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ABSTRACT
We present a probabilistic algorithm to interpolate a sparse
multivariate polynomial over a finite field, represented with
a black box. Our algorithm modifies the algorithm of Ben-
Or and Tiwari from 1988 for interpolating polynomials over
rings with characteristic zero to characteristic p by doing
additional probes.

To interpolate a polynomial in n variables with t non-zero
terms, Zippel’s (1990) algorithm interpolates one variable at
a time using O(ndt) probes to the black box where d bounds
the degree of the polynomial. Our new algorithm does O(nt)
probes. It interpolates each variable independently using
O(t) probes which allows us to parallelize the main loop
giving an advantage over Zippel’s algorithm.

We have implemented both Zippel’s algorithm and the
new algorithm in C and we have done a parallel implementa-
tion of our algorithm using Cilk [2]. In the paper we provide
benchmarks comparing the number of probes our algorithm
does with both Zippel’s algorithm and Kaltofen and Lee’s
hybrid of the Zippel and Ben-Or/Tiwari algorithms.

Categories and Subject Descriptors:
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms

General Terms: Algorithms, Theory.

Keywords: sparse polynomial interpolation, parallel inter-
polation algorithms, Ben-Or Tiwari.

1. INTRODUCTION
Let p be a prime and let f ∈ Zp[x1, . . . , xn] be a multi-

variate polynomial with t > 0 non-zero terms which is rep-
resented with a black box Znp → Zp. On input (α1, . . . , αn) ∈
Znp , the black box evaluates and outputs f(x1 = α1, . . . , xn =
αn). Given also a degree bound d on the degree of f , our goal
is to interpolate the polynomial f with minimum number of
evaluations (probes to the black box).
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Sparse interpolation is a key part of many algorithms in
computer algebra such as polynomial GCD computation [17,
7, 13] over Z. Here one computes the GCD modulo p where
p is chosen to be a machine size prime. We are interested in
algorithms whose computational complexity is polynomial
in t, n, d and log p. In 1979 Richard Zippel presented the
first such algorithm. Zippel’s algorithm is probabilistic. It
relies heavily on the assumption that if a polynomial is zero
at a random evaluation point, then it is the zero polynomial
with high probability. Zippel’s algorithm interpolates f one
variable at a time, sequentially. It makes O(ndt) probes
to the black box. In 1990, Zippel in [18] improved his 1979
algorithm to use evaluation points of the form (αi1, . . . , α

i
k) ∈

Zkp so that the linear systems to be solved become transposed
Vandermonde systems which can be solved in O(t2) time
instead of O(t3) – see [8].

In 1988, Ben-Or and Tiwari [1] presented a determin-
istic algorithm for interpolating a multivariate polynomial
with integer, rational, real or complex coefficients. Given
a bound T on the number of terms t of the polynomial f ,
the algorithm evaluates the black box at powers of the first
n primes; it evaluates at the points (2i, 3i, 5i, . . . , pin) for
0 ≤ i < 2T . If Mj(x1, . . . , xn) are the monomials of the t
non-zero terms of f , it then uses Berlekamp/Massey algo-
rithm [12] from coding theory to find the monomial evalua-
tions Mj(2, 3, 5, . . . , pn) for 1 ≤ j ≤ t and then determines
the degree of each monomial Mj in xk by trial division of
Mj(2, 3, 5, . . . , pn) by pk. This algorithm is not variable by
variable. Instead, it interpolates the polynomial f with 2T
probes to the black box which can all be computed in paral-
lel. The major disadvantage of the Ben-Or/Tiwari algorithm
is that the evaluation points are large (O(T logn) bits long
− see [1]) and computations over Q encounter an expression
swell which makes the algorithm very slow. This problem
was addressed by Kaltofen et al. in [9] by running the algo-
rithm modulo a power of a prime of sufficiently large size;
the modulus must be greater than maxjMj(2, 3, 5, . . . , pn).

In [6], Huang and Rao describe how to make the Ben-
Or/Tiwari approach work over finite fields GF(q) with at
least 4t(t − 2)d2 + 1 elements. Their idea is to replace the
primes 2, 3, 5, . . . , pn in Ben-Or/Tiwari by linear (hence ir-
reducible) polynomials in GF(q)[y]. Their algorithm is Las
Vegas and does O(dt2) probes. Although the authors dis-
cuss how to parallelize the algorithm, the factor of t2 may
limit this approach.

In 2000, Kaltofen et al. in [10, 11] design a hybrid algo-
rithm, a hybrid of the Zippel and Ben-Or Tiwari algorithms,
which they call a “racing algorithm”. To reduce the number
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of probes when interpolating the next variable in Zippel’s
algorithm, their algorithm runs a Newton interpolation and
a univariate Ben-Or/Tiwari simultaneously, stopping when
the first succeeds. However, this further sequentializes the
algorithm. In Section 5, we compare the number of probes
made by this algorithm to our new algorithm.

In 2009, Giesbrecht, Labahn and Lee in [4] present two
new algorithms for sparse interpolation for polynomials with
floating point coefficients. The first is a modification of the
Ben-Or/Tiwari algorithm that uses O(t) probes. In princi-
ple, this algorithm can be made to work over finite fields
GF (q) for applications where one can choose q. One needs
q − 1 to have n distinct prime factors all > d. One would
also need q − 1 to have no large prime factors so that the
discrete logarithms needed could be done efficiently using
the Pohlig-Hellman algorithm [14]. We have not explored
the feasibility of this approach.

Our approach for sparse interpolation over Zp is to use
evaluation points of the form (αi1, . . . , α

i
n) ∈ Znp and modify

the Ben-Or/Tiwari algorithm to do extra probes to deter-
mine the degrees of the variables in each monomial in f .
We do a factor of at most 2n more evaluations in order to
recover the monomials from their images. A motivation for
our new algorithm is to use the Ben-Or/Tiwari approach in
modular algorithms (e.g. GCD computations in characteris-
tic 0 – see [7]) where the prime p is chosen to be a machine
prime so that arithmetic in Zp is efficient.

Our paper is organized as follows. In Section 2 we present
an example showing the main flow and the key features of
our algorithm. We then identify possible problems that can
occur and how the new algorithm deals with them in Sec-
tion 3. In Section 4 we present our new algorithm and ana-
lyze its sequential time complexity. Finally, in Section 5 we
compare the C implementations of our algorithm and Zip-
pel’s algorithm with the racing algorithm of Kaltofen and
Lee [11] on various sets of polynomials.

