methods assume a division

free evaluation but computing дi modulo ⟨p,yqi−1⟩ requires division and y = 1 may be

bad or unlucky. These methods also require qi ≫ t which means computing дi modulo

⟨p,yqi − 1⟩ will be expensive for large t . Instead of pursuing this direction we chose to

implement a 127 bit prime version of our algorithm which proved to be not difficult. A 127

bit prime will cover almost all multivariate GCD problems arising in practice.

8 ACKNOWLEDGEMENT
We would like to acknowledge Adriano Arce for his discrete logarithm code, Alex Fan for

his Chinese remaindering code, Alan Wong for integrating the bivariate GCD code and

Roman Pearce for his 64 bit and 128 bit modular multiplication codes.

9 NOTE FOR THE REFEREES
An early version of this paper was presented at and published in the proceedings of ISSAC

2016. It’s available in the ACMDigital Library at https://dl.acm.org/citation.cfm?id=2930903

In that paper we presented a version of our GCD algorithm, a heuristic version, for

computing the GCD modulo the first prime p. One of the referees asked for a Las Vegas

version of our algorithm with a complete analysis for the probability of failure. We were

unable to do that at the time.

The version of our algorithm in Section 3 Simplified Algorithm is the Las Vegas algorithm

that the referee asked for. So Section 3 is new. In addition, in Section 4 Faster Algorithm

we redesigned our heuristic algorithm so that we can give a more formal and complete

proof of termination. Sections 4.1-4.4 are new. The practical improvements in sections

5.2 and 5.3 are also new. The timings for Benchmark 2 in Section 6.2 are also new. They

include the practical improvements we made in sections 5.2 and 5.3 and timings for newer

versions of Maple and Magma.

Finally, in the 2016 paper we didn’t have any space to give a treatment for the Chinese

remaindering. The algorithms in the new paper include Chinese remaindering (in subrou-

tines MGCD and MGCD1) to complete the GCD algorithm. For this purpose Proposition

2.9 and Theorem 2.10 in Section 2 are also new.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

A Fast Parallel Sparse Polynomial GCD Algorithm :39

REFERENCES
Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. 2016. Faster sparse multivariate polynomial interpola-

tion of straight-line programs. J. Symb. Comp. 75 (2016), 4–24.
Nadia B. Atti, Gema M. Diaz-Toca, and Henri Lombardi. 2006. The Berlekamp-Massey algorithm revisited.

Applicable Algebra in Engineering, Communication and Computing 17 (April 2006), 75–82.

Michael Ben-Or and Prasoon Tiwari. 1988. A deterministic algorithm for sparse multivariate polynomial

interpolation. In Proceedings of STOC ’88. ACM, New York, NY, 301–309. https://doi.org/10.1145/62212.62241

Elwyn Berlekamp. 1970. Factoring polynomials over large finite fields. Math. Comp. 24 (1970), 713–735.
William S. Brown. 1971. On Euclid’s Algorithm and the Computation of Polynomial Greatest Common

Divisors. J. ACM 18 (October 1971), 478–504. https://doi.org/10.1145/321662.321664

William S. Brown and Joseph F. Traub. 1971. On Euclid’s Algorithm and the Theory of Subresultants. J. ACM
18 (October 1971), 505–514. https://doi.org/10.1145/321662.321665

Bruce W. Char, Keith O. Geddes, and Gaston H. Gonnet. 1989. GCDHEU: heuristic polynomial GCD algorithm

based on integer GCD computation. J. Symb. Comp. 7 (1989), 31–48.
George E. Collins. 1967. Subresultants and reduced polynomial remainder sequences. J. ACM 14 (January

1967), 128–142. https://doi.org/10.1145/321371.321381

David A. Cox, John Little, and Donal O’Shea. 1991. Ideals, Varities and Algorithms. Springer-Verlag, New York,

NY.

Sanchit Garg and Eric Schost. 2009. Interpolation of polynomials given by straight-line programs. Theoretical
Computer Science 410, 27-29 (2009), 2659–2662.

K. O. Geddes, S. R. Czapor, and G. Labahn. 1992. Algorithms for Computer Algebra. Kluwer Academic Publishers,

Boston, MA.