2. THE IDEA AND AN EXAMPLE
Let f =

Pt
i=1 aiMi ∈ Zp[x1, . . . , xn] be the polynomial

represented with the black box with ai ∈ Zp\{0}. Here t is
the number of non-zero terms in f . Mi = xei1

1 ×xei2
2 ×· · ·×

xein
n is the i’th monomial in f where Mi 6= Mj for i 6= j.

Let d ≥ deg f be a bound on the degree of f so that eij ≤ d
for all 1 ≤ i, j ≤ n.

We demonstrate our algorithm on the following example.
Here we use x, y and z for variables instead of x1, x2 and x3.

Example 1 Let f = 91yz2 + 94x2yz + 61x2y2z + 42z5 + 1
and p = 101. Given the number of terms t = 5, the number
of variables n = 3, a degree bound d = 5 and the black box
that computes f , we want to find f .

The first step is to pick n = 3 generators α1, α2, α3 of Z∗p.
We evaluate the black box at the points β0, . . . , β2t−1 where
βi = (αi1, α

i
2, . . . , α

i
n). Thus we make 2t probes to the black

box. The reason to use generators instead of random values
from Zp is that it decreases the probability of two distinct
monomials having the same evaluation. For our example,
let the generators be α1 = 66, α2 = 12 and α3 = 3 and let
vi be the output of the black box on input βi and let V =
(v0, . . . , v2t−1). In this example we obtain

V = (87, 78, 65, 41, 49, 38, 87, 29, 23, 86).

Now we use the Berlekamp/Massey algorithm [12] (See [10]
for a more accessible reference). The input to this algorithm
is a sequence of elements b0, b1, . . . , b2t−1, . . . where bi ∈ Zp.
The algorithm computes a linear generator for the sequence,
i.e. the univariate polynomial Λ(z) = zt−λt−1z

t−1−· · ·−λ0

such that

bt+i = λt−1bt+i−1 + λt−2bt+i−2 + · · ·+ λ0bi

for all i ≥ 0. In our example the input is V = (v0, . . . , v2t−1)
and the output is

Λ1(z) = z5 + 28z4 + 62z3 + 54z2 + 11z + 46.

The next step is to find the roots of Λ1(z). We know (see [1])
that this polynomial is the product of exactly t = 5 linear
factors. The roots are r1 = 1, r2 = 7, r3 = 41, r4 = 61 and
r5 = 64. Ben-Or and Tiwari prove that for each 1 ≤ i ≤ t,
there exists 1 ≤ j ≤ t such that

mi = Mi(α1, . . . , αn) ≡ rj mod p.

The main step now is to determine the degrees of each mono-
mial in f in each variable. Consider the first variable x. Let
αn+1 be a new random generator of Z∗p. In this example we
choose α4 = 34. This time we choose the evaluation points
β′0, . . . , β

′
2t−1 where β′i = (αin+1, α

i
2, . . . , α

i
n). Note that this

time we are evaluating the first variable at powers of αn+1

instead of α1. We evaluate the black box at these points
and apply the Berlekamp/Massey algorithm on the sequence
of the outputs to compute the linear generator for the new
sequence

Λ2 = z5 + 45z3 + 54z2 + 60z + 42.

Let r̄1, . . . , r̄5 be distinct roots of Λ2.
We know that Mi(αn+1, α2, . . . , αn) is a root of Λ2 for 1 ≤
i ≤ n. On the other hand we have

Mi(αn+1, α2, . . . , αn)

Mi(α1, α2, . . . , αn)
= (

αn+1

α1
)
ei1
. (1)

Let rj = Mi(α1, α2, . . . , αn) and r̄k = Mi(αn+1, α2, . . . , αn).
From Equation 1 we have

r̄k = rj × (
αn+1

α1
)
ei1
,

i.e. for every root rj of Λ1, rj × (
αn+1
α1

)
ei1 is a root of Λ2

for some ei1 which is the degree of some monomial in f
with respect to x. This gives us a way to compute the degree
of each monomial Mi in the variable x. In this example we
have

αn+1
α1

= 25. We start with the first root of Λ1 and check

if r1 × (
αn+1
α1

)
i

is a root of Λ2 for 0 ≤ i ≤ d. For r1 = 1 we

have that r1 × (
αn+1
α1

)
0

is a root of Λ2 and for 0 < i ≤ d,

r1 × (
αn+1
α1

)
i

is not a root of Λ2, hence we conclude that the
degree of the first monomial of f in x is 0. We continue this
to find the degrees of all the monomials in f in the variable
x. We obtain

e11 = 0, e21 = 0, e31 = 0, e41 = 2, e51 = 2.

We proceed to the next variable y. This time we evaluate the
black box at β′′0 , . . . , β

′′
2t−1 where β′′i = (αi1, α

i
n+1, α

i
3, . . . , α

i
n)

and apply the Berlekamp/Massey algorithm on the sequence
of the outputs to compute

Λ3 = z5 + 5z4 + 27z3 + 36z2 + 93z + 40
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the linear generator for the new sequence. Let r̃1, . . . , r̃5

be distinct roots of Λ3. Again using the same approach as
above, we find that the degrees of the monomials in the sec-
ond variable y to be

e12 = 0, e22 = 1, e32 = 0, e42 = 2, e52 = 1.

Finally we proceed to the last variable z. This time we eval-
uate z at powers of αn+1 instead of α3 and compute the fol-
lowing linear generator for the sequence of outputs obtained
by probing the black box

Λ4 = z5 + 27z4 + 99z3 + 18z2 + 16z + 41.

We compute the degrees with the same technique and obtain

e13 = 0, e23 = 2, e33 = 5, e43 = 1, e53 = 1.

The reader may observe that determining the degrees of
the monomials Mi in each variable represent n independent
tasks which can therefore be done in parallel. At this point we
have computed all the monomials. Recall that Mi = xei1

1 ×
xei2

2 × · · · × xein
n hence we have

M1 = 1,M2 = yz2,M3 = z5,M4 = x2y2z and M5 = x2yz.

Now we need to compute the coefficients. We do this by
solving one linear system of equations. We computed the
roots of Λ1 and we have computed the monomials such that
Mi(α1, . . . , αn) = ri. Recall that vi is the output of the black
box on the input βi = (αi1, . . . , α

i
n) hence we have

vi = a1r
i
1 + a2r

i
2 + · · ·+ atr

i
t

for 0 ≤ i ≤ 2t−1. Note that the system of equations obtained
from the above set of equations is a Vandermonde system
which can be solved in O(t2) time and O(t) space (See [18]).
After solving we obtain

a1 = 1, a2 = 91, a3 = 42, a4 = 61 and a5 = 94

and hence f = 1 + 91yz2 + 42z5 + 61x2y2z + 94x2yz is
interpolated and we are done.

3. PROBLEMS
The evaluation points α1, . . . , αn, αn+1 must satisfy cer-

tain conditions for our new algorithm to work properly. Here
we identify all problems.

3.1 Distinct Monomials
The first condition is that for i 6= j

Mi(α1, . . . , αn) 6= Mj(α1, . . . , αn) in Zp

so that deg(Λ1(z)) = t. Also, at the k’th step of the algo-
rithm, when computing the degrees of the monomials in xk,
we must have

∀ 1 ≤ i 6= j ≤ t, mi,k 6= mj,k in Zp

where mi,k = Mi(α1, . . . , αk−1, αn+1, αk+1, . . . , αn) so that
deg(Λk+1(z)) = t. To reduce the probability of monomial
evaluations colliding, we pick αi to have order > d. The
easiest way to do this is to use generators of Z∗p. There are
φ(p− 1) generators where φ is Euler’s totient function. We
now give an upper bound on the probability that no mono-
mial evaluations collide when we use generators for evalua-
tions.

Theorem 1 Let α1, ..., αn be generators from Zp chosen at
random and let mi = Mi(α1, . . . , αn). Then the probability
that two or more monomials evaluate to the same value (we
get a collision) is

≤
 
t

2

!
d

φ(p− 1)
<

dt2

2φ(p− 1)
.

Proof. Consider the polynomial

A =
Y

1≤i<j≤t
(Mi(x1, . . . , xn)−Mj(x1, . . . , xn)) .

Observe that A(α1, . . . , αn) = 0 iff two monomial evalua-
tions collide. Recall that the Schwartz-Zippel lemma ([16,
17]) says that if r1, . . . , rn are chosen at random from any
subset S of a field K and F ∈ K[x1, . . . , xn] is non-zero then

Prob(F (r1, . . . , rn) = 0) ≤ deg f

|S| .

Our result follows from noting that d ≥ deg f and thus
degA ≤ `t

2

´
d and |S| = φ(p − 1), the number of primitive

elements in Zp.

3.2 Root Clashing
Let r1, . . . , rt be the roots of Λ1(z) which is the output

of the Berlekamp/Massey algorithm on the sequence of the
outputs from the black box on the first set of evaluation
points α1, . . . , αn. Suppose at the k’th step, we want to
compute the degrees of all the monomials in the variable xk.
As mentioned in the Example 1, the first step is to compute
Λk+1. Then if degxk

(Mi) = eik we have r̄i = ri × (
αn+1
αk

)eik

is a root of Λk+1. If ri× (
αn+1
αk

)e
′
, 0 ≤ e′ 6= eik ≤ d is also a

root of Λk+1 then we may not be able to uniquely identify
the correct degree of the i’th monomial in the k’th variable
xk. We will illustrate this with an example.

Example 2 Consider the polynomial given in Example 1.
Suppose instead of choosing α4 = 34, we choose α4 = 72
which is another generator of Z∗p. Since α1, α2 and α3 are
the same as before, Λ1 does not change and hence the roots
of Λ1 are r1 = 1, r2 = 7, r3 = 41, r4 = 61 and r5 = 64.
In the next step we substitute α4 = 72 for α1 and compute
Λ2 = z5 + 61z4 + 39z3 + 67z2 + 37z + 98. We proceed to
compute the degrees of the monomials in x but we find that

r4 × (
α4

α1
)2 = 15 and r4 × (

α4

α1
)4 = 7

are both roots of Λ2 and hence we can not decide the correct
degree of the last monomial in x.

Theorem 2 If deg Λ1(z) = deg Λk+1(z) = t then the prob-
ability that we cannot uniquely compute the degrees of all

Mi(x1, . . . , xn) in xk is at most d2t2

4φ(p−1)
.

Proof. Let Si = {rj × (
αn+1
αk

)i | 1 ≤ j ≤ t} for 0 ≤
i ≤ d. We assume that ri 6= rj for all 1 ≤ i 6= j ≤ t. We
will not be able to uniquely identify the degree of the j’th

monomial in xk if there exists d̄ such that rj × (
αn+1
αk

)d̄ = r̄i
is a root of Λk+1(z) and 0 ≤ d 6= ejk ≤ d where ejk is
degxk

(Mj). But we have r̄i = ri × (
αn+1
αk

)eik thus rj ×
(
αn+1
αk

)d̄ = ri×(
αn+1
αk

)eik . Without loss of generality, assume

d̃ = d̄ − eik > 0. We have ri = rj × (
αn+1
αk

)d̃ and hence
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ri ∈ Sd̃ ⇒ S0 ∩ Sd̃ 6= ∅. Hence we will not be able to
compute the degrees in xk if S0 ∩Si 6= ∅ for some 1 ≤ i ≤ d.
Let

g(x) =
Y

1≤l 6=j≤t
(rjx

i − rlαik).

We have rl = rj × (
αn+1
αk

)i ∈ S0 ∩ Si iff g(αn+1) = 0. Using

the Schwartz-Zippel lemma, the probability that g(αn+1) =

0 is at most deg g
φ(p−1)

=
(t
2)i

φ(p−1)
< it2

2φ(p−1)
. If we sum this quan-

tity for all 1 ≤ i ≤ d we obtain that the overall probability

is at most d2t2

4φ(p−1)
.