A. O. Gelfond. 1952. Transcendental and Algebraic Numbers. GITTL, Moscow. English translation by Leo F.

Boron, Dover, New York, 1960.

Mark Giesbrecht and Daniel S. Roche. 2011. Diversification improves interpolation. In Proceedings of ISSAC
2011. ACM Press, 123–130. https://doi.org/10.1145/1993886.1993909

A. J. Goldstein and R. L. Graham. 1974. A Hadamard-type bound on the coefficients of a determinant of

polynomials. SIAM Rev. 16, 3 (1974), 394–395.
Mahdi Javadi and Michael Monagan. 2010. Parallel Sparse Polynomial Interpolation over Finite Fields. In

Proceedings of PASCO 2010. ACM Press, 160–168. https://doi.org/10.1145/1837210.1837233

E. Kaltofen, Y.N. Lakshman, and J-M. Wiley. 1990. Modular Rational Sparse Multivariate Interpolation

Algorithm. In Proceedings of ISSAC 1990. ACM Press, 135–139. https://doi.org/10.1145/96877.96912

Erich Kaltofen, Wen shin Lee, and Austin A. Lobo. 2000. Early Termination in Ben-Or/Tiwari Sparse

Interpolation and a Hybrid of Zippel’s algorithm. In Proceedings of ISSAC 2000. ACM Press, 192–201.

https://doi.org/10.1145/345542.345629

Erich Kaltofen, Wen shin Lee, and Austin A. Lobo. 2010. Fifteen years after DSC and WLSS2. what parallel

computations I do today. In Proceedings of PASCO 2010. ACM Press, 10–17. https://doi.org/10.1145/1837210.

1837213

Erich Kaltofen and Barry Trager. 1990. Computing with polynomials given by black boxesfor their evaluations:

greatest common divisors, factorization, separation of numerators and denominators. J. Symb. Comp. 9
(March 1990), 301–320–.

J. L. Massey. 1969. Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory 15

(January 1969), 122–127.

Niels Moller and Torbjorn Granlund. 2011. Improved division by invariant integers. IEEE Trans. Comput. 60, 2
(February 2011), 165–175.

Michael Monagan and Alan Wong. 2017. Fast parallel multi-point evaluation of sparse polynomials. In

Proceedings of PASCO 2017. ACM digital library. https://doi.org/10.1145/3115936.3115940

Gary Mullen and Daniel Panario. 2013. Handbook of Finite Fields. CRC Press.

Hirokazu Murao and Tetsuro Fujise. 1996. Modular Algorithm for Sparse Multivariate Polynomial Interpolation

and its Parallel Implementation. J. Symb. Comp. 21, 4-6 (1996), 377–396.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

https://doi.org/10.1145/62212.62241
https://doi.org/10.1145/321662.321664
https://doi.org/10.1145/321662.321665
https://doi.org/10.1145/321371.321381
https://doi.org/10.1145/1993886.1993909
https://doi.org/10.1145/1837210.1837233
https://doi.org/10.1145/96877.96912
https://doi.org/10.1145/345542.345629
https://doi.org/10.1145/1837210.1837213
https://doi.org/10.1145/1837210.1837213
https://doi.org/10.1145/3115936.3115940

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

:40 Hu and Monagan

S. Pohlig and M. Hellman. 1978. An improved algorithm for computing logarithms over GF(p) and its

cryptographic significanc. IEEE Transactions on Information Theory 24, 1 (January 1978), 106–110.

Mohamed Omar Rayes, Paul S. Wang, and Kenneth Weber. 1994. Parallelization fo the Sparse Modular GCD

Algorithm for Multivariate Polynomials on Shared Memory Processors. In Proceedings of ISSAC ’94. ACM
Press, 66–73. https://doi.org/10.1145/190347.190368

Jack Schwartz. 1980. Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27, 4

(October 1980), 701–717. https://doi.org/10.1145/322217.322225

Douglas Stinson. 2006. Cryptography, Theory and Practice. Chapman and Hall.

Y. Sugiyama, M. Kashara, S. Hirashawa, and T. Namekawa. 1975. A Method for Solving Key Equation for

Decoding Goppa Codes. Information and Control 27 (January 1975), 87–99.