Using Theorem 2, the probability that we will not be able
to uniquely identify the degrees of the monomials in all the

variables is at most nd2t2

4φ(p−1)
, i.e. for p, s.t. φ(p− 1) > nd2t2

2

with probability at least half, the algorithm succeeds with-
out dealing with any problem. We will now discuss our solu-
tion to this problem. Note that we assume the images of the
monomials are distinct, i.e. ∀ 1 ≤ i 6= j ≤ t, mi,k 6= mj,k.
Suppose we have computed Λk+1 and we want to compute
the degrees of the monomials in xk and let R1 = {r1, . . . , rt}
be the set of all the roots of Λ1 and Rk = {r̄1, . . . , r̄t} be
the set of all the distinct roots of Λk+1. Let

Dj = {(i, r) | 0 ≤ i ≤ d, r = rj × (
αn+1

α1
)i ∈ Rk}.

Dj contains the set of all possible degrees of the j’th mono-
mial Mj in the k’th variable xk. We know that (ejk, r̄j) ∈ Dj
and hence |Dj | ≥ 1. If |Dj | = 1 for all 1 ≤ j ≤ t, then the
degrees are unique and this step of the algorithm is complete.
Let Gk be a balanced bipartite graph defined as follows. Gk
has two independent sets of nodes U and V each of size t.
Nodes in U and V represent elements in R1 and Rk respec-
tively, i.e. ui ∈ U and vj ∈ V are labeled with ri and r̄j . We
connect ui ∈ U to vj ∈ V with an edge of weight (degree)
dij if and only if (dij , r̄j) ∈ Di.
Lemma 1 We can uniquely identify the degrees of all the
monomials in xk, if and only if the bipartite graph Gk has a
unique perfect matching.

The proof of this lemma is immediate by looking at the
structure of the graph Gk. We illustrate with an example.

Example 3 Let f be the polynomial given in Example 1 and
suppose for some evaluation points α1, . . . , α4 we obtain the
graph G1 as shown in Figure 1. This graph has a perfect
matching, i.e. the set of edges {(ri, r̄i) | 1 ≤ i ≤ 5}. If there
was an edge connecting r1 to r̄2 then the new graph would
no longer have a unique perfect matching and we would fail
to uniquely compute the degrees of monomials in x.

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

0 4 0 3 0

5
5

2

2

Figure 1: The bipartite graph G1

We now give a solution for the case where Gk does not
have a unique perfect matching for some 1 ≤ k ≤ n. The
solution involves 2t more probes to the black box. Suppose
we choose a random element αn+2 ∈ Zp such that γ =

αn+2
αn+1

is a generator of Z∗p (or is of order greater than d). Let

βi = (αi1, . . . , α
i
k−1, α

i
n+2, α

i
k+1, . . . , α

i
n) and let vi be the

output of the black box on input βi (0 ≤ i ≤ 2t − 1). On
input V = (β0, . . . , β2t−1), the Berlekamp/Massey algorithm
computes a linear generator Λ′k+1(z) for V . Let {r̃1, . . . , r̃t}
be the set of distinct roots of Λ′k+1. Let G′k be the balanced
bipartite graph, obtained from Λ1 and Λ′k+1.

Definition 1. We define Ḡk, the intersection of G′k and
Gk, as follows. Ḡk has the same nodes as G′k and there is an
edge between ri and r̃j with weight (degree) dij if and only
if ri is connected to r̄j in Gk and to r̃j in G′k, both with the
same degree dij .

Lemma 2 Let eij = degxj
(Mi). The two nodes ri and r̃i

are connected in Ḡk with degree eij.

We take advantage of the following theorem which implies
we need at most one extra set of probes.

Theorem 3 Let Ḡk = Gk ∩ G′k. Ḡk has a unique perfect
matching.

Proof. Let U and V be the set of independent nodes in
Ḡk such that ui ∈ U and vj ∈ V are labeled with ri and
r̃j respectively where r̃j is a root of Λ′k+1. We will prove
that each node in V has degree exactly 1 and hence there
is a unique perfect matching. The proof is by contradiction.
Suppose the degree of vj ∈ V is at least 2. With out loss of
generality assume that r1 and r2 are both connected to r̃j
with degrees d1j and d2j respectively (See Figure 2).

1r 2r

rj

2j
d

1j
d

~

Figure 2: Node r̃j of graph Ḡk

Using Definition 1 we have

r̄j = r1 × (
αn+1

αk
)d1j = r2 × (

αn+1

αk
)d2j and

r̃j = r1 × (
αn+2

αk
)d1j = r2 × (

αn+2

αk
)d2j .

Dividing the two sides of these equations results in

(
αn+2

αn+1
)d1j = (

αn+2

αn+1
)d2j .

Since we chose αn+2 such that
αn+2
αn+1

has a sufficiently large

order (greater than the degree bound d) we have d1j = d2j ⇒
r1 = r2. But this is a contradiction because both r1 and r2

are roots of Λ1 which we assumed are distinct.

Lemma 2 and Theorem 3 prove that the intersection of Gk
and G′k will give us the correct degrees of all the monomials
in the k’th variable xk. We will illustrate with an example.
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Example 4 Let f = −10 y3 − 7x2yz − 40 yz5 + 42 y3z5 −
50x7z2+23x5z4+75x7yz2−92x6y3z+6x3y5z2+74xyz8+4
and p = 101. We choose the first set of evaluation points
to be α1 = 66, α2 = 11, α3 = 48 and α4 = 50. For the first
variable x we will obtain the bipartite graph G1 shown in
Figure 3.
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2 9 3 8
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Figure 3: The bipartite graph G1

This graph does not have a unique perfect matching, so we
proceed to choose a new evaluation point α5 = 89. This time
we will get the bipartite graph G′1 shown in Figure 4.
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Figure 4: The bipartite graph G′1

Again G′1 does not have a unique perfect matching. We com-
pute the intersection of G1 and G′1: Ḡ1 = G1 ∩ G′1. Ḡ1 is
shown in Figure 5.
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Figure 5: The bipartite graph Ḡ1

As stated by Theorem 3, Ḡ1 has a unique perfect matching
and the degree of every monomial in x is correctly computed.

In this section we proved that if the prime p is sufficiently
large (φ(p− 1) must be approximately dt2 for us to be able
to get distinct images of monomials with reasonable prob-
ability), we will be able to compute the degrees of all the
t monomials in each variable xk using up to 4t evaluation
points. If the graph Gk has a unique perfect matching, we
will be able to compute the degrees in xk with only 2t probes
to the black box.

We conclude this section with the following lemma which we
will later use in Section 4.

Lemma 3 Let Gk be the bipartite graph for the k’th vari-
able. Let ui1 → vj1 → ui2 → vj2 → · · · → vjs → ui1 be a
cycle in Gk where ul ∈ U is labeled with rl (a root of Λ1)
and vm ∈ V is labeled with r̄m (a root of Λk+1). Let dlm be
the weight (degree) of the edge between ul and vm. We havePs
m=1 dimjm −

Ps
m=1 dim+1jm = 0.

Proof. It is easy to show that ri1 = (
αn+1
αk

)d̄ris where

d̄ = di1j1 − di2j1 + di2j2 − di3j2 + · · · + dis−1js−1 − disjs−1 .
Also both ui1 and uis are connected to vjs in Gk hence we
have ri1 = (

αn+1
αk

)di1js r̄is and ris = (
αn+1
αk

)disjs r̄is . These

three equations yield to ri1 = (
αn+1
αk

)d̃ri1 where d̃ = di1j1 −
di2j1 +di2j2 −di3j2 + · · ·+dis−1js−1 −disjs−1 +disjs −di1js .

But if
αn+1
αk

is of sufficiently high order, d̃ must be zero thusPs
m=1 dimjm −

Ps
m=1 dim+1jm = 0.

Example 5 In G′1 shown in Figure 4, there is a cycle r3 →
r̃4 → r7 → r̃7 → r3. The weights (degrees) of the edges in
this cycle are as 7, 3, 0 and 4. We have 7− 3 + 0− 4 = 0.

4. THE ALGORITHM
Algorithm: Interpolation
Input: A black box B : Znp → Zp that on input α1, . . . , αn ∈ Znp

outputs f(α1, . . . , αn) where f ∈ Zp[x1, . . . , xn].
Input: A degree bound d ≥ deg(f).
Input: A bound T ≥ t on the number of terms in f .
Output: The polynomial f or FAIL.

1: Choose n+ 1 generators α1 6= . . . 6= αn+1 of Z∗p randomly.
2: repeat choose γ to be a random generator of Z∗p and let

αn+2 = αn+1 × γ until αn+2 /∈ {α1, . . . , αn+1}.
3: Let βi = (αi1, . . . , α

i
n) for 0 ≤ i ≤ 2T − 1.

4: for k from 1 to n+ 1 in parallel do
5: Compute Λk(z):
6: Compute vi = B(βi) for 0 ≤ i ≤ 2t− 1 using αin+1 instead

of αik−1 when k > 1.

7: Use the Berlekamp/Massey algorithm to compute a linear
generator Λk ∈ Zp[z] for the sequence v0, . . . , v2t+1.

8: end for
9: Set t = max(deg Λ1(z), . . .Λn+1(z)). If the degree of the Λ’s

are not all equal to t then repeat steps 1 through step 8 once.
If this does not yield equal degree Λ’s then (p is likely too
small so) return FAIL.

10: Compute {r1, . . . , rt} the set of distinct roots of Λ1(z).
11: for k from 1 to n in parallel do
12: Determine degxk

(Mi) for 1 ≤ i ≤ t:
13: Construct the graph Gk as described in Section 3.
14: if Gk has a unique perfect matching then
15: Set eik = dil where dil is the weight (degree) of the edge

that matches the node ri to r̄l in the perfect matching.
16: else
17: Construct the graph G′k as described in Section 3.

Note, this requires 2t more probes to B.
18: Find the intersection of Gk and G′k: Ḡk = Gk ∩G′k.
19: Set eik = dil where dil is the weight (degree) of the edge

that matches the node ri to r̃l in the perfect matching
of graph Ḡk.

20: end if
21: end for
22: Let S = {a1ri1 + a2ri2 + · · · + atrit = vi | 0 ≤ i ≤ 2t′ − 1}.

Solve the linear system S for (a1, . . . , at) ∈ Ztp.

23: Let g =
Pt
i=1 aiMi where Mi =

Qn
j=1 x

eij

j .

24: Pick non-zero a1, . . . , an from Zp at random.
If B(a1, . . . , an) 6= g(a1, . . . , an) then return FAIL.

25: return g.

Remark 1 The algorithm is probabilistic. If the degrees of
the Λ′s are all equal to t then the algorithm will compute f
with probability 1. If the degrees of the Λ′s are all equal but
less than t then the algorithm cannot compute f ; that is, g 6=
f . The check in step 24 detects incorrect g with probability
at least 1 − d/(p − 1) (the Schwartz-Zippel lemma). Thus
by doing one additional probe to the black box, we verify
the output g with high probability. Kaltofen and Lee in [11]
also use additional probes to verify the output this way.
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Remark 2 For simplicity, our presentation of the algorithm
assumes the term bound T is good. In applications where a
good term bound is not available, one should first compute
Λ1(z) using T , and then use t = deg Λ1(z) when computing
Λ2, . . . ,Λn+1.

4.1 Complexity Analysis
We now discuss the sequential complexity of the algorithm

assuming t = T . We need to consider the cost of probing the
black box. Let E(n, t, d) be the cost of one probe to the black
box. If Gk has a unique perfect matching for 1 ≤ k ≤ n then
we can correctly compute the degrees using only Gk. In this
case the total number of probes is 2(n+1)t in the first loop.
In the worst case where Gk does not have a unique perfect
matching for all 1 ≤ k ≤ n, we need to do additional 2nt
probes to the black box in the second loop to construct all
G′k graphs. In this case the total number of probes to the
black box is 2(n + 1)t + 2nt = 2(2n + 1)t. Hence the total
cost of probes to the black box is O(ntE(n, t, d)).
The n + 1 calls to the Berlekamp/Massey algorithm in the
first loop (as presented in [10]) cost O(t2) time each. The
Vandermonde system of equations at Step 22 can be solved
in O(t2) using the technique given in [18]. Note that as
mentioned in [18], when inverting a t×t Vandemonde matrix
defined by k1, . . . , kt, one of the most expensive parts of
this technique is to compute the master polynomial M(z) =Qt
i=1(z−ki). However, in our algorithm we can use the fact

that M(z) =
Qt
i=1(z − ri) = Λ1(z).