Joris van der Hoven and Grégoire Lecerf. 2013. On the bit complexity of sparse polynomial multiplication. J.
Symb. Comp. 50 (2013), 227–254.

Joris van der Hoven and Grégoire Lecerf. 2014. Sparse polynomial interpolation in practice. ACM Communi-
cations in Computer Algebra 48 (September 2014), 187–191. https://doi.org/10.1145/2733693.2733721

Joachim von zur Gathen and Jurgen Gerhard. 1999. Modern computer algebra. Cambridge University Press,

New York, NY.

Paul Wang. 1980. The EEZ-GCD algorithm. ACM SIGSAM Bulletin 14 (May 1980), 50–60. https://doi.org/10.

1145/1089220.1089228

Paul S. Wang. 1978. An Improved Multivariate Polynomial Factoring Algorithm. Math. Comp. 32, 144 (October
1978), 1215–1231.

Richard Zippel. 1979. Probabilistic algorithms for sparse polynomials. In Proceedings of EUROSAM ’79. ACM,

216–226.

Richard Zippel. 1990. Interpolating Polynomials from their Values. J. Symb. Comp. 9, 3 (1990), 375–403.

Appendix
Maple code for the 6 variable gcd benchmark.

r := rand(2^31);
X := [u,v,w,x,y,z];
getpoly := proc(X,t,d) local i,e;

e := rand(0..d);
add(r()*mul(x^e(),x=X), i=1..t);

end:

infolevel[gcd] := 3; # to see output from Zippel's algorithm

for d in [5,10,20,50,100] do
s := 100; t := 100*d;
g := add(x^d,x=X) + r() + getpoly(X,t-7,d-1);
abar := getpoly(X,s-1,d) + r(); a := expand(g*abar);
bbar := getpoly(X,s-1,d) + r(); b := expand(g*bbar);
st := time(); h := gcd(a,b); gcdtime := time()-st;
printf("d=%d time=%8.3f\n",d,gcdtime);

end do:

Magma code for the 6 variable gcd benchmark.

p := 2^31;
Z := IntegerRing();
P<u,v,w,x,y,z> := PolynomialRing(Z,6);

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

https://doi.org/10.1145/190347.190368
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/2733693.2733721
https://doi.org/10.1145/1089220.1089228
https://doi.org/10.1145/1089220.1089228

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

A Fast Parallel Sparse Polynomial GCD Algorithm :41

randpoly := function(d,t)
M := [u^Random(0,d)*v^Random(0,d)*w^Random(0,d)

*x^Random(0,d)*y^Random(0,d)*z^Random(0,d) : i in [1..t]];
C := [Random(p) : i in [1..t]];
g := Polynomial(C,M);
return g;
end function;

for d in [5,10,20,50] do
s := 100; t := 100*d;
g := u^d+v^d+w^d+x^d+y^d+z^d + randpoly(d,t-7) + Random(p);
abar := randpoly(d+1,s-1) + Random(p); a := g*abar;
bbar := randpoly(d+1,s-1) + Random(p); b := g*bbar;
d; time h := Gcd(a,b);

end for;

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: December 2017.

	Abstract
	1 Introduction
	1.1 Some notation and results
	1.2 Ben-Or Tiwari Sparse Interpolation
	1.3 Ben-Or/Tiwari with discrete logarithms
	1.4 Bad and Unlucky Evaluation Points
	1.5 Unlucky evaluations in Ben-Or/Tiwari

	2 Kronecker Substitutions
	2.1 Unlucky primes
	2.2 The number of unlucky evaluation points

	3 Simplified Algorithm
	3.1 Bad and unlucky Kronecker substitutions
	3.2 Bad and unlucky evaluations
	3.3 Bad and unlucky primes
	3.4 The Simplified GCD Algorithm

	4 Faster Algorithm
	4.1 Term Bounds
	4.2 Using smaller primes
	4.3 Using fewer evaluation points
	4.4 Algorithm MGCD1
	4.5 Determining t

	5 Implementation and Optimizations
	5.1 Evaluation
	5.2 The non-monic case and homogenization.
	5.3 Bivariate images

	6 Benchmarks
	6.1 Benchmark 1
	6.2 Benchmark 2

	7 Conclusion and Final Remarks
	8 Acknowledgement
	9 Note for the Referees
	References