To compute the roots of Λ1(z) at Step 10 of the algorithm,
we use Rabin’s Las Vegas algorithm [15]. If f ∈ Zp[z]
is a product of linear factors, Rabin’s algorithm tries to
split it into two factors of lower degree by computing the
gcd((z − β)(p−1)/2 − 1,Λ1(z)) for randomly chosen β ∈ Zp.
Since degz(Λ1) = t, the cost of finding the t roots of Λ1(z),
assuming classical algorithms for polynomial arithmetic in
Zp[z] are used, is O(t2 log p). See Algorithm 14.15 of [3].

We can compute the information needed to construct the
bipartite graph Gk in O(dt2) time. This involves evaluating
Λk+1(z) at d points for each monomial and testing if it is
zero or not. Also computing the intersection of Gk and G′k
can be done in O(td log d) time. This is because we know
that each node in the intersection is of degree one (See proof
of Theorem 3). Thus the overall time complexity is

O(t2(log(p) + nd) + ntE(n, t, d)).

Remark 3 The algorithm, as presented, corresponds to our
parallel implementation in Cilk. Further parallelism in the
algorithm could be exploited. For example, one could com-
pute all probes to the black box B in step 6 and step 17
in parallel. When determining the degree of the monomi-
als in step 13 and 17, one can parallelize the evaluations of
Λk+1(z). The most expensive sequential component is the
computation of the roots of Λ1(z) in step 10 which has com-
plexity O(t2 log p). With asymptotically fast arithmetic this

is Õ(t log p).

4.2 Optimizations
Let D = deg(f). If the prime p is large enough, i.e.

p > nD2t2

4ε
then with probability 1 − ε the degree of ev-

ery monomial in xk can correctly be computed using only
Gk and without needing any extra probes to the black box.
In fact in this case, with high probability, every ri will be

matched with exactly only one r̄j and hence every node in
Gk would have degree one (e.g. see Figure 5). But if d� D,
i.e. the degree bound d is not tight, the probability that we
could identify the degrees uniquely drops significantly even
though p is large enough. This is because the probability
that root clashing (see Section 3) happens, linearly depends
on d. In this case, with probability 1 − ε, the degree of
Mi in xk would be min {dij | (dij , ri) ∈ Gk}, i.e. the edge
connected to ri in Gk with minimum weight (degree) is our
desired edge in the graph which will show up in the perfect
matching. We apply the following theorem.

Theorem 4 Let Hk be a graph obtained by eliminating all
edges connected to ri in Gk except the one with minimum
weight (degree) for all 1 ≤ i ≤ t. If the degree of every node
in Hk is exactly one, then eik is equal to the weight of the
edge connected to ri in Hk.

This theorem can be proved using Lemma 3 and the fact
that there can not be any cycle in the graph Hk. We will
give an example.

Example 6 Let f = 25y2z+90yz2+93x2y2z+60y4z+42z5.
Here t = 5, n = 3, dmax = 5 and p = 101. We choose
the following evaluation points α1 = 85, α2 = 96, α3 = 58
and α4 = 99. Suppose we want to construct G2 in order
to compute the degrees of the monomials in y. Suppose our
degree bound is d = 40 which is not tight. The graph G2 and
H2 are shown in Figures 6 and 7 respectively.
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Figure 7: The bipartite graph H2

The graph H2 has the correct degrees of the monomials in
variable y.

Theorem 4 suggests the following optimization. In the con-
struction of the bipartite graph Gk, connect ri to r̄j with

degree dij only if there is no d̄ < dij such that ri× (
αn+1
αk

)d̄

is a root of Λk+1, i.e. the degree of the node ri in U is al-
ways one for all 1 ≤ i ≤ n. If there is a perfect matching
in this graph, this perfect matching is unique because this
implies that the degree of each node r̄j in V is also one (e.g.
see Figure 7). If not, go back to and complete the graph
Gk. This optimization makes our algorithm sensitive to the
actual degree of f(x1, ..., xn) in each variable.
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The second optimization is to compute the degree of each
monomial Mi = xei1

1 xei2
2 . . . xein

n in the last variable xn with-
out doing any more probes to the black box. Suppose we
have computed the degree of Mi in xk for 1 ≤ k < n. We
know that Mi(α1, . . . , αn) is equal to ri, a root of Λ1. Hence
ri = αei1

1 · αei2
2 · · · · · αein

n . Since we know the degrees eij
for 1 ≤ j < n we can determine ein by division by αn. This
reduces the total number of probes from 4(n+ 1)t to 4nt.

5. BENCHMARKS
Here, we compare the performance of our new algorithm,

Zippel’s algorithm and the racing algorithm of Kaltofen and
Lee from [11]. We have implemented Zippel’s algorithm and
our new algorithm in C. We have also implemented an in-
terface to call the interpolation routines from Maple. The
racing algorithm is implemented in Maple in the ProtoBox
package by Lee [11]. Since this algorithm is not coded in C,
we only report (see columns labelled PBox) the number of
probes it makes to the black box.

We give benchmarks comparing the performances on five
problem sets. The polynomials in the first four benchmarks
were generated at random. The fifth set of polynomials are
taken from [11]. We count the number of probes to the black
box and measure the total CPU time (for our new algorithm
and Zippel’s algorithm only). All the timings given in this
section are in CPU seconds and were obtained using Maple
13 on a 64 bit Intel Core i7 920 @ 2.66GHz, running Linux.
This is a 4 core machine. For our algorithm, we report the
real time for 1 core and (in parentheses) 4 cores.

The black box in our benchmarks computes a multivariate
polynomial with coefficients in Zp where p = 3037000453 is
a 31.5 bit prime. In all benchmarks, the black box simply
evaluates the polynomial at the given evaluation point. To
evaluate efficiently we compute and cache the values of xji
mod p in a loop in O(nd). Then we evaluate the t terms in
O(nt). Hence the cost of one black box probe is O(nd+nt))
arithmetic operations in Zp.

Benchmark #1

This set of problems consists of 13 multivariate polynomials
in n = 3 variables. The i’th polynomial (1 ≤ i ≤ 13) is
generated at random using the following Maple command:

> randpoly([x1,x2,x3], terms = 2^i, degree = 30) mod p;

The i’th polynomial will have about 2i non-zero terms. Here
D = 30 is the total degree hence the maximum number of
terms in each polynomial is tmax =

`
n+D
D

´
= 5456. We

run both the Zippel’s algorithm and our new algorithm with
degree bound d = 30. The timings and the number of probes
are given in Table 1. In this table “DNF” means that the
algorithm did not finish after 12 hours.
As i increases, the polynomial f becomes denser. For i > 6,
f has more than

√
tmax non-zero terms. This is indicated

by a horizontal line in Table 1 and also in subsequent bench-
marks. The line approximately separates sparse inputs from
dense inputs. The last polynomial (i = 13) is 99.5% dense.

The data in Table 1 shows that for sparse polynomials
1 ≤ i ≤ 6, our new algorithm does a lot fewer probes to
the black box compared to Zippel’s algorithm. It also does
fewer probes than the racing algorithm (PBox). However, as
the polynomials get denser, Zippel’s algorithm has a better
performance. For a completely dense polynomial with t non-

i t New Algorithm Zippel PBox

Time Probes Time Probes Probes

1 2 0.00 (0.00) 12 0.00 217 20
2 4 0.00 (0.00) 24 0.00 341 39
3 8 0.00 (0.00) 48 0.00 558 79
4 16 0.00 (0.00) 96 0.01 868 156
5 32 0.00 (0.00) 192 0.01 1519 282
6 64 0.01 (0.01) 384 0.03 2573 517
7 128 0.03 (0.02) 768 0.08 4402 962
8 253 0.11 (0.06) 1518 0.21 6417 1737
9 512 0.44 (0.24) 3072 0.55 9734 3119
10 1015 1.66 (0.88) 6090 1.16 12400 5627
11 2041 6.50 (3.44) 12246 2.43 15128 DNF
12 4081 25.3 (13.4) 24486 4.56 16182 DNF
13 5430 44.3 (23.3) 32580 5.93 16430 DNF

Table 1: benchmark #1: n = 3 and D = 30

zero terms, Zippel’s algorithm only does O(t) probes to the
black box while the new algorithm does O(nt) probes.

To show how effective the first optimization described in
Section 4.2 is, we run both our algorithm and Zippel’s algo-
rithm on the same set of polynomials but with a bad degree
bound d = 100. The timings and the number of probes are
given in Table 2. One can see that our algorithm is unaf-
fected by the bad degree bound; the number of probes and
CPU timings are the same.

i t New Algorithm Zippel’s Algorithm
Time Probes Time Probes

1 2 0.00 (0.00) 12 0.01 707
2 4 0.00 (0.00) 24 0.01 1111
3 8 0.00 (0.00) 48 0.02 1818
4 16 0.00 (0.00) 96 0.03 2828
5 32 0.00 (0.00) 192 0.07 4949
6 64 0.01 (0.01) 384 0.14 8383
7 128 0.04 (0.02) 768 0.36 14342
8 253 0.12 (0.07) 1518 0.79 20907
9 512 0.45 (0.24) 3072 1.97 31714
10 1015 1.67 (0.89) 6090 3.97 40400
11 2041 6.50 (3.45) 12246 8.18 49288
12 4081 25.3 (13.4) 24486 15.16 52722
13 5430 44.1 (23.4) 32580 19.62 53530

Table 2: benchmark #1: bad degree bound d = 100

Benchmark #2

In this set of benchmarks the i’th polynomial is in n = 3
variables and is generated at random in Maple using

> randpoly([x1,x2,x3], terms = 2^i, degree = 100) mod p;

This set of polynomials differs from the first benchmark in
that the total degree of each polynomial is set to be 100 in
the second set. We run both the Zippel’s algorithm and our
new algorithm with degree bound d = 100. The timings and
the number of probes are given in Table 3. Comparing this
table to the data in Table 1 shows that the number of probes
to the black box in our new algorithm does not depend on
the degree of the target polynomial.
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i t New Algorithm Zippel PBox

Time Probes Time Probes Probes

1 2 0.00 (0.00) 12 0.01 707 19
2 4 0.00 (0.00) 24 0.01 1111 45
3 8 0.00 (0.00) 48 0.02 1919 89
4 16 0.00 (0.00) 96 0.04 3434 167
5 31 0.00 (0.00) 186 0.08 6161 320
6 64 0.02 (0.01) 384 0.19 10504 623
7 127 0.05 (0.02) 762 0.49 18887 1149
8 253 0.17 (0.09) 1518 1.38 32219 2137
9 511 0.66 (0.34) 3066 4.36 56863 4103
10 1017 2.54 (1.31) 6102 13.99 98677 7836
11 2037 9.83 (5.09) 12222 43.23 166650 DNF
12 4076 38.7 (19.9) 24456 121.68 262802 DNF
13 8147 152. (78.3) 48882 282.83 359863 DNF

Table 3: benchmark #2: n = 3 and D = 100

Benchmarks #3 and #4

These sets of problems consist of 14 random multivariate
polynomials in n = 6 variables and n = 12 variables all of
total degree D = 30. The i’th polynomial will have about
2i non-zero terms. We run both the Zippel’s algorithm and
our new algorithm with degree bound d = 30. The timings
and the number of probes are given in Tables 4 and 5.

i t New Algorithm Zippel PBox

Time Probes Time Probes Probes

1 2 0.00 (0.00) 24 0.01 496 37
2 3 0.00 (0.00) 36 0.01 651 59
3 8 0.00 (0.00) 96 0.01 1364 140
4 16 0.00 (0.00) 192 0.02 2511 284
5 31 0.00 (0.00) 372 0.05 4340 521
6 64 0.02 (0.01) 768 0.15 8060 995
7 127 0.06 (0.03) 1524 0.44 14601 1871
8 255 0.21 (0.09) 3060 1.51 27652 3615
9 511 0.81 (0.35) 6132 5.19 50530 6692
10 1016 3.10 (1.33) 12192 17.94 90985 12591
11 2037 12.2 (5.21) 24444 65.35 168299 DNF
12 4083 48.1 (20.5) 48996 230.60 301320 DNF
13 8151 189. (80.1) 97812 803.26 532549 DNF

Table 4: benchmark #3: n = 6 and D = 30

To assess the parallel implementation of our algorithm,
Table 6 reports timings for benchmark #4 for our algorithm
running on 1, 2 and 4 cores showing the speedup we ob-
tain using 2 and 4 cores. We report (in column roots) the
time spent computing the roots in step 10 of Λ1(z) using
our implementation of Rabin’s algorithm which uses classi-
cal polynomial arithmetic, and (in column solve) the time
solving the linear system for the coefficients in step 22 and
(in column probes) the total time spent probing the black
box. The data shows that computing the roots will become
a bottleneck for our parallel implementation for more cores.
Thus for 2 cores and 4 cores we report two timings. The
first (in column time 1) is for our parallel algorithm as pre-
sented. For the second (faster) time (in column time 2) we
have parallelized the second and subsequent steps of the root
finding algorithm which yields a modest speedup. The data

i t New Algorithm Zippel PBox

Time Probes Time Probes Probes

1 2 0.00 (0.00) 44 0.03 1736 67
2 4 0.00 (0.00) 96 0.04 3038 121
3 8 0.00 (0.00) 192 0.08 5053 250
4 15 0.00 (0.00) 360 0.20 10230 470
5 32 0.02 (0.01) 768 0.54 18879 962
6 63 0.04 (0.02) 1512 1.79 36735 1856
7 127 0.15 (0.05) 3048 6.10 69595 3647
8 255 0.54 (0.17) 6120 22.17 134664 7055
9 507 2.01 (0.60) 12168 83.44 259594 13440

10 1019 7.87 (2.33) 24456 316.23 498945 26077

11 2041 31.0 (9.16) 48984 1195.13 952351 DNF

12 4074 122.3 (35.9) 97776 4575.83 1841795 DNF

13 8139 484.6 (141.) 195336 >10000 - DNF

Table 5: benchmark #4: n = 12 and D = 30

can be interpreted as follows. For i = 13 the sequential time
is 484.6s. Of this, 34.7s was spent computing the roots of
Λ1(z) and 5.02s was spent solving for the coefficients. Thus
the algorithm has a sequential component of 34.7 + 5.02 =
39.7s and so the maximum possible speedup on 4 cores is a
factor of 484.6/((484.6 − 39.7)/4 + 39.7) = 3.21 compared
with the observed speedup factor of 484.6/152.5 = 3.18.
One way to remove this bottleneck would be to use a fast
multiplication and division algorithm for Zp[z].

Benchmark #5

In this benchmark, we compare our new algorithm and the
racing algorithm on seven target polynomials (below) from
[11, p. 393]. Note, f6 is dense. The number of probes for
each algorithm is reported in Table 7.
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f5(x1, . . . , x50) =
Pi=50
i=1 x50

i

f6(x1, . . . , x5) =
Pi=5
i=1 (x1 + x2 + x3 + x4 + x5)i

f7(x1, x2, x3) = x20
1 + 2x2 + 2x2

2 + 2x3
2 + 2x4

2 + 3x20
3

i n d #fi New Algorithm ProtoBox
1 9 3 5 90 126
2 10 2 5 100 124
3 9 3 5 90 133
4 9 4 5 100 133
5 50 50 50 5000 251
6 5 5 251 2510 881
7 3 20 6 36 41

Table 7: benchmark #5.
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1 core 2 cores 4 cores
i t time roots solve probe time 1 time 2 (speedup) time 1 time 2 (speedup)

6 63 0.04 0.01 0.00 0.04 0.03 0.02 0.02 0.02
7 127 0.15 0.02 0.00 0.15 0.08 0.08 (1.87x) 0.06 0.05 (3x)
8 255 0.54 0.05 0.00 0.41 0.30 0.28 (1.93x) 0.18 0.17 (3.18x)
9 507 2.02 0.18 0.02 1.48 1.11 1.06 (1.91x) 0.67 0.60 (3.37x)
10 1019 7.94 0.65 0.08 5.76 4.35 4.17 (1.90x) 2.58 2.33 (3.41x)
11 2041 31.3 2.47 0.32 22.7 17.1 16.3 (1.92x) 9.94 9.16 (3.42x)
12 4074 122.3 9.24 1.26 90.0 67.1 64.7 (1.89x) 38.9 35.9 (3.41x)
13 8139 484.6 34.7 5.02 357.3 264.9 255.8 (1.89x) 152.5 141.5 (3.42x)

Table 6: Parallel speedup timing data for benchmark #4 for the new algorithm.

6. CONCLUSION
Our sparse interpolation algorithm is a modification of

the Ben-Or/Tiwari algorithm [1] for polynomials over finite
fields. It does a factor of between n and 2n more probes
where n is the number of variables. Our benchmarks show
that for sparse polynomials, it usually does fewer probes
to the black box than Zippel’s algorithm and the racing
algorithm of Kaltofen and Lee. Unlike Zippel’s algorithm
and the racing algorithm, our algorithm does not interpolate
each variable sequentially and thus can more easily be paral-
lelized. Our parallel implementation using Cilk, which par-
allelized only the main loops, demonstrates a good speedup.
The downside of our algorithm is that it is clearly worse
than Zippel’s algorithm and the racing algorithm for dense
polynomials. This disadvantage is partly compensated for
by the increased parallelism.

Although we presented our algorithm for interpolating
over Zp, it also works over any finite field GF (q). Further-
more, if p (or q) is too small, one can work inside a suitable
extension field. We conclude with some remarks about the
choice of p in applications where one may choose p.

Theorem 1 says that monomial collisions are likely when
dt2

2φ(p−1)
> 1

2
, that is when φ(p−1) < dt2. In our benchmarks

we used the 31.5 bit prime 3037000453. This is the biggest
prime that we can use when programming in C on a 64 bit
machine using signed 64 bit machine integers. Using this
prime, if d = 30, monomial collisions will likely occur when
t > 5, 808 which means 31.5 bit primes are too small for
large applications.

It is not difficult to choose p so that p − 1 = 2q with q
also prime. The largest such 31.5 bit prime is 3037000427.
Solving φ(p − 1) < dt2 for t with d = 30 using this prime
gives t > 7, 114. This choice of prime also makes it easy to
find generators. However, for p−1 = 2q, since −1 is the only
element of order 2, any value from the interval [2, p− 2] will
have order q or 2q. If we use elements of order q as well as
generators in our algorithm, then the probability that two
monomials collide is less than dt2/(2p−6) (using |S| = p−3
in the proof of Theorem 1). Solving p− 3 < dt2 for t using
d = 30 and p = 3037000427 yields t > 10, 061.

The 31.5 bit prime limitation is not a limitation of the
hardware, but of the C programming language. On a 64 bit
machine, one can use 63 bit primes if one programs multi-
plication in assembler. We are presently implementing this.
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